
Copyright © 1992, by the author(s).

All rights reserved.

Permission to make digital or hard copies of all or part of this work for personal or
classroom use is granted without fee provided that copies are not made or distributed

for profit or commercial advantage and that copies bear this notice and the full citation
on the first page. To copy otherwise, to republish, to post on servers or to redistribute to

lists, requires prior specific permission.

ALGORITHMS FOR HIGH LEVEL SYNTHESIS:

RESOURCE UTILIZATION BASED APPROACH

by

Miodrag M. Potkonjak

Memorandum No. UCB/ERL M92/10

28 January 1992

ALGORITHMS FOR HIGH LEVEL SYNTHESIS:

RESOURCE UTILIZATION BASED APPROACH

Copyright© 1991

by

Miodrag M. Potkonjak

Memorandum No. UCB/ERL M92/10

28 January 1992

ELECTRONICS RESEARCH LABORATORY

College of Engineering
University of California, Berkeley

94720

ALGORITHMS FOR HIGH LEVEL SYNTHESIS:

RESOURCE UTILIZATION BASED APPROACH

Copyright © 1991

by

Miodrag M. Potkonjak

Memorandum No. UCB/ERL M92/10

28 January 1992

ELECTRONICS RESEARCH LABORATORY

College of Engineering
University of California, Berkeley

94720

ALGORITHMS FOR HIGH LEVEL SYNTHESIS:

RESOURCE UTILIZATION BASED APPROACH

by

Miodrag Potkonjak

ABSTRACT

This thesis presents a new high level synthesis system, HYPER. HYPER uses a

single, global quality measure, called the resource utilization measure, to drive the

design space exploration process. This unique approach effectively merges the alloca

tion, assignment, scheduling, transformations, and estimation with hierarchy handling in

an unified manner.

Three HYPER pans are discussed: estimations, hierarchical graph allocation,

assignment and scheduling and transformations. New transformation environment has

been developed. Several new transformations (including retiming and associativity, soft

ware pipelining and software retiming, commutativity, and very fast implementation of

recursive programs), based on a novel learning while searching and anti-voter rejection-

less techniques, are introduced.

The effectiveness of the proposed algorithms is demonstrated in multiple ways:

using standard benchmarks examples, with the aid of statistical analysis and through a

comparison with estimated minimal bounds. Sharp minimal bounds based on a discrete

relaxation technique are used.

ACKNOWLEDGMENTS

Ever since I started my Ph.D. studies I regularly went through many thesis. Regardless of

the vast variety of topics, the quality of results, the sizes and styles of presentation, applied and

developed techniques, I was, by far, most puzzled by acknowledgment sections.

Many of them where long, and there were so many acknowledgments to so many persons,

that it seems the only plausible conclusion is that the author actually did nothing, but collected

work and ideas of many people. Or, that actuallythe authordid a little bit something, but it was

not of the greatest quality, andtherefore shouldbe backed with scoresof"big names".

I am still going through various thesis and I am still most puzzled by acknowledgments.

But what now puzzles me is no longer the size of acknowledgments. I have now realized that

PhD research work is very difficult to be pursued in isolation and that a close interaction with

other researches is almost prerequisite for a high quality work. What troubles me now is why

majority of acknowledgments are so impersonal, almost as rewritten from some template, with

appropriate insertion of names.

Anyhow, now is time that I write my Ph.D. acknowledgment. After reading it, maybe

somebody will get someof just described impressions. Hopefully, the restof the thesis will dis

miss the doubts about the quality of technical contributions. And the rest of the acknowledg

ments maybe will not provide the most flattering viewpoint on my personality, but it is the

accurate one.

First of all, I would liketo thank my research adviser Prof. Jan Rabaey. He was supporting

me, when I waswriting "messy" code, whenI was far behind any reasonable schedule, when I

was not working because of midterms, final exams, prelims, because I was tired, "depressed",

busy playing computer games (chess), or even because of my creative reasons such as "just

being lazy". He was supportive even when I was making progress (at least I was thinking so) and

bragged too much, too long. He did not just share his research vision, new ideas, and technical

knowledge (UC Berkeleyspoiled me somuch,that I took this forgranted), but also, whenever it

was necessary he debugged my code, wrote missing parts, translated from "Serbo-Croatian

English" and "German English" to literate English, and made numerous counter-examples for

my "new excellent" concepts and algorithms. He even survived some of my "ultimate" solutions

for non-solvable problems. What to say now? Thank you, Jan. It has been a pleasure working

with you.

If Prof. Bob Brodersen did not gave me a researcher assistantship before I arrived at Ber

keley, most likely I would not attend this wonderful school. He also invited me to BJgroup

(research group headed by Profs. Bob Brodersen and Jan Rabaey). Professors Bob Brayton and

Leo Breiman served on my qualifying exam committee, as well as being the thesis readers, and

taught me some of the most exciting topics in CAD and statistics. ProfessorDavid Messershmit

servedon my qualifyingexam committee.Everybody who knows how busy Berkeley professors

are, will understand why I appreciate their"volunteering". I would like to thank all of them and

many other Berkeley professors who taughtme fascinating topics in fascinating manner.

BJgroupprovided a friendly and inspiring environment for study, research and even fun. I

am grateful to all members of the group. I like to give special "thank you" to two special per

sons. Phu Hoang, who not only wrote many programs which where necessary for the success of

my research, but has also been all the time a true friend. In the last couple of years, Anantha

Chandrakasan was my favorite "conversation partner". He was the one of the first ones to use the

HYPER tools and provided the most valuable feedback and some nice layouts which I included

here. Also, discussions with him provided new interestingdirections forhigh level synthesis and

algorithm applications. Thank you, Phu. Thank you, Anantha.

My sister and parents, although thousand of miles away from Berkeley, always provided

the most valuable moral support and cheering.

Last, but by no means least, I would like to thank Nada Aleksic. She helped me with

almost all aspects of a graduate student life, including preparing posters, reports, papers (and in

particular figures for papers), and this thesis. (Actually for the sake of truth, this sentence should

be rephrased to "I helped her to prepare many of my posters, reports,..."). She also helped me to

handle all the stress of graduate studies. And most importantly, she was the person who most and

unlimitedly believed in me regardless of occasional temporary local minima. Thank you, Nada.

CONTENTS

1.0 INTRODUCTION 1

1.1 INTRODUCTION 1

12 OVERVIEW OF THE THESIS 3

1.2.1 Implementation Complexity Prediction of Signal Processing ASICs 3

1.2.2 Allocation, Assignment and Scheduling Algorithms 5

1.2.3 Behavioral Transformations for the Synthesis 6

1.2.4 Probabilistic Rejectionless Anti-Voter Algorithm 12

1.2.5 Conclusion and Future Research 12

2.0 HYPER - HIGH LEVE SYNTHESIS SYSTEM FOR NUMERICALLY

INTENSIVE APPLICATIONS 13

2.1 INTRODUCTION 13

2.2 THE HYPER SYNTHESIS ENVIRONMENT 14

2.3 BEHAVIORAL SPECIFICATION 21

2.4 MODULE SELECTION 22

2.5 HARDWARE MAPPING 23

2.6 CONCLUSION 24

3.0 ESTIMATING IMPLEMENTATION BOUNDS FOR REAL TIME

APPLICATION SPECIFIC CIRCUITS 25

3.1 INTRODUCTION 25

3.1.1 Previous Work 27

3.1.2 Global Framework 30

3.2 ESTIMATING THE MAXIMUM BOUNDS 33

3.2.1 Max Bounds on Execution Units 33

3.2.2 Max Bounds onConnectivity andRegisters 37

3.3 ESTIMATING THE MINIMUM BOUNDS 39

11

3.3.1 Min Bounds on Execution Units - Leaf Graphs 40

3.3.2 Min Bounds on Execution Units - Hierarchical Graphs 46

3.3.3 Min Bounds on Interconnect and Registers 49

3.3.4 Other Relaxation Approaches 52

3.4 APPLICATIONS 54

3.4.1 Algorithm and Architecture Selection 55

3.4.2 Module Selection 56

3.4.3 Transformations 57

3.4.4 Design SpaceExploration - Allocation 58

3.4.5 Assignment andScheduling 59

3.4.6 Synthesis Algorithm Validation 60

3.5 FUTURE WORK 60

3.6 CONCLUSION 61

4.0 ALLOCATION, ASSIGNMENT AND SCHEDULING ALGORITHMS
FOR HIERARCHICAL CONTROL DATA FLOW GRAPHS 62

4.1 PROBLEM DESCRIPTION 62

4.1.1 Previous Work and New Issues 63

4.1.2 Problem Formulation 65

4.1.3 Solution Organization and Strategies 67

4.1.4 Chapter Organization 69

4.2 ASSIGNMENT 69

4.2.1 Objective Function 70

422 Probabilistic Rejectionless AssignmentAlgorithm(Phase 1) 73

4.2.3 Assignment Evaluation usingRelaxed Scheduling(Phase 2) 74

4.2.4 Assignment Effectiveness 76

4.3 SCHEDULING 76

4.3.1 ConstructiveProbabilistic Scheduling Algorithm 78

4.3.2 RegisterBinding and Estimation 80

4.3.3 SchedulingAlgorithmComplexity 81

4.4 LEAF GRAPH SCHEDULING AND ASSIGNMENT CONTROL MECHANISM... 81

4.5 HIERARCHICAL HARDWARE ALLOCATION 82

4.5.1 Leaf GraphTime Allocation 83

4.5.2 Global Hardware Allocation 84

4.6 EXPERIMENTAL RESULTS 85

4.6.1 Estimation86

4.62 Diverse Examples 88

4.6.3 Robust Parameters 89

Ill

4.6.4 TheEffectiveness of Algorithms 90

4.7 CONCLUSION 91

5.0 BEHAVIORAL TRANSFORMATIONS FOR THE SYNTHESIS OF

HIGH PERFORMANCE DSP SYSTEMS 92

5.1 INTRODUCTION 92

5.2 RETIMING AND ASSOCIATIVITY 93

5.2.1 Introduction 93

5.2.2 Objective Function 100

5.2.3 Learning While Searching Algorithm 103

5.2.4 Experimental Results 107

5.2.5 Transformation Properties 115

5.2.6 Conclusion 124

5.3 PIPELINING 125

5.3.1 Introduction 125

5.3.2 Problem Formulation 128

5.3.3 The Computational Complexity of Pipelining 132

5.3.4 Experimental Results 136

5.3.5 Conclusion 138

5.4 COMMUTATIVITY 140

5.4.1 Introduction 140

5.4.2 Objective Function 142

5.4.3 Commutativity is NP-complete Problem 146

5.4.4 Probabilistic Rejectionless Anti-voter Algorithms 148

5.4.5 Properties of the Solution Space 150

5.4.6 Conclusion 150

5.5 FAST IMPLEMENTATION OF RECURSIVE PROGRAMS USING

TRNASFORMATIONS 151

5.5.1 Introduction 151

5.5.2 Computational Complexity 157

5.5.3 Fast Implementation of Recursive Programs using Transformations:
Procedure 160

5.5.4 Procedure Properties 165

5.5.5 Conclusion and FutureWork 166

5.6 CONCLUSION AND FUTUREWORK 167

6.0 PROBABILISTIC REJECTIONLESS ANTI-VOTER (PRAV)
OPTIMIZATION ALGORITHM 168

6.1 INTRODUCTION 168

IV

6.2 NP-COMPLETE PROBLEMS 169

6.2.1 Graph Partitioning 171

6.2.2 Graph Coloring 172

6.2.3 Independent Set 172

6.2.4 Traveling Salesman Problem 173

6.3 ALGORITHMS FOR NP-COMPLETE COMBINATORIAL PROBLEMS 174

6.4 DESCRIPTION OF THE NEW ALGORITHM 175

6.5 EXPERIMENTAL RESULTS 177

6.5.1 Random Graph (GN) 177

6.5.2 Geometric Graphs (UN) 178

6.5.3 Large Random and Geometric Random GraphsGeneration 178

6.5.4 Experimental Results 180

6.6 PROPERTIES OF THE PRAV ALGORITHM 182

6.6.1 Convergence 182

6.6.2 Rejectionless 183

6.7 CONCLUSION 184

7.0 CONCLUSION 185

7.1 SUMMARY 185

7.2 RELATED PROBLEMS 186

7.2.1 Compilers for ConcurrentArchitectures 187

7.2.2 Complex Hierarchical Problems 187

7.2.3 CombinatorialOptimization Algorithms 188

7.2.4 Estimations and Predictions in other CAD and Optimization Areas 188

7.3 FUTURE RESEARCH 188

7.3.1 A Background Memory and Input/OutputOptimization 189

7.3.2 Design for Low Power 191

7.3.3 Structured Benchmarks for Scheduling and Assignment 193

7.3.4 Design Style, Architecture and Algorithm Matching 195

7.3.5 Algorithm Design for Efficient Implementation 196

7.4 CONCLUSION 200

8.0 REFERENCES 201

INTRODUCTION

1.1 INTRODUCTION

During last three decades the number of devices in an integrated circuit has increased dra

matically. The minimum feature size shrunk 11 percent per year, chip area increased 19 percent

per year, and packing efficiency improved 2 times per decade [Bak90]. As the result, today

multi-million transistor integrated circuits are widely available. It is imminent that further design

complexity improvement will be achieved in future.

Although, the speed of the uniprocessor has grown, it is also approaching its limits. If not

for technical and fundamental physics limit issues, then definitely for commercial ones. With the

advent ofmultichip modules and further differentiation ofmemory hierarchies, exploiting con

currency becomes simultaneously both averyimportant as wellas adifficult task.

2

Today thereis a consensus thatcomputer aided design tools are unavoidable in the design

of high performance high complexity computing devices. The obvious, but necessary, require

ment for the applicationof a new CAD tool, is that it performs as well or better than a human

designer. The primaryvehicle to achieve such CAD tools arenew concepts andnew algorithms.

The processof the design of integrated circuits from architecture primitive specifications

(execution units, memory units, interconnects and controller structure) is relatively well under

stood. High quality tools are readily available [Shu91, Gaj87]. However, the algorithm and

architecture design from application descriptions still remains a difficult task. This problem is

particularly acute, when there is a need for a high level of parallelism.

The parallelism exploration for fixed hardware configurations is already a very difficult

problem. Even for well understood problems, resourceutilization is rarely higher than 5 to 10%

[Don91]. However for custom hardware,new degrees of freedom in the selection and allocation

of hardware make the problem even many times more difficult.

Therefore, we can conclude that the path from the high level specification of an applica

tion specific design to the implementation in architectural primitives is long and complex. It

involves a multitude of interrelated problems, including the selection of clock frequency and

hardwaremodule set, partitioning,transformations, resourceallocation,assignment and schedul

ing and hardware mapping. All those problems are computationally very complex, especially

when posed with all constraints and all aspects imposed by real-life problems.

In the last decade, an impressive effort and significant progresshas been made in the area

of high level synthesis [McF91, Cam91]. There are a number of systems which provide a more

or less convenient way for the automatic synthesis of relatively small designs. The application of

optimizations is however often limited and local.The major features which distinguish HYPER

from other high level synthesis systems are the organized application of transformations, an

3

extensiveuse of sharpestimation techniques, and a globalsearch optimizationmechanism orga

nized through a system manager.

The research presented in this thesis got its impetus from the requirements for extensive

optimization as required in HYPER. The thesis has two goals: to present the algorithms which

have been integrated in the HYPER high level synthesis system, as well as to discuss some of

those algorithms as generic optimization techniques.

1.2 OVERVIEW OF THE THESIS

The thesis is organized in the following way. Chapter 2 describes the high level synthesis

system HYPER andits software anddesign flow architecture. Also, in orderto provide complete

HYPER picture, parts contributed by other HYPER researchers, namely the Silage Translator,

Behavioral Simulation, Module Selection andHardware Mapping, are briefly described.

Themajor technical contributions of this thesis: estimations, hierarchical graph allocation,

assignment and scheduling as well asseveral transformations arepresented in Chapters 3,4 and

5. Chapter 6 provides a different, more global viewpoint, describing a novel probabilistic rejec

tionless anti-voter algorithm. A summary of all those contributions will bepresented in the rest

of this introduction. Finally inChapter 7, we will draw some conclusions and outline possibili

ties for further research.

1.2.1 Implementation Complexity Prediction of Signal Processing ASICs

Inthe design space exploration phase of the behavioral synthesis process (as conducted in

the HYPER system), two types of information can be used to steer the design solution space

search: feedback and prediction. While feedback information is obviously more precise, it is

often computationally expensive, since it requires full cycle through the design process. There

fore, prediction tools are essential. Many other attractive applications for the use of prediction

4

can be defined, such as the design of high level synthesis algorithms (e.g. scheduling, assign

ment, transformations), objective function definition, and benchmark design.

The complexity of a signal processing algorithm is usually expressed by the number of

operations executed during the algorithm. Very often, a significant emphasis is placed on the

numberof multiplications. However, such measures are poorpredictors of the ASIC implemen

tation cost of the algorithm. For example, important parameters such as the memory and inter

connect requirements as well as the critical path of the algorithm are neglected.

In the Chapter 3, the following implementation complexity prediction problem is

addressed: Given an arbitrary real time signal processing algorithm represented by its control

data flow graph, determine sharpminimum and maximum bounds on its implementation cost in

terms of the required number of execution units, interconnect and memory.

Two crucial properties determine the success of prediction tools: the accuracy and the low

computational cost. For example, a computationally efficient minimum bound on the required

number of executional elements can be obtained by observing that, given a number of resources

of class Ri (Njh), at most NRi x tmax/LRi operations can be performed on those resources

(with LRi the length of a single operation). The required number of operations (0Ri) can be easily

derived from the controldata flow graph, resulting in the following lower bound on Afo:

°RixLRi
"Ri>

*max

Much more sophisticated and sharper lower bounds can be derived using approach pre

sented in Chapter 3. In HYPER, we have established techniques to accurately predict both max-

and min-bounds on the different hardware resources, based on a so called discrete relaxation

technique. The relaxation approach turns an NP-complete problem into a polynomial one by

5

relaxing some of the constraints. Then the optimum solution for the polynomial complexity

problem can be used as a bound for the initial NP-complete problem.

For instance, the number of adders needed to implement a given algorithm can be accu

rately estimated by scheduling only the additions and temporarily ignoring precedence relation-

ships between the operations. This problem can be optimally solved in 0(N) time. The

Chapter3 presents a spectrum of possibilities, for relaxing the scheduling and assignment prob

lem into a variety of problems of polynomial complexity.

1.2.2 Allocation, Assignment and Scheduling Algorithms

Scheduling is defined as the task, which decides in which control step a given operation

will happen. Assignment determines onwhich particular execution unit agiven operation will be

realized, from which register it will request data and where it will send the result using which

connection. Resource allocation is closely related to the above tasks: it reserves the amount of

hardware (interms ofexecution units, memory registers and interconnect) necessary forthe real

ization. It might also set the allotted time, available for the execution of the algorithm. Obvi

ously, those three tasks areinterdependent

Almost all scheduling and assignment problems, even when posed in a highly restricted

form, are atleast NP-complete. Although high level synthesis isa relatively young area there are

numerous approaches towards solving those problems. Those approaches can becategorized in

several groups: manual and brute force approaches, various heuristics which use as soon as pos

sible (ASAP) and as late as possible (ALAP) scheduling to obtain aglobal picture ofthe solution

space, integer programming, various probabilistic approaches (e.g. simulated annealing and neu

ral nets) and continuous relaxation techniques (e.g. linear programming and gradient methods).

6

There exist more than 70 publishedapproaches, but some aspectsof the problem have not

been adequately addressed. First of all, in VLSI technology it is essential to simultaneously

address all three components of the cost function (being the number of execution units, memory

registers and interconnect). Very few scheduling and assignment algorithms are doing this. Fur

thermore, it is necessary to consider during the scheduling not only the structure of the control

data flow graph but also the available hardware and its properties. It is obvious that scheduling

for two different technologies which, for example, have different hardware cost for the same

functional unit, can be drastically different. Thirdly, it is important that, once a hardware unit has

been selected, the utilization of that device should be maximized during the assignment and

scheduling phases.

A major conceptual difference relative to publishedscheduling and assignment algorithms

is that we first do assignment and then scheduling. We succeeded to characterize a possible

assignment with a simple quality measure, which predicts the changes to find a successful sched

ule for this assignment. Once an assignment is accepted, scheduling is performed using the

resource utilization as a priority function. We are always trying to schedule first those operations

which relax constraints on critical resources (execution unit, interconnect, or register). A critical

resource is a resource which is in large demand and short supply. (Due to precedence and timing

constraints some resources can not be used during some control cycles)

The algorithms have been tested on a wide variety of examples, and performed better or at

least as good as other algorithms using only a fraction of the time required by those algorithms.

A detailed description of the techniques can be found in the Chapter 4.

1.2.3 Behavioral Transformations for the Synthesis

To solve a given DSP computational problem, one can use a large number of algorithms.

Often any one of these algorithms can lead to several implementations, each with vastly different

7

execution times, hardware requirements, power constraints, testability and other parameters of

interest. The selection of the algorithm best suited for the optimization of those objectives is a

crucially important task in the design process of high performance DSP ASICs. An equally

important task is to ensure that the potentials of a given algorithm are maximized. This is

achieved through the application of optimizing transformations, lb maximize effectiveness it is

crucial that transformations will be globally optimized.

Transformations are changesin controldata flow graph structure which improve the final

implementation, without altering the input-output relationships. Most of the behavioral transfor

mations have been introduced in the field of software compilers. They include constant arith

metic, common subexpression elimination and value numbering. The most important among

them are the loop transformations, such as loop retiming, software pipelining, loop jamming,

partial and complete loop unrolling and strength reduction. Those areespecially suitable forreal

time systems, in which a program always contains an infinite loop over time and concurrency

can be exploited more efficiently. Although a majority of those transformations are wellknown

from the software compiler literature, an attempt to apply them tohigh level synthesis poses spe

cific challenges. Furthermore, two additional degrees offreedom can be observed: hardware par

allelism and hardware definition. Chapter 5 describes the application of several transformations

in a high level synthesis environment: retiming, pipelining, software retiming and pipelining,

commutativity and fast implementation of recursive programs. They are briefly introduced bel

low.

1.2.3.1 Retiming for synthesis

Retiming is a conceptually simple and powerful transformation which has been success

fully applied inseveral areas ofdesign synthesis and automation. The goal ofthe retiming trans

formation is to move delays (which can be either clocked delays in a circuit or algorithmic

delays in a behavioral flow graph, depending upon application) such that a certain objective

8

function is optimized.Until recently, the objective function has beenexclusively the critical path

or the numberof delaysin a graph or a circuit. However, the potential of retimingis significantly

higher. We have developed a new formulation, this time targeted towards behavioral synthesis:

given a signal flow graph, retime it in a such a way that the resulting signal flow graphwill have

a minimum hardware cost, while still satisfying all timing constraints. Since, the implementation

with minimum cost has the most efficient resource utilization we call this transformation: retim

ing for efficient resource utilization.

While the traditional retiming optimization problem is of polynomial complexity, we

proved that retiming for efficient resource utilization is an NP-complete problem. In order to

maximize the effectiveness of retiming, we combined it with associativity. We also developed a

probabilistic algorithm for efficient resource utilization algorithm [Pot89a, Pot91a]. The algo

rithm has been tested on a number ofexamples. Those examples show the distinctive advantage

in high level synthesis of retiming for scheduling over retiming for minimal critical path.

Another major advantage of the proposed algorithm is that other transformations, such as asso

ciativity, pipelining and software pipelining, can be easily combined with the retiming operation.

We continue the investigation for fartherimprovements in algorithm performance and additional

generalization of the retiming operation.

1.2.3.2 Pipelining

Pipelining is probably the most often used technique for throughput improvement in ASIC

design. Despite its popularity, pipelining is also the transformation which is most often incor

rectly applied. For example, a number of authors are ignoring constraints imposed by recursion

in computation. Also, pipelining almost always has a side effect, namely an increased demand

for registers. Since the cost of registers is of the same order of magnitude as for example an

adder (1/3 to 1/2 of the areacost), savings in execution units can be wasted due to memory over

head.

9

Pipelining can be defined as a retiming where additional delays are available on all input

or output edges. Once pipelining is formulated in a such manner the perception often emerges,

that pipelining is hardly different then retiming with an increased number of delays. However,

the increased number of delays, and their initial location on input (or output) edges impose

important demands on optimization algorithm. There are two major questions: to what extent to

pipeline an algorithm, and what is the ultimate pipelining potential. Those two questions are dis

cussed in the pipelining section. Again, numerous empirical results are presented.

Retiming and pipelining are based on exploration of parallelism in a loop over time. Of

course, they can be applied also when the source of parallelism is a program control loop. In this

casepipelining is mostoftencalled software pipelining [Lam88, Lam89]. Although the retiming

and pipelining algorithms can alsohandle software retiming and pipelining, in the later case it is

important to take into account thetransformation overhead, especially when thenumber of loop

iteration is small.

12.33 Commutativity

Commutativity is probably the most widely known and the simplest control data flow

graph transformation. However, unfortunately, commutativity is only conceptually a simple

transformation. In Chapter 5, it is proven that even in a very restricted case when there is only

one type ofoperation incontrol data flow graph which possesses the commutativity property, the

optimal application of commutativity for themaximization of resource utilization is an NP-com

plete optimization problem.

It isobvious that the application ofcommutativity can result insavings in required number

ofregisters and interconnect. InChapter 5,it isalso shown that indirectly it can also improve the

resource utilization ofthe execution units. Although commutativity does not result inasa spec

tacular design improvement, as produced by some other transformations, itsusefulness isampli-

10

fied by two facts: (1) it has a broad range of applications (it is applicable not only on additions

and multiplications,but also on and, or,maxand min operations), and (2) its application is to the

greatest extent orthogonal to the effects of other transformation, so that it can be applied as the

last transformation before allocation, assignment and scheduling without a negative influence on

the effectiveness of other transformations.

Commutativity is especially interesting as an optimization problem. It is straightforward

to enumerate the size of the solution space: when we have n commutative operations in the con

trol data flow graph, there exist 2ndifferent possible solutions. Also, the topology of the solution

space is exceptionally well structured: it is an n-dimensional cube. Furthermore, it is easy to

show when all operations are commutative that the solution space is symmetric. All those prop

erties make the commutativity for resource utilization an excellent testbed for the study of com

binatorial optimization algorithms. The commutativity section in Chapter 5 is concluded by a

more elaborate study ofcommutativity from an optimization viewpoint.

1.2.3.4 Fast implementation of arbitrary recursive programs

Signal processing applications often tend to push the throughput requirements to the edge

of what can be possibly achieved for a given algorithm. Reaching the throughput requirements

(while still keeping the hardware cost in reign) is then the most important optimization goal.

When the algorithm at hand does not display any recursion (feedback), this goal can be

achieved by pipelining the algorithm to the extent needed. One should, however, be aware that

over-pipelining should be avoided, as (as mentioned higher) registers have a non-ignorable hard

ware cost The optimal positioning of the pipeline registers can be easily determined using the

pipelining for resource utilization transformations, which determines the position of the registers

in a such a way that the estimated hardware cost is minimized, while still meeting the throughput

constraints.

11

Most of the signal processing algorithms however have internal recursion. Examples of

such programs includeboth relatively simplecases, such as infiniteresponse andadaptive filters,

andmore complex ones, such as systems solving non-linearequations and adaptive compression

algorithms. Graphs involving recursionsdisplay an upper bound on the computation rate, called

the pipeline stage bound. This pipeline stage bound is given by T > = max The

maximum is taken over all loops /, Tt is the sum of the computations times of allnodes in loop /,

and NDt is the number ofdelay elements in loop / [Mes88].

Several researchers addressed some special program instances (e.g. IIR filters) and

achieved a significant progress in reducing the pipeline stage bound [Mes88, Par89a, Par89b,

Lin91, Fet90]. Our goal is to find an approach that willautomatically transform arbitrary recur

sive programs into a form wherethe pipeline stage bound is reduced to a minimum. This canbe

achieved in a dual way: reducing T, by applying algebraic transformations (associativity, com

mutativity and distributivity) and increasing ND{ by moving delays (retiming). The latter taskis

non-straightforward and requires partial unrolling of theouter loop.

It is interesting to notethat when onlyretiming oronly algebraic transformations are used,

the problem can be explicitly solved. Leiserson and Saxe developed a polynomial algorithm for

retiming for critical path [Lei83]. Valiant [Val83] and Miller [Mil88] described efficient algo

rithms for thereduction of expression-tree height when onlyalgebraic transformations are used.

Although they primarily discuss the algebraic transformations, for the case where the computa

tional structure is a ring, the results are valid for many instances of fields as well. We have

proven however that, when both types of transformations are combined, the problem becomes

NP-complete (even for avery restricted formulation of the problem, where the flow graph only

contains additions and delays).

12

A simple and efficient algorithm for fast implementation of recursive programs is dis

cussed in Chapter 5. The effectiveness of thisapproach is illustrated on several examples.

1.2.4 Probabilistic Rejectionless Anti-Voter Algorithm

While all other chapters of this thesis are mainly involved with high level synthesis prob

lems, and the HYPER system, Chapter 6 has a different scope and a more general view.

Several new algorithms are proposed and used for solving high level synthesis tasks in

HYPER, including learning while searching and partial relaxation. It seems that all of them are

rather general optimization techniques. While during development of the HYPER system, the

major accent was on the development of fast, high performance custom algorithms for specific

tasks, this Chapter is devoted to the in depth exploration of the novel algorithms.

We discuss one of them, the Probabilistic Rejectionless Anti-\bter (PRAV) algorithm in

much more detail. While in HYPER it is used in the commutativity and in the assignment sub

routine, we discuss its application to generic NP-complete problems in this Chapter. For one

problem from this class, graph partitioning, we present empirical results and a comparison with

other general purpose hill-climbing approaches, such as simulated annealing and Kemighan-Lin

iterative improvement technique.

1.2.5 Conclusion and Future Research

In this Chapter we will draw some conclusions and briefly discuss the relationship of pre

sented techniques with other research areas. Some directions for further research will be out

lined. This includes ASIC background memory and I/O design and optimization, design for low

power, benchmark design and algorithms architecture and algorithms selection and algorithm

design.

HYPER - HIGH LEVE SYNTHESIS

SYSTEM FOR NUMERICALLY

INTENSIVE APPLICATIONS

2.1 INTRODUCTION

Due to the excessive computational requirements of many tasks in Digital Signal Process

ing (DSP) applications (such as sonar, radar, speech, image, video processing and numerical

algebra and analysis based computations), special purpose hardware is often needed for their

implementation. In order to reduce the time to market, substantial efforts have been devoted in

the lastdecade to automatically generate this type of implementations from higherlevel specifi

cations. Silicon compilation, which automatically map an architectural description into silicon

(oranyother hardware platform) are nowcommercially available and are widely usedin indus

try [Shu91, Gaj87]. However, themosttimeconsuming part of the synthesis process is located in

thearchitectural synthesis process, which maps thebehavioral description of the algorithm intoa

suitable architecture.

13

14

This areaof computer aided design process is often called high level synthesis or behav

ioral synthesis [McF90, Cam91]. A wide class ofbehavioralsynthesis tools has been reported in

literature [Cam91]. Typical elements of those environments are hardware allocation (determina

tion of the amount of hardware needed), hardware assignment (binding operators to specific

hardware instances) and operation scheduling (specification of the instruction cycle in which an

operator will be executed).

Numerically intensive signal processing implementations (such as mobile telephone, per

sonal communications networks, speech and image recognition, HDTV) are usually bound by a

number of real time constraints, which impose the requirement that the algorithm is executed

within a fixed time period (often calledthe sample or frame rate). Due to these requirements, the

implementation of a signal processing algorithm has to be close to optimum. This not only

requires excellent schedulers and hardware allocation programs, but also needs an elaborate set

of optimizing transformations to ensure that the algorithm description itself is close to optimum.

2.2 THE HYPER SYNTHESIS ENVIRONMENT

The HYPER, developed at the University of California, Berkeley, is a high level synthesis

systems for numerically intensive applications. Its goal is not only to provide an automated path

from high level language description to silicon implementation, but also to provide efficient

tools for the design space exploration and optimization mechanisms which are most often

beyond the scope and power of integrated circuits designers.

The synthesis process requires the execution of many translations, operations and/or trans

formations. Figure 1 displays the elements of the HYPER system. The real-time application is

described in Silage, a signal-flow-graph language [Hil91]. HYPER parses and compiles this

descriptioninto an intermediatecontroldata flow graph database (CDFG). The CDFG represents

Estimation

Minimum bounds on hardware

2 adders

6 registers
2 buses

FIGURE 2.1. The HYPER Software Architecture

Input: Silage language

func fir (in: fix) Out: fix =
Out=Sum {(i = 1.. N):: c(i) * ln@i}

Flow-graph database

• Out

Hardware mapping

HRegt^hifthU

Assignment / Scheduling

Time 12 3 4 5 6 7

Adderl

Adder2

Shift

XX XXX

X XXX

XX X

16

the algorithm as a dataflow graph, extended with some macro control flow statements such as

loops and if-then-else structures [Hoa92].

This graph serves as a central repository on which all synthesis operations, such as com

plexity estimations, flow-graph transformations, and hardware allocation and scheduling are

applied. The results of those synthesis operations are back-annotated onto the CDFG database.

As a result, HYPER has a very modular software organization, and new tools are easily inte

grated into it

At each point of synthesis process, HYPER can generate a simulation model of the control

data flow graph, so that correctness of the executed synthesis operationscan be verified. At the

same time, this simulation enables the checking of the synthesis operation influence on perfor

mance parameters, such as the signal-to-noise ratio and the numerical stability, as a function of

the required word length.

Most of the high level synthesis tasks are NP-complete or even harder from a computa

tional complexity viewpoint. Furthermore, they areinterdependent and ordering of those synthe

sis operations has a profound effect on the final solution. For example, the quality of the final

solution is very sensitive to the ordering of the CDFG transformations.

In order to handle this high complexity, HYPER implements the overall synthesis proce

dure as a search process. Starting from an initial solution, obtained using min bound estimations,

HYPER proposes new solutions by executing a number of basic moves, such as adding or

removing of hardware resources, changing the time allocation for different subgraphs in the

algorithm, or by applying an optimizing graph transformation.

The assignment module checks the feasibility of the proposed solution and determines the

cost of a proposed solution, by binding instances of CDFG nodes to instances of architecture ele

ments. The synthesis manager manages the overall search and synthesis process and decides

17

eitherinteractively or automatically whatmove to perform next In the automatic mode, it bases

this decision on the results of the estimation process and the feedback information from the

scheduling or transformationmodules on bottlenecks and problem areas.

The synthesis manager is the single most important feature of HYPER system and distin

guishes it from a multitude of proposed synthesis systems [Cam91j. Throughout the exploration

of the design space, HYPER uses a single global quality measure, called resource utilization.

This unique approachmerges synthesis operations such as transformation and allocation as well

as the handling of hierarchy in a consistent fashion.

Once HYPER arrives at an acceptable solution, it stops the search and maps the solution

onto a hardware architecture. After that using silicon compilers the silicon can be generated. In

HYPER, the Lager IV silicon assembler is used. [Shu91]

Figure 2 displays a common action scenario. The user interface and the information feed

back provided by HYPER tools are described during the description of corresponding tools. To

demonstrate the capabilities of the HYPER tools we will use the example shown in Figures 3

and 4. Figure 3 shows theSilage description of 7thorder IIR filter. Figure 4 shows the layouts of

some implementation generated by HYPER and Lager IV, for various throughput requirements.

Run times for all HYPER tools on those examples is around 1 minute perexample. High level

synthesis tools, includingcompilation process and application of several transformations is less

than 10 seconds on Sun 4/100. Layout generation takes around 1 hour.

The estimation, transformation, allocation, assignment and scheduling modules are

described in adetail in the following chapters. Here, we willbriefly outline other HYPER parts:

behavioral specification, module selection, and hardware mapping. The primary author of the

first part is Phu Hoang, and the latter two Chi-Min Chu. Those parts are described in a detail

elsewhere [Chu91, Hoa92].

BEHAVIORAL

TRANSFORMATIONS

HARDWARE SELECTION

AUTO-

ALLOCATION

I
ESTIMATION

I
ALLOCATION

ASSIGNMENT

SCHEDULING

]

HARDWARE MAPPING

i
LAGER IV

X

18

SIMULATION

]

SIMULATION

LOOP & OPTIMIZATION

TRANSFORMATIONS

J

l

LAYOUT SWITCH LEVEL

SIMULATION

FIGURE 2.1. Scenario of a typical HYPER session

#define numl6 fix<32,8>
#define CoefO 0.001953125

#define CoeflJ -1.3125
#defineCoefl 2 0.625

#define Coefl~31
#define Coefl_41
#define Coef2 1 -1.25

#defineCoef2~20.75
#define Coef2_3 0.0625
#define Coef2_41
#define CoefTl -1.125
#define Coef3_2 0.921875
#define Coef3_3 -0.25
#define Coef3_41
#define Coef4_l -0.71875
#define Coef4_21

func main (In : numl6) Out: numl6 =
begin

Inl = numl6(In*Coef0);
In2 = biquad(Inl, Coefl_l, Coefl_2, Coefl_3, Coefl_4);
In3 =biquad(In2, Coef2_l, Coef2~2, Coef2_3, Coef2_4);
In4 =biquad(In3, Coef3_l, Coef3~2, Coef3_3, Coef3_4);
Out = firstorder(In4, Coef4_l, Coef4__2);

end;

func biquad(in, al, a2, bl, b2: numl6): numl6 =
begin

state@@l = 0.0;
state(5)@2 = 0.0;
state = in - (numl6(al*state(5)l) +numl6(a2*state@2));
return = state + numl6(bl*state@l) + numl6(b2*state@2);

end;

func firstorder(in, al, bl: numl6): numl6 =
begin

state@@l = 0.0;
state = in - numl6(al*state@l);
return = state + numl6(bl*state(5)l);

end;

1GURE 2.2. An example of the Silage description: 7th order IIR Filter

19

M (b) U

FIGURE 2.3. Examples of layouts generated using HYPER: 7th order IIR Filter for three different throughputs.

to
O

21

2.3 BEHAVIORAL SPECIFICATION

A proper algorithm representation is crucial to the performance of any synthesis environ

ment. The representation should allow for efficient synthesis, regardless of whether the descrip

tion is dataflow oriented, control flow oriented, or a combination of those two extremes.

Information on the algorithm's data flow suitably exposes all the available parallelism in the

algorithm. The available parallelism has the most profound effect on area/performance trade

offs. However, in order to design a fast and area efficient control unit, insight in the overall con

trol flow is also necessary. For those reasons, the basic computational model in f HYPER is a

mixed control data flow graph (CDFG).

The CDFG represents the algorithm essentially as a flow graph, with nodes, data edges,

and control edges. The nodes represent data operations, while the data edges represent data pre

cedence between those nodes. In addition, control edges can be introduced to enforce extra pre

cedence rules between nodes. They provide an efficient mechanism for the explicit

representation of superimposed timing constrains on nodes. For example, we can say that the

execution timeof operation A has totrail the execution of operation B by atleast N cycles.

Aside from standard arithmetic and Boolean operations, the CDFG allows for anumber of

macro control-flow operations such as loops and if-then-else's. By using these control state

ments, wecan handle ahierarchical graph whose subgraphs represent thebodies of loops orcon

ditionals. The subgraphs contracts into a single node at the next hierarchy level. This

hierarchical representation is both compact and descriptive. It also stores the control data flow

graph efficiently. Finally, it provides away for clean definition of thealgorithm's macro control

flow, which results in more efficient control structures.

HYPER stores the flow graph in the Oct database [Har86, Cas91]. The Oct database is

extended with a versioning mechanism to track the subsequent phases of design process.

22

HYPER also provides a mechanism for the interactive graphical presentation at every point dur

ing synthesis, using a schematics placement and routing tool.

Silage, the HYPER input verification language, is a signal-flow language developed at the

University of California, Berkeley, especially for the specification of digital signal processing

algorithms. HYPER uses as input an application algorithm presented in Silage [Hil85]. Silage

code is translated in the Silage-To-Flow translator into CDFG with essentially the same hierar

chical structure. During this translation, several standard, architecture-independent transforma

tions, such as dead-code elimination and manifest expression calculation are applied.

Figure 3 shows the Silage description of aseventh-order biquadratic IIR filter. The filter is

composedof threecascaded biquads andone first-order section.

Simulating the algorithm is an important part of synthesis. Simulation verifies the func

tionality of the algorithm and the correctness of the applied transformations. It also provides a

mechanism to verify numerical stability and - wordlengthtrade-offs. The simulation generator

translates the CDFG description into executable C code. It generates two simulation modes: (i)

using floating-point data types, and (ii) using model with fixed point entities. The floating-point

mode offers quasi-infinite precision, whilethe fixed point modeuses the exactdata type defined

in Silage and therefore allows for the modeling of truncation and rounding effects. In this way,

we can accurately model thenoise and distortion behavior of thesystem attheeveryphase of the

design.

2.4 MODULE SELECTION

There are many ways to order high level synthesis tasks during synthesis. HYPER does

module selectionvery earlyin the synthesisprocess. This decision is basedmainly on the ideato

leverage on high quality estimation routines.

23

The hardware selection addresses three subtasks:

(i)selection of the clock period, if the userdoesnot provide this information;

(ii) selection of properhardware modules from the hardware database;

(iii) combination of primitive hardware modules into more complex combinational ele

ments, in order to minimize a number of variables which have to be stored in registers and to

increase the resource utilization.

The goal during hardware selection is to select those hardware primitives, which will

facilitate the resource utilization optimization during consequent design steps. HYPER tries to

select those modules which are simultaneously area efficient and have strong chances for good

resource utilization. It is important to optimize the resource utilization inside each control step,

which can be achieved by addressing of subtasks (i) and (iii) appropriately. Resource utilization

over the total available time is predicted using estimation modules and optimized by addressing

the last two subtasks. During the creationof the complex modules, their timing characteristics

are predicted using a ripple model [Chu91]. This model characterizes a functional block using

three parameters: a ripple direction, a ripple delay, and a one-bit delay. This model enables a

good compromise between the accuracy of the estimation and the requiredcomputational effort.

A detailed description of the hardware selection module can be found in [Chu91].

2.5 HARDWARE MAPPING

Hardware mapping is the step in the design synthesis which provides the connection

betweenhigh level synthesis and structural design. In the HYPER system the input to the hard

ware mapping is the allocated, assigned and scheduled flow graph, called the decorated flow

graph. The output is a structural description of the architecture in a structural description lan

guage, called SDL [Shu911. During the mapping, the decorated flow graph is translated into

three structural graphs: the datapath-structure, the controller state-machine graph, and the inter-

24

face graph. After that, dedicated tools translate each of those subgraphs into corresponding

structural views.

During the hardwaremapping, several optimization steps areexecuted. A detailed descrip

tion of the hardware mapping tool and the optimization steps can be found in [Chu89, Chu91].

Currently the hardware mapping targets a macrocell library. There is an ongoing effort to

provide mapping to standard cells and sea-of-gates [Rab91a], as well as to PADDI devices

[Che90], which are specialized, field programmable devices for data-path prototyping.

2.6 CONCLUSION

In this Chapter we briefly described the highlevel synthesis system HYPER. Also, refer

ences to more detailed description are given.

ESTIMATING IMPLEMENTATION

BOUNDS FOR REAL TIME

APPLICATION SPECIFIC CIRCUITS

3.1 INTRODUCTION

At numerous times in the design process of a real time application, important decisions

have tobe made, which might affect the quality ofthe final solution inadramatic way. Unfortu

nately, most of these decisions are currently made onan ad hoc base, since evaluating the effect

of adecision requires acomplete run through the design process and istherefore extremely time

consuming. The advent of high level synthesis helps to alleviate this problem, as it allows for a

much faster traversal ofthe design cycle. However, the majority of the high level synthesis tasks,

such as optimizing transformations, allocation, assignment and scheduling have been proven to

be atleast NP-complete. To solve the problems in polynomial time, numerous heuristic as well

as probabilistic solutions have been proposed. Asaresult, it ishard for adesigner toqualify the

solution, obtained with aparticular synthesis environment. Furthermore, even though faster than

25

26

the manual approach, running through the complete synthesis cycle still takes a substantial

amountof computationtime and is hence not effective for traversing the globaldesign space.

The problem could be alleviated considerably, if estimations of the implementation com

plexity ofan application could be made fast and accurately. Currently, the complexity of an algo

rithm is usually expressed by the number of operations, required during the execution of an

algorithm. Very often, a significant emphasis is placed on the number of multiplications. How

ever, such measures are poor predictors of the ASIC implementation cost of the algorithm. For

example, important parameters as the distributionof the operators over the algorithm, the critical

path and the cost ofmemory and interconnect areneglected.

This chapter presents a set of techniques to accurately predict the computational require

ments of an algorithm, given the algorithmic flow graph and the maximum execution time. A

technique called discrete relaxation is introduced to establish sharp minimum and maximum

bounds on all hardware resources. The computed bounds canbe used for a myriad of purposesin

the design synthesis process.

• The derived minimum and maximum bounds delimit the search space, thus speeding

up the design synthesis search process.

• The minimum bounds can serve as an initial solution for the above search process. We

have experienced that this solution is often very close to the final solution.

• Most synthesis tasks are optimization tasks, attempting to minimize a cost function,

which is very often the implementation area (or complexity). The accuracyof this cost

function will directly influence the quality of the synthesis process. Accurate estima

tions can therefore help to boost synthesis performance.

• Estimations can help to establish the relative or absolute quality of a proposed solu

tion. This information is extremely useful to direct the overall synthesis search pro

cess. For instance, in an iterative transformation environment, it is important to know

27

how much a proposed transformation will influence the implementation cost, hence

establishing a relative ordering of the candidate moves. It is also useful to know the

maximumimprovementto be expectedfrom a transformation.

• Estimation of the optimalsolution can help to determinethe absolutequalify of a syn

thesis algorithm (such as a scheduler or a transformation). Since most algorithms are

at least NP-complete, benchmarking (with all associated traps) is the dominant

approach at present.

• Finally and most importantly, estimations can play a crucial role in the algorithm and

architecture selection and partitioning processes, topics which are by and large unex

plored territory at present.

After a brief discussion of the previous work in this area and a description of the global

estimation framework, the proposed techniques for the estimation of maximum and minimum

bounds will be discussed in detail. The effectiveness as well as the application domain of the

estimation techniques will be demonstrated with a number of examples.

3.1.1 Previous Work

While the idea of estimations is relatively new in the high level synthesis world, the con

cept of complexity prediction has been around for quite some time in the areas of compiler

design, performance modeling, operational research, computer science, VLSI and digital signal

processing.

Untilrelatively recently, therewaslittlepublished workin the software compiler literature

regardingestimations and theiruse.This is easilyexplained by the fact that the designersof soft

ware compilers are as much concerned about compilation speed as about execution speed.

Therefore, themost complex scheduling algorithms used areof a quadratic complexity, which is

as fast as any non-trivial estimationtechniquecan achieve. With the introduction of vector com

puters [Kuc72, Ban791 and particularly after the introduction of very long instruction words

[Nic84], super-scalar and super-pipeline architectures [Jou89, Smi89], numerous studies have

28

been published on the available parallelism in both general purpose and numerically intensive

computations. The scope of those papers is quite different form the one addressed here: their

main goal is to demonstrate that a particular class of algorithms has sufficient parallelism for a

given architecture. This is measured by explicit scheduling of the algorithms on the target archi

tecture.

Performance modeling, and benchmarking particularly, got a lot of attention recently

[Hei84, Jai91]. The major concern here is to predict the average performance of a general pur

pose machine for a particular group ofusers. The most often used techniques are simple statisti

cal models, build either manually or with the help of statistical packages, which use as input

parameters the run-time results of a set ofbenchmark programs, typical for a particularareasuch

as linear algebra or databases.

The complexity theory, as an areain theoretical computer science, studies the implementa

tion complexity of an algorithm,assuming that alloperations have the same cost The major con

cern here is the asymptotic behavior of an algorithm, when the problem instance size goes to

infinity [Pap82, Com90]. This is of very limited interest in the complexity prediction of ASIC

implementations.

The work in the area of operational research and theoretical computer science that most

resembles the problem addressedhere, is in the framework of approximation algorithm develop

ment [Hoc87]. The goal is to develop algorithms for a particular NP-difficult scheduling prob

lem, which guarantee that the solution will be within e percent of the unknown optimal solution.

Although those algorithms have a polynomial complexity, their complexity order is most often

high. The goal is once again different: explicit solution generation versus prediction.

The implementation complexity is very important in the area of digital signal processing

and therefore discussed extensively [Bla85]. The pre-dominant measure used to express the

29

complexity on an algorithm is thenumber of operations, oftenwith stress on the number of mul

tiplications.The regularityof an algorithm has alsobecome an issue recently.

In the VLSI arena,the theoretical computer science has made some significant progress in

study of lower bounds on area and time of elementary circuits such as adders and multipliers

[U1184]. Three fundamentally different techniques are used, providing bounds on A (area), A x T

(area-time) and A x T2.

It seems that the use of prediction has predated CAD in the circuit design area. In the early

1960's, E. Rent performed an unpublished study (at IBM) on the structure of computer logic

design. His formulation, now known as Rent's rule, was followed by many other studies, not

only on the block-to-pin ratio, but also on other physical implementation parameters [Han88].

More recent studies achieve excellentcorrelation between predicted and actual physical design

characteristics [Ped89, Sas85, Kur89].

The role of estimation hasnot received much attention in the architectural and high-level

synthesis area. Early estimation efforts include amodel,developed by Davio et all [Dav83]. One

of their assumptions was that all nodes (called universal logic elements) have identical delay,

area and functional characteristics, which greatly reduces theprediction complexity, butseverely

limits the applicationrange.

Significant and important workhasbeen performed atthe University of Southern Califor

nia. Kurdahi [Kur87] presented a technique to predict the number of required registers using a

variant of the Dinic max-flow/min-cut algorithm, which waslater refined by Mlinar [Mli91. Jain

[Jai881 used absolute min-bounds (discussed later in this chapter) to drive the module selection

process. Most recently, Kucukcakar [Kuc91] reported the successful usage of prediction tools in

the partitioning during behavioral synthesis as well as several new estimation approaches

[Kuc90].

30

Several approaches on the border between high level and lower level design have been

reported. The Chippe expert design system [Bre90] analyses interconnect in terms of perfor

mance, area, and power using a worst-case waterfilling model. The ELF system had a mecha

nism for the prediction of the wiring area, given an RTL level description [Gyr84]. Several

authors, including [McF90b], studied the area-delay performance trade-off, yielding a model

which could be used in a prediction tool. Finally, Powell and Chau proposed an approximation

technique for the early estimation of power consumption [Pow90].

The techniques presented in this chapter differ in both the employed techniques as well as

the application areas. The ideaof relaxation is introduced andapplied extensively for theestima

tion of computational units, memory and interconnect. Attention is paid to hierarchy in the rep

resentation, an area which was largely unexplored until now. Furthermore, techniques to derive

the best possible estimations for max-bounds are presented. The obtained results are analyzed

and verified to a great extent.

3.1.2 Global Framework

Before starting the discussion of the estimation algorithms, a number of assumptions and

definitions have to be put forward. First of all, we assume that the algorithm under study is rep

resented as a control data flow graph G (N, E, Q, where the nodes N represent the flow graph

operations, and the edges E and C are respectively the data and control dependencies between

the operations. The control dependencies are used to express relations between operations,

which are not imposed by the data precedence relations. The control dependencies are particu

larly useful for the expression of timing constraints, as well as for the implementation of side

effects caused by memory assignments (both for background and foreground memories)

[Rab91a].

31

We also assume that the graph G is a hierarchical graph: each vertex N of G can be an

instanceof a subgraph G'(N\ E\ C). An example of such a hierarchical flow graphis shown in

Figure 1. The representation allows for the simple introduction of loops and block-conditionals

in the flow graph. It is assumed that for each data dependent loop, either the maximum or aver

age number of iterations is known. Which one is chosen depends upon the application: some sig

nal processing applications (for instance audio processing) require that a fixed throughput rateis

sustained, hence enforcing worse case design. Others, such as speech recognition, only require

an averagerate.The value of those non -deterministic parameters can be estimated through algo

rithm profiling, based on simulation or sometimesusing amortization techniques [Kam91].

a b

O

FIGURE 3.1. Example of Hierarchical Flow Graph. This graph isequivalent to the following
computation: c =a * (b +10* step). D represents a delay operationwith initial value In.

In order to make the estimations useful and accurate, a welldefined underlying hardware

model is essential. The following restrictions are placed onthe implementation:

• All edges E represent variables, which willbe stored in registers.

• All leafnodes N are purely combinational. The hardware unitof choice r (such as

adder, multiplier orALU) and itsexecution time t<tr (innumber of clock cycles) is

known a priori.

32

It is always possible to transform a non-complying flow graph into the format described

aboveby contracting nodes,connected by temporary edges(withoutstorage), into a single,com

plex combinational node.

Without loss of generality, the chapter will adopt the hardware model H, shown in Figure

2a: it is assumed that all registers are clustered in register files, connected to the inputs of the

execution units. The techniques described below are however easily adapted to other models,

such as the "register file - interconnect - exu - interconnect" model, shown in Figure 2b (called

H* in the rest of the text). While the hardware model will not affect the execution unit bounds, it

TT
EXU

reg||reg|
TT

EXU

(a) H

|reg||reg| reg||reg|

v i

EXU EXU

(b) H*

FIGURE 3.2. Hardware Models: (a) INTERCONNECT-REGF1LE-EXU, (b) INTERCONNECT-
REGF1LE-INTERCONNECT-EXU

will have a severe effect on interconnect and registerbounds.

The estimation process for real time applications can be defined within this frame- work:

Given a hierarchical flow graph G(NJE,Q, an underlying hardware model H and a maximum

execution time tj^, determine the minimal and the maximum bounds on the required hardware

resources (execution units, registers and interconnect) such that the graph G can be executed

within t^.

For sake of completeness, it should be mentioned that the techniques presented below are

easily adapted to address the dual problem (given the hardware resources, estimate the bounds

on the execution time). The rest of the chapter will now proceed as follows: Section 3.2 will

describe techniques to estimate the max bounds on the resources, while a selection of

33

approaches to estimate min bounds will be analyzed in Section 3.3. The chapter will be con

cluded with a study of the applications of predictions and future work. A number of examples

will be used throughout the chapter to demonstrate the effectiveness of the proposed techniques.

3.2 ESTIMATING THE MAXIMUM BOUNDS

It might be argued that maximum bounds on hardware resources are hardly interesting,

since the synthesis process is in essence a minimizationprocess. However, knowing those upper

bounds helps to delineate the search space for the hardware allocation and transformation pro

cesses. Furthermore, it is in general advantageous to have the maximum bounds on the resources

as high as possible, since they are a measureof the concurrencyavailable in a particular instance

of the flow graph (this is demonstratedfurther in the chapter as well as in [Pot91a]). Therefore,

results of the max boundestimation can act as a driverfor the concurrency improving transfor

mations.

3.2.1 Max Bounds on Execution Units

For the sake of clarity, we will first assume that the graph G does not contain any hierar

chy. This constraint will be relaxed further in the chapter. The estimation process starts with a

topological ordering and leveling of the graph with respect to the input nodes and the output

edges. As a result, the earliest (tiap) and latest (t^) execution times are obtained for each

node Nj. The time slot available for the execution of Nj is called the slack time (tjlack =t^p -

tiap)-The length ofthe critical path isalso determined during this process.

Based on this information, a setof parallelism plots parr (t) (with r = 1..R) can be
constructed:

parr(t) = ^all nodes iexecuted on resource r (with (tla <t<tla[)) (EQ l)

34

Such as parallelism plot displays nothingelse than the potentially available concurrency

over time. Hence, the max bound on resource r equals:

maxr = MAX (parr(t))
t=\

(EQ2)

(EQ 2) is however overly pessimistic, since it totally ignores the precedence relationships,

which might prevent nodes from being executed simultaneously, even though they have overlap

ping slack times. We will call this bound the absolute max bound. The simple example of Figure

3 will clarify the issue. Assume that all operations take 1 control step and that t^* equals 4

clock cycles. The earliest and latest execution times of each node are shown between brackets.

par+ (t) is plotted in Figure3b. This suggests that the maximal parallelism for addersequals 3. A

close inspection of the plot of Figure 3b clearly proves that this is not achievable, due to the pre

cedence relations between the operations.

*max = ^

(a)

FIGURE 3.3. Analysis Of Max Bound: Example Flowgraph (a), Parallelism Graphs before (a) and
after (b) precedence collapsing. It is assumed that each operation takes one control step.

35

A more precise max bound can be obtained by eliminating nodes with potential concur

rency, but with precedence relationships between them (as demonstrated in Figure 3c for the

simple example). This task can be defined as a maximum independent set problem:

Given: For control step t and resource r, a set of nodes N j with the following prop

erties: Nj is executed on r and tla <t< tlal a set ofprecedence relations (E,C)

between Nv

Problem: Determine the maximal potential concurrency at time t for resource r.

Solution: Construct adirected graph F(N, R), with the Nxas nodes. An edge Ry is
provided between two nodes Nj and Nj when there exists a precedence relation (e

(E,C)) between the two nodes. The maximal concurrency equals the maximum

independent set of F.

Proof: Two nodes Nj and Nj can be executed simultaneously at time t when no
precedence relationship exists between them, or, in other words, when no edge

exists between them in thegraph F. This is exactly the definition of an independent

set: two nodes of a graph F form an independent set, when F contains no edge

between those two nodes. The maximum possible concurrency then obviously

equals the maximum setof nodes without precedence relations, or equivalently, the

maximum independent set

The maximum independent set problem is known to be NP-complete. Fortunately, the

graph F exhibits a property, which turns theproblem intoa polynomial one. It is known that the

maximum independent set problem for a class of graphs, called comparability graphs [G0I8I],

can be solved in polynomial time (0(N3)) using a minimum-flow algorithm. Acomparability

graph F(N,R) is defined as agraph with the foUowing property: ifRjj e Rand Rjk € R, then also

Rik e R. This is clearly valid for the graph F, defined in the max bound problem: when aprece

dence relation is present between nodes Nj and Nj as well as between nodes Nj and Nk, then node

Nj has also to precede Nk. Efficient algorithms to solve the maximum independent set problem

for comparability graphs havebeenpublished in [G0I8O]. It should also be noticed also that the

36

par

0.00 5.00 10.00

FIGURE 3.5. Parallelism Plots for 7th Order IIR Filter (t^ =14, t* = 2, t+ = 1)

sizes of the graphs F are small, since they only consider the nodes, alive at time t and executing

on resource r. The independent set problem has to be executed for every time t and for every

resource (thus ^^ x R times) to obtain the improved parallelism graphs.

The max bound algorithm has been applied on the example of a seventh order biquadratic

IIR filter, shown in Figure 4. The results are plotted in Figure 5 for both adder/subtracters and

multipliers1 (for t,,^ =14). From the parallelism plots, itcan be deduced that the max bounds on

BIQUAD BIQUAD BIQUAD

FIGURE 3.4. Seventh Order Biquadratic IIR Filter: Signal How Graph

FIRST

ORDER

Out

1. In a real implementation of such a filter, multiplications arereplacedby add/shifts. We have opted here
for using parallel multipliers (with a duration of 2 clock-cycles) to simplify the example.

37

multipliers and adders respectively equal 15 and 6. More important than those bounds (which

are of little practicalvalue besidesthe delineation of the searchspace) is the structureof the par

allelism graphs: almost all parallelismis availablein the initial clock cycles. This will definitely

result in a poor implementation with low resource utilization towards the end of the algorithm.

This demonstrates that the distribution of the plots can serve as a measure to drive resource utili

zation improving transformations, such as retiming and pipelining [Pot91a].

The above techniques can be easily extended to cover hierarchical graphs as well. The

main problem in dealing with hierarchy is that the available time is only known for the upper

most level and not for the sub-graphs. Fortunately, there is little or no dependency between the

available time and the max-bound (since thedependencies remain identical). We therefore opted

for the following approach. For each sub-graph, the max-bounds of the resources are estimated

usingthe criticalpath as the available time. The max-bounds for the hierarchical graph are then

obtained by taking the max over all sub-graphs for all resources.

3.2.2 Max Bounds on Connectivity and Registers

Similar techniques can be used to estimate max-bounds on connectivity. The algorithms

areexecuted on the connectivity graph Gc (Nc, Ep). Every nodeNc in Gc corresponds to anedge

E(Nif Nj) in Gand represents a hardware connection between resource rj and Tj. For our hard

ware model H, the slack time of Nc is equivalent to the slack time of the source node Nif since

the output bus is directly connected to the source and should therefore be reserved for the dura

tion of thecomputation. Anedge Ec isdefined inGc when there exists a precedence between two

interconnections. These precedences can bederived directly from the computation graph G. An

example of how to derive the connectivity graph from thecomputation graph is shown inFigure

6. It should bestressed thattheconstruction of Gc strongly depends upon thehardware model H

used. Furthermore, one should be aware that, although there exist a strong correlation between

38

FIGURE 3.6. Derivation of Connectivity Graph from Computation Graph. The nodes in Gc are
represented by the source and destination resources (e.g io->+).

the number of busses in the architecture and the interconnect area in the physical implementa

tion, no precise cost canbe attributed to a bus.This is in contrast with execution units and regis

ters, which have a very precise implementation cost. Finally, it shouldbe noticed from Figure 6

that the interconnect estimation also allows us to estimate the number of input-output ports

needed.This is of crucial importance in real time applications, which are often input-output(and

hence IO-pin) hungry (for example, see [Sto90]). This measure can for instance be used when

considering chip partitioning.

Establishing a sharpmax-bound on registersis non-trivial and is strongly dependent upon

the selected hardwaremodel. In the hardware model H, the registercount is closely correlatedto

the EXU assignment: in the worse case, every operation can be assigned to a different EXU and

hence every variable has its own register. Therefore, the absolutemax-bound on the number of

registers used is identical to the numberof edges in the graph, eachof them multipliedwith its

fan-out. Parallelism plots can also be derived for registers, using exactly the same techniques as

described higher. The graph Grused is actually identical to the interconnect graph Gc in case of

the H hardware model. Each node now corresponds to a variable.The slack time of the node is

set to the maximum life-time of the variable, which equals t^st - t™wce , with source the

source node of the variable and dest the destination node. Once again, these parallelism plots are

39

only indicative for the demand on registers over time and haveno meaning from a max-bound

point ofview.

In the hardware model H*, the broadcasting factor is equal to 1, potentially saving some

registers at the expense of extra interconnect Since the register assignment is decoupled form

the EXU-assignment, more accurate bounds can be predicted using the techniques described

higher.

3.3 ESTIMATING THE MINIMUM BOUNDS

From a design point of view, far more interesting information is represented by the mini

mum bounds: accurate lower bounds allow us to estimate the absolute minimal area, needed for

the implementation of a given computational graph. Lower bounds can also serve as an initial

seed for allocation and designspacesearch processes, normally resulting in faster convergence.

Finally, a good lowerbound allows us also tojudgethequality of solutions produced by heuris

tic or statistical tools, tackling NP-complete problems, suchas schedulers or moduleselectors.

Unfortunately, no exact lower bounds for the design synthesis problem have been estab

lished and deriving those might prove to be an NP-complete on itself2. In order tobe useful, the

estimation processshouldbe veryefficient (thecomplexity of the estimation routines should not

exceed 0(N2)). This precludes the utilization of complex estimation algorithms. Instead, we

opted for a technique called discrete relaxation, which turns theestimation problem intoa trac

table oneby relaxing some of theconstraints imposed by the original problem. As will be dem

onstrated below, this results in extremely efficient estimation, while yet delivering very sharp

bounds. Onesetof constraints which canbe relaxed on are theprecedence relations. Mostof our

attention willbe devoted to thisclassof relaxations. Similarto the chapteron maximum bounds,

we will first concentrate onthe estimation for execution units and extend theapproach later onto

2. Theauthors are not awareof anyof anyproofof thisstatement.

40

registers and interconnect At the end of the chapter, we will discuss some other relaxation

approaches.

3.3.1 Min Bounds on Execution Units -Leaf Graphs

As stated in section 1.1.1, the majority of the complexity estimation approaches in the

high level synthesis arena are based on the absolute min-bound. This min-bound is in essence

equivalent to the traditional approach of a designer, when he measures the complexity of an

algorithm by counting the number of multiplies (as the parallel multiplier is the most expensive

execution unit) and dividing them by the available time. Such a measure is a poor predictor of

the ASIC implementation cost of an algorithm. It assumes that the flow graph contains enough

parallelism to support 100% utilization of the resource. Furthermore, important elements con

tributing to the implementation cost, such as input-output, interconnect, fore- and background

memory are ignored. This approach therefore generally results in a poor estimation. Within our

framework, the absolute min-bound for an execution unit r (r = 1..R) is defined in (EQ 3).

min?s=-Z-jL (EQ3)
max

with T|r the number of nodes to be executedon resource r and t^ the number of clock-cycles it

takes to execute one operation on r.

We have evaluated the performance of the absolute min-bound using a class of 50 exam

ples (all of them without hierarchy). The list of the examples include the 7th-order IIR filter, the

standard 5th order Wave Digital Filter, an 11th order FIR filter, a 19th order CORDIC rotation

and an 8-point Discrete Cosine Transform. For all those examples, we constructed different

alternatives structures (and hence different graph properties) by applying transformations such

as pipelining and retiming. Furthermore, we considered multiple ratios of tn^/critical path for

each example. This ratio (which will be called the stress ratio from now on) influences the per-

41

formance of the estimation algorithms in an important way. We have compared the results of the

estimation with the results obtained after going through the complete synthesis process?. The

results are plotted in Figure 7. The cost factor used in the evaluations is equivalent to the total

area of the execution units. The maximum error observed between actual and estimated cost

equals 386.3%, while the average and median errors respectively equal 72.1 and 86.6%.

I

FIGURE 3.7. Ratio between Actual Cost and Absolute Min Bound (for 50 examples).

An improvement on the absolute lower bound can be found by observing from the paral

lelism graphs, obtained in the previous section, that for some clock cycles not enough parallel

ism is available to sustain 100% utilization. This results in a more precise lower bound:

a- T\rxhr+ Unused Time• adj _ lr drminr J = (EQ4)

Unused Time is actually a function of min °$ as the resource utilization is clearly depen

dent upon the number ofresource available. (EQ 4) has therefore to be solved iteratively:

1. Derive the Parallelism graphfor r, using the techniques discussed in the previous sec
tion. Set the initial value ofMIN to the absolute min-bound (EQ 3).

3. To make the comparison between the different algorithms fair, we have used identical scheduling and
allocation routines for all examples.

2. Compute Unused Time given MIN.
3. RecomputeMIN using (EQ 4).

4. IfMIN changed with respectto theprevious iteration, go to 2, else stop.

42

Even though this approachpresents a significant improvement over the absolute bound, it

still might be significantly off. This discrepancy is mainly caused by the fact that nodes with a

large slack (or a lot of freedom to move) are falsifying the parallelism graphs by giving a too

rosy view on the available concurrency. This is demonstrated with the simple example of FIG

URE 3.8. Using (EQ 4), one would get the impression that one multiplier is sufficient, as the

,(0,0)/ v (0,0). (0,2),

par*

unax = 3

FIGURE 3.8. Nodes with Large Slack Can Give the Impression of Plentiful Concurrency (all
operations take one clock-cycle).

UnusedTime on the Parallelism Graph for 1 multiplier is 0. A close inspection of the flow graph

reveals that 2 multipliers areneeded: both multiplications Ml and M2 have to be executed in the

first time slot. The discrepancy between estimations and actual result is caused by the large slack

ofnode M3, which gives the impression that at least one multiplication can be executed in every

clock cycle.

A more advanced approach is therefore necessary. Our proposed approach is based on the

principle of relaxation: while the general scheduling problem is NP-complete, some simplified

scheduling problems have been proven to be of polynomial complexity. By removing some con

straints of the original problem, we can turn the estimation problem into a polynomial one. In

other words, we trade-off accuracy versus speed. In this section, we will relax on the precedence

43

constraints. For the lowerbound estimation problem for EXU r, let us temporarily consider the

precedences only indirectly (through the ASAP and ALAP times of the nodes) and ignore the

direct formulation. This translates the estimation problem into the following format:

Relaxed Estimation Problem: Given a computational problem, consisting ofrjr identical

tasks with integer ASAP and ALAP times and a known duration t^ Determine the mini

mum number of resources r needed to complete the task within the available time t^^.

This problem cannot be solved directly, but can be defined as an iterative version of its

dual formulation:

Dual Relaxed Estimation Problem: Given a computational problem, consisting of r)r

identical tasks with integer ASAP and ALAP times and a known duration t^ and the num

ber of available resourcesr. Determine the minimumexecution time t^.

Given a solution for the dual problem, the original relaxed iteration problem can then be

solved with the following simple iteration:

Relaxed Estimation Problem (iterative version):

7. Set minr to the absolute lower bound min {j!)S.
2. Given minr, determine the minimum execution time t^n (dual relaxed estimation prob

lem).

3-Iftmin > tmax or if nosolution, go to2, else minr is therelaxed min-bound.

This procedure is illustrated with the aid of the simple example of Figure 8. The absolute

min-bound on the number of multiplications for this example is equal to 1. Consider know the

relaxed problem shown in FIGURE 3.9. It is obvious that no solution can be found for the sched

uling ofthe problem on 1 multiplier.When 2 multipliers are available, the problem can be solved

in2clock-cycles (< tm^= 3). Hence the min 'J1 =2.

MVT 1M2IM3

1 multiplier

2 multipliers

mult 1

0

1

Ml

M3

M2?

mult 1 mult 2

0

1

Ml

M3

M2

FIGURE 3.9. Determination of Relaxed Min-Bound for the example of FIGURE 3.8.

44

The dual estimation problem as defined above is well known in the scheduling literature.

From [Sim81], the following analysis can be derived.

(1) When the duration t^ of all tasks (or operations) is equal to 1 clock-cycle, then the

minimum execution time can be determined exactly using a slack driven list schedul

ing (also known as the earliestdeadlinescheduling algorithm). The complexity of this

algorithm is 0(N log N), with N the number of tasks.

(2) When the durationof the tasks is largerthan 1, the problem becomes more complex. It

can be transformed into a scheduling problem with unit task duration time, but with

the ASAP and ALAP times set to real numbers by dividing all times by t^ Finding

the exact solution for this problem requires back-tracking during the list-scheduling

and is known as the earliest deadline with barriers scheduling algorithm [Sim81]. The

complexity ofthis algorithm is0(N3 log N). Since this exceeds our goal ofusing only

algorithms with maximally quadratic complexity, some further relaxation is needed.

This can be achieved by turning the ASAP and ALAP times into integer numbers: the

ASAP times are rounded to the nearest lower integer number, while the ALAP time

are rounded to the next higher integer.The resulting problem can once again be solved

with the earliest deadline scheduling problem. It is easily seen that the integer relax

ationcan only lower t^, hence preserving the min-boundnatureof the obtainedsolu

tion.

The performance of the relaxed estimation routines is analyzed using the same benchmark

set as was used for the absolute lower bound. The results areplotted in Figure 10. The maximum

45

error has been reduced to 67%, while the average and median errors respectively equal 13.7 and

7%. The largest errors occur when the stress ratio approaches 1. This is easily explained by the

fact that at that time the relaxation on the precedence relations introduces an over-simplification.

^,

» —: _

s

FIGURE 3.10. Ratio between Actual Costand Relaxed Min-Bound (for 50 examples)

The proposed iterative algorithm for solving the min-bound problem can also be used to

generate the minbound-time plots for each execution unit, which determine for each possible

time t^ax the minimal number of units needed. These plots areextremely useful when studying

the area-time trade-off's for a particular algorithm (this will be discussed in more detail in the

applicationsection). They will also be used extensively when performing estimations for hierar

chical graphs.

Generating the Minbound-Time Graph for resource r:

l.Set minr to 1.

2. Solve tmin using thedualrelaxed estimation algorithm.
3. When t^n > Waicalpath go to 2, else stop.

The minbound-time graphs for multipliers and adders for the 7th-order IIR filter are plot

ted in Figure 11. Todemonstrate theexcellent performance of the relaxed estimation algorithms,

the area-time plot obtained using the absolute min-bound estimation technique as well as the

8.00

7.00

6j00

5jOO

4j0O

3D0

2j0O

IjOO

IOjOO 2OJ00

(a)

3OJ00

relaxed

liSufim"

actual'*"*

4.00

350

3j00

250

2.00

150

1.00

1
t
t

:
:

2
f

relaxed

iibtoluie

actual"""

15.00 20.00

(b)

46

FIGURE 3.11. 7th Order IIR filter: Minbound-Time Trade-Offs for multiplications (a) and add/
subtract (b) (Relaxed, Absolute and Actual)

actual cost-time plot (obtained after allocation,assignmentand scheduling) are also included. As

can be noticed form the plots, the only major discrepancy betweenactual cost and relaxed min-

bound occurs when t^ = t^ca! p^ = 11.

33.2 Min Bounds on Execution Units - Hierarchical Graphs

The situation becomes somewhat more complex, when hierarchical graphs are considered.

The problem here is that tm^ is onlydefined for theoverall problem. The distribution of the time

over the sub-graphs is unknown and is actually an optimization problem on its own. Without a

loss of generality, we will assume from now on that at every hierarchy level, the nodes of the

graphare either all hierarchy-nodes or leaf-nodes. This can be achieved by clusteringleaf-nodes

into sub-graphs, such that all precedences are preserved. We assume also that only one sub

graph can be executed at a time (single thread of control).

One method to perform the hierarchical estimation uses the minbound-time plots, derived

in the previous paragraph. Given a graph G(NJE), where each node N represents a sub-graph

47

G'(N',E'). Assume that for each node N, the minbound-time plots of its sub- graph G' are

known aswell asthe maximum4 number of iterations on the node.

The minbound-time plot for a resource r and for graph G (called MBr(t)) can now be con

structed from the minbound-time plots of the sub-graphs (MB j. (t), with i = 1..N) in the follow

ing way:

Procedure EstimateHierarchy (for resource r):

l.Setr\rtoI.

2. Compute t^far graph G using(EQ5).

N -1*min= X<MBr (T]r) Xiter1) qq 5)
i=l

withiter1 the number of iterations ofnode i.

•?• Iftmin > lcritical path increment *nr and go to2,else stop.

This procedure is illustrated for a simple example in Figure 12. In the case of conditional

graphs (if-then-else functions), we take the results of the worse case sub-graph. Procedure Esti

mateHierarchy is repeated for every hierarchy level in the graph in a bottom-up fashion till the

top-level is reached. At that level, the available time t^x is known and the actual min-bound

t ^ can bedetermined. The minbound-time plots for a 19th-order CORDIC algorithm (contain

ing one hierarchy level) are plotted in Figure 13. The cost plotted here is the sum of the esti

mated minimum costs of the adder/subtracters (unit cost 3), shifters (cost4), comparators (cost

3) and multiplexers (cost l)5. A large discrepancy between absolute and relaxed min-bound can

onceagain be noticed. Also noticeable is that the actual costtends to change in large stepsevery

19cycles (which is equivalent to the number of iterations of the loop).This phenomenon is not

present in such an outspoken form in the relaxed estimation cost.

4. Average numberwhenlooking at theaverage throughput.
5. Thosecostratios are obtained from theactual data-path library of the LAGER-IV system [Shu91].

par+

par^

iterations

1
iteration

20 25 45

10 15 25

FIGURE 3.12. Construction of Hierarchical Minbound-Time Graphs - Simple Example.

32.00

30.00

28.00

26.00

24.00

22.00

20.00

18.00

16.00

14.00

12.00

10.00

100.00

r^z:

150.00

relaxed

absolute

actual

time

200.00

48

FIGURE 3.13. Estimated Cost of a 19-th order CORDIC algorithm (relaxed, absolute and actual).

The procedure EstimateHierarchy in fact introduced another form of relaxation: the actual

time allotted to each sub-graph differs from resource to resource and is determined by (EQ 5). In

reality, this is clearly not the case. This relaxation might therefore be overly optimistic, as it

picks the optimal solution for each resource independent of the other resources. This will hurt

especially when the stress ratio approaches 1. A more accurate solution can be obtained by con

sidering the resources in a combined fashion. For instance, when considering two resources rl

and r2 simultaneously, (EQ 5) is reformulated as follows:

49

N _, _i (EQ6)
CE = X MAX {{MBr{ (Tlrl) ,MB r<~(T]r2))) x/rer'

1 = 1

This approach turns the hierarchical estimation problem from an R times 1-dimensional

problem into an R-dimensional one. This might sound bad, but isn't in reality. First of all, R is

normally rather small (more than 6 different resources is rare). Secondly, only a couple of

resources are critical and need more than one instance, which reduces the estimation space in an

important way.

3.3.3 Min Bounds on Interconnect and Registers

All the above described techniques can be applied in an identical fashion for the estima

tionof the lowerbounds of interconnect The onlydifference is that the routines are applied on

the interconnect graph Gc instead of on the computation graph G (Figure 6). As described

higher, theslack of aninterconnect node is identical to theslack of thesource computation node:

in the hardware model H, a bus is directly connected to the output of the execution unit and is

thus reservedfor the durationof the computation.

Estimating the minimum bounds on the number of registers requires a somewhat different

approach. In order to find the absoluteminimum on the registercount, we have to assume that no

broadcasting occurs and that each variable is alive for the minimum possible amount of time.

The minimum lifetime now depends upon the slack-time of both the producer and consumer

nodes. As illustrated in Figure 14,twoscenarios are possible:

(1) The slack-periods of the producer and consumer nodes overlap (or tjjp tj^,). In that
case, the variable E can be consumed immediately aftergeneration. The minimum life

time is therefore t<£.. The interval where the variable can be alive stretches from tJ^
till max (tgfap , tsUap).

50

(2) The slack periods of producer and consumer nodes do not overlap (ta£p <t^p).
Here, the variable E has to be minimally alive for a longer period, namely from

tgj^p tilltasap +tjr. This isalso the lifetime interval.

producerQ
E

O consumer

CASE1

CASE 2

joiuiaaa»iniiineiieieo»aiinilM««tt«»»«>«6»t5««Ma>«o««iMaDaaaaa»oaoattaaoMMaMMawaa6MaaaaM»

asap alap

MmmmmimMmtmumtA

laeaiaaameinaioiaairnnnaaamaauaamaoinni

FIGURE 3.14. Minimal Variable Lifetime ofVariable E: Possible Scenarios.

Estimating a lower bound on the number of registers, associated to an execution unit r

(hardware model H), can now be solved in terms of the foUowing relaxed scheduling problem:

given anumber of resources T|reg (the number of registers available) and two classes of tasks: all

tasks of the first class have a fixed, integer duration (t^) and have integer ASAP and ALAP

times. The tasks of the second class have a variable, integerduration but have a fixed scheduling

time. Determine the minimum time to execute the tasks on the given resources.

The scheduling of tasks with varying durationis in generalNP-complete (in fact, strongly

NP-complete) [Sim81]. The fact however that the tasks with varying duration are fixed in time

saves us here. The following modification of the earliest deadline algorithm can be used to

approximate the solution:

1) Divide all times by t^ and round all ASAP and ALAP times to respectively the next
lower and upper integers. This is identical to the approach taken for execution units
with duration larger than J. This translates theproblem into a scheduling problem with
integer ASAP and ALAP times and task durations ofI.

51

2) Reserve the slots, needed by the tasks with variable duration (I), but fixed scheduling
time.

3) Schedule the remaining tasks using the earliest deadline algorithm. For each time-slot,
the number ofavailable resources is equal to hreg minus the number of reserved slots.
The complexity ofthe algorithm is still 0(N log N).

The obtained bound is clearly on the pessimistic side, since the actual solution will contain

broadcasting. It can also be observed that the actual lifetime of the variables will approach the

average value between min and max, ratherthan the minimal value: a simple explanation of this

is that in a typical schedule, decreasing the lifetime of one variable actually increases the life

time of other ones. We are studying other techniques (amongst others statistical - see future

work) to get more precise register bounds.

m q
CO csi CO c\i
c c
3 3
o

m
O

CO
CO

c

I ©
c

I
"O

CM
•o <0

CD <D ^1

$ $
<D <D
rr rr rt
*^» in •^ T—
**

CO lr~ CO
o fi o

O o CM
i

"cc
3

< ©

nHJffl [1|
lnff
Hlif
full

Actual

q
T- IfR uJft fi T-^

(a) example instance (b) example instance

FIGURE 3.15. Ratio between Actual Cost and Min-Bound for interconnect (a) and
registers (b) (for 50 examples)

Finally, its should me mentioned that asimilar approach can beused to estimate theregis

ter count for the hardware modelH*. Since thismodeldoes not support broadcasting, the esti

mated register count will be closer to the actual solution.

52

The performances of the estimation routines for interconnect and registers are analyzed

using the benchmark set. The results are plotted in Figure 15.a for interconnect and Figure 15.b

for registers. The maximum discrepancy for interconnect is 142%, while the average and median

discrepancy are 46% and 39%. The maximum discrepancy for registers is 72%, while both the

average and median discrepancy are 39%. The largest discrepancy for interconnect occurs again

when the stress ratio is close to 1. The explanation is the same as in the case for execution units.

The discrepancy for the number of registers is much less dependent on the stress ratio.

Although the discrepancy is still relatively small, it is not as impressive as in the case of

execution units. The higher discrepancy between the min-bounds and the actual cost for inter

connectand registersis partiallydue to the fact that the used scheduleris payinghigher attention

to execution units than to two other hardware components because the execution elements have

higher implementation cost. Also, it seems that the mechanisms for the minimization of the

number of interconnectsand registers are not in as mature state as in the case of execution units

and that there is some, although relatively small, room for the scheduler improvement with

respect to two components. Finally, as we already stated the registers estimation seems inher

ently more difficult problem.

3.3.4 Other Relaxation Approaches

The number of relaxations, which can be introduced to simplify the high level synthesis

scheduling problems, are almost unlimited. A large number of scheduling problems are indeed

known to be of a polynomial complexity. Of course, the most interestingone are those that offer

a good compromise between accuracy and run-times. We will briefly discuss three other

approaches: relaxing on the constraints that operations should be scheduled on integer times,

ignoring all edges which violate certain graph properties and ignoring the fact that the operation

execution should be non-preemptive.

53

The first approach (and also the most promising one) is based on the fact thatthe schedul

ing, resource allocation and assignment processes can be formulated as integer programs

[Pap82]. While integer program solvers are taking exponential time (and are hence inapplicable

for problems oflarge size), linearprograms canbe solved in polynomialtime. T\iming an integer

program into a linear one corresponds to relaxingon the integer startingtime of the operations.

While such as solution cannot be used in an actual design, it can be employed to provide an

accurate lower bound on the execution time of a program, given the hardware resources (the

dual estimation problem).

Hu [Hu64] showed that the as soon as possible scheduling algorithm produces the optimal

solution, when the computational graph has an in-forest or out-forest structure. A graph can

relaxed into this particular format by removing all precedence edge, which violate this con

straint. The quality of the prediction depends upon the number of edges deleted and even upon

the choice of the edges (since many forest structures can be derived for a single problem).

A max-flow based algorithm for the optimal scheduling of J jobs on M machines has been

developed by Federgruen and Groenevelt [Fed86]. They assumed however that tasks can be

scheduled in discontinuous intervals, which is, of course, not the case in high level synthesis.

The algorithm might however be capable of predicting accurate lower bounds.

Finally, it is interesting to note that sometimes the addition of extra constraints might

result in a more tractable problem formulation. Leung [Leu82] succeeded to optimally schedule

a graph, when the execution times of the operations are restricted to at most k values. His algo

rithm, which uses a sophisticated dynamic programming approach, has a worst case run time of

OQog p*log m* n2^k_1^). While it isan impressive algorithmic result, its actual application is

limited to cases, where k is small. Since this is often the case when the available time approaches

54

the critical path, this technique can be used to produce sharper bound for the estimation

instances with large stress ratios.

3.4 APPLICATIONS

The proposed techniques have been implemented and incorporated into the HYPER syn

thesis system, which is targeted at the synthesis of high performance, data path intensive real

time applications [Chu89, Rab91a]. Within HYPER, the complexity estimation routinesare used

in numerous places as will be demonstrated in the sections below. Complexity estimation how

ever has a scope which rises beyond the confines of HYPER. Other applications for which the

presented techniques could be useful are the areasof algorithm and design style selection as well

system partitioning. A number of those applications will be discussed with the aid of a simple

example, being an 8-point Discrete Cosine Transform (DCT). The DCT is used in virtually all

video and image compression systems, such as present in HDTV and tele-conferencing. One

form ofthe DCT is shown in Figure 16 [Vet86]. The following paragraphs will discuss the appli

cationsof estimation in a top-down fashion.

wioiPoammiimpiiiiHmQomwooaoooocooocowoQQWMOocoQooao!

X0.sin(a) + X1 .cos(a)

X0.cos(a)-X1.sin(a)

FIGURE 3.16. 8 point Discrete Cosine Transform - Computational Graph

55

3.4.1 Algorithm and Architecture Selection

Often various computational algorithms are available to perform the same function. The

optimality of an algorithm depends upon the required throughput rate, the available input-output

and memory bandwidth and the operation library available. The results of the estimation process

can help to differentiate between different algorithms over a range of implementation con

straints. For instance, while an FFT might require less multiplications than a DFT, the DFT can

be advantageous when spectral information is only required for a limited frequency band or

when memory is in short supply.

As another example consider the DCT example. An important part of the DCT is a rota

tion of the input data, requiring complex multiplications. It is well known [Bla85] that the num

ber of multiplications required for a complex multiplication with a constant can be reduced by a

reorganization of the computation. In Figure 17, it is shown that the reorganized computational

graph reduces the number of multiplications by 1 at the expense of an extra adder and an

increased critical path. In order to compare the two approaches, we have used the proposed esti

mation techniques to compute the implementation cost over the range of throughput speeds. For

this and the coming examples, the cost is computed as the sum of the minimal execution cost

plus the minimal register cost. The properties of the module library used are shown in Table 1.

Speed Cost

Add/Subtract 1 1

Parallel Multiplier 2 8

Serial Multiplier 8 2

Register
— 0.5

TABLE 1. Speed and Cost Properties of Simple Module Library

The results of the estimation process are shown in Figure 17. It is interesting to notice that there

is no clear best algorithm. Although the reorganized flow graph reduces the number of (expen-

56

sive) parallel multiplications by 3, the increasedcritical path offsets the gain for certain through

puts. These observations are extremely hard to come by usingjust flowgraph inspection.
Ar

origina]

transformed

1_
TH.

*%
'M

T"

~v lllluutMUU..t
20.00 —

:

13.00

10.00 —

:... —1 £?

10.00 20.00 30.00

FIGURE 3.17. DCT: Comparison of Cost of Using Traditional or Reconfigured Complex
Multiplications

Similarly, the estimation results can help to select between architectural styles, such as

general purpose programmable versus custom programmable or hard-wired, time-shared inter

connect versus a dedicated interconnect network or bit-serial versus bit-parallel. Different archi

tectures can be compared by modifying both the hardware model as well as the available module

set.

3.4.2 Module Selection

Accurate estimation can help to improve the quality of the module selection process,

which selects between different alternative versions of an execution unit present in the hardware

library. Traditional module selection tools [Jai88] use the absolute min-bound to estimate the

cost of a given selection. We have demonstrated [Chu91] that the relaxed estimation can result in

more optimal selections.

57

An example of howaccurate estimations can help in themodule selection process is given

in Figure 18. Here we studythe effecton the implementation cost of the DCTif we would use a

slower parallel-serial multiplier instead of the fully parallel-multiplier. It can be observed that

the serial multiplier solution only becomes dominant for very large values of the available time.

For very small times, the parallelsolution is obviously the only choice. In the intermediate zone,

both solutions are comparable, which is somewhat predictable, since both multipliers have iden

tical Area-Speed products.

60.00

55.00

50.00

45.00

40.00

35.00

30.00

25.00

20.00

15.00

10.00

5.00

—<

*i^t
^

—»,

50.00 100.00

FIGURE 3.18. DCT: Parallel versus Serial Multiplier

fast

slow"

time

3.4.3 Transformations

Optimizing transformations are an essential component of any synthesis environment.

Pipelining, retiming, arithmetic laws and loop unrolling are typical examples of transformations,

which are often applied to improve the implementation quality. The main questions arising in a

transformation environment are what transformation to apply whenand what improvement can

beexpected. Once again, estimations can help substantially to resolve these questions. An exam

ple of a combination of transformation-estimation is the retiming for resource utilization trans

formation [Pot91a]. This transformation, based on a probabilistic iterative improvement

58

approach, uses estimations to both determine the cost-function and hence the next move, as well

as the optimal result and its distance from it.

The DCT example is used again to illustrate this point We compared the original version

(Figure 16) with a pipelined version, where three pipeline stages were introduced to increase the

throughput. The estimated cost of pipelined and non-pipelined versions is compared in Figure

19. The results demonstrate that the pipelined approach achieves its goal of increasing the

throughput, but also that over-pipelininghurts: at lower speeds, adding pipeline stages only adds

extra registers.

110.00 -^

100.00

90.00

80.00

70.00

60.00

50.00

40.00

30.00

20.00

10.00

10.00 20.00 30.00

FIGURE 3.19. Pipelined versus Non-Pipelined DCT cost

original

pipelined

3.4.4 Design Space Exploration - Allocation

The derived minimum and maximum bounds delimit the design search space, thus speed

ingup thehardware allocation process. Theminimum bounds canserve as aninitial solution for

the search. We have experienced that this solution is often very close to the final solution

[Pot91b]. Information such as the distribution of the parallelism plots or the distance between

the absolute and relaxed min-bounds can be used as a metrics to select an optimizing transforma

tion [Rab90].

59

When all automatic techniques fail, feedback of the estimation information such as the

bounds and the parallelism plots to the designercan help to guide him to through an interactive

search process. Figure 20 shows a screen dump of the HYPER user interface. The bounds are

printed in the main window. The plots on the left are respectively the parallelism plots for the

execution units, registers and interconnect. The example shown here is the 7th order IIR filter

discussed higher.

»•«* / • • • V

tmit- «— t

c—*l. f- id l»i«): n. Clock r.rlr-l („,-,.) ; fl.i

1 tronofors 1 aubtracfcorl 1 Udirl 1 louniLl 2 b»rr.lBU:
«.".-: *. civ. ft-.. : s.17 ~c

Unc...

Uki HH-tfi w.b.-n Snim - Vfc

txtlnotod Bound, for Er«4i Urll

ftvoLlokla Tlao If,

CrlULcal PoUi 13
M-OTMoou 43
•k-OTEoto* 43

c

•

u n o 1
n 1 • 1|a*u . t

" "

lu-anafar 4 1 3 1
loubo-oct^r 11 1 5 1
loddor u 1
lloUnlL 1
Ibarra! KL1 14 2
ILoCal 43 E 27 1

••:•:•.•:•:•:•.•:•:•••:•:•:•••:•:•:•; •:•:-:•:

FIGURE 3.20. Screen Dump of HYPER UserInterface During Estimation.

3.4.5 Assignment and Scheduling

Estimation can help to improve the quality of assignment and scheduling algorithms. For

instance, the HYPER scheduler uses a relaxed scheduling as a heuristic to select a candidate

node in a list scheduling process [Pot91b].

60

3.4.6 Synthesis Algorithm Validation

Most of the problems in high level synthesis (such as allocation, assignment and schedul

ing) have been proven to be at least NP-complete. As a result, it is hard to judge the quality of a

proposed synthesis algorithm. Typically,benchmarks examples are used as a means to establish

the performanceof a technique. However, algorithms can be over-tuned to one particular bench

mark ("the fifth order elliptical filter" syndrome). Furthermore, comparing algorithms against a

particular benchmark establishes a relative measure, but does not result in an absolute idea of he

quality of the solution. Short of actually determining the optimal solution (which is virtually

impossible for complex applications), the best approach is to estimate that optimal solution as

accurately as possible. The proposed min-bound estimation techniques present a means to

achieve this goal.

3.5 FUTURE WORK

As demonstrated with the benchmark examples, the relaxed estimation techniques tend to

be rather accurate. The average error approximates 10%. Sometimes, the predicted bounds are

too optimistic and estimation errors of up to 67% can be observed. This is typically the case

when the available time approaches the critical path. In that case, the graph tends to be very con

strained and the relaxation approach is overly simplistic. Getting more precise information using

more complex deterministic approaches would defeat the goal of the estimation approach: get

ting accurate results/art. This eliminates all approaches with acomplexity larger than 0(N2).

One way to get more precise results without extra computational complexity is to use a

statistical approach. The results of the deterministic estimation process can be used as parame

ters in a statistical model, obtained through the analysis of a large number of examples, which

span the complete design space. This approach does not result in bounds, but in an estimation of

the location of the actual solution. Early experiments (over the same benchmark set as used

61

higher) indicate that an average error of 4.6% canbe obtained with the maximal error equal to

18.7%. An extended research effort in this direction is currently under way.

We are also studying the use of the relaxation approach for the estimation of background

memory bounds. These results will be extremely useful in the memory module selection, mem

ory partitioning and transformation for memory optimization processes.

Finally, the readermight have observed that the majority of the estimation techniques pre

sented focus on the computational part of the implementation. This is justifiable for high perfor

mance real time applications, where memory and data paths dominate the chip area. This is not

the case however for controldominated applications. Some results in this areahave alreadybeen

reported in [Mli91].

3.6 CONCLUSION

A library of techniques to efficiently and accurately estimate the minimal and maximal

bounds on the implementation cost of an application specific circuit have been presented. All

algorithms have a complexity not larger than quadratic and the observed results on our bench

mark set display an average error of approximately 10%.

We have demonstrated the application of those techniques in a variety of design synthesis

areas, such as design space exploration, transformation selection and synthesis validation. It is

the authors belief thatthe majorimpact of estimation will be in the higherlevels of the synthesis

process, such as algorithmand design style selection as well as design partitioning. It is our con

viction that estimationwill be one of the essential componentsin the system designers tool-box.

ALLOCATION, ASSIGNMENT AND
SCHEDULING ALGORITHMS FOR

HIERARCHICAL CONTROL DATA

FLOW GRAPHS

4.1 PROBLEM DESCRIPTION

The path from the high level specification of an application specific design to the final

implementation is long and complex. Even when looking only into the architectural synthesis

part, it involves a multitude of problems, including the selection of clock frequency and hard

ware module set, partitioning, transformations, resource allocation, assignment and scheduling.

All those tasks are computationally very complex, especially when posed with all constraints

and all aspects imposed by real-life problems.

Although a standard terminology has yet to be agreed on, the following definitions are

most common and are widely accepted. Scheduling is the task, which decides in which control

step a given operation will happen. Assignment determines on which particular execution unit a

given operation will be realized, from which register it will request its data and where it will

send the result using which connection. Resource allocation is closely related to the above

62

63

tasks: it reserves the amount of hardware (in terms of execution units, memory registers and

interconnect) needed for the realization. It might also determine the time available for the execu

tion ofthe algorithm. Obviously, those three tasks are interdependent and the layered structure of

NP-complete problems makes the overall problem extremely difficult.

4.1.1 Previous Work and New Issues

Almost all allocation, scheduling and assignment problems, even when posed in a highly

restricted form, are at least NP-complete. The complexity of various versions of the scheduling

[Joh83, Bla83], allocation [Iba88] and assignment [Gar79] problems has been treated exten

sively in the literature. Furthermore, those problems have been studied in great detail in the areas

of software compilers [Gon77] and operations research [Law90]. However, the specific nature of

high level synthesis imposes some very specific demands and constraints (e.g. the relationship

between execution units, interconnect and memory), which prevents a direct use of those tech

niques.

Although high level synthesis is a relatively young area, numerous approaches to the

above problems have already been proposed. Like in other CAD areas, all optimization tech

niques have been tried one by one, usually with increasing implementation complexity, more

realistic problem modeling and higher level of success. They can be categorized into several

groups, accordingto the underlying algorithm: explicit [Bar73] and implicit enumeration algo

rithms [Par86], various heuristics which use as soon as possible (ASAP) and as late as possible

(ALAP) scheduling to obtaina globalpicture of the solution space [Goo87, Pau89,Sto89], inte

ger programming [Bal89], various probabilistic approaches (e.g. simulated annealing [Dev89]

and neural nets [Gul87]) and continuous relaxation techniques (e.g. linear programming with

manual assistance [Har89] and gradient methods [Shi89]). A good overview of the multitude of

approaches is given in [McF90].

64

The more than 70 published approaches represent both the impressive research efforts and

the significant progress achieved. Still, several important issues and aspects of the problems are

rarely, if at all, addressed.

First of all, practical experience indicates that an overwhelming majority of the applica

tions require hierarchical constructs, being a conditional operation (IF-ELSE) and a loop con

struct (DO, WHILE, ...). Without them, only a very limited number of applications can be

addressed. Flattening the graphs is not a reasonable solution, as it would create graphs with

excessive numbers of nodes, resulting both in unrealistic implementations (huge number of

states in the controller) and in inflated scheduling times. Although the majority of algorithms

described in the literature can be used as a subroutine in a hierarchical framework, significant

modifications have to be introduced and a significant number of new issues has to be addressed

to achieve effective solutions. The most important of them is the observation that the optimiza

tion process has to consider the global, hierarchical graph and that it is not sufficient to optimize

at the lowest level of the hierarchy.

Next, in VLSI technology it is essential to simultaneously address all three components

of the hardware cost (being the number of execution units, memory registers and interconnect)

[McF87]. Very few scheduling and assignment algorithms are doing this. Furthermore, it is nec

essary to consider during the allocation and scheduling not only the structure of the algorithm,

but also the available hardware and its properties. For example, it is obvious that the allocation

and scheduling for a floating point computation should favor both multipliers and adders approx

imately equally. However, when fixed point computational elements are used, more attention

should be paid to reduce the number of multipliers, where the number of adders is of less impor

tance, due to the smaller cost. Even for identical applications, high quality solutions for those

two cases will be very different.

65

Finally, it is important to picture allocation, scheduling and assignmentas just a sub-task

in the overall synthesis process. In order to be useful, it is important that those tools provide an

adequate information feedback to the synthesis framework and/or the user. This feedback for

instance includes information on eventual bottlenecks in the algorithm (such as insufficient time

allotment, lack of parallelism or the under-utilization of hardware) [Rab91a]. This information is

especially important for the module selection and graph transformation environments (for

instance, should more pipelining be applied?).

4.1.2 Problem Formulation

This section describes the overall formulation of the addressed problem in terms of the

input, the constraints and the objective.

4.1.2.1 Control data flow graph

The HYPER high level synthesis system (in which all described algorithms are incorpo

rated) [Rab91a], uses a control data flow graph (CDFG) syntax to describe the semantics of the

algorithm (after translation from a high level language). The CDFG represents the algorithm

essentially as a flow graph, with nodes, data edges, and control edges. The nodes represent data

operations (including memory read and writes and memory address calculations), while the data

edges represent data precedences between nodes. In addition, control edges are introduced to

enforce extra precedence rules, for example that operation A has to precede operation B with at

least K cycles.

Aside from the standard algebraic operations, the CDFG allows a number of macro con

trol flow operations such as loops and if-then-else blocks. The introduction of those control

statements result in a hierarchical graph. The body of a loop or a conditional is represented by a

sub-graph, which is contracted into a single node at the next hierarchy level up (Figure 1).

66

FIGURE 4.1 Hierarchical Flow Graph Model

In orderto handle hierarchical graphs, we first transform the CDFG. Each loop and condi

tional (as well as subroutine) is treated as a single block. Operations outside the loops are clus

tered into blocks as well (Figure 1). Now we can represent any program as a hierarchical graph

with blocks as nodes. At the lowest hierarchy level (called the leaf graph level from now on), a

node will representonly a single operation. At the higher levels in the hierarchyhowever, each

node represents a sub-graph on itself.

4.1.22 Hardware graph

The goal of the synthesis process is to produce an architecture which implements the

application described in the CDFG.The architecture is fully characterized by the number of exe

cution units, the registers in register files and the list of required interconnects. We assume that a

direct mapping between the selected architectural primitives and the silicon area exists in the

form of a cost function. Establishing a precise cost function is a difficult task, mostly because of

the interconnect component, which involves the complete placement and routing process. We are

currently assuming that the cost function is provided by the user. (Research addressing this prob

lem using a statistical modeling technique is also under way.) Notice also that the current estima-

67

tion does not include the cost of the controller either. This could become a problem for control-

oriented applications.

The hardware model assumed in the proposed algorithms is very general: execution units

can be multi-functional, take an arbitrary number of control steps, be chained (connected with

out intermediate registers) and be pipelined to an arbitrary extent.

4.1.23 Objective function

The high level synthesis literature defines three different combinations of objective func

tions and constraints: (1) minimize the execution time, given the hardware constraints; (2) mini

mize the hardware, given the timing constraints; or (3) find a solution which simultaneously

satisfies both the timing and hardware constraints. The third combination can be used as a sub

routine during the search through the time space or the hardware space to solve the first two for

mulations. Therefore, we opted to address only this formulation for the leaf graphs (graph

without hierarchy). Using this basic routine, any of the above objective functions can be imple

mented, both for hierarchical and leaf graphs. In the rest of the paper however, we will assume

(without loss of generality) that we pursue the second objective function for the hierarchical

problem.

4.1.3 Solution Organization and Strategies

The overall organization of our approach is pictured in Figure 2. The outer loop of the

algorithm performsan allocation searchthrough the architectural space. For each proposedhard

ware solution, it invokes a program to optimally distribute the available time over the leaf

graphs. Given a hardware allocation and a time distribution, the leaf graph assignment and

scheduling routine is now invoked on eachof the leaf graphs. This routine in itself is organized

as a loop: multiple assignments are proposed. Only attractive assignments are presented to the

scheduler. Both assignment and scheduling routines provide feedback information (for instance

68

which hardware unit is in short or ample supply or which leaf-graph was hardest to schedule),

used to guide the allocation search process.

Hardware Allocation Search (Hierarchical)

Time Allocation Search

Leaf Graph Assignment and Scheduling

Control Mechanism

Assignment

1
Scheduling

FIGURE 42 Overall Organization of Allocation. Assignment and Scheduling Process

Notice that in our approach assignment is performed before scheduling. Although very

tempting and often advocated, the idea of combining scheduling and assignment in one step is

not necessarily superiorto treatingthem separately. Assessing the cost of scheduling a node on a

particular hardware unit is much easierwhen the assignmentis known. This is definitely the case

when considering simultaneously EXU's, registers and interconnect. For instance, how to assess

the effect of scheduling a node on the interconnect cost, when it is not known where the fanout

of that node will go?Therefore, combining both approaches does not necessarily lead to a better

solution and will result in a more complex and convoluted code implementation. Furthermore, as

already mentioned, both scheduling and assignment areNP-compete problems. The combination

of both of them is even more complex and will requirea superioroptimization mechanism.

It is very important to stress that when the approachis taken to execute the algorithms in

sequence, it is essential to anticipate the consequences of decisions made during the first applied

algorithm on the second one. This is one of the main reasons why we opted for performing

assignment before scheduling, in contrast to majority of the published approaches. As it will be

69

described later, we succeededto accurately characterize the probability of a successful schedul

ing for a given assignment. Another reason for this decision is that a hierarchical scheduling

environment produces additional constraintsof a spatial nature (for instance, the correct interfac

ing between sub-graphs requires the locking of the input/output variables in fixed registers).

Those assignment constraints are more easily handled in an assignment first approach.

Several other high level synthesis systems also perform assignment before scheduling.

Most notable among them is CMUDA [McF86]. However, the approach presented here differs

from the previously published techniques in several important aspects. Both the form and the

validation of the objective function are new, as well as the used optimization algorithms. Fur

thermore, the resource allocation module enables efficient interchange of feedback information

between assignment and scheduling. Finally, and maybe the most importantly, the just men

tioned motivation behind this ordering of high level synthesis task is new.

4.1.4 Chapter Organization

The remainder of the chapter is organized in the following way. First we describe the

assignment and scheduling algorithms for leafgraphs and the accompanying control mechanism.

This is followed by a discussion of the hierarchical framework, which combines the leaf graph

algorithms with a global hierarchical allocation search. Finally, experimental results are pre

sented and analyzed.

4.2 ASSIGNMENT

This section describes the two-phase assignment algorithm. The first phase of the process

proposes an optimized assignment using a probabilistic rejectionless anti-voter algorithm. The

role of the second phase is to analyze the proposed solution in order to:

• discriminate between proposed solutions

70

• provide feedback informationto the hierarchical allocationframework and the sched

uling.

After a discussion of the objective function of the assignmentprocess, the two phases will

be presented in detail, followed by a analysis of the computational complexity of the algorithm.

A statistical computational study will demonstrate the effectiveness of the proposed approach.

4.2.1 Objective Function

The goal of the assignment process is to find, for a given hardware allocation, the assign

ment which will make a successful scheduling as likely as possible. To measure the likelihood of

successful scheduling given the assignment, we introduce a measure badness and two properties

disastrous and bad for each CDFG node. The badness indicates the predicted level of difficulty

to schedule a particular node. It is a function of the number of other operations, which vie for the

same resource (which can be an execution unit, register or bus) and which can be scheduled

simultaneously. In order to schedule two operations during the same cycle, those operations

should obviously be assigned in such a way that they do not require the same resource instance.

Any operation has to be scheduled in the interval between its ASAP and its ALAP times,

which can be easily obtained using topological ordering (using depth first search), and leveling

according to inputs and outputs. The slack of an operation is defined as the difference between

the ALAP and the ASAP times. In order to maximize the overall resource utilization, we want to

minimize the overlap of the intervals for operations, which compete for the same resource and

which do not have any precedence relationship between them. Therefore, we define the badness

of CDFG node A using the following formula:

badness {A) = Y ** (EQ 1)
BeSASLxtsSL

71

where S is set of nodes B competing with node A for a resource of the same type, 0AB is the

length of overlap between the slack (SL) intervals of nodes A and B and ASL and BSL are the

slacks of operations A and B. The rationale behind this formula is that it is a computationally

efficient approximation of the probability to schedule operations A and B at the same time. The

badness of nodes, for which there exists no choice (when there is only one available resource of

the type needed by the operationor when the assignment is fixed due to global constraints), is set

to 0. The total badness of a given assignment is the sum of the badnesses over all CDFG nodes.

When there exists an assignment for a particular node, which would improve (reduce) the

badness of that node with respect to the current assignment, the node is denoted as bad. This

property can be easily determined by comparing the current badness with the worst case badness

of that node over all assignments. When a node can not be scheduled, regardless of the schedul

ing technique, due to an inappropriate assignment, the node gets the disastrous property. This is

for instance the case when two nodes, bound to happen in the same cycle, are assigned to the

same resource. When we want to improve the total badness, it is obvious that the bad and disas

trous nodes are the prime candidates.

The above ideas are illustrated with the example in Figure 3. It is assumed here that each

operation takes 1 cycle and that 5 control steps are available. Suppose that at a certain phase in

the assignment process, we have obtained an assignment, as given in Table 1. The Table also

includes the ASAP and ALAP times for each node. Looking at node B, we see that nodes A, C

and D can not be scheduled at the same time (because they are on a direct path to or from B), and

therefore they arenot on the competitor list of node B. Node I is not a competitor for node B due

the fact that its execution does not overlap with the execution interval of node B(0BI = 0),

while E is excluded because it does not vie for the same resources as B. However, nodes F, G

and H are all competitors of B. G is performed on the same unit as B, while F and H are sending

their results to the same destination (register file). The normalized influence (or potential bad-

72

ness computed using (1)) is 1/3 for node G, 1 for node F and 1/4 for H. Node B therefore has a

total badness of 19/12. If we change assignment ofnode B from adder2 to adder 1, then the bad

ness is reduced to 5/4, due to the fact that now only nodes F and H require the same resource as

node B.

Node Type ASAP ALAP Assignment

A + 1 2 1

B + 2 3 2

C + 3 4 1

D + 4 5 2

E ♦ 1 2 3

F * 2 3 3

G + 1 3 2

H + 3 4 1

I + 4 5 2

Table 2: Assignment Instance for Example of Figure 3

FIGURE 43 Example Flow Graph.

73

4.2.2 Probabilistic Rejectionless Assignment Algorithm (Phase 1)

In order to efficiently solve the assignment problem, a novel probabilistic algorithm has

been developed. The basic properties of the algorithm can be summarized as follows: First a ran

dom assignment is performed, where each node is assigned to a hardware instances of the

required type. After calculating the badness of all nodes, and building the lists of bad and disas

trous nodes, we proceed in a way common to probabilistic iterative techniques: the algorithm

tries to reach the optimum by applying a sequence of basic moves (in this case, changing the

assignment of a particular CDFG node). However this is where similarity with popular methods

such as simulated annealing and Boltzmann machine ends.At each step, a node is selected from

either the list of bad or the disastrous nodes in a random way, probabilistically favoring disas

trous nodes. After that, a move is selected, once again on a random base. The chance, that a cer

tain node and a certain move are selected, is however made proportional to the overall badness

of the node and the reduction in badness due to the move (measured as the reduction of the over

all badness). It should be realized that moves increasing the overall badness can occur, although

the chance for this to happen is small and inversely proportional to that increase.

There are two major differences between this technique and simulated annealing: First, the

proposed move is always accepted, where in simulated annealing moves are generated on a

totally random base and a large percentageof them is rejected. This technique is therefore rejec

tionless [Gre86]. Secondly, at each step, the algorithm uses all information about how much a

node or a move can contribute to the reduction of the objective function (through the badness

and disastrous lists). This aspect of the algorithm is inspired by the highly successful anti-voter

probabilistic algorithms for graph coloring [Pet89].The combination of the rejectionless and the

anti-voter nature of the algorithm improvesthe efficiency of the algorithm dramatically, and the

run time for examples of up to several hundred nodes is less than 0.1 second on a SPARCstation

2. The algorithm is halted when no improvementis detected for at least k steps, where k is the

74

number of nodes in both the bad and disastrous nodes lists. It can easily be augmented with an

annealing andtabumechanism. However, theobserved performance wasmorethanadequate, so

that we decided not to use those ideas here.

Anti-voter algorithms have several noble properties, which are preserved in the proposed

algorithm. Amongthemis the algorithm property that it converges to the optimum solution with

probability 1, whenthe runningtime is sufficiently large[Kar88]. This is proven with the follow

ing simple argument. Suppose that we have an assignment. If this assignment is not optimal,

then,by randomly pickingthe correctmovesone by one, we can make a transitionto the optimal

solution. For this we have small, but finiteprobability. If we are not lucky after at most n steps (n

is the number of parameters necessary to fully describe the assignment problem), we can apply

the same reasoning. In this way, the probability to reach the optimal solution can be made as

large as necessary (by trading off with run time). It is interesting to notice that in practice the

algorithm converges extremely fast to a high quality solution.

In summary, the assignment algorithm can be described with the following pseudo-code:

Generate RandomInitialAssignment;
Form list B ofbad elements and list D ofdisastrous elements;
While (stopping criteria not satisfied) {

Pick a random element A from B or D;

Pick a new, random assignmentfor A;
Update solution as well as lists B and D;

}

4.2.3 Assignment Evaluation using Relaxed Scheduling (Phase 2)

The probabilistic rejectionless anti-voter assignment algorithm creates assignments based

on the ASAP-ALAP information (as is typical in most assignment/scheduling algorithms).

Although this is a useful measure, it tends to be overly optimistic: due to conflicts between oper

ations vying for the same resource, some operations will have to be postponed, resulting in a

reduced ALAP-ASAP interval (which is ignored in the previous formulation). The effect of the

75

conflicts over a particular resource on the earliest execution time of all nodes, which need this

particular resource, canbe easily evaluated by performing a simplescheduling, considering only

those nodes which require this particular resource. Optimal scheduling, considering only a single

resource, is a problem of polynomial complexity O (nlog (n)) [Law76], with n the numberof

nodes in the sub-graph under consideration, which is normally small. It is well known that this

optimal schedule can be obtained by using a list schedulingwith the smallest ALAP time as the

priority measure (also called slack based scheduling). The obtained ASAP time (called TRASAP)

is still optimistic (since only one resource is considered at the time), but is sigmficantiy more

precise than the original ASAP.

This procedure, which we calledrelaxedscheduling provides more accurate and less opti

mistic information about the quality of the proposed assignment and helps to generate an effec

tive quality measure, used to discriminate between assignments.

As a result, we can introduce one more CDFG node measure, called the expected node

scheduling difficulty (SD), which equals (for a node A):

SD(A)= min(T *-r yif (r«" >Tt*sw) m2)min[<1ALAP JRASAP>

= If if(^AXAP = TRASAP)

= M,if(TALAP<TRASAP)

where M is a large number (» 1). This measure can be interpreted in the following way:

SD(A) small: A has a strong chance to be scheduled without violating timing con

straints.

• SD(A) larger,but smaller than 1: scheduling is possible, but unlikely.

76

• SD(A) > 1: scheduling is impossible.

The total expected scheduling difficulty for the whole CDFG is the sum of expected

scheduling difficulties over all CDFG nodes. This information can be used by both the allocation

as well as the scheduling routines.

4.2.4 Assignment Effectiveness

To verify the effectiveness of the assignment objective function, the expected scheduling

difficulty measure as well as the proposed algorithms, the following assessment procedure was

executed. For a number of examples, we generated and evaluated 250 fully random assignments.

For each of those, the objective function and the expected scheduling difficulty were computed

and the scheduler, described in the next section, was applied. The results for one example (a 7th

order IIR filter with an available time of 16 control cycles and 2 adders, 2 barrel shifters and 1

subtractor allocated) are shown in Figure 4. A high level of correlation between the objective

function and the scheduling success is evident. Similar patterns have been observed for all other

examples.

The computational complexity of the relaxed scheduling assignment equals

KLk\og (Lk), where K is thenumber of relaxed schedules (or the number of resources) and Lk

is the number of CDFG nodes, which are using resourceK. Although the worst case complexity

(when all nodes are assigned to the same resource) is quadratic, the average case has almost lin

ear complexity. The overall complexity of the probabilistic assignment is also very low and can

be controlled using the stopping criteria.

4.3 SCHEDULING

This section describes the probabilistic constructive scheduling algorithm. It is assumed

that both resource allocation and assignment have been performed prior to the scheduling, as is

described in the respective sections. At the end of the section we will discuss the computational

o

CD
O)

o - *

Cti * *
*-> *

c
a) o
o 00

CD A
Q.

O)
C

o
CO

*

* *

3
•D
a)

^ o
o •<* * *
CO *

*• +

3 «*
^ *

CO
CO
CD

o
CM

* ****
* *w *

o * ** ^
o
3

«** * *
* ** *

* ^
CO

o

4* <**

-T

18 20 22 24 26

objective function

77

o

CD
o *

co
*-• #

c
CD o
o CD
k- * ^
CD + *
Q.

*

D) O
CO

* *

3
•D :**
CD

o
o

- ***/
CO *

* *

3 **
* *

CO
CO
CD

o
CM -

o
o
3

•*** *

CO
o

*** *# * *
* *

20 21 22 23 24 25 26

scheduling difficulty

FIGURE 4.4 Correlation between Assignment Objective Function and Scheduling Success and
between Scheduling difficulty and Scheduling Success

complexity of the proposed algorithm, while experimental results will be discussed in a separate

section.

One of the most controversial issues in scheduling is whether to use a list scheduling

framework. The list scheduling framework [McF90] significantly reduces the implementation

complexityof a scheduler (versus, for instance, a force directed scheduler), but it is often seenas

imposing extra constraints and hence leading to locally optimal solutions. However, a solution

obtained by any other scheduling framework canalsobe obtained by a list scheduler. To achieve

a globally optimal solution, the list scheduler has to adhere to two conditions. First of all, deci

sions for a certaincontrol step have to be made with respectto all nodes in the graph, not just to

the candidates for that particular control step. Secondly, it is necessary to have a mechanism to

postpone the scheduling of a particular node, even though hardware resources are available dur-

78

ing the control step under consideration. Postponement is sometimes necessary, either due to

multi-cycle units ormemory requirements. We will discuss both cases inthe course ofthe ensu

ing description.

During the scheduling all timing constraints arehonored. If the scheduler is not capable to

find a feasible schedule satisfying all timing constraints, the resource allocation routine (seeSec

tion 5) increases the available amount of hardware.

4.3.1 Constructive Probabilistic Scheduling Algorithm

The scheduling starts with a pre-processing step which aims to establish a global schedul

ing importance ranking for all CDFG nodes. A transitive fanout list is built for each node using a

depth first search (for node A, this list contains a list of all nodes depending upon A, and is called

fanout(A)). As already explained in the assignment section, all scheduling algorithms, proposed

until now in high level synthesis, rely on ASAP and ALAP information. However, the relaxed

scheduling executed during the second assignmentphase provides us with more precise and less

optimistic information for each node (being the expected scheduling difficulty SD(Aj). This

information can be used to build global measure for the scheduling difficulty of a node, called

GSD(A):

GSD(A) = £ SD(B) (EQ3)
B e fanout (A)

This measure is motivated by the following reasoning: Even,whena particularnode is not

denoted as critical, its global criticality is also influenced by the criticality of all nodes, which

have this node as a prerequisite for scheduling.

After the ranking, the traditional list scheduling scheme is followed: at every time step, a

list of candidate nodes is constructed and, as long as resources are available, the nodes with the

best ranking are selected. After the exhaustion of the resources, the candidate list and the

79

resource availability are updated and thealgorithm proceeds to thenext control cycle(as long as

there are cycles orcandidates available). The Global Scheduling Difficulty (GSD) is usedasthe

prime ranking measure. However, some additional information is used during the candidate

ranking:

(1) In order to randomize the approach, a random component is added to the just

described deterministic one. During the first scheduling for a given assignment, this

component is set to 0, and it slowly increases with further attempts. This randomiza

tion often results in small improvements of the produced schedule.

(2) If a node has an ALAP equal to the current step, it is assigned the maximal difficulty.

(3) If two multi-cycled operations A and B, assigned to the same EXU, have overlapping

time intervals, an operation with the lowest rank will be postponed to reserve the

resource for more critical operation.

(4) The GSD-measureranks the nodes with respectto EXU and interconnect availability.

Memory is only addressed indirectly (since all variables which use a particular inter

connect will be stored in the same register file). This ranking ignores the limited size

of the register files and the finite life times of the variable. Ranking with respect to

memory availability can only be accurately addressed dynamically during the sched

uling. We discuss this issue in more detail in the following section.

The scheduling algorithmis summarized with the aid of the following pseudo-code:

list_schedulingJramework {
candidate_ranking();
candidate_UstJnitialization();
for (time = 0... max_time){

update_candidate_ranking();
while (resource_status == YES){

schedule_best();
update_resource_status();

}
update candidate_list();
update_resource_status();

}

}

80

4.3.2 Register Binding and Estimation

After a successful scheduling, it is necessary to determine exactly in which register within

the assigned register file each variable will be stored. This task is called register binding. It is

easily seen that two variables can only share the same register if they have disjoint life intervals.

The register binding problem can be now transformed into either a graph coloring or a clique

partitioning problem in the following way (as is well known in the literature): Variables are

mapped to nodes of a graph. The problem is transformed into a clique partitioning if an edge is

introduced between two nodes, corresponding to variables with disjoint life times. If an edge is

introduced when the life times are not disjoint, the problem is transformed into a graph coloring.

Although graph coloring is NP-compete forcircular arcgraphs, which correspond to the register

binding problem, there existvery efficient algorithms which guarantee the optimalsolution with

probability 1 for several broad graph classes [Tlir88, Dye89]. We selected Turner's version of

the Brelaz algorithm [Tur88], due to its simple and efficient implementation.

Graph coloring [Spr90, Sto91] and clique partitioning [Tse86] are often used techniques

for modeling hardware (and in general resource) sharing. It is easy to see that those techniques

are equivalent: graph coloring of a graph is equivalent to the clique partitioning of its comple

ment graphand vice versa [Gar79]. Our use of this technique is restricted to the optimization of

the number of registers in a register file.

On the other hand, during the scheduling process, we also need information on how many

registers are in use in eachregister file. Thiswill influence thecandidate ranking, asdiscussed in

the previous section. This estimation problem is addressed in the following way. At each time

step during schedulingwe know how many variables are alive in each register file. When a new

variable appears (or will appear due to a scheduling decision), we know that it must claim an

empty register,not in use by the live variables. As in the registerbinding, we can transform this

problem into a graph coloring one. In contrast to the binding problem, we are not interested in an

81

exact coloring here. Only information about the total number of colors needed is required. This

problem is well understood in the theoretical literature [Bol85, McD91], and the results are eas

ily summarized: To color a graph G containing n nodes and p edges, with probability 1, it is nec

essary and sufficient to use ^ ;—r- colors, where n equals the number of nodes and p is
21ogp (n)

n(n-\)
number of edges divided by •= . This measure is evaluated dynamically during the list

scheduling process and is used to alter the ranking of the nodes in a such way that no overflow

occurs on the register files.

4.3.3 Scheduling Algorithm Complexity

The initial node ranking process (building of the fanout lists) needs, in the worst case,

O (n) time,sinceeachnodecanhavea transitive fanout of at mostn nodes. Assuming that the

time needed by the ranking and selection mechanism is proportional to the number of nodes in

the candidate list for a particular time step, the worst case complexity of the list scheduler can be

obtained by using an adverse configuration approach.The scheduler will display the largest run

time, when all nodes in the CDFGhave an ASAPtime of 1 (and therefore an ALAP time equal

to the total available time). Then, at the worst, we have O (n) nodes as candidates, and since the

number of available cycles is smaller than the number of nodes, once again, O (n) time is suf

ficient.

4.4 LEAF GRAPH SCHEDULING AND ASSIGNMENT CONTROL

MECHANISM

The leaf graph control mechanism iteratively invokes the assignment and scheduling pro

cesses. The scheduling routine is only fired when the proposed assignment has sufficient chances

for success as expressed by the objective function. A careful study of the assignment statistics

(as shown for instance in Figure 4), leads to the conclusion that small improvements in the

82

objective function are rather meaningless. We therefore selected the following threshold func

tion to reject or accept proposed assignments:

Threshold = median + 0.1 x (best - median). (EQ 4)

where best is the best assignment objective function, and median is median value of the objec

tive functions during all previous assignments. We use the median measure instead of the aver

age to improve the algorithm robustness (it is only very slightly more computationally intensive

than the average calculation). If the assignment includes disastrous nodes, the scheduling is not

invoked, since there are no chances for a successful completion.

The control mechanism has two parameters: the maximum number of invocations of the

assignment (for each allocation), and the maximum number of scheduling attempts per assign

ment. On all examples tried, we obtained the final solution within 20 assignment cycles and at

most 10 scheduling attempts per assignment. Because the scheduling routines provide important

information to the hierarchical allocation, we invoke them atleast once per allocation, even if all

assignments are rejected.

4.5 HIERARCHICAL HARDWARE ALLOCATION

The hierarchical allocation is responsible for three major tasks:

• to propose a hardware allocation with minimal cost such that all sub-graphs can be

scheduled and all timing constraints are met;

• to distribute the available time over the leaf graphs in a global and optimal way;

• to combine the assignments and the schedules of the leaf graphs into a hierarchical

assignment and schedule, which obeys the temporal and spatial constraints between

those sub-graphs: for example, the output of one sub-graph should be put in the right

register for usage in the correspondinggraph.

While the former two tasks are complex optimization problems, the last one amounts to

bookkeeping: Leaf graphs interchange data according to a pattern, dictated by the hierarchical

83

CDFG structure. During the assignment process for a leaf graph, it is necessary to send the out

put data to the appropriate register files, such that it can be properly accessed by the fanout in

different leaf graphs. Also, it is necessary that reserved resources (memory registers with values

required by other blocks) are locked, so that they will not be overridden. Those issues are

resolved by building lists of reserved and locked resources.

The hardware and time allocation process is organized as two nested loops. The inner loop

search distributes the available time over the blocks as well as tests and generates a final solution

using the leaf graph assignment and scheduling subroutines. The outer loop searches the archi

tectural space, proposing different hardware allocations. The search process is organized in this

way becausethe inner searchis the moreconstrained one: in order to allocatemore time to a par

ticular block we have to reducethe available time of some other block(s). During the hardware

allocation, on the other hand, we have the freedom to add or remove hardware resources without

restrictions.

4.5.1 Leaf Graph Time Allocation

Before the assignment and scheduling of the leaf graphs can be attempted, the available

time foreachof them hasto bedetermined. Thegoal of this phase is to eitherproduce a feasible

schedule for the allocated hardware or to establish the proofthat a feasible schedule is non-exist

ing, regardless of thetime distribution. This problem can bevery efficiently solved using the fol

lowing approach. As an initial solution, the available time is distributed over the leaf graphs,

proportional to the complexity of each of the sub-graphs (using the critical path and the number

of operations per cycleas the mostimportant measures). A scheduling is impossible if the over

all critical path (obtained as a combination of the critical pathsof the sub-graphs) is largerthan

the available time. If feasible, an assignment and scheduling attempt is executed. The feedback

of this process is used to determine the next step: When the scheduling of a leaf graph was

unsuccessful, we add as many control cycles as the ratio of the number of unscheduled nodes

84

over the number of execution units. This time is removed from the successful sub-graphs, which

either had spare time or were under a relatively light stress. This procedure is repeated until

either a feasible schedule is obtained or no candidates with spare time are left This procedure

converges extremely rapidly and takes at most 2 to 3 iterations for all our benchmarks.

4.5.2 Global Hardware Allocation

The hierarchical hardware allocation process uses once again a probabilistic search pro

cess with as prime objective function the minimization of the hardware cost. The search is orga

nized as a two phase process: starting from an initial solution, hardware is added until a feasible

solution is obtained (this is checked using the Time Allocation Module, described above). Once

a solution is obtained, unnecessary hardware resources are iteratively removed. For the quality

of the approach three criteria are essential: the initial solution and the criteria for adding and

removing hardware.

The initial solution uses the absolute resource min-bounds as generated in the complexity

estimation phase of the synthesis framework [Rab90]. Immediateschedulingsuccess proves that

the obtained solution is also the optimal one.

When failing however, feedback information from the assignment and scheduling routines

is used to guide the search. During the scheduling, statistical information is collected on how

often it happened that the schedulingof an operation was postponed due to the unavailability of

a particular resource (EXU, interconnect, memory). Obviously, in order to increase the chances

of scheduling, it makes sense to add this resource, which was in greatest demand and shortest

supply. On the other hand, the addition of cheap resources should be favored over expensive

ones to minimize the implementation cost To balance between those two requirements, we

probabilisticallychoose among the candidate resources accordingto the ratio demand over cost,

i.e. we favor inexpensive and high demand - short supply resources. The same measure can be

85

used to decide exactly what type of resource to add (what EXU or bus, or to what register file).

For execution units and busses however, a more precise measure is available in the form of the

total scheduling difficulty for resource R(with TSD (R) = £ SD (A)).
AeR

Once a feasible solution is reached, the reduction phase is started. Some resources might

be in over-supply and can be reduced. The reduction process proceeds in a greedy fashion: we

try to reduce each resource class, one by one, in decreasing order of their cost.

The just described probabilisticprocedureis very simple and fast. More sophisticated pro

cedures were originally envisioned, such as the described rejectionless anti-voter approach or

simulated annealing. The experimentalresultshowever suggest that the increasedcomputational

time of those approaches is not justified for this problem.

4.6 EXPERIMENTAL RESULTS

One of the most difficult questions in CAD is the assessmentof the quality of a proposed

algorithm and a corresponding program implementation. Since the problems are usually NP-

complete (or worse), it is difficult to find the optimum solution. Sometimes, standard bench

marks have been defined, but those are usually established when the research area is more

mature. Even when benchmarks are available, they are more targeted towards the comparison

between algorithms, then to answerthe questionhow good the algorithmis by itself.

The assessment of proposed algorithms is an especially acute problem in high level syn

thesis. The most common procedure is to take a few (often only one or two) examples and to

conclude that the proposed algorithm produces a very good solution, due to the fact that it

slightly outperforms previously published algorithms with respect to either speed or solution

quality (the "fifth orderelliptical filter syndrome"). Obviously, this approach does not guarantee

that the next example will be solved successfully. To more adequately measure the algorithm

86

performance, we are using three basic tools: estimations, diverse examples, and robust parame

ters in the algorithm.

4.6.1 Estimation

As already mentioned, the major difficulty in the performance assessment of algorithms

for an NP-complete (or more complex) problem, is the fact that the optimum solution is not

known. However, for the allocation, scheduling and assignment problem, it is possible to estab

lish a sharp lower bound on the minimum required hardware, i.e. the best possible solution

[Rab90].

When the lower bounds are achieved, we actually have the proof that the algorithm pro

duced the optimum solution. If not, we know that either the minimum bounds are not sharp

enough or that the algorithm is not producing the optimal solution. However, if the gap between

the bounds and the solution proposed by the algorithm is small, it indicates a high probability

that a good solution is generated.

The assessment of the proposed allocation, scheduling and assignment algorithm using

lower bounds is illustrated in Figures5a and 5b. Thosegraphsplot for 100examplesthe ratio of

required versus min-bound cost, respectively for execution units (Figure 5a) and registers (Fig

ure 5b). The 100 examples were generated by gradually increasing, for seven standard bench

marks, the available time, starting from the critical path. The ratios for interconnect are not

presented, due to the lack of an appropriate cost function.

Several conclusions can be drawn from the analysis of those figures. First of all, the algo

rithms are very often capable of achieving the minimal bounds. The average discrepancy is

12.54% and the median discrepancy is 9.09% (in 39% of cases the optimum solution is

achieved) for execution units. For the registers the average discrepancy is 22.41% and the

median discrepancy is 20.8%. Also, the algorithms are very consistent. We noticed only one

CD

g ^
CO ,_
Q.
cu
1—

o
CO

CO

(a) example instance

o
c
a
Q-
0)

o
CO

CD

C\J

(b) example instance

FIGURE 4.5 Ratio of required hardware cost versus the estimated minimum cost for execution
units and registers for 100 examples.

cost

32.00

30.00

28.00

26.00

24.00

22.00

20.00

18.00

16.00

14.00

12.00

10.00

CORDIC

I

L,1
»

min-bound

actual

time

100.00 150.00 200.00

87

FIGURE 4.6 Discrepancy between the min-bound and the actual cost of implementations for a 19-
th order CORDIC algorithm for the various amounts of the available time.

clear area where the algorithms had difficulty reaching the min-bounds: when the available time

is close to critical path time. However, in those cases, it is much more likely that the discrepancy

is due to non-sharp bounds than due to the scheduling algorithms used (the bounds are also com

puted using relaxation and tend to be less accurate when all operations are on the critical path

[Rab90]). This analysis is a strong indication that the proposed algorithms provide high quality

solutions.

Figure 6 plots the min-bound and the actual cost of implementations for a 19-th order

CORDIC algorithm, which has two levels of hierarchy, for the various amounts of the available

time. Once again, we see a very small discrepancy between the min-bound and the actual cost of

implementation for the majority of the cases. Even better, in many cases the minimum bounds

are reached, and therefore we have the proof that the optimal solution is generated.

4.6.2 Diverse Examples

It is a well known fact that the relative performance of particular algorithms for problem

instances with varying characteristics is often very diverse. For instance, Johnson showed that

simulated annealing (SA) outperforms coalesced Kernighan-Lin algorithm (CKL) in graph parti

tioning when the graphs are dense, but that CKL is superior to SA when the graphs are sparse

[Joh89]. The same study showed the importance of testing programs on real-life instances versus

randomly generated ones.

In order to adequately test the allocation, scheduling and assignment algorithms on exam

ples that are representative for the total application area we tested on CDFGs with few and many

nodes, with a lot and a little broadcasting, with a lot or a little parallelism, with a few and many

timing constraints, with hardware element cost and execution times various cost ratios, with sev

eral levels of hierarchy or no hierarchy at all. As test examples we used various DSP, telecom

munication, information theory, numerical analysis and algebra tasks. It is interesting to notice

that transformations (associativity, commutativity, distributivity, loop unrolling, retiming and

Average Parallelism

FIGURE 4.7 Diversity of examples: parallelism vs. broadcast

89

pipelining) are an almost ideal tool for the fast generation of examples with very different struc

tures. On all examples the algorithm achievedconsistent results.

The diversity of the examples is illustrated in Figure 7. The x-axis denotes the average

amount of parallelism (how many nodes can be executed per control step on the average), the y-

axis plots the maximum broadcasting (to how many CDFG nodes the operation result is trans

ferred). Similar plots can be obtained for other relevant parameters, which indicates that the

algorithms are able to cover a broad spectrum of examples.

4.6.3 Robust Parameters

The fact that allocation, scheduling andassignment algorithmsare usually tested on only a

few examples is only part of the assessment problem. It is well know from statistics, that it is

90

very easy to overtune an algorithm. There are examples where otherwise useless algorithms pro

duce excellent results on a few test examples [Bre83]. To avoid overtuning and lots of "magic"

values for "magic" numbers, we tested our algorithm by varying all parameters over large range

of values. (Essentially, we changed the various weight factors in objective function and algo

rithms parameters). We notice very littie changes in the quality of the achieved solution. The

parameters have a large influence on the run time of the algorithm (up to 100%).

4.6.4 The Effectiveness of Algorithms

The effectiveness of the algorithms can be easily realized with the aid of the following

examples. The allocation, assignment and scheduling process for the standard 5th order elliptical

filter takes 0.7 sec on a SPARCstation2 (this includes all overhead such as database reading and

annotation and providing user feedback). The obtained result is as good as the best published

[Sto89]. Since the graph is flat and the solution is identical to the predicted min-bound, the allo

cation process converges in one step. To get an idea of the performance of the algorithm on

larger graphs, a 7th order filter with a flow graph of 113nodes was allocated and scheduled in

32.5 sec. During the allocation process, the flat graph assignment was called 36 times, while

schedulingmodule itself was called 13 times. After applying two transformations (retiming and

associativity), whichchangedthe graphstructure, scheduling was performed in 15.8sec. (1 allo

cation, 16 assignments, 8 schedules)

Finally, to demonstrate the effectiveness of the hierarchical approach, we have scheduled

two complex examples. The first example, a DFT with iterative coefficient generation, consists

of a nested loop and would contain 248,642 nodes in a flattened format. The allocation and

scheduling process of the hierarchical graph only takes 2.0 sec. As a second hierarchical exam

ple, we have scheduled a one-dimensional histogramprogram, used in Electro-Cardiogram anal

ysis. The problem contains six loops, two of them nested. In flattened format, the graph would

91

contain 38,867 nodes. The global allocation and scheduling process of the hierarchical graph

was performed in 2.2 sec.

4.7 CONCLUSION

An integrated system of allocation, assignment and scheduling algorithms is presented.

Both, novel constructive and probabilistic rejectionless anti-voter approaches are introduced.

The properties of the algorithms arediscussed from both a theoretical and experimental point of

view. The quality of the presented algorithms is demonstrated by comparing the results of

diverse examples versus the estimated min-bounds on numerous and diverse examples.

BEHAVIORAL TRANSFORMATIONS

FOR THE SYNTHESIS OF HIGH

PERFORMANCE DSP SYSTEMS

5.1 INTRODUCTION

To solve a given DSP computational problem, a large number of algorithms can be used.

Oftenanyone ofthesealgorithms canlead to several implementations, each with vastlydifferent

execution times, hardware requirements, powerconstraints, testability and other parameters of

interest. The selection of the algorithm best suited for the optimization of those objectives is a

crucially important task in the design process of high performance DSP ASICs. An equally

important task is to ensure that the potentials of a given algorithm are maximized. This is

achieved through the application of optimizing transformations, lb maximize effectiveness it is

crucialthat transformations areglobally optimized.

Transformations arechanges in control data flow graph structure which improve the final

implementation, without altering the input-output relationships. Most of the behavioral transfor

mations are been introduced in the field of software compilers [Aho77, G008I]. They include

92

93

constant arithmetic, common subexpression elimination and value numbering. The most impor

tant among them are the loop transformations, such as loop retiming, software pipelining, loop

jamming, partial and complete loop unrolling and strength reduction. The latter are especially

suitable for real-time systems, in which a program always contains an infinite loop over time and

concurrency can be exploited more efficiently. Although majority of those transformations are

well known from software compiler literature, an attempt to apply them to high level synthesis

poses specific challenges. There are two additional degrees of freedom: hardware parallelism

and hardware definition. This chapter describes the application of the following transformations

in high level synthesis framework: retiming,pipelining, commutativity and fast implementation

of recursive programs.

5.2 RETIMING AND ASSOCIATIVITY

5.2.1 Introduction

5.2.1.1 Motivation

The goal of the highlevel synthesis process for application specific integrated circuits is to

translate the specificationof the algorithm (defined in terms of its behavioral semantics as well

as its performance requirements) into architectural primitives (beingan interconnection of exe

cution units, memory andcontrol units) in such a waythat the resulting silicon implementation

minimizes a certain function. Mostoften this function is eitherthe area and/or the power con

sumption.

Unavoidable high level synthesis tasks comprise of module and clock selection, schedul

ing,assignment and allocatioa However, even when thehighest quality algorithms are used for

thosetasks, the quality of a final result is oftenconstrained by the computational structure of the

specified algorithm.

•=>

FIGURE 5.1. Biquadratic filter (a) before and (b) after retiming for resource utilization

This is illustrated using the example of Figure la. This Figure shows a direct form II

biquadratic section often used in the realization of IIR filters. Assume that at most 4 clock cycles

are available for the execution of this flow graph and that both multiplication and addition take a

single clock cycle. The critical pathof this computational graph equals fourclock cycles as well.

A potential schedule for this filter, requiring a minimal amount of hardware (for the sake of sim

plicity we will addressonly execution units here), is shown in Table 1. Regardless of the sched

uling technique used, we need at least 2 multipliers, since the graph contains 4 multiplications

and no multiplicationscan be scheduled in the last controlcycle. Also, since no additioncan be

executed in the first controlcycle, 2 adders are needed. This can be easily verified using Figure

2, which plotsthe maximum parallelism available in the graph over time (in termsof the number

of additions and multiplications).

The resource utilization is obviously not equally balanced over time. If we define the

resource utilization as the ratio of the number of cycles a resource is exploited over the total

number of available cycles, then the resource utilization for adders and multipliers in this exam

ple is 50%. This is an indication of a relatively low quality solution, in this case caused by the

inherent structure of the computational graph.

B
CD

S CNJ

additions

mW

mm

3

-a

multiplications

•1
IIIII
11

I

i

i

••-••>,
'••••••

1B 1A 2B 2A 3B 3A 4B 4A 1B 1A 2B 2A 3B 3A 4B 4A

cycle cycle

FIGURE 5.2. Available parallelism before (a) and after (b) retiming for resource utilization

BEFORE AFTER

CYCLES Multipliers Adders Multipliers Adders

1 3,4 - 1 8

2 1 ,2 5 3 6

3 - 6,8 4 7

4 - 7 2 5

95

Table 1: Possible biquadratic filter schedule before (a) and after (b) retiming

Transformations are the best way to defeat these resource utilization bounds. Two particu

larly effective transformations to achieve this goal are retiming and associativity, as presented in

Figure 3.

• Retiming (Figure 3a) uses the distributivity property of the delay operator over most

other operators. In other words, when D is defined as the delay operator, the statement D(a) *

D(b) is equivalent to D(a * b) and vice versa (with * an arbitrary operator).

Consider now the flow graph, shown in Figure lb, obtained by moving the delays (retim

ing) in the original flow graph of Figure la. It is easy to check that the resulting graph has the

(a) (b)

FIGURE 53. Basic Retiming (a) and Associativity (b) Moves

96

same input/output relationship as the graph of Figure la. The available parallelism is plotted in

Figure 2 of step denoted by A. It is obvious that the resourceutilization is farmore balanced and

a solution with one multiplier and one adder can now be achieved as shown in Table 2. The

resource utilization for the execution units now equals 100%.

Q Associativity (Figure 3b) isabasic property of many algebraic structures, starting from

group to vector spaces and matrix algebra [Van50]. Associativity postulates that, in the set over

an algebraic structure defined using an operation *, for every a, b, and c, which are elements of

the set, holds that a * (b * c) = (a * b) * c.

A simple application of associativity is demonstrated in Figure 4. Implementing the

CDFG ofFigure 4a in 4 cycles (with both additions andmultiplies taking one cycle) would obvi-

97

ously require2 multipliers and 1 adder. However, after applying associativity on the adder chain

(Figure 4b), the critical path is reduced to 3 cycles and a single multiplier and adder are sufficient

for the implementation. This example illustrates the most common use of associativity, namely

for the so called tree height reduction, although it can contribute in other ways to improving the

resource utilization, as will be shown in subsection 5.

abed

(a) (b)

FIGURE 5.4. Applying Associativity to Improve Resource Utilization CDFG before (a) and after (b)

Furthermore, the retiming and associativity transformations are not orthogonal. Their full

power can only be exploited when applying them simultaneously. This statement will be dis

cussed in more detail in subsection 5. Some otherresource utilization improving transformations

(such asdistributivity) andtheir incorporation in the proposed framework will be analyzed there

as well.

The above examples illustrate that while transformations are not necessary for a bare min

imum high level synthesis system, they are essential when trying to achieve a high quality solu

tion (or sometimes even just a feasible solution).

98

5.2.1.2 Previous work

While the basic synthesis operations, especially scheduling, [McF90] have been the sub

ject of extensive research efforts, transformations have received significantly less attention.

Most synthesis systems apply only the basic software transformations, such as dead code elimi

nation, manifest expression removal and common sub-expression elimination [Tri87, Wal89].

Also pipelining is very often applied [Par88a,Pau89, Hwa91]. Although pipelining is very pow

erful, it is not a transformation in the strong sense, since it increases algorithm latency. Its appli

cation domain is also limited to non-recursive algorithms [Mes88].

Retiming has been successfully applied in several areas of design synthesis and automa

tion. Until recently, it has been exclusively used either to reduce the critical path in a circuit or

graph [Lei83], to minimize the number of delays in the graph [Lei83, G0086] or to optimize

sequential networks using combinational logic tools by temporary moving delays to a periphery

of a network [Mal91].

Associativity is most often used in conjunction with distributivity for a reduction of the

critical path. Valiant [Val83] and Miller [Mil88] presented optimal polynomial time complexity

algorithms for critical path minimization. In high level synthesis, it has been used for the reduc

tion of the number of pipeline stages [e.g. Har88].

5.2.13 Problem formulation

The resource utilization Ur for a resource r can be defined as the ratio of the number of

control steps in which the resource is used over the total number of control steps available. The

total resource utilization Uto[of a design can then be defined as the weighted sum of the

resource utilizations over all hardware primitives.

reR

99

withR thetotalsetofhardware resources used. Theweights wr areproportional to thehardware

cost of the resource.

The cost of a design is inversely proportional to the resource utilization. Achieving a high

resource utilization is in general equivalent to achieving a small design cost. During the design

optimization process however, it is easier to measure (or estimate) the resource utilization than

the actual hardware cost. In the next chapter,we will discuss how the utilization can be estimated

in an efficient and accurate way from the CDFG (combined with information on the hardware

library).

The problem discussed in this section can now be defined as a constraint satisfaction prob

lem:

Given:A controldataflow graph and a proposedhardware architecture.

Goal:Apply retiming andassociativity in a such a way that theresource utilization of the

resulting controldataflow graphis maximized.

The solution to the above problem can be used as a subroutine to address both the hard

ware minimization problem formulation (given the time constraints) as well as the time minimi

zation formulation (given the available hardware). Although we will concentrate on the second

formulation (which is the mostappropriate onefor signal processing applications), we will also

discuss some experimental results for the time minimization case.

5.2.1.4 Section organization

The section presents the basic resource utilization optimization framework. The introduc

tionof the two standard transformations, beingretiming and associativity, in this framework will

be discussed. Unfortunately, applying onlyretiming for resource utilization on itself turns out to

be an NP-complete problem [Pot90]. An iterative probabilistic approach is thereforeadvocated.

100

Achieving a high quality solution within such a framework requires the addressing of the follow

ing technical difficulties:

(1) deriving a good objective function, i.e. how to estimate the implementation cost for an

instance CDFG in a fast and accurate way.

(2) how to efficiently reach the optimal CDFG, given the above objective function.

The objective function is discussed in subsection 2, while the algorithm which achieves

the defined goals is described in subsection 3. The high quality of the proposed solution is dem

onstrated in subsection 4 by statistically analyzing a number of examples. Finally a number of

properties of the introduced transformations will be discussed, including how to recognize when

those two transformations will lead to the significant improvement and the relationship with

other high level synthesis transformations.

5.2.2 Objective Function

As we have already stated, our goal is to apply retiming and associativity to achieve a high

resource utilization (measured over all resources, being execution units, memory and intercon

nect). A good objective function should therefore be highly correlated to the final (unknown)

hardware utilization. The objective function also should be easy to compute, since, as shown in

[Pot90], it is used in the optimization of an NP-complete problem, and it has to be evaluated

many times. A simple yet effectiveobjective functioncan be constructed, based on the following

observations:

(1) It is easier to achieve a high resource utilization when the timing constraints on CDFG

nodes are not strict;

(2) It is advantageous to distribute CDFG nodes vying for the same resource (which

might be, for example, adder or a particular register file) over the time span;

(3) The critical path should be shorter than the available time;

101

(4) The number of variables which are alive at the same time, should be smaller than the

number of available registers.

Those observations can be quantized in the following way:

Any operation A has to be scheduled in the interval between its As Soon As Possible

(ASAPA) and its As Late As Possible (ALAPA) times. Those times can be easily computed, using

leveling according to the input and to the output. The slack of a node is defined as the difference

between the ALAP and ASAP times, incremented by 1. A CDFG with a lot of operations with a

small slack represents a highly constrained scheduling problem, which often results in a poor

resource utilization. However, even when the average slack is high, scheduling can still be diffi

cult to achieve if a number of CDFG nodes with a very small slack are present. Therefore, in

order to properly scale the expected difficulty and the number of constraints during scheduling

we define for each CDFG node property a measure, called the expected scheduling difficulty

(SD). SD is defined as the inverse of the slack. The total scheduling difficulty of a CDFG, com

posed of the node-set S, is defined as the sum of the scheduling difficulties over all CDFG nodes:

TSD -£3Euv=Wt
At the same time, it is important, that operations which can compete for the same resource

(same type of execution unit, same interconnect, or registers in the same register files) are not

happening simultaneously. The probability, that two operations A and B which require the same

type of resource will happen simultaneously and therefore during assignment will require

another instance of this type of resource, is proportional to the overlap of their ASAP-ALAP

intervals (0^). This probability cantherefore be approximated using the following formula:

f\ 1 — rr*r\ o\

SLA x SLB x IRAB

102

where SLA is the slack of operation A, SLB is the slack of operation jB, and IR/& is number of

resources of this class. A total overlap measure, called TOL, is defined over all nodes of the

graph:

TOL = £ OLAB (EQ4)
AeS.fle S,A*B

where S is the set of all nodes in the CDFG.

The retiming and associativity transformations may also change the critical path of the

graph. Obviously, no feasible schedule exists if the critical path is longer than the available time.

Furthermore, retiming changes the number of delays in the graph. All variables which are asso

ciated with delays must be stored simultaneously (during the first cycle) in registers. No feasible

schedule is available if the number of delays exceeds the max bound on the number of registers.

Both the critical path and the number of delays, are incorporatedin the objective function, such

that it becomes infinity when one of those constraints is violated. Our experience furthermore

indicates that a correlation exists between the number of delays and the number of registers

required. Therefore, it is useful to add the number of delays (ND) to the objective function as a

measure of the total register cost.

All those factors can now be combined into the global objective function:

«>, if t . > availabe time or ND > number of registers
Objective = { (EQ5)

ctj XTSD + cu XTOL + a, x ND, otherwise

Weight factors can beexplicitly set by the user. For example, a relatively large oc3 often

results in fewer register, but more interconnect and execution units. For all examples discussed

inthe experimental section, we used the following default settings:a j = 0.8 , a2 = 0.1 and

cc3 = 0.1.

103

The close correlation between our objective function and the quality of the obtained solu

tion is depicted in Figure 5 for the example of an 11th order FIR filter. The x-axis shows the

value of the objective function, while the y-axis respectively contains the corresponding number

of control steps, necessary to execute the graph on a fixed amount of hardware (as determined by

the scheduling process) (Fig. 5a) or the amount of hardware needed to execute the graph in a

fixed amount of time (here 13 cycles) (Fig. 5b). It is easy to observe that a small value of the

objective function invariantly predicts a high quality solution.

o
CO

in
w cm

O CM

CO
.o

E
w

*
*

*

o
h» •

•

**

•

Cti
CO

O
CO

•
*

i_ •

cd * *

CO o
* *

3
E

m **

**Jr*

w a*
CO o

o jjfH*
CO

6 8 10 12 6 8 10 12

(a) objective function (b) objective function

FIGURE 5.5. Correlation between Objective Function and Solution Quality

5.2.3 Learning While Searching Algorithm

While the traditional retiming problems (for critical path and minimum number of delays)

have a polynomial complexity, we have proven that the retiming for resource utilization algo

rithmis an NP-complete problem [Pot90]. It is therefore very unlikely that the worstcase poly

nomial complexity algorithm exists.

104

In order to efficiently solve the problem, a new probabilistic iterative improvement algo

rithm has been developed. This chapter describes first of all the set of basic moves applied dur

ing the iterative improvement, followed by a discussion of the proposed optimization strategy.

Experimental results are presented and analyzed in the next subsection.

5.2.3.1 Basic moves

Two classes of basic moves can be defined, being retiming and associativity moves. The

retiming move was discussed in the first chapter and is shown in Figure 3a.

initial transformed

a+(b+c) (a+b)+c

a+(b-c) (a+b)-c

a-(b+c) (a-b)-c

a-(b-c) (a-b)+c

a*(b*c) (a*b)*c

a*(b/c) (a*b)/c

a/(b*c) (a/b)/c

a/(b/c) (a/b)*c

Table 2: Basic Associativity Moves

In order to enhance the power and the application range of associativity, we have

expanded its definition, such that it addresses several additional cases, not covered by the stan

dard definition. The generic associativity move was presented in Figure 3b and corresponds to

entries 1 and 5 in Table 2. Note that the application of associativity is disallowed when node A

has some fanout besides node B. Those basic moves have been extended with 6 additional trans

formations, as shown in Table 2. Cases 3,4,7 and 8 are especially interesting, since they allow

the trade off between respectively the number of additions and subtractions and the number of

multiplications and divisions in the CDFG. Notice also that for each move, defined in Table 2, an

105

inverse transformation can be defined. We call the inverse transformations the reverse moves, in

contrast to the moves ofTable 2, which are called totforward moves.

523.2 Learning while searching algorithm

Whenapplyingthe above transformations on a typicalexample, a large number of moves

is possible at every point in time. As even more basic moves might be introduced in the future,

time-efficient algorithms are definitelynecessary. We first tried the popular simulated annealing

[Kir83] technique. Although the results were satisfactory, the run times were excessive for large

examples, even when adaptive cooling [Cat88] and a rejectionless approach [Gre86, Pot90] were

applied. Therefore, we decided to use a new and faster probabilistic approach.

The presented technique is organized as a two phase process. In the first phase, the solu

tion space is scanned in an organized fashion to detect areas where the objective function has a

small value. Those areas are then used in the second phase as the starting points for a more elab

orate search towards a final solution.

The goal of the first phase is thus to discover (learn) k solutions where the objective func

tion has a small value. In order to achieve this goal, we will traverse the search space a number

of times, each time favoring one particular direction of traversal. For instance, we will first

(probabilistically) favor moves in the forward direction (moving the delays from the inputs to

the outputs for the retiming and favoring the forward associativity moves). After 1/4 of the opti

mization process, the preferred direction is reversed: moving the delays from output to input as

well as the reverse associativity moves are now probabilistically favored. Finally, for the last 1/4

of the time, the forward moves are favored anew.

At every point in the optimization process, we select a move in a probabilistic fashion,

proportional to the improvement in the objective function, while also accounting for the favored

direction at that time. No selected moves are ever rejected. Moves, which increase the objective

106

function, can be selected, but the chances for this to happen are inversely proportional to that

increase. To increase the speed of the design space search, we decided to evaluate the objective

function only every four steps, resulting in a speed-up of approximately four times. This is

acceptable, since neighboring solutions in the design space (solutions which can be reached in at

most m moves) tend to display a strong correlation in their objective function values. Since the

exact location of a local minimum is only determined in the second phase, no degradation of the

solution quality was observed as a result of this simplification. Table 3 shows the minimum,

average, and maximum correlation among neighboring solutions for several examples.

m 1 2 3 4 5 6

min 0.971 0.932 0.919 0.902 0.866 0.808

average 0.978 0.952 0.927 0.909 0.878 0.841

max 0.994 0.978 0.959 0.932 0.907 0.879

Table 3: Correlation among solutions on distance of m moves

The first phaseresultsin k startingpoints for the second phase.Those areused asthe seeds

for a greedy search towards the final solution. The objective function is now observed at each

step and for all possible moves. The move offering the best decrease in the objective function is

automatically selected. For each starting point, the searchis concluded when a local minimum is

reached. The best of those minima is selected as the final solution.

We have set the number of starting points k to 10 for the examples discussed in the next

section. The length of the first phase was set such that the number of moves during the first for

ward traversal equaled 10 times the number of nodes in the graph. Moves in the forward direc

tion were preferred with a ratio 4:3. We have varied these values of large ranges and did not

notice any significant changes in the quality of the solution, although the effects on the run times

were outspoken. The presented approach can easily be augmented with a cooling mechanism

107

(phase 1) or backtracking. Experimentshave shown however, that those extensions do not pro

duce any significant improvements and have a detrimental effect on the run time.

It is interesting to notice that the presented approach resembles, to some extent, the simu

lated annealing approach [Kir83] as well as the Kernighan-Lin iterative improvement approach

[Ker70]. When only the second phase is applied, the approach is equivalent to Kernighan-Lin

(which was almost uniquely used for partitioning problems until now). While phase 1 uses an

iterative, probabilistic improvement technique, just as simulated annealing, some major differ

ences with the annealing approach can be observed: First of all, the presented technique uses a

directed search, while annealing executes random moves. The major difference however is the

combination of probabilistic exploration and greedy solutiongeneration.

5.2.4 Experimental Results

The ultimate proof of the usefulness and effectiveness of a proposed transformation or

optimization algorithm is to apply it onreal life examples. Wehave applied ourtechnique on40

CDFGs, whichinclude common DSP, communication and error-correcting code examples (such

as HR, IIR, adaptive and wave digital filters and simultaneous polynomial division and multipli

cation). For each of those examples, we varied the available time. We also varied the relative

execution lengths of theoperators (such as shifts, adds, multiplications and multiplexers).

The primary objective was to measure how much hardware can be saved if the transforma

tion is applied. A secondary taskwas to evaluate the potential of the transformation to minimize

the execution time of an algorithm without increasing the latency (in contrast to pipelining).

While improvements in execution units and memory cost can be measured exactly, the cost of

interconnect could only be estimated, since precise numbers are only available after time con

sumingtasks such as floorplanning and routing. We have compared interconnect cost based on

the number of busses and assuming that all busses have the same cost.

•a •»

* 5

3:

rr

iip
mm TIP

- _E

'~]t

(A) Example bwtance

(B) Example Instance

In

s

(C) Example Instance

lliiil
mm

iffiiiaiii

. I— •
J.— •

108

r:

FIGURE 5.6. Ratio of Implementation Cost of Final versus Initial Implementation for Benchmark
Example Set (Execution Units (a), Memory (b) and Interconnect (c))

C
D

a
9

o
7

c

3 69
£ **

!
M

H
X S

93 G
9

C
.

•o
o

ft
)

o

e
n

r
e

3

?
ST 3

n
<

t>
e

9

o*
ff

9
S

i

C
§

9
o

ST
£ f
^

&
»

o •
n

s
3

r&
9

3
B

O

3
*

^
-
s

e
n s

SB 9 a
9

*
H

a
9

o

-
1

3
n

M
4

o 9 9

3

3
r
e 3 n

«
9

>
•
*

& #
*

O 9 2
»

O •1

0
.0

F
in

a
l/

R
a

n
d

o
m

0
2

0
.4

0
.6

0
.8

1
.0

R
n

a
l

/
R

a
n

d
o

m

0
.0

0
2

0
.4

0
.6

I
1

1
I

£1
'"

'"
"~

""
"""

*f
a,

*»
s>

-i
3

>
••

j£
bk

«>
.A

jj
m

^
J
^
V

t.
*

r.
r

i
-

**
_

-j
tV

i•
jn

t\
_

t

t
t
a

t
t
t
t
t
t
s
m

t 3

•J
J
*

m
j"

r-
-'

--
rr

"
J
"
fr

i*
*

*
i

ii
fi

*p
*'

*f
f7

**
.

R
n

a
l

/R
a

n
d

o
m

0
.0

0
.2

0
.4

0
.6

0
.6

1
.0

I
I

I
I

I
I

w
m

m
m

w
m

•
i
i

\m
m

m
m

m
m

m

\\
\\

\\
\\

\\
\\

\\
\\

\\
\\

\u
\\

\\
\\

\\
\\

\\
\\

W
W

W
W

W
W

W
W

W
W

W
W

TO
W

B

M
\\

\\
\\

M
\m

\\
\\

V
\M

\\
\\

\\
l

v
\\

\\
\\

\\
\\

\\
\\

\\
\\

\\
\\

\\
\\

\\
\\

\\
\\

\\
w

w
w

w
w

w
w

w
w

w
w

w
w

w
w

w
w

w
w

w

A
W

\\
V

\\
\\

V
\\

\\
\m

\\
\W

M
ff

i\
\\
\\
\\
\\
\\
\\
\\
\\
\\
\\
\\
\\
\\
\\
\\
\\
\\
V

i\
\\
\\
\\
\\
\\
\\
\\
\\
\\
\\
\\
\\
\\
\\
\\
\\
\\
\\
\\
\\
\V

L\
\\
\\
\\
\\
\\
\\
\\
\\
\\
\\
\\
\\
\\
\\
\\
\\
\\
\\
\\
\\
\V

m
w

m
m

m
M

W
W

W
W

W
W

W
W

W
W

M
C

T
A

\\
\\

\\
\\

\\
\\

\\
\\

\\
\\

\\
\\

\\
\\

\\
\\

\\
\\

\V

ft
\\

\\
\\

\\
\\

\\
\\

\\
\\

\\
\\

\\
\\

\\
\\

\m
\\

\\
\\

\
w

w
w

w
w

w
w

w
w

w
w

w
w

w
w

w
w

w

\\
\\

\\
m

m
\m

m
w

m
\\

\\
\\

\\
\m

\m
\m

m
w

\\
\\

\
\\

m
\\

\\
\\

\w
\w

m
\\

\\
\\

\\
\\

\\
\\

\\
\\

\\
\\

\\
\\

\\
\\

\\
\\

v

ft\
\\\

\\\
\\\

\\\
\\\

\\\
\\\

l

iw
w

w
w

w
w

w
w

w
w

w
w

w
w

w
w

v

\m
\m

m
w

m
M

f
t
M

i
i
m

m
m

m
m

m
m

m
iW

W
W

W
W

W
M

V
V

W
W

M
ft

M
V

M
W

1
M

1
\
W

1

x
\\

m
\\

\\
\\

\\
\\

\\
\\

\\
\\

\\
\\

\\
\\

\\
v

\\
\\

\\
\\

\\
\\

\\
\\

\\
v

\\
\\

\\
\\

\\
\\

\\
\v

©

no

The ratio of the implementation cost after the application of the transformation over the

cost of the initial implementation for all benchmark examples is plotted in Figures 6a, 6b and 6c

(for execution units, memory and interconnect costs respectively).

Comparing the final solution with the initial CDFG, provided by the designer, has only

limited significance since this highly depends on the amount of manual optimization, applied by

the designer. We therefore compared the cost of the generated solutions against the cost of the

median solution among the 20 random solutions (generated by randomly applying retiming and

associativity moves) as well. Figures7a-c show the ratioswhen comparing against the randomly

generated solutions.The average and median savings against the initial implementation and the

median random implementation are tabulated in Table 4.

*Am>.
I^lll

illm

!!!!!

IllI IP
I!

J ^ii_ll
|g|Hn.

iiuiiiMli'lll''.
Mlim
—-imiim

example instance

II

i if
H^iliiliili

iiiiiiiiPiiiiiiiiiPiimiii

FIGURE 5.8. Ratio of Implementation Cost of Finalversus Min Bounds of Initial Solutions for
Benchmark Example Set (Execution Units)

The generation of the above results required the use of a particular set of scheduling,

assignment and allocation tools. Since those problems are NP-complete as well, it might be

argued that the obtained improvements were not the resultof the transformation by itself, but are

due to the fact that the heuristic scheduler performed better on the transformed graphs. This

argumentcan be discarded using the following simple procedure. Foreach instance of a CDFG,

Ill

it is possible to establish sharp minimumbounds on the resources, by usingthe facts thatduring

some control steps no candidates areavailable for scheduling [Rab90].

EXU MEMORY INTERCONNECT

Random Initial Random Initial Random Initial

average 40.1 32.5 25.4 23.6 33.8 29.7

median 28.5 33.3 26.6 22.2 36.6 30.0

Table 4: Savings against the Initial and Random Implementations (in%)

These bounds can not be outperformed, regardless of the used scheduling. If the applica

tion of the transformations results in a decreaseof those bounds, then this improvement is a pure

consequence of the transformations. The ratios of the final implementation cost versus the esti

mated min-boundsof the initial solutions forexecutionunits are plotted in Figure 8. The values

of the median, average and maximum improvement for executionunits area respectively equal

21.6%, 21.7% and 47.1%. Only once was the min bound not reached.

cs 1 2 3 4 5 6 7 8 9 10 11 12 13 14 15 16

Al 0 1 4 6 7 19 22 9 25 10 12 17 18 13

A2 3 2 21 23 26 14 25 27 31 29 30 33

Ml 5 5 8 8 16 16 11 11

M2 20 20 24 24 28 28 32 32

Table5: Schedule for5th Order Elliptical Filter, using2 adders(Al and A2) and 2 multipliers(Ml and
M2) in 16 control steps

To evaluate the effects of the transformation on awell known benchmark, we have applied

the techniqueon the popular 5th orderelliptical wave digital filter example.The resultsare tabu

lated in Table 6 for the available times ranging from 15 to 19 clock cycles (in correspondence

with the standard benchmark, we assume thata multiplication and an addition take respectively

2 and 1clock cycle). As canbe observed from the table, the average hardware savingsdue to the

112

FIGURE 5.9. Flow Graphs and Schedules of Fifth Order Elliptical Filter Before Transformations
(for an available time of 16 cycles)

113

FIGURE 5.10. Flow Graphs and Schedulesof Fifth Order Elliptical Filter After Transformations
(for an available time of 16 cycles)

114

transformations are impressive. Finally, to demonstrate howthe transformation succeeds in opti

mizing the resource utilization, we haveplotted in Figure 9 and Figure 10 the flow graphs and

presentedthe schedulefor the filterin Table5, assuming that the available time equals 16cycles.

Also interestingto notice is that the fastest solution after retiming for critical path still needs 16

clock cycles [Har89]. The combination of retiming and associativity succeeds in producing a

solution which requires only 15 cycles.

Number of Control Steps 15 16 17 18 19

BEFORE # of adders / # of multipliers NA NA 3/3 3/2 2/2

AFTER # of adders / # of multipliers 3/3 2/2 2/2 2/2 2/1

Table 6: Number of adders and multipliers used for Implementation of 5th Order Elliptical Filter
before and after applying retiming and associativity

The effectiveness of the algorithm is illustrated by the fact that, even for graphs with sev

eral hundred nodes, the run time was shorter than one minute. Table 7 shows the run times for

several examples (measured in seconds).

Number of Nodes 32 34 40 113

Run Time [si 5 7 11 34

Table 7: Run times for 4 examples (SPARCstation2,48MB)

In some cases retiming and associativity for resource utilization result in the spectacular

improvements. For example in the case of the second order Volterra filter [Mat91] using the pro

posed transformation we succeed to reduce three times the area of the implementation. Figures

11 and 12 show the layouts before and after the application of transformations.While the initial

implementation required 4 multipliers, 6 barrel shifter, 2 adders and 2 subtractors, after the trans

formation 1 multiplier, 1 barrel snifter, 1 adder and 1 subtractor were sufficient/The number of

used registers were reduced from 38 to 28. It is interesting to notice that while in the first case

the critical path was 16 control steps in the second case we actually used only 15 control steps.

115

FIGURE 5.11. Volterra filter before retiming and associativity for resource utilization

FIGURE 5.12.Volterra filter after retiming and associativity for resource utilization

5.2.5 Transformation Properties

This section will discuss some of the properties of the high level application of retiming

and synthesis, including the computational complexity, the range of application and the assess

mentof the potential. Also, the motivation behind combining retiming and associativity into one

transformation is discussed.

116

5.2.5.1 Computational complexity

As already mentioned before, one of the most important properties of the proposed trans

formation is an NP-complete problem. Now we will prove that retiming for resource utilization

is an NP-complete problem. More precisely, we will prove that the following simplified version

is NP-complete. Other more realistic and complex versions, which take into account the cost of

interconnect and registers, are also NP-complete. This can be proven without any difficulty by

restricting them to this version [Gar79].

PROBLEM: RETIMING FOR RESOURCE UTILIZATION:

INSTANCE: Signal flow graph SFG = (SV, SG), available time T, cost

c (v) € Z* for each v € HV, positive integer L.

QUESTION: Is there a retiming for resource utilization ofSFG such that its implementa

tion is at most LP.

The problem is in NP because a feasible schedule which requires implementation with the

cost L, if exists, can be exhibited and checked for feasibility quite easily.

We shall now polynomially transform the MAX 3-CUT problem to RETIMING FOR

RESOURCEUTILIZATION to finish NP-completeness proof.

PROBLEM: MAX 3-CUT [Gar79]:

INSTANCE: Graph G = (V, E), weight w(e) e 2^ for each ee£, positive integer

K.

QUESTION: Is there a partition of V into disjoint sets Vj, V2, v3 sucn that the sum of

weights of the edges from E that have its endpoints in different sets is at least KP.

117

Suppose we are given an arbitrary graph G. We will first polynomially transform G to a

corresponding SVGso that finding a solutionin polynomial time to the retiming for resource uti

lization problem implies a polynomial time solution to the MAX 3-CUT problem.

For each node V in G, SFG contains a disjoint subgraph, which contains as many cycles as

the node Vhas incident edges. An illustration is shown in Figure 14. For example, subgraph B in

SFG contains 2 cycles, corresponding to the 2 incidentedges (1 and2) to node B in G. Cycle C,

corresponding to edge C in G, contains three nodes of different types C , C , and x. Node x is

partof every cycle in the subgraph andacts asenforcer [Gar79]. Each operation takes one con

trol cycle, and theavailable timeis 3 control cycles. Operations c(C) and c(C) has costequal to

the weight w(C) in G.

Theenforcer node x has cost 0. It enforces all delays in asubgraph to be atthe same level.

Otherwise, no feasible schedule exists.

The problem has been constructed such that inorder for two operations ofthe same type to

share the same resources, the delays in their subgraphs have to be positioned at different levels.

For instance, the delays in subgraphs A and B have been placed atdifferent levels. Therefore,

nodes I from both subgraphs can be scheduled on the same hardware incycles 1(subgraph B)

and 3 (subgraph A). Putting delays on different levels corresponds to putting nodes, incident to

corresponding edge in G, in differentdisjoint sets.

A retiming withnohardware sharing obviously has thecost2M, where M is the sumof all

edge weights inG. This corresponds toa0 cut for the MAX 3-CUT problem since all nodes are

inthe same set. Moving one delay (e.g. on the edge with nodes 5' and 5" in the subgraph D) will

reduce the cost of the implementation by w(5) and increase cutset value by the same amount.

Therefore, if we can achieve the retiming for resource utilization solution with the cost

L = 2M-K,

118

FIGURE 5.13. MAX 3-CUT problem

this corresponds to the solution of the MAX 3-CUTproblem with costK. Consequently, wehave

demonstrated thatMAX 3-CUT polynomially transforms to retiming for resource utilization.

0

FIGURE 5.14. RETIMING FOR RESOURCE UTILIZATION

52.5.2 Application range

Next, onemightwonder aboutthe application range of the transformation. Themajority of

the examples presented in the previous section are filters. Filters arefor sure the ideal target for

the proposed technique, since they normally have real timeconstraints imposed on them, since

they operate on infinite streams and since they combine information from subsequent samples.

119

As anet result, delaysarenaturally present in all filter structures andhence, retimingcanbe very

effective. It should be mentioned that filters are still the most important signal processing com

ponents, even though more complex, non-linear or multi-dimensional operations are becoming

increasingly important [Bla85].

However, it is importantto stress that the application of retiming and associativityis by no

means restricted to filters. While this is obvious for the application of associativity, it is impor

tant to note that the richest source of delays in a program is the loop construct. Whenever a loop

body uses information from a previous iteration, a delay is introduced. In fact, the stream ori

ented nature of signal processing applications is nothing else than an infinite loop over time.

Therefore, retiming is applicable to almost all problem instances which employ iteration or

recursion. The application of retiming in those cases can be called software retiming in corre

spondence with the well known software pipelining transformation [Lam88, Lam89]. The pro

posed transformation is therefore also effective in a multitude of other signal processing

applications, which rely on the extensive execution of a tight inner loop. Examples of those can

be found in the areasof multi-dimensional signal processing, sonar, speech recognition (Markov

Modeling), telecommunications (Viterbi search),various signal transformations such as the DFT

and DCT and digital audio (error correction, adaptive interpolation). A simple example of the

usage of loop retiming is shown in Figure 15.Assuming that 2 clock cycles areavailableper iter

ation and that both a multiply and an addtake 1 cycle, it is easily observed that the first instance

requires 2 multipliers and 2 adders, while the retiming graphonly needs one unit of both.

Two other important questions (both for a user of the design system as well as for the

development of an automatic transformations) can be formulated:

(1) When can this transformation be applied?

(2) What is the potential improvementwhich can be achievedby applying the transforma

tion?

120

Iteration i iteration i

FIGURE 5.15. Software Retiming: before (A) and after (B)

Answering the former question can be extremely difficult for the general case. For

instance, for a loop transformation such as loop jamming, it is even unanswerable [Ban88].

However, in the case of retiming and associativity for resource optimization, the answer is pretty

straightforward: there exists no restriction on the application. The most promising targets are

CDFGs with a lot of delays and structures with chained associative operators.

This brings us to the second question. In the previous section, we have already discussed

that the transformation succeedsin loweringthe minimal boundson the resources, hence making

it possible to obtain cheapersolutions. The question raised here is what the maximum improve

ment is which can be obtained by applying the transformation.This can be predicted by compar-

121

•xample instance

FIGURE 5.16. Ratio of Initial Min Bounds versus Absolute Min Bounds for Execution Units (48
Examples)

ing the estimated minimum bounds of the initial CDFG with the absolute min-bounds. These

bounds can be predicted using the following formula:

tjabs _ °RxdR
"r ~ z

available

(EQ6)

with 0R the number of operations using resource R, dR the duration of operator R (in clock-

cycles) and tavailable the available time. The absolute min-bound iVj s estimates the number

of instances needed of the resource R underthe assumption that a 100%utilization is achieved.

Obviously, this is the best result which can be obtained with the presented transformational

approach. (One word of cautionhere: some of the associativitymoves interchange additions for

subtractions andmultiplications fordivision. This effectively changes the absolute min-bounds).

The potential improvements can hence be measuredby comparing the absolute bounds with the

estimated min-bounds ofthe initial CDFG. The results forsomeof the benchmarks are displayed

in Figure 16.

It should be mentioned thateven whenthis comparison predicts no improvement at all, it

still might be useful to attempt the transformation: as discussed above, the transformation

122

relaxes the constraints in the graph and makes it easier to produce a feasible schedule using the

minimal hardware.

5.2.5.3 Relationship with other transformations

An obvious question which can be posed is how this transformation relates to the tradi

tional retimingfor criticalpath problem [Lei83]. Since a shorter critical path most often means a

less constrained graph, a general correlation between the length of the critical path and the cost

of the implementation can be observed. The critical path however is only one of the multiple

ways of reducing the stress in the graph. For the majorityof the examples, discussed in section

5.2.4, the best solution was NOT the one with the smallest critical path.

Pipelining is a transformation, whichis closelyrelated to retiming. Retiminghas however

some distinctive advantages over pipelining: first of all, it does not change the latency of the

algorithm. Secondly, retiming can be used in cases where pipelining is totally ineffective,

namely to improve on recursive structures (such as IIR filters and recursive loops). Finally, it

should be noted that our presented approach can be extended to cover pipelining for resource

utilization as well.

Two other transformations, closely related to associativity, might also be employed to

affect the resource utilization. The distributivity move could easily be incorporated in the pre

sented framework. However, due to the fact that distributivity changes the number of nodes in

the CDFG, some reformulation of the objective function might be necessary. The commutativity

transformation will affect only the interconnect part and memory part of the cost function. The

effect of commutativity can only be evaluated in conjunction with precise information on the

assignment, and is therefore more appropriately combined with the assignment process.

Although the program performance indicates that even more complex transformations can

be handled simultaneously in the same framework, it is our conviction that a better approach is

123

totreat them separately. First ofall, all transformations which operate onhigher levels ofhierar

chy (such as loop unrolling and jamming) assume a mechanism for handling hierarchy. Opera

tions on the sub-operator level (bit-level retiming, transformations from multiplications to add/

shifts) need different objective functions.

5.2.5.4 Associativity - retiming relationship

On the other hand, it might be asked why we particularly chose to combine associativity

and retiming in the same framework. As already mentioned in the introduction, retiming and

associativity are not orthogonal. If we want to exploit the full power of those transformations, a

simultaneous application is actually mandatory. For instance, the associativity transformation

cannot be applied on the following expression:

F = D(a + b) + c

Moving the delay first using retiming and applying associativity next, results in the fol

lowing equation, which might produce better resource utilization.

F=D(a) + (D(b) + c)

A more dramatic example is shown in Figure 17. Figure 17a shows the direct implementa

tion of an n-th order FIR filter. The direct form implementation displays a long critical path.

Retiming alone does not help to solve this problem: note that neither delay dR.j nor dn can be

moved across additions. However, after applying associativity (n-1) times on the accumulation

chain, we can reverse the data flow direction in the chain:

y= (ay1+y2)+-+yn-i)+yn) = 0>i+ (y2 +~ + 0>„-!+>>„)))

In this way, we obtain the structure of Figure 17b, where delays can be freely moved and

recombined (as is shown for dn., and rf„). The retiming operation can be repeated until all delay

operators are moved to the accumulation path (resulting in the reciprocal FIR filter structure).

124

dn-1 dn

(a)

dn-1 dn

(b)

FIGURE 5.17. Combining associativity and retiming (FIR filter)

Although the most visible change in the computational structure is a reduction in the critical

path, it is easy to see that the retiming enabled by using associativity will provide a better

resource utilization too.

5.2.6 Conclusion

A transformational approach, aimed at improving the resource utilization in high level

synthesis, has been introduced. The current implementation combines retimingand associativity

in a single framework. This combination of transformations results in considerable area

improvements as is amply demonstrated by the benchmark examples. A novel learning while

searching iterative improvement probabilistic algorithm has been developed and is used to

resolve the associated NP-complete combinatorial optimization problem. The proposed algo

rithm has proven to be very effectiveboth in reachingthe optimalsolution as well as in run-time.

125

5.3 PIPELINING

5.3.1 Introduction

Pipelining is probably the most often used transformation in ASIC design, as well as the

most discussed one in the high level synthesis literature. An excellent, engineering oriented ref

erence is the book by Kogge [Kog81]. He discusses many important technical questions in

detail. Another excellent reference is Chapter 6 of Hennessy's and Patterson's book "Computer

architectures". Both books contain an extensive discussion in the field of pipelining research in

the context of general computing and long lists of additional references. Therefore, we will limit

our overview of previous work to the high level synthesis treatment of pipelining.

Two types of pipelining are most often discussed in high level synthesis, being structural

and functional pipelining. Structural pipelining refers to the use of pipelined operational ele

ments (e.g. multipliers). Functional pipelining refers to the partitioning of the control data flow

graph into subgraphs that will be performed concurrently. Successivesubgraphs,called pipeline

stages, are streamed into the pipe so that different CDFG instances are executed simultaneously

on the same hardware.

Structuralpipelining is the most often discussed feature in scheduling algorithms. While

Moritz and Chen [Che91] discuss the simultaneous application of both pipelining techniques,

the majority of the work addresses functional pipelining. Themajorreason whyfunctional pipe

lining is gettingmuch higherattention is due to its ability to sometimes significantly reduce the

critical path, and to increasethe scheduling freedom of operation.

Park and Parker produced by far the most comprehensive treatment [Par88b, Par88c].

They discussed both the theoretical foundations and practical implementation issues. Later on,

research in Prof. Parker's group has been continued with numerous studies on the effectiveness

of pipelining and its relationship to other high level synthesis tasks [Jai89, Mli91]. Casavant and

126

his co-workers at GE developed the PISYN- high level synthesis system for the application spe

cific pipelined hardware [Cas91]. [Hwa91] used integer programmingtechnique for the optimi

zation of the pipelined designs. Kurdahi discussed in detail how specific logic synthesis

techniques can be used for synthesis and optimization of controller in pipelined design. Recent

premier computer design conferences, ICCAD and DAC, as well as computer architecture con

ferences, ASPLOS and ISCA regularly include several papers on pipelining.

However, it is important to stress that in a significant partof the high level synthesis publi

cations, only CDFG's without feedback edges are considered. Actually, even when the original

examples do have feedback loops, thoseare sometimes ignored. This approach highly simplifies

the study of pipelining and its application, buthave avery limited application range. When it is

applied to computations, which do have feedback in their CDFG, this results in a change in

input-output relationship and therefore incorrect results.

In the digital signal processing community, pipelining is also a well discussed topic. The

accenthere is on how to manually apply pipeliningin conjunction with other flow graph trans

formations for specific application areas (e.g. infinite response filters, dynamic programming

based calculations suchasthe Viterbi algorithm), in order to achieve maximalspeed-up [Par88a,

Lin91, Fet90]. An excellent introduction to this type of research is again Kogge'sbook [Kog80].

In the compilerresearch, wherea repeated executionof programs rarely occursandwhere

the most important transformations are related to control, pipelining is most often discussed dur

ing its application on loops [Lam88, Lam89, Aik90]. While this technique is often called loop

winding or loop folding in high level synthesis, [Goo89, Gyr87] in the compiler literature it

appears underthe name of software pipelining. Althoughsoftware pipelining includesadditional

important issues of loop prologue (initiation) and loop epilogue (finishing) effects, there is

strong correlation between pipelining and software pipelining. Jouppi [Jou89] discussed the

amount of pipelining potential in various classes of programs.

127

This section refers to functional pipelining, and treats it as a highlevel synthesis transfor

mation. This approach enables a simple and straightforward inclusion of pipelining in the

HYPER transformational environment, and therefore its combination with other transforma

tions, which significantly enhance pipelining power. In HYPER, structural pipelining is treated

duringscheduling. Although there is a veryclose relationship between software pipelining (SP)

and software retiming (SR) with the techniques describedhere, since SP and SR are used mainly

in the conjunction with other loop transformation we will not discuss them here.

The work presented here differs from previously reported in both the scope and the used

techniques. Four different form of pipelining are identified and discussed. For two of those prob

lems, optimal polynomial complexity algorithms are presented. For the other two an NP-com-

pleteness proof is established and new probabilistic algorithms are used to generate a solution.

The effects on the resulting hardware implementation for a number of diverse examples are

reported and analyzed.

The rest of this section is organized in the following way. After a definition of the four dif

ferent forms of pipelining, their computationalcomplexity is established. Next, an optimal poly

nomialalgorithm is presented whenthe goal is the minimization of the critical path. For the case

when the goal is the optimal resource utilization, the objective function during pipelining is

defined, and a learningwhilesearching algorithm is used for the optimization. After a discussion

of experimental results, conclusions are drawn and directions for future work are outlined.

5.3.2 Problem Formulation

In the following section, the following simple, yet effective framework of the pipelining

concept will be employed: "Pipelining with N stages is equivalent to retiming where the

number of delays on all inputs or all outputs, but not both, is increased by N".

128

As we have already mentioned we treat pipelining just as yet another transformation.

Strictly speaking is not really a transformation, as it changes the phase between input and output

signals. However, since it preserves the input/output computational relationship, we will con

sider it as a transformation in the broad sense.

Depending on the goal and the level of the introduced latency, four different forms of pipe

lining can be identified. Those four pipelining forms, which are implemented in HYPER, are:

(1) pipelining for the minimization of the critical path;

(2) pipelining for the minimization of the critical path for a given number of pipeline

stages;

(3) pipelining for resource utilization;

(4) pipelining for resource utilization for a given numberof pipeline stages.

We will denote them as CP, CP(n), RP and RP(n) respectively, where n stands for the

number of pipeline stages. Before discussing the algorithms, a precise definitions of those

classes is given first

Pipelining for critical path (CP) produces a minimal stage time. The stage time is

defined as the length of the critical path of the CDFG after pipelining.

Pipelining for critical path using n pipeline stages (CP(n)) produces a CDFG with a

minimalstage time, but so that exactlyn pipeline stagesare introduced.

Pipelining for resource utilization (RP) produces a CDFG which realizes the minimum

area for a given timing constraint.

Pipelining for resource utilization using n pipeline stages (RP(n)) produces a CDFG,

which can be implemented usinga minimum area, for a giventiming constraint. The number of

introduced pipeline stages should equal exactly n.

129

FIGURE 5.1. Initial CDFG

It is sometimes argued that pipelining for critical path and pipelining for resource utiliza

tion are the same. The discussion of the computational complexity of the associated optimization

problems will denote that it is not true, but the following simple example provides intuitive

insight into difference. Their relationship closely resembles the relationship between retiming

for critical path and retiming for resource utilization.

130

FIGURE 5.2. CDFG after the application of pipelining for the minimization of critical path

Suppose that we have the computation shown on Figure 1 in the flow graph format.

Assume that each operation takes one control cycles, and that available time equals 4 control

cycles. There are three different types of operations: A (operations Al, A2, A3), B (operations

Bl, B2, B3) and C (operations CI, C2, C3). For the sake of simplicity, we will only take the cost

of the execution units into account. Due to the recursivebottleneck [Mes88], at most three pipe

line stages can be introduced.

131

FIGURE 5.3. CDFG after the application of pipelining for the resource utilization

Pipelining for critical path will result in the transformed CDFG shown in Figure 2. The

critical path is 3. It is easy to see thatthe optimal schedule needs at least2 executional units of

each type. A possible schedule is shown in Table 1.

Cycle A B C

1 A1,A2 - -

2 A3 B1,B2 -

3 - B3 C1.C2

4 - - C3

132

Table 1: A schedule after pipelining for critical path

The effect of pipelining for resource utilization on the CDFG is shown in Figure 3. The

criticalpath is 4. However, althoughthe criticalpathis longerthan in the former case, only the 3

executional units are needed for the realization. The schedule is shown in Table 2. Therefore, we

can conclude, that pipelining for critical path and pipelining for resource utilization are indeed

two different transformations.

Cycle A B C

1 Al B2 C3

2 - Bl C2

3 A3 - CI

4 A2 B3 -

Table 2: A schedule after pipelining for resource utilization

5.3.3 The Computational Complexity of Pipelining

Sometimes a very small change in the formulation of a problem can result in a drastic

change in its computation complexity. There are many pairs of similar problems, where one is

NP-complete and the other can be solved in polynomial time [Gar79]. However, there are very

few such pairs in high level synthesis. It is interesting that maximal pipelining and pipelining for

resource, as well as maximal pipelining for a given number of stages and pipelining for a

resource utilization for a given number ofpipeline stages, constitute two such pairs. While max-

133

imal pipelining problems have a polynomial complexity (see next section), pipelining for

resource utilization problems belong to the class of NP-complete problems.

It is easy to prove that pipelining for resource utilization is an NP-complete problem.

Actually, since we already proved that retiming for resource utilization is an NP-complete prob

lem, we can use the simplest and most frequently applicable technique for proving NP-complete-

ness: restriction [Gar79]. If we look at the NP-completeness proof for retiming for resource

utilization we see that in the used CDFG it is impossible to introduce any new pipeline stages,

since all operations are in recursive loops. So, if we have a polynomial complexity algorithm for

either RP or RP(n) we will be able to solve the retiming for resource utilization problem, and

therefore also the MAX-CUT problem, which is NP-complete [Gar79]. Therefore, we can con

clude that both RP and RP (n) are at least as difficult as NP-complete problem. On the other

hand, if we have a solution for either PR or RP(n) with a given assignment and schedule, we can

easilycheckthe costof the proposed solution. Thus, bothRP and RP(n) are NP-complete prob

lems.

5.3.3.1 Pipelining for minimization of the critical path for a given number of pipeline
stages (CP (n))

The definition of pipelining as retiming where the number of delays on all inputs is

increased by thenumber of pipeline stages directly leads to theefficierit algorithm in thecaseof

CP(n). The obviously correct and efficient algorithm can be obtain by applying the Leiserson-

Saxe retiming algorithm to the CDFG where the number of delays on the input edges is

increased by n. Since there is an excellent and extensive literature on the Leiserson-Saxe retim

ing algorithm, [Lei83, G0086, Lei87] we will not further elaborate this issue.

53.32 Pipelining for minimization of the critical path

Only a slightly more complex modification of the Leiserson-Saxe algorithm is needed to

generate the fastest possible solution, using only pipelining as the transformational means. We

134

can add on pipeline stages a very large numberof delays (say as many as the number of opera

tions in the CDFG), and obtain the CDFG which willhave the minimum stage time achievable

by pipelining. If we are interested in the minimum number of pipeline stages needed for the

maximal minimization of the critical path, we can use a binary search over the number of intro

duced delays. In that manner, we can detect the situation where we still achieve the minimal crit

ical part, with the smallest number of pipeline stages. Of course, during the binary search, we

can still use the Leiserson-Saxe retiming algorithm to solve the pipelining problem with a given

number of pipeline stages.

A more elegant approach, but conceptually very similar, is to directly modify the Leiser

son-Saxe retiming algorithm, so that either all inputs or all outputs (but again not both) are not

connected to the host node. (See [Lei83] for a detailed and clear description of the algorithm). In

this case the algorithm will automatically introduce the necessary minimum number of pipeline

stages. The correctness proof of the introduced modification is straightforward.

5.3.3.3 Pipelining for resource utilization with n stages

Again, as in the previous two cases, the formulation of pipelining as the retiming with the

increased number of delays on all inputs provides a good starting point for the design of an effi

cient fast algorithm. It is easy to see that it is sufficient to increase the number of delays on all

inputs simultaneously by n and then to apply retiming for resource utilization in order to design

the algorithm for CP(n). However, in order to make the algorithm as efficient as possible, it is

necessary to make several modifications in the algorithm for retiming for resource utilization.

Those modifications are needed because in the case of pipelining, especially in cases when a

large number of pipeline stages are introduced, the number of delays in the graph grows exten

sively and therefore the solution space is far larger. Hence, the set of possible moves is growing,

decreasing the effectiveness of the algorithm.

135

We introduced four modifications in the retiming for resource utilization algorithm, to

reduce the run time significantly, while having negligible consequences on the quality of the

generated solution:

(1) The adaptive search is used during the learning phase of the algorithm (during the

solution space scanning). During the adaptive search, the value of the objective func

tion is calculated after m steps. If the value of the objective function is no more then

5% larger than the smallest value of the objective functions detected until this moment,

m is either reduced by 1 or takes the default value of 4, whichever is smaller. If it is

within 15% of the best evaluated objective function, m will be unchanged. For other

values of the objective function m will be increased by 1.

(2) As an initial solution, we use the CDFG obtained by applying the CP(n) algorithm.

Although it is not often the case that pipelining for the critical path and pipelining for

resource utilization are identical, the application of the CP(n) spreads the delays over

the CDFG relatively uniformly, and so, creates a good starting point.

(3) Weused the tabu search [Glo90] to augment both the learning and the local phase of

the learning while searching retiming algorithm. The idea is to reduce the computa

tional effort by avoiding situations where delays are moved back and forward across

the same nodes, and therefore identical or similar solutions are evaluated several

times.

(4) In thelocal search phase of thelearning while searching algorithm, only moves which

either reduce the critical path, or reduce the number of delays are considered. Again,

the rationale behind this modification is the reduction of a run time. This time is based

on the observation that relatively rarely the improvement in final phase can be

achieved withoutthe use of those two types of moves.

5.3.3.4 Pipelining for resource utilization

The pipelining for resource utilization when the number of introduced pipeline stages is

not specified is the computationally most difficult problem. A straightforward method for solv

ing this problem will be to apply RP(n) for various values for n, and select the best solution

among proposed. However, as already noticed, when the number of introduced pipeline stages

136

can vary over a wide range ofvalues, it will involve the solution of many instances of RP(n), and

so the procedure will be slow. In order to leverage on already existing and tested algorithm and

implementations, we decided to modify the RP(n) algorithm and combined it with an efficient

search over n, so that a good compromise between the run time and the quality of a final solution

can be achieved. The following two modifications and additions on the PR(n) algorithm were

introduced:

(1) The search over the number of introduced pipeline stages is limited to the values

between n\ and n2. n\ is the minimal number of pipeline stages needed in pipelining

for minimization ofthe critical path so that the critical path is shorter then the available

time. n2 is the minimal number of pipeline stages needed for the of maximal reduction

of the critical path, as obtained by the CP algorithm.

(2) The learning phase of the algorithm is first applied to RP(«2), then on RP (n2 -1), and

so on until it is applied on RP(nj). All the time only the list of/: (in our experimental

studies 10) best overall solutions are maintained for the final local search.

5.3.4 Experimental Results

For testing of the proposed pipelining algorithms we used a set of 15 different instances of

7 designs:

iir7 - 7th order IIR filter,

iir5 - 5th order IIR filter,

firll - 11th order FIR filter,

iirll - 7th order IIR filter followed by 4th order equalizer,

dct8 - DCT transform for 8 points,

decby4 - decimation elliptic filter,

volterra2 - second order Volterra filter.

The available time in all examples was equal to the initial critical path. All designs (except

dct8) were done in two ways: before and after the application of substitution of multiplications

by constant with shifts and additions. In the two last cases of the Volterra filter, we also applied

137

time loop unrolling. The effects of pipelining for minimization of the critical path are shownin

Table 3 and Figure 4. The effects of pipelining for minimization of the resource utilization are

shown in Figure 5.

oq
_ o
cd

o
«

©

ji
ihiiiJ

1
railHi1II

lliaiii
"U Hi1

iI I«i
• plib11 111

(a) Example Instances

o

CO

in

CM

CO
O

cvi

c in

U_ r-

M

m in

ii

•id
mmmsmIIIiii

(b) Example Instances

FIGURE 5.4. Thechanges in(a) execution units area and (b) registers area due totheapplication of
the pipelining for the minimization of critical path

In the caseof CP, the average improvement in the area of execution units was 32.5%, the

medianreduction was 28.6%, best improvement was 69.2%, and in the worst case the area was

unchanged. For the registers the situation was very different. The average register area was

larger 12.9%, the median value was unchanged, the best improvement was only 33.2%, and in

the worst case the register areaincreased 178.8%.

In the caseof RP, the average improvement in the area of execution units was 39.1%, the

median reduction was 33.3%, best improvement was 69.4%, and the smallest improvement was

16.7%. For the registers the situation was again very different. The average register area was

138

only 5.9% smaller, the mediansavingwas9.4%, best improvement was 36.8%, andin the worst

case the register area increased 36.4%.

Analyzing experimental results we can draw many conclusions, but the most important

are:

00

_ ©
CO

i iJiif

CVJ

75

^ q
16 *~ JJ.

O
CO

fill
llll l^ ^

d

IIill!Ml
4i

h jii I ,'i#r

III

(a) Example Instances

CO

d

CD

d

HllH

iU

ITI I nil
Jllillllilil11iiiiiiiii

(b) Example Instances

FIGURE 5.5.The changes in (a) execution units area and (b) registers area due to the application of
the pipelining for the resource utilization.

(1) That althoughpipelining is powerful transformation for both criticalpath reduction, as

well as resource utilization improvement, on examples with feedback loops, which

have many computational elements and few delays it has very limited efficiency.

(2) Actual prediction of the effects on pipelining application should be always carefully

analyzed, since they heavily depend on the ratio of the operational elements' cost to

the register cost.

(3) In order to fully explore the potential of pipelining, it is necessary to combine it with

other transformations.

139

Initially After CP

Example CP M A S BS R CP IPS M A S BS R

iir7 10 3 2 1 - 33 3 3 2 1 1 - 33

iir7 13 - 2 2 2 38 6 1 - 1 1 1 29

iir5 8 3 2 1 - 26 2 3 2 1 2 - 26

iir5 10 - 3 3 3 32 6 1 - 2 1 2 29

firll 11 2 1 - - 28 1 2 1 1 - - 20

fir11 11 - 2 1 3 32 4 1 - 2 1 2 35

iirll 20 3 1 1 - 55 3 6 2 1 1 - 61

iirll 57 - 1 2 2 57 6 9 - 1 1 2 83

dct8 7 5 3 3 - 33 1 6 3 2 4 - 92

decby4 14 4 5 3 - 57 3 4 2 2 2 - 55

decby4 34 - 2 2 2 41 11 3 - 1 2 2 62

volterra2 12 2 1 1 - 23 12 0 2 1 1 - 27

volterra2 15 4 2 2 6 38 10 1 1 1 1 1 25

volterra2 10 7 5 3 - 48 5 1 3 2 1 - 41

volterra2 14 1 3 2 4 58 7 1 1 3 1 2 55

Table 3: The effect of the maximal pipelining

CP - Critical Path; M - number of Multipliers; A - numberof Adders; S - Number of Subtracters; BS -
numberof BarrelShifters; R - numberof Registers; IPS - numberof Introduces PipelineStages.

5.3.5 Conclusion

We presented four different types of functional pipelining in high level synthesis. For the

case where the objective is minimization of critical path of the transformed control data flow

graph, we presented polynomial time optimal optimization algorithms. Those algorithms are

based on Leiserson-Saxeretimingalgorithm. Whenthe objective is optimization of resource uti

lization, weproved the associated problem is NP-complete problem. For thiscasewedeveloped

objective function and probabilistic algorithm for the efficient transformation. All proposed

140

algorithms are tested on a number of examples, and experimental results are analyzed. The

important conclusion of increased implementation cost due to overpipelining is supported by

experimental result Future research work includes investigation of the relationship between

pipelining and other high level synthesis task, such as transformations, partitioning and module

selection.

5.4 COMMUTATIVITY

5.4.1 Introduction

This section discusses the application of commutativity in high level synthesis. Although

commutativity is not as common an axiom in abstract algebra computational structures as asso

ciativity (for example, the operation an a group is not always commutative), it is probably the

most widely known and, in some sense, the simplest control data flow graph transformation.

Unfortunately, when commutativity is treated in the high level synthesis or compiler framework

it is only conceptually a simple transformation. We will prove in this section that its optimal

application is associated with solving an NP-complete optimization problem. For solving this

problem we will use the probabilistic rejectionless anti-voter algorithm.

This section is organized in the following way. First, the motivation behind using commu

tativity for resource utilization improvement is discussed. After the NP-completeness proof, we

describe the objective function during application of commutativity, and then the rejectionless

anti-voter based algorithm. Then the experimental results are presented. We also discuss the role

of commutativity as testbed for algorithms for NP-complete problems. Finally, we draw some

conclusions regarding the role of commutativity in high level synthesis.

Suppose that we want to implement the program given in Figure la. x and y are variables

which are coming regularly every three cycles; a and b are constants. Each operation takes one

cycle and the available time is three cycles. Figure 2 shows the minimum cost architecture. Both

141

x and y are coming directly from the inputs to the register files. It is easy to see that we need 3

registers in each register file, totaling6 registers. However, after the application of commutativ-

ity on the first addition, the computation has the structure shown in Figure lb. Now we can

achieve the solution which needs a total of four registers, two at each register file. Therefore, the

applicationof commutativity results in the saving of two registers.

Z! = x + y

z2 = a + x

z3 = y + b

(a)

Z! = x + y

z2 = a + x

z3 = y + b

(b)

FIGURE 5.1.The pseudo-code example of (a) before and (b) after the application of commutativity

B

1 r V

i i i i

a b

+

FIGURE 5.2.Minimum cost architecture for the code from Figure5.1.

142

Instead of applying commutativity, we can also achievethe solution which needs only four

registers if we increase the interconnect network, as shown in Figure 3. This observation can

also be interpreted in the following way: if we keep the number of registers fixed, then the net

effect of applying commutativity can be expressed through the reduction in interconnect.

A B

> f V
i f * t

i i

ii

ii i i

a b

+

FIGURE 5.3. Another implementation of the code from Figure 5.1.

As we already stressed in Chapter 4 both register and interconnect cost are often of the

same order of magnitude, if not larger than the cost of combinatorial logic. If the number of reg

isters is fixed to 2 per register file, and the architectural model is H (as explained in the Estima

tion Chapter), it is clear that the only way to meet the requirements is through the use of the two

adders. Therefore, commutativity can have either direct or indirect impact on all components of

the hardware cost

5.4.2 Objective Function

Our goal is to restructure the CDFG using commutativity so that the final implementation

has the highest possible resource utilization. In order to achieve this goal we will use commuta-

143

tivity in a twofold fashion. We want to minimize both the number of the registers in register files

by reducing the data broadcast, and to reduce the interconnect network by reducing the probabil

ity of two operations which have strong chances of being scheduled simultaneously sending data

to the same register file. Therefore, our objective function, OF,has the form:

OF = cCj x Memory_Infulence +oc2 x Interconnect_Influence

For the sake of simplicity, we will discuss objective function components under the

assumptionthat the H model is used. It is easy to generalize to other hardware models.

If the assignment is known, it is relatively easyto measure th& Memory Influence compo

nent. We have to send a piece of data to at most one register file of a commutative operation.

When we send data to both register files, we canincrease the numberof used registers. There

fore, we define MemoryJnfluence as the number of data which are sent to both registers of a

register file. When theunknownassignment consequences are takeninto account, the situation is

morecomplex, but theMemoryJnfluence is stillwellcorrelated with the number of usedregis

ters. Figure 4 shows a correlation for 100 different values for MemoryJnfluence and the actual

number of required registers for a 9th order IIR filter.

The badness with respect tomemory of node C, Cmemory, is defined as the number of dif

ferent places where the output of node C is distributed. The set of bad nodes with respect to

memory, BM, contains nodes which contribute nonzero components toMemory Influence.

Figure 5 illustrates the motivation behind InterconnectJnfluence. This figure shows 6

nodes, which are part of a large CDFG. Next to each node are given ASAP-ALAP times. Sup

pose that we want the solution which uses k adders. Although the multiplication and the & node

are of different types and there is no directed path between them, they can not be scheduled

simultaneously. Thisis sobecause theyare sending data to thesame register file (the left register

file of the adder). It is a non-trivial combinatorial problem to compute exacdy the probability

144

oo _

Memoryjnlluence

FIGURE 5.4. Correlation for 100 different values MemoryJnfluence

that in some control cycle those operations will be executed simultaneously. This probability can

be approximated using the following formula:

1 ABoverlap
PAB ~ V~X A XR

A* A slack x Dslack

where Kkis the number of functional units of type it in the final solution, k is the operation where

both operations A and B are sending their results as input data, TABoverl is the number of

145

10-19 15-18

4-9 3-7

FIGURE 5.5. Commutativity objective function

control steps during which both operations A and B can be scheduled, Aslack is the slack of

operation A (equal to the difference between its ALAP and ASAP time increased by one), and

4 2
&slack1S me s*ack °f operation B. In the example shown inFigure 5, P* > = -?—= = ^r

ox j 1 j

4 1
and P*t>> = t77*t = fn •^ we aPPlv commutativity on one ofthe additions shown, as in

Figure 5, the overlaps for operation * and » as well as —and & are equal to 0.

The rationale behind this formula is similar to the one used during the development of

objective function during assignment. Therefore, we define the badness of a commutative opera

tion C with respect to interconnect:

badness
interconnect (c) " I Xl. ^ 'CD

KDeSN,D*C

146

SN is the set of all nodes in CDFG.The InterconnectJnfluence is now defined as the bad

ness of all commutative CDFG nodes. When the application of commutativity on a particular

node improves (reduces) the badness, that node is denotedas bad. Since there are only two pos

sibilities for the ordering of inputs of each commutativeoperation, this can be easily detected.

Selection of constants OCj and oc2 is once again an involved issue and is dependent on

many parameters including bit-width, floorplanning, routing technique and registers area. Dur-

1ingourexperiment weused otj = a2 = x .

5.4.3 Commutativity is NP-compIete Problem

To show that commutativity application in high level synthesis is an NP-complete problem

we will transform another NP-complete problem, the equal subset sum problem, to it. It is suffi

cient to look at the case when the interconnect network is fixed, and the goal is to minimize the

number of used registers.

5.4.3.1 Equal subset sum

INSTANCE: Finite seM, size s (a) € 2? for each a e A.

QUESTION: Is there asubset A cA such that £ s(a) =]£ s (a) ?
aeA ae A-A

The equal subset sum problem is denoted as the NP-complete problem SP12 in [Gar79].

We will use the fact that the equal subset sum problem is NP-complete even in the case when

two sets have the equal number of elements, and if those elements are ordered as

ava2, ...fa2n , ^ we require that each subset contain exactly one of

a2i-V a2i> *°r *^'^rt [Gar79].

5.4.3.2 Commutativity

INSTANCE: Given a computation graph G = (V, E, C) , where E is a set of data

edges and C is a set of control edges. Given an ASIC architecture, represented by hardware

147

graph HG = (//V,///?,///) .where //Vis a set of executional element,///? is a set of reg

ister nodes each having some specific number of registers, and HI is an interconnect network.

QUESTION: Can G be transformed using commutativity to a graph G so that G can

be implemented on architecture represented by //G?

It is easy to check that commutativity is in NP. It is sufficient to take G , and guess the

appropriate assignment and scheduling.

xi yi

X2 yi

xn yn

FIGURE 5.6. An instance of the equal subset problem

Suppose that we have an instance of the equal subset sum problem, shown in Figure 6.

There are the n pairsof numbers, and the total sum of all numbers is 2N. We will polynomially

transform it to the instance of commutativity problem in the following way. The computation

graph is formed so that for the pair w (m = 1,..., n) of numbers pi and qi we form pf. x q.

products in G:

Assume that G can be implemented using only one multiplier. Also assume that all data

for calculating all products have to be stored simultaneously in the multiplier's register files.

Finally, we will assume that the only degree of freedom in the final implementation is the num-

148

ber of registers in the register files of the multiplier and that due to the other computation

requirements in G there are exactly N registers in each of multiplier's register files. This is easy

to enforce [Gar79], by modeling the dependences in the computation graph.

If we can decide how to apply commutativity on all products so that exactly N variables

are in each of the register files of the multiplier, then we also have the solution for how to divide

numbers in the equal subset problem so that each set has numbers with the sum of N. This is

because any broadcast of any variables x or y will result in the solution with more than 2N regis

ters total.

5.4.4 Probabilistic Rejectionless Anti-voter Algorithms

We used the PRAV algorithm to solve the optimization problem associated with commuta

tivity similarly to the way it was used during assignment. We already described the notion of bad

node with respect to commutativity. In this case we did not use the notion of disastrous nodes.

The stopping criterion was that the number of moves is at most 2/ilogn. The algorithm also

was terminated if there were no bad nodes, n is the number of commutative operations.

For the sake ofcompleteness we present the following pseudo-code to describe commuta

tivity algorithm.

Generate initial position by applying commutativity to each node with
probability 112;

Form lists of bad nodesBM and Bj;
While (stopping criteria is not satisfied){

Pick at random node bfrom lists ofbad nodes;

Apply commutativity on node b;

Update the solution as well as list ofbad nodes;

}

I S
? o

1,

6X&mptafnst&noo

FIGURE 5.7. The benchmark set of 50 different examples

149

The effect of commutativity is partially due to the interconnect reduction. The intercon

nect cost heavily depends on the quality of the physical layout tools, which is difficult to esti

mate. To avoid this problem during commutativity testing, we decided to undertake

experimental measurement in such a way to avoid non-deterministic influence of other design

synthesis tools. It is achieved in such a way that insteadof fixing the data throughput, we fixed

the available hardware and measured the necessary time for the completion of the CDFG. For

the benchmark set of 50 different examples, the improvement is shown in Figure 7. The median

improvement against the initial implementation is 9.5%, and against the implementation where

commutativity was randomly applied is 15.8%. The average improvement against the initial

150

implementation is 10.5%, and against the implementation where commutativity was randomly

applied is 16.1%.

5.4.5 Properties of the Solution Space

Since the inputs on each commutative operation can be ordered in two ways, and all order-

ings are independent of each other, when there is N commutative operations in the CDFG, the

solution space contains 2 points. If the CDFG contains only commutative operations, the solu

tion space is symmetric, in the sense that for any solution there is the solution where the objec

tive function has the same value. This solution can be obtained from the first one by the

simultaneous application of commutativity on all operation.

The size of the solution space is well illustrated by the fact that when the CDFG contains

only 50 commutative operations, it already has the size of 2 , with more than 10 points.

Even if the objective function is calculated at one billion points, fewer than 0.0001% of points

are probed. Therefore, the use of the efficient optimization algorithm which explores the topo

logical properties of the solution space is necessary.

5.4.6 Conclusion

Commutativity does not produce as spectacular a design improvement as some other

transformations. However, since (1) it has broad range of application (it is applicable not only on

additions and multiplications, but also on and, or, maxand min operations), and (2) its applica

tion is to the greatest extent independent of the other transformation effects, so it can be applied

as the last transformation before allocation, assignment and scheduling without negative influ

ence on other transformations' effectiveness, it is an important high level synthesis and compiler

transformation.

Commutativity is especially interesting as an optimization problem. It is straightforward

to enumerate the size of the solution space: when we have n commutative operations in a control

151

data flow graph, there are 2n different possibilities. Also, neighbor topological solution space

structure is exceptionally well structured: it is an n-dimensional cube. Furthermore it is easy to

show that it is symmetric. All these properties make commutativity for resource utilization an

excellent testbed for the study of combinatorial optimization algorithm.

5.5 FAST IMPLEMENTATION OF RECURSIVE PROGRAMS

USING TRANSFORMATIONS

5.5.1 Introduction

The transformations presented so far are used for the optimization of the resource utiliza

tion. Higher resource utilization is achieved either by increasing the throughput while keeping

the available hardware resource fixed, or vice versa, by reducing the available hardware

resource, while keeping the throughput fixed. All these transformations clearly have the

improvement of the performance/cost ratio as a main goal.

While in a number of application specific designs an efficient hardware resource utiliza

tion is of primary interest, another common situation in signal processing is that throughput

requirements are at the edge of what can be achieved using available technology. In these cases,

reaching the throughput requirements is the single most important goal, even if it results in lower

resource utilization rates. A general intrinsic property of many signal processing applications is

that the increased latency can to some extent be tolerated. This is in contrast with some other

areas, such as robotics, where the time between the acceptance of the input and the issuing of the

output is most important. Therefore, during throughputoptimizations, constraints on the latency

should be taken into account

This section discusses an efficient procedure to enhance the throughput under latency con

straint. Although different goals result in rather different objective functions, the tools used in

this section (basic algebraic and control transformations) are identical to the ones used previ-

152

ously. Even the algorithms have a rather similar flavor. However, now the idea is to trade effi

ciently silicon area for throughput.

The rest of this section is organized in the following way. First, the problem is precisely

defined and previous work is discussed. Next, the idea behind the new transformation is

explained using a very simple, yet real life example. After that, the computational complexity of

the optimization problem associated with this transformation is derived. After a description of

the proposed algorithm and a discussion of its properties, and an illustration of the proposed pro

cedure performance on a large real life example, some conclusions are drawn and future work is

outlined.

5.5.1.1 Problem formulation

When throughput rate is of primary importance and the CDFG does not have feedback

edges, pipelining provides a straightforward solution. It is sufficient to introduce as many pipe

line stages as are allowed by latency (e.g., add as many delays on all input, or all output edges,

but not on both) and then to retime the resulting graph using the Leiserson-Saxe retiming algo

rithm. It is important to notice that when CDFG has feedforward edges, an introduction of a

dummy transfer operation on those edges is necessary [Nic91]. Of course, the Leiserson-Saxe

algorithm will do this automatically.

However, most of the signal processing algorithms have internal recursion. Examples of

such algorithms include both relatively simple cases, such as infinite response and adaptive fil

ters, and more complex ones, such as algorithms for solving systems of non-linear equations and

adaptive compression algorithms. Graphs involving recursions display an upper bound on the

computation rate, called the pipeline stage bound (or iteration bound) [Mes88]. This pipeline

(Tl \stage bound is given by 7\. • = max -r-r=r- . The maximum is taken over all loops /, T, is
pp [NOiJ

153

the sumof the computation times of all the nodes in loop /, and NDt is the numberof delayele

ments in loop / [Mes88].

Several researchers addressed some special program instances (e.g., IIR filters, Viterbi

processor, quantizer loops) and achieved a significant progress in reducing the pipeline stage

bound [Mes88, Par89a, Par89b, Lin91, Fet90, Par88a]. Our goal is to find an approach that will

automatically transform arbitrary programs (including, of course, recursive programs), into a

form where the pipeline stage bound is reduced to a minimum for a given latency. This can be

achieved in a dual way: reducing T{ by applying algebraic transformations (associativity, com

mutativity and distributivity) and by moving delays (retiming). In order to provide more possi

bilities for both approaches, it is often necessary to do partial unrolling of the time loop.

5.5.1.2 Small example

Very often the best way to introduce a new idea is to explain its steps using a simple exam

ple. This subsection has the goal of illustrating and explaining how basic transformations can be

used to reduce significantly the critical path of the pipeline stage. Neither the example nor the

idea of reducing the pipeline stage is new. What is new is that minimizationof the critical path in

the pipeline stage is achieved by an explicit and systematic application of basic transformations.

This provides a frameworkfor the solutionof the problemof the fast implementationof arbitrary

recursive algorithms.

Consider the example shown in Figure 2, which represents first order IIR filter. This is

actually the smallest possible example on which it is still possible to improve pipeline stage

time, without going into suboperation level transformations. This filter contains only one loop

with two operations: one addition and one multiplication. Both operations are in the loop. Figure

la shows the pseudo-code. Assume that each operation takes one cycle. Since the loop contains

two operations and one delay, the pipeline stage is 2 cycles long.

154

(a) y = x + a*y@l

(b) y = x + a * (x<8>1 + a*y@2)

(c) y = x + a*x@l +a*(a*y<8>2)

(d) y = x + a*x@l + (a*a)*y<3>2

FIGURE 5.1.1st order IIR Filter: pseudo-code format

FIGURE 5.2.1st order IIR Filter: Initial CDFG

O

Or<3^Dr
x@1

FIGURE 5.3.1st order IIR Filter: After unrolling

155

Figure lb shows the pseudo-code after the loop is unrolled once. Figure 3 shows the flow

graph, after the application of this basic transformation. The main effect is that the loop now

contains two delays. However, the number of operations in the loop also increased twice, so the

pipeline stage, which can be achieved using retiming, is still two. Although we did not immedi

ately profit from the application of the loop unrolling, this transformation is creating a starting

position for the other basic transformations.

FIGURE 5.4.1st order IIR Filter: After the application of distributivity

We can see that the associativity cannot be applied to the resulting flow graph. However,

we can apply distributivity. The resulting pseudo-code is shown in Figure lc, while the new flow

graph is in Figure 4. Again, the critical pathis not reduced; actually, the required amount of the

hardware has increased. However, associativitycan now be applied to both additions and multi

plications to remove one addition and one multiplication from the loop. The effect is shown in

the pseudo-code format in Figure Id, and in the flow graph format in Figure 5. As the conse

quence of the application of associativity, we now have only two operations in the loop. Since

156

the loop also has two delays, the pipeline stage is reduced to one. This can be achieved by using

retiming as shown in Figure 6. In this way we achieve the maximum throughput increase with

out going to suboperational transformations.

FIGURE 5.5.1st order IIR Filter: After the application of associativity

a

x@1

FIGURE 5.6.1st order IIR Filter: Final CDFG

157

5.5.2 Computational Complexity

Now we will turn our attention to a discussion of the computational complexity of the

problem.

As we already showed in the pipelining section, pipelining for the minimization of the

critical path can be solved in the polynomial time using the modified Leiserson-Saxe retiming

algorithm. In this process, pipelining is treated as a special form of retiming, when an arbitrary

(in the case of maximal pipelining) or a fixed (when the number of pipeline stages is limited)

number of delays is introduced either at all the inputs or all the outputs. Critical path minimiza

tion, using only algebraic transformations, can also be solved in polynomial time for many

important CDFG classes [Bre74, Val83, Mil88, Mil87].

However, when both algebraic transformations and retiming are simultaneously applied,

the associated optimization problem is NP-complete. This is true even when only one type of the

operation is used in the computation, and therefore only associativity and commutativity are

used as algebraic transformations.

The proof uses Karp's classicalpolynomial reduction approach [Kar72, Gar79]. First we

willrephrase the problem in a yes-no question such thatif the answer is "yes" there is a polyno

mial-length prooffor the correctness of the solution. Then we willpresentanotherNP-complete

problem, the equal subset sum, and, by transforming it to ourproblem, prove that the fast imple

mentation of recursive programs is at least as difficult as the subset sum problem and therefore

also NP-complete.

55.2.1 Fast implementation of recursive program

INSTANCE: Computation graph G = (V, £, D), where each node n e V is of the

same type, E is the set of edges, and D is a set of delays on some edges fiom E. Alloperations

are of the same type. The operationhas the commutative and associativeproperties.

158

QUESTION: Is there a graph G = (V, £ , D) , which can be obtained from G, using

the finite number of applications of retiming as well as associativity and commutativity transfor

mations and has a pipeline stage of at most K cycles?

55.2.2 Equal subset sum

INSTANCE: Finite set Awith nelements. Size s(i) e Z+ isdefined for each ie A.

QUESTION: Is there asubset A c Asuch that £ *(0 = £ s (i) ?

5(1) =6, 5(2) =7, 5(3) =4, ... ,S(n) = 5

FIGURE 5.7. Instance of the Equal Subset Sum problem

The equal subset sum problem is denoted as NP-complete problem SP2 in [Gar79].

It is easy to see thatonce we have graph G , we can find its critical pathby using leveling

according to input, after reverse topological ordering through depth first search as described in

Chapter 3. Figure 7 shows an instance of the equal subset sum problem. Figure 8 shows the

instance of the fast implementation of a recursive program which is the result of the polynomial

transformation from the instance of the equal subset sum problem. The graph G contains two

large loops B and C, each with the very large number of elements, M (M » 2n). Between the

nodes ib € B and ic e C, for (1 < i < n) there exists another loop. Those loops have two

delays. Each of those loops alsohasonly one operation. This operation is alsocommon to aloop

i. The loop ihass(i) elementswhere s (i) is the size of the elementi in the equal subsetsum

problem. All these loops also have only one delay. Both large loops B and C also have exactly

one delay.

159

loopn

6 <->Q< V) <n-ir (S

FIGURE 5.8. Instance of the Fast Implementation of Recursive Program

It is easy to see that the graphG is constructed in such a way that after an arbitrary retim

ing and breaking of loops at delays position, we will always have two disjoint subgraphs. The

total number of nodes is 2M + ^ s(i) .All elements of aloop / will be apart of one of
ie A

those subgraphs. The position of delays in loops connecting A and B will determine to which

160

subgraph all elements of a particular loop / will belong. If we can find a solution which has

I *(0
M+ l€ elements in each subgraph, we also have the solution for the equal subset

sum problem. It is sufficient to say announce that all elements which belong to the subgraph

which contains initial elements of loop B are in the same subset.

Therefore, the fast implementation of recursive programs problem is at least an NP-com

plete problem.

5.5.3 Fast Implementation of Recursive Programs using Transformations:
Procedure

A simple, yet efficient procedure for transforming an arbitrary computation graph so that it

can be implemented with the very short pipeline stage, can be given using the following six

steps, described by the following pseudo-code:

1 Using distributivity and associativity, move as many operations as possible out ofthe

cycles;

2 Unroll the time loop. The numberofunrollings is bounded either by hardware or tim

ing constraints;

3 Repeat step 1;

4 Retime the graph so that the structure of the resulting graph is such that algebraic

transformations will have a maximal effect;

5 Reduce the critical path ofthe resulting graph using either the Valiant or Miller algo

rithm (which optimally applies associativity and distributivity);

6 Introduce sufficientpipeline stages (using a revised Leiserson's retiming algorithm);

Steps 1, 3,5 are reducing the iteration bound using algebraic transformations. Step 4 is a

crucial step, which provides valuable pre-processing for the final iteration bound reduction in

step 5. Step 6 is the final auxiliary step.

161

One of the main problems to be addressed when implementing the retiming step is the

selection of the objective function. A simple and easy to compute function would be the number

ofnodes contained in the largest pipeline stage. It is often possible to reduce the critical path of a

pipeline stage close to the optimal log2«, where n is the number of nodes in that stage. A more

accurate (but computationally more expensive) function can be used for the important class of

applications which use only multiplications, shifts, additions and subtractions. Linear as well as

adaptive filters are part of this class. In this case, the smallest possible critical path of the graph

equals Gog d) (log C + log d), where C is the number ofoperations in the pipeline stage and d the

degree of polynomial represented by pipeline stage. The same formula can also be used when

the computation only contains addition as well as min and max operations. Examples of such

applications can be found in the areas of neural networks, Markov modeling, dynamic program

ming and fuzzy logic. The same also holds for computations containing only logic "and" and

"or" operations Qogic synthesis). This isomorphism was first observed by Miller [Mil87]. The

retiming transformation itself can be implemented using a statistical approach, identical to the

technique described in [Pot91a].

5.5.3.1 Example: Volterra second order polynomial filter

The effect of the procedure is illustrated using a second order Volterra filter (Figure 9). It is

a polynomial non-linear filter [Mat91], and previously has not been discussed in the context of

fast implementation of recursive programs. We assume that each operation takes one cycle.

The critical path of the initial CDFG is 12, and it is denoted by the bold lines. The applica

tion of pipelining cannot reduce the critical path. However, the application of the just described

procedure results in a reduction of the critical path to only 4 control cycles, even when unrolling

is not applied. An application of unrolling will result in an additional reduction, but for the sake

of clarity we will only discuss the case where unrollingis not used.

162

x[n] • *> y[n]

^3-^0

£H>—0

33-h^-O

IDH>—6
D2.2

FIGURE 5.9. Volterra Filter: Initial CDFG

Application of step #1 reduces the critical path to 9, as shown in Figure 10. Note that both

multiplications by constants and all additions which can be pipelined areremoved from the loop

which is denoted by the bold line. Since we arcnot using unrolling, we will skip steps 2 and 3.

163

x[n] •• —>—*©-K-> •+ yM

p-i>—0 Q
« -1

1> e> <F

"o, (' •*•(+

^£^>
^D—4)

^3^-0

!fj>—6
2.2

FIGURE 5.10. Volterra Filter: After step 1

After the application of step 4, we obtain the graph shown in Figure 11. Using associativity we

have "deconvoluted loops" andusing retiming we have separated the two feedback loops. Now

the critical path is 7. Finally, by using the associativity applied on the adder tree (the chain of

164

x[n] •• P—&+Q •> y[n]

rH>—<♦) Q
<

> & <

b 0.1 • * 1 ^ +

^Th-0

4 k

^B—6
^T^-0

2,2

FIGURE 5.11. Volterra Filter: After step 2

additions connected by the bold lines) in Figure 12, we can get the CDFG with the critical path

4. Since all CDFG parts connected to the input can be easily pipelined, and other loops have a

shorter critical path, we achieved a threefold reduction of the critical path.

165

x[n] »—f f • t~G>-0 •* yW

p-t>—© 0
«-r

> & <•

b 0.1 <* ' w +

^B—6
^£—G

^B—$
^£—6
pJD—-

FIGURE 5.12. Volterra Filter: After step 4

5.5.4 Procedure Properties

Several observations can be made about the proposed procedure for transforming arbitrary

166

CDFG for fast implementation.

During retiming, it is necessary to use both associativity and distributivity in order to get

the best results. The rationale is very similar to the one discussed during retiming for resource

utilization, i.e., sometimes it is necessary to change the structure of a control data flow graph in

order to apply retiming more optimally. Therefore, for this step we can use the same algorithm as

for the retiming for resource utilization. The only modification is a different objective function.

During step 4, the key profit often comes from the so-called "loop deconvolution" (as in

the Volterra filter example). This refers to the minimization of the number ofedges which belong

to more than one loop using associativity. This can be by enforced using an appropriate objective

function when associativity is applied.

A good objective function is the number of nodes in a pipeline stage. It is often possible to

reduce the critical path to near optimal log2rt, where nis a number ofnodes in a pipeline stage.

A better objective function can be used in several importantspecial cases: (i) when the computa

tion graph has only additions, multiplication and subtractions; (ii) when it has only min, max and

addition operations; and (iii) when it has only "and** and "or" operations.The first case is impor

tant in signal processing, e.g., for many filter structures [Bla85], the second one in a large num

ber of artificial intelligence and game theory applications as well as in fuzzy logic [Kos91]. The

third one has a significant application in logic synthesis [Bra84].

5.5.5 Conclusion and Future Work

Fast implementation of recursive programs using associativity, distributivity and pipelin

ing is probably the transformation with the highest potential among the proposed transforma

tions. Besides the appropriate experimental study on its effectiveness and limitations over a wide

class of examples, which implies full implementation and incorporation in the HYPER system,

there are many other interesting issues. For example:

167

(i)what other important special cases (computational structures) can be solved more effi

ciently during step #5 than in a general case?

(ii) what can be achieved by going to suboperational level (the most obvious example is to

incorporate pipelinable units, e.g., multipliers)?

(iii) what is the maximum achievable speed-up if the hardware resources are limited?

(iv) how much can be profited by using this transformation for the speed-up of software

loops (instead of software pipelining)?

5.6 CONCLUSION AND FUTURE WORK

A number of powerful control data flow graph transformations are presented in Chapter 5.

They provide convenient and efficient way to improve significantly performance/cost ratio.

Although those transformations are interestingon their own, it is our conviction that the major

contribution is more the developed methodology, than the transformations themselves.

At least four directions for farther research can be envisioned:

(1) Development of faster, better optimization techniques for application of these trans

formations;

(2) Development of objective functions which will more accurately describe wanted

effects;

(3) Development ofnew transformations, in particular those which will combine power of

common subexpression and algebraic laws with the control structures of programs;

(4) Development of transformations environment, which will automatically decide in

which order and to what extent some transformation will be applied.

PROBABILISTIC REJECTIONLESS

ANTI-VOTER (PRAV)
OPTIMIZATION ALGORITHM

6.1 INTRODUCTION

Until now, the primary research described in this thesis was the development of algorithms

for high level synthesis tasks. Now, we turn our attention in a different direction; mainly to

investigate other properties of the proposed algorithms. In the previous chapters we proposed

several novel algorithms, including learning while searching and heuristics randomization. In

this chapterwe will discuss one of the new algorithms, theprobabilistic rejectionlessanti-voter

(PRAV) algorithm, as a general purpose tool to solve difficult optimization problems. We

already showed in previous chapters that this algorithm can be efficiently applied to two high

level synthesis NP-complete problems: assignment and commutativity. Our goal here is twofold:

(i) to show that the proposed algorithm presents acompetitiveoption for solving many important

NP-complete problems such as graphpartitioning andgraph coloring; (ii) to demonstrate that the

168

169

proposed algorithm provides a suitable framework for the solution of a large class of combinato

rial problems.

The rest of this chapter is organized in the following way. First, the importance of the class

of NP-complete problems is discussed. Also, four NP-complete problems (graph partitioning,

graph coloring, vertex cover and the traveling salesman problem) are defined and their complex

ity as well as application range are discussed. Graph partitioning is used as an example during

this discussion. In the experimental part of this chapter we will compare simulated annealing (as

one of the highest quality techniques, according to independent research) and the proposed algo

rithm using a graph partitioning problem as the test vehicle. Then we will demonstrate how the

new algorithm can be also used for solving the graph coloring, the vertex cover, and the traveling

salesman problems. This chapter is concluded with a discussion of the properties, the theoretical

foundation, and the application range of the proposed algorithm as well as its relationship with

other probabilistic algorithms.

6.2 NP-COMPLETE PROBLEMS

Since the mid sixties [Cob64, Edm65], and especially after the early seventies [Kar72,

Coo71] impressive progress has been made in the area of computational complexity. Although

the most intriguing question about the relationship between classes P and NP is still not

resolved, there is a relatively clear computational complexity classification.

The most important computational complexity boundary in the so-called "spectrum of

computational complexity" [Tar83], which graphically describes computational complexity clas

sification, divides all problems into two classes: the tractable and intractable problems.

The tractable problem region includes problems for which an efficient algorithm exists.

Although the speed of the algorithms for those problemsvaries a lot, for all of them there exists

an algorithm with a running time which is some polynomial function of the problem size. Exam-

170

pies of such problems are sorting, matrix multiplication and linear programming. Those prob

lems belong to classP in the vocabulary of computational complexity.

The intractable problems include at leastthree subclasses: undecidable, superexponential

and exponential problems. The most difficult among them are the undecidable problems. For

problems of this class proof exists that they can not be solved regardless of the used technique.

Problems from the two other subclasses can be solved. However, there is always also proof that

any algorithms for those problems will take at least superexponentialor exponential time respec

tively. References and examples for intractable problemscan be found in [Tar83].

Somewhere on the boundary between tractableand intractable problems are the NP-com

plete problems. Although the precise definition of the class of NP-complete problems is rather

involved [Gar79], a rough intuitive description is relatively simple. NP-complete problems are

problems for which the correctness of the proposed solution can be checked in polynomial time,

but currently there exists neither a polynomial complexity algorithm nor a proof that such an

algorithm does not exist. Furthermore, it can be proven that if we find a polynomial complexity

solution for one of them, it implies a polynomial solution for all of them. Due to the work

inspired by Karp's research [Kar72], there is a strong belief that there exists no polynomial com

plexity algorithm for problems of this class.

Unfortunately, a large number of important engineering and scientific problems of both

practical and theoretical interest belong to the class of NP-complete problems. It is widely

believed that there is no polynomial run time algorithm for them. Therefore, a massive effort has

been invested to develop algorithms which are as good as possible. Excellent references are

[Gar78, Joh8x].

We conclude this section by describing four NP-complete problems. Later, one of them

(graph partitioning) will be used as a testing vehicle for several combinatorial optimization algo-

171

rithms, including the new probabilistic rejectionless anti-voter algorithm. We will also show

how the other three problems can be solved using the proposed approach. The four problems are

generic in the sense that a large number of other problems can be treated as a generalization of

these. Therefore, an efficient solution for the graph partitioning, the graph coloring, the clique

partitioning and the traveling salesman problem is the prerequisite for a successful solution to a

broad class of problems.

6.2.1 Graph Partitioning

Graph partitioning is a well known problem with a variety ofpossible formulations. In this

section we will discuss the following version [Gar79]:

INSTANCE: Graph G = (V,E) , weights w(v) e Z* for each ve V and

/(e) e Z* for each e e E, positive integers Kand J.

QUESTION: Is there a partition of V into disjoint sets Vu V2, ... , Vm such that

jT w(v) £K for 1<i<m and such that if the set of edges have their endpoints in
V€ v.

two different sets Vh then £ / (e) <J ?
ee E

The results obtained here can easily be applied to the more general problem where each

node and edge is described by vector weight,with appropriate modification in constraints.

Graph partitioning is an NP-complete problem [Hya73]. In Garey and Johnson's book, it is

denoted by ND14. The problem is NP-complete for any given K, K > 3, even if all vertex and

edge weights are 1.The problem can be solved in polynomial time for K = 2 usingmatching.

Recently, Johnson,Papadimitrou andYannakakis introduced a new complexityclass,PLS,

which provides better insight into the complexity of partitioning [Joh8x]. Partitioning is a

172

generic problem for this class, and its complexity for finding even a local mimmum is higher

than polynomial, but less than exponential if P ^ NP [Joh88].

6.2.2 Graph Coloring

Graph coloring is one of the generic NP-complete problems, and one of the most studied,

with a broad spectrum of applications. Several of these applications were mentioned in the

HYPER description. The problem can be stated in the following form [Joh79]:

INSTANCE: Graph G = (V, E) , positive integer K<\V\.

QUESTION: Is G K-colorable, i.e., does there exist a function f: V -» \,2,...JC such that

/(h) */(v) , whenever u,v e E?

The problem is solvable in polynomial time for K = 2, but remains NP-complete for all K

> 3. The problem is denoted by GT4 in Garey and Johnson's book.

6.2.3 Independent Set

We already discussed use of the independent set problem in high level synthesis during the

calculation of maximum bounds on available parallelism. This problem is especially interesting

since it can be used as just another viewpoint on two other widely occurring NP-complete prob

lems, being vertex cover and clique. These three problems are usually defined in the following

way:

PROBLEM: Independent set

INSTANCE: Graph G = (V,E) , positive integer AT< |V| .

QUESTION: Does G contain an independent set of size K or more, i.e., a V c V such

that V ^K and no two verticesin V have an edgein E between them?

173

PROBLEM: Clique

INSTANCE: Graph G = (V,E) , positive integer K<\ V\.

QUESTION: Does G contain a clique of size # or more, i.e. a V c V such that V > K

and no two vertices in V have an edge in E between them?

PROBLEM: Vertex Cover

INSTANCE: Graph G = (V,E) , positiveinteger K<\ V\ .

QUESTION: Is there a vertex cover of size K or more, i.e. a V c V such that K < \V\

such that for each edge u,v in E at least one of wand v belongs to V?

The Independent set is denoted by GT20, clique by GT 19, and vertex cover by GT1 in

[Gar79]. The following simple lemma from [Gar79] establishes the relationship betweeninde

pendent set, clique and vertex cover:

Forany graph G = (V, E) and V c V, the following statements areequivalent:

(1) V is a vertex cover for G;

(2) V- V is an independent set for G;

(3) V - V is a clique in the complement Gc of G, where Gc = (V,£°) , with

E* = {{m,v}:k,v€ V and {k,v} € E} .

6.2.4 Traveling Salesman Problem

The traveling salesman problem is probably the most popular and studied NP-complete

problem. Several thousand papers have been published on its complexity and various algo-

174

rithms. A fascinating, in-depth study is presented in the book: "Traveling Salesman Problem"

[Law85].

INSTANCE: Set C of mcities, distance d(ciyCj) e Z+ for each pair of cities

ci9 C: e C , positive integer B.

QUESTION: Is there a tour of C having length B or less, i.e., a permutation

<Cn(i)»C,it(2)— CK(m) > ofCsuchthat

(%l }L d(<Cn(m)>Cn(i+\)) rf (C7t(m)> Crc(l)) ^B

The traveling salesman problem is denoted by ND22 in [Gar79].

6.3 ALGORITHMS FOR NP-COMPLETE COMBINATORIAL

PROBLEMS

There are numerous ways for addressing NP-complete combinatorial problems. They

include tailored heuristics (often based on the steepest descent paradigm), mathematical pro

gramming techniques (in particular, linear and integer programming), dynamic programming,

various gradients algorithms, through relaxation to eigenvalue problem, backtracking, and the

recently popular and successful probabilisticand neuralnetwork algorithms. Among the proba

bilistic approaches the most popular are simulated annealing, simulated evolution, genetic, tabu

and local search.

Among the neural network optimization algorithm back and forward propagation, Boltz-

mann machine, various gradient inspired, and meanfield have received the most attention. For

many NP-complete problems, including the graph partitioning problem, it is shown [Joh91] that

simulated annealing is one of the most competitive alternatives.

175

6.4 DESCRIPTION OF THE NEW ALGORITHM

Probably the best way to introduce a new algorithm is to demonstrate how it can be used to

solve specific problems. Before we describe application of the new algorithm to graph partition

ing problem we will introduce two definitions.

Definition 1: In the graph partitioning problem solution, a bad vertex a is the vertex which

has at least one neighbor vertex b (between a and b exists an edge), which is not in the same

group as a.

Definition 2: The badness of vertex a, denoted by B(a) is the number of neighboring verti

ces which are not in the same group as a.

A more precise definition of how much a given vertex a increases the cost of the solution

is probably a ratio of the badness to the total number of neighboring nodes for vertex a, since it

is logical to expect that vertices with a large number of neighbors have more neighboring verti

ces which increase the cost of a solution. However, this calculation will involve division (which

is a computationally intensive operation) and more importantly, it seems logical to pay more

attention to vertices which aremore important in cost.

PRAV treats the problem from the standpoint of groups, instead of nodes. We first choose

f(B (/))
one group /, according to the probability P (/) = , where B(I) and B(J) repre-

?f(B (J))
J

sent the total badness of all nodes in / and J respectively. In other words, we select a group (or

partition) according to the probability that removing a node from it will decrease cost function.

After that, we choose from group / of bad nodes one node a which will be moved to the other

f{B (a))
group according to theprobability P (a) = —=-rjr— . Finally, we select anew group / for

B{I)

176

N(a,J)
the selectednode a, according to the probability P(I->J) = , where N(aJ)

K*J

and N(aJC) are the number of neighboring nodes to node a in groups J and K. As time proceeds,

we can increase the probability of choosing nodes with a greaterbadness, by changing function

If during the process some group violates some of the constraints (e.g., the total weight of

all the nodes which can be accommodated) we give it the maximal badness, and remove a node

from it to satisfy constrains.

The new algorithm can be described using the following pseudo-code:

Get an initial assignments ofelements to groups;
Form list ofbad elements in groups;
While (stopping criteria not satisfied)!

Pick a random group I;
Pick a random element a;

Pick a new, random membershipfor a;
(allpicking according to probabilities described in the text);
Update solution, bad lists, andfunctionsf(.);}

When we apply this approach to the graph coloring problem, we first randomly color all

nodes with K colors. As bad vertices we consider nodes which as neighboring node have a node

with the same color. We are favoring changes to a color more if this color is less represented

among the neighboring nodes. When applying the PRAV algorithm to a clique partitioning prob

lem, we first reduce the problem to a graph coloringon the complement graph.

lb solve the vertex cover problem we can firstchoose a random set oiK nodes as elements

of the vertex cover. The set of disaster nodes includes all non-covered nodes, and they should be

included in the set according to the number of other non-covered nodes which will be covered

with their inclusion as a prioritymeasure. (Disaster nodes are defined as nodes which have such

high badness that they prevent any feasible solution) But before we include some of the disas-

177

trous nodes in the vertex cover, we need to remove a node from the current vertex cover. Prime

candidates (bad nodes) are those which cover nodes which are covered by some other node in

the vertex cover. The badness is proportional to the percentage of already covered neighbor

nodes.

Finally, in order to solve the traveling salesman problem using the probabilistic rejection-

less anti-voter algorithm, we first choose randomly n edges in the graph. The set of disastrous

nodes includes nodes which are not connected to at least two other nodes, or which are con

nected to at least three other nodes. A bad node is the one which is connected to other nodes in

the current path with edges which are not the two shortest ones among its incident edges. The

badness is proportional to the ratio between the length of currently selected edges to connect the

particularnode to its neighborsand the distancebetweenthis node and its two closest neighbors.

We always favor the inclusion of short edges, which reduce the number of disastrous nodes.

6.5 EXPERIMENTAL RESULTS

The test presented in [Joh89, Joh91] is becoming virtually the de facto standard for the

comparison of various algorithms for NP-complete problem algorithms in general. Johnson also

discussed in great detail the performances of several algorithms for graph partitioning. He uses

two classes of randomly generated graphs - the standard random graph and the more structured

geometric graph. According to thenumber of authors, thesetwo classesrepresent enoughvariety

and similarity to the real applications that theyshould provide a reasonable testbedfor a perfor

mance study of the suggested algorithms.

6.5.1 Random Graph (GN)

The standard random graph [Bol85] GNp is defined by the parameters N andp. The param

eter N defines the numberof vertices in the graph, and parameter/? specifies the probability that

any pairofvertices has anedge between them. Thus, the average degree of the graph GNp is (N-

178

\)p. Forp fixed, and independent ofN, we are faced with a dense graph as Ngrows large. Inthis

case, the optimization problem becomes trivial from an engineering standpoint, since all solu

tions have nearly the same value and the ratio of the optimum solution to the mean solution

approaches 1 [Pet88].

On the other hand, if we fix the degree of the graph, the ratio of the optimum cutsize is

approximately equal for allN. [Pet88] Therefore, fixed degree graphs provide a better discrimi

nation of the algorithm performance asN grows. The fixed degree graphs alsoseemto be closer

to the real problems.

6.5.2 Geometric Graphs (UN)

Another class of random graphs, which probably is closer to the real applications, is the

geometric graph UN4 defined by the parameters AT andd,0 < d < 1.This type of graph stresses

the notion of spatial clustering and local connectivity. A geometric graph UN4 is generated by

randomly distributing the N vertices on a unit square. Two vertices are connected if and only if

they can be enclosed by a square of length d [Joh88].Thus, the average degree of vertices away

from the border of the unit square is 4N#. Once again, as in the standard random graph, the fixed

degree geometric graphs are probably closer to the real examples. Also, these graphs provide a

better discrimination of the algorithmicperformance as the ratio of minimal to random cutsize

decreases as N increases.

6.5.3 Large Random and Geometric Random Graphs Generation

It is straightforward to generate the described random graphs with sizes of up to several

thousand nodes. However, if one wants to generate very large graphs, especially with millions of

nodes, a direct implementation is impossible. For 106 nodes, we have more than 10 " pairs of

nodes, and to look at each of them will take months even on the fastest computers. We solve this

problem by using the following procedure.

179

65.3.1 Large standard random graph

For the generation of a standard random graph, we use a procedure whose correctness is

easy to verify.

First, we generate the number of edges in the whole graph as a sample from Binomial dis

tribution, [Pre88] with parameters n andp, where n is the number of nodes, and p is the probabil

ity that any pair of vertices has an edge between them.

Then, we generate a uniformly distributed random number r between 1 and n2, and assign

an edge between nodes / and./ such that / = r/n andy = r - rln, if fcj, if one does not already exist

between them.

The presented algorithm has an expected running time linear with respect to the number of

edges in the random graph.

6.5.3.2 Large geometric random graph

For the generation of a geometric random graph with one million nodes we first divide the

unit square in 10,000 identical subsquares. To determine the number of nodes in each of these

subsquares, we again use sampling from Binomial distribution, this time with parameters n =

100, and p as the desired probability according to the formula described in the previous para

graph. Finally, if it is necessary, we can add or delete a number of nodes so that the total number

of nodes equals n. Among all nodes in any given subsquare we put an edge. To check for edges

among nodes in different subsquares, we should check for nodes from one subsquare to nodes of

at most 8 other subsquares.

Once again, it is easy to see that running time is linear with respect to number of edges,

and it is easy to verify the correctness of the procedure.

180

6.5.4 Experimental Results

We tested the PRAV algorithm on examples of standard and geometric random graphs

with the size of 20,100, 500, 2000, and 1 million nodes. All nodes and edges in the generated

graphs had the same weight. For the smallestexample we partitionedthe graph into 4 groups; for

three of the medium size, into 10 groups; and finally, the largest example, we set the number of

groups to 100. In the following tables we compare the percentage in improvement in perfor

mances due to the application of the new algorithm over classical simulated annealing for 4

small graphs. We ran both algorithms 10 times on 10 different random examples for each graph

and the presented values compare the medians, means, and best and worst performance. Due to

exceptional computational requirements of the largest example, we ran only the PRAV algorithm

on 2 examples. It took 18247 seconds (slightly more than 5 hours) to complete the example on

SUN 3/60. The solution was more than 500% better than in the case of a simulated annealing

application during the same amount of time. (30,217 vs. 166,727 for geometric random graph).

Classical simulated annealing algorithm

Random

graph
median mean

best - worst

solution

U20 17 17 14-24

U100 39 44 36-53

U500 187 208 179 - 267

U2000 594 695 547 - 814

G20 35 35 33-40

G100 166 169 130-196

G500 685 692 629 - 719

G2000 2942 3056 2761 - 3202

Table 1: Simulated annealing performance

The PRAV algorithm

Random

graph
median mean

best - worst

solution

U20 14 14 12-16

U100 25 26 24-28

U500 56 54 51-71

U2000 208 212 196-220

G20 31 31 29-32

G100 137 139 129-148

G500 609 612 596 - 632

G2000 2503 2508 2465 - 2564

Table 2: The performance of the PRAV algorithm

Comparison Simulating Annealing vs. New
Algorithm

Random graph solution size time

U20 0.95 1.12

U100 0.91 0.71

U500 0.52 0.14

U2000 0.48 0.017

G20 0.97 1.37

G100 0.93 0.89

G500 0.88 0.16

G2000 0.86 0.023

181

Table 3: Running times, simulated annealing running time is normalized to 1

It is very difficult to say anything definite about the quality of the PRAV algorithm, but

first results look very promising. Weexpea further improvements in the performances by tuning

182

the algorithm parameters. In Table 3 we compare the running times of the new algorithm and

simulated annealing algorithm.

We also tested the simulated annealing on two "real life" examples. We partitioned an

application specific computer in 4 modules. The best result obtained using simulated annealing

had costs of 17 and 12, new algorithm produced solutions with costs of 10 and 5 [Pot89, Chu89].

6.6 PROPERTIES OF THE PRAV ALGORITHM

The PRAV algorithm combines ideas from two sources: interacting particles [Lig85] and a

rejectionless technique for simulated annealing [Gre86]. There exists a strong relationship

between other interacting particle model (Stochastic Ising Model) and simulated annealing

[Lig85], as there is between the Voter Interacting Particle Model and the proposed algorithm

[Lig85]. Other interacting particle models (such as the contact model and the exclusion process)

are also candidates to be incorporated in the efficient combinatorial optimization techniques.

This connection can be used in proving some theoretical properties of the PRAV algo

rithm, for example, convergence. D. Walsh was the first to apply the anti-voter model to graph

coloring using 3 colors [Pet89], but did not generalize it to the other combinatorial optimization

problems. While rejectionlessness does not improve the quality of the solution, it dramatically

reduces running time.

6.6.1 Convergence

A very simple argument provides the proof of convergence, under the assumption of an

arbitrary large running time. Suppose that we have a solution which is characterized by some set

of values for all nodes. If this is not the optimal set of values, then, by randomly picking the cor

rect values one by one, we can make the transition to the optimal solution. For this we have a

small but finite probability. If we are not lucky after at most n steps (n is number of nodes) we

183

can apply the same reasoning again. In such a way, we can make probability as large as we want

(as a trade-off to running time) to find the optimal solution.

6.6.2 Rejectionless

As is well known [Gre86], it is very easy to detect that as we are approaching the final

solution, we are generating moves which do not change the solution with high probability. The

exact ratio is highly dependent on the structure of the graph which we are trying to partition. For

random graphs and graphs which model the CAD problems, an empirical observation is that we

usually need between j^r nand •= nofproposed moves togenerate one which we will accept.

If n (ft is the number of nodes in the graph) is large, then we will have thousands of rejected

moves before we find one which will improve the solution. This time is, by far, the major part of

the run time.

In the PRAV algorithm, all moves are always accepted, which makes it much faster, and

still we do not change the nature of the probabilistic approach. It is achieved by concentrating

our attention to the parts of the graph which really make up cost (bad and disastrous nodes).

Rejectionless is efficiently achieved due to the fact that for many NP-complete problems it is

easy to update bad and disastrous node lists.

6.6.2.1 Explicit constraint satisfaction network

It is interesting to notice that it is relatively easy to cast the PRAV algorithm in a neural

network framework. The nature of the algorithm implies that an appropriate name for a new neu

ral network is explicitconstraint satisfaction network. Essentially, this approach is similar to the

transition from the simulated annealing to the Boltzmann machine neural network. This point of

view provides a way for the realization of efficient parallel implementation of the PRAV algo

rithm. A detailed discussion of this viewpoint can be found elsewhere [Pot89c].

184

6.6.2.2 Relationship to other general purpose optimization techniques

The PRAV algorithm can be easily combined withseveral otherprobabilistic searchtech

niques. For example, thecooling mechanism used in simulated annealing and tabusearchmech

anism [Glo90] can improve performance. These issues are discussed elsewhere [Pot90].

However, since the overhead computation cost is large it seems that this direction is not very

promising.

6.7 CONCLUSION

In this thesis several new algorithms for NP-complete problems have been introduced,

including the learning while searching algorithm and randomized heuristics. In this chapter, one

of them, probabilistic rejectionless anti-voter algorithm, is discussed. As the test problem, graph

partitioning is used. We compared the performance of the PRAV algorithm to one of the most

powerful published techniques, simulated annealing. The PRAV algorithm is faster and pro

duced a solution of better quality then simulated annealing. For the testing of the suggested algo

rithm a procedure for the efficient generation of very large standard and geometric random

graphs was presented. Finally we discussed the properties of the proposed algorithm and very

briefly its relationship to other general purpose optimization techniques.

CONCLUSION

To conclude this thesis, this chapter briefly reviews the major results presented in the pre

vious chapters and discusses the intrinsic properties of the presented methods and algorithms

with respect to the research workoutside highlevel synthesis framework. Finally, anoutline for

future research on the lines providedby this thesis is discussed.

7.1 SUMMARY

This thesis presented several new concepts and new algorithms used in HYPER, the high

level synthesis environment for real-time systems with data-path intensive architectures.

HYPER differs from the multitude of other high level synthesis systems by explicitly

addressing hierarchy in the signal/control data flow graph, the application oftransformations and

estimations during design process, and by a consistent use of global quality measure and

resource utilization. Actually, the consistent use of the resource utilization as an explicit goal

185

186

effectively merges all high level synthesis tasks, including the allocation, assignment, schedul

ing, transformations, and estimation. It also provides both efficient optimization framework and

convenient user interface.

New allocation, scheduling and assignment algorithms for hierarchical control data flow

graphs were developed in this framework. A new transformation environment as well as several

new high level synthesis transformations (including retiming and associativity, commutativity,

and fast implementation of recursive programs) basedon novel algorithms were introduced.The

application of one of those algorithms, probabilistic rejectionless anti-voter, to a number of

diverse NP-complete tasks was also presented.

The effectiveness of the proposedalgorithms andthe concepts was demonstratedin multi

pleways: using standard benchmarks examples, withtheaid of statistical analysis and through a

comparison with estimated minimalbounds. For a development of sharp minimal bounds, the

novel discrete relaxationtechnique was used.

7.2 RELATED PROBLEMS

Although techniques developed for HYPER are often problem specific, they can be used

with minimal adjustment in several other areas. In this section we outline four areas where these

techniques and algorithms can be efficiently applied with additional straightforward, although

nontrivial, efforts. These areas are:

(1) Compilers for Concurrent Architectures;

(2) Optimizationof Complex Hierarchical Problems;

(3) Combinatorial Optimization Algorithms; and

(4) Estimations for other CAD areas.

187

7.2.1 Compilers for Concurrent Architectures

There is a consensus [Hen91] that the most important challenge in future compiler

research is the exploitation of parallelism.

Although right now a close relationship between high level synthesis compilers, such as

HYPER, and software compilersdoes not exist, this will be changed in the near future.The most

likely reason for thecurrent situation is thatcompilation tasks are significantly larger thanthose

addressed in high level synthesis, and at the same time there are much stronger constraints on

compilation time. However, with proliferation of superpipelined, superscalar, and very long

instruction architectures, aswell ashigh scale multiprocessor systems, exploration ofparallelism

will become a dominant issue in software compilers. Due to itshierarchical approach, fast algo

rithms and the fact that allocation and assignment precede scheduling, HYPER can be easily

adjusted to those tasks. It is sufficient to remove theallocation procedure, and superimpose, dur

ingthe assignment, constraints which define the given concurrent architecture. One such project,

a refinement of HYPER to compiler forthePADDI system, is underway [Che90, Rab91a].

7.2.2 Complex Hierarchical Problems

Due to the rapidly increasing complexity in various engineering problems and computer-

aided design in particular, hierarchy treatment becomes an unavoidable task. One of the main

differences between HYPER and many other high level synthesis systems is that it treats hierar

chyexplicitly. Thisapproach, where foreach level in a hierarchy scheme as much information as

possible is extracted from lowerhierarchy levels usingbothprediction tools and feedback infor

mation, appears both as a simple as well as powerful solution. Also, techniques for gathering

information from lower hierarchy levels during estimations using min and max bounds estab

lished by discrete relaxation as well as statistical techniques and measuring level of difficulties

during task solution at lower level are rather general approaches.

188

7.2.3 Combinatorial Optimization Algorithms

Although algorithmic techniques proposed in HYPER are notrevolutionary, they provide

a good compromise between diverse algorithm performances: running time, quality of thegener

ated solution, robustness and difficulty of implementation. In Chapter 6, one of them, the proba

bilistic rejectionless anti-voter algorithm, is discussed in more detail. It would be interesting to

study to a greater extent theotherproposed techniques. Allof them arerather general techniques

that can be easily modified and tailored to a particular application, as well as combined with

other techniques.

7.2.4 Estimations and Predictions in other CAD and Optimization Areas

An application of deterministic prediction techniques,where the original computationally

intractable problem is relaxed to a problem of polynomialcomplexity, is by no means restricted

to the high level synthesis domain. The design process in diverse application areas can be often

naturally divided into a number of successive tasks, as it is done in high level synthesis. The con

sequences of decisions made in early stages of design process have to be estimated fast and

accurately in order to avoid numerous iterations. For all those estimations besides statistical

techniques, deterministic bounds can be derived using relaxation techniques as is done in

HYPER.

7.3 FUTURE RESEARCH

As often happens in science and engineering, an attempt to answer one set of challenging

questions does not only produce answers, but also produces a number of even more challenging

questions. During the development of HYPER, several major novel issues arosed which cur

rently are either not addressed at all, or very limitedly addressed in the design automation litera

ture. On the other hand, the attempt to evaluate potentials and limitations of the proposed

techniques and algorithms fully also provides interesting avenues for further research.

189

Direct possibilities to continueresearchalong the lines provided by HYPER are described

at the end of corresponding chapters. Herewe will discuss more generaldirections. Even though

the current HYPER environment already provides the algorithmic design community with the

capability to evaluate and compare various design alternatives and provides the integrated cir

cuits community the capability to select among various algorithmic alternatives in a matter of

days, the development of here mentioned new techniques will greatly extend those capabilities

and turn HYPER, or other high level synthesis systems, into an effective and complete design

environment not only at the chip level, but also at the system level. At the same time, this

research will have potential for a profoundinfluence on areas outlined in the previous section.

7.3.1 A Background Memory and Input/Output Optimization

High performance algorithms are oftenconstrained by input-outputand background mem

ory bandwidths rather than by computational requirements. The background memory is the

memory outside of a datapath.

Almosta decade ago, Buccher andJordan [Buc83] did an extensive studyof the influence

of memory organization on resource utilization in a general purpose computing environment.

They compared the performance obtained on a Cray X-MP when an ideal secondary memory

design is available (a very large secondary memory) or when the secondary memory is a disc.

Theexperimental program was an application of a polynomial conjugate gradient method to the

solution of a system of linear equations generated by a 27-point operator applied on a three

dimensional grid of the size 45 x 45 x 45. In all cases, input/output transfers were overlapped

with computation in orderto achieve maximum speed. The findings of the experiment showed

that:

(1) when the secondary memory had a size of 1 million words the computation was done

at the rate of 1.2 MFLOPS.

190

(2) when the secondary memory had a size of 8 million words the achieved performance

was 58 MFLOPs.

(3) for a secondary memory with 32 million words, computation was constrained exclu

sively by the data path throughput, and could be done at maximum rate of 161

MFLOPs.

Thus, the appropriate background memory can provide on the real life problems a speed

up of more than two orders of magnitude even on general purpose computing systems. In appli

cation specific systems, where we have additional degrees of freedom in datapath design, influ

ence can be even higher. On the other hand, the memory cost can dominate the cost of a system

[Sto91].

Therefore, the presence of a memory and I/O optimization environment is essential to

obtain high quality solutions. This topic is only marginallyaddressed in the current HYPER sys

tem. Research efforts in this areain a high level synthesis framework have been ratherminimal

as well. Only recently have we seen some publications in this direction (e.g., [Ver89, Lip91]).

Even in a general purposecomputing environment, research regarding input/outputandmemory

optimization is relatively limited in comparison with datapath research [Pet90].

A memory and I/O bandwidth optimization environment should have the following parts

(for the sake of brevity, we will limit the discussion to memories here):

• estimation: Similar to the data path synthesis process, a careful estimation of the

requiredmemory bandwidth and the potentialaccess conflicts is essential to achieve a

global solution. Techniques such as discrete relaxation (eventually extended with a

statistical approach) can be exploited here as well. The results of the estimation drive

high level synthesis tasks, as described below.

• module selection: Combining the results of the estimation process with memory

access patterns(sequential versus random), a specific memory module can be selected

from the module library. Techniques similar to the ones usedin the data path module

selection process can be exploited here.

191

• transformations: Simple transformations can help to minimize the memory require

ments and bandwidths, such as the staggering of the memory accesses in time or the

temporal storage of variables in foreground memory. On the other hand, extreme

memory bandwidths can be solved by partitioning the memories or by duplicating

data in multiple units. Flow graph transformations also can minimize the number of

memory accesses or create a well defined memory access order (such that cheaper

memories such as FIFO's and shift-registers can be used). An example of a particu

larly promising transformationis value numbering [Wai84].

• memory unit allocation: This processdetermines the number of memory units of each

type to use. This part can be integrated in the overall HYPER allocation search pro

cess.

• binding: The background variables (and arrays) are assigned to a particularmemory

module and the exact storage position is determined. This requires a careful lifetime

analysis of the variables. Although somememory area can be gained by considering

individual elements of an array, in general it makes moresenseto consider arrays as a

singleentitywhenperforming life-time analysis. Graphtechniques such as graphcol

oring and clique partitioning are the most obvious choice for the implementation of

the binding process.

73.2 Design for Low Power

The impressive progress of the integrated circuits technology over the last two decades

through technology scaling and system development has primarily resulted in an increasing sys

tem performance measured by the system throughput. However, mainly due to the demand for

portability and a drastic reduction in silicon area cost, power consumption becomes an increas

ingly important issue. Several other factors, such as prolonged component life expectancy and

demand for inexpensive packaging also provides strong motivation for power reduction. Most

likely, in the near future the design goal will be a composite function which combines area and

power consumption for many applications.

Recently, among thefactors which dominantly influence power consumption besides tech

nology (optimal supply voltage selection and MOS transistor minimum feature size scaling),

1.00 1 I

0.90
— / —

0.80
— —

fe 0.70

I* 0.60
— —

E
| 0.40 —

030
—

0.20
—

0.10 - i i

2.00
dd

4.00

FIGURE 7.1 Plot of Power as a function of supply voltage for a fixed throughput for the 11th
order IIR filter

I
* 0.60
•d

'£ 0.50
CQ

5 0.40
35

0.20 _

o.io y
1.00 5.00

Normalized Area

10.00

192

FIGURE 7.2 Plot of normalized power vs. implementation Area for a fixed throughput for the
11th order IIR filter

193

logic style selection and physical design issues, architectural design and algorithm selection

were identified as particularly important [Bro91, Cha91a]. It has been shown that a trade-off

relationship exists between power, area and throughput. This trade-off relationship can be opti

mized using high level synthesis tools. For example, Figure 1 shows the relationship between

power and supply voltage for a fixed throughput. Figure 2 shows the relationship between the

normalized power and implementation area for a fixed throughput. Both figures are for a 7th

order IIR filter. The use of the low power was made possible due to the use of transformations.

In many cases the application of transformation on this example resulted in more than an

order of magnitude reduction in power, as well as in a much larger number of design options

[Cha91a].

Other interesting topics regarding the relationship between power optimization and high

level synthesis include the use of estimation techniques for power prediction,module selection

for power minimization, partitioning and algorithm selection and design for power reduction

[Cha91b]. Firststudies show that the HYPER environment provides a suitable starting point for

this research technique [Cha91b].

7.3.3 Structured Benchmarks for Scheduling and Assignment

One of the most difficult CAD questions is the assessment of the quality of a proposed

algorithm and a corresponding program implementation. The majority of CAD optimization

problems are NP-complete or even more complex. Therefore, the time for obtaining an exact

solution even for problems of modest sizeis verylong.

The most common procedure is to take a few (sometimes only one or two) examples and

to conclude that the proposed algorithm produces a very good solution, due to the fact that it

slightly outperforms previously published algorithms with respect to eitherspeed or quality. This

194

approach does not guarantee that the very next example will be solved successfully. More pro

found approachesinclude comparison with sharplower bounds and benchmarks.

Often the establishment of relatively large benchmark sets of examples from practice is

considered the ultimate solution. However, in the case ofhigh level synthesis problems, and par

ticularly scheduling and assignment, there areserious problems associated with a such approach

due to the "curse of dimensionality" [Bre84].

To test the scheduling and assignment algorithm it is necessary to use examples whose

control data flow graphs have different parameters. Just to name few, we can mention control

data flow graphs with few and many nodes, with large and small slack, with large and small

available parallelism, highly structured and irregular, with a lot of and with little broadcasting,

with few and a lot of timing constraints, for various relationships of hardware speed and cost.

Just to have one example with a different value for each of the parameters will make the bench

mark set very large.

A structured benchmark can be developed by using the following procedure. First, all

available examples are plotted in the multidimensional space of various parameters and then

among them the subset is selected in such a way that whole example space is as uniformly cov

ered as possible. The goal is to choose those points which best represent all points in the multidi

mensional space. The number of text examples in benchmark sets is determined using a

validation procedure(for example, cross validation or bootstrap) [Eft82]. These procedures also

establish bounds which determine to what extent benchmark results can be trusted.

Probably the most important future application of structured benchmarks is in the design

style selection, where they can be used for the prediction of the implementation cost of a given

algorithm in different hardware and architectural configurations.This information can be used to

speed up search through design space.

195

73.4 Design Style, Architecture and Algorithm Matching

An algorithm described as a program, can be implemented in various technologies (e.g.,

PLD, standard cells, gate arrays, full custom ASIC, standardoff-shelfcomponents) and various

architectures (e.g., general purpose processors, DSPprocessors, systolic arrays, SIMDmultipro

cessors,superscalarand superpipelined architectures, customASIC). For a particulartechnology

and architecture there are often several models from different suppliers. An objective function

canbe complex anddiverse (e.g., combination of performance, implementation cost,powercon

sumption, scalability). The partitioning of a program on suitable heterogeneous platforms so that

the givenobjective function is optimized is oftencrucial for the final qualityof the product

To address this problem, two components have to be developed: a design framework and

an efficient design space exploration mechanism. Theframework should be capable to describe

and manage hierarchal structures on both design sides (abstract algorithm description and final

implementation) to provide an interface between different architectures and design styles, and to

characterize precisely all design styles and architectures, so that a design space search can be

conducted. The already developed HYPER framework provides a good starting basis for this

task. Concerning the design space search, an inclusion of specific knowledge about thedesign

space topology usingdeterministic and probabilistic techniques is a must for the further search

performance improvements. Estimation and in particular the statistical methods provide a well

suited tool for this task. To obtain this knowledge, a set of benchmarks has to be developed,

which uniformly covers the whole design space. Special attention during system level design has

to be paid to memory, input/output and interface organization, as well as to the integration with

existing and developing research and commercial design systems, which address other important

system design issues suchas testing, simulation and lowerlevelimplementation.

196

7.3.5 Algorithm Design for Efficient Implementation

Transformations are an efficient and powerful tool for the enhancement and exploration of

parallelism. It has been shown in Chapter 5 that they can have dramatic influence on the quality

of implementation. However, their effect is obviously constrained by the algorithm's CDFG

structure. For example, it is easy to construct examples where no transformation is applicable at

all. Whenseveral algorithms are available for the sametask,using the ideasoutlined in the pre

vious section we can select one which is most amenable for ASIC implementation. This situa

tion is common when the algorithm is widely used, and a substantial effort has been done in the

algorithm design community to provide anefficient algorithm for a particular task. For example,

there exists a wide variety of fast transform algorithms (e.g., for Fourier and Discrete Cosine

Transforms) [Bla85], sorting [Knu73], and in general for statistics [Thi85], numerical analysis

algorithms [Dah74], linearsystem of equation solution [Gol90], integer programming [Nem88],

linear programming [Chv83], and so on).

While the automated designing of general algorithms which canbeefficiently transformed

so that the final implementation requires few fully utilized hardware instances most likely will

not be feasible in the near ftiture, there are several ways to do efficient algorithm design for

restricted domains. It appears thatwide classes of applications use algorithms witha substantial

freedom in algorithm design which is well suited for the exploration ofparallelism.

Figure 3 and Figure 4 illustrate this point. Iterative methods have been used extensively to

solve systems of equations. They have the structure

('+l) =/((*)), * = 0,1, ...

where each x(t) is an n-dimensional vector, andf(.) is some function which has as a domain and

a rangesome subsetof /i-dimensional space. If the sequence [x(t)} generated by the above itera

tion converges to a limitpoint x> and if thefunction^.) is continuous, thenx is a fixed pointof

000 ©J©

xl = fl(xl,x5)

x2 = f2(xl,x2)

x3 = f3 (x2, x3)

x4 = f4 (x3, x4)

x5 = f5 (x4, x5)

FIGURE 7.3 Parallelism of Gauss-Seidel iterations: The initial updatingorder

197

/, which satisfies the relationship x -f(x). For example, iterative methods are often used for the

solution of sparse systemsof equations, or for the maximization and minimizationof a function,

by search for zeroes of the derivatives.

When all the components of x are updated simultaneously, iterations are often called

Jacoby or Gauss-Jacoby types. An alternative approach is to update one equation at a time.

Then, the previous equation canbe expressed in the form:

,-(+!) =fi(xi(t+l),...,xi_l(t+l),xi(t),...txn(t)), i= l,...,/i

198

This type of iteration is often called the Gauss-Seidel iteration type. Since the Gauss-

Seidel algorithm incorporates the most recent information at each step [Ort90], it often con

verges faster than Gauss-Jacoby iterations. It is easy to recognize that Gauss-Seidel algorithms

are not well suited for pipelining, and are very amenable to the fast implementation of recursive

program transformation. The usefulness of this transformation can be substantiated using the fol

lowing observation.

x5 = f5(x4,x5)

x4 = f4 (x3, x4)

x3 = f3 (x2, x3)

x2 = f2(xl,x2)

xl=fl(xl,x5)

FIGURE 7.4 Parallelism of Gauss-Seidel iterations: The increase in parallelism and the reduction
of the critical path due to the change in the updating order

In theGauss-Seidel iterative algorithm, order of updating is not fixed. Instead of starting

from Xj and proceeding forward, we can permute the updating of indices. Of course, in this case

199

we have different algorithms. Nevertheless, formany systems of equations, a Gauss-Seidel algo

rithmconverges in the limit of alarge numberof iterations to the same fixed point Then, by ana

lyzing the speed of convergence and the amount of parallelism we can construct the algorithm

which is the best suited for VLSI implementation. For example, it is easy to see that the algo

rithmin Figure 4 hasa significantly shorter critical path thanthe algorithm in Figure 3. For many

instances the algorithmin Figure 4 will be superior. Of course, for the final conclusion it is nec

essary to develop tools to analyze the speed of convergence, and the parallelism of the algo

rithm. For the second task, it appears that extension of HYPER estimation tools is a good

starting point. Finally, the strong potential for an additional performance improvement is in

applicationof transformations during algorithmdesign.

Several other aspects in the Gauss-Seidel algorithm can be optimized also. For example,

an additional point for optimization during algorithm design for iterative methods is to consider

the effect of simultaneously updating morethanone componentofx.

In many numerically intensive computation areas similar algorithm design selection tech

nique, where both the amount of computation and the parallelism are important criteria, canbe

used. They include algorithms for solution of ordinary differential equations (such as Runge-

Kutta adaptive size step methods, the Bulirsh-Stoer method, or Predictor-Corrector Method),

partial differential equation solvers and various minimization and maximization algorithms. One

especially interesting class is the probabilistic optimization methods.

While this section had an accent on the algorithm design issues, which are not correlated

and achievable using transformations, another promising direction, which also can lead to an

automatic algorithm design, is further exploration of transformations. It canbe shownthatmany

algorithms in the signal processing area (such as DFT and FFT) can be derived using sophisti

cated application of algebraic transformations (associativity, distributivity and commutativity)

and common subexpression elimination. Although this type of algorithm design is currently

200

done exclusively by leading researchers, it is plausible to expect that by combining efficient

search techniques with powerful computers, the algorithm design of this type can be achieved

automatically or with limited human interaction.

7.4 CONCLUSION

This thesis presented a new high level synthesis system, HYPER. HYPER uses a single,

global quality measure, called the resource utilization measure, to drive the design space explo

ration process. This unique approacheffectively merges the allocation, assignment, scheduling,

transformations, and estimation with hierarchy handling in an unified manner.

New allocation, scheduling and assignment algorithms for hierarchical control data flow

graphs based on a probabilistic rejectionless anti-votertechnique were presented. A new trans

formation environment has been developed. Several new transformations (including retiming

and associativity, software pipelining and software retiming, commutativity, and maximally fast

implementation of recursive programs), based on a novel learning while searching technique,

were introduced.

The effectiveness of the proposed algorithms is demonstrated in multiple ways: using

standard benchmarks examples, with the aid of statistical analysis and through a comparison

with estimated minimalbounds. Sharp minimal bounds based on a discrete relaxation technique

are also used.

REFERENCES

[Aar87] E.H.L. Aarts, P.J.M. vanLaarhoven: "Simulated Annealing: Theory and Applications", D. Reidel Pub
lishing Company, Dordrecht, Holland, 1987.

[Aar89] EJLL. Aarts, J. Korst: "Simulated Annealing and Boltzmann Machines, A Stochastic Approach to
Combinatorial Optimization and Neural Computing", John Wiley & Sons Publishing, 1989.

[Ack87] D.H. Ackley: "A connectionist machine for the genetic hillclimbing", 1987.

[Ack85] D.H. Ackley, G.E. Hinton, T.J. Sejnowski: "A learning algorithm for Boltzmann machines", Cognitive
Science, Vol. 9, pp. 147-169,1985.

[Bag87] N. Bagherzadeh, T. Kerala, B. Leddy, R. Brice: "On parallel execution of the traveling salesman prob
lemonaneural network model", Proc. Int. Conf. on Neural Networks, pp. 317-324,1987.

[Bak90] H.B. Bakoglu: "Circuits, interconnections, and packaging for VLSI", Reading, Mass.: Addison-Wesley
Pub. Co., 1990

[Bal89] M. Balakrishnan, P. Marwedel: "Integrated Scheduling and Binding: A Synthesis Approach for Design
Space Exploration", Proc. 26th Design Automation Conference, pp. 68-74., 1989.

[Ban79] U. Banerjee etal., 'Timeand Parallel Processor Bounds for Fortran-like Loops", IEEE Trans, on Com
puters, Vol. 28, No 12, pp 660-670,1979.

[Ban88] U.Banerjee: "Dependence analysis for supercomputing", Kluwer, Boston, 1988.

[Bar88] E.R. Barnes, A. Vannelli, J.Q. Walker: A new heuristic for partitioning the nodes of a graph, SIAM
Journal ofDiscrete Mathematics, Vol. 1,No. 3, pp. 299-305,1988.

[Bar73] M.R. Barbacci: Automated Exploration of the Design Space for Register Transfer (RT) Systems",
PhD. Thesis, Carnegie Mellon University, 1973.

201

202

[Bla85] R. E. Blahut, "Fast Algorithms for Digital Signal Processing", Addison-Wesley Publishing Company,
1985.

[Bla83] J. Blazewicz, J.K.Lenstra, A.H.G. Rinnooy Kan: "Scheduling subject to resource constraints: Classifi
cation and Complexity", Disc. Applied Math., Vol. 5.,No. 1,pp. 11-24., 1983. pp.650-667,1984.

[Bol85] B. Bollobas: "Random graphs", London; Orlando: AcademicPress, 1985.

[Bra84] R.K. Brayton et al.: "Logic minimization algorithms for VLSI synthesis", Boston: Kluwer Academic
Publishers, 1984.

[Bre74] R.P. Brent: "The Parallel Evaluation of General Arithmetic Expressions", Journal of the ACM, Vol. 21,
No. 2, pp. 201-206,1974.

[Bre84] L. Breiman, J. Friedman, R. Olshen, C. Stone: "Classification and regression tress", Wadsworth Inter
nationalGroup, 1984.

[Bre90] F. Brewer, D.D. Gajski: "Chippe: A System for Constraint driven Behavioral Synthesis", IEEE Trans,
on CAD, pp. 681-695,Vol. 9, No. 7,1990.

[Bro91] R.W. Brodersen, A. Chandrakasan, S. Sheng: "Technologies forPersonal Communications", VLSI Cir
cuits Symposium, pp. 5-9, Japan, 1991.

[Bru87] J. Brack, J.W. Goodman: "A Generalized convergence theorem for neural networknetworks and its
application to combinatorial optimization", Proc. Int. Conf. onNeural Networks, pp.649-656,1987.

[Buc83] Y.I. Bucher, T. Jordan: "Polynomial conjugate gradient experiment onCray X-MP withSSD asauser
device", Los Alamos report No. B265/7-7028,1983.

[Cam91] R. Camposano, R.A.Walker: "A Survey of high-level synthesis systems", Boston: Kluwer Academic,
Norwell, Mass., 1991.

[Cat88] F. Catthoor, H. DeMan, J. Vanderwalle: "SAMURAI: a general and efficient simulated-annealing
schedule with fullyadaptive annealing parameters", Integration, Vol. 6, pp. 147-178,1988.

[Cha68] H.R. Charney, D.L. Plato: "Efficient partitioning ofcomponents", Proc. ofthe 5th Annual Design Auto
mationWorkshop, pp. 16.0-16.21,1968.

[Cha91a] A. Chandrakasan, M. Potkonjak, R.W. Brodersen, J. Rabaey: "Optimizing Power Using Transforma
tions", Paper in preparation, 1991.

[Cha91b] A. Chandrakasan: Personal Communications, September 1991.

[Chu89] C. Chu, M. Potkonjak, M. Thaler, J. Rabaey: "HYPER: An Interactive Synthesis Environment for
High Performance Real Time Applications", Proc. IEEE ICCD Conf., pp. 432-435, Cambridge, MA,
October 1989.

[Chu91] C.Chu, "Hardware Mapping and Module Selection in the HYPER Synthesis System", PhD Thesis,
UniversityofCalifornia, Berkeley, August 1991.

[Chv83] V. Chvatal: "Linear programming", New York: WH. Freeman, 1983.

[Cob64] A. Cobham, "The intrinsic computational difficulty of functions", Proc. 1964 International Congress
forLogic Methodology and Philosophy ofScience, Y. Bar-Hillel, ed., North-Holland, Amsterdam, pp.
24-30,1964.

[Coo71] S.A.Cook: "The complexity of theorem proving procedures", Proc. Third ACM Symposium on Theory
ofComputing, pp. 24-30,1971.

[Cor90] T.H.Cormen, C.E.Leiserson and R.L.Rivest, "Introduction toalgorithms", MIT Press, Cambridge, MA;
McGraw-Hill, New York, 1990.

[Cul75] J. Cullum, WE. Donath, P. Wolfe: "The minimization of certain nondifferentiable sums of eigenvalues
of symmetric matrices", Mathematical Programming Study, Vol. 3, pp. 35-55,1975.

[Dah74] Dahlquist, Germund and Bjorck, Ake. "Numerical Methods", Englewood Cliffs, NJ: Prentice-Hall,
1974.

203

[Dah87] E.D. Dahl: "Neuralnetwork algorithm for an NP-complete problem: map and graphcoloring",Proc.
Int. Conf. on Neural Networks, pp. 113-120,1987.

[Dav83] M.Davio, J.-P.Deschamps and A.Thayse, "Digital Systems with Algorithm Implementation", John
Whiley & Sons, 1983.

[Dev89] S. Devadas,A.R. Newton: "Algorithms for Hardware Allocation in DataPathSynthesis", IEEE Trans
action on CAD, Vol 8, No 7, pp. 768-781,1989.

[Don91] JJ. Dongarra et al.: Solving linear systems on vector and shared memory computers" Philadelphia:
Society for Industrial and Applied Mathematics, 1991.

[Don88] W.E. Donath: "Logic Partitioning", in Preas, B., Lorenzetti, M.: "Physical Design Automation ofVLSI
Systems", pp. 65-86,1988.

[Dye89] M.E. Dyer, A.M. Frieze""The solutionof Some Random NP-Hard Problems in Polynomial Expected
TimeT,Journal ofAlgorithms, Vol. 10, pp. 451-489,1989.

[Edm65] J. Edmonds:"Paths, trees and flowers", Canad.J. Math., 17, pp. 449-467,1965.

[Efr82] B. Efron:"The jackknife, the bootstrap, andotherresamplingplans",SIAM, 1982.

[Fel85] J.A. Feldman, DJL Ballard: "Cormectionist Models and Their Properties", Cognitive Science, Vol. 6,
pp.205-254,1985.

[Fet90] A. Fetweis, H. Meyr, L. Thiele: "Algorithm Transformations for Unlimited Parallelism",IEEEInterna
tional Symposium on Circuits and Systems, pp. 1756-1759,New Orleans, 1990.

[Fid88] CM. Fiducia, R.M Mattheyses: "A linear time Heuristic for Improving Network Partitions", 19th
Design AutomationConference, pp. 175-181,1982.

[Gaj87] D. D. Gajski,ed.:"Silicon Compilation", Addison-Wesley, December1987.

[Gar79] M.R. Garey, D.S. Johnson, "Computers and Intractability: A Guide to the Theory of NP-Complete-
ness", W.H.Freeman andcompany,New York, 1979.

[Gol80] M.C.Golumbic, "Algorithmic Graph Theory and Perfect Graphs", Academic Press, 1980.

[Gon77] MJ. Gonzalez, Jr. "Deterministic Processor Scheduling", Computing Surveys, Vol. 9, No. 3, pp. 173-
204, September, 1977.

[G0086] G. Goossens, R. Jain, J. Vandewalle, H. DeMan, "An optimal and flexible delay management tech
nique for VLSI" in: CI. Byrnes, A. Lindquist, "Computation and Combinational methods in system
theory", pp. 409-418, North Holland, 1986.

[Goo87] G. Goossens, J. Rabaey, J. Vandewalle, H. De Man: "An efficient microcode-compiler for custom
DSP-processors", IEEE CAD,SantaClara, pp. 24-27,1987.

[Goo89] G. Goossens, J.Wandewalle, H. DeMan, "Loopoptimization in register-transfer scheduling for DSP-
systems", 26thDesignAutomation Conference, pp. 826-831, Las Vegas,NV, 1989.

[Got86] S. Goto, T. Matsuda: Partitioning, Assignment and Placement, inOhtsuki, T: LayoutDesign andVerifi
cation, pp. 55-97,1986.

[Gre86] J.K. Greene, KJ. Supowit: "Simulated Annealing Without Rejected Moves", IEEE Trans, on CAD,
Vol. 5., No. 1, pp. 221-228,1986.

[Gri75] G.R. Grimmet, C.J.H. McDiarmid: "On colouring random graphs", Math. Proc. Cambridge Phlos. Soc,
Vol. 77, pp. 313-324,1975.

[Gul87] S. Gulati, S.S. Iyengar, N. Toomaraian, V. Protopopescu, J. Bahren: "Nonlinear neural networks for
deterministic scheduling", Proc.Int. Conf. onNeural Networks 4, San Diego, pp. 742-752,1987.

[Gyr84] E. Gyrczyc: "Automatic Generation of Microsequenced Data Paths to Realize ADA Circuit Descrip
tion", PhD Thesis, CarletonUniversity, 1984.

204

[Han76] M. Hanan, O.K. Wolff, B. Agule: Some experimental Resultson Placement Techniques", 12thDesign
AutomationConference,pp 214-224,1976.

[Han88] D.L.Hanson, "Interconnection Analysis", in "Physical Design Automation of Electronic Systems",
edited by B.T.Preasand M.J.Lorenzetti, pp. 31-64,1988.

[Har86] D. Harrison at al.: "Data Management and Graphics Editing in the Berkeley Design Environment",
Proc. Int.Conf.ComputerAided Design,pp. 24-27,1986.

[Har89] B.S. Haroun, M.I. Elmasry: "Architectural Synthesis for DSP Silicon Compilers",IEEE Transaction
on CAD, Vol. 8, No. 4., pp. 431-447,1989.

[Har89] R. Hartley, A. Casavant: "Tree-height Minimization in Pipelined Architectures", IEEE CAD, pp.112-
115,1989.

[Hei84] P. Hiedelberger andS. Lavenberg, "Computer Performance Evaluation Methodology", IEEE Transac
tionson Computers, Vol. 33, No. 12,pp. 1195-1220,1984.

[Hen89] J.L. Henessy, D.A. Patterson: "Computer architecture: a quantitative approach", San Mateo, Calif.:
Morgan Kaufman Publishers, 1989.

[Hil85] P. Hilfinger: "A High-level Language and Silicon Compiler forDigital Signal Processing", Proc. Cus
tomIntegrated Circuits Conf., IEEEComputer Society Press, Los Alamitos,CA, pp. 213-216, 1985.

[Hin87] G.E. Hinton: "Connectionist Learning Procedures", Carnegie-Mellon University, Technical Report
CMU-CS-87-115,1987.

[Hoa92] P. Hoang: "A Compiler for Multiprocessor DSP Implementation", PhD Thesis inpreparation. Univer
sity of California, Berkeley, 1992.

[Hoc87] D.S. Hochbaum and D.B.Shmoys, "Using Dual Approximation Algorithms for Scheduling Problems:
Theoretical & Practical Research "JournalofACM, Vol.34, No 1,pp. 144-162,1987.

[Hol75] J.H. Holland: "Adaptation in Natural and Artificial Systems", University of Michigan Press, Ann
Arbor, 1975.

[Hop82] JJ. Hopfield: "Neural Networks and Physical Systems with emergent collective computational abili
ties", Proceedings ofthe National Academy ofScience, USA,Vol. 79,1982,pp. 3088-3092.

[Hwa91] C-T. Hwang, J. -H. Lee, Y.-C Hsu:"A Formal Approach tothe scheduling problem inhigh level syn
thesis", IEEE Trans, onCAD, Vol. 10,No.4, pp.464-475,1991.

[Hya73] L. Hyafil, R.L. Rivest.: "Graph partitioning and constructing optimal decision trees are polynomial
complete problems",ReportNo.33, IRIA-Laboria, Rocqquencourt, France, 1973.

[Iba88] T. Ibaraki, N. Katoh: "Resource Allocation Problems", TheMIT Press, Cambridge, MA, 1988.

[Jai88] R. Jain et al, "Module Selection for Pipelined Synthesis", Proc. Design Automation Conference, Ana
heim, pp. 542-547,1988.

[Jai89] R. Jain, "High-Level Area-Delay Prediction with Application to Behavioral Synthesis", Technical
Report89-23,University of SouthernCalifornia, 1989.

[Jai91] R. Jain, "The Artof Computer Systems Performance Analysis: Techniques for experimental design,
measurement, simulation,andmodeling", Wiley, 1991.

[Joh83] D.S. Johnson: "TheNP-Completeness Column: AnOngoing Guide",Journal ofAlgorithms, Vol. 4,No.
l.pp. 189-203,1983.

[Joh8x] D.S. Johnson: "TheNP-completeness column: an ongoing guide", Journal ofAlgorithms, 1981-1989.

[Joh88] D.S. Johnson, CH. Papadimitrou, M. Yannakakis: "How Easy isLocal Search?", Journal ofComputer
andSystem Sciences, Vol. 37, No. 4, pp.79-100,1988.

[Joh89] D.S.Johnson, CR. Aragon, L.A. McGeoch, C Schevon: "Optimization by simulated annealing: An
Experimental Evaluation: Part I, Graph Partitioning", Operations Research, Vol. 38, No. 6, pp. 865-
892,1989.

205

[Joh91] D.S. Johnson, CR. Aragon, L.A. McGeoch, C Schevon: "Optimization by simulated annealing: An
Experimental Evaluation: Part U, Graph Coloring and Number Partitioning", Operations Research,
Vol. 39, No. 3, pp. 378-406,1991.

[Jou89] N. Jouppi and D. Wall, "Available Instruction-Level Parallelism for Super-Scalar and Super-Pipelined
Machines", Proc. 3d International Conf. on Architectural Support for Programming Languages and
Operating Systems, Boston, pp.272-282, May 1989.

[Kar72] R.M. Karp: "Reducibility among combinatorial problems", in Miller,R.E.: "Complexity of Computer
Computations", PlenumPress, 1972, pp. 85-103.

[Kar88] KM. Karp: "Lecture Notes for 292f\ University of California, Berkeley, Spring 1988.

[Ker70] B.W. Kernighan, S. Lin: "An efficient heuristic procedure for partitioning graphs", The Bell System
Technical Journal, Vol. 49, pp. 291-307,1970.

[Kir83] S. Kirkpatrick, CD. Gellat, Jr., M.P. Vecchi: "Optimization by simulated annealing", Science, Vol. 220,
No. 4598, pp. 671-680,1983.

[Knu73] D.E. Knuth: "Sorting and Searching" vol. 3 of"TheArtof Computer Programming", Reading, Mass:
Addison-Wesley, 1973.

[Kod72] U.R. Kodres: Partitioning and Card Selection, Breuer, M.A.: Design Automation of Digital Systems,
pp. 173-212,1972.

[Kog81] P.M. Kogge: "The architecture of pipelined computers" Washington: Hemisphere Pub. Corp.; New
York: McGraw-Hill, 1981.

[Kos91] B. Kosko: "Neural networks and fuzzy systems: a dynamical systems approach to machine intelli
gence", Englewood Cliffs, NJ: Prentice Hall, 1991.

[Kuc72] D. Kuck, Y. Muraoka, S.Chen, "On the Number of Operations Simultaneously Executable inFortran-
likePrograms and their Resulting Speed-up", IEEE Trans. On Computers, Vol. 21, No 12, pp. 1293-
1310,1972.

[Kuc90] K.Kucukcakar and A.CParker, "BAD: Behavioral Area-Delay Predictor", Tech Report 90-31, Univer
sity of Southern California, 1990.

[Kuc91] K.Kucukcakar and A.CParker, "CHOP: A Constraint-Driven System-Level Partitioner", 28th ACM/
IEEEDAC, San Francisco, pp. 514-519,1991.

[Kur87] F.J. Kurdahi: "Area Estimation ofVLSICircuits", PhD thesis. University of Southern California, 1987.

[Kur89] F. Kurdahi and A. Parker, 'Technique for Area Estimation of VLSI Layouts", IEEE Trans. On CAD,
Vol. 9, No 9, pp. 938-950,1990.

[L*E881 P. L'Ecuyer: "Efficient and Portable Random Generators", Communication ofthe ACM, Vol. 31, No. 6
pp. 742-751,1988.

[Lam88] M.S. Lam: "Software Pipelining: An Effective Scheduling Technique for VLIW Machines", ACM
SIGPLAN, 1988.

[Lam89] M.S. Lam: "A systolic array optimizing compiler", Boston: Kluwer Academic; Norwell, Mass., 1989.

[Law69] E. Lawler, K.N. Levitt, J. Turner: Module clustering to minimize delay in digital networks", IEEE
Trans, onComputers, Vol. 18,No. 1,pp.47-57,1969.

[Law76] E.Lawler: "Combinatorial Optimization: networks and matroids", Holt, Rinehart and Winston, 1976.

[Law85] E.Lawler "TheTraveling salesman problem: aguided tour of combinatorial optimization", Chiches
ter [WestSussex]; New York:Wiley, 1985.

[Law90] E. Lawler, J. Lenstra, A. Rinnooy Kan, D. Shmoys: "Sequencing and Scheduling: Algorithms and
Complexity" in S. Graves, A. Rinnooy Kan, P. Zipkin (editors): Handbooks inOperational Research
and Management Science, Vol. 4: Logistics of Production and Inventory. North-Holland Publishing
Co., New York, 1990.

206

[Lei83] CE. Leiserson, F.M. Rose, J.B. Saxe, "Optimizing synchronous circuits by retiming",Proceedings of
theThird Conference on VLSI, pp. 23-36, Computer Science Press, 1983.

[Lig85] T.M. Liggett: "Interacting particle systems", New York:Springer-Verlag, 1985.

[Lin91] H.-P. Lin, D.G. Messerschmitt: "Finite State Machine has Unlimited Concurrency", IEEE Trans, on
Circuitsand Systems, Vol.38, No. 5, pp. 465-475,1991.

[Luc69] F. Luccio, M. Sami: On the Decomposition of Networks to Minimize Delay in Digital Networks, IEEE
Trans, on Circuits Theory, Vol. 16,No. 2, pp. 141-148,1969.

[Mal90] S. Malik, E. Sentovich, R.K. Brayton, A. Sangiovanni-Vincentelli, "Retiming and Resynthesis: "Opti
mizing Sequential Networks with Combinational Techniques", Proceedings of the Twenty-Third
AnnualHawaii International Conference on SystemScience, vol I, pp. 397-406,1990.

[Mal91] S. Malik, E.M. Sentovich, R.K. Brayton, A. Sangiovanni- Vincentelli: "Retiming and Resynthesis:
Optimizing Sequential Networks with Combinational Technique", IEEETrans, on CAD, Vol. 10, No.
1, pp. 74-84,1991.

[Mat91] V.J.Mathews: "Adaptive Polynomial Filters", IEEESignalProcessingMagazine, Vol. 8. No. 3, pp. 10-
26, July 1991.

[McF86] M.C. McFarland: "Using Bottom-Up Design Technique in the Synthesis of Digital Hardware from
AbstractDescription", 23rdDesignAutomation Conference, Las Vegas, NV,pp. 474-480,1986.

[McF87] M.C McFarland: "Reevaluating Design Space for Register-Transfer Hardware Synthesis", IEEE
ICCAD,pp. 262-265,1987.

[McF90a] M.C. McFarland, A.C Parker, R. Camposano: "The High-Level Synthesisof Digital Systems",Pro
ceedingsoftheIEEE, Vol. 78, No. 2, pp. 301-317,February 1990.

[McF90b] M.C.McFarland, T.J. Kowalski: "Incorporating Bottom-Up Design intoHardware Synthesis", IEEE
Trans, on CAD,pp. 938-950, Vol.9. No. 9,1990.

[Men74] A.Mennone, R.L. Russo: Anexample computer logic graph anditspartitioning andmappings", IEEE
Trans, on Computers, Vol. 23, No. 12,1974.

[Mes88]D. Messerschmitt, "Breaking The Recursive Bottleneck", in Performance Limits in Communication
Theory and Practice, Kluwer Academic Publishers, 1988.

[Mil87] G.L. Miller, S. Teng: "Dynamic parallel complexity of computational circuits", Proc. 19th Ann. ACM
Symp. onTheory of Computing, pp. 254-263,1987.

[Mil88] G.L.Miller, V. Ramachandran, E. Kaltofen: "Efficient Parallel Evaluation of Straight-Line Code and
Arithmetic Circuits,"SIAM Journal onComputing, Vol. 17,No4, pp. 687-695,1988.

[Mjo89] E. Mjolsness, D. Sharp, B. Alpert: "Scaling, Machine Learning and Genetic Neural Networks",
Advances in Applied Mathematics, Vol 10, No. 2,1989.

[Mli91] MJ.Mlinar, "Control Path/Data Path Trade-offs in VLSI Design", Technical Report 91-16, University
of Southern California, 1991.

[Mou74] J. Moussouris: "GibbsandMarkov random systems with constraints", Journal of Statistical Physics,
Vol 10, pp. 11-33,1974.

[Nem88] G.L.Nemhauser, L.A.Wolsey: Integer andcombinatorial optimization, NewYork: Wiley, 1988.

[Nic84] A.Nicolau andJ. Fischer, "Measuring theParallelism Available for Very LongInstruction Word Archi
tecture",IEEE Trans. OnComputers, Vol. 33, No. 11,pp. 968-976,1984.

[Nic91] A.Nicolau, R.Potasman: "Incremental Tree Height Reduction forHigh Level Synthesis", 28th ACMI
IEEE DesignAutomation Conference, pp.770-774,1991.

[Ort90] J.M. Ortega: "Numerical analysis: a second course", Philadelphia: Society for Industrial and Applied
Mathematics, 1990.

207

[Pap82] C Papadimitriou and K. Steiglitz,"Combinatorial Optimization: Algorithms and Complexity", Pren
tice Hall, 1982.

[Par86] A.C. Parker, M. Mlinar, J. Pizarro: "MAHA: A program for data path synthesis", Proc. 22nd Design
AutomationConference, pp. 461-466,1986.

[Par88a] K. Parhi, "Algorithm andarchitecture design forhigh speeddigital signal processing", PhD Disserta-
tion, University of California, 1988.

[Par88b] N. Park, A.C Parker: "Sehwa: A Software Package for Synthesis of Pipelines from Behavioral Speci
fications", IEEE Trans, onCAD,Vol 7, No. 3, pp. 356-370,1988.

IPar88c] N. Park, A.C. Parker: 'Theory of Clocking for Maximum Execution Overlap of High-speed Digital
Systems", IEEE Trans, on Computers, Vol. 37, No. 6, pp.678-690,1988.

[Par88d] S.K. Park, K.W. Miller: "Random Number Generators: Good Ones are Hard to Find", Communica
tions of theACM, Vol. 31, No. 10, pp. 1191-1201,1988.

[Par89a] K.K. Parhi, D.G. Messerschmitt: "Pipelineinterleaving and parallelism in recursivedigital filters - I:
Pipelining using scattered look-ahead anddecomposition", IEEE T-ASSP, pp. 1099-1117, July 1989.

[Par89b] K.K. Parhi, D.G. Messerschmitt: "Pipeline interleaving andparallelism in recursivedigital filters - II:
Pipelined incremental block filtering", IEEE T-ASSP, pp. 1118-1134, July 1989.

[Pat89] D.A. Patterson, J.L. Henessy: "Computer architecture: a quantitative approach", San Mateo, Calif. :
Morgan Kaufman Publishers, 1989.

[Pau89] P.G. Paulin, J.R Knight: "Force -Directed Scheduling for the Behavioral Synthesis of ASIC", IEEE
Transaction on CAD,Vol 8. No 6, pp.661-679,1989.

[Ped89] M. Pedram and B. Preas, "Accurate Prediction of Physical Design Characteristic for Random Logic",
1989IEEEICCD Conf, Boston, pp. 100-108,1989.

[Pet87] C Peterson, J.R. Anderson: "A Mean Field Learning Algorithm for Neural Networks", Complex Sys
tems, Vol. 1, No. 5, pp. 995-1019,1987.

[Pet88] C Peterson, J. R. Anderson: "Neural Networks and NP-complete Optimization Problems, A Perfor
mance Study on the Graph BisectionProblem", Complex Systems, Vol. 2, No. 1,1988.

[Pet89] A.D. Petford, D.J.A.Welsh: "A Randomised 3-colouring Algorithm", Discrete Mathematics, Vol 74,
pp. 253-261,1989.

[Pot89a] M. Potkonjak, J. Rabaey, "A Scheduling and Resource Allocation Algorithm for Hierarchical Signal
Row Graphs", 26thACM/IEEE Design Automation Conference, June 1989.

[Pot89b] M. Potkonjak: "Partitioning of VLSI circuits", EECS 290h, Class Project, Spring 1989.

[Pot89c] M. Potkonjak: "Neural Networks", Physics 250, Class Project, Spring 1989.

[Pot90] M. Potkonjak and J. Rabaey, "Retiming for Scheduling", VLSI Signal Processing Workshop, pp. 23-32,
San Diego, Nov. 1990.

[Pot91a] M. Potkonjak and J. Rabaey, "Optimizing the Resource Utilization Using Transformations", Proc.
IEEEICCAD Conference, Santa Clara, November 1991.

[Pot91b] M. Potkonjak and J. Rabaey, "Algorithms for Hierarchical Data Control Flow Graphs", to be pub
lished in the Special Issue on "Fundamental Methods in CAD" of the InternationalJournal on Circuit
Theory and Applications, 1991.

[Pow90] S.R. Powell, P.M. Chau: "Estimating Power Dissipation of VLSI Signal Processing Chips: The PFA
Technique", in "VLSI Signal Processing IV" editedby H.S. Moscovitz, K. Yao, R. Jain, IEEE Press,
pp. 250-259,1990.

[Pre88] W.H. Press, B.P Flannery, S.A. Teukolsky, W. T. Vetterling: "Numerical Recipes inC,The Artof Scien
tificComputing", Cambridge University Press, Cambridge, 1988.

208

[Rab90] J. Rabaey, andM. Potkonjak, "Resource Driven Synthesis in the HYPER system," ISCAS-90, vol. 4,
pp. 2592-2595, New Orleans, LA, May 1990.

[Rab91a] J. Rabaey,C. Chu, P. Hoang, M. Potkonjak: "FastPrototyping of DataPath Intensive Architecture",
IEEEDesign and Test,Vol. 8, No. 2, pp. 40-51,1991.

[Rab91b] J. Rabaey: Personal Communications, July 1991.

[Ram88] V. Ramachandran: "Fast parallel algorithms for reducible flow graphs", in S.K. Tewksbury, B.W.
Dickinson and S.C Schwartz, eds: Concurrent Computations: Algorithms, Architecture, and Technol
ogy, Plenum, New York, pp. 117-138,1988.

[Res86] M.L Resnick: SPARTA: A System Partitioning Aid, IEEE Trans, on CAD,Vol. CAD-5, No. 4, pp. 490-
498.1986.

[Rum86] D. E. Rumelhart, J.L. McClelland: "Parallel Distributed Processing", The MIT Press, Cambridge,
1986.

[Rus71] R.L. Russo, P.HOden, P.K.Wolff, Sr.: A Heuristic procedure for the partitioning and mapping of com
puter logic graphs,IEEETrans, on Computers, Vol 20., No. 12,1455-1462,1971.

[San87] A. Sangiovanni-Vincentelli: Automatic Layout of Integrated Circuits, in G. De Micheli, A. Sangio-
varaii-Vincentelli, P. Anthognetti: Design Systems for VLSI Circuits, pp. 113-197,1987.

[Sas85] S.Sastry and A.C Parker, "Stochastic Models for Wirability Analysis of Gate Arrays", IEEETransac
tions on CAD, Vol.5, No 1, pp. 52-65,1985.

[Shi89] H. Shin, N.S. Woo: "A cost based optimization technique for scheduling in data path synthesis", IEEE
Conferenceon Computer Design, pp. 424-427, Cambridge, MA, October 1989.

[Shu91] C Shung et al.,"An Integrated CAD System for Algorithmic Specific IC Design", IEEE Journal on
ComputerAided Design, Vol. 10, No 4, pp 447-463, April 1991.

[Smi89] M. Smith, M. Johnson and M. Horowitz, "Limits on Multiple Instruction Issues", Proc. 3d Interna
tional Conf. on Architectural Support for Programming Languages and Operating Systems, Boston,
pp.290-302, May 1989.

[Sim81] B. Simons, "On Scheduling with Release Times and Deadlines", in Deterministic and Stochastic
Scheduling,M. Demsteret all, editors, D. Reidel,Dordrecht, pp. 75-88,1981.

[Spr90] D.L. Springer, D.E.Thomas: "Exploiting theSpecial Structure of Conflict andComparability Graphs in
High-Level Synthesis", IEEE ICCAD Conf, pp. 254-257,1990.

[Sto89] L. Stock, R. van der Born: "EASY: Multiprocessor Architecture Optimisation", in G. Saucier, P.M.
McLellan: Proc. of Int. Workshop on Logic and Architecture Synthesis for Silicon Compilers, May
88", North Holland, pp. 313-328,1989.

[Sto90] T. Stoelzle et all, "A FlexibleVLSI 60,000Word RealTime Continuous Speech RecognitionSystem",
Proc.IEEE Workshop on VLSI Signal Processing, pp. 247-284, November 1990.

[Tag87] G.E. Tagliarini, E.E. Page: "Solving constrain satisfaction problems with neural networks", Proc. Int.
Conf. onNeural Networks, pp. 741-748,1987.

[Thi88] R.A. Thisted: "Elementsof statistical computing", Chapman, 1988.

[Tri87] H. Trickey: "Flamel: A high-Level Hardware Compiler", IEEE Trans, on CAD, Vol. 6, No. 2, pp. 259-
269.1987.

[Tse86] C Tseng,D.P. Siewiorek: "Automated synthesisof data paths in digital systems", IEEE Trans, on CAD,
vol 5., No 3., pp. 379-395,1986.

[Tur88] J.S. Turner: "Almost All k-Colorable Graphs Are Easy to Color",Journal of Algorithms, Vol. 9, No. 1,
pp.63-82,1988.

[Val83] L.G. Valiant, S. Skyum, S. Berkowitz, C RackoflF: "Fast Parallel Computation of Polynomials Using
Few Processes",SIAM Journalon Computing, Vol. 12,No 4, pp. 641-644, 1983.

209

[UU84] J. Ullman, "Computational Aspects of VLSI", Computer Science Press, Rockville, Maryland, 1984.

[Van50] B.L. Van derWarden: "Modern Algebra", Frederick Ungar, New York, 1950.

[Vet86] M. Vetterli and A. Lichtenberg, "A Discrete Fourier-Cosine Transform Chip", IEEE Journal on
Selected Areas inCommunications, Vol. SAC-4,No. 1,pp. 49-61,Jan. 1986.

[Wai84] W.M. Waite, G.Goos: Compiler construction, NewYork: Springer-Verlag, 1984.

[Wal89] R.A. Walker, D.E. Thomas: "Behavioral Transformation for Algorithmic Level IC Design" IEEE
Trans, on CAD, Vol 8. No.10, pp. 1115-1127,1989.

[Wel84] DJ.A. Welsh, "Correlated percolation andrepulsive particle systems, in: P. Tautu, "Stochastic Spatial
Processes", Springer Lecture Notes 1212,pp. 300-311, 1984.

	ERL-92-10 (1 of 3)
	ERL-92-10 (2 of 3)
	ERL-92-10 (3 of 3)

