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Support for digital audio and video (continuous media) as part of the human/computer inter-
face is an important direction for computer systems research. There are various ways to incor-
porate continuous media (CM) in computer systems; in the integrated approach, CM data is han-
dled by user-level programs on general-purpose operating systems such as Unix or Mach.

Integrated CM applications handle data at high rates, with strict timing requirements and
often in small “chunks”. Conventional operating systems support for program execution and local
communication may be non-optimal for such applications. In particular, conventional mechanisms
for process scheduling and inter address space communication can add significant overhead for
some CM programs. User/kernel interactions, by which user-level programs invoke system func-
tions, are partly responsible for this overhead.

We describe new mechanisms for process scheduling and CM stream communication
between virtual address spaces. These mechanisms, split-level scheduling and memory-mapped
streams, reduce or eliminate user/kernel interactions by using user/kemne! shared memory for
exchanging scheduling and communication information. We demonstrate that, compared with
conventional mechanisms for process scheduling and stream communication, these new mechan-
isms can reduce overhead by up to a factor of four.
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Chapter 1
INTRODUCTION

The topic of this dissertation is operating systems mechanisms for digital audio and video
(continuous media). We consider operating systems (OSs) that provide protected virtual address
spaces for user program execution. We argue that mechanisms in these OSs may be non-
optimal for user programs that handle CM data (CM programs). In particular, CM programs may
incur high overhead when implemented using conventional approaches for process scheduling
and CM data transfer between address spaces. We propose new mechanisms for process
scheduling and CM data communication and show that they can reduce overhead significantly for
CM programs, compared to conventional approaches.

The research area of this work is Operating Systems. It is also related to Multimedia Sys-
tems, an emerging discipline which discusses software and hardware issues in supporting diverse
media types (still images, animation, digital audio, full-motion video and so on) in computer sys-
tems.

The first chapter briefly motivates the dissertation, states its thesis and its contributions, and
gives an overview of its structure.

1.1. Motivation

Historically, the addition of new elements to the human/computer interface has necessitated
hardware and software changes in computer systems. For instance, the addition of pointer-based
interaction required the development of workstations with a bitmapped display and a mouse.
Significant additions were needed in terms of software: network-transparent window servers [2, 4]
and application-side user-interface toolkits [3] evolved gradually and with considerable discussion.
However, this software placed few new requirements on operating systems or networks; it could
be layered on existing systems such as MS-DOS and UNIX [1].

The development of CM /O devices (e.g., digital-to-analog convertors) and the trend
towards faster processors and high-speed networks will soon make it feasible to incorporate CM
into the human/computer interface in an integrated manner. In an integrated CM system, CM data
is handled in the same hardware and software framework as discrete media (such as text and
graphics). This framework is characterized by a computing environment distributed on an inter-
network of LANs and WANs. Hosts on this internetwork run general-purpose operating systems
(such as UNIX or Mach). Applications may communicate discrete media over the network; to sup-
port such applications, the software framework has elements like network file servers, network-
transparent window systems and so on.

Integrated CM applications (like the video file playback application in Figure 1.1) have real-
time requirements that are different from those of discrete media applications. For instance, an
integrated CM application may need guaranteed minimum throughput, depending on the data rate
of the CM stream that it handles. This requirement can range from tens of Kbps to tens of Mbps.
The application may also need a bound on the end-to-end delay of the CM stream (in Figure 1.1,
this is the time taken for a chunk of video data to be moved from the disk to the display). The
required bound can range from a second down to tens of milliseconds.

While attempting to integrate CM into the human/computer interface, researchers have
encountered the following questions. The answers to these questions have required (or will
require) changes or additions to the existing discrete media framework.
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Figure 1.1. An integrated CM application.

In this application, a video file is retrieved from a file server and transmitted on the network to a
compute server. The compute server performs some processing on the video data and then
sends it to the media server, which outputs the data on the local display.

o)

(3)

(4)

What parametrization of user requirements is general enough (sufficient for a large range
of applications) and accurate enough (gives adequate information so that resources can
be used efficiently) for CM? Should an integrated CM system attempt to provide perfor-
mance guarantees to CM applications (the hard real-time approach)? Or, should it only
schedule resources intelligently and gracefully degrade when resource limits are reached
(a soft real-time approach)? In Figure 1.1, the file traverses different hardware com-
ponents (the disk, the file server CPU, the network etc.). How do these different com-
ponents collaborate to ensure that application requirements are met end-to-end?

CM files are characterized by high display rates and large sizes. What are appropriate
disk architectures for storing these large files? What file system data structures permit
efficient manipulation (sharing, composition) of CM files? What are good file layout poli-
cies and disk head scheduling algorithms for reading CM files from disks at the display
rate?

In the existing discrete media framework, window servers provide network-transparent,
concurrent access to I/0O devices. What are the appropriate abstractions for accessing
CM /O devices in a similar manner? How should such a media server (Figure 1.1) pro-
vide synchronization between different media (e.g., lip synch, video sub-titling)?

How can existing packet switched networks transport CM data in real time? What are the
network issues (e.g., congestion control, routing) that arise in this new framework? What
are appropriate transport-level protocols for CM data? How are such protocols efficiently
implemented?



(5) Inthe integrated CM framework, user programs can handle CM data. How can operating
systems satisfy the real-time processing requirements of such programs? Are conven-
tional operating systems mechanisms still appropriate for CM programs?

Existing and ongoing work has attempted to answer some of the questions posed in items (1)
through (4) (Chapter 2). This work attempts to answer some of the questions raised by item (5).

1.2. Thesis Statement and Contributions

Some CM programs consist of muitiple processes. A CM process may communicate CM
data with a process in another address space or with the kernel (we call this CM stream communi-
cation). Our thesis is that conventional mechanisms for process scheduling and stream communi-
cation are inefficient for CM programs, and that new techniques can significantly improve perfor-
mance.

The contribution of this thesis is a new set of efficient mechanisms for process scheduling
and stream communication on general-purpose OSs. These new techniques arise from a
reevaluation of conventional approaches in light of CM program requirements.

Conventional approaches to process scheduling:
With conventional approaches, process scheduling is either implemented entirely in the OS
kernel or at the user level. The former requires a kernel intervention (e.g., a system call) for
each process switch. With the latter, it is not possible to prioritize a process in one address
space relative to processes in other address spaces.

New approach to process scheauling:
This approach splits the functionality of scheduling between user and kernel levels, to simul-
taneously achieve cheap process switches and global process prioritization. User-kernel
shared memory conveys scheduling information between the two levels; this avoids kernel
intervention whenever possible.

Conventional approaches to stream communication:
Stream .communication is implemented as a sequence of data transfers between user
address spaces or between user and kernel address spaces. Conventional approaches
require kernel intervention for each data transfer; that is, each data transfer operation incurs
one or more system calls. The kernel interface allows both synchronous (relative to user
programs) and asynchronous data transfers.

New approach to stream communication:
Stream communication is impiemented at the user level using shared memory between the
communicating address spaces. Communication is asynchronous relative to user programs
and the use of shared memory reduces or eliminates system calis.

This dissertation explores these new approaches, validating the thesis by design, implementation
and performance evaluation.

1.3. Thesis Overview

Chapter 2 describes the integrated approach in greater detail. It surveys work in different
aspects of designing an integrated framework for CM, sampling research projects to see how they
answer some of the questions posed in Section 1.1.

Chapter 3 discusses operating system related issues for an integrated CM framework. It
motivates the thesis stated in Section 1.2.

Chanter 4 and Chapter 5 describe the design and implementation of new mechanisms for
process scheduling and stream communication respectively. Both these techniques use
user’/kernel shared memory to communicate information. Chapter 6 describes efficient
user/kernel shared memory concurrency control mechanisms.

Chapter 7 presents the results of a series of simulations to study the performance of these
mechanisms. It describes CM workload characterization and an experimental study of the effect
of different factors on the scheduling and communication costs for CM workloads.



Finally, Chapter 8 presents related work in the area and Chapter 9 offers some concluding
remarks.



Chapter 2
INTEGRATED CONTINUOUS MEDIA

In this chapter, we describe the integrated approach to incorporating CM into computer sys-
tems. In this approach, CM data is handled in the same hardware and software framework as
other (discrete) data. Section 2.1 lists the properties of an integrated CM system. Section 2.2
discusses the requirements of integrated CM applications. These requirements differ from those
of discrete media applications. This difference affects parts of the existing software framework
such as network communication, operating systems, and so on. Sectlon 2.3 surveys work on
adding CM functionality to these parts.

2.1. What is Integrated Continuous Media?

We first describe our model of the existing framework for handling discrete media data (e.g.,
text and graphics). We then list desirable properties of an integrated CM framework and compare
it with other approaches to incorporating CM.

2.1.1. Hardware and Software Framework

In our model of the existing hardware framework, general-purpose computing is performed
on a collection of personal workstations linked by an internetwork of LANs and WANs. The inter-
network may also contain other hosts; file servers for storage, gateways for internetwork commun-
ication, compute servers for special-purpose processing and so on.

Each host runs a general-purpose operating system (OS) such as UNIX [RiT74] or Mach
[ABB86]. In such systems, the OS kernel runs in privileged mode and provides muitiple, protected
virtual address spaces (VASs) for user program execution. A thread of control in a VAS is called
a process. Each VAS may contain one or more processes. The term process does not imply a
particular implementation technique; processes may be implemented entirely at the user level or
by the kernel. Task denotes an instance of user program execution; a task consists of the VAS in
which the program executes, the processes in that VAS and other resources (e.g., port IDs, file
descriptors) allocated at runtime to the program.

In our model of the existing software framework, application tasks may reside on different
nodes and communicate over the internetwork. A standard protocol suite is used for network
communication (e.g, the Internet protocol suite [Tan81]). Network file servers (e.g., NFS [SGK85])
provide distributed data storage and retrieval. Network-transparent window systems (e.g. X11
[ScG86] or NeWS [SSS87]) manage the human/computer interface elements such as the display,
the keyboard and the mouse.

2.1.2. The Integrated Continuous Media Framework

If the framework described in Section 2.1.1 has the following additional properties, we say
that it supports integrated continuous media: :

(1) CM data is handled in hardware by primary memory, the /O subsystem, and networks,
and in software by the OS and user programs. DVI [Gre92] is an example of a system
that provides this functionality.

(2)  Users can run multiple applications concurrently, with no adverse effects from contention
for hardware resources.

(3) Application tasks can communicate CM data across the network.



(4) The essential elements (e.g., network-transparent window systems, network file access)
of the framework described in Section 2.1.1 are used for CM data storage, processing,
communication and /O as well.

Other approaches to incorporating audio and video in computer systems are possible. In
one approach, audio and video data is in analog form. However, audio and video storage and
communication are under computer control. Examples include VOX [ABL83] and IMAL {LuD87].
In another approach, CM data is in digital form and may be communicated over a digital communi-
cation network, but does not pass through the main memory of the computer. Examples include
Pandora [Hop90] and the Xerox Etherphone [ZTS89].

In the integrated CM framework, CM data can be manipulated algorithmically in the same
way as other data. Relative to these other approaches, an integrated CM system is therefore
more flexible and general. Moreover, hardware may be simpler, since no separate disks or net-
works are required for CM data.

2.2. Requirements of Integrated CM Applications

Applications that handle digital audio and video may have stringent real-time requirements.
For instance, CM data must be produced, processed, and consumed at fixed rates (up to 40 Mbps
for uncompressed full-motion video). To understand the range of real-time requirements (Section
2.2.3) of integrated CM applications, we describe two such applications (Sections 2.2.1 and 2.2.2).

workstation

client /O server

L

file server

user AN

kerrle/ 1 \

LAN
Zi
/TN | ,

Kk
speaker display

A 4

Figure 2.1. The CM file playback application.

This picture shows a program that implements playback of a file containing audio and video data.
The program retrieves the file from a network file server, does some processing on the data, and
sends the data to a I/0 server. The latter outputs the video to the display device and the audio to
the speaker.




2.2.1. Example: The CM File Playback Application

Figure 2.1 illustrates an application playing back a file containing a video sequence and its
associated audio. An I/O server provides network-transparent, concurrent access to CM output
devices (speaker and video display) and to CM input devices (microphone and video camera, not
shown). This functionality is similar to that provided by the X11 server for discrete media /O dev-
ices such as the display, the keyboard and the mouse.

A network file server transmits the file as a CM stream (a sequence of bytes of CM data)
across the LAN. A client of the 1/O server may do some processing (e.g. audio volume scaling) on
the stream. The client task sends the CM stream to the /O server. The latter separates the audio
and video data and sends each component to its respective output device (speaker, display).
More generally, the client task may execute on a different workstation from the I/O server.

2.2.2. Example: Audio Teleconferencing

An important class of audio applications enabled by integrated CM is audio teleconferencing.
Each participant in a teleconference must hear a sum of the inputs of other participants. The
conference may also take input from one or more files; all participants hear file inputs. Similarly, a
“transcript” of the conference might be recorded to a file.

In general, a conference has N audio sources and M audio sinks. Each sink receives a
linear combination of the sources, with arbitrary volume coefficients. Some common examples of
audio teleconferences are:

N =2, M = 2: a telephone conversation between two people.
N =1, M = large: a radio broadcast.

N~ 10, M " 100 : a panel discussion with an audience.

N~ 10, M~ 10: a chamber music rehearsali.

When an audio teleconference is implemented in the integrated CM framework, conference.
sources and sinks can be either /O servers or file servers distributed across the network. Other
hosts on the network may be used to run a third component of the teleconferencing application,
“mixers”. A mixer combines audio streams from conference sources or from other mixers and
distributes the results to one or more sinks or mixers. Mixers, I/O servers and file servers
exchange audio streams over network connections.

There are many digital formats for audio, ranging from telephone quality to hi-fi quality.
Source and sinks may be able to generate or accept data in more than one format, and mixers
may be able to convert between formats.

Given sources and sinks, the audio teleconferencing application computes a configuration of
mixers that satisfies the requirements of the conference. Figure 2.2 shows one such configuration
for some sources and sinks.

2.2.3. Delay and Throughput Requirements of Integrated CM Applications

Integrated CM applications may require guaranteed minimum throughput. For example, the
file playback application (Section 2.2.1) requires that data be read from the disk file and
transferred to the DAC at a minimum average data rate. This rate is determined by the data
representation.

The data rates for digital audio can vary from 64 Kbps (for telephone quality audio) to 1.4
Mbps (for 44 KHz stereo CD-quality audio) and 1.536 Mbps (for 48 KHz stereo DAT quality audio)
[Wat88]. Uncompressed full-motion NTSC video requires a data rate of 40 Mbps. DVI edit-level
video [Gre92] compresses this to about 1.2 Mbps. The MPEG standard [Fox91] for motion video
compression achieves a maximum data rate of 1.5 Mbps for NTSC quality video and associated
audio. However, analogous future technology for HDTV video may produce data rates in the tens
of Mbps.

In the file playback example (Section 2.2.1), the CM stream traverses a number of devices
from source to sink (disk, file server CPU, network, client CPU and display). At each of these, the
CM stream may incur some queueing and processing delay. We call the cumulative delay from
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Figure 2.2. An audio teleconference.

A particular configuration of mixers in an audio teleconference might look Iikie this. Arrows
represent network connections carrying audio data. A dashed arrow represents low-quality audio
data, a thin arrow medium quality and a solid arrow high quality.

source to sink the end-to-end delay.

Integrated CM applications may also require bounds on the end-to-end delay of the CM
stream. Delay requirements depend on the nature of the application. File playback may be able
to tolerate delays in the range of 1-2 seconds. However, audio teleconferencing (Section 2.2.2)
requires an end-to-end delay in the range of 100-200 milliseconds [Coh78]. For applications such
as distributed music rehearsal (a special case of audio teleconferencing), the required delay may
be 20 milliseconds or less [Loy85].

2.3. Survey of Integrated CM Systems

To realize an integrated CM framework, we need to satisfy the four properties described in
Section 2.1.2 in the existing discrete media framework. Equivalently, we need to satisfy proper-
ties (1) and (4), and satisfy the delay and throughput requirements listed in Section 2.2.3. Figure
2.3 shows portions that should be added to or changed in the existing discrete media framework
for this purpose. In this section, we survey existing and ongoing work on: end-to-end scheduling,
CM storage, CM I/0, and network communication. The fifth portion, processing and local com-
munication, is the subject of this dissertation and is discussed in subsequent chapters.

2.3.1. End-to-end scheduling

We say that an integrated CM framework solves the end-to-end scheduling problem if it can
satisfy the throughput and end-to-end delay requirements of integrated CM applications. There
are two parts to the problem. The application’s requirements must be conveyed to all devices
(disks, networks, CPUs and so on) on the path of the CM stream from source to sink. Then, dev-
ice schedulers must each satisfy the minimum throughput requirement and collectively satisfy the
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Figure 2.3. Different portions of an integrated CM system.

Taking the file playback example, we highlight five different portions of the software framework
described in Section 2.1.1 that are affected by the need to integrate CM.

end-to-end delay requirement.

One approach to this problem reserves device capacity and “guarantees” that an
application’s requirements will be met over its lifetime (Sections 2.3.1.1, 2.3.1.2). The approach
described in Section 2.3.1.3 does not reserve device capacity, but detects and gracefully
degrades from device capacity overload.

2.3.1.1. The CM-Resource Model

To guarantee performance levels for the duration of an application’s execution, the shared
components, such as CPU, file system, and network, may support “reservations”. An application
specifies its workload and the component reserves part of its capacity to provide the ~.pplication
with a performance guarantee.

To formalize the reservation of component capacity, a model for expressing workioad and
processing is needed. In this section, we briefly describe the CM-Resource model [And]. In this
model, the set of system components that handle CM data is decomposed into a set of resources.
In general, a resource corresponds to a schedulable hardware device and its accompanying
software driver. For example, a CPU and its scheduler might comprise a resource. Resources
may also be more complex: a local area network (which includes multiple interface devices,
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concurrent operation, and muitiple scheduling mechanisms) might be treated as a single resource.

The CM-resource model assumes that work is assigned to resources in discrete units called
messages, typically representing a segment of CM data. Each message has a well-defined arrival
time at which it is available for handling by a resource and completion time at which the handling
is finished.

The flow of CM data consists of linear simplex streams of messages that pass through one
or more resources. Data is generated by a source resource (a disk, digitizer, or compression
unit), then processed by a sequence of handler resources (networks, CPUs, etc.) and finally con-
sumed by a sink resource (disk, decompression unit, etc.). A message’s completion time in one
resource is its arrival time at the next resource. Many of these simplex data streams may exist
concurrently, even within a single application. Therefore this scheme encompasses many CM
applications: file playback, audio teleconferencing.

2.3.1.1.1. Describing CM Workload and Delay

Each data stream flowing across an interface defines an arrival process into the downstream
resource. To describe message arrival, the CM-resource model uses linear bounded arrival
processes (LBAPs). An LBAP has the following parameters:

M = maximum message size (bytes)
A = maximum message rate {messages/second)
W = workahead limit {(messages)

that, for all to < t,, satisfies N,(to, t;) < R |t; - tol + W, where N(to,t;) denotes the number of
messages arriving at an interface | in the time interval [t.t,).

The long-term data rate of an LBAP is MR bytes per second. The parameter W allows
short-term violations of this rate constraint, modeling programs and devices that generate “bursts”
of messages that would otherwise exceed the constraint. These bursts consist of messages that
have arrived “ahead of schedule”; they do not reflect burstiness in the underlying data stream.
The extent to which arrivals are ahead of schedule is quantified by the workahead w(t) of an
LBAP, defined as

w(l)= rlna)r({O,N(to, ty-R|t- tol}
Intuitively, w(t) is the largest “message excess” (relative to R) during any time interval ending at
t. More concretely, w(t) is a function that increases by 1 on each message arrival, decreases
with slope ~A otherwise, and remains nonnegative (see Figure 2.4).

To parameterize the delay between two interfaces in the system, we take workahead into
account. For a given LBAP, let mq - - - m, denote the sequence of messages, and let a5 - - - a,
denote their arrival times. The logical arrival time I(m;) of a message m; is defined as
I(m;) = a; + w(a;)/R Intuitively, /(m) is the earliest time message m could have arrived if worka-
head were not allowed (see Figure 2.4; note that the logical arrival times of consecutive messages
are separated by at least 1/R.)

We define the logical delay d(m) of a message m between two interfaces /, and /, to be the
difference between the logical arrival times of m at those interfaces.

2.3.1.1.2. Sessions and Compound Sessions

Prior to using a resource, an application must create a session with the resource. Each
message handled by a resource is associated with a particular session. A session has the follow-
ing parameters:
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Figure 2.4. Message arrival time and workahead.

The workahead function w(t) for an LBAP with R = 0.5 and message arrivals at times 0.5, 3.0,
3.25, and 4.5. The corresponding logical arrival times are 0.5, 3.0, 5.0, and 7.0.

M = maximum message size (bytes)

R = maximum message rate (messages/second)
W, = input workahead limit {messages)

W, = output workahead limit (messages)

D = maximum logical delay {(seconds)

A = minimum actual delay (seconds)

The application must ensure that the arrival process at the input interface obeys the LBAP param-
eters M, R and W,,. The resource must ensure that the arrival process at the output interface
obeys the LBAP parameters M, R and W,,,. D is an upper bound on the logical delay, between
the input and output interfaces of the resource, of any message associated with the session. A is
a lower bound on the actual delay.

A session is an agreement between the application and the resource. The resource guaran-
tees that it will obey the delay bounds and the output workahead limit. The application guarantees
that it will not exceed the workload parameters.

Each resource has an associated software module that exports three functions:
reserve (), relax() and free (). To establish a session with a resource, the application
first calls reserve (), giving the session’s message size and rate. If the session can be
accepted, reserve () returns the minimum possible logical delay bound D, for the session,
and makes a resource reservation sufficient to provide this bound. The application then decides
(see below) on a specific delay bound D 2 D,n. ltcalls relax () to alter the existing reserva-
tion by changing the delay boundto D. Free () deletes an existing session.

Consider a situation where CM data traverses a linear sequence of resources. For example,
in the file playback application of Section 2.2.1, data originates from a disk, traverses a CPU, a
network, and another CPU, and is then consumed by the display or the speaker. In the CM-
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resource model, such a situation is represented as a “compound session” consisting of sessions
with each of the resources involved. A compound session S is a sequence of sessions S, - - - S,
in which the output interface of S; is the input interface of S;,4.

The CM-resource model defines a two-phase protocol for establishing compound sessions.
In the first phase, the application calls reserve () at each resource S;. Based on an economic
approach to end-to-end delay allocation, the application then decides how to divide its target end-
to-end delay among the resources S;. In the second phase, the application calls relax () at
each resource from S, to S, giving each resource its share of the delay. Anderson [And]
discusses this algorithm in greater detail.

2.3.1.2. The Producer/Consumer Paradigm

Another approach to the end-to-end scheduling problem uses the real-time
producer/consumer paradigm [JeS90]. A CM application may be modeled as a directed graph in
which the vertices represent processes and the edges represent message communication chan-
nels. Each channel defines a producer/consumer relation between two processes. The applica-
tion specifies the minimum rate of messages on the channel.

A pair of interconnected processes adheres to the real-time producer/consumer paradigm if
a message produced on the connecting channel is consumed before the next message is sent. in
other words, the emission of messages by the producer defines ticks of a discrete time clock; if
the paradigm is obeyed, the consumer appears as fast as the producer. Jeffay [Jef] describes a
decision procedure for determining whether, for a given set of processes and processing
resources, all pairs of interconnecting processes are guaranteed to adhere to the paradigm. The
input to the decision procedure includes the worst case message processing time on each chan-
nel (the actual delay in Section 2.3.1.1).

This approach has been used in the construction of a desktop audio and video conferencing
system on top of a real-time operating system called YARTOS [JSS91]. The kernel provides two
basic abstractions: tasks and resources. A task represents a thread of control; a task may need to
access one or more resources during its execution. An application workload is specitied as a set
of tasks and resources. The kernel then guarantees, using the real-time producer/consumer para-
digm, that the delay requirements of all tasks are met and that no shared resource is accessed
simultaneously by more than one task. '

2.3.1.3. The Sun Approach

Sun Microsystems’ HRV project [HBJ91] takes a different approach to the end-to-end
scheduling problem. In their approach, an application specifies its delay and throughput require-
ments, but no attempt is made to reserve resources for the application’s lifetime. Instead, their
approach attempts to satisfy each application’s requirements until device capacity overload is
encountered. At that point, their resource schedulers negotiate with applications to arrange for
graceful degradation from overload.

An application constructs an end-to-end schedulable entity using two abstractions: transduc-
ers and conduits [NoK91]. A transducer is similar to a source or sink resource in Section 2.3.1.1,
while a conduit represents a handler resource. An application may compose conduits in seral
and in parallel to obtain compound conduits (similar to compound sessions).

Applications specify their delay and throughput requirements in terms of a time interval (T)
during which some number of samples (N) are to be transported from source to sink transducers.
The operating system and network communication system then attempt to satisfy this requirement
using software phase-locked looys. This is a mechanism for time-regulation of conduits which
adjusts the rate of transport on the conduit based on an error signal. This signal is generated by
comparing the actual number of samples transported in a time interval over the compound conduit
with the desired number N.

12



2.3.2. CM Storage

The throughput requirements of integrated CM applications have two implications for CM
storage system design. High data rates mean that CM files can occupy significant disk space.
File system organization must permit efficient sharing of CM files. Section 2.3.2.1 discusses
these structural issues. Moreover, applications may concurrently retrieve mulitiple files from disk.
Section 2.3.2.2 surveys work in real-time storage and retrieval of CM data from disk.

2.3.2.1. Structural Issues in CM File Storage

Structural issues for CM files (sharing, parallel composition, annotations, etc.) have been
addressed in the Xerox Etherphone system [TeS88], the Sun Multimedia File System [StL89], and
the Northwestern Network Sound System [RKD85].

In the Etherphone system, a sequence of continuously recorded video frames or audio sam-
ples is called a strand. Editing applications may create ropes: a rope describes a collection of
related strands and how they are synchronized relative to each other. Ropes permit serial or
parallel temporal composition of strands. A rope can be implemented without duplicating the con-
stituent strands. A browsing application may annotate a collection of strands; in the Sun Mul-
timedia File System, annotations can be stored as part of a rope.

2.3.2.2. Real-time Storage and Retrieval of CM files

In the Continuous Media File System (CMFS) [AOGar], applications may store or retrieve
CM files in “sessions”. Each session has a guaranteed minimum data rate. Multiple sessions,
perhaps with different data rates, may coexist. CMFS also handles non-real-time traffic con-
currently with real-time sessions.

Consider a schedule of disk reads that cyclically reads a set of blocks for each session in
progress. Such a schedule is feasible if the playback time of the biocks read for each session is
greater than the worst case time to perform the schedule. The existence of a minimal such
schedule that fits the available buffer space is used to test for session acceptance. After a ses-
sion is accepted, CMFS guarantees an application a minimum data rate for reading the file.

If adequate buffer space is available, CMFS can work ahead (Section 2.3.1.1) on a session.
If CMFS has worked ahead on all sessions, it has some “slack time” before which reads for ses-
sions should restart (to avoid session starvation). This slack time is used to service non-real-time
disk requests. In the absence of such requests, CMFS uses the available slack time to compute a
feasible schedule that adds to session work ahead.

Other work has investigated more restricted versions of the problem. Abbott et al. [Abb84]
and Park and English [PaE91] address performance issues without guaranteeing minimum data
rates. Yu et al. [YS89] discuss the layout of interleaved data streams with different data rates on a
compact disk for guaranteed-performance playback. Gemmell and Christodoulakis [GeC92]
describe a file system supporting multiple audio channel playback with concurrent non-real-time
traffic. The channels must have the same (constant) data rate and must start at the same time.
Finally, Rangan and Vin [RaV31] describe a system that combines disk input and display-device
output for multiple data streams. They study admission control under the assumption that ses-
sions have equal data rates.

23.3. CM IO

In the existing discrete media framework, window systems like X11 and NeWS provide
network-transparent, concurrent access to discrete media /O devices. Property (4) of the
integrated CM framework (Section 2.1.2) implies that it is desirable to access CM 1/O devices as
well in a network-transparent, concurrent manner. Examples of work in this area include ACME
[AGH91), the DEC Audio Server [AHLS91], and MuX [RBK92].

The ACME client-server protocol is based on the following abstractions:

. Ropes, Strands, and CM Connections: A strand is a stream of audio or video data encoded
in a byte stream. Each strand has a type representing the encoding scheme. Multiple
strands (say, an audio and a video stream) may be interleaved in a byte-stream rope
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(different from the rope described in Section 2.3.2); the interleaving scheme defines the type
of the rope. A CM connectionis network connection used to convey a strand or rope.

. Logical Devices: A logical device (LDev) is an abstract CM /O device. There are four types

of LDevs: VWins (video output), VCams (video input), listeners (audio input), and players
(audio output). LDevs have various attributes according to their type; for example, a VWin
has the attributes of a graphics window: position, size, and stacking order. Clients can map
LDevs to physical /O devices. Multipie LDevs may be mapped to a single physical device;
in the case of players, the server is responsible for “mixing” the respective outputs. The
LDevs associated with the strands of a rope are grouped into a compound logical device
(CLDev).

® Logical Time Systems: LDevs and CLDevs can be associated with a logical time system
(LTS). All strands in an LTS are played (or generated) in synchrony, even if they come from
different sources. The ACME server ensures that the strands start playing at the same time
and remain in lockstep. The client may also start, stop, or alter the speed of an LTS, affect-
ing the component strands uniformly.

The DEC Audio Server defines abstractions similar to CM connections, LDevs and CLDevs.
Synchronization is performed using command queues associated with the CLDev; a command
specifies a particular operation on an LDev or CLDev. Queues allow for sequential processing of
commands without client-server round-trip communication. The server also maintains a client-
addressable name space of audio clips; it stores and retrieves these directly from the storage dev-
ice.

MuX is an extension to the X11 window system to support network-transparent, concurrent
CM I/O. In addition to strands, ropes, CM connections, logical devices and logical time systems,
MuX also provides the sequence abstraction. A sequence is a time-line description that allows
parallel and serial composition of CM and discrete media I/0 activity.

2.3.4. Network Communication

In the framework described in Section 2.1.1, applications communicate over the network
using a standard protocol suite. Property (4) of an integrated CM framework implies that it is
desirable to modify the Internet suite of protocols for CM data communication across netwo:ks
This section briefly reviews some work in this area.

SRP [AHS90] is a resource reservation protocol for guaranteed-performance communication
on the Internet. Using the CM-resource model as the basis for reserving network resources (net-
work interfaces, gateways etc.), SRP sets up a compound session associated with the connection
of a particular IP-based protocol (e.g., a TCP connection). Data sent on this connection is then
transmitted according to the throughput and delay requirements of the compound session.

The Tenet real-time protocol suite [BaM91} is a connection-oriented suite of network and
transport protocols for real-time wide area communication. The Tenet approach provides for the
establishment of real-time channels that guarantee minimum throughput and bounded network
delay. The basis for resource reservation is similar to the CM-Resource Model; the tratfic
parametrization is different.

The Stream Protocol (ST) is an internet [ayer connection-oriented protocol for real-time con-
ferencing applications. ST allows higher level protocols to set up streams [Top90]. A streamis a
multi-way connection spanning all participants of a conference. Applications specify stream
characteristics such as average and burst throughput, round-trip delay, delay variance and error
rate. Gateways and networks select multicast routes and perform network resource allocation.
Streams may be modified by addition or deletion of endpoints or by network failures.
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Chapter 3

OGS SR ERRONS

This chapter discusses how integrated CM affects the “processing and local communica-
tion” portion of the existing discrete media framework (Figure 2.3). Property (2) of an integrated
CM framework requires that users be able to run multipie CM applications concurrently. There-
fore, multiple CM tasks (tasks whose processes handie CM data) may execute concurrently on a
workstation. For example, Figure 2.1 shows a client task and an I/O server task executing on the
same workstation. These tasks may also communicate CM streams between user VASs or
between user and kernel VASs. In Figure 2.1, the client task sends a CM stream to the I/O server
and the latter writes two streams to the kernel.

Section 3.1 motivates reexamination of OS policies and mechanisms for integrated CM.
Section 3.2 argues that CPU scheduling policies in general-purpose OSs may be non-optimal for
scheduling CM tasks. It describes deadline/workahead scheduling, a CPU scheduling policy
designed for CM. Section 3.3 argues that conventional mechanisms for process scheduling and
inter-VAS stream communication can add significant overhead to CM task execution. This
motivates the design of new process scheduling and stream communication mechanisms, the
subject of this dissertation.

3.1. Reexamining OS Policies and Mechanisms

General-purpose operating systems incorporate design principles that are contrary to the
needs of integrated CM application processing and communication:

. The request/reply paradigm (the basis of centralized systems as well as RPC-based and
object-oriented distributed systems) may be non-optimal for stream-oriented CM communi-
cation.

. Assumptions about delay tolerance of data accesses leads to the use of buffering and large
messages. These can add queueing or packetization delay to CM processing.

. Scheduling policies in current systems have the goals of fairness, maximum system
throughput, and fast interactive response. CM applications have real-time requirements that
may conflict with these goals.

° Communication protocols may provide reliable data transport. Some CM applications can
tolerate unreliable delivery of CM data.

These principles impact the design of policies and mechanisms in these general-purpose
OSs. These policies and mechanisms may need to be reexamined in light of the real-time
requirements of integrated CM applications.

3.2. Operating Systems Policies

Anderson’s solution [And] to the end-to-end scheduling problem (Section 2.3.1.1) divides an
application’s end-to-end delay among the different system components that handle CM data. One
such component is a CM task (e.g., the client task in Figure 2.1). Within a CM task, it is con-
venient to handle separate CM streams in separate processes; the CPU scheduler can then
schedule each process according to its throughput and delay requirements.

Most CPU scheduling policies in general-purpose OSs do not allow applications to “reserve”
CPU capacity. CPU overload may occur; such overload can violate the throughput requirements
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of CM processes. Most OSs lack mechanisms for overload detection and graceful degradation.

Even if CPU capacity reservation were supported, CPU scheduling policies in general-
purpose OSs could still be non-optimal for CM process scheduling. Most such poiicies use the
following criteria: 1) fast response for interactive processes, 2) high throughput for background
processes and 3) fairness. For instance, the round-robin policy is often used to satisfy fairness.
Thus, the UNIX time-slicing policy [LMK89] assigns processes to one of many different priority lev-
els; at a given level, processes are scheduled round robin.

One or more of the above criteria may be contrary to CM process delay requirements. Sup-
pose we are given a set of CM processes, each with its delay and throughput requirements. Sup-
pose further that there exists a scheduling policy which will satisfy these requirements (i.e., the set
of processes is schedulable). Results in real-time systems show that policies which use preemp-
tion on quantum expiration (i.e., use round-robin scheduling) may reduce the schedulability of
such a set of processes (i.e., may not be able to satisfy its real-time requirements) [LiL73, TNRS0].

3.2.1. Deadiine/Workahead Scheduling

The deadline/workahead CPU scheduling (DWS) policy is designed for CM tasks [And].
Each CM task has one or more processes. In DWS, processes are classified as either real-time
or non-real-time. There are two classes of non-real-time processes: interactive (those requiring
fast response) and background (those requiring high throughput).

CM tasks reserve sessions (Section 2.3.1.1) with the CPU scheduler's resource manager.
We assume that for each session S there is a real-time process Ps that does all the work for S,
and no other work. Ps handles a sequence of messages arriving asynchronously (say, on a net-
work connection), and sleeps whenever no messages are available. The input interface for S is
defined by message arrivals; in the case of a network connection, a message arrival occurs when
the network interface requests a receive interrupt. Message completion occurs when Ps makes a
call indicating that it has handled the packet; this call either changes the priority of Ps or puts it to
sleep if there are no more messages.

The delay bound of a real-time process is the delay bound of its associated session. The
deadline of a message is the sum of its logical arrival time (Section 2.3.1.1) and the delay bound
of the process handling that message. At any instant, a real-time process may have one or more
unprocessed messages. The critical time of a real-time process is the earliest logical arrival time
among all unprocessed messages. The deadline of a real-time process is the earliest deadline
among all unprocessed messages. At a given time t, a real-time process is called critical if it has
an unprocessed message m with /(m) <t (i.e., m's logical arrival time has passed). Real-time
processes that have pending work but are not critical are called workahead processes. A worka-
head process becomes critical when its critical time equals the current time.

The DWS policy can be summarized as follows (Figure 3.1). Critical processes have priority
over all others, and are preemptively scheduled according to earliest deadline. Interactive
processes have priority over workahead processes, but are preempted when those processes
become critical. Background processes have lowest priority.

Non-real-time processes are scheduled according to an unspecified policy, such as the
UNIX time-slicing policy. This policy may also move a process between interactive and back-
ground. The policy for workahead processes is also unspecified. One possible policy chooses a
workahead process P, perhaps with the earliest deadline or the most work available. P is then
run for a full quantum (say, 100 times the system call plus context switch time) even if its deadline
advances beyond that of another workahead process. Such a policy is designed to reduce con-
text switch overhead.

The DWS policy is appropriate for CM process scheduling for a number of reasons. It sup-
ports CPU capacity reservation; this can prevent CPU overload and “guarantee” process
throughput requirements. For any set of schedulable processes whose delay bound is equal to
the message interarrival time, the earliest-deadline policy can meet each process’ delay bound;
DWS uses earliest-deadline scheduling as a heuristic to improve the schedulability of CM work-
loads. The DWS policy includes timeliness as a criterion for real-time processes; CM processes
may express their throughput and delay requirements in terms of message deadlines. DWS also
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Figure 3.1. Deadline/workahead scheduling.

In the deadline/workahead scheduling (DWS) policy, each real-time process has a queue of pend-
ing messages. In example a), each message is shown as a rectangle whose left edge is its logi-
cal arrival time and whose right edge is its deadline. P, and P, are critical because they have a
pending message whose logical arrival time is in the past. Processes are prioritized as shown in
b). Critical processes are executed earliest deadline first; policies for other classes are
unspecified.

allows processing of messages that have arrived before their logical arrival time; CPU schedulers
may efficiently schedule workahead processes (see the policy above), for example, to reduce con-
text switch overhead.

3.3. Operating Systems Mechanisms

Section 3.1 suggests reexamining OS mechanisms for integrated CM applications. These
mechanisms may add processing overhead to CM tasks. This can happen when functionality is
inappropriately partitioned across protection domains. For instance, if process scheduling is
implemented in the OS kernel, every process switch requires kernel intervention. Real-time
processes in DWS change their deadlines at every message completion (Section 3.2.1); each
such deadline change incurs kernel trap overhead.

Section 3.3.1 argues that process scheduling and inter-VAS CM stream communication
mechanisms can add significant processing overhead to integrated CM. Recent work demon-
strates that this overhead is not decreasing in proportion to increasing processor speeds.

3.3.1. Mechanisms For Process Scheduling and Stream Communication

In DWS (Section 3.2.1), each real-time process handles a sequence of CM messages. After
handling a message, the process changes its deadline (a scheduling operation). CM tasks may
communicate CM streams between user VASs or between a user VAS and a kernel VAS. Inter-
VAS CM stream communication can be decomposed into a series of CM message transfer opera-
tions.

Section 3.3.1.1 describes the process structure of two CM tasks, and illustrates how these
tasks may perform frequent process scheduling and message transfer operations. Section 3.3.1.2
lists two conventional approaches for process scheduling and message transfer. Section 3.3.1.3
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argues that CM tasks may incur high overhead when implemented using these approaches.

3.3.1.1. CM Task Structure Examples

Figure 3.2 shows the real-time processes in a typical ACME (Section 2.3.3) server task.
This task has two types of real-time processes: network I/O and device I/O processes. Network
IYO processes perform I/O to and from CM connections. A network output process reads a block
of messages from a CM connection and writes it to an internal strand buffer. Before writing the
data it may process it in some way; for example, it may do volume scaling of audio streams or
split a rope into its constituent strands. Device I/0 processes perform I/O to and from CM dev-
ices. A device output process gathers data from one or more strand buffers, perhaps combines
them (e.g., by summing audio samples), and writes them to the device. A device input process
reads data from the device and writes a copy to the internal buffer, to be read later by a network
input process.

Figure 3.3 shows the real-time process structure of the mixer task (Section 2.2.2). Each
mixer task has three kinds of real-time processes. Reader processes copy data from input net-
work connections to memory buffers. They may do some processing (e.g., type conversion) on
the stream. Adder processes read data from one or more buffers, do the mixing, and write the
results to other buffers. Writer processes copy data from buffers to the output CM connections.
They may also perform some mixing or format conversion.

The rationale for the process structures of these tasks is as follows. Streams on different
CM connections may tolerate different delays and different workahead limits; for instance, stream

CM connections

| 1

network I/O
processes

device I/O
processes

®
H strand buffers

audio video audio
output  output input

Figure 3.2. The ACME server task structure.

The ACME server is structured as a set of LWPs. Network /O processes perform message
transfers from CM connections and may do some processing on the message. Device /O
processes perform message transfers to CM /O devices.
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c (Figure 3.3) may be an input from a file and stream b may be from a live participant. Assigning
one process to each network connection (e.g., reader or writer processes in the mixer and net-
work I/O processes in ACME) enables the CPU scheduler to differentiate between streams with
different delay bounds and workahead limits. For a similar reason, each I/O device in ACME is
assigned one process. A similar argument can be made for having multiple adder processes in
the mixer task. Suppose streams ¢ and d (Figure 3.3) are input from a file but a and b are input
from live participants. The reader tasks of ¢ and d can work ahead on their streams. If both
reader tasks have worked ahead, then it is beneficial to work ahead on mixing those streams also.
For that reason we assign an adder process to mixing ¢ and d.

Each real-time process in ACME and the mixer performs at least one scheduling operation
per CM message. A real-time process may also perform one inter-VAS message transter per
message. For example, the network output process does a kernel to user message transfer on
message arrival and changes its deadline on message completion. A writer process does a user
to kemnel message transfer and a deadline change on message completion. An adder process
does a deadline change on message completion.

If the number of processes is high (e.g., the number of concurrent CM streams is high), then
the frequency of process scheduling and message transfer operations is high. This frequency is
high for CM tasks handiing low end-to-end delay CM streams. Such streams tend to have high
message rates; one hundred messages/sec represents a packetization delay alone of 10 ms.

Reader Processes

Adder Processes

Writer Processes

Outputs

Figure 3.3. The mixer task structure.

Real-time processes in a mixer are of three types: reader, writer and adder. The readet and writer
processes perform /O from network connections to sources or sinks. The adder processes per-
form the intermediate steps of the mixing computation.
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3.3.1.2. Conventional Approaches for Process Scheduling and Message Transfers

In existing general-purpose OSs, tasks use one of two conventional mechanisms for pro-
cess scheduling and message transfer.

. Threads and read/write system calls: A thread is a kernel-implemented process. The kernel
exports a system call interface for thread management and maintains thread execution
state. Thread switching is done completely within the kernel. Threads perform message
transfers using system calls. In Mach, for example, a thread calls send _msg() for a
user-to-user message transfer.

° Lightweight processes (LWPs) and asynchronous message transfer: LWPs are implemented
entirely at the user level. A library implements LWP creation, deletion, state manipulation
and switching. A blocking system call (e.g., on an |/O operation) by a LWP suspends all
activity in the VAS. To avoid that, LWPs use a kernel interface that provides asynchronous,
non-blocking message transfers. The QIO facility in the VMS operating system provides
such an interface [LeE89]. With such an interface, a message transfer typically involves a
system call to initiate the transfer followed by an asynchronous event (e.g., a UNIX signal
[LMK89]) to signal transfer completion.

When implemented using these approaches, CM tasks may incur the overhead of
user/kernel interactions (by which user programs access system functions for process scheduling
and message transfer). User/kernel interactions are of two types: synchronous (with respect to
user programs) user-to-kernel system calls and kernel-to-user asynchronous events. Each
user/kermel interaction incurs one or more domain switches. A domain switch is defined as a
crossing of the user/kernel protection boundary; a system call involves two domain switches and a
UNIX signal three (one for a kernel upcall to user space to execute the signal handler and two for
a signal return system call that resets signal masks). A user/kernel interaction may also incur a
mapping switch between different user VASs.

With these conventional approaches, a single scheduling or message transfer operation
may incur more than one user/kernel interaction. For example, an asynchronous kernel-to-user
message transfer in UNIX may incur up to nine domain switches and two mapping switches. A
non-blocking read () system call returns immediately it no messages are pending. A SIGIO
signal is delivered when a message arrives. The select () system call chooses the file
descriptor on which the message has arrived and another read () does the actual transfer.

3.3.1.3. Domain Switches And Mapping Switches

Domain switches are expensive relative to procedure calls. A null system call (which incurs
two domain switches) takes about 34 pusecs on SunOS 4.1 for the SPARCstation 1+. There are
two components to system call overhead: the kernel trap and preparing the processor to execute
a procedure call to a higher-level language OS routine. This latter call preparation involves vec-
toring from trap entry point to the appropriate exception handler, managing machine state (e.g.,
machine registers and kernel stack pointers) and saving/restoring registers used during the call.

A system call has indirect costs as well. Because a system call involves a cross-domain
interaction, the system call handler must copy and check parameters to guard against application
errors. Moreover, inter-procedural optimizations (e.g., avoiding register saves/restores) are
difficult for system calls [Kar89). Finally, kernel execution during a system call may incur more
cache and TLB misses than user-level execution. Agarwal et al. [AHH88] show that caches per-
form poorly for OS memory references for two reasons: 1) OS code and data structures are larger
than user code and data structures; they occupy more cache space and bringing the working sets
into the cache needs more cache misses and 2) OS code loops have fewer iterations than user
code loops. Clark and Emer [CIE85] argue that TLBs perform poorly for similar reasons.

With architectural trends towards RISC processors, system call costs have not decreased in
proportion to increasing processor speeds [ALB89]. RISC processors such as the Sun SPARC
[CCC30] and the MIPS R2000 [Kan87] have more than 64 registers, so call preparation costs are
greater. Moreover, RISC processors have added new features, such as the register windows in
SPARC, that reduce kernel trap performance. In SPARC, the hardware ensures that one register
window is available for the trap handler on exceptions. This handler has to ensure that another
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window is available for the system call handler (to avoid recursive window overflow traps). This
requires possibly saving (and later restoring) user register windows, and additional copying of sys-
tem call parameters.

User VAS mapping switches are also expensive. In SunOS 4.1 for the SPARCstation 1+,
the cost of suspending one UNIX process and switching to another is about 140 psecs.

The direct cost of a mapping switch is the time taken to change the current processor
memory map. However, a mapping switch has a significant indirect cost component. A mapping
switch results in a change in program locality; the indirect cost is the cost of repopulating cache
and TLB contents in this new locality. Depending on the cache parameters, this cost may be in
the tens or hundreds of microseconds [MoB8S].

The indirect costs of mapping switches are not decreasing in proportion to increasing pro-
cessor speeds [MoB89]. Processor speeds are improving, but memory access times have not
been increasing proportionately. Thus, cache-miss penalties are becoming relatively greater.

3.4. New Mechanisms for Process Scheduling and Stream Communication
The previous section makes the following arguments:

(1) Some CM tasks may pertorm frequent process scheduling and message transfer opera-
tions.

(2))  With conventional approaches, each process scheduling or message transfer operation
may incur one or more user/kernel interactions. A user/kernel interaction requires at least
one domain switch and possibly a mapping switch.

(3) Domain switches and mapping switches are expensive. The cost of these components
does not seem to be decreasing with increases in processor speeds.

This dissertation argues that new process scheduling and inter-VAS stream communication
mechanisms can significantly reduce overhead (up to a factor of four) for some CM application
workloads. These new mechanisms are:

° Split-level scheduling and synchronization. In this approach each user VAS contains muiti-
ple lightweight processes (LWPs). The scheduler is partitioned into user-level and kernel-
level parts, which communicate via shared memory. The information in shared memory is
used to correctly prioritize LWPs in different VASs and to minimize user/kernel interactions.

. Memory-mapped streams. A memory mapped stream (MMS) is a shared-memory FIFO
used for communicating CM data between user and kernel address spaces. Once the MMS
has been set up, no explicit kernel requests are needed to transfer data, and a minimal
number of user/kernel interactions are needed for producer/consumer synchronization and
/O initiation.
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Chapter 4

SPLIT-LEVEL SCHEDULING AND SYNCHRONIZATION

This chapter describes spiit-level scheduling (SLS), a LWP scheduler implementation tech-
nique that correctly prioritizes LWPs in different VASs while reducing or eliminating user/kernel
interactions. Section 4.1 gives an overview of the technique. Section 4.2 lists the client interface
to a split-level scheduler for the deadline/workahead scheduling policy (Chapter 3). Finally, Sec-
tion 4.3 describes the implementation of split-level scheduling, and discusses a related mechan-
ism for LWP synchronization.

4.1. Overview of Split-Level Scheduling

A split-level scheduler consists of two parts: a per VAS user-level scheduler (ULS) and a
single kernel-level scheduler (KLS) (Figure 4.1).

The ULS runs the highest-priority LWP in its VAS. In a VAS, multiple LWPs share a single
thread. An LWP sleeps or changes its priority by calling the ULS for that VAS. At that time, the
ULS checks whether its VAS still contains the globally highest-priority LWP; this is done by exa-
mining an area of memory shared with the kernel. If so, the LWP context switch is done without
kernel intervention. Otherwise, the ULS executes a kernel trap to transfer control to the KLS.

The kernel-level scheduler (KLS) schedules the VAS with the globally highest-priority LWP,
preempting the currently executing VAS if necessary. LWP priorities are communicated to the
KLS through user/kerne!l shared memory. Shared memory is used to determine the VAS with the
highest-priority LWP. The KLS is unaware of the existence of LWPs (it is not involved in the crea-
tion of a LWP, for instance), but helps in scheduling them correctly. :

While spiit-level scheduling can be used with many scheduling policies, we focus on its
implementation for the deadline/workahead (DWS) policy described in an earlier chapter. For
simplicity, we consider only the scheduling of real-time processes. In Section 4.3.6, we briefly dis-
cuss how split-level scheduling works for non-real-time processes and for other CPU scheduling
policies.

4.2. Client Interface to the Split-Level Deadline/Workahead Scheduler

A user-level library provides the client interface to the split-level deadline/workahead
scheduler. The interface functions may be grouped into: LWP creation and deletion, state mani-
pulation, and synchronization. We discuss each group in turn. The interface is summarized in
Table 4.1.

4.2.1. LWP Creation and Deletion

A deadline/workahead scheduled LWP P has three scheduling parameters: a fixed delay
bound (see Chapter 3), a critical time Cp (the logical arrival time of the next message for the
LWP) and a deadline Dp {Cp plus the delay bound).

An application task creates a LWP by calling the function

create_LWP (
PROCEDURE proc,
TIME delay,
TIME critical_time,
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Figure 4.1. Split-level scheduling.

Using split-level scheduling, the kernel-level scheduler decides which user VAS should execute,
and each VAS has a user-level scheduler (ULS) that manages the LWPs in that VAS. In this ex-
ample the KLS chooses VAS S, to run because.it has the globally hlghest-pnonty LWP. The
ULS in that VAS executes Ps, which has this deadline (the deadline of a LWP is the right endpoint
of the corresponding rectangle). User/kernel interactions can often be avoided: in this example, it
Ps yields then the context switch to Pg (the next earliest deadline) can be done without a kernel
call.

The newly-created LWP P executes the function proc and has a delay bound specified by
delay. Cpissetto critical time and Dp to Cp plus the delay bound. If Cp is less than
the current time, the LWP is made runnable, otherwise it is suspended. A suspended LWP
becomes runnable at critical_ time.

Destroy LWP () releases all resources held by the calling LWP.

4.2.2. LWP State Manipulation

LWPs may dynamically change their deadline, wait for a specified time period to elapse or
wait for /O completion. Each function call in this group alters the scheduling parameters of the
calling LWP and may cause the LWP to become suspended.

After processing a CM message, an LWP calls
time_advance (TIME critical_time);

the argument is the logical arrival time of the next message. Cpissetto critical_time and
the LWP remains runnable.

To suspend execution until a specified time, an LWP calls
timed_sleep(TIME critical_time);
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create_LWP() set a new LWP executing a specified function

destroy_LWP() delete and release resources held by calling LWP
time_advance() change scheduling parameters of caller

timed_sleep() suspend caller until specified time

10_wait() suspend caller until /O becomes possible on specified descriptor

mask_LWP_preemption() start critical section
unmask_LWP_presemption() end critical section

Table 4.1. Client interface to the split-level scheduler.

The client interface to the split-level scheduler for the DWS policy contains functions for creating
and destroying LWPs, for manipulating LWP state and for mutually exclusive access to short criti-
cal sections.

after that time it becomes runnable and Cp is set to the current time. This may be used by
processes that do time-based output with no device synchronization (e.g., slow video) or for rate-
based flow control.

To wait for /O to become possible on a given I/O descriptor, an LWP calls
IO0_wait (DESCRIPTOR iodesc, TIME critical_time);

the /O descriptor may represent a file, a socket, an /O device or a memory-mapped stream
(Chapter 5). The LWP is suspended until data arrives on the descriptor. At that time, the process
becomes runnable andits Cp is setto critical_time.

4.2.3. LWP Synchronization

Short critical sections in application code are bracketed by mask LWP_preemption ()
and unmask LWP preemption(). Between these two calls, the calling LWP cannot be
preempted by another LWP in the same VAS.

Applications may use these to ensure mutually exclusive access to shared data structures,
provided such critical sections are short. These primitives can also be used to implement sleep-
waiting synchronization primitives for longer application-level critical sections.

4.3. Implementation of the Split-level Deadline/Workahead Scheduler

In this section, we describe the user/kernel interface necessary to impiement the split-level
scheduler (Figure 4.2). We then describe the implementation of the user-level scheduler (ULS)
and the kernel-level scheduler (KLS). We deter discussing the implementation of LWP synchroni-
zation until Section 4.3.5. Section 4.3.7 discusses issues in implementing SLS on SunOS 4.1 for
the SPARCstation 1+. We first list some notation that is used later in this chapter and in subse-
quent chapters.

4.3.1. Terminoiogy and Notation

The siate of a LWP is either suspended (waiting for some amount of real-time to elapse or
for some I/O operation to complete) or runnable. A runnable LWP P is workahead it Cp > Ty
(Taow is the current time of day). Otherwise P is critical.

In a given VAS, LWP states and scheduling parameters collectively determine the state of
the ULS. Thus, ULS state may change if an LWP's state changes or its scheduling parameters
change.
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Figure 4.2. Two parts of a split-level scheduler.

The user-level and kernel-level parts of the split-level scheduler communicate using system calls,
user-interrupts, and through an area of shared memory.

The globally higgest-priority LWP (as defined by the DWS policy) is denoted by P*. A ’ is
the VAS containing P . P, is the highest-priority LWP in a VAS A. If A is the currently executing
VAS, A denotes the set of VASs not currently executing.

D, is the minimum of Dp for critical LWPs P e A, or + if there are none. In other words,
D, is the earliest deadline of a critical LWP in A. Dj is the minimum of Dp for critical LWPs P
notin A, or += if there are none.

C, is the minimum of Cp for workahead LWPs P € A, or +e if there are none. In other
words, Cj is the earliest critical time of a workahead LWP in A. Cj is the minimum of Cp for wor-
kahead LWPs P not in A, or +< if there are none.

4.3.2. User/Kernel Interface

The ULS is implemented as a user-level library that exports the client interface described in
Section 4.2. It cooperates with the KLS to schedule LWPs in its VAS. The two parts of a split-
level scheduler exchange control and communicate scheduling information in three ways: system
calls, kernel upcalls into user space (user-interrupts) and shared memory (Figure 4.2). We dis-
cuss each ot these below. This user/kernel interface is summarized in Table 4.2.

4.3.2.1. System calls

The init sls(VIRT _ADDR *user_addr) call allocates and initializes a block of
memory shared read-write between the user VAS and the kernel. This shared memory region is
used to convey scheduling information from the ULS to the KLS and vice versa (Section 4.3.2.3).
If successful, the call returns the address in user space of the shared memory block. After this
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call, the KLS cooperates with the ULS in scheduling LWPs in the VAS according to the
deadline/workahead policy.

The done_sls () system call unmaps and deallocates the shared memory region from
user space. After this call, the KLS cannot globally schedule LWPs in the caller's VAS.

The register handler (UINT uinttype, PROCEDURE proc) system call
registers the user-level handler for a specified user-interrupt type (see Section 4.3.2.2).

Finally, the yield() system call yields the processor to A', the VAS with the globally
highest-priority LWP.

4.3.2.2. User-interrupts

A user-interrupt is an upcall from kernel to user space to notify the user VAS of an asynchro-
nous event. The handler for an asynchronous event is registered with the KLS using the
register handler () system call. User-interrupts are like UNIX signals except that the
handler does not end with a system call to reset the signal mask (hence there is one domain
switch rather than three, Section 4.3.7).

Three types of user-interrupts are defined: INT TIMER is delivered when a timer elapses,
INT_IO_READY is delivered when /O becomes possible on an /O descriptor, and
INT_RESUME is delivered when a user VAS resumes after being preempted.

System calls:
init_sis() create user/kernel shared memory
done_sls() delete user/kernel shared memory
register_handler() register user-interrupt handler
yield() yield processor to another VAS
User-interrupts:
INT_TIMER : timer has expired
IN_IO_READY 1/O is possible on some descriptor
INT_RESUME VAS returns after being preempted

Usched area of shared memory:

Dy earliest deadline of a critical LWP in A
runnable indicates that some LWP in A is runnable

table of suspended and workahead LWPs
WaitingForlO indicates if I/O descriptor is waiting for I/O completion
Thext the time at which the next timer is to be delivered

Ksched area of shared memory:

Dy the earliest deadline of a LWP in some other VAS
Trow the current time of day
ReadyForlO indicates if previous |/O operation was completed on /O descriptor

Table 4.2. User/kernel interface for SLS.

The user/kernel interface for a split-level scheduler has three components: system calls, user-
interrupts and a region of memory shared read-write between user and kernel. The shared
memory region is conceptually divided into a usched area (written by the ULS) and a ksched area
(written by the KLS).

26



4.3.2.3. User/Kernel Shared Memory Interface

The ULS for each VAS A shares a region of memory read-write with the kernel. This region
consists of two parts: the usched area and the ksched area (see Figure 4.2). The usched area is
written by the ULS and read by the KLS. It contains the following:

(1) Da.

(2) The runnable flag, which is 1 if there is at least one runnable LWP, and 0 otherwise. In
DWS, the policy for scheduling workahead LWPs is left unspecified (Chapter 3). in our
description, we assume that the KLS arbitrarily selects a VAS with a runnable LWP when
there are no critical or interactive LWPs. The runnable flag is used for this purpose. We
show in Section 4.3.6 how other workahead policies may be implemented using SLS.

(3) Atable L of workahead and suspended LWPs P in A such that Dp < DA Each entry in
the table contains the critical time and deadline of the LWP.

(4)  For each /O descriptor, a WaitingForlO flag indicating whether an LWP is blocked on the
descriptor. If so, the usched area contains the critical time and deadline of that LWP.

(5)  Thex:the time at which the next INT TIMER user-interrupt should be delivered.
The ksched area, written by the KLS and read by the ULS, contains the following:

M Toow-

(2) Dj.
(3) For each I/0O descriptor, a ReadyForlO fiag to indicate that data has arrived on that
descriptor.

4.3.3. ULS Impiementation

A ULS of a VAS A may change state when an interface function is called or a user-interrupt
is delivered. Whgnever such a state change occurs, the ULS computes P, according to the DWS

policy. f Pa#P (ie.,if A-A ) theULScalls yield (). Otherwise, it--dges a LWP switch to

P4, if necessary. If the KLS detects that the currently executing VAS A # A | it preempts A. In
this section, we describe the data structures and algorithms used in the ULS.

An INT TIMER user-interrupt may cause a non-running workahead LWP or suspended
LWP to become critical. Let X be the set of suspended and workahead LWPs P in A such that
Dp < Dy. Let Tyiica = Min(Cp: P € X). Clearly, Touies Cannot be less than 7,,,. To reduce the
number of INT TIMER user-interrupts, the ULS always sets Tpeq tO Tc,,~,,~ca,. This policy is
correct, as shown in Claim 4.1 (Figure 4.3).

Claim 4.1. Between T, and Tauica, Changes to P, cannot be caused by: 1) a suspended
LWP becoming critical, or 2) a non-running workahead L WP becoming critical.

Proof. Suppose, to the contrary, that P, changes between T,,, and Ty because a
suspended LWP P becomes critical. It must be that Cp < T4icy @and Dp < Dy. However, from
the definition of T, boOth these conditions cannot be simultaneously true. Hence, P cannot
cause P, to change. A similar argument can be made for the second case. O

The ULS maintains queues of suspended, critical and workahead LWPs. All three queues
are sorted earliest-deadline-first. In addition, for each /O descriptor, the ULS has a pointer indi-
cating which LWP is waiting for 1/0 completion on the descriptor, if any.

A ULS state change may occur: 1) when an LWP P calls an interface function to change Cp
or its state and 2) when the kernel delivers a user-interrupt.

When an LWP R in VAS A calls one of timed sleep(), time_advance(), and

IO _wait (), the ULS inserts R into the appropriate structure (the suspended queue, the worka-

head or critical queue, and an I/O descriptor respectively), then does the following (see Figure
4.4):

(1)  For each LWP P in the workahead and sleep queues such that Cp < Tpqy, insert P in the

critical queue. For each LWP P waiting for /O completion for which the
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Figure 4.3. lllustration for Claim 4.1.

At a given time T, the ULS for a VAS A must have a pending INT_TIMER user-interrupt for
the earliest critical time of a suspended or workahead process Pe A such that Dp < D4. In this
example, Pj is critical and P, and P, are workahead. If P; is still running when Cp, arrives, P,
becomes critical and must preempt P;. On the other hand, P, cannot preempt P, because its
deadline is greater. Therefore a timer is needed for C, but not C,.

usched.ReadyForlO flag is set, insert P into the workahead queue (if Cp > Thow) or the
critical queue (otherwise).

(2) Update usched.D4 in the usched area.
(3) Compute Tgiica, using the definition given in Claim 4.1.

(4) If R becomes suspended or is workahead and Dg < Dy, update R’s entry in usched.L. In
addition, it A called IO _wait (), set usched.WaitingForlO for the corresponding 1/O
descriptor.

(5) IfA=A thencall yield(),else,
(6) Setusched. Tho = Taiica (S€€ Claim 4.1). Do a LWP switch to P,.

The handler foran INT TIMER user-interrupt moves the LWPs P for which Cp<T,,o,, from
the suspended queue to the critical queue. It then executes steps 2, 3 and 6 above. The handler
foran INT IO READY user-interrupt moves all LWPs for which the usched.ReadyForlO flag is
set to the critical or workahead queue, updates the usched.L entry for workahead LWPs P with
Dp < D4, and executes steps 2, 3 and 6 above.

An INT RESUME user-interrupt is delivered to a VAS when it resumes execution after
having been preempted. Between when the VAS was preempted and T,,. an indeterminate
amount of time has elapsed. The same is true when the VAS returns froma yield() system
call. In both cases, the ULS performs steps 1-6 above to update its state.

4.3.4. KLS Implementation

At each mstant the KLS is responsible for running A , preempting the current VAS A if

necessary. A may change if the current VAS A calls yield() orif the state of a ULS in A
changes. The latter can happen in one of two ways: 1) when a suspended or workahead LWP
becomes critical or, 2) when a suspended LWP becomes runnable following completion of an /O
operation. The KLS updates ksched.D;y and ksched.T,,, and delivers user-interrupts
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Figure 4.4. lllustration for algorithm in Section 4.3.3.

In this example, a VAS contains LWPs P,---P;. The current process, P,, has called
timed_sleep (), and the ULS has inserted it in the suspended queue. The ULS then does the
following: it moves P, to the critical queue, records P; and P, in the usched area, sets D, to D,
and sets a timer for C,. Finally, it does a context switch to Psg.

appropriately. Below, we discuss KL.S data structures and algorithms.

The KLS maintains a linked list of descriptors for all VASs. The descriptor for a VAS is
created when it calls init sls(). Each descriptor contains the resources allocated to the
VAS, the address of the usched and ksched areas, the I/O descriptors associated with the VAS, a
list of pending user-interrupts, and the user addresses of the user-interrupt handlers. The
register handler () system callfills in this last field of the descriptor.

A VAS in A may change state when a suspended or workahead LWP becomes critical. To
detect this change, the KLS sets a timer for T, defined as the minimum of Ty for each
VAS in A (where T is defined in Claim 4.1). To set the timer, the KLS may add T s t0 @
list of pending timers polled on every clock interrupt or may program an interrupt timer to deliver
aninterrupt at Tuihcai- Tenicas 1S COMputed using usched.L for each VAS.

When a VAS A calls yield (), the KLS executes the following steps:

(1) Compute A*, where A' is that VAS B with the minimum usched.Dg, or (it there are no
critical LWPs) an arbitrary VAS B whose usched.runnableis 1.

(2)  Setatimer for Tyicar.
(8)  Update ksched.D; and ksched.T,,, in A "

4 If AxA dq a context switch to A . Arrange to deliver an INT PREEMPT user-
interruptto A if it is resuming after preemption.
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When a kernel timer goes off, the state of some VAS B in A (the current VAS is A) has
changed. The KLS takes the following steps:

(1)  Recompute Dg and runnable, saving these in B's usched area temporarily.
(2) Compute A ’ (see yield () above).
3y A=A ', then update ksched.Dz (the new value of Dz is given by Dg) and return.

(4) Otherwise, preempt A, recompute Dz with respect to A*, update A"s ksched area

accordingly and switch to A . Arrange to deliver an INT PREEMPT user-interrupt to A
if it is resuming after preemption.

At every clock tick, the KLS updates the current VAS A's ksched.T,., and checks to see if
usched. T,e, has elapsed. If so, it arranges for an INT TIMER user-interrupt to be delivered to
A.

When an I/O operation completes on a descriptor, the KLS does the following:

(1) If the VO descriptor belongs to the current VAS A, set the ksched.ReadyForlO flag on that
descriptor. If an LWP P is waiting on that descriptor and Dp < D4, arrange to deliver an
INT_IO_READYto A.

(2) Otherwise, do steps 1 through 4 in the timer expiration case.

4.3.5. Implementing Synchronization

Logically disabling (or masking) user-interrupts for short periods of time prevents context
switches within a VAS. This technique can be wused to implement the
mask LWP preemption() and unmask_LWP_preemption () interface functions.

It is desirable to implement user-interrupt masking without user/kernel interactions (i.e., no
system cails) in the normal case. This can be done using a technique we call virtual masking.
Virtual masking is implemented using a mask level in the usched area and a request flag in the
ksched area (the request flag is a bitmap with one flag per user interrupt type).

To mask user-interrupts, the mask LWP_preemption() call increments the
corresponding mask level. Whenever the kernel wants to deliver a user-interrupt and finds its
mask level nonzero, it sets the corresponding request flag and defers user-interrupt delivery. The
unmask_ LWP_ preemption () function decrements the mask level. If this returns to zero and
the request flag is set, the appropriate signal handler is called to service the user-interrupt.
Chapter 6 discusses virtual user-interrupt masking in greater detail.

4.3.6. Extenslons to Split-Level Scheduling

Qur description of SLS for the DWS policy can be extended in a variety of ways. In this sec-
tion, we describe the changes to a split-level scheduler to accommodate a different workahead
policy and to incorporate non-real-time workload. SLS can also be adapted to other scheduling
policies. We describe a split-level scheduler for preemptive priority scheduling.

4.3.6.1. Different policy for workahead processes

Deadline/workahead scheduling does not specify a policy for workahead processes. In the
description of SLS (Section 4.3), we assumed that the KLS arbitrarily chooses a VAS with a runn-
able LWP when there are no critical LWPs. The policy that the ULS used to schedule workahead
LWPs was left unspecified.

A number of workahead policies are possible. The contents of the usched and ksched areas
would change from our description, depending on the policy adopted. For concreteness, we con-
sider a workahead policy that selects the workahead LWP with the globally earliest critical time.
Such a LWP is “urgent” in the sense that it has the smallest time to criticality.

To support a split-level scheduler with this policy, we simply need to add a field to the
usched area containing C,, and add a field to the ksched area containing Cz. The ULS calls
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yield () if there are no critical LWPs (i.e. D4 and Dz are both +) and C4 > Cz. Similarly, the
KLS preempts the current VAS A if there are no critical LWPs and Cz < C4. Cj is easily com-
puted from usched.L of VAS'sin A.

4.3.6.2. Adding support for non-real-time policies

CM tasks may, in general, contain a mixture of process types (reai-time, interactive and
background processes). SLS can support VASs which contain different process types. In this
section, we illustrate how interactive processes can be supported by the split-level DWS
scheduier.

We consider the policy for interactive processes that assigns static priorities to each pro-
cess. Processes are preemptively scheduled and are time-sliced within a given priority level. A
process may sleep for a specified period of time or wait for I/O completion.

To add this interactive process scheduling policy to the split-level DWS scheduler, we add
two fields to the shared memory region: to the usched area, we need to add J, (the highest prior-
ity among interactive LWPs in VAS A) and to the ksched area we add Jz (the highest priority
among interactive LWPs in A). In addition, the list L in the usched area also contains a list of
sleeping interactive LWPs, their wakeup times and wakeup priorities. For each interactive LWPs
suspended waiting on an /O descriptor, the usched area contains its priority on wakeup.

If there are no critical LWPs (i.e. D4 and Dy are both +o), the ULS schedules the highest
priority LWP. It also sets Te. (see Section 4.3.3) to the lesser of Tyiicyy @nd Toow+Qinteractive »
where Qineraciive 1S the quantum size for interactive processes. The ULS calls yield () if (1)
Ja < Jg or(2) Jy = Jg and each LWP inits VAS at level J, has already received one quantum.

The KLS “tracks” changes in Jg for VASs B in A. It sets timers to wake up sleeping
interactive LWPs and monitors /O descriptors that suspended interactive LWPs are waiting on.
Whenever some Jg changes such that Jz > Ja, the KLS preempts the current VAS A and

schedules A : (the VAS with the highest priority interactive LWP).

4.3.6.3. Different CPU scheduling policy

SLS is not restricted to deadiine/workahead scheduling; it can be adapted to other policies,
such as static priorities or usage-based timesharing policies. The policy dictates the contents of
ULS/KLS shared memory; in general, the usched area contains the highest priority among runn-
able LWPs in the address space, while the ksched area contains the highest priority among runn-
able LWPs in other address spaces. In fact, the description in Section 4.3.6.2 can be adapted to
design a split-level scheduler for preemptive priority scheduling with time-slicing at a given priority
level.

SLS is applicable for purposes other than CM. Process-control applications (e.g., {AIL86])
have scheduling requirements similar to those of CM.

4.3.7. UNIX Implementation of SLS

We implemented split-level scheduling in SunOS 4.1 (a UNIX-like operating system) for the
SPARCstation 1+. One constraint in modifying the kernel was to allow existing non-realtime user
programs to execute without recompilation. Changes to the kernel (Figure 4.5) involved adding
new code paths (indicated by boxes surrounded by bold lines) or adding to or modifying existing
code paths (indicated by shaded areas).

To add a new system call, we place a pointer to the system cai: handler in the UNIX system
call table and implement that handler. The implementation of each system call handler is
described in Section 4.3.4.

A CM program begins execution as an ordinary UNIX process. During its initialization
phase, the ULS calls init_ sls() which, apart from creating the shared memory region,
marks the calling process ‘“real-time”. An unused flag in the proc structure (the kernei data
structure for UNIX processes) is used for this purpose. When the ULS calls done_sls (), this
flag is reset.
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Figure 4.5. UNIX implementation of SLS.

Implementation of split-level scheduling in UNIX modified or added to a number of different parts
of the operating system. The bold boxes represent new functionality and the shaded regions
represent additions to existing functions.

The KLS maintains a doubly linked list of real-time process descriptors. Each such descrip-
tor contains a pointer to the proc structure, the address of the usched and ksched areas, the /O
descriptors associated with the VAS, a list of pending user-interrupts, and the user addresses of
the user-interrupt handlers. The head of the descriptor list is the real-time process containing the
globally highest-priority LWP according to the DWS policy.

Real-time processes are similar to ordinary UNIX processes except in one respect: they are
scheduled differently. A real-time process is never placed in the UNIX run queue. To satisfy this
invariant, a number of kernel functions (trap handlers, signal-related functions, the software inter-
rupt handler that periodically alters UNIX process priorities) now check whether a process is real-
time before inserting it into the run queue.

To change the OS CPU scheduling policy to deadline/workahead scheduling, it suffices to
alter the low-level dispatcher, sched (). In UNIX, sched () scans the run queues in priority
order to select the highest priority runnable UNIX process. The modified sched () first checks
the real-time queue and schedules the UNIX process at the head of the queue if it is critical. Oth-
erwise, it checks the UNIX run queues to schedule a runnable non-real-time UN!X process if any
(all non-real-time UNIX processes are treated as interactive processes, to simplify the
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implementation). Else, sched () schedules the UNIX process at the head of the real-time
queue; this must contain workahead processes.

Forthe init sls() system call, the memory management module now exports addi-
tional interface functions to create and destroy the shared memory region. The creator function
allocates a region of virtual addresses in user space of the specified size, locks the corresponding
physical pages in memory and maps those physical pages to a region of virtual addresses in ker-
nel space.

To simplify the implementation, a real-time process is locked into memory when its ULSs
call init sls (). This also avoids the problem of priority inversions due to inopportune page
faults. As a further simplification, real-time processes are not demand paged but pre-loaded to
avoid page faults on startup.

The kernel clock interrupt handler (hardclock () ) updates the shared memory time-of-
day clock and delivers an INT TIMER user interrupt to the currently executing real-time UNIX
process if necessary. Kernel timer management also detects sleeping/critical or
workahead/critical LWP state changes.

Finally, we modified the UNIX signal mechanism to implement user-interrupts. In SunOS,
the signal trampoline code [LMK89] calls sigcleanup () after returning from the user-interrupt
handler. Sigcleanup() modities the signal mask and restores SPARC register windows
[SSS87]. To simplify our implementation of user-interrupts, we assumed that real-time processes
do not use register windows. Also, in SLS, the user-interrupt mask is maintained in the usched
area (see Section 4.3.5). Therefore, the user-interrupt trampoline code can modify the shared
memory interrupt mask at user level and return directly to the interrupted LWP without calling
sigcleanup().
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Chapter 5
MEMORY-MAPPED STREAMS

This chapter describes memory-mapped streams, a mechanism that reduces or eliminates
user/kemnel interactions for CM stream communication between user and kernel and between user
and user VASs. Section 5.1 motivates the need for an efficient mechanism for such communica-
tion. Section 5.2 describes the client interface to memory-mapped streams (MMSs) and Section
5.3 discusses the implementation of MMSs in detail.

5.1. Motivation

We use stream transfer to denote the simplex communication of CM streams between user
and kernel and between user and user VASs. Producers and consumers of CM streams may be
user processes or /O devices (disks, the network, D/A convertors, etc.). There are three types of
stream transfers: user to kernel (UK), kernel to user (KU) or user to user (UU). A mechanism for
stream transfer has three components:

. Synchronization: Producers may wait for data consumption before generating more CM
data. A consumer must notify a waiting producer of data consumption. Similarly, producers
may need to notify waiting consumers of data production. Such producer/consumer syn-
chronization may also involve initiating /O device data transfers if either the producer or the
consumer is an /O device.

. Data location transfer: Addresses of buffers used to transfer stream data can be determined
by producers or consumers. This component communicates changes in data buffer
addresses from user to kemel or vice versa.

° Data transter: This component performs actual transfer of data, perhaps by copying or VM
remapping.

In our model of CM processing (Chapter 2), each stream transfer consists of a sequence of
message transfers. As with stream transfers, there are also three types of message transfers
(UK, KU and UU). Each message transfer may perform one or more of the components of a
stream transfer.

There are two commonly-used techniques for message transfers:

. Read/write system calls: A system call is used for each message transfer. In UNIX, a KU
message transfer is performed using the read() system call. This does data location
transfer (the caller indicates the buffer in user space where the data is to be placed) and
data transfer (the kernel copies the data to this buffer). It may also do synchronization (the
call may block in the kernel if data is not available).

° Asynchronous, non-blocking I/O: This technique is similar to the above. However, when a
message transfer involves synchronization, the call does not block, but returns immediately.
Completion of the message transfer is indicated later by an asynchronous user event (e.g., a
UNIX signal).

There are two drawbacks to using these techniques for CM stream transfer. One is reduced
flexibility for user programs: a blocking system cali suspends all activity (e.g., concurrent user-
level LWPs) in a user VAS. The other is poor performance: these techniques require one or more
user/kernel interactions for each message transfer (Chapter 3).

MMSs are a class of mechanisms for UK, KU and UU stream transfers. MMSs use shared
memory for control and synchronization. MMSs may use any of a number of techniques for data
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Figure 5.1. Memory-mapped stream interfaces.

The client interface (Section 5.2) to MMSs is provided by a user-level library. This library is imple-
mented using a user/kernel interface (Section 5.3.1) that consists of three elements: system calls,
user-interrupts and shared memory.

location transfer; all these use shared memory to hold either the data itseif or the data location
(with each technique one or more data transfer mechanisms are possible, see Section 5.3.1.1).
This combination of shared memory mechanisms reduces or eliminates user/kernel interactions in
I/0O operations.

There are three types of MMSs (KU, UK and UU) corresponding to the type of stream
transfer the MMS performs. Each MMS has a producer and a consumer. A KU MMS’s producer
is an /O device (e.g., disk, D/A convertor) and its consumer is a user process. The situation is
reversed for a UK MMS. A UU MMS's producer and consumer are user processes in different
VASs.

5.2. Interface to Memory-Mapped Streams
From a CM program’s point of view, an MMS is a byte-oriented, sequential, memory-

mapped mechanism for sending and receiving CM streams. The client interface to MMSs is pro-
vided by a user-level library (Figure 5.1). Table 5.1 summarizes this interface.

An application creates and destroys MMSs using the following library calls:
MMS_DESCRIPTOR
MMS create (
int fd,
int  buffer_size

)

MMS delete(
MMS DESCRIPTOR d
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fd represents the data source or sink. Buffer size indicates the maximum size of a CM
stream that may be memory-mapped at any given instant. We now discuss how these parame-
ters are determined.

. Determining £d: £fd identifies the operating system abstraction for the source or sink of
the CM stream (network connection, disk file, user-user IPC connection, and so on). It also
identifies the type of the MMS (KU, UK or UU).

We do not specify how the CM program obtains this identifier. For UU MMSs, in particular,
we do not specify the handshaking steps needed to obtain the identifier for a user-user IPC
connection. The socket create-bind-connect paradigm in 4.3BSD UNIX [LMK89] is one pos-
sible approach. Once this identifier is obtained, both the producer and the consumer must
call MMS create ().

. Determining buffer size: Since access to MMSs is sequential and since CM streams
may be non-persistent (e.g., a stream generated by an A/D convertor and, finally, consumed
by a D/A convertor), it is not necessary to provide buffer space to memory map the entire
CM stream. Instead, the delay bound of a stream determines buffer size. In streams that
have high end-to-end delay bounds (e.g., a second or more), large buffers may be used.
Processes involved in these streams may “work ahead” in these buffers, increasing the
overall efficiency and responsiveness of the system. In streams that have low end-to-end
delay bounds, this workahead is not possible.

Essentially, non-workahead streams are those that are part of an inter-human conversation
or conference; workahead streams are those in which a storage device sources or sinks
data. The workahead status of a process may change dynamically; for example, the ACME
audio output process is non-workahead if any of the streams it is currently handling is part of
a conversation; otherwise it is workahead.

A user process may receive a CM stream from an MMS using the following library routines:

.MMS _canrcv( '
MMS DESCRIPTOR d, // IN

int n, // IN
POINTER_LIST *plist // OUT

)

MMS rcvdone (
MMS DESCRIPTOR d,
int n
)
MMS_ canrcv () checks whether the next n bytes of the stream are memory-mapped. If not, it
blocks the caller. It returns a list of pointers (plist) to blocks that contain those bytes. The
caller can then directly access the data. MMS_rcvdone () indicates that the caller has “con-
sumed” the next n bytes of the stream. The caller cannot consume more of the stream than is
memory-mapped at the time of this call.

Symmetrically, a user process sending a CM stream on an MMS uses the following library
routines:

MMS cansend(

MMS_DESCRIPTOR d, // IN
int n, // IN
POINTER_LIST *plist // OUT

)

MMS senddone (
MMS DESCRIPTOR d,
int n
) :
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MMS cansend () checks whether n bytes may be written to the MMS. If not (this may happen
because the MMS buffer is full, for instance), the call blocks until the write is possible. It retums
pointers (in plist) to regions in memory where the n bytes should be written.
MMS senddone () indicates that the caller has “produced” the next n bytes of the stream.
The caller cannot produce more data than the amount of unused memory-mapped MMS buffer at
the time of the call.

5.3. Implementation of Memory-Mapped Streams

Section 5.3.1 describes the user/kernel interface required to implement the client interface.
Section 5.3.2 discusses the implementation of the client interface when the user-level producers
and consumers of MMSs are split-level scheduled LWPs. Finally, Section 5.3.3 details the imple-
mentation of the user/kernel interface.

5.3.1. User/Kernel Interface

As with split-level scheduling (Chapter 4), the user/kemel interface for memory-mapped
streams consists of three elements (Table 5.2, Figure 5.1): user/kernel shared memory, system
calls and user-interrupts. In this section, we discuss each of these elements in areater detail.

5.3.1.1. User-kernel shared memory

An MMS is a region of memory shared read-write between user and kernel (for KU and UK
transfers) or user and user (for UU transfers) VASs. This shared memory region consists of two
parts: a synchronization part and a data pan.

The synchronization part of an MMS consists of the following fields:
. N,qaq: the number of bytes read from the MMS so far; this is updated by the consumer.

. N,.ie - the number of bytes written to the MMS so far; this is updated by the producer. The
buffer is empty when N,za2g = Nuire, and full when they differ by the buffer size.

e pwait: a flag maintained by the producer. If true, the producer is awaiting notification of
data consumption from the MMS. In the KU case, a system call (see Section 5.3.1.2) is
used for this notification. Inthe UK case, a user-interrupt delivers this notification.

° cwait: a flag maintained by the consumer. If true, the consumer is awaiting notification of
data production in the MMS.

MMS_create() set up memory-mapped stream
MMS_delete() destroy memory-mapped stream
MMS_canrcv() are the next n bytes of the stream memory-mapped?

MMS_rcvdone() done processing a message
MMS_cansend() is enough of the MMS memory-mapped for n bytes?
MMS_senddone() done sending a message

Table 5.1. Client interface to MMSs.

An MMS is a byte-oriented, sequential, memory-mapped mechanism for CM stream transfer. The
client interface provides functions for creating an MMS and for sequentially sending or receiving
memory-mapped chunks of CM streams.
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° Bowair: value for notification of the pwait condition, set by the producer. If the data level in
the MMS falis below this value and the pwait flag is set, the pwait nofification is
delivered to the producer.

. B.vair: value for notification of the cwait condition, set by the consumer. If the data level
in the MMS is greater than this value and the cwait flagis set, the cwait notification is
delivered to the consumer.

The data part performs shared memory data location transfer. The structure of this part is
largely independent of the structure of the synchronization part and determines whether data
copying for data transfer can be avoided. Some possible organizations for the data part are (Fig-
ure 5.2):

A) Data is passed in pages of physical memory that are statically shared between kernel and
user. Data location is implicit. This structure is suitable for CM /O devices: they may
transfer data via DMA from the MMS and avoid a kernel copy.

B) Data is passed in a fixed range of virtual pages that are mapped dynamically to physical
pages. Data location is implicit. The kernel can allocate pages from a physical page pool.
Once data transfer is complete, it can dynamically map the pages to the data part. This
structure is advantageous for page-sized disk transfers if the cost of copying a page is
greater than the cost of VM remapping the page.

C) Inthe most general configuration, the kermel and user share an array of “message descrip-
tors” that contain pointers to blocks of data. Data may be transferred by remapping, by
copying, or by copy-on-write. This configuration is suitable for network input: following pro-
tocol processing, the kernel need not copy data, but instead simply map the page(s) contain-
ing the data to the user VAS and set the descriptors appropriately. Each descriptor contains
the start and end addresses of the memory-mapped block of data.

5.3.1.2. System Calls and User-interrupts
~ Corresponding to the library routines MMS create () and MMS_delete (), there exist
system calls:
MMS_DESCRIPTOR

MMS_create (
int fd, // IN
int buffer_size, // IN
VIRT_ADDR  *synch_part // OUuT
VIRT_ADDR  *data_part // ouT
int *data_part_type // OUT

)

MMS_delete (
MMS DESCRIPTOR d
)i

The MMS create () system call allocates and initializes the synchronization and data parts in
user VAS. It returns the user addresses of the two parts, the structure of the data part, and a
descriptor for the MMS. This information is used subsequently by library routines that access
MMSs. The MMS delete () system call deallocates the synchronization and data parts asso-
ciated with the specitied MMS.

The

notify(
MMS_DESCRIPTOR d
)

system call does pwait notification in KU stream transfers and cwait notification in UK
stream transfers. It is used for both types of notitication in UU stream transfers (Section 5.3.3).
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Figure 5.2. The MMS data part.

There are three possible structures for the data part. In A), the data part consists of physical
pages statically shared. In B), a range of virtual addresses is shared and the kernel dynamically
updates the mappings associated with each virtual page. In C), the data part is an array of
descriptors to memory-mapped blocks of CM data.

Similarly, the INT NOTIFY user-interrupt may notify the pwait conditionin UK stream
transfers and the cwait condition in KU stream transfers. It does both types of notification in
UU stream transfers (Section 5.3.3).

5.3.2. Library implementation

In this section, we discuss the implementation of the MMS_canrcv() and
MMS rcvdone () library functions for a user LWP receiving a CM stream on an MMS (Figure
5.3). We assume that the LWP is spilit-level scheduled; the description will change slightly if user
processes are scheduled differently. The implementation of MMS_cansend() and
MMS_senddone () are similar.
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Synchronization part of MMS:

Nyoaq total (in bytes) of stream read from MMS
Nunte total (in bytes) of stream written to MMS
pwait producer is awaiting notification of data consumption
cwait consumer is awaiting notification of data production
Bowai water mark for pwait condition
Bowait water mark for cwait condition

System Call:
MMS_create() allocate and initialize synchronization and data parts
MMS_delete() deallocate synchronization and data parts
notify() notify pwait for KU transfers, cwait for UK transfers

User-interrupt:
INT_NOTIFY notify cwait for KU transfers, pwait for UK transfers

Table 5.2. The MMS user/kernel interface.

The user/kernel interface for MMSs consists of system calls to create and delete MMSs and a
system call and a user-interrupt for notification. An MMS itself is a region of shared memory that
consists of two parts: a data part and a synchronization part. The latter contains shared informa-
tion that reduces user/kernel interactions for producer-consumer synchronization.

The algorithms for the two functions are:

MMS_canread(d, n, plist) {
mask_user_interrupts();

Bwakeup = n;
WaitingForlO = TRUE;
W = Nuie: // X
if (w - Neaw < n)
I0_wait(d, ...): // Y, see Chapter 4
if ((Ww = Npas < Bowar) && pwait)
notify();

WaitingForlO = FALSE;
compute plist, the list of memory-mapped stream data blocks
unmask_user_interrupts();

}

MMS readdone{(d, n) {
mask_user_interrupts();
N,m += n;
unmask_user_ interrupts();

}

This code executes at user level, so device /O interrupts cannot be masked
(mask_user interrupts() merely inhibits the delivery of INT_NOTIFY user interrupts;
see Chapter 4). There is a potential race condition if a device inserts some CM data into the MMS
between X and Y in the code above. This race condition is avoided, however, by setting Waiting-
ForlQ; it data arrival occurs during the critical period, it will simply set the INT_NOTIFY request
flag and the descriptor's ReadyForlO flag. The ULS will check these flags when it unmasks user
interrupts in IO _wait (), and will awaken the LWP that called MMS_canread() |if
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necessary. The LWP’s WaitingForlO flag is identical to the MMSs’ cwait flag.

For high delay bound streams, the LWP may not need to immediately notify a pwaiting
producer after consuming a message. That is because the producer may have worked ahead on
the CM stream. In such cases, if Bpuair IS set to the size of a non-zero number of messages, the
costofthe notify () callis amortized over that number of CM messages.

5.3.3. Kernel Impliementation

Suppose that in KU stream transfer, a split-level scheduled process P receives a CM stream
on an MMS M. M's producer is a device (e.g. the audio input device or a network interface),
which repeatedly activates a kernel device interrupt handler to insert CM data into M (Figure 5.3).
To insert n bytes, the handier executes the following steps:

if (n bytes cannot be memory-mapped into M) {
disable device interrupts;
M.pwait = 1;
return;
}
insert message into data part:; // this depends on the
// structure of the data part
M.Nwme += n; )
if (P. WaitingForlO)
if (M. Nuie = M.Neag > M.Boar) |
P . ReadyforlO = TRUE;
if (Cp<Thow and Dp<Dy)
deliver INT_NOTIFY user interrupt to VAS
}

schedule interrupt for next message transfer

The logic for a device interrupt handler doing UK stream transfer is similar.

Each device interrupt handler schedules a chain of interrupts to perform message transfers
to or from the MMS buffer. This chain of interrupts is stopped when the kernel is waiting for
pwait (in the KU case) or cwait (in the UK case) notification. In these cases, the
notify () system call restarts the chain of device interrupts.

Finally, we consider the case where LWP P is the producer and LWP Q is the consumer in
a UU stream transfer. P and Q are in different VASs and communicate using a UU MMS M. P
may call notify () when Q is cwaiting. Similarly, Q@ may call notify () when P is
pwaiting. Inthe former case, the kernel does the following:

if (M. Nute — M. Nasg > M.Bowar) |
Q. ReadyForlO = TRUE;
if (Cq < TDOW and Dg < Dy)
deliver INT NOTIFY user interrupt to VAS
}

The logic for the latter case is similar.

5.3.4. UNIX implementation of MMS

We implemented UK and KU memory-mapped streams in SunOS 4.1 for the SPARC station
1+. In our implementation, we assumed that user-level producers or consumers were split-level
scheduled LWPs. A user-level library implemented the functionality described in Section 5.3.2.
The kernel modifications for the MMS implementation are shown in Figure 5.4.

Adding a new system call is done as described in Chapter 4. We did not need to add new
user-interrupts: the INT NOTIFY user-interrupt is the same as the INT_IO_READY user-
interrupt already supported by the split-level scheduler.
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Figure 5.3. lllustration of KU stream transfer.

This figure illustrates a KU MMS, whose consumer is a SLS LWP and whose producer is an /O
device. The device scheduies a chain of interrupts to memory map CM stream data into the
MMS, and the LWP reads the memory-mapped data directly.

The memory management module now supports additional functionality to allocate and map
the synchronization and data parts of an MMS. Our implementation supports the “shared physical
pages” data part structure only (structure A in Figure 5.2). This additional functionality was a sim-
ple extension to the functionality necessary to set up the shared memory region in SLS.

Finally, the audio and video frame buffer device interrupt handlers now support direct mes-
sage transfers to and from MMSs, as described in Section 5.3.3. The logic to detect pwait and
cwait conditions and deliver notifications is also included.
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Figure 5.4. UNIX iImplementation of MMS.

Our implementation of memory-mapped streams in UNIX modified or added to a number of dif-
ferent parts of the operating system. The bold boxes represent new functionality and the shaded
regions represent additions to existing functions.
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Chapter 6

SHARED MEMORY CONCURRENCY CONTROL

In split-level scheduling and memory-mapped streams, user/kemel shared memory may be
read or written by LWPs, user-interrupt handlers and kernel device interrupts. Conflicting, con-
current reads and writes can produce erroneous results. For example, if Dz in the ksched area is
a multi-word quantity, time advance () may read an incorrect value for Dz. That can hap-
penif an interrupt handler changes Dz while it is being read.

This chapter discusses concurrency control mechanisms for user/kernel shared memory
accesses. These mechanisms fall into two categories: pessimistic concurrency control mechan-
isms prevent concurrent, conflicting accesses to shared memory, while optimistic mechanisms
detect such accesses and do recovery. Section 6.1 lists two ways in which conflicting, concurrent
shared memory reads and writes may occur. Sections 6.2 and 6.3 descnbe concurrency control
mechanisms to handle such accesses.

6.1. User-mode Critical Section Violations

Both user-mode and kernel-mode execution may read or write user/kernel shared memory.
A sequence of reads and writes to shared memory from kernel mode is a critical section with
respect to user mode reads and writes to shared memory. We distinguish two levels of user-
mode execution: the process level and the user-interrupt level. A sequence of reads and writes to
shared memory from either level is a critical section with respect to reads and writes from the
other level or from kernel mode.

In this chapter, we assume that there exist pessimistic concurrency control (i.e., mutual
exclusion) mechanisms for kernel-mode critical sections. In the UNIX kernel, raising device inter-
rupt priority level for the duration of the critical section is an example of such a mechanism.

Our goal is to design efficient concurrency control mechanisms for user-mode critical sec-
tions. Mutually exclusive access to user-mode critical sections may be violated in two ways (Fig-
ure 6.1):

(1)  When a user-interrupt interrupts process-level execution (A in Figure 6.1).

(2)  When kernel-mode execution (e.g. a kernel device interrupt handler) interrupts user-mode
execution (B and C in Figure 6.1).

In the following sections, we describe efficient mechanisms for shared memory concurrency con-
trol in these two cases.

6.2. Preventing User-interrupts During Process-level Execution

When a LWP calls time advance (), that function may change usched.D, and
usched.L (Section 4.3.3). After time advance () has updated usched.D, and before it
changes usched.L, a user-interrupt may be delivered to the VAS. This user-interrupt may in turn
modify these two fields, leaving the usched area in an inconsistent state.

Virtual user-interrupt masking is an efficient technique for preventing concurrent shared
memory accesses by process and user-interrupt execution during critical sections. The technique
uses two bitmaps in shared memory to communicate masking information between user and ker-
nel: 1) an interrupt mask in the usched area which, if nonzero, masks user-interrupts, and 2) an
interrupt request word in the ksched area which flags user-interrupts that occur while masking is in
effect.
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Figure 6.1. User-mode critical section violations.

Process level execution can be interrupted by user-interrupt or by kernel-mode execution (A and
C). User-interrupt level execution can only be interrupted by kernel-mode execution (B). These
introduce the potential for violating mutual exclusion in user-mode critical sections.

The beginning of a user-mode critical section is marked by a call to mask_ints () (Fig-
ure 6.2). A critical section ends after the return from unmask_ints. When the KLS wants to
deliver a user-interrupt to the currently executing VAS, it calls deliver ints (). If the inter-
rupt mask is nonzero, deliver ints () requests a user-interrupt (by setting the request flag).
User interrupt handler() services user-interrupts. If it is called from
unmask_ints (), user_ interrupt_handler () services all user-interrupts requested
during the period that user-interrupts were masked.

Claim 6.1. The following assertions hold for all time: 1) user-interrupts do not occur when
the interrupt mask is nonzero, and 2) each user-interrupt request is serviced exactly once.

Proof. We show below that these assertions hold for non-nested critical sections (i.e., from
acallto mask ints () until the return from unmask ints (), with no intervening calls to
these functions). Since the assertions are trivially true when user-mode execution is not in a criti-
cal section, the assertions hold for all time.

Assertion 1 holds because deliver ints () does not deliver a user-interrupt when the
interrupt mask is nonzero. To prove that assertion 2 holds, we note that a non-nested critical sec-
tion (S in Figure 6.3) consists of a single execution of section A followed by one or more execu-
tions of sections B and C (Figure 6.2).

. During A, deliver int () may set a flag in the interrupt request word. Repeated user-
interrupt requests do not alter the flag value.

) If a user-interrupt occurs during B, the kernel delivers it to the VAS. Then, any user-
interrupts  that were requested during A are also serviced, the
user interrupt handler () resets the corresponding interrupt request flag so that
the handler is not subsequently called.

. During C, the interrupt mask is set and the for loop services any user-interrupts that may
have been requested during A but which were not serviced during B. After a handler is
called but before the end of C, a user-interrupt may be requested; this is registered in the
interrupt request word. Then, sections B and C are repeated and the interrupt is serviced in
the next iteration of the while loop.

From the above, any user-interrupt that occurs during A is serviced either during B or C. More-
over, an interrupt that occurs during B is serviced immediately. Finally, if an interrupt occurs



mask_ints () { // Process-mode
interrupt_mask++;

// Start A
}
unmask_ints () { // Process-mode
// End A
interrupt_mask--;
// Start B
while (!interrupt_mask && interrupt_request) {
// End B
interrupt_mask = 1;
// start C

for (all interrupts requested in the interrupt request word)
user_interrupt_handler();
// End C

interrupt mask--;
}

deliver_ints() { // Kernel-mode
if (interrupt_mask)
set appropriate flag in interrupt_request word
else
deliver user interrupt to VAS

}

user_ interrupt_handler () { // User-mode
. service the interrupt ...
if (flag is set in interrupt request word)
reset flag;

Figure 6.2. Virtual user-interrupt masking.

A user LWP or a user-interrupt handler calls mask_ints () before and unmask_ints ()
after a critical section. The KLS calls deliver _int () to deliver a user-interrupt to the
currently executing VAS. The user-interrupt handler may be called when a user-interrupt is
delivered orwhen unmask_ints () finds aninterrupt request.

during C but after its handler was called, it is serviced during the next B or C. Thus, assertion 2
also holds.

Finally, suppose critical section R is nested inside critical section S in Figure 6.3. The if
conditional in section B of R always evaluates to false, because the interrupt mask is non-zero.
Therefore, R only consists of a single execution of A. We can easily show that the above asser-
tions hold for nested critical sections as well. (O

A user-interrupt may not interrupt user-mode execution while a user-interrupt is being ser-
viced. In our implementation a user-interrupt does not make a system call after executing the
handler. Therefore, the kernel must be able to detect when user-mode execution returns to
process-level after servicing a user-interrupt. Virtual user-interrupt masking works in this case as
well. The kernel sets the interrupt mask before delivering a user-interrupt. When the
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Figure 6.3. Critical section.

A non-nested critical section S consists of a single section A, followed by one or more sections B
and C. If Ris nested in S, then R consists of a single section A.

user_interrupt_handler () completes, it calls unmask_ints () before returning to
process level.

6.3. Concurrency Control Between User-mode and Kernel-mode Execution
A kernel device interrupt (e.g., a clock interrupt) may cause user VAS preemption while the

latter is in a critical section. Section 6.3.1 describes a pessimistic concurrency control mechanism
for this case.

An interrupt handler may read from the usched area (e.g., Da, to decide whether to preempt
the current VAS) or may write to the ksched area (Dj, if some LWP’s state was changed by the
interrupt handler) while user-mode execution is in a critical section. We distinguish three situa-
tions:

. A device interrupt handier may modify a multi-word quantity (e.g., Dz) while a user-mode

access is reading the quantity (Section 6.3.2).

. An interrupt handler may read a multi-word quantity (e.g., Da) while it is being written in
user-mode (Section 6.3.3).

° Finally, an interrupt handler may execute between a read and a related write (e.g. in
MMS canread (), Section5.3.2).

For each of these cases, Sections 6.3.2, 6.3.3 and 6.3.4 describe optimistic concurrency control
mechanisms.

6.3.1. Preemption Masking

A kernel device interrupt may change the state of a LWP in some VAS in A (A is the current
VAS). As aresult, A may be preempted in a critical section. An INT PREEMPT user-interrupt
is delivered to A when it resumes execution. That interrupt handler may overwrite shared
memory, leaving it in an inconsistent state. To prevent this, we need a VAS preemption masking
mechanism.

“Virtual” masking can also be used to implement this mechanism, using a preemption mask
flag in the usched area and a preemption request flag in the ksched area. While the mask is
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nonzero, the VAS cannot be preempted by another VAS. Upon unmasking preemption, if the ULS
finds the request flag set, it calls yield (). The correctness proof for virtual preemption mask-
ing is similar to that of Claim 6.1.

In summary, virtual masking is used in three different ways: for short critical sections in
client code (Section 4.2), for preventing user-interrupts while process-level execution is accessing
user/kernel shared memory (Section 6.2) and for masking VAS preemption. The algorithm
described in Section 4.3.3 therefore masks both user-interrupts and preemption, but the
mask_ LWP_preemption () functiononly masks user-interrupts.

6.3.2. Muitl-word Reads

User-mode accesses read a multi-word quantity m by reading the constituent words
w.,Wsy, - - W, (in that order, say). Let / be the interval of real time when m is read. Immedi-
ately after w; is read, a kernel device interrupt may modify one or more of wj,,, - - - ,w,. The
resulting value v for m may be inconsistent (i.e. m may not have had the value v in /).

It is possible to do virtual masking of kernel interrupts, but this has the drawback of requiring
a system call to service interrupts that occur while kernel interrupts are masked. A more efficient
solution is suggested by Claim 6.2.

Claim 6.2. Let m be an n-word monotonic quantity. Further, let each word contain k bits.
Suppose J is the worst case time to read m twice in succession and the value of m does not
change by more than 22% in J. If two successive reads of m produce the same value v, and K is
the interval of time in which these two reads are done, then m had a value v at some instant in K.

Proot. We assume that m is read least significant word first and m is monotonically non-
decreasing. The proof is similar when m is read most significant word first or if m is monotoni-

cally non-increasing. Let the n words (least-significant word first) be labeled a.ay, - - - .4,
respectively (Figure 6.4). Let the first read for m be at times a{, a3, - - - ,a, and the second at
a?, a3, --,a’ Furher, let the values read for a; be x;, for each i. By our hypothesis, m

changes by less than 2?K in K and m is non-decreasing. Therefore, words a, through a, are
unchzanged in the interval a,-a%. Since a, has the value x, at a?, m has the value x, - - - XoX1
ataf. O

The ULS reads two multi-word variables from shared memory: Dz and Tpoy. These quanti-
ties are both either monotonically increasing or decreasing. Furthermore, for all gractical CM
applications on 32-bit architectures, these quantities do not change by more than 2°* in the time
taken to read the quantity twice (a 64-bit microsecond resolution clock wraps around in half a mil-
lion years, while reading a multi-word quantity twice is on the order of microseconds).

6.3.3. Multi-word Writes

User-mode execution writes a multi-word quantity m (e.g.,Ds and T,e,) by writing the con-
stituent words w,,w,, - - - ,w, inthat order, say. If a kernel interrupt occurs immediately after w;
has been written, the interrupt handler may read an inconsistent value for m. As in Section 6.3.2,
“virtually” masking device interrupts may be expensive. Our solution exploits specific properties
of these quantities to arrive at an efficient mechanism for concurrency control.

For concurrency control, an interrupt handler assumes that the value of m may be incon-
sistent if it detects that the preemption mask is set (i.e. that user-mode execution is in a critical
section). If a consistent value m were read, the interrupt handler might perform one of a set of
actions depending on the value. However, if the preemption mask is set, our concurrency control
mechanism either defers any action or performs the “worst case” action. We illustrate this
mechanism for multi-word quantities Ds and T,ax.

A device interrupt may change the state of a LWP in A, thus changing Dz (where A is the
current VAS). It then reads D, to decide whether A should be preempted. If A is in a critical sec-
tion, the interrupt handler writes Dz and sets the preemption request flag (the “worst case”
action). When user-mode execution services the preemption request, it calls yield () onlyifits
VAS does not have the highest priority LWP. Thus the VAS yield()s only if it would have
been preempted anyway,
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Figure 6.4. Multi-word reads.

Suppose a multi-word quantity m consists of n words ay,as, - Let m be read twice in suc-
cession, with the jth word being read at a, and a,2 respectwely If the successive reads produce
the same value, then m had that value at a?.

When the kernel clock interrupt handler reads T, to check if a user-interrupt should be
delivered, user-mode execution may be in a critical section. If the preemption mask is set, the
interrupt handler does not do the comparison, instead waiting until the next clock tick (i.e., it defers
the action). If, however, the clock granularity is large (" 10 ms or more) or if the previous tick was
skipped, the interrupt handler may set the timer request bit and let the ULS service the interrupt
(the “worst case” action).

The correctness of the above solutions follows from the correctness of preemption masking
and multi-word reads.

6.3.4. Read Followed By Related Write

A read followed by a related write may also cause conflicts, as in KU stream transfers (Sec-
tion 5.3.2). If enough data is not available in the MMS, MMS canread() requests I/O comple-
tion notification (by setting the MMS’ WaitingForlO flag, Figure 6.5). If WaitingForlO is set, the
kernel notifies the ULS of /O completion by setting ReadyForlO. The kernel may also deliver an
INT_IO user-interrupt. This notification may be missed if the I/O completion occurs just before the
WaitingForiOflag is set, but after the ULS has checked for data availability.

To solve this problem, the ULS sets WaitingForlO before checking if sufficient data is
present in the MMS. If data arrives after A and before B or after B and before D, then it may
cause an unnecessary notification (since there may actually be enough data in the MMS that
notification is not necessary). However, if data arrives between B and C, then the notification is
registered in the ReadyForlO flag. Since interrupts are masked, no user-interrupt is delivered.
When the ULS makes an LWP scheduling decision after C, it notices that the ReadyForiO flag is
set and wakes up the LWP.
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// Wrong
MMS_canread(d, n) {
mask_ints();
if (not enough data in MMS) // Read:
// If data completion occurs here, the
// notification may be missed
10 _wait (); // Related write of WaitingForlO flag
unmask_ints();

}

// Right
MMS_ canread(d, n) {
mask_ints();

.....

WaitingForIO = TRUE; // A
if (not enough data in MMS) // B

I0_wait (): // C
WaitingForIQO = FALSE; // D

unmask_ints();

}

// On I/0 completion, the kernel interrupt handler does the following
.. add data to the MMS ....
if (WaitingForIO) {
ReadyForIO = TRUE;

Figure 6.5. Missed I/O notifications.

A concurrency control mechanism may be necessary for when a user-mode read is followed by a
related write. If an I/O operation completes after MMS canread () executesthe if statement
(in the “wrong” version) but before the subsequent IO wait (), then notification of the comple-
tion may be missed. The “right” version solves this condition by setting the WaitingForlO flag be-

fore the if statement.




Chapter 7
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A process state change may be voluntary or involuntary (i.e. preemptive), and may involve
a process switch or a VAS switch as well. Similarly, a message transfer may involve synchroniza-
tion and (for KU and UK transfers) I/O initiation.

Sections 7.1 and 7.2 enumerate the possible combinations of the above choices for process
state changes and KU and UK message transfers (i.e., I/O operations) respectively. These sec-
tions also list the cost of each such combination for three scheduling and I/O alternatives: 1) split-
level scheduling and memory-mapped streams, 2) threads using system calls to read and write
data, and 3) LWPs using asynchronous I/O.

Using these costs, we simulated the performance of different CM workloads. Section 7.3
presents these simulation results. The resuits describe the effect of factors such as the number of
concurrent CM applications, the number of processes per CM application, process delay bounds,
and CM stream message rates on scheduling and /O costs of CM workloads. They also compare
the performance of SLS and MMS with the other two alternatives described above.

7.1. Scheduling Paths and Their Costs

The globally highest-priority process in a system may change if the state of a process
changes (from runnable to suspended, from workahead to critical and so on) or its scheduling
parameters (critical time, deadline) change (Chapter 4). This change may be voluntary or
preemptive and may involve only a process switch or a VAS switch as well. We call each combi-
nation of these choices a scheduling path (different from a code path, which is the sequence of
user or kernel code executed for some operation):

(1)  Deadline change: A process changes its own deadline, but continues to execute as the
globally highest-priority process (P ) in the system.

(2)  Non-preemptive process switch: A process becomes suspended or changes its deadline
so that it no longer has the highest priority. Either action causes a process switch. No

VAS switch is incurred on this path; that is, the current VAS A still contains P .

(3)  Preemptive process switch: An external event (I/O completion, timer expiration) awakens
a suspended process, which now is P'° The current process is preempted. No VAS
switch is incurred on this path; the current VAS A still contains P *.

(4)  Non-preemptive VAS switch: A VAS yields the processor because it finds that all
processes are suspended or that some other VAS is A .

(5) Preemptive VAS switch: The currently executing VAS is preempted in favor of another
VAS containing the globally highest priority process.

In this section, we list the cost of each of these paths for the DWS policy for three scheduling tech-
niques: threads, LWPs and split-level scheduled LWPs. For the first two altemmatives, we
estimated the cost using corresponding paths for preemptive priority scheduling. The costs are
measured with user level experiments or by appropriately instrumenting the kernel.

Uniess otherwise stated, all our experiments are performed on a 25Mhz diskless SPARCs-
tation 1+ running SunOS 4.1.
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7.1.1. Thread Scheduling Path Costs

A thread makes a system call during a deadline change path. The cost of this path is the
average time taken for this system call.

In addition to the deadline change, a non-preemptive thread switch incurs a thread context
switch. In our experiment, two threads changed their priorities such that each yielded the proces-
sor to the other. The cost of this path is half the average time taken to change one thread's prior-
ity.

We conducted the above experiments on a SPARCstation running Mach 2.5. The path
costs obtained were unreasonably high, since the Mach 2.5 threads implementation was not
optimized. To obtain more realistic estimates for these costs, we conducted the same experi-
ments on a DECstation 3100 running Mach 3.0 (the SPARCstation 1+ and the DECstation 3100
have approximately the same SPEC marks [SSS90]). The results were used as upper bounds for
the actual costs of the paths on a SPARCstation. The cost of the corresponding path for SLS
LWPs plus the cost of a null system call determined a lower bound for these path costs. We
estimated the cost of the path as the mean of its upper and lower bounds.

Preemptive thread switches are triggered by hardware exceptions (I/O completion, timers).
The kernel preempts the currently executing thread and switches to the new thread. We were
constrained to user-level experiments on the DECstation 3100. For this reason, we assumed that
the cost of a preemptive thread switch would be approximately equal to that of a non-preemptive
thread switch.

A non-preemptive VAS switch is caused by a thread making a system call to yield the pro-
cessor. We instrumented the SunOS kernel so that each of two SunOS processes repeatedly
made a system call to yield the processor to the other. We used half the average time taken for
that call as an estimate for this path.

We instrumented the kernel so that a SunOS process repeatedly makes a system call to
sleep for a fixed period of time. We then inserted two probes (a probe is a location in user or ker-
nel code where the current time of day is evaluated): 1) in the kernel, just after a suspended
SunOS process wakes up and 2) at user level, upon return from the sleep. The cost of the
preemptive VAS switch was estimated as the average difference between two probes times.

7.1.2. LWP Scheduling Path Costs

LWPs are scheduled entirely at the user level. In measuring path costs, however, we
assume that a LWP scheduler conveys the priority of the highest priority LWP in its VAS to the
kernel using a system call, which is necessary for correct global prioritization among LWPs.
Threads and split-level scheduling also provide such global prioritization.

There are two components in an LWP’s deadline change path cost: the cost of changing the
LWP's deadline and the cost of the system call to inform the kernel of the change. We estimated
the latter as the average time taken for a SunOS setpriority () system call, when the caller
continues to have the highest priority.

A non-preemptive LWP switch incurs a LWP switch in addition to a deadline change. We
computed the average time for the LWP switch by having two LWPs repeatedly changing their
deadlines so that each one alternately had the earliest deadline.

A preemptive LWP switch is caused by an asynchronous user event notification (a UNIX sig-
nal). The cost of this path is the sum of the non-preemptive switch cost, the time taken for signal
delivery and the time to request signal notification. To measure the second component, we
inserted probes at two points: 1) in the kernel, just before a signal is delivered to the user VAS and
2) at user level, upon signal return. The average difference between the two probe times gives
the cost of signal delivery. The last component was measured as the average cost of the seti-
timer () system call in SunOS.

The cost of a non-preemptive VAS switch is the sum of the LWP deadline change cost and
the time taken by a system call to yield the processor. We estimated the latter using the cost of a
non-preemptive VAS switch for threads (Section 7.1.1).
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A preemptive VAS switch involves a VAS switch, a signal delivery to preempt the current
LWP, and a system call to request the signal. To measure the cost of the first two components,
we inserted two probes 1) in the kernel, just before a preemptive VAS switch and 2) at user level,
upon return from the signal. The average difference between the two probe times gives the cost
of these components.

7.1.3. SLS Scheduling Path Costs

We measured SLS scheduling path costs using our prototype implementation of SLS and
MMS in SunOS for the SPARCstation 1+ {Chapter 4, Chapter 5).

The cost of a deadline change in SLS is the average time taken by the
time_advance () call, when the caller continues to have the earliest deadiine.

We measured the cost ot a non-preemptive LWP switch by changing the deadlines of two
LWPs in a VAS so that each yielded the processor to the other. The cost of the path is half the
average time taken forthe time_advance () call

The cost of a preemptive LWP switch is the sum of the times taken to deliver a user-
interrupt, to preempt the currently executing LWP, and to switch to the new LWP. We measured
the cost of this path by inserting two probes: 1) in the kernel just before a user-interrupt is
delivered and 2) in the user VAS after the new LWP begins executing. The average difference
between the probe times gives the cost of the path.

We measured the cost of a non-preemptive VAS switch by changing the deadlines of two
LWPs in different VASs so that each yielded the processor to the other. The cost of the path is
half the average time takenfora time_advance () by one process.

The cost of a preemptive VAS switch is the sum of the times taken to preempt the currently
executing VAS, deliver a user-interrupt, preempt the currently executing LWP, and switch to the
new LWP. We measured the cost of this path by inserting two probes: 1) in the kernel just before
the current VAS is preempted and, 2) in user-space after the new LWP begins executing. The
average difference between the probe times gives the cost of the path.

7.1.4. Discussion

Table 7.1 shows the costs for different paths and scheduling alternatives. The deadline
change and non-preemptive process switch costs for SLS are less than half those for the other
alternatives. However, SLS VAS switch costs are greater than thread VAS switch costs. A rea-
son for this difference is that, in SLS, scheduling decisions may be made both at user and kernel
level on a VAS switch.

CM applications that perform frequent deadline changes and non-preemptive process
switches are likely to significantly reduce scheduling costs by using SLS. We study the actual
performance improvement under realistic workloads in Section 7.3.

7.2. 1/Q Paths and Their Costs

tn our model for process 1/O, each process is allocated a fixed size I/O buffer. This /O
buffer may be shared between user and kernel VASs (MMSs) or may be implemented entirely in
the kernel (read-write system calls, asynchronous 1/Q). Device interrupt handlers directly read
from or write to the process’ I/O buffer.

An /O operation may or may not require synchronization with the device handler (e.g., a
user process might block if there is no data in the buffer). Similarly, an /O operation may or may
not require I/Q initiation. There are four different I/O paths taken by message transfers:

(1) Data transfer. This I/O path (read or write) takes place without the caller blocking or initiat-
ing 1/0 from the device.

(2)  Data transfer with synchronizatiom. The caller blocks during this path. This may result in a
process context switch or a VAS context switch. A KU transfer may block if the /O buffer
is empty and a UK transfer may block if the buffer is full.

53



Scheduling Path Costs (in psecs)

~ Path Description Threads _ Lightweight Processes __ Spiit-level Scheduling
Deadline change 71 63 28
Non-preemptive process switch 111 73 38
Preemptive process switch 111 225 132
Non-preemptive VAS switch 180 204 297
Preemptive VAS switch 188 321 286

Table 7.1. Scheduling path costs.

Table of scheduling path costs for three different alternatives: threads, LWPs and split-level
scheduled LWPs.

(38)  Data transfer with I/O initiation: The caller initiates the next message transfer from the
device. We assume that I/O initiation is only necessary when the chain of interrupts
scheduled by the device interrupt handler (Chapter 5) has stopped.

(4)  Data transfer with synchronization and initiation: On this path, the caller initiates /O and
then blocks.

Below we list the cost of each path for a 1-byte /O message transfer for three alternatives: read-
write system calls, asynchronous /O and MMS. .

7.2.1. Read/Write System Call I/O Path Costs

We estimated the cost of a data-transfer path for this alternative by the average time taken
.to read one byte from a non-empty UNIX pipe. To this cost, we add the time taken to initiate /O
on the audio device (see Section 7.2.3) to get the cost for data transfer with I/O initiation.

The cost of a data transfer with synchronization path includes the costs of the data transfer
path and the cost of a non-preemptive thread or VAS switch. We estimate this cost by adding the
two components and subtracting the cost of a null system call from the sum. To these costs, we
add the time taken to initiate I/O on the audio device to estimate the costs for data transfer with
synchronization and initiation.

7.2.2. Asynchronous /O Path Costs

Both the data transfer and data transfer with I/O initiation paths for asynchronous /O are
similar to the read-write system call case.

However, the data transfer with synchronization path is a bit more complicated. The user
process first does a non-blocking read () which returns immediately. It is notified of /O com-
pletion using a signal (SIGIO) after which the user process calls select () to find out which
I/O descriptor to read data from. Finally, it does a rezd () to perform the data transfer. The
cost of this path is the sum of the average times for each of these individual operations. To this
sum, we add the cost of a non-preemptive LWP switch or VAS switch. The data transfer with syn-
chronization and initiation costs are computed as before.

7.2.3. MMS Path Costs

To measure the costs of the /O paths for MMSs, we used our prototye MMS implementa-
tion. We conducted simple user level experiments for measuring the costs of each path.
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The cost of a data transfer path is the time taken to do a one byte MMS canrcv (), fol-
lowed by an MMS_rcvdone (), when the device's chain of interrupts is active and data is avail-
able. We added the average time taken by the notify () call (for the SPARCstation audio
device) to this cost, to get the cost of data transfer with I/O initiation.

The cost of data transfer with synchronization is the sum of the data transfer cost and the
cost of a non-preemptive LWP or VAS switch path. To these we add the cost of /O initiation, to
get the cost of data transfer with synchronization and initiation.

7.2.4. Discussion

Table 7.2 shows the costs for different I/O paths and I/O alternatives. The data transfer,
data transfer with I/O initiation and data transfer with synchronization (process switch case) costs
for MMS are two to five times less than the other alternatives. The VAS switch data transfer with
synchronization costs are comparable for threads and SLS, for reasons described in Section
7.1.4,

CM applications that incur fewer VAS switch data transfer with synchronization paths are
likely to significantly reduce scheduling costs by using MMS. We study the actual performance
improvement under realistic workloads in Section 7.3.

7.3. Performance Under Synthetic Workloads

In this section, we present the results of a series of experiments designed to compare the
performance of different techniques for scheduling and /0. Using synthetic CM application work-
loads, we compared the scheduling and I/0 costs of: 1) threads using read-write system calls for
170, 2) LWPs using UNIX asynchronous I/O and 3) split-level scheduled LWPs using memory-
mapped streams for 1/0.

/O Path Costs (in usecs)

Path Description Read-Write System Calls  Asynchronous /O Memory-mapped streams
Data Transfer 114 114 21
Data Transter with /O Initiation 118 118 59

Data Transter with Synchronization
{Process switch) 191 543 59

Data Transfer with Synchronization
(VAS switch) 260 735 318

Data Transfer with Synchronization
and Initiation (Process switch) 195 547 97

Data Transfer with Synchronization
and Initiation (VAS switch) 264 739 322

Table 7.2. 1/O path costs.

Table of I1/0 path costs (for 1-byte I/O operations) for three different alternatives: system calls,
asynchronous /O and memory-mapped streams.
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7.3.1. Methodology

To design the experiments, we identified different factors that characterize CM applications
on a single computer system:

(1)  The number of processes in a single VAS.

(2) The message rates of the CM streams handled by processes.
{3) Process delay bounds.

(4)  Process workahead limits.

(6)  The number of VASs running CM applications.

(6) Policy for workahead processes.

Factors 1, 3, 5 and 6 are mutually orthogonal. Factors 2, 3 and 4 are related in the following way:
If end-to-end delay of a CM stream is low, then process delay bounds may be low, stream mes-
sage rates may be high, and process workahead limits may be small. We do not consider other
factors such as the presence of non-realtime jobs in the system.

We conducted six experiments. In each experiment, one factor was varied over a range of
values, while the others were fixed. The workload was chosen so that, at the midpoint of this
range, CM message processing utilized about 40% of the CPU.

Although we had implemented SLS and MMS, we chose simuiation as the performance
comparison methodology for two reasons. First, we lacked a comparable implementation of DWS
scheduled threads and kernel support for DWS scheduled LWPs. Second, in our implementation
of SLS and MMS, process deadlines have a granularity of 10ms (the clock interrupt period on the
Sun SPARCstation). For this reason, process deadlines are constrained to be integral multiples
of 10 ms, so the effect of lower process delay bounds cannot be studied. Reducing the clock
period would have involved drastic modifications to SunOS.

We used the path costs for scheduling and 170 operations (Sections 7.1 and 7.2) to drive a
CM application workload simulator. The inputs to the simulator were the workioad description, the
scheduling technique to be used, and a time limit for the simulation. The workload was described
as a list of processes, each with the following parameters: VAS, delay bound, CM stream mes-
sage rate, processing time per message, whether the stream is read or written, 1/O buffer size and
process start time. The output of the simulator was the cost of scheduling and /O as a percen-
tage of total CPU time and the count of scheduling and /O paths of each type.

We validated the simulator's performance for SLS by comparing its output in steady state
with the scheduling and 1/O overhead of a workload on our implementation. The error between
the simulator and the real workload was less than 1% for the test cases studied. For threads and
LWPs, we validated the simulator by examining simulator traces for simple workloads.

7.3.2. Simulation Results

This section discusses the experiments in greater detail and presents simulation results.
For each experiment, we describe the workload used and interpret the resuits for real CM applica-
tions.

7.3.2.1. Varying the Number of Processes

The workload for this experiment consisted of a single VAS with a varying number of
processes. Each process handled a 50 messages/s CM stream, had a 12-message /O buffer, a
250 ms delay bound and a 0.9 ms message processing time. This workload is typical of an
ACME server with multiple high delay processes. Figure 7.1 shows how the number of processes
affect the scheduling and I/O cost for the different approaches.

As the number of LWPs increases, the overhead for the ditferent approaches also increases.
The rate of increase is higher, however, for threads and LWPs than it is for SLS. In SLS, most
process context switches are done at user level. The greater the number of processes, the
greater is the frequency of user-level switches. With 18 processes, the cost for SLS is less than
5%, whereas the threads cost is 4 times as much.
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Figure 7.1. Varying the nhumber of processes.

This figure shows the effect of-varying the number of processes on scheduling and I/O costs for a
single VAS. The rate of increase of scheduling and /O costs for threads and LWPs is greater
than that for SLS LWPs.

Multiprocess workahead CM applications, such as audio mixers mixing file data, may benefit
significantly from SLS and MMS.

7.3.2.2. Varying the Message Rate

For this experiment, the workload consisted of a single VAS with five processes. Each pro-
cess had a 10 message /O buffer and a 0.9 ms per message processing time. The delay bound
for each process varied from 1/2 s for 1 message/s case to 50 ms for the 200 messages/s case.
Figure 7.2 shows the scheduling and 1/0 cost as a percentage of total CPU overhead as a func-
tion of CM stream message rate.

As CM stream message rate increases, the overhead for the different approaches aiso
increases. At higher message rates, threads and LWPs have considerable overhead. For
instance, at 200 messages/s SLS incurs only 6% scheduling and /O cost while threads and LWPs
cost 4 times as much.

CM applications handling high message rate CM streams may benefit significantly from SLS
and MMS.

7.3.3. Varying Process Delay Bounds

For this experiment, our workload consisted of a single VAS with eight processes, each han-
dling 50 message/sec CM streams. Of the eight, some were low-delay and some were high-delay
processes. The low-delay processes simulated periodic CM device reads; they had a delay
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Figure 7.2. Varying message rate.

This figure shows the effect of message rate on scheduling and I/0 cost. The cost for threads and
LWPs is 4 times that for SLS at high message rates.
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Figure 7.3. Varying process délay bounds.

This figure shows the effect of low-delay processes on scheduling and I/O costs of SLS and
LWPs. With low-delay processes, a user-kemel interaction may be incurred on almost every
message. Even so, the SLS has three times less overhead compared to LWPs.

bound of 5 ms, a one message /O buffer and 0.9 ms message processing time. High-delay
processes did file or network I/O; they had a delay bound of 250 ms, a 12 message |/O buffer and
0.9 ms per message processing time. This type of workload is typical of ACME servers.

Figure 7.3 shows the scheduling and I/0O costs for LWPs and SLS for the above workload.
Low-delay processes have small workaheads and when a low-delay process becomes critical, it
usually has the earliest deadline. In this case, a user-interrupt is necessary to wake up that pro-
cess. Thus, low-delay processes may incur more frequent user/kernel interactions, compared to
high-delay processes.

This experiment is demonstrates the efficiency of kernel-to-user interaction in SLS. With
LWPs, each message in a low-delay stream incurs a system call to set a timer and a signal to
wake up the process. In SLS, each message incurs a user-interrupt. The difference in overheads
can be pronounced: with 3 low-delay processes, SLS scheduling and I/O cost is 5%, whereas
LWPs cost 3 times more. Low-delay applications, like mixers serving live participants, may
benefit significantly from SLS and MMS.

7.3.4. Varying I/O Buftfer Sizes

The workload for this experiment consisted of a single VAS with eight processes each han-
dling a 50 message/s stream. Each process had a message processing time of 1.5 ms, and a
delay bound of 1/2 s. The /O buffer size (Section 7.2}, which represents the workahead limit of
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Figure 7.4. Varying I/0 buffer sizes.

This figure shows the scheduling and I/O costs for SLS for a varying I/0 buffer size. Even with a 4
message I/O buffer, we observe significant reductions in the cost for all approaches.

the process, was varied.

Figure 7.4 shows how I/O buffer size affects scheduling and 1/0 costs for threads, LWPs and
SLS. Even with a buffer size of 4 messages, we observe a significant reduction in cost; for SLS,
the cost is nearly 11% for a three message I/O buffer and only 4% for a four message I/O buffer.

Thus, for workahead CM applications, even relatively small I/O buffers can significantly
reduce scheduling and /0 cost.

7.3.5. Varying the Number of VASS

The workload for this experiment consisted of twelve processes each handling a 50
messages/s CM stream. The number of VASs for this experiment varied from one to three. The
processes were equally divided between the different VASs. For each VAS value, we conducted
two experiments: one in which exactly one of each VAS’ processes had a low-delay bound (5 ms
delay bound, 1 message I/O buffer, 0.9 ms message processing time) and another in which all its
processes had high-delay bounds (200 ms delay bound, 10 message I/O buffer, 0.9 ms message
processing time). The former case is representative of low-delay CM applications, and the latter
of high-delay CM applications.

Figure 7.5 shows the scheduling and I/O costs as a percentage of total CPU time for split-
level scheduling. Increasing the number of VASs increases the scheduling and I/O overhead,
since a VAS switch is incurred. This increase is less significant for workahead applications, than
for low-delay applications. For the latter, kernel-to-user interactions (including expensive preemp-
tive VAS switches) are more frequent (Section 7.3.3).
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Figure 7.5. Varying the humber of VASs.

This figure shows the effect of varying the number of VASs on scheduling and I/O cost for SLS.
The cost increases with the number of VASSs; the increase is more significant if each VAS has a
low-delay process.

This result has implications for distributed CM application structure. To reduce overhead, a
single system should have only one or two low-delay applications running; however, multiple
high-delay applications may run efficiently on the same workstation.

7.3.6. Varying workahead policy

The DWS policy does not specify how workahead processes are scheduled. This final
experiment compares two different policies for split-level scheduling workahead processes. They
are:

. Globally Earliest-deadline. Workahead processes are scheduled on a globally earliest-
deadline basis. This policy attempts to reduce the probability of synchronous user-kernel
interactions for processes that can work ahead.

. Earliest-deadline in VAS: As long as there are runnable LWPs in a VAS, this policy
schedules them earliest-deadline first. A VAS switch is incurred only if a process in some
other VAS becomes critical or if there are no more runnable workahead processes in the
same VAS.

The workload for this experiment consists of a total of eight workahead LWPs each handling
a 50 messages/s CM stream. Each process has a 10 message |/O buffer limit, a 200 ms delay
bound and a 0.9 ms message processing time.
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Figure 7.6. Varying workahead policy.

This figure shows the scheduling costs for SLS for two different workahead policies. The earliest-
deadline within VAS poilicy, in which the scheduler avoids a VAS switch as much as possible, con-
sistently outperforms the globally earliest-deadline policy.

Figure 7.6 plots the scheduling cost for the two policies against the number of VASs (if there
is only 1 VAS, the two policies have identical cost). This shows that the globally earliest-deadline
policy is consistently more expensive than the earliest-deadline within VAS policy.

Thus, the choice of workload policy may have an effect on the performance of SLS. The
results indicate that a “greedy” approach to workahead (trying to do as much work in the same
VAS as possible) can halve the scheduling cost.
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Chapter 8
RELATED WORK

This chapter reviews related work in efficient process scheduling and stream communication
mechanisms and describes other work on OS support for integrated CM. It then places this work
in the context of recent trends in OS research.

8.1. Efficient Process Scheduling

Two-level process scheduling is not a new idea [SaB75]. However, its performance implica-
tions have only been recently investigated. Such investigation has focused on efficient multipro-
cessor operating system support for user-level management of parallelism. SLS is related to
three approaches in this area; Psyche's [SLM90] first-class user LWPs, the XERO OS's threads
package, and scheduler activations.

In Psyche, ULSs schedule LWPs on kernel-supported threads. The kernel delivers user-
interrupts to notify the ULS of events that affect LWPs in the user VAS, such as blocking cross-
domain invocations [MSL91]. Unlike SLS, kernel threads are time-sliced on physical processors.
To avoid undesirable interactions between thread scheduling and LWP scheduling, the kernel
warns the ULS of impending thread preemption; a ULS can use this warning to avoid acquiring
spin locks, for instance. User/kernel shared memory is used to efficiently request timer user-
interrupts, to specify a stack on which user-interrupts are to be delivered, and for user-interrupt
masking. .

User-level LWPs in XERO {IKN91] are managed in a similar manner. User/kernel shared
memory is used by the ULS to regulate kernel action when a thread blocks or is preempted. The
kernel delivers user-interrupts when a thread returns from preemption. When a thread blocks, the
degree of parallelism in the user program may be reduced; in such a case, the kernel creates
another thread in user space. If an LWP is spin-waiting on a lock held by a suspended thread, it
detects this condition from shared memory (which contains the execution state of threads) and
then suspends itself.

In scheduler activations [ABL91], the kernel vectors to the ULS every event (e.g., thread
preemption, thread blocking) that affects LWP scheduling. A scheduler activation is an execution
context for an event vectored from kernel to user VAS. The ULS uses this execution context to
modify LWP data structures, to execute LWPs and so on. The ULS also informs the kernel of
changes in the degree of parallelism in its address space. Scheduler activations do not use
user/kemel shared memory for communicating scheduling information.

In each of these approaches, the kemel and the ULS scheduling policies are independent.
As a result, the approaches cannot correctly prioritize LWPs across threads that may be running
in different address spaces but contending for the same processor. They also cannot exploit
policy-specific information (e.g., LWP priorities) to reduce user-kernel interactions.

Symunix 1l [ELS88] aiso uses user/kemel shared memory for masking interrupts and
preemption. In Symunix I, parallel applications are implemented as a collection of UNIX
processes communicating through shared memory. Processes use virtual preemption masking
while holding short-duration busy-waiting locks and virtual signal masking while updating shared
memory. Unlike virtual user-interrupt masking, virtual signal masking requires a new system call
to handle pending signals after unmasking interrupts.

FORMULA [AnK91] uses virtual signal masking to implement short critical sections. Heuser
[HeuS0] describes a mechanism similar to virtual preemption masking for avoiding thread
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preemption during short critical sections.

The Synthesis system [PM88] adopts a different approach to reduce the overhead of
user/kemel interactions for thread scheduling. This approach uses kernel code synthesis to gen-
erate specialized kernel routines for thread context switches. Context switch costs are reduced by
saving only part of the context (e.g. floating point state is not saved if the process does not per-
form floating-point computations) and by efficiently traversing process queues (a process per-
forms direct handoff to the next process in the run queue).

8.2. Efficient Stream Communication

Shared memory is used in DEMOS [BHM77] and in VM/370 [Att79] to avoid copying over-
head during data transfer. However, this approach does not reduce control overhead; synchroni-
zation is necessary for each transfer.

MMSs differ from memory-mapped files [RDH80] in a number of ways. An MMS provides
sequential access to possibly non-persistent data. Memory-mapped files provide random access
to persistent objects. A CM stream may be larger than a VAS, and an MMS need not contain the
entire CM stream; since CM streams are accessed sequentially, a small circular buffer suffices.
Since data may be non-persistent, MMS avoid page faults for accessing data, instead relying on
explicit producer/consumer synchronization. Also, since access is sequential, data is “released”
explicitly and page replacement algorithms are not needed.

Wolf [Wol91] uses a double-buffering technique for KU and UK stream transfers. After each
buffer is processed, a user/kemnel interaction is necessary. This approach may be inefficient for
low end-to-end delay CM streams.

Bershad et al. [BAL91] describe a user-level communication mechanism for RPCs. When a
client LWP makes an RPC, the ULS switches to another LWP in the same task. The RPC is
added to a message queue shared pairwise between the application VAS and the server VAS.
On a shared memory multiprocessor, a server LWP may be running on another processor; it
accesses this message queue directly, services the request and returns a reply to another shared
queue. Client/server synchronization is only necessary when the message queue becomes
empty or full. If the message queue is full, for instance, the server does not have enough process-
ing power to handle the requests; the client then donates a processor to the server. The shared
queue is similar to a UU-type MMS (Chapter 5); in the latter, processor donation is determined
completely by the deadlines associated with messages in the MMS.

The stream /O model in Synthesis [MaP89] provides an alternate approach to etficient
stream communication. Kernel code synthesis reduces the cost of system calls to transter data.
Producer/consumer synchronization overhead is reduced by using optimistic synchronization
techniques.

8.3. OS Suppott for CM

The CPU scheduling approach in Synthesis [MaP90] represents an alternative to
deadline/workahead scheduling. The Synthesis model is based on rate-control feedback.
Processes make no calls to indicate their temporal progress; instead, the kernel adjusts time-slice
quanta based on queue lengths. This approach is well-suited to some situations (e.g., audio DSP
with little slack CPU time). In general, end-to-end rate-control feedback (Section 2.3.1.3) may be
more appropriate for integrated CM.

Nakajima et al. [NYM91] describe extensions to Mach for integrated CM. Asynchronous
event notifications are preemptively scheduled earliest-deadiine first. This mechanism supports
development of user-level device drivers for CM devices. The performance implications of these
mechanisms for CM applications is not discussed.

Wolf [Wol91] describes a runtime environment for CM communication on the AlX operating
system. Threads running in kernel space perform protocol processing of CM data received over
the network. The CM stream is subsequently transferred to user space using the mechanism
described in Section 8.2. User-level processing of CM data takes place in signal context. This
avoids synchronization between user and kernel processes. Relative prioritization between
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different signal handlers is not discussed.

8.4. Related Trends in Operating Systems

Our work is related to several directions (such as migration of OS kernel functionality to the
user-level, asynchronous communication, and efficient local data transfer) of current OS research.

Modern operating systems such as Amoeba [MRT90], Chorus [RAA], and Mach shift func-
tionality from kernel to user level to improve software structure. In contrast, this work shifts func-
tionality to user level to increase performance.

Most existing operating systems use request/reply communication; examples include UNIX-
type system calls, RPC, and object invocation. This paradigm is not well-suited to continuous
media (more generally, it may not be well-suited to future distributed systems in which speed-ot-
light detays dominate throughput limits). MMSs provide efficient local asynchronous communica-
tion. Example of related work include the asynchronous RPC proposed by Gifford [GiG88] and
the dataflow model of Synthesis [PM88].

in UNIX-type systems, /O and IPC performance is limited by the overhead of data copying.
Systems such as Mach, DASH and Topaz have attacked this problem using techniques such as
VM remapping and shared memory [RTY88,ScB90, TzA91]. The MMS mechanism is comple-
mentary to this work; it attacks the overhead of control rather than data movement.
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Chapter 9
CONCLUDING REMARKS

This chapter concludes the dissertation. Section 9.1 lists its major contributions and Section
9.2 summarizes the major results. Finally, Section 9.3 discusses directions for future work in this
area.

9.1. Thesis Contributions

The following are the contributions of this dissertation to research on operating systems sup-
port for integrated continuous media applications. ‘

. The recognition that policies and mechanisms in general-purpose OSs may be non-optimal
for integrated CM.

. The design and implementation of split-level scheduling (SLS), a new scheduler implemen-
tation technique that combines the advantages of kernel-implemented threads and user-
level LWPs. '

. The design and implementation of memory-mapped streams (MMS), a new class of
mechanisms for asynchronous stream transfer between user and user or user and kernel
VASs.

. The evaluation of SLS and MMS performance. Compared with conventional approaches,
these mechanisms can reduce scheduling and message transfer overhead for some CM
tasks by up to a factor of four.

The next section elaborates on these contributions, highlighting the major resuits of this disserta-
tion.

9.2. Summary of Results

General-purpose operating systems incorporate design principles (fairness-oriented
scheduling, request-reply communication, reliable data delivery) that are contrary to the require-
ments of CM processing and stream communication. This motivates the reexamination of policies
and mechanisms in these OSs.

CPU scheduling policies in general-purpose operating systems may use fast response, high
throughput and fairness as the criteria for scheduling processes. These criteria may be contrary
to the delay requirements of CM tasks. Deadline/workahead scheduling is appropriate for CM
because it incorporates timeliness (in the form of process deadlines) as a criterion.

Some CM tasks perform frequent scheduling and message transters. With conventional
approaches, these tasks may incur significant scheduling and message transfer overhead
(between 15% and 25% of total CPU). This overhead is partly due to user/kernel interactions
(e.g., system calls and asynchronous events).

SLS divides the functionality of scheduling LWPs between a per VAS user-level scheduler
and a single kernel-ievel scheduler. In such a two-level scheduler, the two parts exchange
scheduling information. When a piece of information need not be exchanged synchronously, it is
passed through shared memory, thereby avoiding user/kemel interactions.

In MMSs, a region of memory shared between producer and consumer indicates the loca-
tion of the data to be transferred. Shared memory is also used for producer/consumer synchroni-
zation (producer waiting for consumer to read data or consumer waiting for producer to generate



data). These techniques reduce or eliminate user/kernel interactions for message transfers.
When combined with SLS, MMSs can further reduce user/kernel interactions for message
transfers.

Split-level scheduling is most effective when switches between LWPs within a VAS are more
frequent than switches between VASs. Memory-mapped streams are most effective when a VAS
contains many LWPs, some of which may work ahead. These properties are satisfied by CM
workloads with only one or two tasks containing low-delay processes (e.g., an ACME server task
or a mixer task mixing data from a live participant). To best exploit these mechanisms, only one
or two tasks with low-delay processes should run on a workstation. CM playback and record
applications have only high-delay processes; hence compute servers and file servers may run
multiple applications of this type and still benefit from these mechanisms.

These mechanisms are applicable for purposes other than CM. Process control applications
(e.g., [AIL8B]) have scheduling requirements similar to those of CM. Spilit-level scheduling could
be used with a time-slicing policy for a situation where a VAS contains both interactive and back-
ground processes. Memory-mapped streams could be used for access to a sequential disk file or
a network stream connection. More generally, the mechanisms may be useful in any situation
where the rates of I/Q and scheduling operations, and the costs of user/kernel interactions, are
high.

A simple example can be devised to show that, on the current generation of uniprocessor
architectures, SLS and MMS may actually enable applications like distributed music rehearsal.
For instance, suppose a music rehearsal application requires an end-to-end delay of 15 ms. it is
not inconceivable that a process handling a stream of this application may need an end-to-end
delay bound of (say) 3 ms. By appropriately choosing the kind of computation on the stream, we
can show that, while kernel threads and user-level LWPs cannot satisfy this bound, split-level
scheduling (and memory-mapped streams) can.

This argument may not hold when processor speeds increase. However, our hypothesis
(Chapter 3) would still be valid. In fact, current trends in processor architecture point to a four-fold
or greater reduction in scheduling and message transfer costs with SLS and MMS. Both these
mechanisms strive to reduce or eliminate user/kernel interactions, and current frends are increas-
ing the relative cost of these interactions. Architecture designers want to improve application per-
formance; with memory access times not improving proportionally with processor speeds, they
achieve their goal by increasing register file sizes and cache sizes and thereby exploiting applica-
tion program locality. However, these methods increase the work to be done during a user/kernel
interaction.

9.3. Future Work

All OS processing of CM data must also be scheduled to meet the real-time requirements of
integrated CM applications. One obstacle to this goal is unbounded priority inversion: processing
of an earlier deadline CM message can be delayed by the processing of a later deadline CM mes-
sage or by other activity. This can happen in a number of ways. In UNIX, the kernel is non-
preemptible, and a long-running system call (e.g., fork ()) can delay the handling of CM mes-
sages. Again, a process in A may lock a resource which a process in A may need. Finally, a
software interrupt may be handling a CM message when a message with a higher priority arrives.
Solutions to these problems exist ([Fur91], [SRL90], [ADH91]). Further work is needed to imple-
ment these solutions on general-purpose OSs.

Future research could also examine shared memory multiprocessor operating system sup-
port-for integr~ted CM. Such research would first design a multiprocessor CPU scheduling policy
which incorporates timeliness and allows workahead. SLS and MMS are directly applicable to
shared memory multiprocessor systems. Future work would need to design appropriate con-
currency control mechanisms for multiprocessor implementations of SLS and MMS; the assump-
tions made in Chapter 6 do not hold for shared memory multiprocessors.

With SLS LWPs, inadvertent or malicious faults in a CM task can cause LWPs in other tasks
to miss their deadlines. inadvertent runaway faults (e.g., a LWP setting the preemption mask)
may be detected by setting “watchdog” timers. However, detecting malicious or inadvertent
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transient (i.e., not runaway) faults is hard; due to lack of adequate knowledge of user-level pro-
cessing, the kernel cannot verify the correctness of deadlines advertised by the ULS. Future work
is needed for efficient mechanisms for fault detection and policies for fault containment.

Future work can investigate the tradeoffs in the design of the data part of MMSs (Section
5.3.1). Given copying and virtual memory remapping costs for different message sizes, such work
would determine the optimal structure of the data pan for different situations (network input, dev-
ice input or output etc.). This study would also influence protocol and device driver implementa-
tions.

Future work could devise techniques to allow applications to accurately estimate their worst
case processing requirements. With the CM-resource model’'s approach to reserving CPU capa-
city, CPU utilization can be higher if these estimates are as tight as possible.
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