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Abstract

We survey general techniques and open problems in numerical linear algebra on

parallel architectures. We �rst discuss basic principles of parallel processing, describing

the costs of basic operations on parallel machines, including general principles for con-

structing e�cient algorithms. We illustrate these principles using current architectures

and software systems, and by showing how one would implement matrix multiplication.

Then, we present direct and iterative algorithms for solving linear systems of equations,

linear least squares problems, the symmetric eigenvalue problem, the nonsymmetric

eigenvalue problem, the singular value decomposition, and generalizations of these to

two matrices. We consider dense, band and sparse matrices.
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1 Introduction

Accurate and e�cient algorithms for many problems in numerical linear algebra have existed
for years on conventional serial machines, and there are many portable software libraries
that implement them e�ciently [53, 58, 81, 185]. One reason for this profusion of successful
software is the simplicity of the cost model: the execution time of an algorithm is roughly
proportional to the number of oating point operations it performs. This simple fact makes
it relatively easy to design e�cient and portable algorithms. In particular, one need not
worry about the location of the operands in memory, nor the order in which the operations
are performed. That we can use this approximation is a consequence of the progress from
drum memories to semiconductor cache memories, software to hardware oating point, as-
sembly language to optimizing compilers, and so on. Programmers of current serial machines
can ignore many details earlier programmers could ignore only at the risk of signi�cantly
slower programs.

With modern parallel computers we have come full circle and again need to worry
about details of data transfer time between memory and processors, and which numerical
operations are most e�cient. Innovation is very rapid, with new hardware architectures and
software models being proposed and implemented constantly. Currently one must immerse
oneself in the multitudinous and often ephemeral details of these systems in order to write
reasonably e�cient programs. Perhaps not surprisingly, a number of techniques for dealing
with data transfer in blocked fashion in the 1960s are being rediscovered and reused [18].

Our �rst goal is to enunciate two simple principles for identifying the important strengths
and weaknesses of parallel programming systems (both hardware and software): locality and
regularity of operation. We do this in section 2. Only by understanding how a particular
parallel system embodies these principles can one design a good parallel algorithm for it;
we illustrate this in section 3 using matrix multiplication.1

Besides matrix multiplication, we discuss parallel numerical algorithms for linear equa-
tion solving, least squares problems, symmetric and nonsymmetric eigenvalue problems,
and the singular value decomposition. We organize this material with dense and banded
linear equation solving in section 4, least squares problems in section 5, eigenvalue and
singular value problems in section 6, direct methods for sparse linear systems in section 7,
iterative methods for linear systems in section 8, and iterative methods for eigenproblems in
section 9. We restrict ourselves to general techniques, rather than techniques like multigrid
and domain decomposition which are specialized for particular application areas.

We emphasize algorithms that are scalable, i.e. remain e�cient as they are run on larger
problems and larger machines. As problems and machines grow, it is desirable to avoid
algorithm redesign. As we will see, we will sometimes pay a price for this scalability. For
example, though many parallel algorithms are parallel versions of their serial counterparts
with nearly identical roundo� and stability properties, others are rather less stable, and
would not be the algorithm of choice on a serial machine.

Any survey of such a busy �eld is necessarily a snapshot reecting some of the authors'
biases. Other recent surveys include [56, 77], the latter of which includes a bibliography of
over 2000 entries.

1This discussion will not entirely prepare the reader to write good programs on any particular machine,
since many machine speci�c details will remain.

4



P1 P2 � � � Pn

Network

M1 M2 � � � Mn

Figure 1: Diagram of a parallel computer (P = processor, M = memory)

2 Features of Parallel Systems

2.1 General Principles

A large number of di�erent parallel computers [96], languages (see [214] and the references
therein), and software tools have recently been built or proposed. Though the details of
these systems vary widely, there are two basic issues they must deal with, and these will
guide us in understanding how to design and analyze parallel algorithms. These issues are
locality and regularity of computation.

Locality refers to the proximity of the arithmetic and storage components of computers.
Computers store data in memories, which are physically separated from the computational
units that perform useful arithmetic or logical functions. The time it takes to move the
data from the memory to the arithmetic unit can far exceed the time to perform arithmetic
unless the memory is immediately proximate to the arithmetic unit; such memory is usually
called the register �le or cache. There are good electrical and economic reasons that not all
memory can consist of registers or cache. Therefore all machines, even the simplest PCs,
have memory hierarchies of fast, small, expensive memory like registers, then slower, larger
and cheaper main memory, and �nally down to disk or other peripheral storage. Parallel
computers have even more levels, possibly including local memory as well as remote memory,
which serves as the local memory for other processors (see �gure 1). Useful arithmetic or
logical work can occur only on data stored at the top of the memory hierarchy, and data
must be moved from the lower, slower levels in the hierarchy to the top level to participate
in computation. Therefore, much of algorithm design involves deciding where and when to
store or fetch data in order to minimize this movement. The action of processor i storing or
fetching data in memory j in �gure 1 is called communication. Depending on the machine,
this may be done automatically by the hardware whenever the program refers to nonlocal
data, or it may require explicit sending and/or receiving of messages on the part of the
programmer. Communication among processors occurs over a network.

A special kind of communication worth distinguishing is synchronization, where two
or more processors attempt to have their processing reach a commonly agreed on stage.
This requires an exchange of messages as well, perhaps quite short ones, and so quali�es as
communication.

A very simple model for the time it takes to move n data items from one location to
another is � + � � n, where 0 � �; �. One way to describe � is the start up time of the
operation; another term for this is latency. The incremental time per data item moved is �;
its reciprocal is called bandwidth. Typically 0 < � � �, i.e., it takes a relatively long time
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to start up an operation, after which data items arrive at a higher rate of speed. This cost
model, which we will see again later, reects the pipeline implementation of the hardware:
the pipeline takes a while to �ll up, after which data arrives at a high rate.

The constants � and � depend on the parts of the memory between which transfer
occurs. Transfer between higher levels in the hierarchy may be orders of magnitude faster
than those between lower levels (for example, cache{memory versus memory{disk transfer).
Since individual memory levels are themselves built of smaller pieces, and may be shared
among di�erent parts of the machine, the values of � and � may strongly depend on the
location of the data being moved.

Regularity of computation means that the operations parallel machines perform fastest
tend to have simple, regular patterns, and e�ciency demands that computations be decom-
posed into repeated applications of these patterns. These regular operations include not
only arithmetic and logical operations but communication as well. Designing algorithms
that use a very high fraction of these regular operations is, in addition to maintaining local-
ity, one of the major challenges of parallel algorithm design. The simplest and most widely
applicable cost models for these regular operations is again �+� �n, and for the same reason
as before: pipelines are ubiquitous.

Amdahl's Law quanti�es the importance of using the most e�cient parallel operations
of the machine. Suppose a computation has a fraction 0 < p < 1 of its operations which
can be e�ectively parallelized, while the remaining fraction s = 1� p cannot be. Then with
n processors, the most we can decrease the run time is from s + p = 1 to s + p=n, for a
speed up of 1=(s+ p=n) � 1=s; thus the serial fraction s limits the speed up, no matter how
many parallel processors n we have. Amdahl's Law suggests that only large problems can
be e�ectively parallelized, since for the problems we consider p grows and s shrinks as the
problem size grows.

2.2 Examples

We illustrate the principles of regularity and locality with examples of current machines
and software systems.

A sequence of machine instructions without a branch instruction is called a basic block.
Many processors have pipelined execution units that are optimized to execute basic blocks;
since there are no branches, the machine can have several instructions in partial stages of
completion without worrying that a branch will require \backing out" and restoring an
earlier state. So in this case, regularity of computation means code without branches. An
algorithmic implication of this is loop unrolling, where the body of a loop like

for i = 1 : n
ai = ai + b � ci

is replicated 4 times (say) yielding

for i = 1 : n step 4
ai = ai + b � ci
ai+1 = ai+1 + b � ci+1
ai+2 = ai+2 + b � ci+2
ai+3 = ai+3 + b � ci+3
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In this case the basic block is the loop body, since the end of the loop is a conditional branch
back to the beginning. Unrolling makes the basic block four times longer.

One might expect compilers to perform simple optimizations like this automatically,
but many do not, and seemingly small changes in loop bodies can make this di�cult to
automate (imagine adding the line \if i > 1, di = ei" to the loop body, which could
instead be done in a separate loop from i = 2 to n without the \if"). For a survey of
such compiler optimization techniques see [214]. A hardware approach to this problem is
optimistic execution, where the hardware guesses the way the branch will go and computes
ahead under that assumption. The hardware retains enough information to undo what it
did a few steps later if it �nds out it decided incorrectly. But in the case of branches back
to the beginning of loops, it will almost always make the right decision. This technique
could make unrolling and similar low-level optimizations unnecessary in the future.

A similar example of regularity is vector pipelining, where a single instruction initiates
a pipelined execution of a single operation on a sequence of data items; componentwise
addition or multiplications of two arrays or \vectors" is the most common example, and is
available on machines from Convex, Cray, Fujitsu, Hitachi, NEC, and others. Programmers
of such machines prefer the unrolled version of the above loop, and expect the compiler to
convert it into, say, a single machine instruction to multiply the vector c by the scalar b,
and then add it to vector a.

An even higher level of such regularity is so-called SIMD parallelism, which stands
for Single Instruction Multiple Data, where each processor in �gure 1 performs the same
operation in lockstep on data in its local memory. (SIMD stands in contrast to MIMD or
Multiple Instruction Multiple Data, where each processor in �gure 1 works independently.)
The CM-2 and MasPar depend on this type of operation for their speed. A sample loop
easily handled by this paradigm is

for i = 1 : n
if ci > 0 then

ai = bi +
p
ci

else
ai = bi � di

endif

A hidden requirement for the above examples to be truly regular is that no exceptions
arise during execution. An exception might be oating point overow or address out of
range. The latter error necessitates an interruption of execution; there is no reasonable
way to proceed. On the other hand, there are reasonable ways to continue computing
past oating point exceptions, such as in�nity arithmetic as de�ned by the IEEE oating
point arithmetic standard [4]. This increases the regularity of computations by eliminating
branches. IEEE arithmetic is implemented on almost all microprocessors, which are often
building blocks for larger parallel machines. Whether or not we can make sense out of
results that have overowed or undergone other exceptions depends on the application; it
is true often enough to be quite useful.

Now we give some examples of regularity in communication. The CM-2 [193] may be
thought of in di�erent ways; for us it is convenient to think of it as 2048 processors connected
in an 11-dimensional hypercube, with one processor and its memory at each of the 2048
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corners of the cube, and a physical connection along each edge connecting each corner to its
11 nearest neighbors. All 11� 2048 such connections may be used simultaneously, provided
only one message is sent on each connection.

We illustrate such a regular communication by showing how to compute
fi =

PN
j=1 F (xi; xj), i.e. an N -body interaction where fi is the force on body i, F (xi; xj)

is the force on body i due to body j, and xi and xj are the positions of bodies i and j
respectively [28]. Consider implementing this on a d-dimensional hypercube, and suppose
N = d2d for simplicity. We need to de�ne the Gray code G(d) � (Gd;0; :::; Gd;2d�1), which is

a permutation of the d-bit integers from 0 to 2d�1, ordered so that adjacent codes Gd;k and
Gd;k+1 di�er only in one bit. G(d) may be de�ned recursively by taking the d� 1-bit num-
bers G(d�1), followed by the same numbers in reverse order and incremented by 2d�1. For
example, G(2) = f00; 01; 11; 10g and G(3) = f000; 001; 011; 010; 110; 111; 101; 100g. Now
imagining our hypercube as a unit hypercube in d-space with one corner at the origin and
lying in the positive orthant, number each processor by the d-bit string whose bits are the
coordinates of its position in d-space. Since the physically nearest neighbors of a proces-
sor lie one edge away, their coordinates or processor numbers di�er in only one bit. Since
Gd;k and Gd;k+1 di�er in only one bit, the Gray code sequence describes a path among the
processors in a minimal number of steps visiting each one only once; such a path is called

Hamiltonian. Now de�ne the shifted Gray code G(s)(d) = fG(s)
d;0; :::; G

(s)
d;2d�1

g where G(s)
d;k is

gotten by left-circular shifting Gd;k by s bits. Each G
(s)(d) also de�nes a Hamiltonian path,

and all may be traversed simultaneously without using any edges simultaneously. Let g
(s)
d;k

denote the bit position in which G
(s)
d;k and G

(s)
d;k+1 di�er.

Now we de�ne the program each processor will execute in order to compute fi for the
bodies it owns. Number the bodies xk;l, where 0 � l � 2d � 1 is the processor number
and 0 � k � d � 1; so processor l owns x0;l through xd�1;l. Then processor l executes
the following code, where \forall" means each iteration may be done in parallel (a sample
execution for d = 2 is shown in �gure 2).

Algorithm 1: N-body force computation on a hypercube

for k = 0 : d� 1, tmpk = xk;l
for k = 0 : d� 1, fk;l = 0 /* fk;l will accumulate force on xk;l */
for m = 0 : 2d � 1

forall k = 0 : d� 1, swap tmpk with processor in direction g
(k)
d;m

for k = 0 : d� 1
for k0 = 0 : d� 1

fk;l = fk;l + F (xk;l; tmpk0)

In section 3 we will show how to use Gray codes to implement matrix multiplication
e�ciently. Each processor of the CM-2 can also send data to any other processor, not just its
immediate neighbors, with the network of physical connections forwarding a message along
to the intended receiver like a network of post-o�ces. Depending on the communication
pattern this may lead to congestion along certain connections and so be much slower than
the special communication pattern discussed above.
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Figure 2: Force Computation on 2-D Hypercube

x0;0;x1;0 x0;2;x1;2 x0;1 ;x1;2 x0;3;x1;0 x0;3 ;x1;3 x0;1;x1;1 x0;2;x1;1 x0;0;x1;3

x0;1;x1;1 x0;3;x1;3 x0;0 ;x1;3 x0;2;x1;1 x0;2 ;x1;2 x0;0;x1;0 x0;3;x1;0 x0;1;x1;2

Initial data After m = 0 After m = 1 After m = 2

Here are some other useful regular communication patterns. A broadcast sends data from
a single source to all other processors. A spread may be described as partitioned broadcast,
where the processors are partitioned and a separate broadcast done within each partition.
For example, in a square array of processors we might want to broadcast a data item in
the �rst column to all other processors in its row; thus we partition the processor array
into rows and do a broadcast to all the others in the partition from the �rst column. This
operation might be useful in Gaussian elimination, where we need to subtract multiples of
one matrix column from the other matrix columns. Another operation is a reduction, where
data distributed over the machine is reduced to a single datum by applying an associative
operation like addition, multiplication, maximum, logical or, and so on; this operation is
naturally supported by processors connected in a tree, with information being reduced as
it passes from the leaves to the root of the tree.

A more general operation than reduction is the scan or parallel pre�x operation. Let
x0; :::xn be data items, and � any associative operation. Then the scan of these n data items
yields another n data items de�ned by y0 = x0, y1 = x0 �x1, ... , yi = x0 �x1 � � �xi; thus yi is
the reduction of x0 through xi. An attraction of this operation is its ease of implementation
using a simple tree of processors. We illustrate in �gure 3 for n = 15, or f in hexadecimal
notation; in the �gure we abbreviate xi by i and xi � � �xj by i : j. Each row indicates the
values held by the processors; after the �rst row only the data that change are indicated.
Each updated entry combines its current value with one a �xed distance to its left.

Parallel pre�x may be used, for example, to solve linear recurrence relations zi+1 =Pn
j=0 ai;jzi�j + bi; this can be converted into simple parallel operations on vectors plus

parallel pre�x operations where the associative operators are n by n matrix multiplication
and addition. For example, to evaluate zi+1 = aizi + bi, i � 0, z0 = 0, we do the following
operations:

Algorithm 2: Linear recurrence evaluation using Parallel Pre�x

Compute pi = a0 � � �ai using parallel pre�x multiplication
Compute �i = bi=pi in parallel
Compute si = �0 + � � �+ �i�1 using parallel pre�x addition
Compute zi = si � pi�1 in parallel

Similarly, we can use parallel pre�x to evaluate certain rational recurrences zi+1 =
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Figure 3: Parallel Pre�x on 16 Data Items
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(aizi+bi)=(cizi+di) by writing zi = ui=vi and reducing to a linear recurrence for ui and vi:"
ui+1
vi+1

#
=

"
ai bi
ci di

#
�
"
ui
vi

#
(1)

We may ask more generally about evaluating the scalar rational recurrence zi+1 = fi(zi)
in parallel. Let d be the maximum of the degrees of the numerators and denominators
of the rational functions fi. Then Kung [123] has shown that zi can be evaluated faster
than linear time (i.e. zi can be evaluated in o(i) steps) if and only if d � 1; in this case
the problem reduces to 2� 2 matrix multiplication parallel pre�x in (1). Interesting linear
algebra problems that can be cast in this way include tridiagonal Gaussian elimination,
solving bidiagonal linear systems of equations, Sturm sequence evaluation for the symmetric
tridiagonal eigenproblem, and the bidiagonal dqds algorithm for singular values [159]; we
discuss some of these below. The numerical stability of these procedures remains open,
although it is often good in practice [192].

We now turn to the principle of locality. Since this is an issue many algorithms do not
take into account, a number of so-called shared memory machines have been designed in
which the hardware attempts to make all memory locations look equidistant from every
processor, so that old algorithms will continue to work well. Examples include machines
from Convex, Cray, Fujitsu, Hitachi, NEC, and others [96]. The memories of these machines
are organized into some number, say b, of memory banks, so that memory address m resides
in memory bank m mod b. A memory bank is designed so that it takes b time steps to
read/write a data item after it is asked to do so; until then it is busy and cannot do
anything else. Suppose one wished to read or write a sequence of n + 1 memory locations
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i, i+ s, i+ 2s, ... , i+ ns; these will then refer to memory banks i mod b, i+ s mod b, ... ,
i+ ns mod b. If s = 1, so that we refer to consecutive memory locations, or if s and b are
relatively prime, b consecutive memory references will refer to b di�erent memory banks,
and so after a wait of b steps the memory will deliver a result once per time step; this is
the fastest it can operate. If instead gcd(s; b) = g > 1, then only b=g memory banks will
be referenced, and speed of access will slow down by a factor of g. For example, suppose
we store a matrix by columns, and the number of rows is s. Then reading a column of the
matrix will be gcd(s; b) times faster than reading a row of the matrix, since consecutive row
elements have memory addresses di�ering by s; this clearly impacts the design of matrix
algorithms. Sometimes these machines also support indirect addressing or gather/scatter,
where the addresses can be arbitrary rather than forming an arithmetic sequence, although
it may be signi�cantly slower.

Another hardware approach to making memory access appear regular are virtual shared
memory machines like the Kendall Square Research machine and Stanford's Dash. Once
the memory becomes large enough, it will necessarily be implemented as a large number of
separate banks. These machines have a hierarchy of caches and directories of pointers to
caches to enable the hardware to locate quickly and fetch or store a nonlocal piece of data
requested by the user; the hope is that the cache will successfully anticipate enough of the
user's needs to keep them local. To the extent that these machines ful�ll their promise,
they will make parallel programming much easier; as of this writing it is too early to judge
their success.2

For machines on which the programmer must explicitly send or receive messages to
move data, there are two issues to consider in designing e�cient algorithms. The �rst
issue is the relative cost of communication and computation. Recall that a simple model
of communicating n data items is � + n�; let  be the average cost of a oating point
operation. If � � �, which is not uncommon, then sending n small messages will cost
n(�+ �), which can exceed by nearly a factor n the cost of a single message �+ n�. This
forces us to design algorithms that do infrequent communications of large messages, which
is not always convenient. If ��  or � � , which are both common, then we will also be
motivated to design algorithms that communicate as infrequently as possible. An algorithm
which communicates infrequently is said to exhibit coarse grained parallelism, and otherwise
�ne grained parallelism. Again this is sometimes an inconvenient constraint, and makes it
hard to write programs that run e�ciently on more than one machine.

The second issue to consider when sending messages is the semantic power of the mes-
sages [211]. The most restrictive possibility is that the processor executing \send" and
the processor executing \receive" must synchronize, and so block until the transaction is
completed. So for example, if one processor sends long before the other receives, it must
wait, even if it could have continued to do useful work. At the least restrictive the sending
processor e�ectively interrupts the receiving processors and executes an arbitrary subrou-
tine on the contents of the message, without any action by the receiving program; this
minimizes time wasted waiting, but places a burden on the user program to do its own
synchronization.

2There is a good reason to hope for the success of these machines: parallel machines will not be widely
used if they are hard to program, and maintaining locality explicitly is harder than having the hardware do
it automatically.
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To illustrate these points, imagine an algorithm that recursively subdivides problems
into smaller ones, but where the subproblems can be of widely varying complexity that
cannot be predicted ahead of time. Even if we divide the initial set of problems evenly
among our processors, the subproblems generated by each processor may be very di�erent.
A simple example is the use of Sturm sequences to compute the eigenvalues of a symmetric
tridiagonal matrix. Here the problem is to �nd the eigenvalues in a given interval, and the
subproblems correspond to subintervals. The time to solve a subproblem depends not only
on the number but also on the distribution of eigenvalues in the subinterval, which is not
known until the problem is solved. In the worst case, all processors but one �nish quickly
and remain idle while the other one does most of the work. Here it makes sense to do
dynamic load balancing, which means redistributing to idle processors those subproblems
needing further processing. This clearly requires communication, and may or may not be
e�ective if communication is too expensive.

2.3 Important Tradeo�s

We are accustomed to certain tradeo�s in algorithm design, such as time versus space: an
algorithm that is constrained to use less space may have to go more slowly than one not
so constrained. There are certain other tradeo�s that arise in parallel programming. They
arise because of the constraints of regularity of computation and locality to which we should
adhere. For example, load balancing to increase parallelism requires communication, which
may be expensive. Limiting oneself to the regular operations the hardware may perform
e�ciently may result in wasted e�ort or use of less sophisticated algorithms; we will illustrate
this later in the case of the nonsymmetric eigenvalue problem.

Another interesting tradeo� is parallelism versus numerical stability. For some problems
the most highly parallel algorithms known are less numerically stable than the conventional
sequential algorithms. This is true for various kinds of linear systems and eigenvalue prob-
lems. We will point these out as they arise. Some of these tradeo�s can be mitigated by
better oating point arithmetic [48]. Others can be dealt with by using the following simple
paradigm:

1. Solve the problem using a fast method, provided it is rarely unstable.

2. Quickly and reliably con�rm or deny the accuracy of the computed solution. With
high probability, the answer just (quickly) computed is accurate enough.

3. Otherwise, fall back on a slower but more reliable algorithm.

For example, the most reliable algorithm for the dense nonsymmetric eigenvalue problem
is Hessenberg reduction and QR iteration, but this is hard to parallelize. Other routines
are faster but occasionally unreliable. These routines can be combined according to the
paradigm to yield a guaranteed stable algorithm which is fast with high probability (see
section 6.5).
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Table 1: Memory references and Operation counts for the BLAS
Operation De�nition Floating point Memory q

operations references

Saxpy yi = �xi + yi, i = 1; :::; n 2n 3n+ 1 2=3

Matrix-vector mult yi =
Pn

j=1Aijxj + yi 2n2 n2 + 3n 3

Matrix-matrix mult Cij =
Pn

k=1AikBkj + Cij 2n3 4n2 n=2

3 Matrix Multiplication

Matrix multiplication is a very regular computation that is basic to linear algebra and
lends itself well to parallel implementation. Indeed, since it is the easiest nontrivial matrix
operation to implement e�ciently, an e�ective approach to designing other parallel matrix
algorithms is to decompose them into a sequence of matrix multiplications; we discuss this
in detail in later sections.

One might well ask why matrix multiplication is more basic than matrix-vector multi-
plication or adding a scalar times one vector to another vector. Matrix multiplication can
obviously be decomposed into these simpler operations, and they also seem to o�er a great
deal of parallelism. The reason is that matrix multiplication o�ers much more opportunity
to exploit locality than these simpler operations. An informal justi�cation for this is as
follows.

Table 1 gives the number of oating point operations (ops), the minimum number
of memory references, and their ratio q for the three Basic Linear Algebra Subroutines,
or BLAS: scalar-times-vector-plus-vector (or saxpy for short, for �x + y), matrix-vector
multiplication, and matrix-matrix multiplication (for simplicity only the highest order term
in n is given for q). When the data are too large to �t in the top of the memory hierarchy, we
wish to perform the most ops per memory reference to minimize data movement; q gives an
upper bound on this ratio for any implementation. We see that only matrix multiplication
o�ers us an opportunity to make this ratio large.

This table reects a hierarchy of operations: Operations like saxpy operate on vectors
and o�er the worst q values; these are called Level 1 BLAS [126] and include inner products
and other simple operations. Operations like matrix-vector multiplication operate on ma-
trices and vectors, and o�er slightly better q values; these are called Level 2 BLAS [55], and
include solving triangular systems of equations and rank-1 updates of matrices (A + xyT ,
x and y column vectors). Operations like matrix-matrix multiplication operate on pairs
of matrices, and o�er the best q values; these are called Level 3 BLAS [54], and include
solving triangular systems of equations with many right hand sides. These operations have
been standardized, and many high performance computers have highly optimized imple-
mentations of these that are useful for building more complicated algorithms [2]; this is the
subject of several succeeding sections.
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3.1 Matrix multiplication on a shared memory machine

Suppose we have two levels of memory hierarchy, fast and slow, where the slow memory is
large enough to contain the n�n matrices A, B and C, but the fast memory contains only
M words where n < M � n2. Further assume the data are reused optimally (which may
be optimistic if the decisions are made automatically by hardware).

The simplest algorithm one might try consists of three nested loops:

Algorithm 3: Unblocked Matrix Multiplication

for i = 1 : n
for j = 1 : n

for k = 1 : n
Cij = Cij + Aik �Bkj

We count the number of references to the slow memory as follows: n3 for reading B n

times, n2 for reading A one row at a time and keeping it in fast memory until it is no longer
needed, and 2n2 for reading one entry of C at a time, keeping it in fast memory until it is
completely computed. This comes to n3 + 3n2 for a q of about 2, which is no better than
the Level 2 BLAS and far from the maximum possible n=2. If M � n, so that we cannot
keep a full row of A in fast memory, q further decreases to 1, since the algorithm reduces to
a sequence of inner products, which are Level 1 BLAS. For every permutation of the three
loops on i, j and k, one gets another algorithm with q about the same.

The next possibility is dividing B and C into column blocks, and computing C block by
block. We use the notation B(i : j; k : l) to mean the submatrix in rows i through j and
columns k through l. We partition B = [B(1); B(2); :::; B(N)] where each B(i) is n � n=N ,
and similarly for C. Our column block algorithm is then

Algorithm 4: Column-blocked Matrix Multiplication

for j = 1 : N
for k = 1 : n

C(j) = C(j) + A(1 : n; k) �B(j)(k; 1 : n=N)

Assuming M � 2n2=N + n, so that fast memory can accommodate B(j), C(j) and one
column of A simultaneously, our memory reference count is as follows: 2n2 for reading and
writing each block of C once, n2 for reading each block of B once, and Nn2 for reading A
N times. This yields q �M=n, so that M needs to grow with n to keep q large.

Finally, we consider rectangular blocking, where A is broken into an N �N block matrix
with n=N � n=N blocks A(ij), and B and C are similarly partitioned. The algorithm
becomes

Algorithm 5: Rectangular-blocked Matrix Multiplication

for i = 1 : N
for j = 1 : N

for k = 1; N

C(ij) = C(ij) +A(ik) �B(kj)
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Assuming M � 3(n=N)2 so that one block each from A, B and C �t in memory si-
multaneously, our memory reference count is as follows: 2n2 for reading and writing each
block of C once, Nn2 for reading A N times, and Nn2 for reading B N times. This yields
q � pM=3, which is much better than the previous algorithms.

In [107] an analysis of this problem leading to an upper bound near
p
M is given, so we

cannot expect to improve much on this algorithm for square matrices. On the other hand,
this brief analysis ignores a number of practical issues:

� high level language constructs do not yet support block layout of matrices as described
here (but see the discussion in section 3.3);

� if the fast memory consists of vector registers and has vector operations supporting
saxpy but not inner products, a column blocked code may be superior;

� a real code will have to deal with nonsquare matrices, for which the optimal block
sizes may not be square [80].

Another possibility is Strassen's method [1], which multiplies matrices recursively by
dividing them into 2� 2 block matrices, and multiplying the subblocks using 7 matrix mul-
tiplications (recursively) and 15 matrix additions of half the size; this leads to an asymp-
totic complexity of nlog2 7 � n2:81 instead of n3. The value of this algorithm is not just
this asymptotic complexity but its reduction of the problem to smaller subproblems which
eventually �t in fast memory; once the subproblems �t in fast memory standard matrix
multiplication may be used. This approach has led to speedups on relatively large matrices
on some machines [15]. A drawback is the need for signi�cant workspace, and somewhat
lower numerical stability, although it is adequate for many purposes [49, 104].

Given the complexity of optimizing the implementation of matrix multiplication, we
cannot expect all other matrix algorithms to be equally optimized on all machines, at least
not in a time users are willing to wait. Indeed, since architectures change rather quickly,
we prefer to do as little machine speci�c optimization as possible. Therefore, our shared
memory algorithms in later sections assume only that highly optimized BLAS are available,
and build on top of them.

3.2 Matrix multiplication on a distributed memory machine

In this section it will be convenient to number matrix entries (or subblocks) and processors
from 0 to n� 1 instead of 1 to n.

A dominant issue is data layout, or how the matrices are partitioned across the machine.
This will determine both the amount of parallelism and the cost of communication. We begin
by showing how to best implement matrix multiplication without regard to the layout's
suitability for other matrix operations, and return to the question of layouts in the next
section.

The �rst algorithm is due to Cannon [30] and is well suited for computers laid out in
a square N � N mesh, i.e. where each processor communicates most e�ciently with the
four other processors immediately north, east, south and west of itself. We also assume
the processors at the edges of the grid are directly connected to the processors on the
opposite edge; this makes the topology that of a 2-dimensional torus. Let A be partitioned
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Figure 4: Cannon's algorithm for N = 3

A(00) A(01) A(02) A(01) A(02) A(00) A(02) A(00) A(01)

A(11) A(12) A(10) A(12) A(10) A(11) A(10) A(11) A(12)

A(22) A(20) A(21) A(20) A(21) A(22) A(21) A(22) A(20)

B(00) B(11) B(22) B(10) B(21) B(02) B(20) B(01) B(12)

B(10) B(21) B(02) B(20) B(01) B(12) B(00) B(11) B(22)

B(20) B(01) B(12) B(00) B(11) B(22) B(10) B(21) B(02)

A, B after skewing A, B after shift k = 1 A, B after shift k = 2

into square subblocks A(ij) as above, with A(ij) stored on processor (i; j). Let B and C

be partitioned similarly. The algorithm is given below. It is easily seen that whenever
A(ik) and B(kj) \meet" in processor i; j, they are multiplied and accumulated in C(ij); the
products for the di�erent C(ij) are accumulated in di�erent orders.

Algorithm 6: Cannon's matrix multiplication algorithm

forall i = 0 : N � 1

Left circular shift row i by i, so that A(i;j) is assigned A(i;(j+i)modN).
forall j = 0 : N � 1

Upward circular shift column j by j, so that B(i;j) is assigned B((j+i)modN;j).
for k = 1 : N

forall i = 0 : N � 1, forall j = 0 : N � 1

C(ij) = C(ij) + A(ij) �B(ij)

Left circular shift each row of A by 1, so A(i;j) is assigned A(i;(j+1)modN).

Upward circular shift each column of B by 1, so B(i;j) is assigned B((i+1)modN;j).

Figure 4 illustrates the functioning of this algorithm for N = 3. A variation of this
algorithm suitable for machines that are e�cient at spreading subblocks across rows (or
down columns) is to do this instead of the preshifting and rotation of A (or B) [75].

This algorithm is easily adapted to a hypercube. The simplest way is to embed a grid
(or 2-D torus) in a hypercube, i.e. map the processors in a grid to the processors in a
hypercube, and the connections in a grid to a subset of the connections in a hypercube
[105, 115]. Suppose the hypercube is d dimensional, so the 2d processors are labeled by d

bit numbers. We embed a 2n � 2m grid in this hypercube (where m + n = d) by mapping
processor (i1; i2) in the grid to processor Gn;i12

m + Gm;i2 in the hypercube; i.e. we just
concatenate the n bits of Gn;i1 and m bits of Gm;i2 . Each row (column) of the grid thus
occupies an m- (n-) dimensional subcube of the original hypercube, with nearest neighbors
in the grid mapped to nearest neighbors in the hypercube [106]. We illustrate for a 4�4 grid
in �gure 5. This approach easily extends to multidimensional arrays of size 2m1 �� � �� 2mr ,
where

Pr
i=1mi is at most the dimension of the hypercube.
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Figure 5: Embedding a 4� 4 grid in a 4-D hypercube (numbers are processor numbers in
hypercube)

0000 0001 0011 0010

0100 0101 0111 0110

1100 1101 1111 1110

1000 1001 1011 1010

This approach (which is useful for more than matrix multiplication) uses only a subset
of the connections in a hypercube, which makes the initial skewing operations slower than
they need be: if we can move only to nearest neighbors, each skewing operation takes N�1
communication steps, as many as in the computational loop. We may use all the wires of
the hypercube to reduce the skewing to log2N operations. In the following algorithm, 

denotes the bitwise exclusive-or operator. We assume the 2n� 2n grid of data is embedded
in the hypercube so that A(i;j) is stored in processor i � 2n + j [44]:

Algorithm 7: Dekel's matrix multiplication algorithm

for k = 1 : n
Let jk = (kth bit of j) � 2k
Let ik = (kth bit of i) � 2k
forall i = 0 : 2n � 1, forall j = 0 : 2n � 1

Swap A(i;j
ik) and A(i;j)

Swap B(jk
i;j) to B(i;j)

for k = 1 : 2n

forall i = 0 : 2n � 1, forall j = 0 : 2n � 1

C(ij) = C(ij) + A(ij) �B(ij)

Swap A(i;j
gd;k) and A(i;j)

Swap B(i
gd;k ;j) and B(i;j)

Finally, we may speed this up further [106, 117] provided the A(i;j) blocks are large
enough, by using the same algorithm as for force calculations in section 2. If the blocks are
n by n (so A and B are n2n � n2n), then the algorithm becomes
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Table 2: Cost of matrix multiplication on a hypercube
Algorithm Message Data Sending Floating Point

Startups Steps Steps

Cannon (6) 2(2n � 1) 2n2(2n � 1) 2n32n

Dekel (7) n + 2n � 1 n3 + n2(2n � 1) 2n32n

Ho, Johnsson & Edelman (8) n + 2n � 1 n3 + n(2n � 1) 2n32n

Algorithm 8: Ho, Johnsson, and Edelman's matrix multiplication algorithm

for k = 1 : n
Let jk = (kth bit of j) � 2k
Let ik = (kth bit of i) � 2k
forall i = 0 : 2n � 1, forall j = 0 : 2n � 1

Swap A(i;j
ik) and A(i;j)

Swap B(jk
i;j) to B(i;j)

for k = 1 : 2n

forall i = 0 : 2n � 1, forall j = 0 : 2n � 1

C(ij) = C(ij) + A(ij) �B(ij)

forall l = 0 : n� 1

Swap A
(i;j
g

(l)
d;k

)

l and A
(i;j)
l (A

(ij)
l is the l-th row of A(ij))

Swap B
(i
g(l)

d;k
;j)

l and B
(i;j)
l (B

(ij)
l is the l-th column of B(ij))

Algorithms 6, 7 and 8 all perform the same number of oating point operations in
parallel. Table 2 compares the number of communication steps, assuming matrices are
n2n � n2n, swapping a datum along a single wire is one step, and the motions of A and B

that can occur in parallel do occur in parallel. Note that for large enough n the number of
oating point steps overwhelms the number of communication steps, so the e�ciency gets
better.

In this section we have shown how to optimize matrix multiplication in a series of steps
tuning it ever more highly for a particular computer architecture, until essentially every
communication link and oating point unit is utilized. Our algorithms are scalable, in that
they continue to run e�ciently on larger machines and larger problems, with communication
costs becoming ever smaller with respect to computation. If the architecture permitted
us to overlap communication and computation, we could pipeline the algorithm to mask
communication cost further.

On the other hand, let us ask what we lose by optimizing so heavily for one architecture.
Our high performance depends on the matrices having just the right dimensions, being laid
out just right in memory, and leaving them in a scrambled �nal position (although a modest
amount of extra communication could repair this). It is unreasonable to expect users, who
want to do several computations of which this is but one, to satisfy all these requirements.
Therefore a practical algorithm will have to deal with many irregularities, and be quite
complicated. Our ability to do this extreme optimization is limited to a few simple and
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regular problems like matrix multiplication on a hypercube, as well as other heavily used
kernels like the BLAS, which have indeed been highly optimized for many architectures.
We do not expect equal success for more complicated algorithms on all architectures of
interest, at least within a reasonable amount of time3. Also, the algorithm is highly tuned
to a particular interconnection network topology, which may require redesign for another
machine (in view of this, a number of recent machines try to make communication time
appear as independent of topology as possible, so the user sees essentially a completely
connected topology).

3.3 Data layouts on distributed memory machines

Choosing a data layout may be described as choosing a mapping f(i; j) from location (i; j)
in a matrix to the processor on which it is stored. As discussed above, we hope to design f

so that it permits highly parallel implementation of a variety of matrix algorithms, limits
communication cost as much as possible, and retains these attractive properties as we scale
to larger matrices and larger machines. For example, the algorithms of the last section
use the map f(i; j) = (bi=rc; bj=rc), where we subscript matrices starting at 0, number
processors by their coordinates in a grid (also starting at (0,0)), and store an r � r matrix
on each processor.

There is an emerging consensus about data layouts for distributed memory machines.
This is being implemented in several programming languages [74, 103], that will be available
to programmers in the near future. We describe these layouts here.

High Performance Fortran (HPF) [103] permits the user to de�ne a virtual array of
processors, align actual data structures like matrices and arrays with this virtual array
(and so with respect to each other), and then to layout the virtual processor array on an
actual machine. We describe the layout functions f o�ered for this last step. The range of
f is a rectangular array of processors numbered from (0; 0) up to (p1 � 1; p2� 1). Then all
f can be parameterized by two integer parameters b1 and b2 as follows:

fb1;b2(i; j) = (b i
b1
c mod p1; b j

b2
c mod p2)

Suppose the matrix A (or virtual processor array) is m � n. Then choosing b2 = n yields
a column of processors, each containing some number of complete rows of A. Choosing
b1 = m yields a row of processors. Choosing b1 = m=p1 and b2 = n=p2 yields a blocked

layout, where A is broken into b1�b2 subblocks, each of which resides on a single processor.
This is the simplest 2-D layout one could imagine (we used it in the last section), and by
having large subblocks stored on each processor it makes using the BLAS on each processor
attractive. However, for straightforward matrix algorithms that process the matrix from
left to right (including Gaussian elimination, QR decomposition, reduction to tridiagonal
form, and so on), the leftmost processors will become idle early in the computation and
make load balance poor. Choosing b1 = b2 = 1 is called scatter mapping (or wrapped or
cyclic mapping), and optimizes load balance, since the matrix entries stored on a single
processor are as nearly as possible uniformly distributed throughout the matrix. On the

3The matrix multiplication subroutine in the CM-2 Scienti�c Subroutine Library took approximately 10
person-years of e�ort [116].
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Figure 6: Block layout of a 16� 16 matrix on a 4� 4 processor grid

0,0 0,0 0,0 0,0 0,1 0,1 0,1 0,1 0,2 0,2 0,2 0,2 0,3 0,3 0,3 0,3
0,0 0,0 0,0 0,0 0,1 0,1 0,1 0,1 0,2 0,2 0,2 0,2 0,3 0,3 0,3 0,3
0,0 0,0 0,0 0,0 0,1 0,1 0,1 0,1 0,2 0,2 0,2 0,2 0,3 0,3 0,3 0,3

0,0 0,0 0,0 0,0 0,1 0,1 0,1 0,1 0,2 0,2 0,2 0,2 0,3 0,3 0,3 0,3
1,0 1,0 1,0 1,0 1,1 1,1 1,1 1,1 1,2 1,2 1,2 1,2 1,3 1,3 1,3 1,3
1,0 1,0 1,0 1,0 1,1 1,1 1,1 1,1 1,2 1,2 1,2 1,2 1,3 1,3 1,3 1,3

1,0 1,0 1,0 1,0 1,1 1,1 1,1 1,1 1,2 1,2 1,2 1,2 1,3 1,3 1,3 1,3
1,0 1,0 1,0 1,0 1,1 1,1 1,1 1,1 1,2 1,2 1,2 1,2 1,3 1,3 1,3 1,3
2,0 2,0 2,0 2,0 2,1 2,1 2,1 2,1 2,2 2,2 2,2 2,2 2,3 2,3 2,3 2,3

2,0 2,0 2,0 2,0 2,1 2,1 2,1 2,1 2,2 2,2 2,2 2,2 2,3 2,3 2,3 2,3
2,0 2,0 2,0 2,0 2,1 2,1 2,1 2,1 2,2 2,2 2,2 2,2 2,3 2,3 2,3 2,3
2,0 2,0 2,0 2,0 2,1 2,1 2,1 2,1 2,2 2,2 2,2 2,2 2,3 2,3 2,3 2,3

3,0 3,0 3,0 3,0 3,1 3,1 3,1 3,1 3,2 3,2 3,2 3,2 3,3 3,3 3,3 3,3
3,0 3,0 3,0 3,0 3,1 3,1 3,1 3,1 3,2 3,2 3,2 3,2 3,3 3,3 3,3 3,3
3,0 3,0 3,0 3,0 3,1 3,1 3,1 3,1 3,2 3,2 3,2 3,2 3,3 3,3 3,3 3,3

3,0 3,0 3,0 3,0 3,1 3,1 3,1 3,1 3,2 3,2 3,2 3,2 3,3 3,3 3,3 3,3

other hand, this appears to inhibit the use of the BLAS locally in each processor, since the
data owned by a processor are not contiguous from the point of view of the matrix. Finally,
by choosing 1 < b1 < m=p1 and 1 < b2 < n=p2, we get a block-scatter mapping which trades
o� load balance and applicability of the BLAS. These layouts are shown in �gures 6 through
8 for a 16� 16 matrix laid out on a 4� 4 processor grid; each array entry is labeled by the
number of the processor that stores it.

By being a little more exible about the algorithms we implement, we can mitigate the
apparent tradeo� between load balance and applicability of BLAS. For example, the layout
of A in �gure 7 is identical to the layout in �gure 6 of PTAP , where P is a permutation
matrix. This shows that running the algorithms of the last section to multiply A times B
in scatter layout is the same as multiplying PAPT and PBPT to get PABPT , which is the
desired product. Indeed, as long as 1) A and B are both distributed over a square array of
processors, 2) the permutations of the columns of A and rows of B are identical, and 3) for
all i the number of columns of A stored by processor column i is the same as the number
of rows of B stored by processor row i, the algorithms of the last section will correctly
multiply A and B. The distribution of the product will be determined by the distribution
of the rows of A and columns of B. We will see a similar phenomenon for other distributed
memory algorithms below.

A di�erent approach is to write algorithms that work independent of the location of the
data, and rely on the underlying language or run-time system to optimize the necessary
communications. This makes code easier to write, but puts a large burden on compiler and
run-time system writers [196].
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Figure 7: Scatter layout of a 16� 16 matrix on a 4� 4 processor grid

0,0 0,1 0,2 0,3 0,0 0,1 0,2 0,3 0,0 0,1 0,2 0,3 0,0 0,1 0,2 0,3
1,0 1,1 1,2 1,3 1,0 1,1 1,2 1,3 1,0 1,1 1,2 1,3 1,0 1,1 1,2 1,3

2,0 2,1 2,2 2,3 2,0 2,1 2,2 2,3 2,0 2,1 2,2 2,3 2,0 2,1 2,2 2,3
3,0 3,1 3,2 3,3 3,0 3,1 3,2 3,3 3,0 3,1 3,2 3,3 3,0 3,1 3,2 3,3
0,0 0,1 0,2 0,3 0,0 0,1 0,2 0,3 0,0 0,1 0,2 0,3 0,0 0,1 0,2 0,3

1,0 1,1 1,2 1,3 1,0 1,1 1,2 1,3 1,0 1,1 1,2 1,3 1,0 1,1 1,2 1,3
2,0 2,1 2,2 2,3 2,0 2,1 2,2 2,3 2,0 2,1 2,2 2,3 2,0 2,1 2,2 2,3
3,0 3,1 3,2 3,3 3,0 3,1 3,2 3,3 3,0 3,1 3,2 3,3 3,0 3,1 3,2 3,3

0,0 0,1 0,2 0,3 0,0 0,1 0,2 0,3 0,0 0,1 0,2 0,3 0,0 0,1 0,2 0,3
1,0 1,1 1,2 1,3 1,0 1,1 1,2 1,3 1,0 1,1 1,2 1,3 1,0 1,1 1,2 1,3
2,0 2,1 2,2 2,3 2,0 2,1 2,2 2,3 2,0 2,1 2,2 2,3 2,0 2,1 2,2 2,3

3,0 3,1 3,2 3,3 3,0 3,1 3,2 3,3 3,0 3,1 3,2 3,3 3,0 3,1 3,2 3,3
0,0 0,1 0,2 0,3 0,0 0,1 0,2 0,3 0,0 0,1 0,2 0,3 0,0 0,1 0,2 0,3
1,0 1,1 1,2 1,3 1,0 1,1 1,2 1,3 1,0 1,1 1,2 1,3 1,0 1,1 1,2 1,3
2,0 2,1 2,2 2,3 2,0 2,1 2,2 2,3 2,0 2,1 2,2 2,3 2,0 2,1 2,2 2,3

3,0 3,1 3,2 3,3 3,0 3,1 3,2 3,3 3,0 3,1 3,2 3,3 3,0 3,1 3,2 3,3

Figure 8: Block-Scatter layout of a 16 � 16 matrix on a 4 � 4 processor grid with 2 � 2
blocks

0,0 0,0 0,1 0,1 0,2 0,2 0,3 0,3 0,0 0,0 0,1 0,1 0,2 0,2 0,3 0,3

0,0 0,0 0,1 0,1 0,2 0,2 0,3 0,3 0,0 0,0 0,1 0,1 0,2 0,2 0,3 0,3
1,0 1,0 1,1 1,1 1,2 1,2 1,3 1,3 1,0 1,0 1,1 1,1 1,2 1,2 1,3 1,3
1,0 1,0 1,1 1,1 1,2 1,2 1,3 1,3 1,0 1,0 1,1 1,1 1,2 1,2 1,3 1,3

2,0 2,0 2,1 2,1 2,2 2,2 2,3 2,3 2,0 2,0 2,1 2,1 2,2 2,2 2,3 2,3
2,0 2,0 2,1 2,1 2,2 2,2 2,3 2,3 2,0 2,0 2,1 2,1 2,2 2,2 2,3 2,3
3,0 3,0 3,1 3,1 3,2 3,2 3,3 3,3 3,0 3,0 3,1 3,1 3,2 3,2 3,3 3,3

3,0 3,0 3,1 3,1 3,2 3,2 3,3 3,3 3,0 3,0 3,1 3,1 3,2 3,2 3,3 3,3
0,0 0,0 0,1 0,1 0,2 0,2 0,3 0,3 0,0 0,0 0,1 0,1 0,2 0,2 0,3 0,3
0,0 0,0 0,1 0,1 0,2 0,2 0,3 0,3 0,0 0,0 0,1 0,1 0,2 0,2 0,3 0,3

1,0 1,0 1,1 1,1 1,2 1,2 1,3 1,3 1,0 1,0 1,1 1,1 1,2 1,2 1,3 1,3
1,0 1,0 1,1 1,1 1,2 1,2 1,3 1,3 1,0 1,0 1,1 1,1 1,2 1,2 1,3 1,3
2,0 2,0 2,1 2,1 2,2 2,2 2,3 2,3 2,0 2,0 2,1 2,1 2,2 2,2 2,3 2,3

2,0 2,0 2,1 2,1 2,2 2,2 2,3 2,3 2,0 2,0 2,1 2,1 2,2 2,2 2,3 2,3
3,0 3,0 3,1 3,1 3,2 3,2 3,3 3,3 3,0 3,0 3,1 3,1 3,2 3,2 3,3 3,3
3,0 3,0 3,1 3,1 3,2 3,2 3,3 3,3 3,0 3,0 3,1 3,1 3,2 3,2 3,3 3,3
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4 Systems of Linear Equations

We discuss both dense and band matrices, on shared and distributed memory machines. We
begin with dense matrices and shared memory, showing how the standard algorithm can be
reformulated as a block algorithm, calling the Level 2 and 3 BLAS in its innermost loops.
The distributed memory versions will be similar, with the main issue being laying out the
data to maximize load balance and minimize communication. We also present some highly
parallel, but numerically unstable, algorithms to illustrate the tradeo� between stability
and parallelism. We conclude with some algorithms for band matrices.

4.1 Gaussian elimination on a shared memory machine

To solve Ax = b, we �rst use Gaussian elimination to factor the nonsingular matrix A as
PA = LU , where L is lower triangular, U is upper triangular, and P is a permutation
matrix. Then we solve the triangular systems Ly = Pb and Ux = y for the solution x.
In this section we concentrate on factoring PA = LU , which has the dominant number of
oating point operations, 2n3=3 + O(n2). Pivoting is required for numerical stability, and
we use the standard partial pivoting scheme [95]; this means L has unit diagonal and other
entries bounded in magnitude by one. The simplest version of the algorithm involves adding
multiples of one row of A to others to zero out subdiagonal entries, and overwriting A with
L and U :

Algorithm 9: Row oriented Gaussian elimination (kij-LU decomposition)

for k = 1 : n � 1
f choose l so jAlkj = maxk�i�n jAikj, swap rows l and k of A g
for i = k + 1 : n

Aik = Aik=Akk

for j = k + 1 : n
Aij = Aij �Aik �Akj

There is obvious parallelism in the innermost loop, since each Aij can be updated
independently. If A is stored by column, as is the case in Fortran, then since the inner loop
combines rows of A, it accesses memory entries (at least) n locations apart. As described in
section 2, this does not respect locality. Algorithm 9 is also called kij�LU decomposition,
because of the nesting order of its loops. All the rest of 3! permutations of i, j and k lead
to valid algorithms, some of which access columns of A in the innermost loop. Algorithm
10 is one of these, and is used in the LINPACK routine sgefa [53]:
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Algorithm 10: Column oriented Gaussian elimination (kji-LU decomposition)

for k = 1 : n � 1
f choose l so jAlkj = maxk�i�n jAikj, swap Alk and Akk g
for i = k + 1 : n

Aik = Aik=Akk

for j = k + 1 : n
f swap Alj and Akj g
for i = k + 1 : n

Aij = Aij �Aik �Akj

The inner loop of Algorithm 10 can be performed by a single call to the Level 1 BLAS
operation saxpy. To achieve higher performance, we modify this code �rst to use the Level
2 and then the Level 3 BLAS in its innermost loops. Again, 3! versions of these algorithms
are possible, but we just describe the ones used in the LAPACK library [2]. To make the
use of BLAS clear, we use matrix/vector operations instead of loops:

Algorithm 11: Gaussian elimination using Level 2 BLAS

for k = 1 : n � 1
f choose l so jAlkj = maxk�i�n jAikj, swap rows l and k of A g
A(k + 1 : n; k) = A(k + 1 : n; k)=Akk

A(k + 1 : n; k+ 1 : n) = A(k + 1 : n; k + 1 : n)�A(k + 1 : n; k) �A(k; k + 1 : n)

The parallelism in the inner loop is evident: most work is performed is a single rank-1
update of the trailing n� k � n� k submatrix A(k + 1 : n; k + 1 : n), where each entry of
A(k + 1 : n; k + 1 : n) can be updated in parallel. Other permutations of the nested loops
lead to di�erent algorithms, which depend on the BLAS for matrix-vector multiplication
and solving a triangular system instead of rank-1 updating [3, 167]; which is faster depends
on the relative speed of these on each machine.

To convert to the Level 3 BLAS involves column blocking A = [A(1); :::; A(m)] into
n � nb blocks, where nb is the block size and m = n=nb. The optimal choice of nb depends
on the memory hierarchy of the machine in question: our approach is to compute the LU
decomposition of each n � nb subblock of A using Algorithm 11 in the fast memory, and
then use Level 3 BLAS to update the rest of the matrix:

Algorithm 12: Gaussian elimination using Level 3 BLAS (we assume nb divides n)

for l = 1 : m
k = (l � 1) � nb + 1

Use Algorithm 11 to factorize PA(l) = LU in place
Apply P to prior columns A(1 : n; 1 : k � 1) and later columns A(1 : n; k + nb : n)
Update block row of U : replace A(k : k + nb � 1; k+ nb : n)

by the solution X of TX = A(k : k + nb � 1; k + nb : n), where
T is the lower triangular matrix in A(k : k + nb � 1; k : k + nb � 1)

A(k + nb : n; k + nb : n) = A(k + nb : n; k + nb : n)�
A(k + nb : n; k : k + nb � 1) �A(k : k + nb � 1; k+ nb : n)
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Most of the work is performed in the last two lines, solving a triangular system with
many right-hand sides, and matrix multiplication. Other similar algorithms may be derived
by conformally partitioning L, U and A, and equating partitions in A = LU . Algorithms
11 and 12 are available as subroutines sgetf2 and sgetrf in LAPACK [2], respectively.

We illustrate these points with the slightly di�erent example of Cholesky decomposition,
which uses a very similar algorithm: The following table shows the speeds in megaops of
the various BLAS and algorithms on 1 and 8 processors of a Cray YMP:

1 PE 8 PEs

Maximum speed 330 2640
LINPACK (Cholesky with BLAS 1), n = 500 72 72
Matrix-vector multiplication 311 2285
Matrix-matrix multiplication 312 2285
Triangular solve (one right hand side) 272 584
Triangular solve (many right hand sides) 309 2398
LAPACK (Cholesky with BLAS 3), n = 500 290 1414
LAPACK (Cholesky with BLAS 3), n = 1000 301 2115

4.2 Gaussian elimination on a distributed memory machine

As described above, layout strongly inuences the algorithm. We show the algorithm for a
block scatter mapping in both dimensions, and then discuss how other layouts may be han-
dled. The algorithm is essentially the same as Algorithm 12, with communication inserted
as necessary. The block size nb equals b2, which determines the layout in the horizontal
direction.

Communication is required in Algorithm 11 to �nd the pivot entry at each step and
swap rows if necessary; then each processor can perform the scaling and rank-1 updates
independently. The pivot search is a reduction operation, as described in section 2. After the
block column is fully factorized, the pivot information must be broadcast so other processors
can permute their own data, as well as permute among di�erent processors.

In Algorithm 12, the nb � nb L matrix stored on the diagonal must be spread rightward
to other processors in the same row, so they can compute their entries of U . Finally, the
processors holding the rest of L below the diagonal must spread their submatrices to the
right, and the processors holding the new entries of U just computed must spread their
submatrices downward, before the �nal rank-nb update in the last line of Algorithm 12 can
take place.

The optimal choice of block sizes b1 and b2 depends on the cost of communication vs.
computation. For example, if the communication required to do pivot search and swapping
of rows is expensive, b1 should be large. The execution time is a function of dimension
n, block sizes b1 and b2, processor counts p1 and p2, and the cost of computation and
communication (from section 2, we know how to model these). Given this function, it may
be minimized as a function of b1, b2, p1 and p2. Some theoretical analyses of this sort for
special cases may be found in [167] and the references therein. See also [60, 64]. As an
example of the performance that can be attained in practice, on an Intel Delta with 512
processors the speed of LU ranged from a little over 1 gigaop for n = 2000 to nearly 12
gigaops for n = 25000.
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Even if the layout is not block-scatter as described so far, essentially the same algorithm
may be used. As described in section 3.3, many possible layouts are related by permutation
matrices. So simply performing the algorithm just described with (optimal) block sizes
b1 and b2 on the matrix A as stored is equivalent to performing the LU decomposition of
P1AP2 where P1 and P2 are permutation matrices. Thus at the cost of keeping track of
these permutations (a possibly nontrivial software issue), a single algorithm su�ces for a
wide variety of layouts.

Finally, we need to solve the triangular systems Ly = b and Ux = y arising from the
LU decomposition. On a shared memory machine, this is accomplished by two calls to the
Level 2 BLAS. Designing such an algorithm on a distributed memory machine is harder,
because the fewer oating point operations performed (O(n2) instead of O(n3)) make it
harder to mask the communication; see [73, 100, 129, 169].

4.3 Clever but impractical parallel algorithms for solving Ax = b

The theoretical literature provides us with a number of apparently fast but ultimately
unattractive algorithms for solving Ax = b. These may be unattractive because they need
many more parallel processors than is reasonable, ignore locality, are numerically unstable,
or any combination of these reasons. We begin with an algorithm for solving n�n triangular
linear systems in O(log2 n) parallel steps. Suppose T is lower triangular with unit diagonal
(the diagonal can be factored out in one parallel step). For each i from 1 to n � 1, let
Ti equal the identity matrix except for column i where it matches T . Then it is simple
to verify T = T1T2 � � �Tn�1 and so T�1 = T�1

n�1 � � �T�1
2 T�1

1 . One can also easily see that
T�1
i equals the identity except for the subdiagonal of column i, where it is the negative

of Ti. Thus it takes no work to compute the T�1
i , and the work involved is to compute

the product T�1
n�1 � � �T�1

1 in log2 n parallel steps using a tree. Each parallel step involves
multiplying n�n matrices (which are initially quite sparse, but �ll up), and so takes about
log2 n parallel substeps, for a total of log22 n. The error analysis of this algorithm [176]
yields an error bound proportional to �(T )3" where �(T ) = kTk � kT�1k is the condition
number and " is machine precision; this is in contrast to the error bound �(T )" for the
usual algorithm. The error bound for the parallel algorithm may be pessimistic | the
worst example we have found has an error growing like �(T )1:5" | but shows that there is
a tradeo� between parallelism and stability. Also, to achieve the maximum speedup O(n3)
processors are required, which is unrealistic for large n.

We can use this algorithm to build an O(log2 n) algorithm for the general problem
Ax = b [38], but this this algorithm is so unstable as to be entirely useless in oating point
(in IEEE double precision oating point, it achieves no precision in inverting 3I , where I
is an identity matrix of size 60 or larger). There are four steps:

1. Compute the powers of A (A2, A3, ... , An�1) by repeated squaring (log2 n matrix
multiplications of log2 n steps each),

2. Compute the traces si = tr(Ai) of the powers in log2 n steps,

3. Solve the Newton identities for the coe�cients ai of the characteristic polynomial; this
is a triangular system of linear equations whose matrix entries and right hand side
are known integers and the si (we can do this in log22 n steps as described above), and
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4. Compute the inverse using Cayley-Hamilton Theorem (in about log2 n steps).

For a survey of other theoretical algorithms, see [21, 119].

4.4 Solving Banded Systems

These problems do not lend themselves as well to the techniques described above, especially
for small bandwidth. The reason is that proportionately less and less parallel work is avail-
able in updating the trailing submatrix, and in the limiting case of tridiagonal matrices, the
parallel algorithm derived as above and the standard serial algorithm are nearly identical.
If the bandwidth is wide enough, however, the techniques of the previous sections still apply
[65, 75].

The problem of solving banded linear systems with a narrow band has been studied by
many authors, see for instance the references in [79, 153]. We will only sketch some of the
main ideas and we will do so for rather simple problems. The reader should keep in mind
that these ideas can easily be generalized for more complicated situations, and many have
appeared in the literature.

Most of the parallel approaches perform more arithmetic operations than standard (se-
quential) Gaussian elimination (typically 2:5 times as many), twisted factorization being
the only exception. In twisted factorization the Gaussian elimination process is carried out
in parallel from both sides. This method was �rst proposed in [11] for tridiagonal systems
Tx = b as a means to compute a speci�ed component of xmore accurately. For a tridiagonal
matrix twisted factorization leads to the following decomposition of T :0
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;

or T = PQ, where we have assumed that no zero diagonal element is created in P or Q.
Such decompositions exist if A is symmetric positive de�nite, or if A is an M -matrix, or

26



when A is diagonally dominant. The twisted factorization and subsequent forward and
back substitutions with P and Q take as many arithmetic operations as the standard fac-
torization, and can be carried out with twofold parallelism by working from both ends of
the matrix simultaneously. For an analysis of this process for tridiagonal systems, see [199].
Twisted factorization can be combined with any of the following techniques, often doubling
the parallelism.

The other techniques we will discuss can all be applied to general banded systems, for
which most were originally proposed, but for ease of exposition we will illustrate them
just with a lower unit bidiagonal system Lx = b. A straight forward parallelization
approach is to eliminate the unknown xi�1 from equation i using equation i� 1, for all i in
parallel. This leads to a new system in which each xi is coupled only with xi�2. Thus, the
original system splits in two independent lower bidiagonal systems of half the size, one for
the odd-numbered unknowns, and one for the even-numbered unknowns. This process can
be repeated recursively for both new systems, leading to an algorithm known as recursive
doubling [191]. In Algorithm 2 (section 2.2) it was presented as a special case of parallel
pre�x. It has been analyzed and generalized for banded systems in [66]. Its signi�cance for
modern parallel computers is limited, which we illustrate with the following examples.

Suppose we perform a single step of recursive doubling. This step can be done in
parallel, but it involves slightly more arithmetic than the serial elimination process for
solving Lx = b. The two resulting lower bidiagonal systems can be solved in parallel. This
implies that on a 2-processor system the time for a single step of recursive doubling will be
slightly more than the time for solving the original system with only one processor. If we
have n processors (where n is the dimension of L), then the elimination step can be done
in very few time steps, and the two resulting systems can be solved in parallel, so that we
have a speedup of about 2. However, this is not very practical, since during most of the
time n � 2 processors are idle, or formulated di�erently, the e�ciency of the processors is
rather low.

If we use n processors to apply this algorithm recursively instead of splitting into just
two systems, we can solve in O(logn) steps, a speedup of O(n= logn), but the e�ciency
decreases like O(1= logn). This is theoretically attractive but ine�cient. Because of the data
movement required, it is unlikely to be fast without system support for this communication
pattern.

A related approach, which avoids the two subsystems, is to eliminate only the odd-
numbered unknowns xi�1 from the even-numbered equations i. Again, this can be done in
parallel, or in vector mode, and it results in a new system in which only the even-numbered
unknowns are coupled. After having solved this reduced system, the odd-numbered un-
knowns can be computed in parallel from the odd-numbered equations. Of course, the
trick can be repeated for the subsystem of half size, and this process is known as cyclic
reduction [124, 101]. Since the amount of serial work is halved in each step by completely
parallel (or vectorizable) operations, this approach has been successfully applied on vector
supercomputers, especially when the vector speed of the machine is signi�cantly larger than
the scalar speed [153, 41, 177]. For distributed memory computers the method requires too
much data movement for the reduced system to be practical.

However, the method is easily generalized to one with more parallelism. Cyclic reduction
can be viewed as an approach in which the given matrix L is written as a lower block
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bidiagonal matrix with 2 � 2-blocks along the diagonal. In the elimination process all
(2; 1) positions in the diagonal blocks are eliminated in parallel. An obvious idea is to
subdivide the matrix into larger blocks, i.e., we write L as a block bidiagonal matrix with k�
k blocks along the diagonal (for simplicity we assume that n is a multiple of k). In practical
cases k is chosen so large that the process is not repeated for the resulting subsystems, as
for cyclic reduction (where k = 2). This approach is referred to as a divide and conquer
approach. For banded triangular systems it was �rst suggested in [31], for tridiagonal
systems it was proposed by Wang [208].

To illustrate, let us apply one parallel elimination step to the lower bidiagonal system
Lx = b to eliminate all subdiagonal elements in all diagonal blocks. This yields a system
~Lx = ~b, where for k = 4 and n = 16 we get

~L =

0
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1
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: (3)

There are two possibilities for the next step. In the original approach [208], the �ll-in in
the subdiagonal blocks is eliminated in parallel, or vector mode, for each subdiagonal block
(note that each subdiagonal block has only one column with nonzero elements). It has been
shown in [204] that this leads to very e�cient vectorized code for machines such as CRAY,
Fujitsu, etc.

For parallel computers, the parallelism in eliminating these subdiagonal blocks is rela-
tively �ne-grained compared with the more coarse-grained parallelism in the �rst step of the
algorithm. Furthermore, on distributed memory machines the data for each subdiagonal
block has to be spread over all processors. In [151] it has been shown that this limits the
performance of the algorithm, the speedup being bounded by the ratio of computational
speed and communication speed. This ratio is often very low [151].

The other approach is to �rst eliminate successively the last nonzero elements in the
subdiagonal blocks ~Lj;j�1. This can be done with a short recurrence of length n=k � 1,
after which all �ll-in can be eliminated in parallel. For the recurrence we need some data
communication between processors. However, for k large enough with respect to n=k, one
can attain speedups close to 2k=5 for this algorithm on a k processor system [203]. For a
generalization of the divide and conquer approach for banded systems, see [146]; the data
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transport aspects for distributed memory machines have been discussed in [151].
There are other variants of the divide and conquer approach, which move the �ll-in into

other columns of the subblocks, or which are more stabile numerically. For example, in [145]
the matrix is split into a block diagonal matrix and a remainder via rank-one updates.

5 Least squares problems

Most algorithms for �nding the x minimizing kAx� bk2 require computing a QR decompo-
sition of A, where Q is orthogonal and R is upper triangular. We will assume A is m� n,
m � n, so that Q is m � n and R is n � n. For simplicity we consider only QR without
pivoting, and mention work incorporating pivoting at the end.

The conventional approach is to premultiply A by a sequence of simple orthogonal
matrices Qi chosen to introduce zeros below the diagonal of A [95]. Eventually A becomes
upper triangular, and equal to R, and the product QN � � �Q1 = Q. One kind of Qi often
used is a Givens rotation, which changes only two rows of A, and introduces a single zero

in one of them; it is the identity in all but two rows and columns, where it is

"
c s
�s c

#
,

with c2 + s2 = 1. A second kind of Qi is a Householder reection, which can change any
number of rows of A, zeroing out all entries but one in the changed rows of one column of
A; a Household reection may be written I � 2uuT , where u is a unit vector with nonzeros
only in the rows to be changed.

5.1 Shared memory algorithms

The basic algorithm to compute a QR decomposition using Householder transformations is
[95]:

Algorithm 13: QR decomposition using Level 2 BLAS

for k = 1 : n � 1
Compute a unit vector uk so that (I � 2uku

T
k )A(k + 1 :m; k) = 0

Update A = A� 2 � uk(uTkA) (= QkA where Qk = I � 2ukuTk )

Computing uk takes O(n�k) ops and is essentially a level 1 BLAS operation. Updating
A is seen to consist of a matrix vector multiplication (wT = uTkA) and a rank-1 update
(A � 2ukw

T ), both level 2 BLAS operations. To convert to level 3 BLAS requires the
observation that one can write Qb � Qb�1 � � �Q1 = I � UTUT where U = [u1; :::; ub] is
m � b, and T is b � b and triangular [179]; for historical reasons this is called a compact
WY transformation. Thus, by analogy with the LU decomposition with column blocking
(Algorithm 12), we may �rst use Algorithm 13 on a block of nb columns of A, form U and T
of the compact WY transformation, and then update the rest of A by forming A�UTUTA,
which consists of 3 matrix-matrix multiplications. This increases the number of oating
point operations by a small amount, and is as stable as the usual algorithm:
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Algorithm 14: QR decomposition using Level 3 BLAS (same notation as Algorithm 12)

for l = 1 : m
k = (l � 1) � nb + 1

Use Algorithm 13 to factorize A(l) = QlRl,
Form matrices Ul and Tl from Ql

Multiply X = UT
l �A(k : m; k + nb : n)

Multiply X = TlX

Multiply and subtract A(k :m; k + nb : n) = A(k : m; k+ nb : n)� UX

Algorithm 14 is available as subroutine sgeqrf from LAPACK [2]. Pivoting complicates
matters slightly. In conventional column pivoting at step k we need to pivot (permute
columns) so the next column of A to be processed has the largest norm in rows k through
m of all remaining columns. This cannot be directly combined with blocking as we have
just described it, and so instead pivoting algorithms which only look among locally stored
columns if possible have been developed [24, 25].

Other shared memory algorithms based on Givens rotations have also been developed
[35, 86, 175], although these do not seem superior on shared memory machines. It is also
possible to use Level 2 and 3 BLAS in the modi�ed Gram-Schmidt algorithm [78].

5.2 Distributed memory algorithms

Just as we could map Algorithm 13 (Gaussian elimination with Level 3 BLAS) to a dis-
tributed memory machine with blocked and/or scattered layout by inserting appropriate
communication, this can also be done for QR with Level 3 BLAS.

An interesting alternative that works with the same data layouts is based on Givens
rotations [35, 164]. We consider just the �rst block column in the block scattered layout,
where each of a subset of the processors owns a set of p r� r subblocks of the block column
evenly distributed over the column. Each processor reduces its own p � r � r submatrix to
upper triangular form, spreading the Givens rotations to the right for other processors to
apply to their own data. This reduces the processor column to p r�r triangles, each owned
by a di�erent processor. Now there needs to be communication among the processors in the
column. Organizing them in a tree, at each node in the tree two processors, each of whom
owns an r � r triangle, share their data to reduce to a single r � r triangle. The requisite
rotations are again spread rightward. So in log2 p of these steps, the �rst column has been
reduced to a single r � r triangle, and the algorithm moves on to the next block column.

Other Givens based algorithm have been proposed, but seem to require more commu-
nication that this one [164].

6 Eigenproblems and the singular value decomposition

6.1 General comments

The standard serial algorithms for computing the eigendecomposition of a symmetric matrix
A, a general matrixB, or the singular value decomposition (SVD) of a general matrix C have
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the same two-phase structure: apply orthogonal transformations to reduce the matrix to a
condensed form, and then apply an iterative algorithm to the condensed form to compute
its eigendecomposition or SVD. For the three problems of this section, the condensed forms
are symmetric tridiagonal form, upper Hessenberg form, and bidiagonal form, respectively.
The motivation is that the iteration requires far fewer ops to apply to the condensed form
than the original dense matrix. We discuss reduction algorithms in section 6.2.

The challenge for parallel computation is that the iteration algorithms for the condensed
forms can be much harder to parallelize than the reductions, since they involve nonlinear,
sometimes scalar recurrences and/or little opportunity to use the BLAS. For the nonsym-
metric eigenproblem, this has led researchers to explore algorithms that are not parallel
versions of serial ones. So far none is as stable as the serial one; this is discussed in sec-
tion 6.5.

For the symmetric eigenproblem and SVD, the reductions take O(n3) ops, but sub-
sequent iterations to �nd just the eigenvalues or singular values take only O(n2) ops;
therefore these iterations have not been bottlenecks on serial machines. But on some par-
allel machines, the reduction algorithms we discuss are so fast that the O(n2) part becomes
a bottleneck for surprisingly large values of n. Therefore, parallelizing the O(n2) part is of
interest; we discuss these problems in section 6.3.

Other approaches to the symmetric eigenproblem and SVD apply to dense matrices
instead of condensed matrices. The best known is Jacobi's method. While attractively
parallelizable, the convergence rate is su�ciently slower than methods based on tridiagonal
and bidiagonal form that it is seldom competitive. On the other hand, Jacobi is sometimes
faster and can be much more accurate than these other methods and so still deserves
attention; see section 6.4. Another method that applies to dense symmetric matrices is
a variation of the spectral divide and conquer method for nonsymmetric matrices, and
discussed in section 6.5.

In summary, reasonably fast and stable parallel algorithms (if not always implementa-
tions) exist for the symmetric eigenvalue problem and SVD. However, no highly parallel
and stable algorithms currently exist for the nonsymmetric problem; this remains an open
problem.

6.2 Reduction to condensed forms

Since the di�erent reductions to condensed forms are so similar, we discuss only reduction to
tridiagonal form; for the others see [59]. At step k we compute a Householder transformation
Qk = I � 2uku

T
k so that column k of QkA is zero below the �rst subdiagonal; these zeros

are unchanged by forming the similarity transformation QkAQ
T
k .
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Algorithm 15: Reduction to tridiagonal form using Level 2 BLAS (same notation as Algo-
rithm 12)

for k = 1 : n � 2
Compute a unit vector uk so that (I � 2uku

T
k )A(k + 2 : n; k) = 0

Update A = (I � 2uku
T
k )A(I � 2uku

T
k ) by computing

wk = 2Auk
k = wT

k uk
vk = wk � kuk
A = A� vku

T
k � ukv

T
k

The major work is updating A = A � vuTk � ukv
T , which is a symmetric rank-2 up-

date, a Level 2 BLAS operation. To incorporate Level 3 BLAS, we emulate Algorithm 14
by reducing a single column-block of A to tridiagonal form, aggregating the Householder
transformations into a few matrices, and then updating via matrix multiply:

Algorithm 16: Reduction to tridiagonal form using Level 3 BLAS (same notation as Algo-
rithm 12)

for l = 1 : m
k = (l � 1) � nb + 1
Use Algorithm 15 to tridiagonalize the �rst nb columns of A(k : n; k : n) as follows:

Do not update all of A at each step, just A(l)

Compute wk = 2Auk as 2(A�Pk�1
q=1(vqu

T
q + uqv

T
q ))uk

Retain U (l) = [u1; :::; uk] and V (l) = [v1; :::; vk]

Update A(k : n; k : n) = A(k : n; k : n)� U (l)V (l)T � V (l)U (l)T

Algorithms 15 and 16 are available from LAPACK [2] as subroutines ssytd2 and ssytrf,
respectively. Hessenberg reduction is sgehrd, and bidiagonal reduction is sgebrd. The
mapping to a distributed memory machine follows as with previous algorithms like QR and
Gaussian elimination [63].

For parallel reduction of a band symmetric matrix to tridiagonal form, see [23, 125].
The initial reduction of a generalized eigenproblem A� �B involves �nding orthogonal

matrices Q and Z such that QAZ is upper Hessenberg and QBZ is triangular. So far
no pro�table way has been found to introduce higher level BLAS into this reduction, in
contrast to the other reductions mentioned above. We return to this problem in section 6.5.

6.3 The symmetric tridiagonal eigenproblem

The basic algorithms to consider are QR iteration, (accelerated) bisection and inverse it-
eration, and divide and conquer. Since the bidiagonal SVD is equivalent to �nding the
nonnegative eigenvalues of a tridiagonal matrix with zero diagonal [50, 95], our comments
apply to that problem as well.

6.3.1 QR Iteration

The classical algorithm is QR iteration, which produces a sequence of orthogonally similar
tridiagonal matrices T = T0, T1, T2, ... converging to diagonal form. The mapping from
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Ti to Ti+1 is usually summarized as 1) computing a shift �i, an approximate eigenvalue, 2)
factoring Ti � �iI = QR, and 3) forming Ti+1 = RQ + �iI . Once full advantage is taken
of the tridiagonal form, this becomes a nonlinear recurrence that processes the entries of
Ti from one end to the other, and amounts to updating T repeatedly by forming PTPT ,
with P a Givens rotation. If the eigenvectors are desired, the P 's are accumulated by
forming PV , where V is initially the identity matrix. As it stands it is not parallelizable,
but by squaring the matrix entries this recurrence can be changed into a recurrence of the
form (1) in section 2.2 (see [122]). The numerical stability of this method is not known,
but available analyses are pessimistic [122]. Furthermore, QR iterations must be done
sequentially, with usually just one eigenvalue converging at a time. If one only wants
eigenvalues, this method does not appear to be competitive with the alternatives below.
When computing eigenvectors, however, it is easy to parallelize: Each processor redundantly
runs the entire algorithm updating PTPT , but only computes n=p of the columns of PV ,
where p is the number of processors and n is the dimension of T . At the end each processor
has n=p components of each eigenvector. Since computing the eigenvectors takesO(n3) ops
but updating T just O(n2), we succeed in parallelizing the majority of the computational
work.

6.3.2 Bisection and Inverse Iteration

One of the two most promising methods is (accelerated) bisection for the eigenvalues, fol-
lowed by inverse iteration for the eigenvectors [109, 139]. If T has diagonal entries a1; :::; an
and o�diagonals b1; :::; bn�1, then we can count the number of eigenvalues of T less than �

as follows [95]:

Algorithm 17: Counting eigenvalues using Sturm Sequences(1)

count = 0, d = 1, b0 = 0
for i = 1 : n

d = ai � � � b2i�1=d
if d < 0, count = count + 1

This nonlinear recurrence may be transformed into a two-term linear recurrence in
pi = d1d2 � � �di:

Algorithm 18: Counting eigenvalues using Sturm Sequences(2)

count = 0, p0 = 1, p�1 = 0, b0 = 0
for i = 1 : n

pi = (ai � �)pi�1 � b2i�1pi�2
if pipi�1 < 0, count = count + 1

In practice, these algorithms need to protected against over/underow; Algorithm 17 is
much easier to protect [118]. Using either of these algorithms, we can count the number of
eigenvalues in an interval. The traditional approach is to bisect each interval, say [�1; �2],
by running Algorithm 17 or 18 at � = (�1 + �2)=2. By continually subdividing intervals
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containing eigenvalues, we can compute eigenvalue bounds as tight as we like (and round-
o� permits). Convergence of the intervals can be accelerated by using a zero-�nder such
as zeroin [27, 139], Newton's method, Rayleigh quotient iteration [17, 134], Laguerre's
method, or other methods [130], to choose � as an approximate zero of dn or pn, i.e. an
approximate eigenvalue of T .

There is parallelism both within Algorithm 18 and by running Algorithm 17 or 18
simultaneously for many values of �. The �rst kind of parallelism uses parallel pre�x as
described in (1) in section 2.2, and so care needs to be taken to avoid over/underow. The
numerical stability of the serial implementations of Algorithms 17 [118] and 18 [212] is very
good, but that of the parallel pre�x algorithm is unknown, although numerical experiments
are promising [192]. This requires good support for parallel pre�x operations, and is not as
easy to parallelize as simply having each processor re�ne di�erent sets of intervals containing
di�erent eigenvalues [47].

Within a single processor one can also run Algorithm 17 or 18 for many di�erent � by
pipelining or vectorizing [183]. These many � could come from disjoint intervals or from
dividing a single interval into more than 2 small ones (multisection); the latter approach
appears to be e�cient only when a few eigenvalues are desired, so that there are not many
disjoint intervals over which to parallelize [183]. Achieving good speedup requires load
balancing, and this is not always possible to do by statically assigning work to processors.
For example, having the i-th processor out of p �nd eigenvalues (i � 1)n=p through in=p
results in redundant work at the beginning, as each processor re�nes the initial large interval
containing all the eigenvalues. Even if each processor is given a disjoint interval containing
an equal number of eigenvalues to �nd, the speedup may be poor if the eigenvalues in one
processor are uniformly distributed in their interval and all the others are tightly clustered
in theirs; this is because there will only be one interval to re�ne in each clustered interval,
and many in the uniform one. This means we need to rebalance the load dynamically, with
busy processors giving intervals to idle processors. The best way to do this depends on the
communication properties of the machine. Since the load imbalance is severe and speedup
poor only for problems that run quickly in an absolute sense anyway, pursuing uniformly
good speedup may not always be important. The eigenvalues will also need to be sorted at
the end if we use dynamic load balancing.

Given the eigenvalues, we can compute the eigenvectors by using inverse iteration in
parallel on each processor. At the end each processor will hold the eigenvectors for the
eigenvalues it stores; this is in contrast to the parallel QR iteration, which ends up with
the transpose of the eigenvector matrix stored. If we simply do inverse iteration without
communication, the speedup will be nearly perfect. However, we cannot guarantee or-
thogonality of eigenvectors of clustered eigenvalues [113], which currently seems to require
reorthogonalization of eigenvectors within clusters (other methods are under investigation
[157]). We can certainly reorthogonalize against eigenvectors of nearby eigenvalues stored
on the same processor without communication, or even against those of neighboring pro-
cessors with little communication; this leads to a tradeo� between orthogonality on the one
hand and communication and load balance on the other.

Other ways to count the eigenvalues in intervals have been proposed as well [121, 192],
although these are more complicated than either Algorithm 17 or 18. There have also been
generalizations to the band de�nite generalized symmetric eigenvalue problem [142].
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6.3.3 Cuppen's Divide and Conquer Algorithm

The third algorithm is a divide and conquer algorithm by Cuppen [39], and later analyzed
and modi�ed by many others [16, 62, 97, 109, 114, 187]. If T is 2n � 2n, we decompose it
into a sum

T =

"
T1 0
0 T2

#
+ �xxT

of a block diagonal matrix with tridiagonal blocks T1 and T2, and a rank-1 matrix �xxT

which is nonzero only in the four entries at the intersection of rows and columns n and
n+1. Suppose we now compute the eigendecompositions T1 = Q1�1Q

T
1 and T2 = Q2�2Q

T
2 ,

which can be done in parallel and recursively. This yields the partial eigendecomposition"
Q1 0
0 Q2

#
�
 "

�1 0
0 �2

#
+ �zzT

!
�
"
QT
1 0
0 QT

2

#

where z = diag (QT
1 ; Q

T
2 )x. So to compute the eigendecomposition of T , we need to compute

the eigendecomposition of the matrix diag (�1;�2) + �zzT � D + �zzT , a diagonal matrix
plus a rank-1 matrix. We can easily write down the characteristic polynomial of D+ �zzT ,
of which the relevant factor is f(�) in the following so-called secular equation

f(�) � 1 + �
2nX
i=1

z2i
di � �

= 0:

The roots of f(�) = 0 are the desired eigenvalues. Assume the diagonal entries di of D are
sorted in increasing order. After deating out easy to �nd eigenvalues (corresponding to
tiny zi or nearly identical di) we get a function with guaranteed inclusion intervals [di; di+1]
for each zero, and which is also monotonic on each interval. This lets us solve quickly using
a Newton-like method (although care must be taken to guarantee convergence [131]). The
corresponding eigenvector for a root �j is then simply given by (D��jI)�1z. This yields the
eigendecomposition D+�zzT = Q�QT , from which we compute the full eigendecomposition
T = (diag (Q1; Q2)Q)�(diag (Q1; Q2)Q)

T .
This algorithm, while attractive, proved hard to implement stably. The trouble was

that to guarantee the computed eigenvectors were orthogonal, di � �j had to be computed
with reasonable relative accuracy, which is not guaranteed even if �j is known to high
precision; cancellation in di � �j can leave a tiny di�erence with high relative error. Work
by several authors [16, 187] led to the conclusion that �i had to be computed to double
the input precision in order to get di � �i accurately. When the input is already in double
precision (or whatever is the largest precision supported by the machine), then quadruple is
needed, which may be simulated using double, provided double is accurate enough [45, 165].
Recently, however, Gu and Eisenstat [97] have found a new algorithm that makes this
unnecessary.

There are two types of parallelism available in this algorithm and both must be exploited
to speed up the whole algorithm [62, 109]. Independent tridiagonal submatrices (such as
T1 and T2) can obviously be solved in parallel. Initially there are a great many such small
submatrices to solve in parallel, but after each secular equation solution, there are half as
many submatrices of twice the size. To keep working in parallel, we must �nd the roots of
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the di�erent secular equations in parallel; there are equally many roots to �nd at each level.
Also, there is parallelism in the matrix multiplication diag (Q1; Q2) � Q needed to update
the eigenvectors.

While there is a great deal of parallelism available, there are still barriers to full speedup.
First, the speed of the serial algorithm depends strongly on there being a great deal of
deation, or roots of the secular equation that can be computed with little work. If several
processors are cooperating to solve a single secular equation, they must either communicate
to decide which of their assigned roots were deated and to rebalance the work load of
�nding nontrivial roots, or else not communicate and risk a load imbalance. This is the
same tradeo� as for the bisection algorithm, except that rebalancing involves more data
movement (since eigenvectors must be moved). If it turns out, as with bisection, that load
imbalance is severe and speedup poor only when the absolute run time is fast anyway, then
dynamic load balancing may not be worth it. The second barrier to full speedup is simply
the complexity of the algorithm, and the need to do many di�erent kinds of operations in
parallel, including sorting, matrix multiplication, and solving the secular equation. The
current level of parallel software support on many machines can make this di�cult to
implement well.

6.4 Jacobi's method for the symmetric eigenproblem and SVD

Jacobi's method has been used for the nonsymmetric eigenproblem, the symmetric eigen-
problem, the SVD, and generalizations of these problems to pairs of matrices [95]. It works
by applying a series of Jacobi rotations (a special kind of Givens rotation) to the left and/or
right of the matrix in order to drive it to a desired canonical form, such as diagonal form
for the symmetric eigenproblem. These Jacobi rotations, which a�ect only two rows and/or
columns of the matrix, are chosen to solve the eigenproblem associated with those two rows
and/or columns (this is what makes Jacobi rotations special). By repeatedly solving all
2-by-2 subproblems of the original, one eventually solves the entire problem. Jacobi works
reliably on the symmetric eigenvalue problem and SVD, and less so on the nonsymmet-
ric problem. We will consider only the symmetric problem and SVD in this section, and
nonsymmetric Jacobi later.

Until recently Jacobi methods were of little interest on serial machines because they are
usually several times slower than QR or divide and conquer schemes, and seemed to have
the same accuracy. Recently, however, it has been shown that Jacobi's method can be much
more accurate than QR in certain cases [43, 51, 184], which makes it of some value on serial
machines.

It has also been of renewed interest on parallel machines because of its inherent paral-
lelism: Jacobi rotations can be applied in parallel to disjoint pairs of rows and/or columns
of the matrix, so a matrix with n rows and/or columns can have bn=2c Jacobi rotations
applied simultaneously [26]. The question remains of the order in which to apply the simul-
taneous rotations to achieve quick convergence. A number of good parallel orderings have
been developed and shown to have the same convergence properties as the usual serial im-
plementations [141, 182]; we illustrate one here. Assume we have distributed n = 8 columns
on p = 4 processors, two per processor. We may leave one column �xed, and \rotate" the
others so that after n � 1 steps all possible pairs of columns have simultaneously occupied
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a single processor, so they could have a Jacobi rotation applied to them:

Processor 1: 1,8 1,7 1,6 1,5 1,4 1,3 1,2
Processor 2: 2,7 8,6 7,5 6,4 5,3 4,2 3,8
Processor 3: 3,6 2,5 8,4 7,3 6,2 5,8 4,7
Processor 4: 4,5 3,4 2,3 8,2 7,8 6,7 5,6

Step 1 Step 2 Step 3 Step 4 Step 5 Step 6 Step 7

This is clearly easiest to apply when we are only applying Jacobi rotations to columns
of the matrix, rather than both rows and columns. Such a one-sided Jacobi is natural when
computing the SVD [98], but requires some preprocessing for the symmetric eigenproblem
[51, 184]; for example, in the symmetric positive de�nite case one can perform Cholesky on A
to getA = LLT , apply one-sided Jacobi on L or LT to get its (partial) SVD, and then square
the singular values to get the eigenvalues of A. It turns out it accelerates convergence to do
the Cholesky decomposition with pivoting, and then apply Jacobi to the columns of L rather
than the columns of LT [51]. It is possible to use the symmetric-inde�nite decomposition
of an inde�nite symmetric matrix in the same way [184].

Jacobi done in this style is a rather �ne grain algorithm, operating on pairs of columns,
and so cannot exploit higher level BLAS. One can instead use block Jacobi algorithms
[22, 182], which work on blocks, and apply the resulting orthogonal matrices to the rest of
the matrix using more e�cient matrix-matrix multiplication.

6.5 The nonsymmetric eigenproblem

Five kinds of parallel methods for the nonsymmetric eigenproblem have been investigated:

1. Hessenberg QR iteration [12, 40, 67, 84, 189, 195, 194, 209, 210]

2. Reduction to nonsymmetric tridiagonal form [57, 82, 83, 85]

3. Jacobi's method [71, 72, 154, 174, 181, 188, 206],

4. Hessenberg divide and conquer [36, 37, 61, 132, 133, 213]

5. Spectral divide and conquer [13, 135, 144]

In contrast to the symmetric problem or SVD, no guaranteed stable and highly parallel
algorithm for the nonsymmetric problem exists. As described in section 6.2, reduction to
Hessenberg form can be done e�ciently, but so far it has been much harder to deal with a
Hessenberg matrix [67, 112] 4.

4As noted in section 6.2, we cannot even e�ciently reduce to condensed form for the generalized eigen-
problem A� �B.
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6.5.1 Hessenberg QR iteration

Parallelizing Hessenberg QR is attractive because it would yield an algorithm that is as
stable as the quite acceptable serial one. Unfortunately, doing so involves some of the same
di�culties as tridiagonal QR: one is faced with either �ne grain synchronization or larger
block operations that execute more quickly but also take a great deal more work without
accelerating convergence much. The serial method computes 1 or 2 shifts from the bottom
right corner of the matrix, and then processes the matrix from the upper left by a series of
row and column operations (this processing is called bulge chasing). One way to introduce
parallelism is to spread the matrix across the processors, but communication costs may
exceed the modest computational costs of the row and column operations [40, 84, 189, 195,
194]. Another way to introduce parallelism is to compute k > 2 shifts from the bottom
corner of the matrix (the eigenvalues of the bottom right k�k matrix, say), which permits us
to work on k rows and columns of the matrix at a time using Level 2 BLAS [12]. Asymptotic
convergence remains quadratic [210]. The drawbacks to this scheme are two-fold. First,
any attempt to use Level 3 BLAS introduces rather small (hence ine�cient) matrix-matrix
operations, and raises the operation count considerably. Second, the convergence properties
degrade signi�cantly, resulting in more overall work as well [67]. As a result, speedups have
been extremely modest. This routine is available in LAPACK as shseqr [2].

Yet another way to introduce parallelism into Hessenberg QR is to pipeline several bulge
chasing steps [194, 209, 210]. If we have several shifts available, then as soon as one bulge
chase is launched from the upper left corner, another one may be launched, and so on. Since
each bulge chase operates on only 2 or 3 adjacent rows and columns, we can potentially have
n=2 or n=3 bulge chasing steps going on simultaneously on disjoint rows (and columns). The
problem is that in the serial algorithm, we have to wait until an entire bulge chase has been
completed before computing the next shift; in the parallel case we cannot wait. Therefore,
we must use \out-of-date" shifts to have enough available to start multiple bulge chases.
This destroys the usual local quadratic convergence, but it remains superlinear [194]. It has
been suggested that choosing the eigenvalues of the bottom right k-by-k submatrix may
have superior convergence to just choosing a sequence from the bottom 1-by-1 or 2-by-2
submatrices [209]. Parallelism is still �ne-grain, however.

6.5.2 Reduction to nonsymmetric tridiagonal form

This approach begins by reducing B to nonsymmetric tridiagonal form with a (necessarily)
nonorthogonal similarity, and then �nding the eigenvalues of the resulting nonsymmetric
tridiagonal matrix using the tridiagonal LR algorithm [57, 82, 83, 85]. This method is at-
tractive because �nding eigenvalues of a tridiagonal matrix (even nonsymmetric) is much
faster than for a Hessenberg matrix [212]. The drawback is that reduction to tridiagonal
form may require very ill-conditioned similarity transformations, and may even break down
[158]. Breakdown can be avoided by restarting the process with di�erent initializing vec-
tors, or by accepting a \bulge" in the tridiagonal form. This happens with relatively low
probability, but keeps the algorithm from being fully reliable. The current algorithms pivot
at each step to maintain and monitor stability, and so can be converted to use Level 2 and
Level 3 BLAS in a manner analogous to Gaussian elimination with pivoting. This algo-
rithm illustrates how one can trade o� numerical stability for speed. Other nonsymmetric
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eigenvalue algorithms we discuss below make this tradeo� as well.

6.5.3 Jacobi's method

As with the symmetric eigenproblem, nonsymmetric Jacobi methods solve a sequence of
2 � 2 eigenvalue subproblems by applying 2 � 2 similarity transformations to the matrix.
There are two basic kinds of transformations used. Methods that use only orthogonal
transformations maintain numerical stability and converge to Schur canonical form, but
converge only linearly at best [72, 188]. If nonorthogonal transformations are used, one can
try to drive the matrix to diagonal form, but if it is close to having a nontrivial Jordan
block, the required similarity transformation will be very ill-conditioned and so stability
is lost. Alternatively, one can try to drive the matrix to be normal (AAT = ATA), at
which point an orthogonal Jacobi method can be used to drive it to diagonal form; this
still does not get around the problem of (nearly) nontrivial Jordan blocks [71, 154, 174,
181, 206]. On the other hand, if the matrix has distinct eigenvalues, asymptotic quadratic
convergence is achieved [181]. Using n2 processors arranged in a mesh, these algorithms can
be implemented in time O(n log n) per sweep. Again, we trade o� control over numerical
stability for speed (of convergence).

6.5.4 Hessenberg divide and conquer

The divide and conquer algorithms we consider here involve setting a middle subdiagonal
entry of the original upper Hessenberg matrix H to zero, resulting in a block upper Hes-
senberg matrix S. The eigenproblems for the two Hessenberg matrices on the diagonal of
S can be solved in parallel and recursively. To complete the algorithm, one must merge the
eigenvalues and eigenvectors of the two halves of S to get the eigendecomposition ofH . Two
ways have been proposed to do this: homotopy continuation and Newton's method. Paral-
lelism lies in having many Hessenberg submatrices whose eigendecompositions are needed,
in being able to solve for n eigenvalues simultaneously, and in the linear algebra operations
needed to �nd an individual eigenvalue. The �rst two kinds of parallelism are analogous to
those in Cuppen's method (section 6.3.3). The main drawback of these methods is loss of
guaranteed stability and/or convergence. Newton can fail to converge, and both Newton
and homotopy may appear to converge to several copies of the same root without any easy
way to tell if a root has been missed, or if the root really is multiple. The subproblems pro-
duced by divide and conquer may be much more ill-conditioned than the original problem.
These drawbacks are discussed in [112].

Homotopy methods replace the original Hessenberg matrix H by the one-parameter
linear family H(t) = tS + (1� t)H , 0 � t � 1. As t increases from 0 to 1, the eigenvalues
(and eigenvectors) trace out curves connecting the eigenvalues of S to the desired ones
of H . The numerical method follows these curves by standard curve following schemes,
predicting the position of a nearby point on the curve using the derivative of the eigenvalue
with respect to t, and then correcting its predicted value using Newton's method.

Two schemes have been investigated. The �rst [133] follows eigenvalue/eigenvector
pairs. The homotopy function is h(z; �; t) = [(H(t)z � �z)T ; kzk22 � 1]T , i.e. the homotopy
path is de�ned by choosing z(t) and �(t) so that h(z(t); �(t); t) = 0 along the path. The
simplicity of the homotopy means that over 90% of the paths followed are simple straight
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lines that require little computation, resulting in a speed up of a factor of up to 2 over
the serial QR algorithm. The drawbacks are lack of stability and convergence not being
guaranteed. For example, when homotopy paths get very close together, one is forced to take
smaller steps (and so converge more slowly) during the curve following. Communication
is necessary to decide if paths get close. And as mentioned above, if two paths converge
to the same solution, it is hard to tell if the solution really is a multiple root or if some
other root is missing. A di�erent homotopy scheme uses only the determinant to follow
eigenvalues [132, 213]; here the homotopy function is simply det(H(t) � �I). Evaluating
the determinant of a Hessenberg matrix costs only a triangular solve and an inner product,
and therefore is e�cient. It shares similar advantages and disadvantages as the previous
homotopy algorithm.

Alternatively, one can use Newton's method to compute the eigendecomposition of H
from S [61]. The function to which one applies Newton's method is f(z; �) = [(Hz �
�z)T ; eTz�1]T , where e is a �xed unit vector. The starting values for Newton's are obtained
from the solutions to S.

6.5.5 Spectral divide and conquer

A completely di�erent way to divide and conquer a matrix is using a projection on part of
the spectrum. It applies to a dense matrix B. Suppose Q1 is an n �m orthogonal matrix
spanning a right invariant subspace of B, and Q2 is an n � (n�m) matrix constructed so
that Q = [Q1; Q2] is square and orthogonal. Then Q deates B as follows:

QTBQ =

"
B11 B12

0 B22

#
:

Note that this is equivalent to havingQ2 span a left invariant subspace ofB. The eigenvalues
of B11 are those corresponding to the invariant subspace spanned by Q1. Provided we can
construct Q1 e�ectively, we can use this to divide and conquer the matrix.

Of course Hessenberg QR iteration �ts into this framework, with Q2 being n�1 or n�2,
and computed by (implicit) inverse iteration applied to B � �I , where � is a shift. Just
splitting so that B22 is 1� 1 or 2� 2 does not permit much parallelism, however; it would
be better to split the matrix nearer the middle. Also, it would be nice to be able to split o�
just that part of the spectrum of interest to the user, rather than computing all eigenvalues
as the above methods must all do.

There are several approaches to computing Q. They may be motivated by analogy to
Hessenberg QR, where Q is the orthogonal part of the QR factorization QR = B��I . If �
is an exact eigenvalue, so that B� �I is singular, then the last column of Q is (generically)
a left eigenvector for 0. One can then verify that the last row of QT (B � �I)Q is zero, so
that we have deated the eigenvalue at �. Now consider a more general function f(B); in
principal any (piecewise) analytic function will do. Then the eigenvalues of f(B) are just f
evaluated at the eigenvalues of B, and f(B) and B have (modulo Jordan blocks) the same
eigenvectors. Suppose that the rank of f(B) is m < n, so that f(B) has (at least) n �m

zero eigenvalues. Factorize QR = f(B). Then the last n�m columns of Q (generally) span
the left null space of f(B), i.e. a left invariant subspace of f(B) for the zero eigenvalue.
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But this is also a left invariant subspace of B so we get

QT f(B)Q =

"
B̂11 B̂12

0 0

#
and QTBQ =

"
B11 B12

0 B22

#

The problem thus becomes �nding functions f(B) that are easy to evaluate and have large
null spaces, or which map selected eigenvalues of B to zero. One such function f is the sign
function [13, 108, 120, 135, 168, 190] which maps points with positive real part to +1 and
those with negative real part to �1; adding 1 to this function then maps eigenvalues in the
right half plane to 2 and in the left plane to 0, as desired.

The only operations we can easily perform on (dense) matrices are multiplication and
inversion, so in practice f must be a rational function. A globally, asymptotically quadrat-
ically convergent iteration to compute the sign-function of B is Bi+1 = (Bi + B�1

i )=2
[108, 168, 190]; this is simply Newton's method applied to B2 = I , and can also be seen
to equivalent to repeated squaring (the power method) of the Cayley transform of B. It
converges more slowly as eigenvalues approach the imaginary axis, and is in fact noncon-
vergent if there are imaginary eigenvalues, as may be expected since the sign function is
discontinuous there. Other higher order convergent schemes exist, but they can be more
expensive to implement as well [120, 156]. Another scheme which divides the spectrum
between the eigenvalues inside and outside the unit circle is given in [144].

If the eigenvalues are known to be real (as when the matrix is symmetric), we need only
construct a function f which maps di�erent parts of the real axis to 0 and 1 instead of
the entire left and right half planes. This simpli�es both the computation of f(B) and the
extraction of its null space. See [10, 23, 127] for details.

Of course we wish to split not just along the imaginary axis or unit circle but other
boundaries as well. By shifting the matrix and multiplying by a complex number ei� one
can split along an arbitrary line in the complex plane, but at the cost of introducing complex
arithmetic. By working on a shifted and squared real matrix, one can divide along lines at
an angle of �=4 and retain real arithmetic [13, 108, 190].

This method is promising because it allows us to work on just that part of the spectrum
of interest to the user. It is stable because it applies only orthogonal transformations to B.
On the other hand, if it is di�cult to �nd a good place to split the spectrum, convergence can
be slow, and the �nal approximate invariant subspace inaccurate. At this point, iterative
re�nement could be used to improve the factorization [46]. These methods apply to the
generalized nonsymmetric eigenproblem as well [13, 144].

7 Direct Methods for Sparse Linear Systems

7.1 Cholesky Factorization

In this section we discuss parallel algorithms for solving sparse systems of linear equations
by direct methods. Paradoxically, sparse matrix factorization o�ers additional opportunities
for exploiting parallelism beyond those available with dense matrices, yet it is usually more
di�cult to attain good e�ciency in the sparse case. We examine both sides of this paradox:
the additional parallelism induced by sparsity, and the di�culty in achieving high e�ciency
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in spite of it. We will see that regularity and locality play a similar role in determining
performance in the sparse case as they do for dense matrices.

We couch most of our discussion in terms of the Cholesky factorization, A = LLT ,
where A is symmetric positive de�nite (SPD) and L is lower triangular with positive diago-
nal entries. We focus on Cholesky factorization primarily because this allows us to discuss
parallelism in relative isolation, without the additional complications of pivoting for numer-
ical stability. Most of the lessons learned are also applicable to other matrix factorizations,
such as LU and QR. We do not try to give an exhaustive survey of research in this area,
which is currently very active, instead referring the reader to existing surveys, such as [99].
Our main point in the current discussion is to explain how the sparse case di�ers from the
dense case, and examine the performance implications of those di�erences.

We begin by considering the main features of sparse Cholesky factorization that a�ect
its performance on serial machines. Algorithm 19 gives a standard, column-oriented formu-
lation in which the Cholesky factor L overwrites the initial matrix A, and only the lower
triangle is accessed:

Algorithm 19: Cholesky factorization

for j = 1; n
for k = 1; j � 1

for i = j; n fcmod(j; k)g
aij = aij � aik � ajk

ajj =
p
ajj

for k = j + 1; n fcdiv(j)g
akj = akj=ajj

The outer loop in Algorithm 19 is over successive columns of A. The the current column
(indexed by j) is modi�ed by a multiple of each prior column (indexed by k); we refer to
such an operation as cmod(j; k). The computation performed by the inner loop (indexed
by i) is a saxpy. After all its modi�cations have been completed, column j is then scaled
by the reciprocal of the square root of its diagonal element; we refer to this operation as
cdiv(j). As usual, this is but one of the 3! ways of ordering the triple-nested loop that
embodies the factorization.

The inner loop in Algorithm 19 has no e�ect, and thus may as well be skipped, if
ajk = 0. For a dense matrix A, such an event is too unlikely to o�er signi�cant advantage.
The fundamental di�erence with a sparse matrix is that ajk is in fact very often zero, and
computational e�ciency demands that we recognize this situation and take advantage of
it. Another way of expressing this condition is that column j of the Cholesky factor L does
not depend on prior column k if `jk = 0, which not only provides a computational shortcut,
but also suggests an additional source of parallelism that we will explore in detail below.

7.2 Sparse Matrices

Thus far we have not said what we mean by a \sparse" matrix. A good operational de�nition
is that a matrix is sparse if it contains enough zero entries to be worth taking advantage of
them to reduce both the storage and work required in solving a linear system. Ideally, we
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would like to store and operate on only the nonzero entries of the matrix, but such a policy
is not necessarily a clear win in either storage or work. The di�culty is that sparse data
structures include more overhead (to store indices as well as numerical values of nonzero
matrix entries) than the simple arrays used for dense matrices, and arithmetic operations
on the data stored in them usually cannot be performed as rapidly either (due to indirect
addressing of operands). There is therefore a tradeo� in memory requirements between
sparse and dense representations and a tradeo� in performance between the algorithms
that use them. For this reason, a practical requirement for a family of matrices to be
\usefully" sparse is that they have only O(n) nonzero entries, that is, a (small) constant
number of nonzeros per row or column, independent of the matrix dimension. For example,
most matrices arising from �nite di�erence or �nite element discretizations of PDEs satisfy
this condition. In addition to the number of nonzeros, their particular locations, or pattern,
in the matrix also has a major e�ect on how well sparsity can be exploited. Sparsity arising
from physical problems usually exhibits some systematic pattern that can be exploited
e�ectively, whereas the same number of nonzeros located randomly might o�er relatively
little advantage.

In Algorithm 19, the modi�cation of a given column of the matrix by a prior column
not only changes the existing nonzero entries in the target column, but may also introduce
new nonzero entries in the target column. Thus, the Cholesky factor L may have additional
nonzeros, called �ll, in locations that were zero in the original matrix A. In determining the
storage requirements and computational work, these new nonzeros that the matrix gains
during the factorization are equally as important as the nonzeros with which the matrix
starts out.

The amount of such �ll is dramatically a�ected by the order in which the columns of the
matrix are processed. For example, if the �rst column of the matrix A is completely dense,
then all of the remaining columns, no matter how sparse they start out, will completely �ll
in with nonzeros during the factorization. On the other hand, if a single such dense column
is permuted (symmetrically) to become the last column in the matrix, then it will cause no
�ll at all. Thus, a critical part of the solution process for sparse systems is to determine an
ordering for the rows and columns of the input matrix that limits �ll to preserve sparsity.
Unfortunately, �nding an ordering that minimizes �ll is a very hard combinatorial problem
(NP-complete), but heuristics are available that do a good job of reducing, if not exactly
minimizing, �ll. These techniques include minimum degree, nested dissection, and various
schemes for reducing the bandwidth or pro�le of a matrix (see, e.g., [69, 91] for details on
these and many other concepts used in sparse matrix computations).

One of the key advantages of SPD matrices is that such a sparsity preserving ordering
can be selected in advance of the numeric factorization, independent of the particular values
of the nonzero entries: only the pattern of the nonzeros matters, not their numerical values.
This would not be the case, in general, if we also had to take into account pivoting for
numerical stability, which obviously would require knowledge of the nonzero values, and
would introduce a potential conict between preserving sparsity and preserving stability.
For the SPD case, once the ordering is selected, the locations of all �ll elements in L can
be anticipated prior to the numeric factorization, and thus an e�cient static data structure
can be set up in advance to accommodate them (this process is usually called symbolic
factorization). This feature also stands in contrast to general sparse linear systems, which
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usually require dynamic data structures to accommodate �ll entries as they occur, since
their locations depend on numerical information that becomes known only as the numeric
factorization process unfolds. Thus, modern algorithms and software for solving sparse SPD
systems include a symbolic preprocessing phase in which a sparsity preserving ordering is
computed and a static data structure is set up for storing the entries of L before any oating
point computation takes place.

We introduce some concepts and notation that will be useful in our subsequent dis-
cussion of parallel sparse Cholesky factorization. An important tool in understanding the
combinatorial aspects of sparse Cholesky factorization is the notion of the graph of a sym-
metric n�n matrix A, which is an undirected graph having n vertices, with an edge between
two vertices i and j if the corresponding entry aij of the matrix is nonzero. We denote the
graph of A by G(A). The structural e�ect of the factorization process can then be de-
scribed by observing that the elimination of a variable adds �ll edges to the corresponding
graph so that the neighbors of the eliminated vertex become a clique (i.e., a fully connected
subgraph). We also de�ne the �lled graph, denoted by F (A), as having an edge between
vertices i and j, with i > j, if `ij 6= 0 in the Cholesky factor L (i.e., F (A) is simply G(A)
with all �ll edges added).

We use the notation Mi� to denote the ith row, and M�j to denote the jth column, of
a matrix M . For a given sparse matrix M , we de�ne

Struct(Mi�) = fk < i j mik 6= 0g
and

Struct(M�j) = fk > j jmkj 6= 0g:
In other words, Struct(Mi�) is the sparsity structure of row i of the strict lower triangle of
M , while Struct(M�j) is the sparsity structure of column j of the strict lower triangle of
M . For the Cholesky factor L, we de�ne the parent function as follows:

parent(j) =

(
min fi 2 Struct(L�j)g; if Struct(L�j) 6= ;;
j otherwise:

Thus, parent(j) is the row index of the �rst o�diagonal nonzero in column j of L, if any,
and has the value j otherwise. Using the parent function, we de�ne the elimination tree as
a graph having n vertices, with an edge between vertices i and j, for i > j, if i = parent(j).
If the matrix is irreducible, then the elimination tree is indeed a single tree with root at
vertex n (otherwise it is more accurately termed an elimination forest). The elimination
tree, which we denote by T (A), is a spanning tree for the �lled graph F (A). The many
uses of the elimination tree in analyzing and organizing sparse Cholesky factorization are
surveyed in [138]. We will illustrate these concepts pictorially in several examples below.

7.3 Sparse Factorization

There are three basic types of algorithms for Cholesky factorization, depending on which
of the three indices is placed in the outer loop:

1. Row-Cholesky: Taking i in the outer loop, successive rows of L are computed one by
one, with the inner loops solving a triangular system for each new row in terms of the
previously computed rows.
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Figure 9: Three forms of Cholesky factorization.

2. Column-Cholesky: Taking j in the outer loop, successive columns of L are computed
one by one, with the inner loops computing a matrix-vector product that gives the
e�ect of previously computed columns on the column currently being computed.

3. Submatrix-Cholesky: Taking k in the outer loop, successive columns of L are computed
one by one, with the inner loops applying the current column as a rank-1 update to
the remaining unreduced submatrix.

These three families of algorithms have markedly di�erent memory reference patterns
in terms of which parts of the matrix are accessed and modi�ed at each stage of the factor-
ization, as illustrated in Figure 9, and each has its advantages and disadvantages in a given
context.

For sparse Cholesky factorization, row-Cholesky is seldom used for a number of reasons,
including the di�culty in providing a row-oriented data structure that can be accessed
e�ciently during the factorization, and the di�culty in vectorizing or parallelizing the
triangular solutions required. We will therefore focus our attention on the column-oriented
methods, column-Cholesky and submatrix-Cholesky. Expressed in terms of the column
operations cmod and cdiv and the Struct notation de�ned earlier, sparse column-Cholesky
can be stated as follows:

Algorithm 20: Sparse column-Cholesky factorization

for j = 1; n
for k 2 Struct(Lj�)

cmod(j; k)
cdiv(j)

In column-Cholesky, a given column j of A remains unchanged until the outer loop index
reaches that value of j. At that point column j is updated by a nonzero multiple of each
column k < j of L for which `jk 6= 0. After all column modi�cations have been applied
to column j, the diagonal entry `jj is computed and used to scale the completely updated
column to obtain the remaining nonzero entries of L�j . Column-Cholesky is sometimes said
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to be a \left-looking" algorithm, since at each stage it accesses needed columns to the left
of the current column in the matrix. It can also be viewed as a \demand-driven" algorithm,
since the inner products that a�ect a given column are not accumulated until actually needed
to modify and complete that column. For this reason, Ortega [153] terms column-Cholesky
a \delayed-update" algorithm. It is also sometimes referred to as a \fan-in" algorithm,
since the basic operation is to combine the e�ects of multiple previous columns on a single
target column. The column-Cholesky algorithm is the most commonly used method in
commercially available sparse matrix packages.

Similarly, sparse submatrix-Cholesky can be expressed as follows:

Algorithm 21: Sparse submatrix-Cholesky factorization

for k = 1; n
cdiv(k)
for j 2 Struct(L�k)

cmod(j; k)

In submatrix-Cholesky, as soon as column k has been computed, its e�ects on all sub-
sequent columns are computed immediately. Thus, submatrix-Cholesky is sometimes said
to be a \right-looking" algorithm, since at each stage columns to the right of the current
column are modi�ed. It can also be viewed as a \data-driven" algorithm, since each new
column is used as soon as it is completed to make all modi�cations to all the subsequent
columns it a�ects. For this reason, Ortega [153] terms submatrix-Cholesky an \immediate-
update" algorithm. It is also sometimes referred to as a \fan-out" algorithm, since the basic
operation is for a single column to a�ect multiple subsequent columns. We will see that
these characterizations of the column-Cholesky and submatrix-Cholesky algorithms have
important implications for parallel implementations.

We note that many variations and hybrid implementations are possible that lie some-
where between pure column-Cholesky and pure submatrix-Cholesky. Perhaps the most
important of these are the multifrontal methods (see, e.g., [69]), in which updating oper-
ations are accumulated in and propagated through a series of front matrices until �nally
being incorporated into the ultimate target columns. Multifrontal methods have a number
of attractive advantages, most of which accrue from the localization of memory references
in the front matrices, thereby facilitating the e�ective use of memory hierarchies, including
cache, virtual memory with paging, or explicit out-of-core solutions (the latter was the orig-
inal motivation for these methods [110]). In addition, since the front matrices are essentially
dense, the operations on them can be done using optimized kernels, such as the BLAS, to
take advantage of vectorization or any other available architectural features. For example,
such techniques have been used to attain very high performance for sparse factorization on
conventional vector supercomputers [9] and on RISC workstations [170].

7.4 Parallelism in Sparse Factorization

We now examine in greater detail the opportunities for parallelism in sparse Cholesky
factorization and various algorithms for exploiting it. One of the most important issues in
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designing any parallel algorithm is selecting an appropriate level of granularity, by which
we mean the size of the computational subtasks that are assigned to individual processors.
The optimal choice of task size depends on the tradeo� between communication costs and
the load balance across processors. We follow Liu [136] in identifying three potential levels
of granularity in a parallel implementation of Cholesky factorization:

1. �ne-grain, in which each task consists of only one or two oating point operations,
such as a multiply-add pair,

2. medium-grain, in which each task is a single column operation, such as cmod or cdiv,

3. large-grain, in which each task is the computation of an entire group of columns in a
subtree of the elimination tree.

Fine-grain parallelism, at the level of individual oating point operations, is available in
either the dense or sparse case. It can be exploited e�ectively by a vector processing unit
or a systolic array, but would incur far too much communication overhead to be exploited
pro�tably on most current generation parallel computers. In particular, the communication
latency of these machines is too great for such frequent communication of small messages
to be feasible.

Medium-grain parallelism, at the level of operations on entire columns, is also available in
either the dense or the sparse case. This level of granularity accounts for essentially all of the
parallel speedup in dense factorization on current generation parallel machines, and it is an
extremely important source of parallelism for sparse factorization as well. This parallelism
is due primarily to the fact that many cmod operations can be computed simultaneously
by di�erent processors. For many problems, such a level of granularity provides a good
balance between communication and computation, but scaling up to very large problems
and/or very large numbers of processors may necessitate that the tasks be further broken
up into chunks based on a two-dimensional partitioning of the columns. One must keep
in mind, however, that in the sparse case an entire column operation may require only
a few oating point operations involving the sparsely populated nonzero elements in the
column. For a matrix of order n having a planar graph, for example, the largest embedded
dense submatrix to be factored is roughly of order

p
n, and thus a sparse problem must be

extremely large before a two-dimensional partitioning becomes essential.
Large-grain parallelism, at the level of subtrees of the elimination tree, is available

only in the sparse case. If Ti and Tj are disjoint subtrees of the elimination tree, with
neither root node a descendant of the other, then all of the columns corresponding to
nodes in Ti can be computed completely independently of the columns corresponding to
nodes in Tj, and vice versa, and hence these computations can be done simultaneously by
separate processors with no communication between them. For example, each leaf node of
the elimination tree corresponds to a column of L that depends on no prior columns, and
hence all of the leaf node columns can be completed immediately merely by performing
the corresponding cdiv operation on each of them. Furthermore, all such cdiv operations
can be performed simultaneously by separate processors (assuming enough processors are
available). By contrast, in the dense case all cdiv operations must be performed sequentially
(at least at this level of granularity), since there is never more than one leaf node at any
given time.
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Figure 10: One-dimensional grid and corresponding tridiagonal matrix (left), with Cholesky
factor and elimination tree (right).

We see from the above discussion that the elimination tree serves to characterize the
parallelism that is unique to sparse factorization. In particular, the height of the elimination
tree gives a rough measure of the parallel computation time, and the width of the elimination
tree gives a rough measure of the degree or multiplicity of large-grain parallelism. These
measures are only very rough, however, since the medium level parallelism also plays a major
role in determining overall performance. Still, we can see that short, bushy elimination
trees are more advantageous then tall, slender ones in terms of the large-grain parallelism
available. And just as the �ll in the Cholesky factor is very sensitive to the ordering of
the matrix, so is the structure of the elimination tree. This suggests that we should choose
an ordering to enhance parallelism, and indeed this is possible (see, e.g., [111, 128, 137]),
but such an objective may conict to some degree with preservation of sparsity. Roughly
speaking, sparsity and parallelism are largely compatible, since the large-grain parallelism
is due to sparsity in the �rst place. However, these two criteria are by no means coincident,
as we will see by example below.

We now illustrate these concepts using a series of simple examples. Figure 10 shows a
small one-dimensional mesh with a \natural" ordering of the nodes, the nonzero patterns
of the corresponding tridiagonal matrix A and its Cholesky factor L, and the resulting
elimination tree T (A). On the positive side, the Cholesky factor su�ers no �ll at all and the
total work required for the factorization is minimal. However, we see that the elimination
tree is simply a chain, and therefore there is no large-grain parallelism available. Each
column of L depends on the immediately preceding one, and thus they must be computed
sequentially. This behavior is typical of orderings that minimize the bandwidth of a sparse
matrix: they tend to inhibit rather than enhance large-grain parallelism in the factorization.
[As previously discussed in Section 4.4, there is in fact little parallelism of any kind to be
exploited in solving a tridiagonal system in this natural order. The cmod operations involve
only a couple of ops each, so that even the \medium-grain" tasks are actually rather small
in this case.]

Figure 11 shows the same one-dimensional mesh with the nodes reordered by a minimum
degree algorithm. Minimum degree is the most e�ective general purpose heuristic known
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Figure 11: Graph and matrix reordered by minimum degree (left), with corresponding
Cholesky factor and elimination tree (right).

for limiting �ll in sparse factorization [92]. In its simplest form, this algorithm begins by
selecting a node of minimum degree (i.e., one having fewest incident edges) in G(A) and
numbering it �rst. The selected node is then deleted and new edges are added, if necessary,
to make its former neighbors into a clique. The process is then repeated on the updated
graph, and so on, until all nodes have been numbered. We see in Figure 11 that L su�ers no
�ll in the new ordering, and the elimination tree now shows some large-grain parallelism.
In particular, columns 1 and 2 can be computed simultaneously, then columns 3 and 4, and
so on. This two-fold parallelism reduces the height (roughly the parallel completion time)
by approximately a factor of two.

At any stage of the minimum degree algorithm, there may be more than one node with
the same minimum degree, and the quality of the ordering produced may be a�ected by the
tie breaking strategy used. In the example of Figure 11, we have deliberately broken ties in
the most favorable way (with respect to parallelism); the least favorable tie breaking would
have reproduced the original ordering of Figure 10, resulting in no parallelism. Breaking
ties randomly (which in general is about all one can do) could produce anything in between
these two extremes, yielding an elimination tree that reveals some large-grain parallelism,
but which is taller and less well balanced than our example in Figure 11. Again, this is
typical of minimum degree orderings. In view of this property, Liu [137] has developed
an interesting strategy for further reordering of an initial minimum degree ordering that
preserves �ll while reducing the height of the elimination tree.

Figure 12 shows the same mesh again, this time ordered by nested dissection, a divide-
and-conquer strategy [87]. Let S be a set of nodes, called a separator, whose removal, along
with all edges incident upon nodes in S, disconnects G(A) into two remaining subgraphs.
The nodes in each of the two remaining subgraphs are numbered contiguously and the
nodes in the separator S are numbered last. This procedure is then applied recursively to
split each of the remaining subgraphs, and so on, until all nodes have been numbered. If
su�ciently small separators can be found, then nested dissection tends to do a good job of
limiting �ll, and if the pieces into which the graph is split are of about the same size, then
the elimination tree tends to be well balanced. We see in Figure 12 that for our example,
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Figure 12: Graph and matrix reordered by nested dissection (left), with corresponding
Cholesky factor and elimination tree (right).
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Figure 13: Graph and matrix reordered by odd-even reduction (left), with corresponding
Cholesky factor and elimination tree (right).

with this ordering, the Cholesky factor L su�ers �ll in two matrix entries (indicated by
+), but the elimination tree now shows a four-fold large-grain parallelism, and its height
has been reduced further. This behavior is again typical of nested dissection orderings:
they tend to be somewhat less successful at limiting �ll than minimum degree, but their
divide-and-conquer nature tends to identify parallelism more systematically and produce
better balanced elimination trees.

Finally, Figure 13 shows the same problem reordered by odd-even reduction. This is not
a general purpose strategy for sparse matrices, but it is often used to enhance parallelism
in tridiagonal and related systems, so we illustrate it for the sake of comparison with more
general purpose methods. In odd-even reduction (see, e.g., [69]), odd node numbers come
before even node numbers, and then this same renumbering is applied recursively within
each resulting subset, and so on until all nodes are numbered. Although the resulting
nonzero pattern of A looks super�cially di�erent, we can see from the elimination tree that
this method is essentially equivalent to nested dissection for this type of problem.
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7.5 Parallel Algorithms for Sparse Factorization

Having developed some understanding of the sources of parallelism in sparse Cholesky fac-
torization, we now consider some algorithms for exploiting it. In designing any parallel
algorithm, one of the most important decisions is how tasks are to be assigned to proces-
sors. In a shared memory parallel architecture, the tasks can easily be assigned to processors
dynamically by maintaining a common pool of tasks from which available processors claim
work to do. This approach has the additional advantage of providing automatic load bal-
ancing to whatever degree is permitted by the chosen task granularity. An implementation
of this approach for parallel sparse factorization is given in [88].

In a distributed memory environment, communication costs often prohibit dynamic task
assignment or load balancing, and thus we seek a static mapping of tasks to processors. In
the case of column-oriented factorization algorithms, this amounts to assigning the columns
of the matrix to processors according to some mapping procedure determined in advance.
Such an assignment could be made using the block or wrap mappings, or combinations
thereof, often used for dense matrices. However, such simple mappings risk wasting much
of the large-grain parallelism identi�ed by means of the elimination tree, and may also
incur unnecessary communication. For example, the leaf nodes of the elimination tree can
be processed in parallel if they are assigned to di�erent processors, but the latter is not
necessarily ensured by a simple block or wrap mapping.

A better approach for sparse factorization is to preserve locality by assigning subtrees of
the elimination tree to contiguous subsets of neighboring processors. A good example of this
technique is the \subtree-to-subcube" mapping often used with hypercube multicomputers
[90]. Of course, the same idea applies to other network topologies, such as submeshes of a
larger mesh. We will assume that some such mapping is used, and we will comment further
on its implications below. Whatever the mapping, we will denote the processor containing
column j by map[j], or, more generally, if J is a set of column numbers, map[J ] will denote
the set of processors containing the given columns.

One of the earliest and simplest parallel algorithms for sparse Cholesky factorization is
the following version of submatrix-Cholesky [89]. The algorithm given below runs on each
processor, with each responsible for its own subset, mycols, of columns.

Algorithm 22: Distributed fan-out sparse Cholesky factorization

for j 2 mycols
if j is a leaf node in T (A)

cdiv(j)
send L�j to processors in map(Struct(L�j))
mycols = mycols� fjg

while mycols 6= ;
receive any column of L, say L�k
for j 2 mycols \ Struct(L�k)

cmod(j; k)
if column j requires no more cmods

cdiv[j]
send L�j to processors in map(Struct(L�j))
mycols = mycols� fjg
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In Algorithm 22, any processor that owns a column of L corresponding to a leaf node
of the elimination tree can complete it immediately merely by performing the necessary
cdiv operation, since such a column depends on no prior columns. The resulting factor
columns are then broadcast (fanned-out) to all other processors that will need them to
update columns that they own. The remainder of the algorithm is then driven by the
arrival of factor columns, as each processor goes into a loop in which it receives and applies
successive factor columns, in whatever order they may arrive, to whatever columns remain
to be processed. When the modi�cations of a given column have been completed, then the
cdiv operation is done, the resulting factor column is broadcast as before, and the process
continues until all columns of L have been computed.

Algorithm 22 potentially exploits both the large-grain parallelism characterized by con-
current cdivs and the medium-grain parallelism characterized by concurrent cmods, but this
data-driven approach also has a number of drawbacks that severely limit its e�ciency. In
particular, performing the column updates one at a time by the receiving processors results
in unnecessarily high communication frequency and volume, and in a relatively ine�cient
computational inner loop. The communication requirements can be reduced by careful
mapping and by aggregating updating information over subtrees (see, e.g., [93, 152, 215]),
but even with this improvement, the fan-out algorithm is usually not competitive with
other algorithms presented below. The shortcomings of the fan-out algorithm motivated
the formulation of the following fan-in algorithm for sparse factorization, which is a parallel
implementation of column-Cholesky [6]:

Algorithm 23: Distributed fan-in sparse Cholesky factorization

for j = 1; n
if j 2 mycols or mycols\ Struct(Lj�) 6= ;

u = 0
for k 2 mycols \ Struct(Lj�)

u = u+ `jk � L�k faggregate column update sg
if j 2 mycols

incorporate u into the factor column j
while any aggregated update column for column j remains,

receive in u another aggregated update column for column j
incorporate u into the factor column j

cdiv(j)
else

send u to processor map[j]

Algorithm 23 takes a demand-driven approach: the updates for a given column j are
not computed until needed to complete that column, and they are computed by the send-
ing processors rather than the receiving processor. As a result, all of a given processor's
contributions to the updating of the column in question can be combined into a single
aggregate update column, which is then transmitted in a single message to the processor
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containing the target column. This approach not only decreases communication frequency
and volume, but it also facilitates a more e�cient computational inner loop. In particular,
no communication is required to complete the columns corresponding to any subtree that
is assigned entirely to a single processor. Thus, with an appropriate locality-preserving and
load-balanced subtree mapping, Algorithm 23 has a perfectly parallel, communication-free
initial phase that is followed by a second phase in which communication takes place over
increasingly larger subsets of processors as the computation proceeds up the elimination
tree, encountering larger subtrees. This perfectly parallel phase, which is due entirely to
sparsity, tends to constitute a larger proportion of the overall computation as the size of the
problem grows for a �xed number of processors, and thus the algorithm enjoys relatively
high e�ciencies for su�ciently large problems.

In the fan-out and fan-in factorization algorithms, the necessary information ow be-
tween columns is mediated by factor columns or aggregate update columns, respectively.
Another alternative is a multifrontal method, in which update information is mediated
through a series of front matrices. In a sense, this represents an intermediate strategy,
since the e�ect of each factor column is incorporated immediately into a front matrix, but
its eventual incorporation into the ultimate target column is delayed until until actually
needed. The principal computational advantage of multifrontal methods is that the frontal
matrices are treated as dense matrices, and hence updating operations on them are much
more e�cient than the corresponding operations on sparse data structures that require
indirect addressing. Unfortunately, although the updating computations employ simple
dense arrays, the overall management of the front matrices is relatively complicated. As
a consequence, multifrontal methods are di�cult to specify succinctly, so we will not at-
tempt to do so here, but note that multifrontal methods have been implemented for both
shared-memory (e.g., [19, 68]) and distributed-memory (e.g., [94, 140]) parallel computers,
and are among the most e�ective methods known for sparse factorization in all types of
computational environments. For a uni�ed description and comparison of parallel fan-in,
fan-out, and multifrontal methods, see [7].

In this brief section on parallel direct methods for sparse systems, we have concentrated
on numeric Cholesky factorization for SPD matrices. We have omitted many other aspects
of the computation, even for the SPD case: computing the ordering in parallel, symbolic
factorization, and triangular solution. More generally, we have omitted any discussion of LU
factorization for general sparse square matrices or QR factorization for sparse rectangular
matrices. Instead we have concentrated on identifying the major features that distinguish
parallel sparse factorization from the dense case and examining the performance implications
of those di�erences.

8 Iterative Methods for Linear Systems

In this section we discuss parallel aspects of iterative methods for solving large linear sys-
tems. For a good mathematical introduction to a class of successful and popular methods,
the so-called Krylov subspace methods, see [76]. There are many such methods and new
ones are frequently proposed. Fortunately, they share enough properties that to understand
how to implement them in parallel it su�ces to carefully examine just a few.

For the purposes of parallel implementation there are two classes of methods: those
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with short recurrences, i.e. methods which maintain only a very limited number of search
direction vectors, and those with long recurrences. The �rst class includes CG (Conjugate
Gradients), CR (Conjugate Residuals), Bi-CG, CGS (CG squared), QMR (Quasi Mini-
mum Residual), GMRES(m) for small m (Generalized Minimum Residual), truncated OR-
THOMIN (Orthogonal Minimum Residual), Chebychev iteration, and so on. We could
further distinguish between methods with �xed iteration parameters and methods with dy-
namical parameters, but we will not do so; the e�ects of this aspect will be clear from our
discussion. As the archetype for this class we will consider CG; the parallel implementation
issues for this method apply to most other short recurrence methods. The second class
of methods includes GMRES, GMRES(m) with larger m, ORTHOMIN, ORTHODIR (Or-
thogonal Directions), ORTHORES (Orthogonal Residuals), and EN (Eirola-Nevanlinna's
Rank-1 update method). We consider GMRES in detail, which is a popular method in this
class.

This section is organized as follows. In section 8.1 we will discuss the parallel aspects
of important computational kernels in iterative schemes. From the discussions it should
be clear how to combine coarse-grained and �ne-grained approaches, for example when
implementing a method on a parallel machine with vector processors. The implementation
for such machines, in particular those with shared memory, is given much attention in [56].
In section 8.2, coarse-grained parallel and data-locality issues of CG will be discussed, while
in section 8.3 the same will be done for GMRES.

8.1 Parallelism in the kernels of iterative methods

The basic time-consuming computational kernels of iterative schemes are usually:

1. inner products,

2. vector updates,

3. matrix vector products, like Api (for some methods also A
T pi),

4. preconditioning (e.g., solve for w in Kw = r).

The inner products can be easily parallelized; each processor computes the inner product
of two segments of each vector (local inner products or LIPs). On distributed memory ma-
chines the LIPs have to be sent to other processors in order to be reduced to the required
global inner product. This step requires communication. For shared memory machines the
inner products can be computed in parallel without problem. If the distributed memory
system supports overlap of communication with computation, then we have to �nd oppor-
tunities in the algorithm to do so. In the standard formulation of most iterative schemes
this is usually a major problem. We will come back to this in the next two sections. Vector
updates are trivially parallelizable: each processor updates its \own" segment. The matrix-
vector products are often easily parallelized on shared memory machines, by splitting the
matrix in strips, corresponding to the vector segments. Each processor takes care of the
matrix-vector product of one strip.

For distributed memory machines there may be a problem if each processor has only a
segment of the vector in its memory. Depending on the bandwidth of the matrix we may
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need communication for other elements of the vector, which may lead to communication
problems. However, many sparse matrix problems are related to a network in which only
nearby nodes are connected. In such a case it seems natural to subdivide the network, or
grid, in suitable blocks and to distribute these blocks over the processors. When computing
Api each processor needs at most the values of pi at some nodes in neighboring blocks. If
the number of connections to these neighboring blocks is small compared to the number of
internal nodes, then the communication time can be overlapped with computational work.
For more detailed discussions on implementation aspects on distributed memory systems,
see [42, 163].

The preconditioning part is often the most problematic part in a parallel environment.
Incomplete decompositions of A form a popular class of preconditionings, in the context of
solving discretized PDE's. In this case the preconditioner K = LU , where L and U have a
sparsity pattern equal or close to the sparsity pattern of the corresponding parts of A (L
is lower triangular, U is upper triangular). For details see [95, 147, 148]. Solving Kw = r

leads to solving successively Lz = r and Uw = z. These triangular solves lead to recurrence
relations which are not easily parallelized. We will now discuss a number of approaches to
obtain parallelism in the preconditioning part.

1. Reordering the computations. Depending on the structure of the matrix a frontal

approach may lead to successful parallelism. By inspecting the dependency graph one
can select those elements that can be computed in parallel. For instance, if a second
order PDE is discretized by the usual �ve-point star over a rectangular grid, then the
triangular solves can be parallelized if the computation is carried out along diagonals
of the grid, instead of the usual lexicographical order. For vector computers this leads
to a vectorizable preconditioner (see [8, 56, 201, 202]). For coarse grained parallelism
this approach is insu�cient. By a similar approach more parallelism can be obtained
in 3D situations: the so-called hyperplane approach [178, 201, 202]. The disadvantage
is that the data needs to be redistributed over the processors, since the grid points,
which correspond to a hyperplane in the grid, are located quite irregularly in the
array. For shared memory machines this also leads to reduced performance because
of indirect addressing. In general one concludes that the data dependency approach
is not adequate for obtaining a suitable degree of parallelism.

2. Reordering the unknowns. One may also use a coloring scheme for reordering the un-
knowns, so that unknowns with the same color are not explicitly coupled. This means
that the triangular solves can be parallelized for each color. Of course, communication
is required for couplings between groups of di�erent colors. Simple coloring schemes,
like red-black ordering for the 5-point discretized Poisson operator, seem to have a
negative e�ect on the convergence behavior. Du� and Meurant [70] have carried out
numerical experiments for many di�erent orderings, which show that the numbers of
iterations may increase signi�cantly for other than lexicographical ordering. Some
modest degree of parallelism can be obtained, however, with so-called incomplete
twisted factorizations [56, 200, 201]. Multicolor schemes with a large number of colors
(e.g., 20 to 100) may lead to little or no degradation in convergence behavior [52], but
also to less parallelism. Moreover, the ratio of computation to communication may
be more unfavorable.
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3. Forced parallelism. Parallelism can also be forced by simply neglecting couplings to
unknowns residing in other processors. This is like block Jacobi preconditioning, in
which the blocks may be decomposed in incomplete form [180]. Again, this may not
always reduce the overall solution time, since the e�ects of increased parallelism are
more than undone by an increased number of iteration steps. In order to reduce
this e�ect, it is suggested in [166] to construct incomplete decompositions on slightly
overlapping domains. This requires communication similar to that of matrix vec-
tor products. In [166] results are reported on a 6-processor shared memory system
(IBM3090), and speedups close to 6 have been observed.

The problems with parallelism in the preconditioner have led to searches for other pre-
conditioners. Often simple diagonal scaling is an adequate preconditioner, and of course
this is trivially parallelizable. For results on a Connection Machine, see [20]. Often this
approach leads to a signi�cant increase in iteration steps. Still another approach is to use
polynomial preconditioning: w = pj(A)r, i.e., K

�1 = pj(A), for some suitable j-th degree
polynomial. This preconditioner can be implemented by forming only matrix vector prod-
ucts, which, depending on the structure of A, are easier to parallelize [171]. For pj one often
selects a Chebychev polynomial, which requires some information on the spectrum of A.

Finally we point out the possibility of using the truncated Neumann series for the
approximate inverse of A, or parts of L and U . Madsen et al. [143] discuss approximate
inversion of A, which from the implementation point of view is equivalent to polynomial
preconditioning. In [197] the use of truncated Neumann series for removing some of the
recurrences in the triangular solves is discussed. This approach leads to only �ne-grained
parallelism (vectorization).

8.2 Parallelism and data locality in preconditioned CG

To use CG to solve Ax = b, A must be symmetric and positive de�nite. In other short
recurrence methods, other properties of A may be required or desirable, but we will not
exploit these properties explicitly here.

Most often, CG is used in combination with some kind of preconditioning [76, 95, 102].
This means that the matrix A is implicitly multiplied by an approximation K�1 of A�1.
Usually, K is constructed to be an approximation of A, and so thatKy = z is easier to solve
than Ax = b. Unfortunately, a popular class of preconditioners, those based on incomplete
factorizations of A, are hard to parallelize. We have discussed some e�orts to obtain more
parallelism in the preconditioner in section 8.1. Here we will assume the preconditioner
is chosen such that the time to solve Ky = z in parallel is comparable with the time to
compute Ap. For CG we also require that the preconditioner K be symmetric positive
de�nite. We exploit this below to implement the preconditioner more e�ciently.

The preconditioned CG algorithm is as follows:
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Algorithm 24: Preconditioned Conjugate Gradients - variant 1

x0= initial guess; r0 = b� Ax0;
p�1 = 0; ��1 = 0;
Solve for w0 in Kw0 = r0;
�0 = (r0; w0)
for i = 0; 1; 2; ::::

pi = wi + �i�1pi�1;
qi = Api;
�i = �i=(pi; qi)
xi+1 = xi + �ipi;
ri+1 = ri � �iqi;
if xi+1 accurate enough then quit;
Solve for wi+1 in Kwi+1 = ri+1;
�i+1 = (ri+1; wi+1);
�i = �i+1=�i;

end;

If A or K is not very sparse, most work is done in multiplying qi = Api or solving
Kwi+1 = ri+1, and this is where parallelism is most bene�cial. It is also completely depen-
dent on the structures of A and K.

Now we consider parallelizing the rest of the algorithm. Note that updating xi+1 and
ri+1 can only begin after completing the inner product for �i. Since on a distributed
memory machine communication is needed for the inner product, we cannot overlap this
communication with useful computation. The same observation applies to updating pi,
which can only begin after completing the inner product for �i�1. Apart from computing
Api and solving Kwi+1 = ri+1, we need to load 7 vectors for 10 vector oating point
operations. This means that for this part of the computation only 10=7 oating point
operation can be carried out per memory reference on average.

Several authors [33, 149, 150, 198] have attempted to improve this ratio, and to reduce
the number of synchronization points (the points at which computation must wait for com-
munication). In the above algorithm there are two such synchronization points, namely the
computation of both inner products. Meurant [149] (see also [171]) has proposed a variant
in which there is only one synchronization point, however at the cost of possibly reduced
numerical stability, and one additional inner product. In this scheme the ratio between com-
putations and memory references is about 2. We show here yet another variant, proposed
by Chronopoulos and Gear [33].
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Algorithm 25: Preconditioned Conjugate Gradients - variant 2

x0= initial guess; r0 = b� Ax0;
q�1 = p�1 = 0; ��1 = 0;
Solve for w0 in Kw0 = r0;
s0 = Aw0;
�0 = (r0; w0);�0 = (s0; w0);
�0 = �0=�0;
for i = 0; 1; 2; ::::

pi = wi + �i�1pi�1;
qi = si + �i�1qi�1;
xi+1 = xi + �ipi;
ri+1 = ri � �iqi;
if xi+1 accurate enough then quit;
Solve for wi+1 in Kwi+1 = ri+1;
si+1 = Awi+1;
�i+1 = (ri+1; wi+1); �i+1 = (si+1; wi+1);
�i = �i+1=�i;
�i+1 = �i+1=(�i+1 � �i+1�i=�i);

end;

In this scheme all vectors need only be loaded once per pass of the loop, which leads to
improved data locality. However, the price is 2n extra ops per iteration step. Chronopoulos
and Gear [33] claim the method is stable, based on their numerical experiments. Instead
of 2 synchronization points, as in the standard version of CG, we have now only one such
synchronization point, as the next loop can only be started when the inner products at the
end of the previous loop have been completed. Another slight advantage is that these inner
products can be computed in parallel.

Chronopoulos and Gear [33] propose to further improve the data locality and paral-
lelism in CG by combining s successive steps. Their algorithm is based upon the following
property of CG. The residual vectors r0; :::; ri form an orthogonal basis (assuming exact
arithmetic) for the Krylov subspace spanned by r0; Ar0; :::; A

i�1r0. Given r0 through rj,
the vectors r0; r1; :::; rj, Arj ; :::; A

i�j�1rj also span this subspace. Chronopoulos and Gear
propose to combine s successive steps by generating rj ; Arj; :::; As�1rj �rst, and then to or-
thogonalize and update the current solution with this blockwise extended subspace. Their
approach leads to slightly more ops than s successive steps of standard CG, and also
one additional matrix vector product every s steps. The implementation issues for vector
register computers and distributed memory machines are discussed in great detail in [32].

The main drawback in this approach is potential numerical instability: Depending on
the spectrum of A, the set rj ; :::; A

s�1rj may converge to a vector in the direction of a
dominant eigenvector, or in other words, may become dependent for large values of s. The
authors claim success in using this approach without serious stability problems for small
values of s. Nevertheless, it seems that s-step CG still has a bad reputation [172] because
of these problems. However, a similar approach, suggested by Chronopoulos and Kim [34]
for other processes such as GMRES, seems to be more promising. Several authors have
pursued this direction, and we will come back to this in section 8.3.

58



We consider another variant of CG, in which we may overlap all communication time
with useful computations. This is just a reorganized version of the original CG scheme, and
is therefore precisely as stable. The key trick is to delay the updating of the solution vector.
Another advantage over the previous scheme is that no additional operations are required.
We will assume that the preconditioner K can be written as K = LLT . Furthermore, L has
a block structure, corresponding to the grid blocks, so that any communication can again
be overlapped with computation.

Algorithm 26: Preconditioned Conjugate Gradients - variant 3

x�1 = x0= initial guess; r0 = b� Ax0;
p�1 = 0; ��1 = 0;��1 = 0;
s = L�1r0;
�0 = (s; s)
for i = 0; 1; 2; ::::

wi = L�Ts; (0)
pi = wi + �i�1pi�1; (1)
qi = Api; (2)
 = (pi; qi); (3)
xi = xi�1 + �i�1pi�1; (4)
�i = �i=; (5)
ri+1 = ri � �iqi; (6)
s = L�1ri+1; (7)
�i+1 = (s; s); (8)
if ri+1 small enough then (9)

xi+1 = xi + �ipi
quit;

�i = �i+1=�i;
end;

Under the assumptions that we have made, CG can be e�ciently parallelized as follows:

1. All compute intensive operations can be done in parallel. Only operations (2), (3), (7),
(8), (9), and (0) require communication. We have assumed that the communication
in (2), (7), and (0) can be overlapped with computation.

2. The communication required for the reduction of the inner product in (3) can be
overlapped with the update for xi in (4), (which could in fact have been done in the
previous iteration step).

3. The reduction of the inner product in (8) can be overlapped with the computation
in (0). Also step (9) usually requires information such as the norm of the residual,
which can be overlapped with (0).

4. Steps (1), (2), and (3) can be combined: the computation of a segment of pi can be
followed immediately by the computation of a segment of qi in (2), and this can be
followed by the computation of a part of the inner product in (3). This saves on load
operations for segments of pi and qi.
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5. Depending on the structure of L, the computation of segments of ri+1 in (6) can be
followed by operations in (7), which can be followed by the computation of parts of
the inner product in (8), and the computation of the norm of ri+1, required for (9).

6. The computation of �i can be done as soon as the computation in (8) has been
completed. At that moment, the computation for (1) can be started if the requested
parts of wi have been completed in (0).

7. If no preconditioner is used, then wi = ri, and steps (7) and (0) are skipped. Step
(8) is replaced by �i+1 = (ri+1; ri+1). Now we need some computation to overlap the
communication for this inner product. To this end, one might split the computation
in (4) in two parts. The �rst part would be computed in parallel with (3), and the
second part with �i+1.

8.3 Parallelism and data locality in GMRES

GMRES, proposed by Saad and Schultz [173], is a CG-like method for solving general non-
singular linear systems Ax = b. GMRES minimizes the residual over the Krylov subspace
span[r0; Ar0; A2r0; :::; A

ir0], with r0 = b�Ax0. This requires, as with CG, the construction
of an orthogonal basis of this space. Since we do not require A to be symmetric, we need
long recurrences: each new vector must be explicitly orthogonalized against all previously
generated basis vectors. In its most common form GMRES orthogonalizes using Modi�ed
Gram-Schmidt [95]. In order to limit memory requirements (since all basis vectors must be
stored), GMRES is restarted after each cycle of m iteration steps; this is called GMRES(m).
A slightly simpli�ed version of GMRES(m) with preconditioning K is as follows (for details,
see [173]):

Algorithm 27: GMRES(m)

x0 is an initial guess; r = b�Ax0;
for j = 1; 2; ::::

Solve for w in Kw = r;
v1 = w=kwk2;
for i = 1; 2; :::;m

Solve for w in Kw = Avi;
for k = 1; :::; i orthogonalization of w

hk;i = (w; vk); against v's, by modi�ed
w = w � hk;ivk; Gram-Schmidt process

end k;
hi+1;i = kwk2;
vi+1 = w=hi+1;i;

end i;
Compute xm using the hk;i and vi;
r = b�Axm;
if residual r is small enough then quit
else (x0 := xm;);

end j;
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Another scheme for GMRES, based upon Householder orthogonalization instead of mod-
i�ed Gram-Schmidt, has been proposed in [207]. For some applications the additional
computation required by Householder orthogonalization is paid for by improved numerical
properties: the better orthogonality saves iteration steps. In [205] a variant of GMRES is
proposed in which the preconditioner itself may be an iterative process, which may help to
increase parallel e�ciency.

Similarly to CG and other iterative schemes, the major computations are matrix-vector
computations (with A and K), inner products and vector updates. All of these operations
are easily parallelizable, although on distributed memory machines the inner products in
the orthogonalization act as synchronization points. In this part of the algorithm, one new
vector, K�1Avj , is orthogonalized against the previously built orthogonal set v1, v2, ... ,
vj . In the above algorithm, this is done using Level 1 BLAS, which may be quite ine�cient.
To incorporate Level 2 BLAS we can do either Householder orthogonalization or classical
Gram-Schmidt twice (which mitigates classical Gram-Schmidt's potential instability [172]).
Both approaches signi�cantly increase the computational work and do not remove the syn-
chronization and data locality problems completely. Note that we can not, as in CG, overlap
the inner product computation with updating the approximate solution, since in GMRES
this updating can only be done after completing a cycle of m orthogonalization steps.

The obvious way to extract more parallelism and data locality is to generate a basis
v1, Av1, ..., A

mv1 for the Krylov subspace �rst, and to orthogonalize this set afterwards;
this is called m-step GMRES(m) [34]. This approach does not increase the computational
work, and in contrast to CG, the numerical instability due to generating a possibly near-
dependent set is not necessarily a drawback. One reason is that error cannot build up
as in CG, because the method is restarted every m steps. In any case, the resulting set,
after orthogonalization, is the basis of some subspace, and the residual is then minimized
over that subspace. If, however, one wants to mimic standard GMRES(m) as closely as
possible, one could generate a better (more independent) starting set of basis vectors v1,
y2 = p1(A)v1, ..., ym+1 = pm(A)v1, where the pj are suitable degree j polynomials. Newton
polynomials are suggested in [14], and Chebychev polynomials in [42].

After generating a suitable starting set, we still have to orthogonalize it. In [42] modi�ed
Gram-Schmidt is used while avoiding communication times that cannot be overlapped. We
outline this approach, since it may be of value for other orthogonalization methods. Given
a basis for the Krylov subspace, we orthogonalize by:

for k = 2; :::; m+ 1 :
/* orthogonalize yk; :::; ym+1 w.r.t. vk�1 */
for j = k; :::;m+ 1

yj = yj � (yj ; vk�1)vk�1
vk = yk=kykk2

In order to overlap the communication costs of the inner products, we split the j-loop
in two parts. Then for each k we proceed as follows:

1. compute in parallel the local parts of the inner products for
the �rst group

2. assemble the local inner products to global inner products
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3. compute in parallel the local parts of the inner products for
the second group

4. update yk ; compute the local inner products required for kykk2
5. assemble the local inner products of the second group to global

inner products
6. update the vectors yk+1; :::; ym+1

7. compute vk = yk=kykk2
From this scheme it is obvious that, if the length of the vector segments per proces-

sor are not too small, in principle all communication time can be overlapped by useful
computations.

For a 150 processor MEIKO system, con�gured as a 15 by 10 torus, de Sturler [42]
reports speedups of about 120 for typical discretized PDE systems with 60; 000 unknowns
(i.e., only 400 unknowns per processor). For larger systems, the speedup increases to 150
(or more if more processors are involved) as expected. Calvetti et al [29] report results for
an implementation of m-step GMRES, using BLAS2 Householder orthogonalization, for a
4-processor IBM 6000 distributed memory system. For larger linear systems, they observed
speedups close to 2:5.

9 Iterative Methods for Eigenproblems

The oldest iterative scheme for determining a few dominant eigenvalues and corresponding
eigenvectors of a matrix A is the power method [160]:

Algorithm 28: Power Method

select x0 with kx0k2 = 1
k = 0
repeat

k = k + 1
yk = Axk�1
� = kykk2
xk = yk=�

until xk converges

If the eigenvalue of A of maximum modulus is well separated from the others, then xk
converges to the corresponding eigenvector and � converges to the modulus of the eigenvalue.
The power method has been superseded by more e�cient techniques. However, the method
is still used in the form of inverse iteration for the rapid improvement of eigenvalue and
eigenvector approximations obtained by other schemes. In inverse iteration, the line \yk =
Axk�1" is replaced by \Solve for yk in Ayk = xk�1". Most of the computational e�ort will
be required by this operation, whose (iterative) solution we discussed in section 8.

All operations in the power method are easily parallelizable, except possibly for the
convergence test. There is only one synchronization point: xk can be computed only after
the reduction operation for � has completed. This synchronization could be avoided by
changing the operation yk = Axk�1 to yk = Ayk�1 (assuming y0 = x0). This means �
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would change every iteration by a factor which converges to the maximum modulus of the
eigenvalues of A, and so risks overow or underow after enough steps.

The power method constructs basis vectors xk for the Krylov subspace determined by
x0 and A. It is faster and more accurate to keep all these vectors and then determine
stationary points of the Rayleigh quotient over the Krylov subspace. In order to minimize
work and improve numerical stability, we compute an orthonormal basis for the Krylov
subspace. This can be done by either short recurrences or long recurrences. The short
(3-term) recurrence is known as the Lanczos method. When A is symmetric this leads to an
algorithm with can e�ciently compute many, if not all, eigenvalues and eigenvectors [160].

In fact, the CG method (and Bi-CG) can be viewed as a solution process on top of
Lanczos. The long recursion process is known as Arnoldi's method [5], which we have seen
already as the underlying orthogonalization procedure for GMRES. Not surprisingly, a short
discussion on parallelizing the Lanczos and Arnoldi methods would have much in common
with our earlier discussions of CG and GMRES.

9.1 The Lanczos method

Our version of the Lanczos algorithm is a slightly changed version of a scheme presented
in [160] (the change has been made in order to remove one synchronization point: in the
original scheme rk�1 is scaled by �k�1 before computing Ark�1):

Algorithm 29: Lanczos's Method

select r0 6= 0; q0 = 0
k = 0
repeat

k = k + 1
�k�1 = krk�1k2
uk = Ark�1
qk = rk�1=�k�1
sk = uk=�k�1 � �k�1qk�1
�k = (qk; sk)
rk = sk � �kqk

until the eigenvalues of Tk converge (see below)

The qk 's can be saved in secondary storage (they are required for backtransformation of
the so-called Ritz vectors below).

The �m and �m, for m = 1; 2; :::; k, form a tridiagonal matrix Tk:

Tk =

0
BBBBB@

�1 �1
�1 �2 �2

�2 � �
� � �k�1

�k�1 �k

1
CCCCCA :

The eigenvalues and eigenvectors of Tk are called the Ritz values and Ritz vectors, respec-
tively, of A with respect to the Krylov subspace of dimension k. The Ritz values converge
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to eigenvalues of A as k increases, and after backtransformation with the qm's, the corre-
sponding Ritz vectors approximate eigenvectors of A. For improving these approximations
one might consider inverse iteration.

The parallel properties of the Lanczos scheme are similar to those of CG. On distributed
memory machines we cannot hide the synchronization point caused by the reduction oper-
ation for �k. The communication for the reduction for computing �k�1 can be overlapped
with computing Ark�1. The Ritz values and Ritz vectors can be computed in parallel by
techniques discussed in section 6. For small k there will not be much to do in parallel, but
we also need not compute the eigensystem of Tk for each k, nor check convergence for each
k. An elegant scheme for tracking convergence of the Ritz values is discussed in [161]. If

the Ritz value �
(k)
j , i.e. the j-th eigenvalue of Tk, is acceptable as an approximation to some

eigenvalue of A, then an approximation e
(k)
j to the corresponding eigenvector of A is given

by

e
(k)
j = Qky

(k)
j ; (4)

where y
(k)
j is the j-th eigenvector of Tk, and Qk = [q1; q2; :::; qk]. This is easy to parallelize.

As with CG, one may attempt to improve parallelism in Lanczos by combining s steps
in the orthogonalization step. However, the eigensystem of Tk is very sensitive to loss of
orthogonality in the qm vectors. For the standard Lanczos method this loss of orthogonality
goes hand in hand with the convergence of Ritz values and leads to multiple eigenvalues of
Tk (see [155, 160]), and so can be accounted for, for instance by selective reorthogonalization
for which the converged Ritz vectors are required [160]. It is as yet unknown how rounding
errors will a�ect the s step approach, and whether that may lead to inaccurate eigenvalue
approximations.

9.2 The Arnoldi method

The Arnoldi algorithm is just the orthogonalization scheme we used before in GMRES:

Algorithm 30: Arnoldi's Method

w is an initial vector with kwk2 6= 0;
v1 = w=kwk2;
k = 0;
repeat

k = k + 1;
w = Avk ;
for i = 1; :::; k orthogonalization of w

hi;k = (w; vi); against v's, by modi�ed
w = w � hi;kvi; Gram-Schmidt process

end i;
hk+1;k = kwk2;
vk+1 = w=hk+1;k;

until the eigenvalues and eigenvectors converge
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The elements hi;j computed after k steps build an upper Hessenberg matrix Hk of
dimension (k+ 1)� k. The eigenvalues and eigenvectors of the upper k � k part �Hk of Hk

are the Ritz values and Ritz vectors of A with respect to them dimensional Krylov subspace

generated by A and w. The Ritz values �
(k)
j of �Hk converge to eigenvalues of A, and the

corresponding Ritz vectors y
(k)
j can then be backtransformed to approximate eigenvectors

of ej of A via

ej = Vky
(k)
j ;

where Vk = [v1; v2; :::; vk]. The parallel solution of the eigenproblem for a Hessenberg matrix
is far from easy, for a discussion see section 6. Normally it is assumed that the order n of
A is much larger than the number of Arnoldi steps k. In this case it may be acceptable
to solve the eigenproblem for Hk on a single processor. In order to limit k, it has been
proposed to carry out the Arnoldi process with a �xed small value for k, and to repeat the
process, very much in the same manner as GMRES(k). This process is known as subspace
iteration, a generalization of the power method. For a description, as well as a discussion
of its performance on the Connection Machine, see [162].

A di�erent approach for computing an invariant subspace of order k, based on Arnoldi's
process, is discussed in [186]. Here one starts with k steps of Arnoldi to create an initial
approximation of the invariant subspace of dimension k corresponding to k desired eigen-
values, say the k largest eigenvalues in modulus. Then this subspace is repeatedly expanded
by p new vectors, using the Arnoldi process, so that the k+p vectors form a basis for a k+p

dimensional Krylov subspace. This information is compressed to the �rst k vectors of the
subset, by a QR algorithm which drives the residual in the projected operator to a small
value, using p shifts (usually the p unwanted Ritz values of the projected operator). If this
expansion and compression process is repeated i times, then the computed k dimensional
space will be a subset of the k + i � p dimensional Krylov subspace one would get without
compression. The hope is that by compressing well, the intersection of the desired invariant
subspace with the �nal k dimensional subspace is close to the intersection with the larger
k + i � p dimensional subspace. The bene�t of this method is in limiting storage and time
spent on the projected Hessenberg eigenproblems to depending on k, rather than k + i � p.
In this approach the eigendecomposition of the projected Hessenberg matrices is still the
hardest step to parallelize.

We do not know of successful attempts to combine s successive Krylov subspace vectors
v, Av, A2v, ..., As�1v (as was proposed in combination with GMRES). In the case of
subspace iteration numerical instability may not be as severe as for the Lanczos process.
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