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Abstract

While the performance, density, and complexity of application-specific
systems increase at a rapid pace, very few advances are being made in making them
more easily testable, diagnosable, and maintainable. Yet in today’s VLSI industry,
designers are required to produce high quality and more reliable systems. Furthermore,
testability, diagnosability, and maintainability are three of the most important factors
contributing to system life-cycle costs. Even though testability bus standards, like
JTAG Boundary Scan, have been developed to help eliminate these costs, there exists a
need for efficient hardware and software tools to support them. Hence, a testability
design and hardware support environment for application-specific systems is described
which provides a designer with a set of hardware modules and circuitry, that support the
Boundary Scan standard and software tools for automatic incorporation of testability
hardware, as well as automatic test vector and test program generation. To describe the

test features of the various hardware components which make up these systems, a set of
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high-level languages are provided.
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CHAPTER 1

INTRODUCTION

Recent advances in manufacturing and packaging technology have made it possible to
design very large, high performance VLSI systems. The process of taking a requirement
for a digital system and implementing that system in hardware begins with design and
ends with test. In the past, design and test was regarded as two separate steps but today,
they are thought of as two closely integrated tasks. So today, designers are faced with this
unformidable challenge and they can no longer adopt the old “toss it over the wall”
attitude. Some of the barriers they are faced with that compound the testing of these

systems are:

* the constant demand for greater integration;

* the widespread adoption of advanced packaging technology like surface mount and
multi-chip modules (MCMs) employed on both one-sided and two-sided printed circuit
boards (PCBs);

* the smaller distance between pins of surface mount devices;




L]

the inability to test PCBs via bed of nails access;

the increasing cost of Automatic Test Equipment (ATE) and associated test fixture;

the growing gap in speed between the device under test (DUT) and the ATE;

the increasing consumer demand for high quality, reliability, and maintainability.

Hence, developing a testability design and hardware support environment that helps
designers overcome some of these barriers would be of great value. This dissertation
addresses issues related to the automation of test in our system design environment. The
testability design techniques and dedicated hardware used are intended to reduce the cost
of adding test. Furthermore, these techniques are applied to a special class of systems that
perform dedicated tasks called application-specific systems.

1.1 What is Design for Testability?

Testing is the process of exercising a system to determine whether it performs its
intended functions. If an incorrect response is observed, a second objective of testing is to
diagnose why the device behaved incorrectly. Furthermore, in order to meet the stringent
demands imposed on today’s designers, such as reduced device to market time and
reduced cost, testing can no longer be considered as an afterthought, it must now be

considered as part of the design process.

Test complexity can be converted into costs associated with the testing process. There are
several aspects of this cost, such as the cost of test pattern generation, the cost of fault
simulation and generation of fault location information, the cost of test equipment, and the
cost related to the testing process itself, namely the time required to isolate and detect a
fault. Because these costs can be high and may even exceed design costs, it is important

that they be kept within reasonable bounds. One way to accomplish this goal is to make




use of design for testability (DFT) techniques [Williams83]. Testability is a design
characteristic that influences various costs associated with testing, while DFT techniques
are design efforts specifically employed to ensure that a device is testable. Most DFT
techniques require the addition of extra hardware to the design. These design

modifications affect such factors such as area, device pin count, and performance.

1.2 Background: DFT Methodologies and Standards

Several well know design for testability techniques are covered in this section. These
techniques were developed for chips and printed circuit boards. Since these techniques
deal with the total design methodology they are considered structured methods, as
opposed to, ad hoc approaches which do not. Most chip-level structured DFT techniques
are built upon the concept that if the values in all of the latches can be controlled to any
specific value, and if they can be observed with a straightforward operation, then test
vector generation can be reduced to that of doing test generation for the combinational

circuits between the controlled latches.

Built-in-self-test is the capability of a device (chip, board, or system) to test itself.
Building BIST into the design consumes added circuit and slightly increases pin count, but
at the same time results in reductions to the costs of testing when compared with an
external test using ATE. BIST achieves these savings by reducing the costs of test pattern
generation and fault simulation, shortening the test time by running tests at circuit speeds,

simplifying the external test equipment, and easily adopting to engineering changes.

To better address problems of board-level and system-level testing, several DFT standards
have been developed. The primary objective of these standards is to ensure that all of the

components of a board and/or system contain common DFT circuitry that will make test
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Figure 1-1: Scan path example.

development and testing of the system and its components more effective and less costly.

1.2.1 Scan Path

The scan path [Eichelberger77][Funatsu75][Williams73] methodology is the most
widely used method for testing those parts of the circuit that are constructed of clocked D-
type flip-flops interconnected by combinational logic. As illustrated in Figure 1-1, it is
based on converting the circuit’s D flip-flops into a serial scan path chain denoted by the
thick black line threading the circuit flip-flops. When the circuit is placed in test mode, the
circuit is configured as a shift register and test data can be shifted in on every clock cycle.
By returning the circuit to normal mode for one clock cycle, the contents of the register are
applied to the combinational circuitry and the results are captured at the register inputs. If

the circuit is then placed in again, the results of the proceeding test can be shifted out for

examination.




1.2.2 Built-In-Self-Test

Built-In-Self-Test (BIST) [McCluskey85a,b] techniques fall into two categories, off-
line (or nonconcurrent) and on-line (or concurrent). Off-line BIST requires a mechanism
for supplying test patterns to the device under test and a means for comparing the device’s
responses to known good response as illustrated in Figure 1-2. Additionally, both
mechanism and means must be compact enough to implement. There are many ways to
generate stimulus but, the two most widely used ones are called exhaustive and random

testing.

Stimulus generation in exhaustive testing, the test length is 2" tests, where n is the number
of inputs to the circuit. Since all possible test patterns are applied, all possible single and
multiple stuck faults are detected (excluding redundancies). The tests are generated with
any process that cycles exhaustively throughout the circuit input space, such as a binary
counter or an n-stage autonomous linear feedback shift register (ALFSR). An ALFSR isa

series connection of D-type flip-flops with no external inputs and with all feedback

St Functional

imulus _ Response

Generator [>|  Circuit ™ Analyzer
Controller

Figure 1-2: General form of an off-line BIST structure.




provided by means of exclusive-or gates. Exhaustive testing for chips with high input pin
count requires relatively long test times, but in [Bozorgui80] it is suggested that circuits
can be added to partition such structures into subcircuits, each of whose input pin count is
low enough to permit exhaustive testing in a reasonable amount of time. Random testing
implies the application of a randomly chosen subset of 2" possible input patterns. A
guarantee of the test coverage for the subset can be obtained by running the tests against a
fault model. The number of the applied tests or the size of the subset is constrained by the
economically allowable test time. While circuit partitioning is not needed, some logic
modification may be necessary to ensure adequate coverage from the limited test set. A
linear feedback shift register is the typical choice for a random test generator since its

output data is approximately random.

Response analysis on-chip storage of a fault dictionary (all test inputs with the correct
output response) requires too much memory to be a practical method. The simplest
practical method for analyzing the output response is to match the outputs of two identical
circuits. The cheapest way to do this is to compress the output responses before comparing
them. The compressed response is signature of the device under test, and comparison is
made to the precomputed and stored reference signature. The most widely used data
compression method is signature analysis which uses a linear feedback shift registers and
the signature is the state of the register following the completion of a test

[McCluskey85a,b].

1.2.3 Boundary Scan Standard

The Boundary Scan [IEEE90a][Maunder90] standard consists of a dedicated serial test
bus which resides on a board, a protocol which controls the I/O pins that connect the chips

to the test bus, and control logic that resides on chip to interface the test bus to the DFT
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Figure 1-3: Boundary Scan architecture.

circuitry residing on the chip. The primary reasons for Boundary Scan are to allow
efficient testing of board interconnect, and to facilitate isolation and testing of chips either

through the test bus or with additional circuitry.

With Boundary Scan, chip-level testing can be supported at the board-level by simply
connecting Boundary Scan register cells between the chip’s application logic and I/O pins
as shown in Figure 1-3. There are two major components associated with this standard,
namely Boundary Scan register and the test access port (TAP) controller. The application
logic represents the normal chip design prior to the inclusion of logic required to support
the standard. This circuitry may include Scan Path or BIST hardware. If so, the scan paths
are connected via the test bus circuitry to the chip’s scanin and scanout pins. The
remainder of the test bus circuitry consists of the boundary scan register, a 1-bit bypass
register, and a n-bit instruction register. The test bus consists of the test clock (TCK), the

test mode signal (TMS), the test data input (7DI) signal, and the test data output (7DO)




signal. Test instructions and test data are sent to a chip over the TD/ line, while test results
and status information are sent from the chip over the 7DO line. Control of the test bus
circuitry is carried out by the TAP controller which receives its commands from the TMS

line.

1.3 Previous Work

In recent years, there has been a great deal of work in the areas of DFT automation
systems, hardware controller systems, and custom chip solutions, for example,
[Abadir85,89][Agrawal84][Beenker89][Emori90][Fasang85][Fung86][Geewala89][Halle
nbeck89][Lien88][Lien89][Lien90][Samad86][Samad89]1[Swan89][TI90][Yaud0]. While
it is beyond the scope of this dissertation to examine all of the work, some of the related
work will be discussed in the section that follows.

1.3.1 Design Automation Systems for Testability

Some CAD systems, like silicon compilers, automatically incorporate of testability by
following stringent guidelines to add special purpose test hardware, while other systems,
are more dedicated and use artificial intelligence techniques to guide the designer in
selecting DFT solutions. The Test Engineer’s Assistant (TEA) [Hallenbeck89] is an

example of such a system.

Test Engineer’s Assistant

TEA is a CAD environment developed to provide the knowledge base and tools
needed by a system designer for incorporating testability features into a board design.
TEA helps the designer meet the requirements of fault coverage and ambiguity group size.

Fault coverage is defined as the percentage of faults that can be detected out of the total




population of all single stuck-at faults of a device under test with a particular test set.
Ambiguity group is defined as the smallest hardware entity in a given level of the system
design hierarchy (that is, board, subsystem, and system) to which a fault can be isolated.
TEA interfaces to commercially available or prototype, beta-site tools to create an
environment in which the designer can perform design capture, functional verification,
design for testability, fault simulation, functional verification, and test program generation

for a particular automatic test equipment system.

The design methodology used in TEA addresses testability issues at all stages of design
(preliminary, detailed, and final) and at each level of the system hierarchy. Hardware and
software resources are identified during the preliminary design stage. In contrast to
traditional design practices, test resources are also determined at this stage. During
detailed design, specific functions of system resources are identified and verified through
simulation and checked against system requirements, including testability. Trade-offs are
made at this point to ensure that system requirements are met. TEA aids the designer in
identifying and implementing test resources and verifying that they will meet system test

and diagnosis requirements.

TEA uses the hierarchical test methodology shown in Figure 1-4, that is composed of a set
of subsystems communicating through a system bus. Each subsystem is composed of a
number of boards communicating through a subsystem bus during normal operation and
through a test bus in test mode. Bach board interfaces to the test bus through a test
interface. The test interface receives test data and control information from the test bus
and uses this information to initiate tests and receive results by controlling the chip’s local
test hardware on the board. The test interface can be a single chip and it can directly
interface to standard testability buses, such as the Boundary Scan test bus for

communicating test data to and from the board. The test data is generated by a Test
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Figure 1-4: Hierarchy of test and maintenance buses.

Control Unit, a subsystem used exclusively to provide test data for every device under test
in the system and to analyze the results. This unit can be embedded in the system, or its

function can be performed by automatic test equipment.

1.3.2 Test Hardware: Custom Test Controllers

Several custom test controllers have been proposed. These systems were developed to
function in a structured testability hierarchy like that shown in Figure 1-4 and require
dedicated software to configure them for test and debug operations. The advantages of a
hierarchical test methodology are interoperability at each level of subassembly due to

standardized test interfaces and reduced overall test and maintenance costs.

Module Test and Maintenance Controller

Lien and Breuer describe the Module Test and Maintenance Controller (MMC)

[Lien88][Lien89] system that is capable of controlling the self-test process of a board by
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accessing each chip’s test structures through a Boundary Scan test bus. It is intended to be
part of a hierarchy of test controller that are embedded into a target system’s physical
hierarchy. In their hierarchy, each testable chip contains an on-chip test and maintenance
controller (CMC); each testable board contains a module test and maintenance controller;
each testable subsystem contains a subsystem test and maintenance processor; and each
system has a system test and maintenance processor. The architecture for an MMC
consists of a 16-bit general or special purpose processor, a ROM, a RAM, a test channel,
test and maintenance processor with a Boundary Scan interface, and a bus driver/receiver,

which supports an expansion bus.

The major functions of the processor are listed below:

* transfer data between memory and test channels

* compare test results with stored good results

* transfer data between memory and expansion units
* execute test and/or diagnostic programs

* transfer data between memory and the subsystem maintenance processor

Once initialized by the processor, the primary function of the test channel is to control the

Boundary Scan test bus. Other functions of the test channel are listed below:

* serve as a Boundary Scan master

* transmit instructions to and receive status information from chips

* generate and transmit pseudorandom test data and receive compact results

* transmit deterministic test data to and receive test results from chips

* generate interrupts and also direct interrupts between chips and the processor

* and keep count of the number of tests applied and the number of bits in each test vector or

instruction that is transmitted.
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The bus driver/receiver is a bidirectional interface to the MMC, and the RAM and ROM

are used to store test data and seed vectors required for BIST operations respectively.

1.4 Summary

The work described in the previous section only provided partial solutions to the two
part problem of automatically incorporating DFT features into application-specific
systems and providing hardware and software to support them. The uniqueness of the
work presented in this thesis is that it is a fully integrated solution to the system test
problem that deals with both pre-design and post-design test issues in an automated

fashion.

In the remaining chapters are described the details of the hardware and software for the
testing environment. Chapters 2 presents an overview an overview of the SIERA design
system and the test strategy employed in the system. The chip and board level test
hardware is discussed in Chapters 3 and 4 respectively. In Chapter 5, a detailed
explanation of the software used for designing and controlling the test hardware. Test
applications and some actual test sessions are presented in Chapter 6. Finally, Chapter 7

presents conclusions and some suggestions for future work.




CHAPTER 2

THE SIERA DESIGN
ENVIRONMENT

Advances in VLSI technology has led to the creation of chips which resulted in a
complexity that resulted in a bottleneck in the chip’s overall development time. This
bottleneck was alleviated by the use of silicon compilers which produce the physical
information required to fabricate chips from higher level descriptions of the design, these
could be a symbolic layout, a circuit schematic, a behavioral description of a

microarchitecture, an instruction set, or an algorithm for signal processing.

The compiler then transforms this high level description into a physical representation
required by the fabrication foundry. This transformation occurs in several steps. For
example, a compiler might transform a behavioral description of a design into a logic gate
level representation. A major advantage of this approach is that designers can work at
higher levels of abstraction without having to know specifics about the IC design and
process technology. Another and probably most important advantage of this approach is

the ability to rapidly produce chips. Further advances have also led to the creation of very

13
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complex systems. Even though these systems contain hundreds of components, tools that
support the integration of these components to make up the system are still in a primitive
state. Additionally, these same tools do not exhibit usability and rapid prototyping
features. One such CAD environment that does exhibit these features is SIERA
[Srivastava91][Sun91][Srivastava92]. An overview of SIERA is presented in this chapter.
along with a discussion of the test strategy employed by SIERA along with the associated

testing environment.

2.1 Overview of SIERA

SIERA is an integrated CAD environment for the design of complex, application-
specific systems, where a system is a set of hardware modules that interact with each other
and the environment to collectively perform some function. In the context of this system, a
module can be a single chip or group of interconnected chips. SIERA’s origin stems from
the LAGER [Rabaey86][Shung91][Brodersen92] system, a custom chip design
environment. Some of the transformation steps used in LAGER are also used in SIERA
which include behavioral-to-structural and structural-to-physical. Dedicated tools were
developed to tackle the tasks associated with each transformation step. Many problems

inherent in system design that do not exist in chip design are addressed by SIERA such as:

* behavioral representation of systems

* simulation of behavioral representation
* structural representation of systems

* simulation of structural representation
* physical representation of systems

* and simulation of physical representation.
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SIERA was developed to provide a CAD environment that is capable of synthesizing an
architecture, using both hardware and software modules, to implement the a system
specified in the form of a process network as described in
[Srivastava91][Sun91][Srivastava92]. Figure 2-1 illustrates a simplified high level view of
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Figure 2-1: High level view of SIERA.




16

SIERA. First, a behavioral representation of the design is mapped to an appropriate
architecture producing a structural representation which is then manually partitioned and
mapped onto a four-layer system architecture template as shown in Figure 2-2. The two
lowest layers consist of custom boards where each board contains one or more software
programmable processing modules based around programmable digital signal processors,
and running real-time customizable OS kernels. Each processing module in turn
coordinates a number of application-specific slave modules which can be either software
programmable or dedicated hardware modules. The custom boards reside in a back-plane
bus, typically VME, and are slaves to an off-the-shelf single-board computer which also
runs a real-time OS kernel. This constitutes the third layer. The processing modules on the
custom boards interact with the master single-board computer through a standard,
parameterized software and hardware interface. The VME master single-board computer
in turn, communicates with a UNIX workstation, which makes up the final layer, using

standard (Ethernet) and software protocols.

The software modules can be mapped to the top three layers which can be mapped to the
top three layers. For example, a software module is mapped either as a process on the
workstation, a process on the VME master single-board computer, or as a process on the
DSP processing module residing on a custom board. Layers 2 and 3 are used for process
with increasing real-time requirements while, the workstation is used for non-real-time
front-end or interactive processes. The architecture mapping as specified by the user is
accomplished by selecting a library module for each block in the block diagram. An
implementation of a block is either in the form of program code meant for execution as a
software process, or a behavioral or structural representation of a dedicated hardware

process.

Designs in SIERA are managed by the Design Manager called DMoct, which automates
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the generation of a hierarchical system comprised of parts created by a large variety of

tools. It accesses these tools in the proper order to preserve the design hierarchy contained

in a textual or schematic representation of the design. The design flow as managed by

DMoct is shown in Figure 2-3. The textual representation is written in a structural design
language called SDL [Brodersen92][Shung91] which has lisp like constructs, furthermore,

design constraints and parameters are also passed along with this representation. After

parsing the SDL file, an initial representation of the design called the structure-master

view is created and stored in the OCT object-oriented data base [Octools][Harrison86].
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OCT was developed specifically for electronic CAD applications and it offers a
straightforward mechanism for storing all information pertinent to an evolving design.
Following this step, the parameters are evaluated and together with structure-processor
tools (which are dedicated tools that only operates on structure-master views), produce a
structure-instance view which is an expanded view of the total design as represented in
OCT. Finally, layout generation tools operate on structure-instance views to produce
output files containing physical geometry and implementation specific information

required to fabricate a chip, MCM, or board.
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2.1.1 System Design Methodology

Embodied within the SIERA framework is a vertically integrated design methodology
that supports the development of application-specific systems at all levels from the high
level description to the board implementation and software generation. STERA uses an
“application-driven” approach which is based on examining actual implementations of
example systems, developing an initial design methodology, automating and improving
the design methodology through experience gained from the example systems. This
approach is different from the classical “tool-driven” method which develops a design
methodology after developing a set of automated tools. The design methodology used in
SIERA consists of two parts, namely Module Generation and Architecture Generation.
Module Generation will be discussed here, any information regarding architecture and

software generation can be found in [Srivastava92].

Module Generation is the physical implementation of a system from an architecture
comprised of hardware modules, where emphasis is placed on generation of multi-chip
board level hardware modules. A major feature of this hardware generation strategy is a
library consisting of reusable parameterized board-level sub-system modules that can be
integrated into a custom board design. These modules can be used for communication,
signal processing, data acquisition, or testing applications. Some modules are fixed and
while others can be customized for a given application via parameters provided by the
designer. For example, parameters can determine the type and size of a memory module.
The combination of the sub-system library and the hardware modules provides an
environment unmatched by commercially available board design tools. A typical board
design may consist of a number of these modules connected together to achieve the
desired functionality. Module generators produce sub-system netlists and component

placement information which are all processed by DMoct to produce a final board netlist.
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The board netlist is then processed by a structure-processor called oct2rinf, which

produces an output file that is compatible with a commercial router.

2.1.2 Hardware Module Generation

The primary objective of the hardware module generation environment was to provide
an environment that can handle arbitrary hardware architectures implemented as custom
boards using custom and commercial ICs, as well as, the capability to explore alternative
implementations. Module generation was founded on the basis of pre-existing ASIC
generators, like those in LAGER, that automatically produce circuitry required to
implement dedicated chip level macro-functions and then, tie them together to achieve the
desired functionality. These same concepts also proved to be extremely useful at the board
level, where one or more custom and/or commercial ICs are grouped together to
implement a complex function. This environment also uses SDL to describe the designs,
OCT to store the design information, and DMoct to manage the design flow. Additionally,
chip level module generators and behavioral tools are also available to the board
designers. As a result, a complex board design can be represented as a netlist of high-level
modules that are maintained in a library consisting of parameterized reusable modules
(adders, multipliers, etc.) or as a behavioral description (FSM controllers, decoders). The
final step toward completing a board design is the layout, for this, several layout
generation tools were developed. This section is only intended to present the reader with
an overview of the hardware module generation environment, a more complete discussion

is in [Shung89].

2.2 Test Strategy used in SIERA

Traditional approaches to system test often employ a three level strategy. First, an
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engineer with very little or no test experience runs a system self test to quickly determine
whether the system is operating correctly. If a failure occurs, the engineer runs additional
tests on each of the boards that make up the system, to locate the faulty board and then
replaces it. The faulty board is then returned to the manufacturer, where their test engineer,

who is experienced, uses sophisticated ATE to locate the faulty chip and replaces it.

The traditional approach presents many problems, three of the most important ones are

listed below:

1. the additional cost of shipping the boards out for repair;
2. the time required to develop a good functional test vectors;
3. difficulty of duplication of the problem.

The difficulty of the duplication probicm refers to the situation where one level of test
indicates a failure and that failure is transparent at the next level. This in part is due to
intermittent faults and/or differences in test procedures used at various levels of testing.
The causes of these problems, which have been identified [Breuer85), are environmental
dependency, which means that a failure is caused by environmental conditions like
temperature and vibration, false alarms caused by design errors or transient faults,
incompatibility of tests, which is caused by the use of inconsistent testability techniques at

different levels of the system hierarchy, and faults in the test hardware.

The approach described above is adequate for high volume production environments but
insufficient for low to medium rapid prototyping environments like SIERA. Hence, the
test strategy used in SIERA should eliminate or at least reduce the problems mentioned
above. The strategy used in SIERA should be able to support testing at all levels of the
system’s hierarchy, support existing testability bus standards, produce test vectors, have a
facility to initiate and execute tests and provide a means to integrate DFT techniques into

the design process. This will result in a complete solution that deals with the design, as
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well as, the testing of a system. This approach is contrary to the approaches described in

the Previous Work section in Chapter 1, where the authors only presented partial solutions.

Embedded within SIERA is a test environment that fulfills the above requirements, where
the designer, has available, testable hardware modules at both the chip and board level that
implement a DFT methodology or testability bus standard, software tools that tie these
modules together, test languages that describe what DFT modules are used and how to use
them during test, and a dynamically reconfigurable custom controller board that is used to
control and access the devices (chips and boards) which contain the testable hardware.
Specific details and issues regarding the design, implementation, and application of each
component of the test environment is the subject of this dissertation. Each component is
addressed in the chapters that follow, but a discussion on how we integrate test into

SIERA is warranted.

2.2.1 Integrating Test into SIERA

The DFT techniques used in STERA must tackle test problems at both the chip and
board levels. Furthermore, these techniques must not significantly impact performance or
area. While preserving these objectives, test is integrated into SIERA in two phases. The
first phase involves identifying the building blocks that comprise a chip or board. For
example, there are three fundamental units of logic that used to implement a chip, namely
combinational logic, registers, and random access memories. At the board level, devices
are categorized as either Boundary Scan or non-Boundary Scan components. After the
fundamental system components have been identified, specific test methodologies, in
particular, those described in Chapter 1, are chosen for each component in the second
phase. At the chip level, the registers are configured as a Scan Path and used to test the

combinational logic, while memory is tested using the BIST technique. The Boundary
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Scan devices are chained together forming a Boundary Scan path where these devices are
used to test the board interconnect, as well as, provide access to chip level Scan Path and
BIST functions. Dedicated test hardware modules have been developed that implement
Scan Path, BIST, and Boundary Scan using the hardware module generation feature in
SIERA. Special languages and software tools have also been developed to support these
modules, all of which are arranged in a test library. Figure 2-4 illustrates how these
features are integrated into SIERA. The design, implementation, and some examples of
these modules and the Test and Diagnosis system are discussed in the next Chapter 4,

while the software tools that support this hardware are discussed in Chapter 5.

2.3 Summary

An overview of SIERA, the system design methodology, the hardware module
generation environment, our system test strategy, the test environment and how it’s
integrated into SIERA have been presented. The test methodologies used in SIERA are
only intended to assist the designer in two ways: (1) to help verify the complete
functionality of their system; and (2) to isolate the faulty device down to the logic gate
level. Moreover, our approach allows us to deal with testability as part of the design

process not as a post-design process.

The test methodologies used in SIERA were chosen because of their ease of
implementation and suitability in a rapid prototyping environment. Our approach does not
require that the designer be intimately aware of all of the DFT techniques that exist and
their implementation, but rather allows the designer to work at a high level with libraries
and software tools to implement the actual test. Finally, the role of the chip level
macrocells and the board level modules is to help the designer incorporate testability

features into the design to meet system test requirements. With a system designed using
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these modules, the designer can isolate system faults down to a single chip. This capability

is particularly attractive in terms of repair times and repair costs.
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CHAPTER 3

TEST HARDWARE - CHIP
LEVEL

In 1985, an ad hoc group composed of key semiconductor manufacturers formed to
establish a solution to the problems associated with board level testing. This concerted
effort involved the producers of both chips and board level products. The solution they
came up with eventually led to the development of a standard chip level test architecture
called Boundary Scan that, not only, solves the board level test problem, but also allows
designers to add test features, like Scan Path and BIST, to meet their own requirements. To
be compatible, a chip must have certain basic test features which are outlined in the

standard specification.

This chapter presents an overview of the Boundary Scan standard, addresses
implementation issues associated with integrating Scan Path and BIST with Boundary

Scan and examines design versus test cost trade-offs.

27
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3.1 The Boundary Scan Standard: An Overview

Two continuing trends are increasingly making it more difficult to test printed circuit
boards:

1. Increasing complexity - As chips become more complex, so does the task of generating
tests for boards that use them. For functional testing, test generation times are
significantly longer, due to the need to propagate test data through some chips while
tests are applied to others. Test lengths also increase as complexity increases.

2. Greater miniaturization - The use of multi-chip modules as well as surface mount
packaging technology, particularly when coupled with double-sided component
mounting reduces board geometries making boards more difficult to probe using
traditional bed-of-nails access.

The purpose of the Boundary Scan [IEEE90a] standard is to provide the basis for solutions
for these problems. Boundary Scan solved these problems by eliminating the need to
physically probe a component’s I/O pins by implementing an electronic probe inside the
component’s I/O pins. This section describes the principal features of the Boundary Scan
Macrocell.

The standard architecture requires of three major circuit blocks shown in Figure 3-1 and
described below:

TAP Controller - a finite state machine that responds to control signals supplies through
the test access port (TAP) and generates the clocks and control signals required for
correct operation.

Instruction Register - an n-bit shift register whose contents determine which test is to be
executed

Test Data Register - an n-bit shift register that applies the test stimuli or conditioning
values required by a test. At the end of a test, the results in the test data register can be

shifted out for examination. This register, for example can be implemented as a Scan
Path register.

3.1.1 Test Access Port

These circuit blocks are connected to a TAP which includes four or, optionally, five
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Figure 3-1: Top level view of Boundary Scan test logic.

signals used to control the operation of tests and the application of test data and

instructions. The TAP consists of:

Test Clock Input (TCK) - allows test operations to be synchronized between various
chips on the board.

Test Mode Select (TMS) - Operation of the test logic is controlled by a sequence of Os
and 1s applied to this input. The sequence on TMS directs the execution of the TAP
controller.

Test Data Input (TDI) - Data applied to this serial input is fed either into the
instruction register or into the test data register depending on the sequence applied to
the TMS pin.

Test Data Output (TDO) - The serial output from the test logic is fed either from the
instruction register or from the test data register. During shifting, data applied to TDI
will appear at TDO after N clock cycles, where N is the register size. When data is not
being shifted through the register, TDO is in a high impedance state.
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Test Reset Input (TRST*) - This optional input is used to reset the test logic when a 0
is applied.

The TDI, TMS, and TRST* inputs are equipped with a pull-up resistor so that when they
are not driven by an external source, the test logic always sees a logic 1. In the case of the

TMS input, this ensures that the TAP controller always starts in the correct state after 5

clock cycles.

3.1.2 TAP Controller

A key goal during the development of the Boundary Scan standard was to keep the
number of pins in the TAP to a minimum because chip designers are always reluctant to
allocate additional pins for test purposes. The TAP controller achieves this goal with a 16-
state finite state machine that implements a serial test protocol. The state diagram for the
TAP controller is shown in Figure 3-2. Note that all data register operations end with a
‘_DR’ and all instruction register operations end with a ‘_IR’. State to state transitions
occur on the rising edge of TCK. The Os and 1s shown adjacent to the state transition arcs
indicate the TMS value that must be present together with a rising edge on TCK, for that
particular transition to occur. Eight of the sixteen controller states determine operation of

the test logic, allowing the following test functions to be performed:

Test-Logic-Reset - All test logic is reset, allowing normal operation of the chip to
occur without interference. Regardless of the starting state of the TAP controller, this
state can be reached by applying a 1 to the TMS input for five clock cycles.
Alternatively, if TRST* is provided, it can be used to asynchronously reset the TAP
controller at any point during operation.

Run-Test/Idle - The operation of the test logic in this controller state depends on the
instruction in the instruction register. For example, if an instruction activates a self-test,
then the self-test will run in this state. If the instruction happens to be one that selects a
data register for scanning, then the test logic will be idle.

Capture-DR - Each instruction must identify one or more test data registers that are
enabled to operate during test mode when the instruction is selected. In this state, data
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is loaded from the parallel inputs of the selected test data registers into its shift register
paths.

Shift-DR - Bach instruction must identify a single test data register that is to be used to
shift data between TDI and TDO in this state. Shifting allows the results of the previous
test to be examined while applying the next test.

Update-DR - This state signifies the end of the shifting process. Some test data
registers may contain latched parallel outputs to prevent signals applied to the system
logic or through the chip’s I/O pins, from toggling while new test data is shifted into the
register.

Capture-IR, Shift-IR, and Update-IR - These states are analogous to Capture-DR, Shift-
DR, and Update-IR respectively, but only affect operation of the instruction register. A

new instruction is applied in the Update-IR state.

In the Update-DR and Update-IR states, action takes place on the falling edge of TCK,
while action takes place on the rising edge of TCK in all of the other states. TDO is active
only during the Shift-DR and Shift-IR states. The test logic remains idle in the remaining
eight states. The pause states, Pause-DR and Pause-IR, are provided to allow the shifting
process to be temporarily halted. The Select-DR-Scan, Exitl-DR, Exit2-DR, Select-IR-

Scan, Exitl-IR, and Exit2-IR states are decision points in the state diagram.

3.1.3 Instruction Register

The instruction register provides on the alternate serial paths between TDI and TDO. It
operates during the instruction scanning portion of the controller state diagram. The
instruction register is a parallel-in, parallel-out shift register. The parallel output is latched
so that a new instruction can be shifted in without altering the previous instruction. The
latched output is updated from the shift register path in the Update-IR state; at this time,
the new instruction becomes current. In the Test-Logic-Reset state, the latched output is
reset to load the BYPASS instruction. The instruction register must contain at least two

stages. No maximum length is defined, since this will be determined by the number of test
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Figure 3-3: Instruction register.

instructions required. A block diagram of the instruction register is shown in Figure 3-3.
Stages I1 and I0 must be set to 0 and 1 respectively in the Capture-IR state. These fixed
values ease detection and location of faults that may exist in the scan path. In a board
design, instruction registers are daisy-chained together in the Shift-IR state so that
different instructions can be shifted into each chip in the path. The TAP controller is
implemented using the Standard Cell logic design methodology. It was synthesized from a
behavioral description written in BDS [Octtools].

Instruction Register Cell Design

The instruction register provides one of the alternate serial paths between TDI and
TDO. It operates when the instruction scanning portion of the TAP controller state
diagram is entered. The instruction register allows test instructions to be entered into each
chip along the board level scan path. These registers are daisy-chained together at the
board level in the Shift-IR controller state, so that a different instruction can be loaded into

each chip on the path if required. A block diagram of the instruction register cell is shown
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Figure 3-4: Block diagram of instruction register cell.

in Figure 3-4. Each cell has a latched output to which instructions are transferred when
they are valid, this assures that the test logic receives only valid instructions. The function
of the ShiftIR, ClockIR, and UpdateIR signals are analogous to the ShiftDR, ClockDR,
and UpdatelR respectively. When the TAP controller enters the Test-Logic-Reset state, it

applies a 0 the Reset* input and forces a 0 to appear at the instruction register’s output.

3.1.4 Test Data Register

The Boundary Scan standard specifies the design of three test data registers, two of
which must be included in the design. The mandatory test data registers are the bypass and
boundary scan registers. The device identification register is optional. All test data
Operation of the various test data registers is controlled according to the current
instruction. An instruction can place several test data registers into their test mode of
operation, but it can select only one register to connect between TDI and TDO in the

Shift_DR controller state as shown in Figure 3-5.

Registers that are not used during a test operation are configured such that they do not
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Figure 3-5: Test data registers.

interfere with the operation of the chip’s internal logic. Registers that are used during a test
operation will load data from their parallel inputs in the Capture-DR state and make any
new data available at their latched outputs in the Update-DR state. In other words, the
results of a test are sampled in the Capture-DR state, and the new test data is available, at
the latest, in the Update-DR state. Any test operations required between the Update-DR
and Capture-DR states must occur in the Run-Test/Idle state.And, the register selected by
the instruction to be the serial path between TDI and TDO must shift data from TDI
towards TDO in the Shift-DR controller state. All other test data registers enabled for test

operation will retain their state while shifting occurs.

Boundary Scan Register Cell Design

To comply with the Boundary Scan standard, a chip must contain boundary scan
register cells at its input and output pins, as shown in Figure 3-6. These cells should be

located:
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Figure 3-6 : Organization of boundary scan register cells.

* between each input pin (clock or data) and the corresponding input to the chips internal
logic;
* between each output from the chip’s internal logic and the corresponding output pin;

* and between each tri-state enable or direction control output from the chip’s internal

logic and the corresponding output driver pin.

A block diagram of an output boundary scan register cell is shown in Figure 3-7. During
normal operation, the MODE signal is disabled and the cell becomes transparent and data
passes directly to the chips output pin. When an instruction is selected, the ShiftDR and
CIkDR signals are asserted until all test data is loaded into the boundary scan chain after
which, the UpdateDR signal is asserted and the test data is applied to the output pins.
Meanwhile, the mode signal is asserted during the entire test. Test results can then
captured at the input pin of an adjacent chip and shifted out for comparison with that of a

good circuit.
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Figure 3-7: Output boundary scan register cell.

These cells operate in conjunction with the cells at the data connections of the chip’s
internal logic, furthermore, they allow the state of the output driver and the data value
driven when the driver is active, to be controlled. The reason for the necessity of these
cells is illustrated in Figure 3-8 which shows a board level tri-state bus that can be driven
by chip A, chip B, chip C, or chip D. To test the interconnection between these chips, it is
necessary to determine whether the bus can be driven to both a logic O or logic 1, and
whether each chip can drive signals onto the bus independent of the others. Figures 3-9
and 3-10 illustrate how boundary scan cells are used in a tri-state pin and bidirectional,
respectively. An additional cell is required to control the state of both the tri-state and
bidirectional pins. The CHIP_TEST* signal is provided to prevent the I/O pin from
toggling during Scan Path and BIST testing. The EXTEST* signal is provided to prevent

the chip’s internal logic from changing during component interconnect testing.

3.1.5 Bypass Register Cell Design

The bypass register must also be present in all chips that conform to the standard. It is
the shortest path between the TDI and TDO pins and allows data to be shifted through the
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chip without interfering with its system operation. The bypass register consists of a one bit
shift-register that loads a constant logic 0 in the Capture-DR controller state when the
BYPASS instruction is selected. It does not have a parallel data output, therefore, the data
present in the register when shifting is completed is unimportant. The importance of this
register is illustrated in the following example, consider a board containing 100 Boundary
Scan chips all connected into a single serial chain and you need to access the boundary
scan register that’s located on the 49th chip in the chain, but you do not want to interfere
with the operation of the remaining 99 chips. In this case, the required instruction would

be loaded into Chip3, with the BYPASS instruction being loaded into the other chips. The
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serial bit stream shifted into TDI during the instruction scanning cycle would be:
111....1111CCC...CCC1111...111 where CCC...CCC is the instruction to be loaded into the
495th chip.

3.1.6 Mandatory Instructions

A chip implementation must support several mandatory instructions in order to satisfy
the minimum requirements mandated by the standard called EXTEST and SAMPLE. The
Mode signal in Figure 3-7 is generated by decoding the current instruction and should be
asserted (set to 1) when the EXTEST instruction is executed and it should be disabled (set
to 0) otherwise. This instruction allows the Boundary Scan register to be used for board

interconnect testing in the following way:
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* Test data shifted into the Boundary Scan cells located at the chips output pins are driven
through the connected pins onto the board interconnections. This process is initiated by
executing the EXTEST instruction and then moving to the Shift DR controller state.
One bit of data is shifted into the Boundary Scan register on every rising edge of TCK.

* Shifting is complete when the controller enters the Update_DR controller state. On the
falling edge of TCK in this state, the data is transferred from the Boundary Scan regis-
ter stages onto the latched parallel outputs of each cell. Because the Mode signal is
asserted by the EXTEST instruction, the test is applied to the board interconnections at
this time.

* The test results are captured in the cells at the system input pins. This occurs on the ris-
ing edge of TCK in the next Capture_DR controller state.

* The test results are examined by moving back to the Shift DR controller state. The data

held in the Boundary Scan register move one stage towards the TDO pin on each rising
edge of TCK.

When the SAMPLE/PRELOAD instruction is executed, the Mode signal is dis-
abled allowing the chip to continue its normal operation without interference.
This instruction supports two distinct test operations. In the first instance, the
Boundary Scan cells at both inputs and outputs load the state of the signal flow-

ing through them between the I/O pin and the chip logic:

* A snap shot of the data flowing through the chip’s I/O pins is taken by first executing
the SAMPLE/PRELOAD instruction and then moving to the Capture_DR controller
state.

* The captured data can be shifted out for examination in the Shift DR controller state.
On each rising edge of TCK, the data held in the Boundary Scan register advance one
stage towards TDO.
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Applications of the SAMPLE test include debugging of prototype boards.

In the second instance (PRELOAD), data can be shifted into the Boundary Scan
cells without interfering with the normal flow of signals between the chip pins
and the application logic. This allows the latched parallel outputs in the Bound-
ary Scan cells to be initialized with data before the next instruction is selected.

The following events occur before execution of this instruction:

* testdata is shifted into the Boundary Scan register by first selecting the SAMPLE/PRE-
LOAD instruction and then moving to the Shift DR controller state.

* after the data is loaded and shifted in, the scanning sequence is halted by moving to the
Update_DR controller state at which time the data is applied for initialization.

By loading suitable data when PRELOAD is selected, the user can ensure that all signals
driven off the chip are defined as soon as the EXTEST instruction is selected.

3.2 Designing Chips with Boundary Scan

When incorporating the Boundary Scan architecture into a chip, there are several
issues that must be addressed. The decision to incorporate this architecture in a chip first
should be considered from a board or system level point of view. If Boundary Scan is to be
used as a system requirement, then it is very important to define the instructions at the
system or board level first, and then implement the appropriate instructions on the chip. As
a minimum, the standard requires that a chip must be able to execute three instructions:

BYPASS, SAMPLE, and EXTEST.

To implement the logic required by the standard, the designer must either design the
Boundary Scan test circuitry manually or use an existing library module. The module must

consist of a minimum of four basic building blocks: a Boundary Scan register, a TAP
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controller, an instruction register, and a bypass register.

The standard also contains a number of design requirements that must be followed to
ensure that the chip works properly with other Boundary Scan chips. First, a Boundary
Scan cell must be placed at each I/O pin except the four test bus signals. Second, the TMS
and TDI test bus signals must use a pull-up cell to prevent unstable TAP controller
operation. These requirements represent the most common implementation guidelines,

and additional rules can be obtained from the actual specification.

3.2.1 Boundary Scan Macrocell

The design of the Boundary Scan architecture should be a structured, parallel
effort that complements the natural top-down design style associated with each
chip. All this is achieved by a macrocell called JTAG_MACRO that automatically
implements this architecture has been developed. It is written in the SDL language and
requires that the designer provide parameters such as boundary scan register length. A
summary of all the required parameters and their corresponding functions are given in
Table 3-1. The designer can also dictate the shape of the Boundary Scan macrocell using
the BSrows and SProws parameters. Pointers to the SDL files for the JTAG_MACRO are

given in Appendix B.

3.2.2 Boundary Scan I/O Pad Library

To accommodated designs where the designer is constrained to a limited chip core
area, a library of input and output pads have been developed that contain boundary scan
registers inside them. The serial scan path is constructed by simple abutment of pad cells
that form a frame around the border of the chip. A plot of an input boundary scan output

pad is shown in Figure 3-11 and Table 3-2 describing boundary scan pad library cells is
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Parameter Function

BSwidth Determines width of Boundary Scan;gister

BSrows Stdcell parameter used to determine the shape of the Boundary
Scan register

BSreset Selects reset option for Boundary Scan register cells

SPwidth Determines width of Scan Path register

SProws Stdcell parameter used to determine the shape of the Scan Path
register

SPreset Selects reset option for Boundary Scan register cells

MUXwidth Determines the width of the multiplexers. Default value is 3,
increase by one for each additional register

TAPflag Selects between Stdcell and PLA controller implementations
Stdcell is default implementation.

Table 3-1 : JTTAG_MACRO parameter definitions.
given below.

3.2.3 Integrating Scan Path with Boundary Scan

The Scan Path test methodology can be used easily supported by using a private

SCANTEST instruction whose opcode is 100. When this instruction is selected, the Test

Mode Select signal, which controls movement between controller states, acts like the test

mode control for a traditional Scan register, which causes movement between shift and

load. Test data is loaded into the Scan register when TMS = 1, and data is shifted when

TMS = 0. For chips that employ a single scan path, the TDI and TDO pins become the

SCANIN input and SCANOUT output. In this case, the TDO driver must be modified to

allow it to be active in the Pause_DR controller state. Multiple scan paths can be

supported by multiplexing the serial inputs and outputs onto normal package pins when
TMS i= 0 and SCANTEST is selected.
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I/O Pad Function

_'Ezu B Input Boundary Sca;_l;d I

out_2u Output Boundary Scan Pad

io_2u Bidirectional Boundary Scan Pad

tdi Test Data Input Pad

tdo Test Data Output Pad

tms Test Mode Select Pad

tck Test Clock Input Pad

vdd_2u Power Pad

gnd_2u Ground Pad

analog_in_2u Unbuffered Boundary Scan Pad

space_2u Space Pad

corner_2u Pad Frame Corner Pad

Table 3-2 : Listing of Boundary Scan pad library cells.
3.2.4 Integrating BIST with Boundary Scan

In [LeBlanc84], the idea of integrating BIST with Boundary Scan was introduced.
Similar to the Scan Path case, the Boundary Scan circuitry can be supplemented to provide
test support for BIST applications. By selecting the RUNBIST instruction and placing the
TAP controller in the Run_Test/Idle controller state for as many clock cycles as is required
to execute the self-test and providing additional circuitry for control, BIST circuitry can be

easily controlled through the Boundary Scan test bus interface.

Embedded memory testing is one of many applications that is ideally suited for BIST. In
embedded memories, the address, data, and control inputs may not be directly controllable
and the data output may not be directly observable at a chip’s input and output pins.

Further, the test patterns for memories are required to detect a wide variety of complex
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faults. These faults are different from classical stuck-at faults. Since, the use of scan based
design techniques do not simplify the problem of testing embedded RAMs, it becomes
cost-effective to incorporate BIST features in embedded memories to avoid complex time
consuming test generation. The BIST feature of embedded memories provides vertical

testability of the RAM, not only at the board level, but at the system level as well.

The embedded memory BIST macro requires a counter, exclusive-OR gates, several
multiplexers, and a Linear Feedback Shift Register (LFSR) as shown in Figure 3-12. A
linear feedback shift register can be formed by exoring the outputs of two or more of the
flip-flops together and feeding them back into the input of one of the flip-flops. The
counter is used to supply the test patterns to the embedded RAM and to control the testing
sequence. Unlike typical BIST techniques which use an LFSR as a pseudo-random pattern
generator, the counter provides a deterministic set of patterns necessary for thorough .
testing of the RAM circuitry. The LFSR in this BIST approach is used to compress the
output data from the RAM using signature analysis techniques.

For purposes of illustration, a RAM with 16 addressable locations and 4 bits per location
will be considered as shown in Figure 3-13. The basic idea is to use a counter during
testing to supply the address to the RAM, to supply data, and also to control the entire test
sequence. A 6-bit counter is used in this example. The four lower bits of the counter are
used to supply the address and data. The fifth bit is used to control reading and writing of
the RAM during the testing sequence such that the entire RAM is written and then read.
The sixth bit is used to invert the data going into the RAM during the test. The test
proceeds as follows. First the RAM is written with the address such that address location 0
contains the data ‘0000°, address location 1 contains the data ‘0001°, and address location
F (Hexadecimal) contains the data ‘1111°. Thus each address location contains a unique

data value. This approach assumes that the number of data bits in each RAM location is
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