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Abstract

Applying concepts from recent developments in the theory of ‘rational’ learning
in games, we show that a slightly modified version of a standard learning automaton
behaves as a rational learner. This new automaton has strong convergence properties
that are easily analyzed, allowing us to compute explicit bounds for convergence rates.

Groups of such automata, interacting via a general game, are then studied. These
are shown to converge to the natural rational learning solutions. For example, syn-
chronous groups of automata do indeed display ‘group-rational’ learning behavior.
Thus, for a large class of important games, their behavior converges to the Nash equi-
librium.

Asynchronous automata do not satisfy standard concepts of rationality. However,
they do satisfy a new concept of group rationality which we describe, and for a certain
class of games they converge to the natural equilibrium.



1 Introduction

This paper is the result of a synthesis of game theoretic studies of ‘rational’ learning and
the the theory of decentralized control as exhibited by Learning Automata (LA). Our main
results are a modified version of a standard LA which exhibits the properties of a ‘ratio-
nal’ learner, and the application of several game theoretic properties of rational learning to
describe the outcome of a game played by a group of such rational learners.

The key property of a rational learner is that when playing in an eventually fixed en-
vironment she will eventually learn to play the best strategy. In much of the game theory
literature this implies that she will only play undominated strategies. (See [13] for a review
of this.) However, in certain instances we have noticed that this restriction is too strong
and in these cases we replace this with a weaker condition called set-undominated, which we
define.

Unfortunately, standard models of learning automata are not rational in this sense. For
example, all ‘absolutely expedient’ LAs [10, 15] have the property that they may discard
strategies. That is, after a certain time there is a finite probability that they will never play
that strategy again. Thus if the environment changes and the discarded strategy becomes
the best one, they will never notice or react to the change.

We remedy this deficiency by requiring that the probability of playing any specific strat-
egy never goes below a fixed constant. Thus with probability one that strategy will be played
infinitely often. This new learning automaton!turns out to be quite amenable to detailed
analysis. For example, we can easily compute the expected convergence time explicitly.
These ‘rational’ learning automata (RLAs) are also quite well-behaved; they converge to the
optimal strategy in a very strong sense.

Given these RLAs, we then apply a theory based on the work of Milgrom and Roberts
[12, 13] to describe the behavior of groups of RLAs playing a game?. Our results show
that if the RLAs play synchronously then they obey a generalized version of Milgrom and
Roberts’ ‘consistency with adaptive learning’ [13]. This implies that they will eventually
be playing in the serial undominated set, which for a large class of important games is the
Nash Equilibrium [13]. However, when play is asynchronous, this is no longer true. In this
case we show that they converge to the serial set-undominated set which is larger than the
serial-undominated set.

This result is interesting as it shows that ‘irrational’ (in the game theoretic sense) re-

1We have chosen a specific modification of a certain learning automata. However, we believe that most
learning automata can be modified in a similar way, with similar results.

ZNote that the description of multiple automata interacting as a game is very common in the learning
automata literature [15, 8, 9].



sults can occur when rational learners play asynchronously. It also has implications for
decentralized control, an important use of learning automata [2, 11], and thus highlights the
difference between synchronous and asynchronous control. This is important in the design
of decentralized systems. (See, for example [18].)

2 Set Limited Learning

In this section we describe the game theoretic model of interacting automata. The use of
game theory as a paradigm for interacting automata is quite common. Perhaps the earliest
example of this was in the work of Krylov and Tsetlin [7] where the two person zero-sum
game is studied. Later, Lakshmivarahan and Narendra [8, 9] show that when two specific
automata play a zero-sum game they will converge to the ‘value’ of the game, which is the
standard game-theoretic outcome. Another important game that has been studied is the
identical payoft game. This model is important for the decentralized optimization of a global
quantity. (For a review of the identical payoff game see [15][pp.309-330].)

Results for more general games have been sparse, partly due to the lack of game-theoretic
results. However, recent results in the study of learning for general games [12, 13, 3, 6] provide
a framework for our study of interacting learning automata.

Consider a game [4] with n players. Assume that player a has m, possible strategies
Za=1{1,2,...,mg},and let £ =5, x ---Z,. Let s be player a’s strategy at time ¢, st , be
the strategies of all the other players, and s* = (s, s*,). At time t, player a receives I',(s),
where ' : £ — R is the payoff function of the game.

We are interested in the eventual outcome of a game if players initially have no informa-
tion about the payoff function, and are allowed to vary their strategies over time. Assume
that one player is a learning automaton. Then the structure of her plays depend on what
the other players are doing.

If the other players are playing strategies chosen randomly from a fixed probability dis-
tribution then it is as if she is playing against a random payoff function. This problem has
been well studied [15]. Theorem 1 shows that our modified learning automata will almost
always play the strategy with the highest expected payoff in this case.

Now, if the other players are not random, and they are learning over time, it is not clear
what her asymptotic behavior should be. This asymptotic behavior, in fact will depend
crucially on the assumptions we make about the other players. In much of the literature in
economics [13, 3] it is assumed that players should either play a Nash equilibrium or, at the
very least, a rationalizable equilibria [1, 16]. However, our automata, which do seem to be
reasonable models of learning, do not necessarily converge to rationalizable equilibria. As



we will show they may even converge to a Stackelberg equilibrium, even though we can show
that they are reasonable, in a sense that we define below.

There are two important cases to consider. The first is that of non-predictive adversaries
and synchronous games, where no player is allowed to see the other players current strategies
before playing her own. This will occur if all players are synchronized and are required to
pick their strategies at the same time. In this case we show that players will hardly ever
play dominated strategies. We say that strategy : dominates strategy j for player a if

Vs_ay Ta(Z,8-4) > Ca(j,$-a)

That is, strategy ¢ dominates strategy j for player a if, against any specific play by other
players, the payoff for playing 7 is more than that for playing j. In the theory of games where
it is usually assumed that players know the entire game matrix, it is a natural assumption
that a rational player will not play a dominated strategy.

We can use the concept of domination to define a mapping on strategy sets. We define
U, :2%-2 — 3, for any S_, C Z_,, as the set of undominated strategies:

Ua(S-a) = {52 € Za| Bs, € Ta s.t. Vs_q € S_g Ta(sh,5-6) > Ti(8a,5-a)}

Let U = (Uy,...,U,). Now it is easy to see that against non-predictive opponents playing
in the set S_, a player should almost always play in U,(S_,) and we will show that our
automata do indeed do this.

The second case we consider is that of either predictive adversaries, or of non-predictive
adversaries in an asynchronous game. Predictive adversaries can see the other players strate-
gies before playing their own. An asynchronous game is where players vary their strategies
at different times. In this case, one cannot expect that players eventually play undominated
strategies. To motivate why this is so, consider the situation where players do not know
the payoff matrix beforehand and, during the course of playing the game, do not directly
observe their opponents strategies, just the outcome of the play; then it is clear that players
may not be able to identify dominated strategies. In this situation we can only use a much
weaker form of domination, which we call set-domination.

We say a strategy ¢ for player a set-dominates another strategy j if all the possible payoffs
associated with 7 exceed all those payoffs for j:

min T4(i,5-,) > max [,(j,5-4)
r 8 b

8_aq€L—qa —a€X—a

Define SU,(S_a) to be the set of set-undominated strategies for player a, if all the other
players are playing from the set S_, C T_,.



Set-domination is less restrictive than ordinary domination in that U,(S_,) C S Ua(S-a).
While an intelligent game theorist would never play dominated strategies, a reasonable player
might. However, almost any rational player, even one with limited information, should not
play set-dominated strategies.

Set-domination is the appropriate concept when considering predictive adversaries. Even
if we assuming that strategy i dominates strategy j, but another player always reacts to
strategy ¢ in a different way than they react to j, then it might turn out that it is in the
player’s best interest to play j. This would never be the case if i set-dominates j.

3 Rational Learning Automata

In this section we define a slight variation on standard automata that have more resilient
properties in a changing environment.

A typical learning automaton is given by Narendra and Thatcher [15]. Given an envi-
ronment with m possible strategies and payoffs between 0 and 1, the automata consists of
the vector of probabilities p* = (pf,p},...,p,) where at time ¢ the automata picks strategy
¢ with probability p; at random. Assuming that strategy : is picked with resulting payoff rt,
the probabilities are then updated in the following manner:

Pt =pi +ari(l - p)

Vi pitt =pi(1— ar)

Learning automata satisfying this rule are denoted LA,. The automata LA, does not satisfy
our requirements for a ‘good’ learner. Against a static environment there is a high probability
that it will eventually stop playing certain strategies; thus it would not notice if the payoffs
for that strategy improved, thus rendering a previously bad strategy a good strategy to play.

We define a slight variation on LA, that endows it with the properties of a good learner.
Essentially, we require that no strategy ever has probability less than /2 of being played,
thus it will be played infinitely often. The update rule for this automaton, denoted by RLA,
(a <1/2), is:

P =pi+ar ) ajp;
i#i
Vi #1i pit! = pl — arialp)
where .
p; — af2
o)

p]r!

a’ = min[1,



Note that if all p; > « then the update rule for RLA, is the same as that for LA,. We next
show that this automaton is a good learner.

We define a random environment as one in which a player’s opponents play randomly from
a set of strategies. This model is general enough to encompass most random environments
encompassed in the literature [15].

Definition 1 Learning automaton a is playing against a random environment S_, C £_,
if at each t the strategy set st , € S_, is chosen according to some (fized) probability distri-
bution.

We will call a game I' normalized if T'(s) € [0,1]" for all s € £. Note that any game
I'(s) can be easily transformed into a normalized game. Consider some player a. For each
strategy ¢ € {1,2,...,m,}, let 7! denote the random variable I',(i,s*,). Thus, player a,
when playing against a random environment, sees a fixed distribution of payoffs for each
strategy . In what follows, we therefore refer to expectation values for payoffs of a given
strategy, using the notation E[rf] to denote the expected value of T',(z, st ,):

Elril= Y P[st, = 3_4]Ta(i,3-a).

§_q€S_a

For random environments, these averages are independent of ¢ so we can write Er;].
Before stating our first convergence theorem, we need to define convergence.

Definition 2 We say that a random variable z* parametrized by a a-converges® to 0 if there
ezist positive constants ap, B, by, by, bs, and q such that, for any 0 < a < ap:

o limr_, (%fOT dtP[zt > \/cﬂ) <a
o If 1y is the first time that z* < Ba, then E[rf] < by/ad.
o If 7, is the first time that z* > \/a, given that 29 < Ba, then E[r,] > byeb/V?/a.

Thus convergence is defined by a rapid collapse to optimality and a very long period
at optimality before random variations cause inferior strategies to be played. Thus in any
average the exponential part will dominate the polynomial.

3We note that this definition is not as sharp as possible for our model learning automaton. This is because
we wish to emphasize that our results for mutiple automata are not overly dependent on our specific model
of learning automaton. Thus our results for multiple automata should apply to any collection of automata
that satisfy our basic convergence properties.



Theorem 1 Consider a normalized game T', some player a, and some random environment
with support S_, C T_,. If E[r)] < E[ry] < E[ry] for all i > 2 then

Pp =) 1

i=2

a-converges to 0 for any initial condition p°.
Now we extend the concept of a random environment to allow for ‘mistakes’.

Definition 3 We say that learning automaton a is playing against a ‘6-approzimate’ random
environment S_, if at each t s', is chosen from o random environment with probability
greater than 1 — &, and randomly with probability less than § a mistake may occur, that is

st, & S_,.

Theorem 2 Consider some normalized game T, some player a, some random environment
with support S_o C E_,. If E[r1] < E[ry] < E[ry] for all i > 2 in this random environment
then there ezists a 6o such that for all § < b, if player a plays against a §-approzimate
random environment, then
n
Pb =) 7
i=2

a-converges to 0 for any initial condition p°.

Consider now a non-predictive environment where the an adversary can pick any opposing
strategy. but However he must do so withour prior knowlege of the automatons play except
for the probabilities of play.

Definition 4 Learning automaton a is playing against a non-predictive environment S_, if
at each t s°, € S_, where S_, C T_,, where s, is chosen without the knowledge of st.

As for a random environment, we can extend the concept of a non-predictive environment
to a d-accurate non-predictive environment.

Definition 3 We say that learning automaton a is playing against a ‘6-approzimate’ non-
predictive environment S_, if, at each t, st is chosen from a non-predictive environment
with probability greater than 1 — §, and randomly with probability less than § a mistake may
occur, that is st , & S_,.



This leads to the following theorem.

Theorem 3 Consider some normalized game T', some player a and some non-predictive
environment with support S_, C X_,. Then, there exzists a 8 such that for all § < &, if
player a plays against a §-approzimate non-predictive environment with support S_,, then

Ph= ), P

igU(S-a)
a-converges to 0 for any initial condition p°.

Against a possibly predictive adversarial environment we can only prove a weaker state-
ment.

Definition 6 Learning automaton i is playing against a environment S_, if at each t st , €
S-a with S_g C E_,, and where s, may be chosen with the knowledge of s',.

Theorem 4 Consider some normalized game ', some player a and some environment with
support S_, C T_4. Then, there ezists a by such that for all § < &, if player a plays against
a d-approzimate environment with support S_,, then

b= ). i
igSU(S-a)

a-converges to 0 for any initial condition p°.

4 Multiple Learning Automata

Consider a game that is being played continuously in time. Each player can at any time
change her strategy or evaluate the success (payoff) of her current strategy. For example,
consider several users sharing a network link. At each instant each user has a certain link
utilization. At any time a user can change her utilization. Then she may compute the success
of the current utilization level as some average over a certain amount of time. This will be
our model of a learning automaton playing a continuous time game.

First we will consider the case where all the automata update their strategies at the same
time.



4.1 Synchronous Automata

In this case we imagine that time is discrete, and all the automata update their strategy with
each unit of time. However, they may all have different a’s, subject to the mild restriction?
that af,,. < @min, where ayq; is the largest o and o, the smallest.

Theorem 5 For any group of n synchronous learning automata RLA,, n > 1 and p > 1
there erists some ag such that if all the learning automata in the group have a < og and
ab .. < Qmin, then for any automaton

Pp= D P

igU(Z)

a-converges to 0, where a-convergence is defined as all a,’s converge to zero while satisfying
afnaz < amin.

The set U>(X), the result of the iterated elimination of strictly dominated strategies,
has been much studied in economic learning theory[13]. Many important learning models
have been shown to converge there. In fact a very large class of games, those which are
supermodular, or have strategic complementarities, this set is very simple. For example,
both the ‘General Equilibrium Model with gross substitutes’ and the Bertrand oligopoly
model with differentiated products have a singleton U*(Z). Thus in these (and other)
important economic models synchronous learning automata converge to the unique, and in
some sense ‘correct’, equilibrium.

This result only requires that the learning automata satisfy our definition of rational.
Thus it should apply to any set of rational learning automata, even if different ones used
different updating rules. Thus, these results should hold quite generally, for large classes of
learning automata.

4.2 Asynchronous Automata

Now consider the case where time is no longer discrete and each automaton independently
chooses when to change strategies. In this case it is not clear what the ‘correct’ method for
determining the payoff of a particular strategy, so we allow for a wide variety of possibilities.

Let RLATC be a learning automata which updates its strategy every T units of time.
The payoff that it uses for its update is some weighted average of its payoffs in the previous

4We believe that this restriction could be removed, with a more detailed analysis.



time period; if player a has been playing strategy i for the past time period then the reward

is
ri=z [ Ta(s)dG( ~ 1)

where G(t) is a monotone function, s, = ¢ for all ¢’ € [t — T, t], and we interpret the above
expression as a Riemann-Stieltjes integral.
For example, if G(¢t) = t/T then

1 gt /
i == [ Ta(s")dt
ri= [ Tals)
which is just the average.

Another useful choice for G is:
G(t)=0 t<T-b
Git)=1 t>T-b
with 0 < b < T. In this case rf = I,(s*®). This can obviously be generalized to any

pointwise average.
Any group of such learning automata with different T’s we shall call asynchronous.

Theorem 6 For any group of n asynchronous learning automata RLA,, n > 1 and p > 1
there ezists some ap such that if all the learning automata in the group have o < o and
abf iz < Qmin, WheTe Qmq, 8 the largest a and ami, the smallest, then for any automaton
b= X P

igSU(T)
a-converges to 0. (Where a-convergence is defined as all o, ’s converge to zero while satisfying
afna.r < amin) * '

In this case the result is not a strong as one would desire. For many important games
SU%*(X) is not a singleton, and then our theorem does not uniquely define the outcome.
However, this is necessary, as the specific outcome is dependent on the timing and averaging
of the different automata.

For example, one possible outcome is a Stackelberg equilibrium [4]. This is interesting
from the game theoretic viewpoint, as this is not a possible outcome in standard models
of economic learning theory [13]. This outcome occurs in a two automata game when the
first automaton (A1) is updating much more often than the second (A2) . Then since Al
is always going to the best reply to A2’s strategy, we see that A2 is Stackelberg leader, and
they will converge to the Stackelberg equilibrium.

10



Theorem 7 In the two player normalized game there exist RLAZ;}'Gl versus RLAZZ'G' such
that player 1 converges to Stackelberg leader and player 2 to follower®.

This is interesting as in many games (i.e. all those that have a pure Nash equilibrium)
players would prefer to be leader than follower. Thus Al is doing worse by updating often
than if he were updating very rarely. This seems counter-intuitive, as one would expect that
rapid response would be a desirable attribute.

However, certain games are ‘non-manipulable’, in that SU*(X) is a singleton, and thus
any set of asynchronous automata (with small enough a’s) will converge to a unique strategy.

We now define class of games that have this property. Following [14] we define the class
of generalized serial games to be those that have the following five properties:

e Ordered strategy domains: £, C R
o Cross-Monotonicity: T4(s) > I'i(3s, 5-5) for any 355 > sp
o Seriality: T's(sp,5-p) = ['4(8p, 5-5) for any sp,3p > s,

e Unique best reply: for each s_, there exists an element BR,(s-4) such that z, #

BR4(5-a) = Ta(BR4(5-4),5-a) > Ta(Za,5_4)
o Seriality of best reply: BR,(s-,) = BR,(3s,5-s) for any 3, > BR,(s-a)

Theorem 8 Generalized serial games have a singleton SU®(Z).

Generalized serial games arise from the division of output in a production economy or the
sharing of an externality [14]. A relevant example of the latter is the sharing of communica-
tion link operating under the Fair-Share service discipline [17, 19]. If all the users of the link
were using RLAs to compute their optimal transmission rate, then even under asynchronous
updating and variations of o, the users will converge to the serial-set-undominated set, which
in this case is a Pareto optimal Nash equilibrium [14]. Note that if the same communica-
tion link was using the standard first-in-first-out (FIFO) discipline then convergence might
not occur. However, in this case if the RLAs were synchronous then convergence to Nash
would occur. Thus there are important differences between synchronous and asynchronous
automata that must be taken into account when they are used for decentralized control.

SThis can be easily generalized to the multi-player Stackelberg equilibria.

11



5 Conclusions

We have presented a modification of a standard learning automata which endows it with
the properties of a rational learner. This new automaton has good convergence properties,
many of which can be explicitly calculated.

Groups of these automata that interact via a game have a well defined behavior. Syn-
chronous automata converge to the serial-undominated set while asynchronous will converge
to the serial-set-undominated set.

While we have restricted our presentation to a single model of a learning automaton,
we note that these results should extend to many other models, as the proof techniques
that we apply are quite general. In fact we believe that these methods could be used to
simplify many of the results in standard learning automata theory. Additionally, most of
these results extend naturally to the case of stochastic games. Thus even in games with a
random component they apply.

Finally, we comment that these results have implications for the theory of rational learn-
ing, since model ‘rational’ behavior can lead to a larger class of behavior than often assumed.
We hope to extend our work to the case of continuous games, and expect that similar be-
havior will appear.
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A Appendix

We start by proving two useful lemmas.

A.l Lemmal

We consider some automata with a set of payoffs r¢ that can either be random, or determin-
istic.

12



Lemma 1 Consider some set of strategies A and define p'y = ;e 4 pt. Assume there ezists
some 8 > 1 such that E[r}] < (1 — 5)E[r}] for all t, for all i € A, and for all j ¢ A. Then,
P4 a-converges to 0.

We prove this lemma with the following sequence of claims. Choose some k > 23. Define
ri = maxiea E[rl] and r', = min;g4 E[r!).

Claim 1 There ezists some constant ¢; such that if py > Ba then
E[pFIph] < Py — crd.
Proof: Computing directly from the updating equations,

a/2

BIFL 7] = 24+ o 3 3 pi(Blminlr, B2 — Bpminirt, 2 )

JEAIEA J
Clearly
S piElminrt, B2 < gt
i€A J
and

S piEfmin{rt, 012 5 (54 — nayrt,
i€A px

Combining, we have

no«
Elpioh] — oy < epi(1 =Py - (1 - p—)r‘_A)
A

Since M >1/4 and (4 — (1 - ;‘)—;)r‘_A) < 0 we have proven the claim.o

Claim 2 Let 74 be the first time that p', < Ba. Then

1
E[Tf] < — ca?

Proof: This proof follows that in [5]. Define

t min(t,r/)

g =py +c1a2mjn(t,1-f)

13



This is a submartingale
El¢"*|¢"] < ¢
SO
Elg'] < p}
and thus
c1a?E[min(t, 74)] < p

Taking the limit at ¢ — oo we find that
lim cia®E[min(t, 75)] < p%

and
:lirglo cia’E[min(t, 1f)] = E[}H& cie’ min(¢, 74)] = ¢;?E[ry]

by the monotone convergence theorem. Therefore,

0

P4 1
Elrf] < = < —
(4] < ca? < aa?

<

Now let 5, denote the process which is the stopped version of P4 where stopping occurs
as soon as pY < fa or pY > ka.

Claim 3 There ezists some c3 > 0 such that e/ i5 o submartingale.

Proof: Let

2t = ePala
for some constant ¢ > 0. The submartingale condition
E[2*2] < 2
requires that

t4+1) ¢
B

E[ec(l“’:a+l —Palle] =
z

Clearly, when %4 < Ba or p > ka then

E[*2) = 2*

14



For fa < p4 < ka, with probability p',, for some i € A

13£1+1 _ﬁi% = ij mlIl[T", ] < (1 - ) 54
€A ap;

and with probability 1 — 34, for some j ¢ A,

. ut D 2 .
B — Py = a)_ pimin[r, ’—-—/] < —a(phy —na)rt ,
1 ap!

Thus,
f(c) = E[es?? =p/e) < pteci=Plry 4 (1 = py)e~PalBanairl,

Note that f(0) = 0 and f'(0) < 0, so there exists some constant c3 such that f(c3) < 0. For
this constant, 2! is a submartingale.o

Claim 4 Ifp% < 2Ba then there ezists some constant ¢4 such that

P(lim 4 > ko] < cie™*

Proof: Let P; be the probability that 4 > ka, P} be the probability that % < fa,
Py = lim, .o P{, and Pj = lim;_., Pf'. Let
' = e@Pale
For all ¢ we have
E[7'] = E[2'|2* < "] P} + E[2'|2' > €9 P! 4 E[2|eP < 2t < e*)(1 — P; - F)

Thus,
Pu(E[2]2" > €¥3] — E[2!|2* < €89)) = E[2!] — E[2]2* < e°]+
(Pr — P})(E[2*|z* < °3] — E[2!]eP*s < z* < e**s])+
(Px — P)(E[2Y2* > €] — E[2]eP < 2t < ek))
Thus, upon taking the limit ¢ — oo,

E[2'] — E[2!|2* < ePes]
E[zt|2t > ekes] — E[zt|z* < €Pe3)

P =

15



Since 2* is a submartingale we know that 1 < E[z!] < 20 < €%, Also, 1 < E[z!|2t <
efes] < efes, ekes < Ezt|zt > k] < e+l and ef < E[:Y]efes < 2t < %3] < ekes. Thus,

<o

Claim 5 Assume that p < 2Ba. Let 7 be the first time for which p, > ka. Then

€% k

E[Tk] >

2cqx

Proof: Since
Elpy™" — plalpy < 280] <2607
the expected time to go from p% < Ba to pY > 2Ba is at least 1/2a. Thus the expected
time until p} > ko is
1 > e*
2P = 2¢4a

E[ri] > E[number of times to a before ka/2a =
o

Claim 6 Assume that p < 2Ba. Let 7, be the first time that p', > \/a. Then,

Proof: This follows immediately from choosing k = 1/,/a in the preceding claim.o

Claim 7 There ezists some ag such that for all a < ag
lim = / " Pl > Val
T—I'I:o T A A >Val < a

Consider the process with three states: A:p!, < Ba, B:p!; > fa and p% < fa has occured
more recently than pY > \/a, and C:p!, > Ba and p!; > \/a has occured more recently than
P4 < Ba. The system goes from state A to state B to state C and then back to state A. The
expected time to make a transition from A to B is bounded below by 1. The expected time
to make a transition from B to C is bounded below by E[r,]. The expected time to make a
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transition from C to A is bounded above by E[rf]. Thus, the fraction of the time spent in
state C (which is an upper bound on the averaged probability that p!, > \/a) is bounded
above by

E[T]] E[Tf] < e_c:'/‘/a'zﬂ
E[rf] + E[r,] = E[r] aa
For small enough ay, e °°/\/_-2-‘5*- <aforal a<ag ¢
Setting ap and 8 as above and setting b = 1/¢;, b, = 1/2c4, and b3 = c3, we see that

we have established the a-convergence.O

A.2 Lemma 2

Lemma 2 Consider an automata RLA, playing against an environment with a set of payojfs
ri, and the same automata playing against a different environment with a set of payoffs 7;
let p; and p! denote the probabilities in the two cases. Let A be any set of st'rategzes Then, zf
7t is stochastically greater than or equal to r} for allt and all i € A and if # is stochastically
less than or equal to r} for all t and for all i & A, then T ;¢4 B stochastzcally dominates
YicaDt forallt.

Proof: Define p}, = ¥;c4pi. Notice that the update rules for p!, are, when strategy i is
chosen at step t,

i€A:  pt=ph+oarld dp

JEA
tgA: pﬁ,*l—pA—ar‘ZaJpJ
jEA
where , 0
. —
a' = min1, EJ_/]

£t
apj""'

Thus, pl{" is monotonically increasing in p',, monotonically increasing in r¢ with i € A4, and
monotomca]ly decreasing in 7} with ¢ ¢ A. Now consider the set of sample paths where a
uniform random number in [0,1] is chosen at each iteration. It is easy to see that over any
sample path p4 > py. O

A.3 Proof of Theorem 1

Here, the payoffs r} are random variables with distributions that are independent of ¢. Setting
A = {1} we can then apply Lemma 1 directly.O
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A.4 Proof of Theorem 2

We start with some normalized game I', some player a and some non-predictive environment
with support S_, C ¥_4. Consider the game I‘( ) defined as: 1" (Say $-a) —,F (3a, $-a)
for all s_o € S_q, Ta(l,5-4) = min;_,ex_, ['a(1,3-5) for all s_, & S_q, and T4(z,5.,) =
max;_,ex_, [a(1,5_,) for all s_; € S_; and i > 1. Notice that in this new game, since
when s_; € S_, the payoffs are independent on the exact choice of s_,, we need not concern
ourselves with the nature of play outside of the random environment; we need only consider
the rate at which ‘mistakes’ are made. With perhaps relabelling some strategies ¢ with i > 1,
we can find some §q such that for all § < &, the §-approximate environment has the property
that E[r)] < E[r;] < E[r;] for all i > 2. Furthermore, whatever the play outside of S_,,
the payoffs in this new game for playing strategy 1 are stochastically smaller than those in
the original game, and the payoffs in this new game for playing strategies other than 1 are
stochastically greater than those in the original game. Therefore, theorem 2 follows from
Theorem 1 and Lemma 1.0

A.5 Proof of Theorem 4

Here, the plays s! , are not independent of the plays s’. Thus, we will write st (s!) to denote
this dependence. Let D be the set of set-dominated strategies, U the set of set-dominating
strategies, and M the remaining strategies. Consider the following payoffs. Define

t
™D = max max la(ss,5-a) if st 4(s5) € S-a

rh = Eeal))c’_r&a{al“ a(SasS—a) 1f st (st) & S_a

rU - :Ialéll} ’_I:lélg_ar (sa, S_a) Zf st_a(si) €5

TU = ;Iilell'cl, a.ﬁ%lzn_ar Sa, s-a) Zf St_a(S;) g S-a

af
™ = g’é?, 8_‘:2“_0F a(8ay$—a) if stq(sh) € S
a

ra=min min To(sa,5-) if s14(s5) # S-a

Note that whenever s! ,(s;) € S_, we have r§; > rf, > r%,. Furthermore, r{ > r{, for all
it €U, ri<rpforalli € D, and rt > r, for all : € M. Consider the game where, at each
time ¢ 1f strategy ¢ is played we assign the payoff rf, if : € U, v, if ¢ € M, and 1%, if i € D.
In this new game, p}, stochastically dominates p}, by Lemma 2. Furthermore, if we look at
the set A = DU M, then we can apply theorem 2 to p', to see that is a-converges to 0.0
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A.6 Proof of Theorem 3

Here, the plays s’ are independent of the plays s:. The proof for Theorem 3 is a slightly
more complicated variation of Theorem 4. In this case we must eliminate strategies one at a
time. Let strategy ¢ dominate strategy j, and define M to be the set of remaining strategies.

ri=Ta(j,st,) if st , € S,

rt= max Ta(j,5-a) if s’y & S_a

8-a€T_4

ri =Ta(i,8',) if s, € S_q

r: = migl Fa(i, S-a) Zf st—a ¢ S-a

8_qa€X_g

1’;” = m;n Fﬂ(sa’sia) Zf st—a € S—a
8aFi

rt, = Ia?;él'l ,_f.‘éiél.a Ta(Sa,8-a) if st (s8) & S_q

Consider the game where, at each time ¢ if strategy i is played we assign the payoff ré, if
strategy j is played we assign the payoff 7%, and if any other strategy is played we assign rt,.
In this new game, p% stochastically dominates P} by Lemma 2. Furthermore, if we look at
the set A =1iU M, then we can apply theorem 2 to p, to see that is a-converges to 0.0

A.7 Proof of Theorems 5 and 6

Theorem 5 follows from the repeated application of theorem 3. For example initially theorem
3 requires that all players collapse down to the undominated set S? = U(Z). Then as all
players are in S, theorem 3 now implies that they will collapse down to $? = U2(Z). This
process continues until they are all in S = U*(Z). The same proof applies to theorem 5
where we replace U by SU, theorem 3 by theorem 4, and take into account the different time
intervals. We will present the proof for theorem 6, and comment that theorem 5 is proved
in the same manner.

First note that there exists an N such that SUY(T) = SU*(T) as I is a finite game.
Choose « such that

(1-m"2>1/2
We will show that the probability of a collapse in time

TwNey /vodP

is greater than 1/2 where T}, is the largest update time among the automata.
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Claim 8
T}. N C1
Yyao?
Proof: Consider S™ = SU™(X) for 0 < m < N. Let §™ be the & required in theorem 3
for a 6-approximate environment with support set S™,. Also choose &™ to be the ag required
by automaton a against the same environment. Let 6, = ming , 67" and & = ming ,[&7T, 62].

Now choose ag < éo such that for all a < ap satisfying the restriction a?,,, < amin the
following holds,

Pr[ry; < ]>1/2

ThNC]

2 .
nmn

Tlc2eca/ am“/amaz >

Yo
where ¢, is the largest and c;,c; the smallest of the c’s that occur in theorem 3 against
the different environments mentioned above and 7T; is the smallest update time among the
automata. By the restriction on the a’s we see that this reduces to

TuNec
ﬂczecal\/a_o/ao > h 2pl
T

which guarantees that such an ap exists.
Now if all automata have a € [}, ag] the above construction guarantees that dominated
strategies will never get large during the N repeated actions of the domination operator.
Thus with probability less than &, all automata will be playing with p} < /ap for
t & SU(ST;) when
mby /(yaiP) <t < bgeb’/‘/‘?/ao

This is the probability that an iteration of the domination operator will occur properly.
Thus by our definition of 4 the collapse to SU®(Z) with probability greater 1/2 will
occur in the specified time. o
Claim 9
2Th N 1
Elr) £ ——
7%
Proof: 7; is bounded above by a random variable with a geometric distribution, and the
expected number of periods of length
ThN C1
Yoo
15 2. 0.
Thus we have shown that the collapse will occur. Then the probabilities will remain small

for an exponential (in a) amount of time by the a-convergence of the individual automata.
o
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A.8 Proof of Theorem 7

Let ay,6, be such that theorem 1 applies against the game I',(s;, BR(s;)) where BR(s,) =
argmax,,I'(s1, s2), where this environment is § approximate, i.e. occasionally s; is not
BR(sy). Let a, similarly defined for any s; € £, for the game I';(s;,s2) played by au-
tomaton 2. Now set T = 1 and Ty = 2K/a3, where K is chosen sufficiently large so that
after time T; the probability that player 2 is not playing BR(s,) is less than &,. Let G, = G,
and Gy = t/T, thus player 1 samples at the end of her interval, and player 2 averages over
his entire interval.

Thus for any strategy that automaton 1 plays, player 2 will be at best reply with proba-
bility greater that 1 — §; when player 1 samples for the value of his strategy. Thus player 1
observes the above defined game with at most &, mistakes. If 6, is small enough then player
1 will converge to the best strategy, thus he will become Stackelberg leader.

Player 2 will then face a § approximate environment with s; fixed at Stackelberg leader,
thus she will converge to Stackelberg follower.O

A.9 Proof of Theorem 8

Since the SU operator is monotonic, the iteration process must converge to a nontrivial
fixed point. Let this fixed point of SU be denoted by I = (I, I,...,I,) with 1, denot-
ing the minimal element of I, and T, denoting the maximal element of I,,and L and T
denoting the vectors of these extremal elements. Let M AXo(za) = maz,_.er_ Ta(za,5-4),
and MIN,(z,) = min,_,e1_,I's(z4,5-5). For any s € I and for any z, € In, Ta(za, Toa) <
Pa(Zay5-0) < Ta(TayLog) s0 MAX,(z,) = [a(z4, L-a) and MIN,(z) = Ta(za, T-q). As-
sume that I is not a singleton, so the set {a¢|Ll, < T,} is nonempty. We can define a
as the element in this set with the smallest 1,: 1, < T, = Ly > 1,. In particular,
Ta(dLa, Toa) = Ta(L), so MIN,(L,) = MAX,(L,). If there exists some z, € I, — L,
such that To(24, L_s) < Ta(L), then MAX,(z,) < MIN(L,) and so L, set-dominates
Zq. If there exists some z, € I, — L, such that T,(z,, T_o) > TFa(Lla; T-g) = Ta(L), then
MINg(z,) > MAX(L,) and so z, set-dominates 1,. Thus, we must have Ta(za, T-a) <
Fa(Lay Tog) = Ta(L) and To(ze, L_g) > [a(L) for all z, € I, — 1,. Consequently,
BR,(T_s) = 1, and BR,(L_,) # L,. This contradicts the seriality of the function BR,.0
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