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Abstract

While the performance, density, and complexity of application-specific

systems increase at a rapid pace, very few advances are being made in making them

more easily testable, diagnosable, and maintainable. Yet in today's VLSI industry,

designers are required to produce high quality and more reliable systems. Furthermore,

testability, diagnosability, and maintainability are three of the most important factors

contributing to system life-cycle costs. Even though testability bus standards, like

JTAG Boundary Scan, have been developed to help eliminate these costs, there exists a

need for efficient hardware and software tools to support them. Hence, a testability

design and hardware support environment for application-specific systems is described

which provides a designer with a set of hardware modules and circuitry, that support the

Boundary Scan standard and software tools for automatic incorporation of testability

hardware, as well as automatic test vector and test program generation. To describe the

test features of the various hardware components which make up these systems, a set of

high-level languages are provided.

Robert W. Brodersen

Chairman of Committee
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CHAPTER 1

Introduction

Recent advances in manufacturing andpackaging technologyhave made it possible to

design very large, high performance VLSI systems. The process of taking a requirement

for a digital system and implementing that system in hardware begins with design and

ends with test. In the past,design and test was regarded as two separate steps but today,

they are thought of as two closely integrated tasks. So today, designers are faced with this

unformidable challenge and they can no longer adopt the old "toss it over the wall"

attitude. Some of the barriers they are faced with that compound the testing of these

systems are:

* the constant demand for greater integration;

* the widespread adoption of advanced packaging technology like surface mount and

multi-chip modules (MCMs) employed on both one-sided and two-sided printedcircuit

boards (PCBs);

* the smaller distance between pins of surfacemount devices;



• the inability to test PCBs via bed of nails access;

• the increasing cost of Automatic Test Equipment (ATE) and associatedtest fixture;

• the growing gap in speed between the device under test (DUT) and the ATE;

• the increasing consumer demand for highquality, reliability, andmaintainability.

Hence, developing a testability design and hardware support environment that helps

designers overcome some of these barriers would be of great value. This dissertation

addresses issues related to the automation of test in our system design environment. The

testability design techniques and dedicated hardwareused are intended to reduce the cost

of adding test. Furthermore, these techniques are appliedto a special class of systems that

perform dedicated tasks called application-specific systems.

1.1 What is Design for Testability?

Testing is the process of exercising a system to determine whether it performs its

intended functions. If anincorrect response is observed, a second objective of testing is to

diagnose why the device behaved incorrectly. Furthermore, in order to meet the stringent

demands imposed on today's designers, such as reduced device to market time and

reduced cost, testing can no longer be considered as an afterthought, it must now be

consideredas partof the design process.

Test complexity can be converted into costs associated with the testingprocess. There are

several aspects of this cost, such as the cost of test pattern generation, the cost of fault

simulation andgeneration of fault location information, thecostof testequipment, andthe

cost related to the testing process itself, namely the time requiredto isolate and detect a

fault. Because these costs can be high and may even exceed design costs, it is important

that they be kept within reasonable bounds. Oneway to accomplish this goal is to make



use of design for testability (DFT) techniques [Williams83]. Testability is a design

characteristic that influences various costs associated with testing, while DFT techniques

are design efforts specifically employed to ensure that a device is testable. Most DFT

techniques require the addition of extra hardware to the design. These design

modifications affectsuchfactors such as area, device pincount, and performance.

12 Background: DFT Methodologies and Standards

Several well know design for testability techniques are covered in this section. These

techniques were developed for chips and printed circuit boards. Since these techniques

deal with the total design methodology they are considered structured methods, as

opposed to, adhoc approaches which do not. Mostchip-level structured DFT techniques

are built upon theconcept that if the values in all of the latches can be controlled to any

specific value, and if they can be observed with a straightforward operation, then test

vector generation can be reduced to that of doing test generation for the combinational

circuits between the controlled latches.

Built-in-self-test is the capability of a device (chip, board, or system) to test itself.

Building BISTinto thedesign consumes added circuit and slightly increases pin count, but

at the same time results in reductions to the costs of testing when compared with an

external test using ATE. BISTachieves these savings by reducing thecosts of testpattern

generation and fault simulation, shortening the test time by running tests atcircuit speeds,

simplifying the external test equipment, and easily adopting toengineering changes.

To betteraddress problems of board-level andsystem-level testing, several DFT standards

have been developed. The primary objective of these standards is to ensure that all of the

components of a board and/or system contain common DFT circuitry that will make test
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Figure 1-1: Scan path example.

development andtestingof the system andits components more effective andless costly.

1.2.1 Scan Path

The scan path [Eichelberger77][Funatsu75][Williams73] methodology is the most

widely used method for testing those parts of the circuitthat are constructed of clocked D-

type flip-flops interconnected by combinational logic. As illustrated in Figure 1-1, it is

based on converting the circuit's D flip-flops into a serial scan path chaindenoted by the

thick blackline threading the circuitflip-flops. When the circuit is placed in test mode, the

circuit is configured as a shift register and testdata can be shifted in on everyclockcycle.

By returning the circuitto normalmode foroneclock cycle, the contents of the register are

applied to the combinational circuitry andtheresults are captured at the register inputs. If

the circuit is then placedin again, the results of the proceeding test can be shifted out for

examination.



1,2-2 Built-In-Self-Test

Built-In-Self-Test (BIST) [McCluskey85a,b] techniques fall into two categories, off

line (or nonconcurrent) and on-line (or concurrent). Off-line BIST requires a mechanism

for supplying testpatterns to thedevice under testand ameans for comparing thedevice's

responses to known good response as illustrated in Figure 1-2. Additionally, both

mechanism and means must be compact enough to implement. There are manyways to

generate stimulus but, the two most widely used ones are called exhaustive and random

testing.

Stimulus generation in exhaustive testing, the testlength is 2" tests, where n is the number

of inputs to the circuit. Since all possible test patterns are applied, all possible single and

multiple stuck faults are detected (excluding redundancies). The tests are generated with

any process that cycles exhaustively throughout the circuit input space, such as a binary

counter or an n-stage autonomous linear feedback shift register (ALFSR). An ALFSR is a

series connection of D-type flip-flops with no external inputs and with all feedback

Functional

Circuit
Stimulus
Generator -*

Response
Analyzer

j k
—

i

t
Controller

Figure 1-2: General form of an off-line BIST structure.



provided by means of exclusive-or gates. Exhaustive testing for chips with high input pin

count requires relatively long test times, but in [Bozorgui80] it is suggested that circuits

can be added to partitionsuch structures into subcircuits, each of whose input pin count is

low enough to permit exhaustive testing in a reasonable amountof time. Random testing

implies the application of a randomly chosen subset of 2" possible input patterns. A

guarantee of the test coverage for the subset can be obtainedby running the tests againsta

faultmodel. The numberof the applied tests or the size of the subset is constrained by the

economically allowable test time. While circuit partitioning is not needed, some logic

modification may be necessary to ensure adequate coverage from the limited test set. A

linear feedback shift register is the typical choice for a random test generator since its

output data is approximately random.

Response analysis on-chip storage of a fault dictionary (all test inputs with the correct

output response) requires too much memory to be a practical method. The simplest

practical method for analyzing the outputresponse is to matchthe outputs of two identical

circuits. The cheapest way to do this is to compress theoutputresponses beforecomparing

them. The compressed response is signature of the device under test, andcomparison is

made to the precomputed and stored reference signature. The most widely used data

compression method is signature analysis which uses a linear feedback shift registers and

the signature is the state of the register following the completion of a test

[McCluskey85a,b].

1.2.3 Boundary Scan Standard

The Boundary Scan [IEEE90a][Maunder90] standard consists of a dedicated serial test

buswhich resides on a board, a protocol whichcontrols the1/0 pinsthatconnectthe chips

to the test bus, and control logic that resides on chip to interface the test bus to the DFT
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Figure 1-3: Boundary Scan architecture.

circuitry residing on the chip. The primary reasons for Boundary Scan are to allow

efficient testing of boardinterconnect, andto facilitate isolationand testing of chips either

through the test bus or with additional circuitry.

With Boundary Scan, chip-level testing can be supported at the board-level by simply

connecting Boundary Scan register cells betweenthe chip's application logic and1/0 pins

as shown in Figure 1-3. There are two major components associated with this standard,

namely Boundary Scan register and the test access port (TAP) controller. The application

logic represents the normalchip design prior to the inclusionof logic required to support

the standard. This circuitry may include Scan Path or BIST hardware. If so, the scan paths

are connected via the test bus circuitry to the chip's scanin and scanout pins. The

remainder of the test bus circuitry consists of the boundary scan register, a 1-bit bypass

register, and a n-bit instruction register. The test bus consists of the test clock (TCK), the

test mode signal (TMS), the test data input (TDI) signal, and the test data output (TDO)
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signal. Test instructions and test data are sent to a chip over the TDI line, while test results

and status information are sent from the chip over the TDO line. Control of the test bus

circuitry is carried out by the TAP controller which receives its commands from the TMS

line.

1.3 Previous Work

In recent years, there has been a great deal of work in the areas of DFT automation

systems, hardware controller systems, and custom chip solutions, for example,

[Abadir85,89][Agrawal84][Beeriker89][Emori90][Fasang85][Fung86][Geewala89]rHalle

nbeck89][Lien88][Lien89][Lien90][Samad86]R

it is beyond the scope of this dissertation to examine all of the work, some of the related

work will be discussed in the section that follows.

13.1 Design Automation Systems for Testability

Some CAD systems, like silicon compilers, automatically incorporate of testability by

following stringent guidelines to add special purpose test hardware, while other systems,

are more dedicated and use artificial intelligence techniques to guide the designer in

selecting DFT solutions. The Test Engineer's Assistant (TEA) [Hallenbeck89] is an

example of such a system.

Test Engineer's Assistant

TEA is a CAD environment developed to provide the knowledge base and tools

needed by a system designer for incorporating testability features into a board design.

TEA helps the designer meet the requirements of fault coverage andambiguitygroup size.

Fault coverage is defined as the percentage of faults that can be detected out of the total



population of all single stuck-at faults of a device under test with a particular test set.

Ambiguity group is denned as the smallest hardware entity in a given level of the system

design hierarchy (that is, board, subsystem, and system) to which a fault can be isolated.

TEA interfaces to commercially available or prototype, beta-site tools to create an

environment in which the designer can perform design capture, functional verification,

design for testability, fault simulation, functional verification, and test program generation

for a particular automatic test equipment system.

The design methodology usedin TEA addresses testability issues at all stages of design

(preliminary, detailed, and final) and ateach levelof the systemhierarchy. Hardware and

software resources are identified during the preliminary design stage. In contrast to

traditional design practices, test resources are also determined at this stage. During

detailed design, specific functions of system resources are identified and verified through

simulation and checked against system requirements, including testability. Trade-offs are

made at this point to ensure that system requirements are met.TEA aids the designer in

identifying and implementing test resources and verifying that they will meet systemtest

and diagnosis requirements.

TEA uses thehierarchical testmethodology shown in Figure 1-4, that is composed of a set

of subsystems communicating through a system bus. Each subsystemis composed of a

number of boards communicating through a subsystem bus during normal operation and

through a test bus in test mode. Each board interfaces to the test bus through a test

interface. The test interface receives test data and control information from the test bus

and usesthisinformation to initiate tests and receive results by controlling the chip'slocal

test hardware on the board. The test interface can be a single chip and it can directly

interface to standard testability buses, such as the Boundary Scan test bus for

communicating test data to and from the board. The test data is generated by a Test
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Figure 1-4: Hierarchy of test and maintenance buses.

ControlUnit, a subsystem used exclusively to provide test data for every device under test

in the system and to analyze the results. This unit can be embedded in the system, or its

function can be performedby automatic test equipment.

1.3.2 Test Hardware: Custom Test Controllers

Severalcustom test controllers have been proposed. These systems were developed to

function in a structured testability hierarchy like that shown in Figure 1-4 and require

dedicated software to configure them for test anddebug operations. The advantages of a

hierarchical test methodology are interoperability at each level of subassembly due to

standardized test interfaces and reduced overall test and maintenance costs.

Module Test and Maintenance Controller

Lien and Breuer describe the Module Test and Maintenance Controller (MMC)

[Lien88][Lien89] system that is capable of controlling the self-testprocess of a board by
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accessing eachchip's test structures through a Boundary Scan test bus. It is intended to be

part of a hierarchy of test controller that are embedded into a target system's physical

hierarchy. In theirhierarchy, each testable chipcontains anon-chip test andmaintenance

controller (CMC); each testable board contains a module test and maintenance controller;

each testable subsystem contains a subsystem test and maintenance processor; and each

system has a system test and maintenance processor. The architecture for an MMC

consistsof a 16-bitgeneral or special purpose processor, a ROM, a RAM, a test channel,

test and maintenance processor with a Boundary Scan interface, and a bus driver/receiver,

which supports an expansion bus.

The major functions of the processor arelisted below:

* transferdata between memory and test channels

* compare test results with stored good results

* transferdatabetween memory andexpansionunits

* execute test and/ordiagnostic programs

* transfer data betweenmemory andthe subsystemmaintenance processor

Once initializedby the processor, the primary function of the test channelis to control the

Boundary Scan test bus. Other functions of the test channel are listed below:

* serve as a Boundary Scan master

* transmit instructionsto and receive statusinformation from chips

* generate and transmit pseudorandom test data andreceive compact results

* transmit deterministic test datato andreceive test results from chips

* generateinterruptsand also direct interrupts between chips and the processor

* and keep count of the number of tests applied and the number of bits in each test vector or

instruction that is transmitted.
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The bus driver/receiver is a bidirectional interface to the MMC, and the RAM and ROM

are used to store test data andseedvectors required for BIST operations respectively.

1.4 Summary

The work described in the previous sectiononly provided partial solutions to the two

part problem of automatically incorporating DFT features into application-specific

systems and providing hardware and software to support them. The uniqueness of the

work presented in this thesis is that it is a fully integrated solution to the system test

problem that deals with both pre-design and post-design test issues in an automated

fashion.

In the remaining chapters are described the details of the hardware and software for the

testing environment. Chapters 2 presents anoverview anoverview of the SIERA design

system and the test strategy employed in the system. The chip and board level test

hardware is discussed in Chapters 3 and 4 respectively. In Chapter 5, a detailed

explanation of the softwareused for designing andcontrolling the test hardware. Test

applications andsome actual test sessions are presented in Chapter 6. Finally, Chapter 7

presents conclusions and some suggestions for future work.



CHAPTER 2

THE SIERA DESIGN

ENVIRONMENT

Advances in VLSI technology has led to the creation of chips which resulted in a

complexity that resulted in a bottleneck in the chip's overall development time. This

bottleneck was alleviated by the use of silicon compilers which produce the physical

information required to fabricate chips from higher leveldescriptions of the design, these

could be a symbolic layout, a circuit schematic, a behavioral description of a

microarchitecture, aninstruction set, oranalgorithm for signal processing.

The compiler then transforms this highlevel description into a physical representation

required by the fabrication foundry. This transformation occurs in several steps. For

example, acompiler mighttransform abehavioral description of a design into alogicgate

level representation. A major advantage of this approach is that designers canwork at

higher levels of abstraction without havingto know specifics about the IC design and

process technology. Anotherand probably most important advantage of this approach is

the ability to rapidly produce chips. Further advances have also led to the creation of very

13
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complex systems. Even though these systems contain hundreds of components, tools that

support the integration of these components to makeup the system are still in a primitive

state. Additionally, these same tools do not exhibit usability and rapid prototyping

features. One such CAD environment that does exhibit these features is SIERA

[Srivastava91][Sun91][Srivastava92]. An overview of SIERA is presented in this chapter,

along with a discussion of the test strategy employed by SIERA along with the associated

testing environment.

2.1 Overview of SIERA

SIERA is an integrated CAD environment for the design of complex, application-

specific systems, where a system is a set of hardware modules that interactwith each other

and theenvironment to collectively perform some function. Inthecontext of this system, a

module canbe a single chipor group of interconnected chips. SIERA's origin stems from

the LAGER [Rabaey86][Shung91][Brodersen92] system, a custom chip design

environment. Some of the transformation steps used in LAGER are also used in SIERA

whichinclude behavioral-to-structural and structural-to-physical. Dedicated tools were

developed to tackle the tasks associated witheach transformation step. Many problems

inherent in system design that donotexist inchip design are addressed by SIERA such as:

* behavioral representation of systems

* simulationof behavioral representation

* structural representationof systems

* simulation of structural representation

* physical representation of systems

* and simulationof physicalrepresentation.
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SIERA was developed to provide a CAD environment thatis capable of synthesizing an

architecture, using both hardware and software modules, to implement the a system

specified in the form of a process network as described in

[Srivastava91][Sun91][Srivastava92]. Figure 2-1 illustrates a simplified highlevel view of

Behavioral
(system functionality)

i
Architecture

Mapping

J
Structural

(system architecture
in SDL, C)

i
System-Level

Module
Generation

Physical
(s/w + board layout

in gerber)

Fabrication
&

Debugging

Working System

Figure 2-1: High level view of SIERA.

Design
Flow
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SIERA. First, a behavioral representation of the design is mapped to an appropriate

architecture producing a structural representation whichis thenmanually partitioned and

mapped onto a four-layer system architecture template as shown in Figure 2-2. The two

lowest layers consist of custom boards where each board contains one or more software

programmable processing modules based around programmable digital signal processors,

and running real-time customizable OS kernels. Each processing module in turn

coordinates a number of application-specific slave modules which can be either software

programmable or dedicated hardware modules. The custom boards reside in a back-plane

bus, typically VME, and are slaves to an off-the-shelf single-board computer which also

runs areal-time OS kernel. This constitutes thethird layer. The processing modules on the

custom boards interact with the master single-board computer through a standard,

parameterized software and hardware interface. The VME master single-board computer

in turn, communicates with aUNIX workstation, which makes up the final layer, using

standard (Ethernet) and software protocols.

The software modules can bemapped to the top three layers which can be mapped to the

top three layers. For example, a software module is mapped either as a process on the

workstation, a process on the VME master single-board computer, or as a process on the

DSP processing module residing ona custom board. Layers 2 and 3 are used for process

with increasing real-time requirements while, the workstation is used for non-real-time

front-end orinteractive processes. The architecture mapping as specified by the user is

accomplished by selecting a library module for each block in the block diagram. An

implementation of a block is either in the form of program code meant for execution as a

software process, or a behavioral or structural representation of a dedicated hardware

process.

Designs in SIERA are managed by the Design Manager called DMoct, which automates
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the generation of a hierarchical system comprised of parts created by a large variety of

tools. It accesses thesetools in the proper order to preserve the designhierarchy contained

in a textual or schematicrepresentation of the design. The design flow as managed by

DMoctis shownin Figure 2-3.The textual representation is written in a structural design

language calledSDL [Brodersen92][Shung91] which haslisp like constructs, furthermore,

design constraints and parameters are also passed along with this representation. After

parsing the SDL file, an initial representation of the design called the structure-master

view is created and stored in the OCT object-oriented data base [Octools][Harrison86].
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Figure 2-3: Typical PCB design flowmanaged by DMoct.

OCT was developed specifically for electronic CAD applications and it offers a

straightforward mechanism for storing allinformation pertinent to anevolvingdesign.

Following this step, the parameters are evaluated and together with structure-processor

tools (which are dedicated tools that onlyoperates on structure-master views), produce a

structure-instance view whichis anexpanded view of the total design as represented in

OCT. Finally, layout generation tools operate on structure-instance views to produce

output files containing physical geometry and implementation specific information

requiredto fabricate a chip, MCM, or board.
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2.1.1 System Design Methodology

Embodied withinthe SIERA framework is avertically integrated design methodology

that supports the development of application-specific systems at all levels from the high

level description to the boardimplementation and software generation. SIERA uses an

"application-driven" approach which is based on examining actual implementations of

example systems, developing an initialdesignmethodology, automating and improving

the design methodology through experience gained from the example systems. This

approach is different from the classical "tool-driven" method which develops a design

methodology after developing a set of automated tools. The design methodology used in

SIERA consists of two parts, namely Module Generation and Architecture Generation.

Module Generationwill be discussed here, any information regarding architecture and

software generation can be found in [Srivastava92].

Module Generation is the physical implementation of a system from an architecture

comprised of hardware modules, where emphasis is placed on generation of multi-chip

board level hardware modules. A major feature of this hardware generation strategy is a

library consisting of reusable parameterized board-level sub-systemmodules thatcan be

integrated into a custom board design. These modules can be used for communication,

signal processing, data acquisition, or testing applications. Some modules are fixed and

while others can be customized for a given application via parameters providedby the

designer. For example, parameters can determine the type andsize of a memory module.

The combination of the sub-system library and the hardware modules provides an

environment unmatched by commercially available board design tools. A typical board

design may consist of a number of these modules connected together to achieve the

desired functionality. Module generators produce sub-system netlists and component

placement information which are all processed by DMoct to produce a final boardnetlist.
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The board netlist is then processed by a structure-processor called oct2rinf, which

produces an output file that is compatible with a commercial router.

2.1.2 Hardware Module Generation

The primary objectiveof the hardware modulegeneration environment was to provide

an environmentthat can handle arbitrary hardware architectures implemented as custom

boards using customandcommercial ICs, as well as, the capability to explore alternative

implementations. Module generation was founded on the basis of pre-existing ASIC

generators, like those in LAGER, that automatically produce circuitry required to

implement dedicated chiplevelmacro-functions and then, tie themtogether to achieve the

desired functionality. These same concepts also proved to beextremely useful at the board

level, where one or more custom and/or commercial ICs are grouped together to

implement acomplex function. This environment also uses SDLto describe the designs,

OCTto store the design information, and DMoct to manage thedesign flow. Additionally,

chip level module generators and behavioral tools are also available to the board

designers. As aresult, acomplex board design can berepresented as anetlist of high-level

modules that are maintainedin a library consistingof parameterized reusable modules

(adders, multipliers, etc.) or as a behavioral description (FSMcontrollers, decoders). The

final step toward completing a board design is the layout, for this, several layout

generation tools were developed. This section is only intended to present the reader with

anoverview of thehardware module generation environment, amore complete discussion

isin[Shung89].

2.2 Test Strategy used in SIERA

Traditional approaches to system test often employ a three level strategy. First, an



21

engineer withverylittle orno testexperience runs a system self test to quickly determine

whether the systemis operating correctly. If a failure occurs, the engineer runs additional

tests on each of the boards thatmake up the system, to locate the faulty board and then

replaces it.The faulty board is then returned to the manufacturer, where their testengineer,

whois experienced, uses sophisticated ATEto locate the faulty chip and replaces it.

The traditional approach presents many problems, three of the most important ones are

listed below:

1. the additional cost of shipping the boards out for repair;

2. the time required to develop a good functional test vectors;

3. difficulty of duplicationof the problem.

The difficulty of the duplication problem refers to the situation where one level of test

indicates a failure and that failure is transparent at the next level. This in part is due to

intermittent faults and/or differences in test procedures used atvarious levels of testing.

The causes of these problems, which have been identified [Breuer85], are environmental

dependency, which means that a failure is caused by environmental conditions like

temperature and vibration, false alarms caused by design errors or transient faults,

incompatibility of tests, which iscaused bythe use of inconsistent testability techniques at

different levels of the system hierarchy, and faults in the test hardware.

The approach described above is adequate for high volume production environments but

insufficient for low to mediumrapid prototyping environments like SIERA. Hence, the

test strategy used in SIERA should eliminate or at least reduce the problems mentioned

above. The strategy usedin SIERA should be able to support testing at all levels of the

system's hierarchy, support existing testability busstandards, produce test vectors, have a

facility to initiate and execute tests and provide ameans to integrate DFT techniques into

thedesign process. This will result in a complete solution that deals with the design, as
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well as, the testing of a system. This approach is contrary to the approaches described in

the Previous Work section in Chapter 1,where theauthors only presented partial solutions.

Embedded within SIERA is a test environment that fulfills the above requirements, where

thedesigner, hasavailable, testable hardware modules atboththechipandboard level that

implement a DFT methodology or testability bus standard, software tools that tie these

modules together, test languages that describe what DFT modules areused and how to use

them during test, anda dynamically reconfigurable customcontroller board that is used to

control and access the devices (chips and boards) which contain the testable hardware.

Specific details and issues regarding the design, implementation, andapplication of each

componentof the test environmentis the subject of this dissertation. Each componentis

addressed in the chapters that follow, but a discussion on how we integrate test into

SIERA is warranted.

2.2.1 Integrating Test into SIERA

The DFTtechniques used in SIERA must tackle test problems at both the chip and

board levels. Furthermore, these techniques mustnotsignificantly impact performance or

area. While preserving these objectives, test is integrated into SIERA in two phases. The

first phase involves identifying the building blocks that comprise a chip or board. For

example, there are three fundamental units of logic that used to implement achip, namely

combinational logic, registers, and random access memories. At the boardlevel, devices

are categorized as either Boundary Scan or non-Boundary Scancomponents. After the

fundamental systemcomponents have been identified, specific test methodologies, in

particular, those described in Chapter 1, are chosen for each component in the second

phase. At the chip level, the registers are configured as a Scan Path and used to test the

combinational logic, while memory is tested using the BIST technique. The Boundary
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Scan devices are chained together forming a Boundary Scan path where these devices are

used to test the board interconnect, as well as, provide access to chip level Scan Path and

BIST functions. Dedicated test hardware modules have been developed that implement

Scan Path, BIST, and Boundary Scan using the hardware module generation feature in

SIERA. Special languages and software tools have also beendeveloped to support these

modules, all of which are arranged in a test library. Figure 2-4 illustrates how these

features are integrated into SIERA. The design, implementation, and some examples of

these modules and the Test and Diagnosis system are discussed in the next Chapter 4,

while the software tools thatsupport thishardware are discussed in Chapter 5.

2.3 Summary

An overview of SIERA, the system design methodology, the hardware module

generation environment, our system test strategy, the test environment and how it's

integrated into SIERA have been presented. The test methodologies used in SIERA are

only intended to assist the designer in two ways: (1) to help verify the complete

functionality of their system; and (2) to isolate the faulty device down to the logic gate

level. Moreover, our approach allows us to deal with testability as part of the design

process not as a post-design process.

The test methodologies used in SIERA were chosen because of their ease of

implementation andsuitability in arapid prototyping environment. Our approach does not

require that the designer be intimately aware of all of the DFT techniques that exist and

their implementation, but rather allows the designer to work at a high level with libraries

and software tools to implement the actual test. Finally, the role of the chip level

macrocells and the board level modules is to help the designer incorporate testability

features into the design to meet system test requirements. With a system designed using
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these modules, the designer can isolate system faults down to a single chip. This capability

is particularly attractive in terms of repair times andrepair costs.
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CHAPTER 3

TEST HARDWARE - CHIP

LEVEL

In 1985, an ad hoc group composed of key semiconductormanufacturers formed to

establish a solutionto the problems associated with board level testing. This concerted

effortinvolved the producers of both chips and board level products. The solution they

cameup with eventually led to the development of a standard chip level test architecture

called Boundary Scan that, not only, solves the board level test problem, but also allows

designers to add test features, like Scan Path and BIST, tomeettheir ownrequirements. To

be compatible, a chip must have certain basic test features which are outlined in the

standardspecification.

This chapter presents an overview of the Boundary Scan standard, addresses

implementation issues associated with integrating Scan Path and BIST with Boundary

Scan and examines design versus test cost trade-offs.

27
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3.1 The Boundary Scan Standard: An Overview

Two continuing trends are increasingly making it more difficult to test printed circuit

boards:

1. Increasing complexity - As chips become more complex, sodoes thetaskof generating
tests for boards that use them. For functional testing, test generation times are
significantly longer, due to theneed to propagate testdata through some chips while
tests are applied to others. Test lengths also increase ascomplexityincreases.

2. Greater miniaturization - The use of multi-chip modules as well as surface mount
packaging technology, particularly when coupled with double-sided component
mounting reduces board geometries making boards more difficult to probe using
traditional bed-of-nails access.

The purpose of theBoundary Scan [lKEE90a] standard is to provide thebasis for solutions

for these problems. Boundary Scan solved these problems by eliminating the need to

physically probe a component's I/O pins by implementing an electronic probe inside the

component's I/O pins. This section describes the principal features of the Boundary Scan

Macrocell.

The standard architecture requires of three major circuit blocks shown in Figure 3-1 and

described below:

TAP Controller - a finite state machine that responds tocontrol signals supplies through
the test access port (TAP) and generates the clocks and control signals required for
correct operation.

Instruction Register - ann-bit shift register whosecontents determine which test is to be
executed

Test Data Register - an n-bit shift register that applies the test stimuli orconditioning
values required by a test. At theendof atest, theresults in thetestdata register can be
shifted out for exaniination. This register, for example can be implemented as a Scan
Path register.

3.1.1 Test Access Port

These circuit blocks are connected to aTAP which includes four or, optionally, five
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Figure 3-1: Top level view of Boundary Scan test logic.

signals used to control the operation of tests and the application of test data and

instructions. The TAP consists of:

Test Clock Input CTCK) - allows test operations to be synchronized between various
chips on the board.

Test Mode Select (TMS) - Operation of the test logic is controlledby a sequence of Os
and Is applied to this input. The sequence on TMS directs the execution of the TAP
controller.

Test Data Input (TDI) - Data applied to this serial input is fed either into the
instruction registeror into the test data register depending on the sequence appliedto
the TMS pin.

Test Data Output (TDO) - The serial output from the test logic is fed either from the
instruction register or from the test data register. During shifting, data applied to TDI
will appear at TDO after N clock cycles, where N is the register size. When data is not
being shifted through the register,TDO is in a high impedance state.
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Test Reset Input (TRST*) - Thisoptional input is usedto resetthe testlogicwhen a 0
is applied.

TheTDI, TMS, andTRST* inputs are equipped with a pull-up resistor so thatwhen they

arenotdriven by an external source, the testlogic always sees a logic 1. In thecaseof the

TMS input, this ensures that the TAPcontroller always starts in the correct state after 5

clock cycles.

3.1,2 TAP Controller

A key goal during the development of the Boundary Scan standard was to keep the

number of pins in theTAP to a minimum because chip designers arealways reluctant to

allocate additional pins for test purposes. The TAP controller achieves this goal with a 16-

state finite state machine that implements a serial test protocol. Thestate diagram for the

TAP controller is shown in Figure 3-2. Note that all data register operations endwith a

*_DR' and all instructionregister operations end with a *_IR\ State to state transitions

occur on therisingedge of TCK. The0s and Is shown adjacent to the statetransition arcs

indicate the TMS value thatmust bepresent together with a rising edge onTCK, for that

particular transition tooccur. Eight of the sixteen controller states determine operation of

thetestlogic, allowing thefollowing testfunctions to beperformed:

Test-Logic-Reset - All test logic is reset, allowing normal operation of the chip to
occur without interference. Regardless of the starting state of the TAP controller, this
state can be reached by applying a 1 to the TMS input for five clock cycles.
Alternatively, if TRST* is provided, it can be used to asynchronously reset the TAP
controllerat any point during operation.

Run-Test/Idle - The operation of the test logic in this controller state depends on the
instruction in theinstruction register. Forexample, if an instruction activates a self-test,
then the self-test will runin this state. If the instruction happens to beonethatselects a
data registerfor scanning, then the test logicwill be idle.
Capture-DR - Each instruction must identify one or more test data registers that are
enabled to operate duringtest modewhen the instruction is selected. In this state, data
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is loadedfrom the parallel inputsof the selected testdata registers into its shift register
paths.

Shift-DR - Eachinstruction mustidentify a single testdataregister thatis to beusedto
shiftdatabetween TDIandTDO in thisstate. Shifting allows theresults of theprevious
test to be examined while applying the next test.

Update-DR - This state signifies the end of the shifting process. Some test data
registers may contain latched parallel outputs to prevent signals applied to the system
logicor through thechip's I/O pins,fromtoggling while newtestdata is shiftedinto the
register.

Capture-IR, Shift-IR, and Update-IR - These states are analogous to Capture-DR, Shift-

DR, andUpdate-IR respectively, butonly affect operation of the instruction register. A

new instructionis applied in the Update-IRstate.

In the Update-DR and Update-IR states, action takes place on the falling edgeof TCK,

whileactiontakesplaceon the risingedgeof TCKin all of the otherstates.TDOis active

only during the Shift-DR and Shift-IR states. The test logic remains idle in the remaining

eight states. The pause states, Pause-DR and Pause-IR, are provided toallow the shifting

process to be temporarily halted. The Select-DR-Scan, Exitl-DR, Exit2-DR, Select-IR-

Scan, Exitl-IR, and Exit2-IR states are decision points in the state diagram.

3.1.3 Instruction Register

Theinstruction register provides on thealternate serial paths between TDIandTDO. It

operates during the instructionscanning portion of the controller state diagram. The

instruction register is a parallel-in, parallel-out shift register. The parallel output is latched

so that a new instruction canbeshifted in without altering the previous instruction. The

latched output is updated from theshiftregister path in theUpdate-IR state; at this time,

the new instruction becomes current. In the Test-Logic-Reset state, the latched output is

reset to load the BYPASS instruction. The instruction registermust contain at least two

stages. No maximum length is defined, since this will bedetermined bythenumber of test
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Optional Stages Mandatory Stages

/" "\/^ "\

Instructions

Figure 3-3: Instruction register.

instructions required. A block diagram of the instruction register is shownin Figure 3-3.

Stages II and10must be set to 0 and 1 respectively in the Capture-IR state. These fixed

values ease detection andlocation of faults that may exist in the scan path. In a board

design, instruction registers are daisy-chained together in the Shift-IR state so that

different instructions can be shifted into each chip in the path. The TAP controller is

implemented usingthe Standard Celllogicdesign methodology. It was synthesized from a

behavioral description written in BDS [Octtools].

Instruction Register Cell Design

The instruction register provides one of the alternate serial paths between TDI and

TDO. It operates when the instruction scanning portion of the TAP controller state

diagram is entered.The instructionregister allows test instructions to be entered into each

chip along the board level scan path. These registers are daisy-chained together at the

board level in the Shift-IR controller state, so that a different instruction can be loaded into

eachchip on the path if required. A block diagram of the instruction register cell is shown
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To Next Cell

Instruction

Bit

Figure 3-4: Block diagram of instruction register cell.

in Figure 3-4. Each cell hasa latched output to whichinstructions are transferred when

they are valid, thisassures thatthe testlogic receives onlyvalid instructions. The function

of the ShiftIR, ClockIR, andUpdateIR signals are analogous to the ShiftDR,ClockDR,

and UpdateIR respectively. When theTAP controller enters theTest-Logic-Reset state, it

applies a0 the Reset* input and forces a0 to appear atthe instruction register's output.

3.1.4 Test Data Register

The Boundary Scan standard specifies the design of three test data registers, two of

which must be included in the design. The mandatory test data registers are the bypass and

boundary scan registers. The device identification register is optional. All test data

Operation of the various test data registers is controlled according to the current

instruction. An instruction can place several test data registers into their test mode of

operation, but it can select only one register to connect between TDI and TDO in the

Shift_DRcontroller state as shownin Figure 3-5.

Registers thatare notusedduring a testoperation are configured such that they do not
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Figure 3-5: Test data registers.
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TDO

interfere with theoperation of thechip's internal logic. Registers thatare usedduring atest

operation will load data from their parallel inputs in the Capture-DR state andmake any

new data available at their latched outputs in the Update-DR state. In other words, the

results of a test aresampled in the Capture-DR state,and the new test datais available, at

the latest, in theUpdate-DR state. Any testoperations required between the Update-DR

and Capture-DR states must occur in the Run-Test/Idle state.And, the register selected by

the instruction to be the serial path between TDI and TDO must shift data from TDI

towards TDO in the Shift-DR controller state. All othertest dataregisters enabled for test

operation will retain their statewhile shifting occurs.

Boundary Scan Register Cell Design

To comply with the Boundary Scan standard, a chip must contain boundary scan

register cells at its input and output pins, as shown in Figure 3-6. These cells should be

located:
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• between each input pin (clock ordata) and the corresponding input to the chips internal

logic;

• between each output from the chip's internal logic and the corresponding output pin;

• and between each tri-state enable or direction control output from the chip's internal

logicand the corresponding output driver pin.

A block diagram of anoutput boundary scan register cell is shown inFigure 3-7. During

normal operation, the MODE signal is disabled and the cell becomes transparent and data

passes directly to the chips output pin. When an instruction is selected, the ShiftDR and

ClkDR signals are asserted until all testdata is loaded into the boundary scan chain after

which, the UpdateDR signal is asserted and the test data is applied to the output pins.

Meanwhile, the mode signal is asserted during the entire test. Test results can then

captured at the input pin of an adjacent chip andshifted outfor comparison with thatof a

good circuit.



Data From

System
Logic

From

Previous

Cell

M

U
X

ShiftDR

D Q

C

r
ClockDR

D Q

C

UpdateDR

M

U
X

Mode

To

System
Pin

37

Figure 3-7: Output boundary scan register cell.

These cells operate in conjunction with the cells at the data connections of the chip's

internal logic, furthermore, they allow the state of the output driver and the data value

driven when the driver is active, to be controlled. The reason for the necessity of these

cells is illustrated in Figure 3-8 which shows a board level tri-state bus that can be driven

by chip A, chip B, chip C, or chip D. To test the interconnectionbetween these chips, it is

necessary to determine whether the bus can be driven to both a logic 0 or logic 1, and

whether each chip can drive signals onto the bus independent of the others. Figures 3-9

and 3-10 illustrate how boundary scan cells areused in a tri-state pin and bidirectional,

respectively. An additional cell is required to control the state of both the tri-state and

bidirectional pins. The CHIP_TEST* signal is provided to prevent the I/O pin from

toggling during Scan Path and BIST testing.The EXTEST* signal is provided to prevent

the chip's internallogic from changingduringcomponent interconnect testing.

3.1.5 Bypass Register Cell Design

The bypass register must also be present in all chips that conform to the standard. It is

the shortest path between the TDI and TDO pins and allows data to be shifted through the
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chip without interfering with its system operation. The bypass register consists of aone bit

shift-register that loads a constant logic0 in the Capture-DR controller state when the

BYPASS instruction is selected. It does nothave a parallel data output, therefore, the data

present in the register when shifting is completed is unimportant. The importance of this

register is illustrated inthe following example, consider aboard containing 100 Boundary

Scan chips all connected into a single serial chain and you need to access the boundary

scan register that's located on the 49th chipin thechain, but you do not wantto interfere

with the operation of theremaining 99chips. In this case, the required instruction would

beloaded into Chip3, with the BYPASS instruction being loaded into the other chips. The
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Figure 3-11: Example output pad implementation.

serial bit stream shifted into TDI during the instruction scanning cycle would be:

111....1111CCC...CCC1111...111 where CCC...CCC is the instruction to be loaded into the

49th chip.

3.1.6 Mandatory Instructions

A chipimplementation must support several mandatory instructions in order to satisfy

the minimum requirements mandated by the standardcalledEXTEST and SAMPLE The

Mode signal in Figure 3-7 is generated by decoding the current instruction and should be

asserted (set to 1) when the EXTESTinstruction is executedand it should be disabled (set

to 0) otherwise. This instruction allows the Boundary Scan register to be used for board

interconnecttesting in the following way:
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• Test datashifted into the Boundary Scancells locatedat the chips output pins aredriven

through the connected pinsontothe board interconnections. This process is initiated by

executing the EXTEST instruction and then moving to the Shift_DR controller state.

One bit of data is shifted into the Boundary Scanregister on every risingedge ofTCK.

• Shifting is complete when the controller enters the Update_DR controller state. On the

falling edge of TCK in this state, the data is transferred from the Boundary Scan regis

ter stages onto the latched parallel outputs of each cell. Because the Mode signal is

asserted by the EXTEST instruction, the test is applied to the board interconnections at

this time.

• The test results are captured in the cells at the system input pins.This occurson the ris

ing edge ofTCK in the next Capture_DR controller state.

• The test results areexamined by moving back to the Shift_DR controller state.The data

held in the Boundary Scanregister move one stage towards the TDO pin on eachrising

edge of TCK.

When the SAMPLE/PRELOAD instruction is executed, the Mode signal is dis

abled allowing the chip to continue its normal operation without interference.

This instruction supports two distinct test operations. In the first instance, the

Boundary Scan cells at both inputs and outputs load the state of the signal flow

ing through them between the I/O pin and the chip logic:

• A snap shot of the data flowing through the chip's I/O pins is taken by first executing

the SAMPLE/PRELOAD instruction and then moving to the Capture_DR controller

state.

• The captured data can be shifted out for examination in the Shift_DR controller state.

On each rising edge of TCK, the data held in the Boundary Scan register advance one

stage towards TDO.
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Applications of the SAMPLE test include debugging of prototype boards.

In the second instance (PRELOAD), data can be shifted into the Boundary Scan

cells without interfering with the normal flow of signals between the chip pins

and the application logic. This allows the latched parallel outputs in the Bound

ary Scan cells to be initialized with data before the next instruction is selected.

The following events occur before execution of this instruction:

• testdata is shiftedinto the Boundary Scan register by first selecting the SAMPLE/PRE

LOAD instructionand then moving to the Shift_DR controller state.

* after the data is loaded and shifted in,the scanning sequence is halted by moving to the

Update_DR controller state atwhichtimethedata is applied for initialization.

By loading suitable data when PRELOAD is selected, the user can ensure that all signals

driven off the chip aredefined as soon as the EXTEST instruction is selected.

3.2 Designing Chips with Boundary Scan

When incorporating the Boundary Scan architecture into a chip, there are several

issues that must beaddressed. The decision toincorporate this architecture in achip first

should beconsidered from aboard orsystem level point of view. If Boundary Scan is tobe

used as a system requirement, then it is very important to define the instructions at the

system orboard levelfirst, and then implement the appropriate instructions onthechip. As

a minimum, the standard requires that achipmust be able to execute three instructions:

BYPASS, SAMPLE, and EXTEST.

To implement the logic required by the standard, the designer musteither design the

Boundary Scan testcircuitry manually orusean existing library module. Themodule must

consist of a minimum of four basic building blocks: a Boundary Scan register, aTAP
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controller, an instruction register, and a bypass register.

The standard also contains a number of design requirements that must be followed to

ensure that the chip works properly with other Boundary Scan chips. First, a Boundary

Scan cell must be placed at each I/O pin except the four test bus signals. Second, the TMS

and TDI test bus signals must use a pull-up cell to prevent unstable TAP controller

operation.These requirements represent the most common implementation guidelines,

and additional rules can be obtained from the actual specification.

3.2.1 Boundary Scan Macrocell

The design of the Boundary Scan architecture should be a structured, parallel

effort that complements the natural top-down design style associated with each

chip. All this is achieved by a macrocell called JTAG_MACRO that automatically

implements this architecture has been developed. It is written in the SDL language and

requires that the designer provide parameters such as boundary scan register length. A

summary of all the required parameters and their corresponding functions are given in

Table 3-1. The designer can also dictate the shape of the Boundary Scan macrocellusing

the BSrows and SProws parameters. Pointers to the SDL files for the JTAG_MACRO are

given in Appendix B.

3.2.2 Boundary Scan I/O Pad Library

To accommodated designs where the designer is constrained to a limited chip core

area, a library of input and output pads have been developed that contain boundary scan

registers inside them. The serial scan pathis constructed by simple abutment of pad cells

that form a frame around the border of the chip. A plot of an input boundary scan output

pad is shown in Figure 3-11 andTable 3-2 describing boundary scan pad library cells is



44

Parameter Function

BSwidth Determines width of Boundary Scan register

BSrows Stdcellparameter used to determine the shapeof the Boundary
Scan register

BSreset Selects reset option for BoundaryScan register cells

SPwidth Determines width of Scan Path register

SProws Stdcellparameter usedto determine the shapeof the ScanPath
register

SPreset Selects reset option for BoundaryScan register cells

MUXwidth Determines the widthof the multiplexers. Default value is 3,
increaseby one for each additional register

TAPflag Selects between Stdcell andPLAcontroller implementations
Stdcell is default implementation.

Table3-1: JTAG_MACRO parameterdefinitions.

given below.

3.23 Integrating Scan Path with Boundary Scan

The Scan Path test methodology can beused easily supported by using a private

SCANTEST instruction whose opcode is 100. When this instruction is selected, theTest

Mode Selectsignal,whichcontrols movement between controller states,acts like the test

mode control for a traditional Scan register, which causes movement between shift and

load. Test data is loaded into the Scanregister when TMS = 1, and data is shiftedwhen

TMS = 0. Forchips that employ a single scan path, the TDI and TDO pins become the

SCANIN input and SCANOUT output. In this case, theTDOdrivermust be modified to

allow it to be active in the Pause_DR controller state. Multiple scan paths can be

supported by multiplexing the serial inputs and outputs onto normal package pins when

TMS i= 0 and SCANTEST is selected.
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I/O Pad Function

in_2u Input Boundary Scan Pad

out_2u Output Boundary Scan Pad

io_2u Bidirectional Boundary Scan Pad

tdi Test Data Input Pad

tdo Test Data Output Pad

tms Test Mode Select Pad

tck Test Clock Input Pad

vdd_2u Power Pad

gnd_2u Ground Pad

analog_in_2u Unbuffered Boundary Scan Pad

space_2u Space Pad

corner_2u Pad Frame Corner Pad

Table 3-2 : Listingof Boundary Scan pad library cells.

3.2.4 Integrating BIST with Boundary Scan

In [LeBlanc84], the idea of integrating BISTwith Boundary Scan was introduced.

Similar totheScan Path case, theBoundary Scan circuitry canbesupplemented toprovide

testsupport for BIST applications. Byselecting theRUNBIST instruction andplacing the

TAP controller in theRun_Test/Idle controller state forasmany clock cycles as is required

to execute theself-test andproviding additional circuitry for control, BISTcircuitry can be

easily controlled through the Boundary Scan test bus interface.

Embedded memory testing is one of many applications that is ideallysuitedfor BIST. In

embedded memories, theaddress, data, andcontrol inputs maynot be directly controllable

and the data output may not be directly observable at a chip's input and output pins.

Further, the test patterns for memories are required to detect a wide variety of complex
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faults. These faults are different from classical stuck-at faults. Since, the use of scan based

design techniques do not simplify the problem of testing embedded RAMs, it becomes

cost-effective to incorporate BIST features in embedded memories to avoid complex time

consuming test generation. The BIST feature of embedded memories provides vertical

testability of the RAM, notonly at the board level, but atthe systemlevel aswell.

The embedded memory BIST macro requires a counter, exclusive-OR gates, several

multiplexers, and a Linear Feedback Shift Register (LFSR) as shown in Figure 3-12. A

linear feedback shift register can be formed by exoring the outputs of two ormore of the

flip-flops together and feeding them back into the input of one of the flip-flops. The

counter is used to supply thetestpatterns to theembedded RAM and tocontrol the testing

sequence. Unlike typical BIST techniques which usean LFSRas a pseudo-random pattern

generator, the counter provides a deterministic set of patterns necessary for thorough

testing of the RAM circuitry. The LFSR in this BISTapproach is used to compress the

outputdata from the RAM usingsignature analysis techniques.

For purposes of illustration, a RAM with 16 addressable locations and 4 bits per location

will be considered as shown in Figure 3-13. The basic idea is to use a counter during

testing to supply theaddress to theRAM, to supply data, and also to control theentire test

sequence. A 6-bit counteris used in this example. The four lower bits of the counter are

used to supply the address and data. The fifth bitis used tocontrol reading and writing of

the RAM during the testing sequencesuch that the entireRAM is written and then read.

The sixth bit is used to invert the data going into the RAM during the test. The test

proceeds as follows. First the RAM is written with the address such that address location 0

contains the data '0000', address location 1 contains the data *0001\ and address location

F(Hexadecimal) contains the data '1111*. Thus each address location contains aunique

data value. This approach assumes that the number of data bits in each RAM location is
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Figure 3-12: Embedded RAM BIST circuit.
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greater than or equal to the number of address bits. Next, the RAM is read, via the fifth bit

of the counter controlling the read operation andthe first four bits controlling the address,

beginning with address location 0. When location 0 has been read, any faults in the

address decoding circuitry of the RAM will be detected since a failure would have caused

either location 0 to be overwritten during the writing sequence or anotherlocation to be

read during the read operation. When the entire RAM has been read, the sixth bit of the

counter is used to invert the data entering the RAM and the entire RAM is rewritten with

the complemented data. In this case, address location 0 is written with the data '1111',

address location 1 is written with '1110', and so on. Once again the RAM is read under

control the fifth bit of the counter. When the read sequence is finished, each bit in the
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Figure 3-13: RAM BIST example.

RAM has been tested for failures which would render that bit stuck at a logic 0 or 1.

Hence, all classical "stuck-at" faults associated with the RAM are detected.

Due to the large number of patterns which can be encountered using the counter testing

technique described above, propagating the RAM outputdata to the chip's outputscan be

difficult. By includinga data compression technique suchas signature analysis, the BIST

mechanism is obtained. In the BIST circuit for the RAM, a parallel entry LFSR is most

appropriate since the data typically leaves the RAM in parallel. During the write

sequences to the RAM the LFSR is disabled from shifting or loadingin new datasince the

output of the RAM may be unknown during a write operation. The LFSR is controlled in

this caseby the same counterbit outputthatcontrols the writingandreading of the RAM.

The LFSR is disabled at the end of the test and the resulting signature is read for

comparison with a stored correct signature or is compared to a predefined correct

signature stored on the chip. The latter case requires the use of a comparator. At present,
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the LFSR in this macrocell is generated by hand. The SDL for this macrocell called

BISTJMACRO is given in Appendix B.

3.2.5 Chip Implementations

Two prototype chips have been implemented in 2u CMOS technology using the

MOSIS fabrication facility. They were designed using the LAGER

[Brodersen92][Shung891 siliconassembly system. The layout for TEST_CHIP1 which

contains the JTAG_MACRO is shown in Figure 3-14. In this chip, the boundary scan

register is embedded within the chip's internal corecircuitry, whereas TEST_CHIP2 uses

boundary scanpads andits corresponding chiplayoutis shownin Figure 3-15. Moreover,

each chipcontains a Scan Path register embedded in its data path thatis accessible through

the Boundary Scan TAP bus.

33 Tfrade-Offs: Design Costs vs. Test Costs
The impactof Boundary Scan as seen at the chip level is much more profound that at

boththe board and systemlevels. This is because Boundary Scan at the chip level affects

the I/O pins, which consequently affects the package size, the overall gate count, andthe

performance due to the additional delay seenat the I/O pins. The Boundary Scanstandard

requires a minimum of four extra I/O pins. This overhead is always required, but is less

obvious in larger package devices. Table 3-3 shows the percentof additional pins per

package size. The number of gates required to implement Boundary Scan is primarily

driven by the numberof chip I/O pins. The reason for this is because the standard requires

each functional I/O pin to have a boundary scan register cell. Naturally, chips with low

gate counts and a high number of I/O pins will have proportionally more gates to

implement the Boundary Scan architecture. The standard also requires a 2-bit Instruction
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Figure 3-14: Chip layout for TEST_CHIP1.

Register as a minimum, but longer Instruction Registers are allowed to implement

additional application specific instructions. The following formula can be used to estimate

the gate countoverhead (functional I/O pins areonlycounted):

Gate Count = (TAP) + [(IR) * (IRbit width)] + (Bypass) + [(#I/O pins)* (#gates/pin)].
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Figure 3-15: Chip layout for TEST_CHIP2.

Boundary scan register cells introduce a propagation delay in the data path that is

equivalent to thatof a 2-1 multiplexer. A typical value for a 2um CMOS technology is on

the order of 3.0 nanoseconds.
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Package Size Percent of Boundary Scan Pins vs. Total Component Pins

24 pins 16.7%

40 pins 10.0%

64 pins 6.3%

100 pins 4.0%

132 pins 3.0%

160 pins 2.5%

208 pins 1.9%

Table 3-3 :Component package /pin ratio.

3.4 Summary

An overview of the Boundary Scan standard was presented in this chapter. Two

prototype chips implementing the Boundary Scan architecture and Scan Path have been

described. Finally, trade-offs betweendesign andtest costsare addressed.



CHAPTER 4

TEST HARDWARE - BOARD

LEVEL

Testing at the system or subsystem level is not always accomplished by simply usinga

set of testable chips unless they are properly integrated at the board level. Traditional

board level testing consumes a great deal of time and requires special hardware and

complex AutomatedTest Equipment for eachtype of board or device. This ultimately

results in increased development time.

An innovative approach to the problems associated with traditional board level testingis

to incorporate DFTtechniques that allow embedded testing to be performed. For example,

scanned in values can initialize states before testing, and testing can be done while the

component is embedded withinaboard. Board level testing canmadeeasywith Boundary

Scan components. These components can be used to effectively partition and isolate

sections of a board for quicker fault isolation. Furthermore, these components can

eliminate physical access problemsand provide the designer with access to and control of

hardto access nodes on the board. Not only do these components perform functions such

53
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as buffers, transceivers, latches, and flip-flops, but they also include components that

perform dedicated low level test functions. These low level test functions can be easily

combined to createhigh level test functions. Some of these high level test functions are

used in a prototype design called the Test Master Controller boardwhich is used to control

and access the Boundary Scan components of a target board.

This chapter deals with the requirements, design, andimplementation of the hardware that

is used to support board level testing, which includes a Boundary Scan components

library, dedicated board level test modules, a custom Test Master Controller board, and a

discussion on board level trade-off issues.

4.1 Boundary Scan Component Library

Dueto widespread adoption of the Boundary Scan standard by the commercial ASIC

industry, many Boundary Scan components are beginning to appear on the market. Since

most board designs include octal devices - buffers, latches, transceivers, flip-flops - for bus

operations, manufactures have provided families of octal chips thatsupport the Boundary

Scan standard. These octals can replace their standard IC counterparts to enhance the

testability at the board level.When usedin their test mode, these octals offerdesigners a

number of useful test features such as pseudorandom pattern generation and parallel

signature analysis.

A variety of Boundary Scan components which are manufactured by a number of ASIC

vendors are organized into a test component library. Table 4-1 provides a description of

the components and their corresponding function.

As anexample, a partial listing of an SDL file for anoctal bufferis shown in Figure 4-1.

The file provides a black-box footprint of a genericTTL LS244 partwhere the I/O
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Boundary Scan
Component

TISN74BCT8244

TISN74BCT8245

TISN74BCT8373

TISN74BCT8374

TISN74ACT8990

TI SN74ACT8994

TI SN74ACT8997

TISN74ACT8999

TTTMS320C40

TITMS320C50/51

TITMS29F816

Component Function

Scan Test Device with Octal Buffer

Scan Test Device with Octal Bus Transceiver

ScanTestDevicewith OctalD-typeLatch

ScanTestDevice withOctal D-type Flip-Flop

Boundary ScanTest Bus ControllerChip

Boundary ScanDigitalBusMonitorChip

BoundaryScan Path LinkerChip

BoundaryScanPath SelectorChip

Floating-Point DSP forParallel Processing with Boundary
Scan

Fixed-Point DSPChipwithBoundary Scan

BoundaryScanFlashEEPROM Chip

Table4-1: Listingof Boundary Scandevices,

terminals are the same but the pin mappings are different for agiven package type. Inthis

example the JTAG contains allof the Boundary Scan implementation specific information

for this particular device. This information includes the size ofthe Boundary Scan (BSR),

Instruction (IR), and Bypass registers (BPR) and avariable indicating whether the chip is

a Boundary Scan slave (MASTER 0) or master (MASTER 1)device.

The local variable PKGLIST isused todefine the various package types that are available

for the given part. PKGCODE is a Lisp function that checks to see if the package type

value, which in this case can be a dual-in-line orsmall outline or leadless chip carrier

package, assigned to PKGTYPE by the user is a valid one. The other user parameter,

JTAG, is used to distinguish between a non-Boundary Scan and a Boundary Scan

component. By default, values for both user parameters are chosen for the user to bias
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designs to use Boundary Scan components housed in surface mount packages and most

importantly, this is the first steptoward automating the process.

ThePARTNAME andPHYSNUMBER variables contain information thatis required by

the board layout generation tool, while the Lispfunctions sel_jtag andsel_pkg areusedto

select the correct part name and part number based on the chosen package type. For

example, if the PLCC package type chosen andJTAG is 1, the sel_pkg and seljtag will

select partname "74BCT8244", partnumber "L-PLCC28SA" and generate thecorrect pin

mappings for this package. The CONDITIONAL property is used to createthe additional

nets and terminals for a Boundary Scan component. The TERMTYPE and DIRECTION

properties to facilitate netlist checking.

Module Name Module Function

1149.n Master Con

troller

A software programmable test master controller that can be
configured to implement any one of the IEEE 1149 serial test
protocols. This feature is achieved by using a Xilinx FPGA.

Local Boundary
Scan Master

A Boundary Scan test bus controller module that supportseffi
cient transferof serial data and control to and from target
devices on the local serial test bus.

Real-Time Monitor Provides a method of monitoring embedded digital signals
paths between components on a board. Can be used to reveal
timing-sensitive and/or intermittent failures that are otherwise
undetectable without the use of external test equipment.

Table 4-2 : Listing of board level test modules.

42 Board Level Test Modules

As mentioned in the previous section, the 1149 controller module consists of three

dedicated test modules which perform specific testing functions. These board level test

modules are intended to be used as building blocks for higher level testing functions.
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Figure 4-2: Test MasterController module layout.

Therefore, a designer can enhance the testabilityof their board design by simply adding

one or more of these modules to their design. The modules can also be accessed and

controlled via Boundary Scan test bus. The functionality of each of the modules is

determined by groupings of one or more of the test components containedin the Test

ComponentLibrarydescribed in the following section.

These modules have been created using the tools described in the previous chapter. A

library of these reusable board level modules has been created and is listed in Table 4-2

along with their corresponding functions. Although the numberof library elements is

small, it will continue to grow as the demand for modules with more sophisticated test

functions increases. The modules are usually specified in a hierarchical SDL file

describing the structural interface between its primitive test components.The SDL file

also contains floorplanning information. The layout for the 1149 Master Controller

module is shownin Figure 4-2.This module does notrequire anyparameters or placement

information because, aswith the othertwo modules, the primitive test components that
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Figure4-3: Dataacquisition andclock generator modules.

make up the modules have already been pre-placed. Otheruseful modules include the data

acquisition andthe clock generation bothof whose layouts are shown in Figure 4-3. Paths

to the SDL files for these modules canbe found in Appendix B.

4.3 Guidelines for Prototype Design and Implementation

A set of guidelines that should be followed are given below. Other factors such as

board layout limit the type of fabrication andrepair process one can use. These guideline

are listed below:

1. choose components that eithermake the testingof the components themselves easieror
enhance the testability of the modules or boards that use them. Example features that
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make components themselves highly testable include Scan Path and BIST. Boundary
Scanis anexample feature thatenhance board level testability;

2. if a programmable device is to be used in the design, it must be possible to set the
device into a known stateby applying a signal to one of its inputs. Ideally, the device
shouldbe provided with a singleasynchronous or synchronous resetinputwhich, when
the correct signal value is applied, causes the device to set to a known state;

3. avoidasynchronous design. Asynchronous devices cause significant test and reliability
problems andare best avoided completely. If this is not possible, restrict asynchronous
devices to a small partof the design which can be isolated from the remainder of the
components during test;

4. if necessary, to easethe repair process, all components shouldbe oriented in the same
direction. This will also lead to a more reliable design when using a solder flow
process.

5. use single-sided component mounting, whenever possible, on plated-through-hole
boards. This assembly style uses through-hole or surface mountcomponents. Where
components must be mounted on both sides of an assembled board it is essential that all

of the components mounted on thebottom side be Boundary Scan components, since
thiseliminates the needto physically probe their pins;

6. and every board must have one central TAP connected to a 2 x 5 row right-angle
connector.

4.4 The Test Master Controller Board

The Test Master Controller (TMC) board [Kornegay91] [Kornegay92] is used to

control the test process of a target board by accessing each components's DFT structures

viaBoundary Scan bus. TheTMC transmits test data to and from every component under

test in the system. It is also intended to be usedembedded in a system as illustrated in

Figure 4-7. It also receives instructions and data, which are provided by theuser, from the

CPU board through the UNIX workstation. These instructions detennine which tests are to

be executedfor the targeted chipson the application board. After a test hasbeenexecuted,

the results are gathered anduploaded to the UNIX workstation where they can be

analyzed. Further, it can access a chip's DFT structures through a Boundary Scan
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interface. Finally, it can be dynamically reconfigured to support other testability bus

standards thatuse a 5 wireserialtest access port.

The architecture consists of the five board level modules shownin Figure4-4. This

architecture was designed with modularity and reusability in mind. Breaking the

architecture into smaller, more manageable parts makes testing systems using this

architecture, easier. The modules are designed tobereused in other systems. Adescription

of the modules whichwere createdusing the module generationenvironment describedin

the previous chapter is given below:

VME Bus Interface Logic - implements the VME bus protocol which orchestrates
communication between the TMC and the CPU boards.

Control Register - contains execution specific control information required to
configure the TMC to operate in one of its test modes.

Status Register - contains all of the system specific status information such as test
completion signals, boundary scan path integrity checking information, and other
information pertinent to propersystem operation.

Clock Generator - a jumper programmable clock generator that produces a two phase
non-overlapping clock thatoperates at clockratesup to 50MHz.

1149.n Test Module - a software programmable testcontroller module that consists of
threesmaller modules: a dataacquisition, memory, and 1149.n controller.

The data acquisition module contains one 12-bit user programmable Analog-to-

Digital Converter that operates up to lOOKHz, and one 8-bit Digital-to-Analog

Converter that also operates up to lOOKHz. This module is provided for testing

mixed-signal systems. The memory module which consists of 2 245k x 1 bit

SRAM, one for storing the test data to be applied to the device under test, and

the other for storing the results that are captured at the end of a test. The 1149.n

controller module is the heart of the system is also made up of several smaller

dedicated test modules which will be described in the next section.
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Figure 4-4: Test Master Controller board architecture.

It can be reconfigured, using software, to implement any one or all of the IEEE

1149 [IEEE90a,b][IEEE91] standard bus protocols. In fact, the controller can be

configured to perform any custom test protocol provided it uses a five wire serial

port. A simplified version of the state diagram for the controller is shown in Fig

ure 4-5. After initialization, the controller begins in the idle state, from which

point, it can traverse any one of the branches depending on the value of the test

mode (TM) signal. For example, when TM = 0, the controller executes the

Boundary Scan bus master protocol. Likewise, the controller will execute any of

the other IEEE 1149 bus protocols exercise any BIST features of the devices, or
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©
TM=1 TM = 3

1

Figure4-5: Simplified controllerstate diagram.

apply/capture analog data when TM = 1, 2, or 3. Physical ports exist for the

IEEE 1149 buses and the analog module.

4.4.1 TMC Prototype Implementation

The guidelines described in a previous section were strictly adheredto during the

design and implementation of the TMC board. Figure 4-6 shows the hierarchy of SDL

files. The TMC board was implementedon a6 layer6 inch x 9 inch card andcontains over

160 surface mountcomponents (chips, capacitors, switches, etc.). The layoutof the board

is shown in Figure 4-7.

The actual use of the board will depend on whether a centralized or distributed control

strategy adopted. In the distributed approach, most of the test functionality is implemented

in dedicated hardware that resides on the target boards, whereas, the centralized approach

uses the TMC board to implement all board level test functions. The benefits of both of

these approaches are outlined below:
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Figure4-6: Hierarchy of SDL files for TMC board.

Centralized Approach:

• Cost - By centralizing all test functions to a single controller, test sequencing capabili

ties are not required for each of the target application boards. This canreduce the cost

of the test interface and control hardware on each board in a system.

• Simplicity - As thetestinterface on each board does notcontain any board-specific test

information, acommon testinterface can beusedon each of theapplication boards in a

system.

Distributed Approach:

• Software - Because distributed test hardware and software allow higher level test func

tions, less software is required for theTMC board for each of the target application

boards. Distributed software canreduce thesoftware development time.
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Figure 4-8: System hardware development environment.

• Bus Traffic - Since self-test routines andtest patterns are contained on the individual

application boards, test bus traffic is restricted to instructions and compressed test

results.

• Test Application Speed - Thedistributed approach facilitates concurrent testing of indi

vidual boards, allowing substantial reduction inoverall system testtime.

4.5 System Level Test Support

When the application boards are finally assembled to form acomplete system, they

must betested while it operates in the environment for which it was developed in order to

verify its correct operation and diagnose any failures. A high level view of the system

hardware development environment that supports SERA is shown in Figure 4-8. It

consists of aVME card cage for housing the application boards, a single-board CPU that

runs areal-time customizable operating system kernel, Ethernet board for communicating
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with the host workstation, and a UNIX workstation which is used for software

development and debugging. To support system level testing, asystem must satisfy the

following requirements:

1. be capable of accessing chip level test structures;

2. provide control sequences to enable proper execution of chip level test structures;

3. apply test data and collect test results;

4. provide a facility for analyzing test results;

5. be able to test the interconnection between various components on a board via
Boundary Scan registers;

6. be compatible with the existing hardware development;

7. operate at system clock rates;

8. be flexible enough to support a varietyof testability bus standards such as Boundary
Scan;

9. provide access and control of non-Boundary Scan, as well as, analog components for
mixed signal applications;

10.be implemented at a low cost.

4.5.1 Test and Diagnosis System

To fulfill the requirements mentioned above, a hierarchical test system called the Test

and Diagnosis System (TDS) is described which uses a hierarchy of Boundary Scan test

buses embedded into the system's physical hierarchy. In this hierarchy, each chip contains

a Boundary Scan interface; all Boundary Scan devices on each board are serially cascaded

forming a single scan path where all of the control and test data are applied through a

centralized Boundary Scan slave interface; all Boundary Scan slave interfaces on every

board are tied to the Boundary Scan master interface on the Test Master Controller board,

where test programs direct the execution of all test functions for the entire system; at the

next level, the CPU board is used to initialize the Test Master Controller board, which is

described in the next section; and finally, at the top-most level, the UNIX workstation
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Figure 4-9: Test andDiagnosis system.

provides the user interface for TDS where test vectors are automatically generated and test

results are analyzed. A high level diagram of the Test and Diagnosis System is shown in

Figure 4-9.

4.6 Board Level Design vs. Test Trade-Off Issues

Design costs are easy to calculate interms of part costs, manufacturing assembly,

design costs, etc. Test costs are also quantifiable but may not be done so easily. Certainly

test equipment and test software costs can be readily calculated, but troubleshooting and

repair costs are not so obvious. In complex systems, the life cycle costs of the product is

dominated bytest and maintenance costs, not design and production costs. Therefore, it

becomes vitally important to invest time and effort into design for test which will

ultimately reduce test and maintenance costs. Some of the design costs such as

performance and areacosts boardlevel is discussed below.
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Partitioning is always avery important consideration for board level testing. Any complex

board must have adequate partitioning to allow independent testing of major logic

functions. In most designs, partitions can be created by simply replacing the normal

buffers and transceivers, which are already required in the design with their Boundary

Scancounterparts. By adding these parts, individual functional units on a board such as

memory, data bus, or processor can be tested. Repair savings can be achieved through

faster troubleshooting and fault isolation of fewer components. By using Boundary Scan

devices for partitioning, board failures can be detected and isolated with less probing.

Boundary Scan reduces oreliminates theuseof testpoints onaboard. Board testlogic real

estate can be minimized, and, in some cases, board real estate can be gained by using

Boundary Scan devices. Board real estate savings can be accomplished by replacing achip

added for test purposes with a Boundary Scan device. Test logic that is added for fault

isolation canbe efficientlycontrolled via Boundary Scantest bus.

4.7 Summary

With the system test hierarchy described in this chapter, a user can perform system

diagnosis and identify a failed component without removing any parts of the system

because all test facilities canbe accessed throughout the system hierarchy. By exploiting

the module generation facility that already exists in SIERA, testability features can be

added to a design with little effort and requiring very little knowledge of how to

implement them on the designers behalf. The test hardware modules described in this

chapter can perform dedicated test functions that can detect defective components and

interconnect on a board. Board level costs associated with the implementation of these

features has also been presented.
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CHAPTER 5

TEST SOFTWARE: Tools and

Languages

As described in Chapter 2, the objectiveof our test strategy is to integrate test into our

system design environment. To realize this strategy requires dedicated software tools.

These tools should automate the addition of the test hardware required to implement a

DFT methodology, while at the same time, spare the designerof having to know about any

implementation specific details. After adding the test hardware, test patterns can then be

applied to test the target chip or board interconnect via local test buses. Producing these

tests manually is an arduous and tedious task that is very prone to error, especially for

large designs. On the other hand, generating test patterns automatically eliminates these

problems while producing them efficiently and error free. Furthermore, the test pattern

generation task is ideal for automation because many algorithms exist for both

combinational circuits and printed circuit board interconnect.

The widespread adoption of the Boundary Scan standard has necessitated the need for a

way to simply and effectively describe its implementation specific details in a manner

71
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suitable for software to utilize. The Boundary Scan Description Language (BSDL)

[IEEE91b] was developed for this purpose. Two other languages called the Chip Test

Language (CTL) [Lien90] and the Module1 Test Language (MTL) [Lien90] which

describe how to use the test features implemented on a chip and board for testing has been

developed. These two languages allows the designer to write high level test procedures

which are later compiled to produce low level test programs (written in C) which control

the operation of Test Master Controller board. With CTL and MTL, test programs can be

generated automatically.

This chapter is organized into five sections whichcovertestability hardware design tools,

test generation algorithms and tools used for combinational circuits and board

interconnect, and testability hardware description languages and acompiler.

5.1 Testability Hardware Design Tools

To ensure design for testability, the system designer must follow amethodology that

addresses testability issues as part of thedesign process. Much published work on CAD

tools, that are now available, support a testability design methodology atthe chip level

only. However, there also exists a need for tools that support testability design

methodologies at the board level. One such tool called JTAGtool described here has been

developed to ensure that every Boundary Scan chip, in a board design, is correctly

connected to the scan chain.

Some test applications may require the use of acustom test protocol or some new standard

comes along requiring a new test protocol, in either case, the architecture of the Test

1. In the context of this work, the terni module and board are used interchangeably.
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Master Controller (TMC) board is flexible enough to support them. As described in

Chapter 3, the TMC uses a programmable device for this purpose. A tool called PLDS

[Yu91] is used to map a behavioral representation of the test protocol to the target

programmable device, which in this case is aXilinx Field Programmable Gate Array.

The JTAGtool and the procedure for usingPLDS to reconfigure the 1149.n Controller

module for the TMC board will be discussed in the sections that follow.

5.1.1 JTAGtool: Boundary Scan Path Routing Tool

The role of JTAGtool is twofold: one, it threads all of the Boundary Scan chips in the

design as they appear in the design hierarchy, and two, it generates a file containing the

designnetlist, which is used in the ModuleTest Description of the boarddescribedlaterin

Section 4.4.3. This tool also eliminates any errors that may otherwise occur when the

designer has to manually configure the Boundary Scan path. A block diagram of

JTAGtool, which consists of three modules, is shown in Figure 5-1. In the ProcessFacet

module, the structure_instance view [Shung89] that contains all of the structural

information of the design that has been created from a hierarchy of SDL files is flattened

down to the PACKAGECLASS property. This will allow JTAGtool to preserve the order

of the Boundary Scan chips during creation of the Boundary Scan path. The

MakeBScanPath module performs the following tasks:

1. Identifies all of the Boundary Scan master and slave chips present in the design;

2. Cascade all Boundary Scan slave chips in the order in which they appear in the design
with the TDI of the first chip connected to a global TDO net and the TDO of the last
chip connected to a global TDI net.;

3. The TMS and TCK pins of every slave chip are connected to global TMS and TCK
nets;
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Figure 5-1: Block level diagram of JTAGtool.

4. The global nets TDI, TDO, TMS, and TCK are all connected to alocal Boundary Scan
master controller chip that is either added automatically by a test moduleor added
manually by the boarddesigner;

5. Finally, the TDI, TDO, TMS, and TCK nets are connected to a 10 pin right angle
connector which is to be placed manually by theboard designer.

Lastly, the GetBSinfo module extracts all of the pertinent information required for board

interconnect test generation such as the boardnet list.

5.1.2 Test Controller Configuration Tool

One of the most important features of theTest Master Controller board architecture is

its reconfigurability. By reconfigurability, we mean hardware that can be changed

dynamically or hardware that must be adapted to different user applications. Commercial
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Figure 5-2: Configuration file generation process.

devices such as Field-Programmable Gate Arrays (FPGAs), in particular, the Xilinx

XC4000 Logic Cell Array family [Xilinx92], exhibit this feature. These devices can be

dynamically reconfigured anunlimited number of times. Xilinx FPGAs comprise three

major configurable elements: configurable logic blocks (CLBs), input/output blocks

(IOBS), and interconnections. CLBs provide the functional elements for implementing the

user's logic. IOBs provide theinterface between thepackage pins and internal signal lines.

The programmable interconnect resources provide routing paths to connectthe inputs and

outputs of the CLBs andIOBs. Reconfiguration is established by programming internal

staticmemory cells that determine the logic functions and their interconnect.

Figure 5-2 illustrates the reconfiguration procedure. The procedure is partitioned into two
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steps. In the first step, a file describing the behavior of the 1149.n device to be

implemented is used as an input to PLDS whose objective is to provide a solution to

efficiently map a high-level description of a design into a set of one or more

programmable devices. It provides an interface between the Oct database and

commercially available tools supplied by the manufacturer which in this particular case is

Xilinx. PLDS produces output files, in Xilinx Netlist Format [Xilinx91], which are then

used by the Xilinx XACT Development System [Xilinx91]. Finally, after running the

design through the XACT software, an 1149.n configuration file is generated which must

bedown-loaded to the Test Master Controller board to configure aXC4005 FPGA during

system initialization.

5.2 Algorithms for Test Vector Generation

A test for a fault is an input that will produce different outputs in the presence and

absence of the fault, thus makingthe fault effectobservable. In a combinational circuit, a

specific stuck fault can betested by asingle vector. Stuck faults are not only the simplest

faults to analyze, but they also have proved to be very effective in representing the faulty

behavior of actual circuits. The simplicity of stuck faults is derived from their logical

behavior; so these faults are oftenreferred to as logical faults. Stuck-faults are assumed to

affect only the lines between gates. Each line can have two types of stuck faults: stuck-at-

1 and stuck-at-0. Thus, a line witha stuck-at-1 fault will always have a logical value 1

irrespective of thecorrect logical output of thegate driving it. In general, several stuck-

faults canbe assumed to be simultaneously present in a circuit. A circuit with n linescan

have 3" -1 possible stuck line combinations. This isbecause each line can beinany one of

the three states: stuck-at-1, stuck-at-0, or fault-free.

Algorithms for automatic test generation mostly work on the principle of path
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sensitization. That is, they attempt to findaninput vector thatwill sensitize a path from the

fault site to a primary output. Efficient programs for combinational circuits are available

based on well-known algorithms such as D-algorithm [Roth67] and PODEM [Goel81].

They provide the motivation for the use of the Scan path test methodology to convert a

sequential test problem to a combinationalone. The ultimate goal of test generations is to

obtain test vectors of high quality at a reasonable cost. The term fault coverage, which is

commonly used to denote test quality, is the ratio of modeled faults detected over the total

number of test vectors. For a given fault in a circuit, a test is a set of input stimuli that

make the fault effect observable at a primaryoutput. An ideal test generator must be able

to find a test for each modeled fault in a circuit at the chip level or a modeled fault in the

interconnect between two adjacentchips on a board.

5.2.1 Test Generation Algorithms for Combinational Circuits

A significant theoretical study by Ibarra and Shani [Ibarra75] shows that test

generation for combinational circuits belongs to the class of problems called NP-

complete, strongly suggesting that no test generation algorithm with a polynomial time

complexity is likely to exist. The non-polynomial time complexity here refers to the

worst-case effort of test generation in a circuit.Test generationalgorithms used in practice

appear to be able to achieve slower average time growth by using heuristic search

techniques. Goel [Goel81] argues that the time for complete test generation must grow at

least as the square of the number of gates in the circuit.

The D-algorithm described in [Roth67] is the most widely used test generation algorithms.

In generating a test, the D-algorithm creates a decision structure in which there is more

than one choice available at each decision node. Through an implicit enumeration process,

all alternatives at each decision node are capable of being examined. For the stuck-at-1
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Figure 5-3: Example circuit to illustrate use of D-algorithm.

fault f inFigure 5-3, the D-algorithm typically goes through the following steps:

1.

2.

Thetest for stuck-at-0 requires alogicl onM for the good circuit. Setting E and Feach
to 1results in aD atM, where D designates the correct logic value for agood circuit.

Generating a sensitized path from net M to the primary output Z, usingrecursive
intersection of D-cubes, may result in the ordered assignments K = 1 and L = 1
illustrated in thedecision diagram in Figure 5-4. Alternative assignments K=0 and L =
0 are still available for consideration should the present assignments prove futile.

3. The D-algorithm justifies eachinternal net assignment on a levelized basis. Since the
functions P and P realized at nets h and i, respectively, are complementary, no
justification is possible for the concurrent assignments K = 1 and L = 1. However, in
establishing the absence of the justification, the D-algorithm must enumerate 23
primary input values before it can correct the bad decision made onL, that is, change
the assignment on L from 1 to 0.

A class of circuits for which the D-algorithm performs particularly poorly are those
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Figure 5-4: Decision tree diagram for D-algorithm.

containing exclusive-or trees. The degradation in performance arises due to excessive

amount of backtracking. This motivation has motivated Goel [Goel81] to devise a new test

generation algorithm called Path Oriented Decision Making (PODEM) where he uses a

branch and bound technique. PODEM implementations are know to run an order of

magnitude faster than the D-algorithm on most circuits. The PODEM test generation

algorithm is an implicit enumeration algorithm in which all possible primary input

patterns are implicitly, but exhaustively, examined as a test for the given fault. The

examination of primary input patterns is terminated as soon as a test is found. If it is

determined that no primary input pattern can be a test, the fault is untestable. The decision

tree structure used in PODEM is shown in Figure 5-5 where all primary inputs are

unassigned.

79
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Figure 5-5: Decision tree diagram for PODEM.

An initial assignment ("branch"-in the context ofbranch and bound algorithms) ofeither 0

or 1on aprimary input is recorded as an unflagged node in the decision tree. Implications

of present Primary assignments uses the five-valued logic described in [Roth67]. The

decision tree is an ordered list of nodes with: 1) each node identifying acurrent

assignment ofeither a0or 1to one primary input, and 2) the ordering reflects the relative

sequence in which the current assignments were made. Anode is flagged (indicated by a

check mark inside the node) if the initial assignment has been rejected and the alternative

is being tried. When both assignment choices at anode are rejected, then the associated

node is removed and the predecessor node's current assignment is rejected. The last
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primary input assignment made is rejected if it can be determined that no test can be

generated with the assignments made on the assigned primary inputs, regardless of values

that may be assigned to the as yet unassigned primary inputs. The rejection of aprimary

inputassignment results in a"bounding" of thedecision tree, in the context of branch and

bound algorithms, since it avoids the enumeration of the subsequent assignments to the

unassigned primary inputs. In using a branch and bound technique, PODEM solves the

test generation problems faced by the D-algorithm.

5.2.2 Test Generation Algorithms for Board Interconnect

Detecting and locating faults on board interconnect has drawn much attention since

the emergence of the Boundary Scan standard. Many boards will soon be designed with

chips containing the Boundary Scan architecture where during test mode, the chip's I/O

pins can be accessed through the Boundary Scan test bus achieving a virtual bed-of-nails

capability. Hence, faulty interconnect can be isolated and tested without the need to

physically probe the board. Recent work dealing with the problem of generating tests for

detecting and locating faults in board interconnect has been reported in

[Hansen89][Hassan88][Hassan89][Wagner87]. When testing interconnect on a board,

both stuck-at and bridging faults must be considered. Some of these faults are illustrated in

Figure 5-6. Since the Boundary Scan path provides direct access to these interconnect, test

patterns can be generated which provide 100% coverage of these faults. Because stuck-at

faults occur on a variety of bus configurations, different test pattern generation algorithms

are required for wired-AND, wired-OR, and tri-state configurations. In [Wagner87], he

presents algorithms for generating interconnect test patterns for stuck-at and bridging

faults. These algorithms and some of their features are described in the sections that

follow.
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Figure 5-6: Topical printed circuit board interconnect faults.

Testing wired-AND Bus Configurations

As the name implies, the values forced on awired-AND bus configuration are

logically ANDed to obtain the resulting value. Hence, the wired-AND netcan be treated

in the same wayas an ANDgate where 100% of all stuck-at faults can bedetected with k

+1test patterns where k is the number of inputs. The test patterns can be divided into k
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patterns which test for stuck-at-1 faults and one pattern which tests for all stuck-at-0

faults. The algorithm used for generating tests for a wire-AND configuration is given

below.

1. The driver to be tested is set to a logic0

2. All otherdrivers on the netare set to a logic1

3. The data is clocked into the receivers

4. All receivers on the net are examined for a logic 0

5. Repeat steps 1-4 until each driver is tested

6. Every driver is set to a logic 1

7. The data is clocked into the receivers

8. Every receiver is examined for a logic 1

Testing wired-OR Bus Configurations

Generating tests for a wired-OR bus configuration is nearly identical to the wired-

AND case. For a wired-OR net with K drivers, 100% of all stuck-at faults can be detected

with k + 1 patterns. In this case, the test patterns can be divided into k patterns which test

for stuck-at-0faults and a single patternwhich tests for all stuck-at-1 faults. The algorithm

used for generating tests for a wired-OR bus configuration is listed below.

1. The driver to be tested is set to a logic 1

2. All other drivers on the net are set to a logic 0

3. The data is clocked into the receivers

4. All receivers on the net are examined for a logic 1

5. Repeat steps 1-4 until each driver is tested

6. Every driver is set to a logic 0

7. The data is clocked into the receivers

8. Every receiver is examined for a logic 0
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Testing Tri-State Bus Configurations

When a tri-state bus configuration is used, multiple drivers control one or more

receivers as shown in Figure 3-8. Since only a single driver can be enabled at any one

time, a special restriction is imposed on the generation of the test patterns. In order to

achieve 100% stuck-at fault coverage, each driver on the net must be tested individually

for stuck-at-1 and stuck-at-0 faults while the remaining drivers are disabled. Since this

requires 2 test vectors per driver, 100% stuck-at faultcoverage can be achieved using2k

testvectors where k is the number of drivers on thenet Thealgorithm for testing this type

of bus configuration is provided below.

1. The driver to testedis enabledand set to a logic 1

2. All other driversare set to a logic 0 and disabled

3. The data is clocked into the receivers

4. The receivers are examined for a logic 1

5. Repeat steps 1-4 until all drivers have been tested

6. Thedriver to be tested is enabled and settoa logic 0

7. Allotherdrivers are set to a logic1 anddisabled

8. The data is clocked into the receivers

9. All receivers areexamined for a logic0

lO.Repeat 7-10 until all drivers have been tested

Bridging Fault Test Pattern Generation

In addition to testing for stuck-at faults, testing for bridging faults must also be

considered. A bridging fault occurs when two nets are electrically connected as shown in

Figure 5-6. The algorithm for detecting this fault isgiven below.

1. Enable the drivers on each net

2. Apply a logic 1 to all drivers on the first net

3. Apply a logic 0 to all drivers on the second net
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4. Clock the data into the receivers

5. Examine at least one receiver on each net

6. If the data at the receiver of either net does not correspond.

With the data applied tothe respective driver, then abridging fault exists between the nets.

This algorithms is good for only two nets. Since atypical board maycontain hundreds of

interconnection nets, this algorithm mustbe applied to every possible pair of nets to

achieve 100% fault coverage.

5.3 TGS - A Test Vector Generation Tool for
Combinational Circuits [USCTG88]

The Test Generation System (TGS) is designed for generating test vectors for

combinational circuits described at thegate level. The gate types supported by the system

include AND, OR, NAND, NOR, INV (inverter), BUF (buffer), andINPT (input gate).

The system provides the following functions:

a. Fault collapsing

b. Test Vector Generation

c. Fault Simulation

d. Integration of a, b, c, to derive a complete set of test patterns. Each of these functions

will be described briefly.

The main objective of fault collapsing is to classify the set of all possible stuck faults in

order to reduce the total number of tests. Typically, a test for an arbitrary fault detects

several other faults in the circuit. The test vector generation process provides a test vector

for any given detectable fault (meaning a test can be generated for it). The system uses the

PODEM test generation algorithm described in the previous section. Given enough time
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PODEM will find a test for the target fault if it is detectable. Fault simulation attempts to

identify all faults that can be detected by a given input vector. It provides a list of faults

and an associated primary output. If any fault in this list is injected into the circuit, then

the logic values of the good circuit and the faulty circuit will differ at the associated

primary output under the given input vector. Besides the functions described above, an

integrated system which combines fault collapsing, test generation, and fault simulation

into one complete test system is provided. The purpose of this system is to execute a

complete test generation procedure without anyuser intervention, once the required input

parameters are setup. Figure 5-7 showshighlevel blockdiagram of the integrated system.

5.3.1 oct2tgs - OCT to TGS TVanslator [Bomdica90]

Before combining the combinational logic blocks of a chip withits other functional

blocks such as ALUs or RAMs, the combinational blocks must beprocessed using oct2tgs

which is a conversion utility that generates aTGS format circuit description from a

flattened OCT structure_instance view (default view) or symbolic view of the

chip. It decomposes macro cells, such as multiplexers or decoders into primitive logic

descriptions which are given in the technology file. Further, it ignores latches, like the

scanlatch inthe stdcell library, and treats the logic between the latches as an independent

logic block and later combines them to form atop level TGS input file. After running this

input file through the TGS system to produce test vectors, they can be used to test the

combinational logic blocks via Scan Path.

5.4 Testability Hardware Description Languages

Recent adoption of the Boundary Scan standard has prompted the need for

development of dedicated languages which describe the testability features implemented
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at both the chip and board levels. Not only should these languages describe

implementation specific details, but they should also describe how to use these features to

test chips and boards that have them. To accommodate these needs, several languages

have been developed. These include the Boundary Scan Description Language (BSDL)

[IEEE91b] which is proposed as a supplement to the Boundary Scan standard and two

other languages developed by Lien called Chip Test Language (CTL) [Lien90] and

Module Test Language (MTL) [Lien90]. BSDL was developed to describe the

implementation specific details of a chip containing the Boundary Scan architecture,
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whereas, CTL and MTL were developed were developed to describe how to test a chip or

board that uses the Boundary Scan architecture. Features of these languages along with

some examples will be presented in the following sections.

5.4.1 BSDL - Boundary Scan Description Language

As more commercial chips become available that supportthe Boundary Scan standard,

each will have the problem of how to describe their unique application of the standard.

Some sort of description will be necessary for describing these chips. This section

describes a language that captures the essential features of an implementation. This

language is called the Boundary Scan Description Language [IEEE91b] and is written

within a subset of the VHSIC Hardware Description Language (VHDL) [IEEE88]. The

goal of the language is to facilitate communication between chip manufacturers,

designers, and tools that needto exchange information on the design of the test logic that

complies with the standard. The BSDL language allows description of the testability

features in Boundary Scan compliant devices. This language can be usedby tools that

make use of those testability features. Such tools include testability analysis, test

generation and failure diagnosis. With additional capabilities provided by VHDL, it is

possible to perform simulation, verification, compliance analysis, and synthesis function.

Boundary Scan Features

What are the Boundary Scan that require adescription? All Boundary Scan compliant

devices must contain three major parts: a Test Access Port, a TAP controller, and a

Boundary Scan register all of whose parameters are described in BSDL. The Boundary

Scan register consists of Boundary Scan register cells which are associated with achip's

input, output, bidirectional, and tri-state pins. The Test Access Port contains either four or

five dedicated signals, namely TCK, TMS, TDI, TDO and the optional TRST*. It must
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also contain aTAP controller, aninstruction register, anda Bypass register. The controller

implements a minimum set of mandatory instructions which control the operation of the

Boundary Scan test logic.

Language Elements

The language consists of a case-insensitive free-form multi-line terminated syntax

which is a subset of VHDL. Comments are any text appearing between a "~" and the end

of a line. BSDL is composed of three sections which are the entity, package, and package

body. An entity is the basis for describing a chip within VHDL. An example of a BSDL

file for aTIACT74SN8244 is given in AppendixA. Within the entity, the Boundary Scan

parameters of a chip are described. The 1149.1 related definitions come from a pre

written, standard VHDL package and package body. The definitions for a Boundary Scan

package and package body can be found in [IEEE91b]. The package information is

direcdy related to the Boundary Scan standard anddevelopmentof new standards would

require new packages to be created.

The Entity Description

An entity describes a chip's I/O portandimportant attributes of the chip. For BSDL,

an entity has the following structure:

entity chipname is — an entity for chipname
[generic parameter]
[logic port description]
[use statement(s)]
[package pin mappings]
[scan port identification]
[TAP description]
[Boundary Scan Register description
end chipname;
— End description

Generic Parameter

The generic parameter is a VHDL construct used to pass data into a VHDL model. In
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BSDL, it is intended as amethod for selecting among several packaging options that a

chip may have. Each option may have a different mappings between the pins of the

package and the bonding pads of the chip. This is called the logical-to-physical

relationship of the signals of the chip. The description of the Boundary Scan architecture

of the chip is done using logical signals. Applications such as board testing willneed to

know how the logical structure of the chip maps onto aset of physical pins. For this, a

VHDL generic parameter is used. It must have the name shown in order for the software to

distinguish it from other parameters that might be passed tothe entity. Ithas the following

form:

generic(PHYSICAL_PIN_MAP:string:="undefined") ;

Logical Port Description

The port description uses the VHDL port list. It isused toassign meaningful symbolic

names to the chip's I/O pins. The inclusion of non-digital pins such as power, ground, or

analog signals in the BSDL port description is optional, however, they are recommended

for completeness. The logical port description has the following form:

<logical port description>:==port(<pin spec>; {<PinID>});
<pin spec>::=<identifier list>:<mode><pin type> <identifier
list>:=<VHDL identified {,<VHDL identifier^
<mode>:== in | out | buffer | inout | linkage
<pin type>:==bit I Bit vector {<range>}
<range:=<numberic constant> to

<numeric constant> downto <numeric constant>

The value of mode indicates the direction of signal flow and linkage isused for power,

ground, or analog pins.

Use Statement(s)

The use statement identifies the VHDL package required for defining attributes, types,

constants, and other items that will be referenced.
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Package Pin Mapping

VHDL attribute and constantstatements are used to show the package pin mapping.

These areshown by example:

attribute PIN_MAP of chipname:entity is PHYSICAL_PIN_MAP;
constant dw_package:PIN_MAP_STRING:=<MapString>;

Attribute PIN_MAP is a string that is set to the value of the parameter

PHYSICAL_PIN_MAP, described above. VHDL constants are then written, one for each

package variation, that describe the mappingbetween the logical and physical pins of the

chip. An example of a mapping is:

"CLK:1,DATA: (6,7,8,9,15,14,13,12),CLEAR:10, "&
"Q: (2,3,4,5,21,20,19,18), VCC:22, GND:11"

The symbol on the rightof the colonis the physical pin associated with the port signal. It

may be a number or an alphanumeric identifier because some packages like Pin Grid

Arrays (PGAs) use coordinate indentifiers like A07 or H13. If signals like DATA are

<PinVector>'s in the definition, then a matching list of pins enclosed in parenthesis are

required. The physicalpin mappedonto DATA[5] is pin 15 in the example above.

Scan Port Identification

Five attributes define the scan portof the chip. These signals are shown below:

attribute TAP_SCAN_IN of TDI:signal is true;
attribute TAP_SCAN_OUT of TDO:signal is true;
attribute TAP_SCAN_MODE of TMS:signal is true;
attribute TAP_SCAN_RESET of TRST:signal is false;
attribute TAP_SCAN_CLOCK of TCK:signal is true is
(17.5e6, BOTH);

Here, signal names TDI, TDO, TMS, TRST*, and TCK must appear in the port

description. The TAPJSCANJRESET attributeis optional but the others must be specified

for correct implementation. The TAP_SCAN_CLOCK attribute is a record with a real

number field that gives the maximum operating frequency for TCK. The second field is an
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enumerated type with values LOW and BOTH which specify with state(s) the TCK signal

may be stopped in without data loss in the Boundary Scan mode.

TAP Description

The next major part of the Boundary Scan architecture that must be described is the

chip dependentcharacteristics of the TAP. It may have four or five controlsignals, already

identified. It may have a user specifiedinstruction set anda numberof data register and

options.

The Instruction Registermay have any length2 bits or longer andis required to support

certain opcodes and some of these have mandatory bit patterns. A circuit designer may

addoptionalinstructions and/or new instructions with completelydedicated functions. An

instruction may have several bit patterns. Unusedbit patterns will default to the BYPASS

instruction. The standard alsohas provisions for private instructions. The characteristics

of theinstruction register that are captured withthelanguage are length, opcodes, capture,

disable, private, andusage. Someexamples of these are givenbelow:

attribute INSTRUCTION_LENGTH of Chipl:entity is 4;
attribute INSTRUCTION_OPCODE of Chipl:entity is

"Extest (0000)," & "Bypass (1111)," & "Sample (0001),";
attribute INSTRUCTION_CAPTURE of Chipl:entity is "0101";
attribute INSTRUCTION_DISABLE of Chipl:entity is "Hi_Z";
attribute INSTRUCTION_PRIVATE of Chipl:entity is "Secret";

The instructionjength attribute defines the length of all opcode bit patterns. The

instruction_opcode attribute is a BSDL string containing the opcode identifiers andtheir

associated bit patterns. The rightmost bit in the pattern is closest to TDO. The standard

mandates the existenceof EXTEST, BYPASS, and SAMPLEinstructions with mandatory

bit patterns for the first two. The instruction_capture attribute stringdetermines what bit

pattern is loaded into the instruction register when the TAP controller enters the

Capture_IR state. The optional instruction_disable attribute identifies an opcode that
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makes a Boundary Scan chip disappear. In this mode, the tri-sate outputs are disabled and

the BYPASS register is placed between TDI and TDO. The optional instruction_private

attribute identifies opcodes that are private and potentially unsafe for access. Software can

monitor the instruction register to issue warnings or errors in a private instruction is

loaded during run time. The optional instruction_usage is a means for describing static

design parameters of a Boundary Scan implementation. The standard contains two

instructions whosedetails of operation are not statically defined, which are RUNBIST and

INTEST. The instruction_usage provides additional information about the operation of an

instruction. The types of information needed are: register, identification, result

identification and clocking information. Beloware examples for describing the RUNBIST

and INTEST instructions:

attribute INSTRUCTION_USABE of chipname: entity is
Runbist (registers Boundary, Signature;" &

"result 0011010110000100;" &
"clock TCK in Run_Test_Idle;""length (clock 4000 cycles)," &
"Intest (clock TCK shifted)";

The RUNBIST usage shows that two registers are used, the Boundary Scan register and a

second register called Signature. When the test is complete, the result shifted out from

Signature shouldmatch the given pattern. The test is runby clockingTCK for4000 cycles

while in the Run_Test_Idlecontroller state. The INTEST usage shows that shifting of the

internal Scan registeroccurs every TCK.

Register Access

All TAP instructions must place a shiftable register between TDI and TDO. User-

defined instructions may access the Boundary Scan register, IDCODE register, or

BYPASS register. The standard allows additional data registers in the design. These are

referenced by user-defined TAP instructions. It is important for software to know the

existence and length of these registers and their corresponding instruction. An attribute
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has also been provided for this purpose. The attribute for this is:

attribute REGISTER_ACCESS of chipname:entity is
"Boundary (Secret, Userl)," &
"Bypass (Hi_Z, User2)";

In this example, Secret, Userl, User2, and Hi_Z must be previously defined user

instructions.This ability to identify registeraccess allows software to know the length of a

scan sequence, which is dependent on the current instruction.

Boundary Scan Register Description

The Boundary Scan registeris anordered list of BoundaryScan cells, numbered 0 to N

with cell 0 closest to TDO. These cells vary in design and purpose. Cells must be

identified before thay are referenced in the Boundary Scan register description. Three

attributes are required to define a register. Examples of their usage are given below:

attribute BOUNDARY_CELLS of chipname: entity is "BC_1, MyCell";
attribute BOUNDARY_LENGTH of chipname: entity is 3;
attribute BOUNDARY_REGISTER of chipname: entity is "

0 (BC_1, IN, input, X)" & "
1 (BC_1, *, control, 0)" & "
2 (MyCell, OUT, output3, X, 1, 0,Z)";

The first attribute defines the cells used to construct the register. The secondattribute

defines the number of cells in the Boundary Scan register. This third attribute is a string

containing alistof elements, each withtwo fields. The first field is merely thecellnumber,

which must be between 0 and LENGTH-1. The second is a set of subfields within the

parentheses. There canbe from four to sevensubfields labeled: cell, port, function, safe,

ccell, disval, and rslt. All cells atleast contain the first four subfields. Only cells providing

data for device outputs thatcanbe disabled contain the remaining three subfields. These

three determine howto disable theoutput. The cell subfield identifies thecelldesign used.

The port subfieldidentifies the port signal that is driven or received by this cell. The

function subfield indicates the primary function of the cell. The safe subfield gives the
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value that a designer prefers to be loadedinto the cell, while the ccell subfield identifies

thecellnumber of thecell that serves as an output enable. The disval subfield determines

thevalue that ccell musthave to disable the output driver and the rslt subfield determines

the state of the driver when it is disabled.

Defininga Boundary Scan Register Cell

A cell is defined as aVHDL constant. It is an array of records with the range of the

array unspecified, but implicit fromthe numberof records given in the constantdefinition.

An example of a Boundary Scan register cell called C_Ex_l that supports EXTEST,

SAMPLE, and INTEST. It loads a '1' during the EXTEST if the cellis used for an input,

outputor control function, where output2 is a 2 state output function andoutputS is a 3

state output function. DuringINTEST, as an input, it reloads the cell with the datavalue

thatwas shiftedinto it. The description for thiscell is given below:

constant C_Ex_l: CELL_INFO:= (
(0utput2, Extest, One),
(Output3, Extest, One),
(0utput2, Sample, PI),
(Output3, Sample, PI),
(Output2, Intest, PI),
(0utput3, Intest, PI),
(Control, Extest, One),
(Input, Extest, One),
(Control, Sample, PI),
(Input, Sample, PI),
(Control, Intest, PI),
(Input, Intest, PI));

This is only an overview of the BSDL language. It is an extensible language for defining

the basic testability features of a device implemented with the Boundary Scan standard

architecture. It is specifically designed for describing implementations, in a way such that

they can be exploited by software tools. For additional information, the reader is referred

to [IEEE91b]. BSDL descriptions for some common parts aregiven in Appendix A.
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5.4.2 CTL - Chip Test Language

The Chip Test language [Lien91] was developed to be a superset of BSDL. It too, has

a VHDL-like syntax. As mentioned in the BSDL section, BSDL can be used to describe

the Boundary Scan architecture features implemented on a chip, however, it does not

describe how to utilize these features to test a chip. CTL describes how to utilize the

Boundary Scan features for testing through the use of a Test Procedure, which provides

the information required for testing a chip. A chip test description (CTD) is written in CTL

which includes a Test Procedure in addition to the original BSDL description. The

incorporation of the Test Procedure is achieved by adding a VHDL attribute called

TEST^PROC.The examplebelow demonstrates how aTestProcedure is incorporated in a

CTL file.

attribute TEST_PROC of chipl: entity is "Test_Begin" &
TDM 1 = FULLSCAN;" & "REG=S CANP ATH , VECF I LE = t s t ve cl ,
RESFILE=resultsl;" & "REG=BOUNDARY , VECFI LE = t s t ve c2 ,
RESFILE=results2;" &
CLOCK = FCK 1.0 CYCLES_IN RUN_TEST_IDLE;" & "Test__End";

It is also possible to forgo using this attribute and describe theTest Procedure in a separate

file, where the quotes and& are excluded. For example, the example above can be re

written in a file calledchipl.ctp as follows:

TEST_PROC of chipname: entity is TEST_BEGIN
TDM <tdm_id> = FULLSCAN; REG= <regl>, VECFI LE = <filel>,
RESFILE=<file2>;
CLOCK = FCK <numberl> CYCLES_IN RUN_TEST_IDLE; TEST_END

A Test Procedure consists of oneormore testsequences which will testdifferent parts of a

chip according to a predefined test methodology called aTestable Design Methodology

(TDM) [Breuer84]. According to Breuer, a TDM deals with the entire process of

designing an easily testable structure, developing the testprograms, where appropriate,

and testing the structure using external and/or built-in-test hardware. Some example

TDMs include Scan-Path and Built-In-Self-Test. TDMs are categorized into two types:
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template-based and user-defined. A template-based TDM is used to describe the procedure

for testing a chip designedwith a commonly usedTDM such asFULLSCAN (Scan Path).

A user-defined TDM is used to describe an arbitrary procedure which is written by the

designer using the C programming language. The Test Procedure in the example above

uses the FULLSCAN TDM which executes a Scan Path test procedure. The tdm_id

identifies the TDM in the CTL file. The selected scanregister is regl, which must be

previously defined in the CTL file. The test vectors are stored in filel and the test results

are stored in file2. After a test vector is scanned into the Scan Path register, it is necessary

to apply numberl cycles of clock FCK to the chip under test before test results are

available for scanning out. Note that the test bus must be kept in the RUNJTESTJDLE

controller stateduring the application of clock FCK. The test controlmodel used by CTL

is shown in Figure 5-8. This controlmodel consistsof a Boundary Scan Master controller

which orchestrates the test process via Boundary Scan test bus and the device under test.

In summary, TDMs arededicated test functions that execute the test sequences required
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for implementing the desired test. Template-based TDMs that are currently supported

include: FULLSCAN, RUNBIST, and INTEST. The function of these TDMs are

described below:

FULLSCAN TDM

The FULLSCAN TDM is used to testachip designed with the Scan Path technique,

where all fiip-fiops on the chip aremade scannable and are cascadedto form a serial scan

chain. It executes a ScanPath test in the following steps:

1. Loada testvectorinto the scan chain by shifting s timeswhere s is the length of the Scan Path
register.

2. Repeat for t-1 times t is the number of tests vectors Update the scan chain by running the
functional clock for one cycle. Scan out the previous result while scanning in the next test
vector.

3. Grabthe last result by shifting s times.

RUNBIST TDM

A chip that utilizes BIST hardware can be tested using the RUNBIST public

instruction defined in the Boundary Scan standard. Once the RUNBIST instruction is

loaded into the instruction register of the TAP, the self-test procedure canbe executed

simply by applying the test clock,TCK, during the RUNTTESTJDLE controller state.

In theRUNBIST TDM example below, the result of the test is stored in theregl register.

Valuel represents the expected good circuit result.

TDM <tdm_id> = RUNBIST;
CLOCK = TCK <numberl> CYCLES_IN RUN_TEST_IDLE; EXPECTED_RESULT
<regl> = <valuel>;

INTEST TDM

A chip can also be tested using theINTEST instruction defined in the Boundary Scan

standard. The INTEST instruction must be loaded into the instruction register of the

Boundary Scan architecture before execution is started. This TDM differs from
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FULLSCAN in that only the Boundary Scanregister is included in the scanchain andno

internal scan path registers are used. The procedure for testing a chip using the INTEST

TDM is described in the following steps:

1. Repeatfort times a. Shift a testvectorintotheboundary scanregister.

2. Apply one ormore functional clock cycles.

3. Scan out the resultsof the Boundary Scanregister.

The INTEST TDM is listed as follows:

TDM <tdm_id> = INTEST; VECFILE = <filel>, RESFILE = <file2>;
CLOCK = FCK <numberl> CYCLES_IN RUN_TEST_IDLE;

User-defined TDM

Some additional C functions have been developed to assist the designer in describing

user-defined TDMs. A brief description of theseTDMs are given below:

ScanIR (outS);

This TDM is used to load the Boundary Scan instruction register with the contents of

string outS while the previously instructionis scannedout at this time. The format of the

instruction is determined by the chip designer except for those instructions defined in the

Boundary Scan standard.

ScanDR (outS);

This function is similar to theScanIR except that thetarget register is one of thechip's test

data

registers which is determined by the contents of theinstruction register. When scanning in

a new datastring,the resultsof the previous stringare scannedout.

Bring2State (i);

This function is used to change the TAP controller state from its current state to state i
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which can be any one of the following states: Run_Test_Idle, Test_Logic_Reset,

Scan_DR, Pause_DR, Scan_IR, or PauseJR.

RepeatState (i, n);

This function allows the TAP controller to remain in state i for n consecutive clock cycles.

Note that this function can only be applied to the Pause_DR,or PauseJR states.

RunTest (n);

This function is used to keep the TAP controller in the Run_Test_Idle state for n

consecutive clock cycles when exercising the BIST circuitryimplemented on the target

chip.

The formal definition of the CTL syntax is doneusingYACC [YACC78] andcanbe found

in [Lien91].

5.4.3 MTL - Module Test Language

The Module Test Language (MTL) is a high level language that can be used to

describe how to test a module. It has been developed such that it requires very little

knowledge of testing, on behalf of the designer, to use it. The test control model used in

MTL is shownin Figure 5-9, where aboard consists of one to many Boundary Scan chips

which are serially cascaded forming a scan chain and a Boundary Scan master controller

chip which can access the chip's Boundary Scan circuitry through two Boundary Scan

rings. The test clockTCK whichis connected to each chip is not shown.

A module test description (MTD) whichcontains all the information required for testing

the board must accompany each board design A board test program is automatically

generated from the board test description andchip test descriptions of the parts that make

up the board using a tool call m2c which will be described in the next section. An MTD
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Figure 5-9: Test control model used in MTL.

consists of the following parts: libraryJd, devicejist, testbus configuration, netjist, and

test_procedure. The library_id points to the directory containing the CTDs. The

devicejist ties every chip used onthe board with itscorresponding CTD in the library. An

exampledevice list consisting of two devices is given below:

device_list = (Chipl adder) (Chip2 multiplier);

The testbusconfiguration describes how the chips on the board are configured and how

theyare connected to a Boundary Scan master controller chip via Boundary Scan testbus.

The the chips may be configured in a ring, star, or combination of both topology. In a

MTD, atestbusis modeled as amultiple ring topology which can bemapped intoanyone

of these topologies. A ring configuration is formed when all chips exist in the same path,

while a starconfiguration is formed when every ring contains only one device. The test

bus for Figure 5-9 is given below.
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test bus =

ring 0: Chipl => Chip2 => Chip3,
ring 1: Chip4 => Chip5;

The netjist describes howthechips on aboard are physically connected. Each terminal of

achipis specified by two names, the first name specifies thechip name, while the second

specifies the I/O pin number. An example consisting of twonets is given below.

net_list =
net 1: (Chipl inpl) (Chip2 outpl),
net 2: (Chip2 inpl) (Chip3 inpl) (Chipl outpl);

The test procedure contains the necessary information required for testing a board. This

information is represented in terms of standard C code and some test-specific functions.

These functions assume no knowledge aboutthe test controller and can be translated to

lowlevel functions which are fully supported by alibrary of test functions written in C.

These I/O functions are used to control the Test Master Controller board or the Local

Boundary Scan master controller chip located onthe target board. Withevery chip on a

board containing the Boundary Scan architecture, it is possible to write a test procedure

for testing the target board using only test-specific functions. Hence, adesigner with little

knowledge of testing can easily write atest procedure thus greatiy reducing test program

development time.The only case where testability knowledge is required are situations

involving boards which contain a mix of Boundary Scan and non-Boundary Scan

components. A brief description of the test-specific function thatare used to describe a test

procedure are listed below.

Testchip (chipjd);

A Boundary Scan master controller chip or the Test Master Controller board can test a

chip, identified by chipjd, by executing this function. To impalement this test, theMTL

compiler, m2c,uses the chip test description (written in CTL for each chip), which

containsone or more test procedures.
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Testchip (chipjd) Use TDM (tdmjd);

This function allows part of the target chip to be tested using a TDM, designated by

chipjd and tdmid respectively. With this function, parts of a chip can be tested in

different time intervals where one or more test sessions are executed in each interval.

Testlnet ();

This function performs the interconnect test on the target board where every net

connecting at least two boundary scan devices is tested. The algorithms used for test

pattern generation are described in the section on Test Vector Generation. This function is

only used to detect the presence of faults on a net, not for diagnosis.

Diagnosislnet ();

This function is used to diagnose faulty nets on the target board. This function uses a

universal test set that includes a walking ones sequence, a walking zeroes, all zeroes

vector, and all ones vector. According to [Iien91], all diagnosable faults can be identified

using this function.

SampleRing (ringjd);

A snapshot of the current statedof the target ring,designated by ringjd, can be achieved

using this function. The value returned by this function is a string of 0's and l's

representing the currentstate of the chips in the Boundary Scan ring.

ScanIR (ringjd, outS);

This function sends instructions to the instruction registers of all the devices under test

that are part of the test bus ring designated by ringjd. When sending instructions, all

chips in the selected scan ring receive a new instruction which is contained in the string

outS.
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Figure 5-10: Example configuration withseveral chips bypassed.

ScanDR (ringjd, preDR,postDR, outS);

This function is similar to the ScanIR except that it sends astring of0's and 1's contained

inoutS to the selected test data register. For situations where itmay benecessary tobypass

every chip except the oneyou're currendy sending data to, preDR and postDR are used to

indicate the number of bypass registers that appear before and after the test data register of

the target chip. The number of shifts required for transmitting data to the target chip is

calculated automatically using preDR andpostDR. This situation is best illustrated in

Figure 5-10. The formal definition of the Module Test language syntax can be found in

[Lien91].
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5.5 m2c - MTL to C Language Compiler

The m2c compiler generates a test program for the target board from its MTL

description and the CTL descriptions of each chip on the board. m2c produces a test

program written in ANSI C format that can be used to test the board and a file which

describes the board interconnect. A block diagram of m2c shown in Figure 5-11. It

consists of a parser module, a template-based TDM module, an interconnect test and

diagnosis module, a shiftadjustment module, anda testprogram generation module. Some

of the more important modules are described below.

5.5.1 Template-based TDM Module

Meta-procedures that can generate C programs from a template-based TDM are

provided. They require a test procedure as an input and they generate a C program for

executing the test process of the selected TDM. These meta-procedures consist of

callfullscan, callintest, and callrunbist where each procedure generates programs for the

Fullscan, INTEST, and RUNBIST TDMs respectively. All information required for

generating a test program must be provided to these meta-procedures. For example, the

following information listed in Table 5-1 is required when using the meta-procedure

callfullscan. These values are extracted direcdy from the CTLandMTL descriptions.

5.5.2 User-defined TDM Module

A user defined TDM is a C program including some test-specific functions. It is

necessary to translate them into normalC statements that can be readily executedby the

Test Master Controller board or Boundary Scan master controller chip. Because of the

differences between the two control models used in CTL and MTL, the test-specific

functions are modifiedto reflect these differences. For example, the test-specific function
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Parameter Description

chipID the name of the chip under test

chipType the type name of the chip under test

ringID the test bus ring where the chip under test is located

pre the number of cells betweenthe chip under test and the controllerwhen
shifting data

post the numberof cells between the controllerand the chip under test when
shifting data

ipre the number of cells between the chip under test and the controller when
shifting an instruction

ipost the number of cellsbetween thecontroller and the chipunder test when
shifting an instruction

reglns the instructions that are used to select the register

vecFID test data input file name

expFID test data output file name

Table 5-1: Information required by meta-procedure callfullscan.

scanIR (outS) is converted to scanIR (RingID, ipre, ipost, outS) so that the samestring of

data outS can now be sent to the correct chip under test. The parameters of the latter

scanIR function are computed by the Shift AdjustmentModule described next.

5.5.3 Shift Adjustment Module

In some cases, it may be desirable to send andreceive test data to one specific chip in

the scan ring while keeping the other chips in the bypass mode. When exchanging data

with a single chip in a scan ring, the number of shifts must be adjusted so that data is sent

to and received from the chip under test correctiy. The number of shifts is determined by

the various cases listed in Table 5-2. (Note that the parameter len in the table is the size of

the source Boundary Scan register.)
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Cases pre >post pre <post pre -post

Number of Shifts len + pre len + post len + post

Number of leading zeroes added when
applying test data

pre - post 0 0

Number of trailing zeroes added when
applying test data

post post post

Number of leading bits ignored when
receiving test data

pre pre pre

Number of trailing bits ignored when
receiving test data

0 post - pre 0

Table 5-2: Cases used for shifting calculation.

Case 1:pro post

In this case, the total number of shifts is len + pre. It is necessary to add pre - post leading

zeroes to the output string before loading it into the memory of the Test Master Controller

board, such that after shifting, the output string will be properly loaded into the target

chip's selected test data register. It is also necessaryto discardthe first pre number of bits

so that the correctstringis received by the targetchip's test dataregister.

Case 2: pre < post

In this case, the totalnumber of shifts is len + post, hence,no leading zeroes are require.

However, it is necessary to ignore the first pre bits received by the memory of the Test

Master Controller board. It is also necessaryto ignore the lastpost - pre bits received by

the memory so that the contents of the source Boundary Scan register can be collected

properly.

Case 3: pre = post

In this case the total number of shifts is len + post and requires no leading zeroes.

However, it is necessary to ignore the first pre numberof bits captured by the memory of
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the Test Master Controller board so that the source data can be collected properly.

5.5.4 The genTarget Module

The purpose of this module is to reduce the manual operation in compiling test

programs, therefore, reducing errors thatmay occur during the compilation of the test

program on the host system, which in this case is a UNIX workstation. genTarget

generates a makefile thatcan produce the executable code that runs the test program.

5.5.5 Interconnect Test Module

This module performs the testing and diagnosis of the board interconnect. It consists

of four major components which include net_list generation, test generation, test

application andresults analysis. The netjist generation component extracts the net list of

the board fromthe MTL file wherethe drivers andreceivers of these nets are all part of the

BoundaryScan registers of the chips on the target board. The CTL files for these chips are

then read to determine the physical configuration of the Boundary Scan registers. A

mapping mechanism is then used to map the terminals of a net to their corresponding

physical location in the Boundary Scan register. This mapping information is stored in a

file called infofile.net which is later used for interconnect testing. In the test generation

part, a test set that can identify all diagnosable faults is generated.This implements the

interconnect test generation algorithms described in the Section 4.6.1.A test schedule for

applying test vectors and gathering test results is produced by the test application part.

Finally, in the results analysis part, test results are compared with their corresponding test

vectors for analysis. Faults are detected based on the results of this analysis.

5.5.6 Device Driver

The device driver consists of two C functions reading and writing test data to and from
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the Test Master Controller board or a Boundary Scan master controller chip. These

functions, called read and write, are hardware dependent in that the device address is

determined by the physical location of the TMC or local Boundary Scan master chip. Each

of the functions have two arguments namely addr, which is the physical address location

of the target device on the Test Master Controller board, anddatafile, which is a pointer to

a file where data can be read from or written to.

5.6 Summary

The tools and languages presented in this chapter are intended to relieve the system

designer of all of themundane tasks associated with testing asystem. This tasks include

Boundary Scan path threading, test pattern generation for both the chip and board levels,

and test program generation. The JTAGtool completes the work started by the test

modules, which automatically adds Boundary Scan test components, bymaking sure that

every Boundary Scan chipis connected to the scan chain. Furthermore, JTAGtool extracts

net listinformation which isused later during interconnect test generation. PLDS isused

to dynamically configure the local controller on the Test Master Controller board to

implement a desired test protocol.

PODEM is an efficient test pattern generation tool for combinational logic which can only

beused if the Scan Path method is employed. It produces tests that willdetect classical

stuck-at faults with a high percentage of fault coverage. Board interconnect tests are

generated by the Interconnect Module of the m2c test program compiler. This module

implements algorithms that provide 100% stuck-at and bridging fault coverage ofboard

interconnects. The Boundary Scan Description Language provides asimple, complete,

and automated way of describing implementations. It is specifically designed for

describing the numerous options that may be exercised in such implementations. The Chip
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Test and Board Test Languages provide a complete testability framework thathides the

details of serial scan protocols from the user. These languages control and track thestate

of the Boundary Scan hardware sothat the user can view the target hardware system from

a high-level perspective - the same way that a computer's operating system makes the

details of computeroperation transparent from the user.
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CHAPTER 6

PROTOTYPE TESTING

The use of chips incorporating the Boundary Scan standard offers significant

advantages when testing prototype systems Prototype systems primarily are developed to

allow designers to prove a design concept or implementation before committing it to full

production, where the cost to correct problems can be prohibitive. With the test hardware

and software tools described in the two previous chapters, designers can verify such items

as the basic design concept, theory of operation, board layout, parts selection, etc.

Furthermore, the proposed test hardware and software tools reduce the amount of

engineeringeffort requiredto test a system. However, in orderto obtain the full benefits of

the test hardwareand software requires some knowledge of how to properly use them in a

design as well as how to apply them for testing.

An overview of the Boundary Scan chips that provide a means for thorough testing of

digital system includinghow they may be used in a design alongwith their respective test

applications are presented in this chapter. After adiscussion on the traditional test methods

113
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used for prototype verification, a structured debug/test procedure is presented that outlines

steps a designer can follow in order to properly use these Boundary Scan chips for

prototype testing. This is followed by some functional and interconnect test examples

which includes test procedures, Chip Test Language and Module Test Language files.

Finally, the benefits of Boundary Scan versus traditional test methods and the lessons

learned from this prototype testingexperience.

6.1 Chips that Simplify Board Level DFT

By placing Boundary Scan chips atcritical nodes ona board and inkey signal paths,

the boundary scan path canbeusedto provide access to critical nodes on the board. When

the system is operating normally, the test circuitry is disabled and devices perform their

normal function. During test operations, the chip's I/O boundary is controlled by

dedicatedtest circuitry.

The procedure for implementing test functions varies according to the operation

performed. In general, the user will preload one or more data registers, execute an

instruction via the instruction register, capture data in the Boundary Scan register, and then

scan out the resulting data from the register for comparison with some expected value. The

remainder of this section describes the chips, listed inTable 4-2, and the test functions

they perform with examples to illustrate how these chips can be used to build in testability
are presented.

6.1.1 System Controllability, Observability, and Partitioning
Octal Chips

System Controllability, Observability, and Partitioning Environment (SCOPE) octals

[TI90b,c,d,e] are standard logic chips that contain Boundary Scan which are intended to



^ TCR1
TM

rCR2

UN

- REG •• 1
i

^ BCR
OC

TC2 -

+

fcAl IVO

BYPASS

CK
TC1 - IREG MUX2

i i

TAP
MUX1

A A

t T '

TDI TMS TCK TDO

115

OUT

Figure 6-1: Block diagram of octal register architecture.

be place in a system design to greatiy enhanceoverall testability in areas from design and

prototype debug to final test and field service of productionsystems. These devices can be

substituted for their non-testing counterparts in a variety of board level design application

such as: pipeline registers, board I/O buffers, address and data buffers/transceivers, and

finite state machine designs.

Along with the normal function associated with each octal, four pins are added to support

the Boundary Scanstandard. A block diagram of the SN74BCT8374 octalregister type is

shown in Figure 6-1. The functional architecture of the 'BCT8374 consists of an 8-bit

register (REG), eightdata inputs (IN), eight data outputs (OUT), aclockinput(CK), and a

tri-state output control input (OC). The Boundary Scan architecture consists of a Test
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Access Port, an IREG, and a data register section. The data register consists of a bypass

register, a boundary control register (BCR), and a Boundary Scan register. The Boundary

Scan register consists of Test Cells 1 and 2 (TCI, TC2), andTest Register Cells 1 and 2

(TCR1, TCR2). The other octals have a similar architecture placed around buffer,

transceiver, andlatch functions. The Boundary Scan register provides the mandatory test

features required for compatibility as well as special test features.

Normal Mode Operation

During normal operation, the Boundary Scan register is transparent, allowing input

and output signals to pass freely through the test cells, enabling the chip to perform its

intended function. While in normal operation, theTest AccessPort canreceive control

from the TMS and TCK inputs to shift data through the chip from its TDI input to the

TDO output. Three test instructions can be executed while the device is in this mode:

SAMPLE, BYPASS, and a special SCOPE self-test instruction. The SAMPLE and

BYPASS functions were described in Chapter 3.While the SAMPLE instruction at first

may appear very attractive, the user must know when to sample in order to obtain

meaningful data. The self-test instruction executes aselfcheck of each SCOPE cellin the

Boundary Scan register.

Test Mode Operation

When placed in an off-line test mode, the normal operation of the SCOPE octal is

inhibited. In test mode, instructions can be shifted into the chip to perform all mandatory

Boundary Scan instructions, as well as, an extended set oftest instructions develop

specifically for the SCOPE octals. Prior to loading these instructions, the Boundary Scan

register should be set so that adesired test control pattern is applied to the REG inputs, tri-

state buffers, and chip outputs. The step ensures that the chip will be inaknown state
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when the test mode is entered.

When EXTEST orINTEST instruction is loaded into the chip, Boundary Scan register

cells TCI, TC2, TCR1, and TCR2 are set to allow simultaneous observation of signals

appearing at theirI/O pins.DuringEXTEST andINTEST execution, the TestAccess Port

receives external input to cause the Boundary Scan register to capture date on CK, OC,

andIN inputs as well as the internal REG outputs. While captured data is shifted out, the

next test controlpattern is shiftedin via TDI input. The Boundary Scan registeroutputs

remain in their present state during the shift operation. The process of capturing data,

shifting the Boundary Scan register to extract stored data and loading new test data,

followed by the application of the new test from the registeroutputs, is repeated until the

test is complete.

Test Extensions

To support extended testing features required additional instructions. The benefits of

developing an extended test architecture is that every octal will share a consistent test

instruction set, compatible test modes, and reduced complexity in the development of test

software tools. These extended instructions are described below:

Control Boundary to High-Impedance

When this instruction is loaded into an octal, the outputs are placed in a high-impedance

state and the bypassregister is selected. This instruction is designed primarilyto facilitate

a blend of in-circuit testing and Boundary Scan testing. By disabling the outputs of the

device, an in-circuit tester can drive the inputs of another device coupled to the output of

the octals without damaging the octaTs buffers. While this instruction is in effect, the

bypass register is selected to provide a minimum data register scan length through the

chip.
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Control Boundary to a Logic 0 or 1

When this instruction is loaded into an octal, the Boundary Scan register outputs are set to

a prescanned combination of logic l's and O's and the bypas register is selected. This

instruction allows the test cells to output a control pattern to the REG inputs, tri-state

buffers, and chip output. This places the chip in a preferred state while testing neighboring

components.

Boundary Read

The contents of the Boundary Scan register can be shifted out when this instruction is

executred.This instruction differs fromEXTEST or SAMPLE in that thecapture operation

that normally occurs during the CaptureJDR controller state is replacedwith a data

register hold operation which causes the Boundary Scan register tocapture their present

state instead of the data values sitting ontheir inputs. This instruction allows a signature

that has been collected inthe Boundary Scan register to be shifted out for inspection.

Run Test

This instruction was developed to support BIST approaches. Run Test is a generic

instruction that executes the boundary BIST operation setup by control bits programmed

in the BCR, shown in Figure 6-1. The BCR control bit settings must be set up via ascan

operation prior to loading the Run Test instruction. Run Test will execute during the

RUNJTEST/IDLE controller state. The length of aparticular Run Test test operation is

determined by the number of TCK inputs applied. The Run Test instruction has four

operational modes: 16-bit Parallel Signature Analysis (PSA) of the IN inputs, 16-bit

Pseudo-Random Pattern Generation (PRPG) form the OUT outputs, simultaneous PSA

and PRPG, and simultaneous SAMPLE ofIN inputs and TOGGLE ofOUT outputs.

During a 16-bit PSA Run Test mode, the 8-bit TCR1 and TCR2 cells are tied together to



119

form a16-bit Linear Feedback Shift Register (LFSR). The parallel inputs to the TCRl are

enabled to accept data from the INbus and the parallel inputs toTCR2 are disabled. In this

configuration TCR2 acts as an 8-bit LFSR extension to TCRl. During test, the parallel

inputs from the IN bus are compressed into the 16-bit LFSR onthe rising edge of TCK.

Linking TCRl toTCR2 allows the octal to receive an extended sequence of 8-bit patterns

from the IN bus. At the end of the PSA mode, the 16-bit signature canbe shifted out of

TCRl andTCR2 for inspection. While TCRl and TCR2 are collecting the signature, the

outputs ofTCI andTC2 remain in their presentstate.TC2 can be set to enable or disable

the OUT buffers during a test.

During the 16-bit PRPG Run Test mode, TCRl andTCR2 aretied together to form a 16-

bit LFSR as described in the 16-bit PSA test. During the 16-bit PRPG test mode, both

parallel inputs to TCRl and TCR2 are disabled so that both act only as LFSRs. During

test, the parallel output from TCR2 drives pseudorandom patterns to the OUT bus one

each falling edge of TCK. Since the width of the OUT bus is 8 bits, individual patterns

will be repeated during every 256 patternoutput sequence. However, the test circuit will

produce 256 sets of unique 256 pattern output sequences. TC2 is set to enable the OUT

buffers during this test.

During the simultaneous PSA and PRPG Run Test mode, TCRl andTCR2 operateas two

separate 8-bitLFSRs. The parallel inputs to TCRl are enabledto acceptdata from the IN

bus and the parallel inputs to TCR2 are disabled. During test, TCR2 outputs

pseudorandom patterns to the OUT buson the falling edgeof TCK. gluelogicresiding at

the chip's I/O pinscanbe quickly testedusing the Run Test instruction.

During the simultaneous Sample Inputs/Toggle Outputs Run Test mode, TCR2 outputs

alternating data patterns to the OUT bus on the falling edge of TCK, andTCRl accepts
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data inputform the IN bus on the risingedgeof TCK. By adjusting thefrequency of TCK,

this test can be used to measure the propagation delays through external logic residing

between the OUT and IN buses.

Boundary Self-Test

The Boundary Scan register is selected in the scan path. This operation tests the logic in

the Boundary Scan cells by loading the complementof the current logic value in the cells.

By loading a known value in the register, executing CELLTST, and inspecting the

resulting data through a scanoperation, the integrity of the register can be verified.

Boundary Toggle Outputs

Functional outputs are toggled oneachfalling edge ofTCK.

Verifying Board Interconnect

Perhaps one of the simplest examples ofhow Boundary Scan can beused to improve

the testability ofa board is by verifying the board interconnects (detecting "stuck-at"

faults) between chips on aboard orbetween two boards inasystem. Figure 6-2 shows two

'BCT8244s being used to buffer signals between two separate parts ofthe board. They

could be on either side ofan edge connector, separated by board traces, or inany number

of other configurations. The procedure for verifying the interconnect for this example is
described below:

1. Initialize the scan path through a reset operation.

2. Scan1 all zeroes into the output Boundary Scan cells of Ul. This can be done with any of
several instructions.

3. Scan the EXTEST instruction into both Ul and U2.

4. Capture the Boundary Scanregister of U2.

1. Scan means put the Test Access Port in the appropriate shift state and serially load data through the TDI pin.
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Figure 6-2: Using two 'BCT244's to verify PCB interconnect.

5. Scan out the captured contents of U2's input Boundary Scan cells for inspection, while
scanningin the next patterninto the output Boundary Scan cells ofUl.

6. Repeat steps 4 and 5 for each pattern.

Step 1 can be accomplished by applying g a logic 1 to theTMS pin, by scanning allO's

into the Boundary Scanregister, or by a power-down/power-up sequence. During step 2,

load the output Boundary Scan cells of Ul with the data thatwill be applied through the

functional outputs. The EXTEST instruction in loaded by putting Ul andU2 into the

Shift_IR controller state and scanning in its opcode (00000000) into the instruction

register of both chips. During the previous controller state, Ul will force through its

outputs, the data loaded in step 2. Since EXTEST places the Boundary Scan register
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between TDI and TDO, going to the Capture_DR state (step 4) will load the input

Boundary Scan cells of U2 with the data appearing at its functional inputs.

The Test Access Port controller of both Ul and U2 are placed in the Shift_DR controller

state in step 5. The scan path is now 36 bits long, 18 bits from ul's Boundary Scan register

and 18 bits for U2's Boundary Scan register. The data from the input Boundary Scan cells

of U2 is scanned out to be stored and/or examined. Since all O'sfrom Ul were forced, the

expected value of the data captured at the input BoundaryScan cells of U2 is also all O's.

During this same shift, the output Boundary Scan cells of Ul are loaded with the next

pattern. When passing through the Update_DR controller state after shifting is complete,

the output Boundary Scan cells of Ul will force the next test pattern is applied. As an

example, assume that some wiring defects inthe circuit ofFigure 6-2 have caused an open

between Ul and U2 onsignal C, and a short circuit between signals E and F. Table 6-1

Table 6-1: Shorts/Opens Verification.

Pattern #
Pattern Forced by Ul

(A-G)
Pattern Captured by U2

(A-G)

1 00001111 00701111

2 11110000 11110000

3 00110011 00110011

4 11001100 lliOHOO

5 01010101 01710001

6 10101010 10100010

lists six patterns Ul can apply to check for any opens and shorts that may exist between

Ul and U2, or shorts between any two pins, along with the data they would capture.
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Glue Logic Testing

Pseudo-random pattern generation and parallel signature analysis can be used to verify

the logic implementation of adesign. During a pseudo-random generation or parallel

signature analysis operation, the Boundary Scan registers of adevice are configured as

linear feedback shift registers and will perform either a pattern generation or data

compression operation on everyTCK cycle. By loadingaknown seedvalue (other thanall

zeroes) into the Boundary Scan register andknowing the algorithm used, the user can

determine (NOTE: Those bits indicating the presence of a defect appear in italic type) the

patterns thatwill be generated and/or signature resulting from the data compression of the

inputs. Li orderto exercise the system logic shown in Figure 6-3, the Boundary Scan cells

of Ul can be configured to output pseudo-random patterns and the input Boundary Scan

cells of U2 configured to compress databy performing the following operations:

1. Initialize the scan path.

2. Load the Boundary Scan registers of both Ul and U2 with the seed values to be used
during PRPG and PSA. Any value but all zeroes is acceptable.

3. Scan the SCANN instruction into both Ul and U2.

4. Scan the PRPG data into Ul's Boundary Scan register and the PSA data in U2's
Boundary Scan register.

5. Scan in the Run Test instruction into Ul and U2.

6. Go to the Runjest/Idle controller state.

7. Execute the PSPG and PSA instruction for the desired number of clock cycles.

8. Scan U2 with the Boundary Read instruction.

9. Scan out the contents of U2's input Boundary Scan cells and compare the resulting
signature with the expected values.

To illustrate this concept, assume that a seed value of all ones is loaded into the Boundary

Scan register of both Ul and U2 during step 2, and there is no logic between Ul and U2

(i.e., U2's 1A1 = Ul's 1Y1, U2's 1A2 = Ul's 1Y2, etc.) During Steps 3-5 the octals are
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Figure 6-3: Logicverification usingBoundary Scan.

loaded with the proper data and instruction to perform the pattern generation and data

compression operations. SCANCN places the boundary control register between TDI and

TDO so the simultaneous PSA/PRPG code (11) can be loaded using the Shift_DR

controller state. RunTest is loaded into the instruction register, and tells the octals to

examine their Boundary Scan registers and execute the specified test. In this example, the

simultaneous PSA/PRPG function isbeing used. Figure 6-4 shows the configuration used

during this operation. After generating sufficient patterns to test the logic, the signature in

U2's input Boundary Scan cells must be examined. This is accomplished using the

Boundary Read instruction. It is important that this instruction rather than EXTEST,
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Figure 6-4: Simultaneous pseudo-random pattern generation and
parallel signature analysis.

INTEST, or SAMPLE be used, because while all of these instructions will place the

Boundary Scan register between TDI andTDO for the ensuing Shift_DR controller state,

the other instructions will preload the input Boundary Scan cells with the current input

data during the Capture_DR state and overwrite the signature. Boundary Read does not

preload the Boundary Scan register during Capture_DR, so the signature is preserved.

Table 6-2 shows the pseudo-random patterns generated, and the resulting signature after

each pattern, for the first 15 TCK cycles. The first pattern, applied during the falling edge

of TCK in UpdateJR, is the seed value of all 1's, and the first signature (generated on the

first rising edge ofTCK after entering Run_Test/IDLE) is based on that value. On the first

falling edge ofTCK after entering Run_Test/IDLE, the signature is generated on the rising

edge of TCK as the controller state changes from Run_Test/Idle to Select_DR_Scan.

Although this example contains no logic between Ul and U2, the same principles are
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Cycle
Pattern AfterTCK

(1YMY4,2Y1-2Y4)
Signature After TCK
(1AMA4,2A1-2A4)

1 11111111 1000000000

2 01111111 00111111

3 00111111 10100000

4 10011111 01101000

5 01001111 00011010

6 00100111 10001000

7 00010011 10000100

8 00001001 11001100

9 10000010 10100001

10 10100001 00101000

11 01010000 10111100

12 00101000 11001010

13 10010100 00101111

14 11001010 11110001

15 11100101 11110010

Table 6-2: PRPG/PSA sequence,

applicable in more complex cases. This method can also be used to verify address

decoding tomemories, ortoapply patterns to the input of acomplex chip. By placing the

octals inthe critical paths, the user can control the signals being applied toany node onthe

board.

Partitioning for Test

Using octals tobuffer keysignals can allow for effective partitioning ofaboard during

test to remove unconnected orunwanted components. Partitioning a board into separate

stand-alone testcells can reduce thenumber of patterns required to test the section(s) of
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Figure 6-5: Partitioning for test example.
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interest. In Figure 6-5, octals areused to partition a shared-memory configuration in which

a digital signal processor and graphics signal processor share the same memory. The

'BCT8245s (Ul and U3) are used to buffer data transmission between the processors and

memory, and the *BCT8373s (U2 and U4) are used as address latches. The four octals are

connected in a serial scan path with common TCK and TMS signals. Using the octals in
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this configuration creates many testing possibilities that go far beyond simple interconnect

testing. For example, one or both processors can be effectively removed from system

operation by scanning and executing theControl Boundary toHigh-Impedance instruction

onthe units buffering it,which willcause the functional outputs of the octals togointo the

high-impedance state. This instruction also protects the octals if some type of fibctured

testing, such as bed-of-nails test, is tobeused byensuring that the functional outputs are

not back driven.

The status of the octal inputs and outputs can also becaptured atany time by using the

SAMPLE instruction. This operation does not disturb the normal operation of the chips

and will not affect the system, but will capture the logic levels at all inputs and outputs.

This information can be scanned out and compared against an expected value. The

SAMPLE instruction is also useful for preloading the Boundary Scan register prior to

another test operation, since the octals will continue to function in anormal mode during

the preloadscanning.

The circuit in Figure 6-5 would also allow the contents of any orall memory locations to

be written to or read from. A memory location can be verified by using the EXTEST

instruction to force an address using U2 or U4 and capture the data appearing using Ul or

U3. This illustrates the ability of the chips toboth control and observe the signals towhich

they are connected. If the entire contents of thememory are known, the PRPG and PSA

operations could unload the entire memory using aminimum number ofclock cycles, with

the final signature being scanned out for inspection.

6.2 The Digital Bus Monitor Chip

The Digital Bus Monitor (DBM) chip can beincluded in a board design to provide a
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method of monitoring embedded digital signal paths between chips like databuses. The

DBM is capable of monitoring digital signal paths while the boardis either on-line and

operating normally or is in anoff-line testmode. The benefitof on-line monitoring is that

it can be used to reveal timing sensitive and/or intermittent failures that are otherwise

undetectable without the use of external test equipmentandmechanical probing fixtures.

One of the advantages in using DBM chips to construct board level BIST structures is that

the monitoring capability is embedded in the board design and canbe used throughout the

life cycles of the board prototypetesting, system integration, system test, and real-time

diagnostics. Anotheradvantage in using these chips is thatit doesnot significantly impact

the performance of the board circuitry. Since the signals to be monitored don not pass

through the DBM chip but areonly input to the chip, no significantperformance penaltyis

paid when using these chips. In the example shown in Figure 6-6, two chips operate

together via address, data, and control interface paths to perform a desired function. In

normal operation, Chipl outputs address and control to Chip2 to pass data between the

two chips.Two DBM chips are included in the circuit for address anddatabus monitoring.

The DBM chips are connected via Boundary Scan test bus and the two-wire event

qualification bus. The address and data bus to be monitored are input to the DBMs via

observability data inputs (ODIs). The control outputs from Chipl are input to the DBM

chips via clock inputs (CK) to allow them to operate synchronously with the circuit during

on-line monitoring.

The test circuitry residing behind the ODI input pins consists of a RAM buffer, and a test

cell register.The memory buffer provides storage for multiple ODI input patterns. The test

cell register operates as either a Boundary Scan register or PSA register. The memory

buffer and test cell register can be operated together or separately, as required by the given

test operation. The ODI inputs to the test cell register can be masked individually to allow
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Figure 6-6: Digital busmonitor example.
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diagnosing which input or groups ofinputs caused amultiple-input PSA operation to fail.

When the circuit in Figure 6-6 is placed in an off-line test mode, Chipl can be made to

output data onits address and data bus. The data and address output from Chipl can be

stored into DBMl and DBM2, respectively, via ODI inputs. After the data have been

stored, they can be shifted out for inspection via Boundary Scan path. Similarly, Chip2 can

be made to output data onits data bus, to be stored and shifted out for inspection by

DBM2. In the off-line test mode, control to store data and operate the scan path is input

via Boundary Scan test bus.
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When the circuit in Figure 6-6 is on-line and functioning normally, chips DBMl and

DBM2 can continue to monitor the data and address buses suing an internal Event

Qualification Module resident in each Digital Bus Monitor chip. During on-line

monitoring, theEventQualification Module outputs control to store thedata appearing on

theobservability data inputs. This module operates synchronously with the control signal

input to the Digital Bus Monitor'sclock inputs. To determine when to store data, the Event

Qualification Module includes comparator logic that can match the data appearing on the

observability data inputs against predetermined expected data pattern(s). The compare

operation performed on each observability data input can be masked individually to

eliminate input signals not required for event qualification. The Event Qualification

Module has protocols that allow it to perform different types of event-qualified monitoring

operations. The typeof monitoring operation tobeperformed (for example, RAM storage)

determines the type of protocol used.

To expand the event-qualification capability, many Digital Bus Monitor chips can be

connected via the two-wire event-qualification bus to allow qualification of a test

operation to be distributed overa range of chips. During expanded event qualification,

each DBM operates to output a match condition on its Event-Qualification Output pin.

The match signals from thesechips are combined via a voting circuit to produce a global

matching signal. The global matching signal is input to each chip via and Event-

Qualification Input signal. When a global match signal is received, the internal Event

Qualification Module initiates a testmonitor operation. In somecases, it may be required

to qualify a monitor operation further using external signals. In this case, the external

signals are input to the voting circuit to allow finer resolution as to when a monitor

operation is performed.
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Figure 6-7: Test bus controller example.

6.2.1 The Test Bus Controller Chip

The Test Bus Controller chip is a Boundary Scan test bus controller that supports

efficient transfer of serial data and control to and from target chips sitting on the testbus.

Figure 6-7 shows an example application of the Test Bus Controller chip which provides

the hardware link between ahost processor and target chips residing onthe scan path. To

the processor, it is a peripheral mapped into a particular area of the processor's external

memory space. It's processor interface consists of a 16-bit bidirectional data bus; inputs

for address, read/write, and chip select signals; and an interrupt output signal.

The chip's testbus interface consists of five signals which are Test Data Output signal,

Test Data Input, Test Mode Select, Test Clock Input, and Test Clock Output. ThetwoTest

Mode Select outputs allow the it to support separate scan paths. The Test Data Output
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signalis a serial data output from the chip that drives the Test DataInput pin of the first

target chip in the scan path. The Test Data Input signalis the serial data input to the Test

Bus Controller chip that receives the data from the last target chip in the scan path. The

Test Mode Select signals are serial control outputs from the chip that drive Test Mode

Select inputs of target devices in the scan path. These outputs conforms to the protocol

describedin the Boundary Scan standard to cause targetchips on the scan path to shift

data. The Test Clock Input signalis generated externally and is distributedvia Test Clock

Output to each target device in the scanpath. In addition to the required Boundary Scan

test bus signals, the interface includes anoutput signal for initialization of target chips and

input signals forreceiving test related interrupts from target chips.

Before a scanoperation, it receives the parallel data input from the processor (e.g. VME

CPU board) thatis to be transmitted serially to the target chipsin the scan path. Also, the

processorinputs a count value into an internal counter, specifying the number of serial

data bits to be transferred. After the data andcountvalueshave been set up, it receives a

command from the processor to initiate the scan operation. During scan operations, it

outputs serial data andcontrol signals to the target chipsvia the Test Data OutputandTest

Mode Select output signals and receives serial data from the targetchips via Test Data

Input. By reading statusbits from the Test Bus Controller chip, the processor determines

when it requires additional read and write operations to maintain the flow of serialdatato

the target chips in the scan path.When the it's internal counter reaches a minimum value,

it outputs an interrupt to the processor, indicating that the required number of serial data

bits has been shifted throughthe scanpath.

In addition to controlling scan operations, it simplifies the execution of BIST features

incorporated in the target chip. The Boundary Scan test bus protocol state diagrams

includes a Run_Test/Idle state in which BIST operations may be executed. If a targetchip
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has BIST capabilities, an instruction invoking the BIST operation can be scanned into the

device. After the target device receives the BIST instruction, execution of the test occurs

when it transitions the test bus into the Run_Test/Idle state. As defined in the standard

specification, the length of a BIST operation is defined by the number of clock inputs

applied while the test bus is in the Run_Test/Idle controller state. To simplify the

execution of BIST operations, theTest BusController chip contains two types of runtest

commands. Both command types are executed while the test bus is in the Run_Test/Idle

controller state. The first type uses the internal counter to count the number of clocks

applied while the test bus is in the Run_Test/Idle controller state, supporting the BIST

procedure detailed in the standard specification. When the counter reaches a terminal

value, it transitions the test bus from its current state intoeither a scan or pause state to

terminate the execution of theBISToperation. The second type uses its interrupt inputs to

determine the length of time the test bus is in the Run_Test/Idle controller state. This

command differs from the first in that it assumes the target chip(s) have additional test pins

from which an end-of-test interrupt may be issued to it.When it receives this interrupt, it

transitions the test bus from the Run_Test/Idle controller state to either a scan or pause

state to terminate the BIST operation.

6.3 Prototype Testing using the TMC Board: A User's
Perspective

A prototype system is normally alow cost, low volume production of the end product.

Most of the money spent during prototype development is devoted to building the

prototype and verifying the design concept; very little usually is allocated for testing.

Prototype testing usually is accomplished through simple functional operation and

verification of the systemas a whole. Functional testof system hardware and software
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typically are performed on the entire system or parts of the system, possibly with some

unavailable function being emulated externally. When failure are detected during this

design verification process, a significant amount of time is spentdetermining the cause of

the failure and correcting it. This debugging process is a manual, often time consuming,

task thatdoes not guarantee immediate success. Several hours may be spentrerunning the

system after swapping boards and components that are believed to have caused the failure

but, in fact, did not. Mixing design verification with fault verification canbe costly in the

long run if these processes do not complementone another.

Design verification and fault verification can be less painful by usingdevices thatsupport

the Boundary Scan standard andpartitioning the systeminto small, easy to test functions.

The use of Boundary Scan allows each partitioned function to be verified and tested

independently, thereby reducing the time spent locating the cause of a failure. Boundary

Scan provides anincrease in the controllability and observability of internal circuit nodes,

which is mandatory when isolating system hardware faults and verifying operation of

system software. Standard chips implementingBoundary Scan are very beneficial in this

situation. The use of suchchips supports a hierarchical test philosophy in which the same

test capabilities andtest programs can be reused ateach level of system integration (chip,

board, system).

6.3.1 Traditional Test Methods

During prototype system design, testing issues are often far from the minds of the

designers. If test is an issue, ad-hoc testability techniques sometimes are implemented.

The design primarilyis concernedwith how to implement a given piece of the system and

have it interfacecorrectly with the rest of the system, as well as, how the system is going

to function when all the pieces are put together. The designer is also concerned with
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getting the system software working and verified on the system. The complexity of the test

problem comes to the surface when all the pieces are assembled and the system does not

function properly. Determining why the system does not function as intended can be a

major problem. Typical problems include:

• A manufacturing problem (mis-wire, wrong component, etc.)

• A design error (incorrect design implementation)

• A software problem (incorrect algorithm)

• A hardware failure (bad part, etc.)

There are many approaches to identify the problem, but no real test strategy exists for

debugging. The e designer usually determines the process for obtaining a functional

system. The equipmentused in the traditional test anddebug process will very depending

on whether a whole system, subsystem, or a few boards are being checked out. Types of

equipment that are needed include:

1. Hardware and software emulator

2. Logic analyzer

3. Oscilloscope

4. Multimeter

5. Speciallydesigneddebug boxes (special test equipment)

6. Logic probes

Depending on the design, the equipment costmay be very expensive and hard to justify

for a low volume system. User expertise and related training costs, if necessary, are other

factors to consider. A typical approach taken to verify/debug/test the hardware and

software in a prototype system is:

1. Make a visual inspection of all the boards to check for any obvious problems; for
example, wrong parts on the board.
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2. Do a continuity test of VCC and GND to check for shorts. This always should be
performed on each board before placing it in the system to avoid the possibility of
damaging the whole system when poweris applied.

3. At this point, there are manydifferent options, depending on whatthe designer decides
is the best approach. One approach is to run the hardware and software, making
necessary patches (either hardware or software), to get around parts not currently
available. If everything runs as intended, it is assumed that no problemexists. If not,
there are may ways to proceed which include the following:

4. - Lower the hardware complexity by removing boards and patching around the boards

5. - Lower the software complexity by changing the software

6. - Execute the softwarein an single step mode and attempt to identify the source of the
problem by using a logic analyzer and/or oscilloscope.

Other approaches like swapping boards can induce faults into the system other thanthose

faults associated with the system under test. The traditional methods described above

usually do not involve a structured design verification and testing strategy. Concurrent

verification of hardware and software makes it difficult to isolate between hardware and

software faults. The increasing complexity and density of today's systems may require

costly equipment for verification and test, furthermore, board real-estate must be allocated

for probing.

6.3.2 Structured Debug/Test Procedure

The use of the Test Master Controller board andthe test software described in Chapter

4 coupledwith intelligentuse of Boundary Scan devices altogether provide the designer

with a structured procedure for verifying, debugging, and testing systems that can be

reused for future systems. This procedure uses a building block approach whereby

individual parts of the system are verifiedandthen may be used to verify the remaining

parts. The procedure is shown in Figure 6-8 and can be divided into the following three

phases:



138

HARDWARE

DESIGN

Automatic Insertion

of Boundary Scan chips

Create CTL and MTL Files

DEBUG/TEST
STRATEGY

DEFINITION

Visual Inspection

TEST
PROGRAM
GENERATION

Continuity Check

Verify Scan Path

Run m2c, Generate C
Source code, compile,

download, and execute test

Working Chip, Board, System

Figure 6-8: Block diagram of structured debug/test procedure.
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• Hardware design

• Define test strategy

• Automatic test programGeneration and execution

The hardware design phase consists of automatically incorporating Boundary Scan chips

into the design to partition it into easily testable functions. During the test strategy

definition phase, the designer decides on the best test strategy for theirboard(s) andthen

creates CTL andMTL files thatwill implement theirstrategy. The CTL andMTL files are

then processed, by the m2c program, to produce the source C code for the test program.

Next, the test program manufacturing module is used to create a make file which gets

processed by the Unix Make utility to create the executable code. Finally, the executable

code is transferred to the VME CPU board to control the Test Master Controller board

during a test.

6.33 Test Master Controller Board Prototype

The Test Master Controller board wasdeveloped to fulfil two primary objectives:

1. to controlthe test process of target slaveboards containing BoundaryScan

2. to study the benefitsof using standard chips incorporating Boundary Scan as a tool for
hierarchical test, in a boarddesign

Both of these objectives canbe fulfilled by implementing a prototype where Boundary

Scan is anessential design element. Scannable buffers, latches, and flip-flops were usedto

partition the design into sub-functions that could be easily verified. A Boundary Scan test

bus controller chipand data busmonitoring chips were also usedin the prototype design.

The implementation of these chips in theTestMaster Controller board prototype is shown

in Figure 6-9 where 28 Boundary Scan chips consisting of buffers, latches, and flip-flops

were placedstrategically on data, address, andcontrol signals, Thus it is divided into five
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Figure 6-9: Configuration of scan path onTMC prototype.

distinct sub-functions, each individually accessible through the local Boundary Scan

interface. These sub-functions are the VME interface logic unit, the clock generator, the

memory module, the analog module, and the 1149.n controller module.

6.3.4 Functional and Interconnect Test Example

The debugftest procedure described above is demonstrated in the following example.

This example uses an octal buffer chip and adigital bus monitor chip, all containing

Boundary Scan, toverify interconnect between an address buffer and adigital bus monitor

chip. To generate test programs for this example requires five files: tmcmtl., buf_2.ctl,

buf_3.ctl, buf_4.ctl, and act8994.ctl. These files are listed below.
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MTL file for Test Master Controller Board

Module = TMC;

LIB = lib (3);

DEVICEJUST = (Chipl buf_2) (Chip2 buf_3)(Chip3 buf_4) (Chip4dbm);
TEST.BUS =

RING 0: Chipl => Chip2 => Chip3=> Chip4;
NET_LIST =

NET 1: (Chipl Y[l]) (Chip4D[0]),

NET 2: (Chipl Y[2]) (Chip4 D[l]),

NET 3: (Chipl Y[3]) (Chip4 D[2]),

NET 4: (Chipl Y[4]) (Chip4 D[3]),

NET 5: (Chipl Y[5]) (Chip4 D[4]).

NET 6: (Chipl Y[61) (Chip4 D[5]).

NET 7: (Chipl Y[7]) (Chip4 D[6]);

NET 8: (Chip2 Y[0]) (Chip4 D[7]).

NET 9: (Chip2 Y[l]) (Chip4 D[8]),

NET 10: (Chip2 Y[2]) (Chip4 D[9]).

NET 11:(Chip2 Y[3]) (Chip4 D[10]),
NET 12: (Chip2 Y[4]) (Chip4 D[ll]),

NET 13: (Chip2 Y[5]) (Chip4 D[12]),
NET 14: (Chip2 Y[6\) (Chip2 D[13]),

NET 15: (Chip2 Y[7]) (Chip2 D[14]),

NET 16: (Chip3 Y[0]) (Chip3 D[15]);

MODULE.TEST

#include <stdioJi>;

#include "compJi"

main()

{

testinet 0; /"test the entire interconnect */

testcnip (Chipl); /""test the entirechip */

}

END_TEST

The testbus is organized intoone Boundary Scan ring. There are a total of 28 chipsin the

scanring. Only four chips are used in this example, the remaining 24 chips are bypassed.

The test procedure for this test consists of the testinet test procedure that implements an

interconnect test for the chips listed in the devicejist.
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CTL Files

BSDL descriptions of the TI8244 anddigital bus monitorchips are given in Appendix

A. Hence only the test procedure part of the CTL files are given below. The test

procedures for the two other buffer chips are almost identicaldiffering in test dataonly.

The test procedure for the digital bus monitor chip differs in length of Boundary Scan

register as well as test data. The example testprocedure presented is intended to verify the

functionality of the devices in addition to verifying the interconnection between the chips

involved in the test.

Test_Begin

TDM 0 = USER.DEFINE;

#include <stdioJi>

#include <stringJi>

#defineIRl

#defineDRO

topO

{

char outs[32], ins[32];

char *pl, *p2;

sprintf(out2, "00000000"); /* OPCODE for EXTEST INSTRUCTION*/

scanlR(outs); /* SCAN CONTENTS of STRING to INSTRUCTION REGISTER */
sprintf(ousts, "000000001010101010");

strcpy(ins, scanDR(outs));

/* load D = 10101010 into Chipland GET PREVIOUS TEST RESULT */
pi =ins+24; /* AdvancePointer to Beginning of result String */
p2=outs+14 /* Advance Pointer to Beginning of Data String */
if (strncmp(pl, p2,8) !=0) {

printf(error in 10101010 testW;

exit(l);

}

else printfC'buf_2 Tested OK.V);

TestJEnd

Generated Test Programs

The generated test program for the Test Master Controller board consists of seven

files, namely comp.h, tmcmain.c, buf_2tops.c, driver.c, inetpc.c, template.c, and
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infoflle.net. The file comp.h defines all of the variables used in by the main program

tmcmain.c The prefix tmc of the tmcmain.c file is extracted from the tmcmtl file. The file

tmcmain.c contains four functions. The first one, inetpc is used to test the interconnect.

The second one, buf_2tops.c is used to test Chipl using the user-defined TDM. The third

one, driver.c, contains all of the functions required to control the Test Master Controller

boardduring a test. The file template.c contains all of the template-basedTDM functions.

The inetpc procedure uses the information provided in the inforile.net for test generation.

The buf_2tops.c file is atranslated version of theuser-defined procedure for testing Chipl.

6.4 Benefits of Boundary Scan vs. Traditional Methods

The key benefits of using Boundary Scan versususing traditional methods for design

verification, debugging, and testing are shown in Table 6-1 and discussed below.

Incorporating Boundary Scan into prototype designs will provide the designer with a

structured approach to design verification, debugging, and testing of prototype systems,

which typicallydoesnot exist usingtraditional methods. As the complexity anddensity of

designs increase, the need for more equipment will be required when using traditional

methods. The need for different types of equipment was shown to decrease when

Boundary Scan was implemented into the design.The equipment required in debug and

test of the prototype system described in the previous section included Boundary Scan

octal chips incorporated into the design, and a dedicated Test Master Controller board and

test software. In traditional methods, the software generated by designers during design

verification and debug is usually discarded after verificationof the system. If the software

is not discarded, it rarely can be used for board and system testing. In contrast, the

hierarchical test method used on the prototypesystem allowed the software generated for

board level debug to be reused to generate system level tests. The controllability and
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observability in the traditional debugand testmethods usually requires the attachment of

emulators, logic analyzers, or oscilloscopes to the device under test. Controllability and

observability can be easily achieved with BoundaryScan chips. With this increased

internal visibility, faultisolation andsystem software debug are accomplished more easily.

The use of Boundary Scan octal chips, requires the use of four I/O pins and a slightly

larger chip foot print a board. In the traditional approach, the amountof space used is

dependent on the ad-hoc testabilityadded to the design. Space also needs to be allocated

so that boards can be probed.

Trade-offs Traditional Boundary Scan

Approaches Usually not structured

Usually starts after design has
gone through manufacturing

Structured approach

Starts during design

Test Equipment Complexity/density of designs
require more test equipment to
test and debug systems

All "Hands On"

Limited equipment needed to
test and debug systems. No
need for expensive special test
equipment
"Hands On" limited

Software Tests generally not reusable Reusable test software go
from debug -board

Internal Visibility Fault isolation depends on ad-
hoc testability

Manual probing required

Required external hardware to
look at internal nodes

Fault isolation increased

No manual probing required

Has internal node visibility

Board Real Estate Additional real estate required
to support ad-hoc testability and
space to allow for probing

Additional real estate, four I/O
pins, and a larger board pack
age footprint

Table6-3 : Differences in Traditional and Boundary ScanTestMethods.
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6.5 Lessons Learned

Major benefits of using boundary scanversus using traditional methods for design

verification, debug, and testwerediscovered through development of theTMC prototype.

Most of the lessons learned fall into one of the following categories: fault-isolation, design

partitioning and test access, ease of use, and scan path design. A discussion of these

categories and specificlessons, designrules, andobservations that were made is provided

below.

6.5.1 Fault Isolation (Traditional vs. Boundary Scan)

Using Boundary within the memory module, the memory was loaded and verified.

This allowedthe problem to be isolated to a design error within the memory enable logic.

Another example of how the Test Software and Boundary Scan were successful in

isolatingvarious system problems was in testing the 1149.n Test Controller module, where

a miswired bus enable signalwas creating bus contention on dataline. Boundary Scan

helped isolatethe problem quickly, withoutrequiring any manualprobing of the board. In

addition to design errors that were isolated, several component and signal failures also

were isolated.

6.5.2 Design Partitioning and Test Access

It is very important that Boundary Scan be implemented at functional partitions,

especially the board-to-board interface, to allow functions to be exercised and isolated

completely. Also, Boundary Scan access to key control signals, such as microprocessor

HOLD signals, is important to avoid bus contention when attempting to drive buses with

Boundary Scan registers.

By providing controllability and observability of each board's backplane signals through
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Boundary Scan chips, each board could be tested independently as it arrived from

fabrication. Emulation of board interfaces, whenever required, can becontrolled through

backplane Boundary Scan chips. Using this method, board-to-board dependencies can be

eliminated, and each board could beverified stand-alone. This way, faults caused by

backplane wiring can be detected and isolated easily.

6.5.3 Ease ofUse (Test Software)

Using the test software todebug/test the TMC board proved to be less time-consuming

than taking the traditional approach. For example, I was able to write CTL and MTL files

and finish debugging the TMC in 1week. Once these files were complete enough to verify

allTMC functionality, they canbe reused later to test the other TMC board.

6.5.4 Scan Path Design

While there are obvious benefits to using Boundary Scan within a design, there are

also problems that can be created if it is implemented correctly. Instances where this may

occur deal with scan clock control and changing of scan path lengths. These problems can

beeliminated through careful adherence to scan path design rules.

Some BIST designs may require explicit clock control over independent scan paths and,

therefore, mandate that scan clock be gated. Careful design should beused when such

gating is necessary. This gating may cause incorrect data to be gathered during ascan

cycle. While the Boundary Scan specification allows scan clocks tobedisabled, it toes not

encompass the system design considerations necessary to ensure the operation of achip's

additional test capabilities, such as those available on the SCOPE octals. Another problem

of concern is the collapsing and expanding of scan rings within adesign. For example,

collapsing and expanding ofscan rings should not be performed arbitrarily with respect to
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the test bus controller. Changing the scan path length without notifying the test bus

controller will cause the controlling software to become confused and possible not

recover. All scanpathlengthchanges shouldbe donein conjunction with the localtest bus

controller chip.

6.6 Summary

Chips incorporating Boundary Scan impose aminimal real estate overhead andchange

the process of design verification andtest, which make it beneficial to the designer. By

usingchips that support the Boundary Scan standard in a prototype system, some of the

problems andquestions associated with the verification andtesting of prototype systems

were solved. In addition to solving test problems, the verification and test process was

simplified. Finally, the structured debug/test procedure eliminates the traditional ad hoc

techniques used in the past.
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CHAPTER 7

Conclusions And Future

Work

The work presented in this dissertation not only automates the process of

incorporating testability into the SIERA integrated system design environment, but it also

provides dedicated hardware and software for controlling the test circuitry that has been

added to each level of the system's hierarchy.

The test hardware incorporation was automated by hardware module generators. These

generators relieve the designer of having to know how to implement a specific DFT

methodology andthey guarantee correct implementation. The test circuitrythat is addedto

an already existing design supports the JTAG Boundary Scan standard described in

Chapter 3, as well as, traditional test methodologies such as Scan Path and Built-In-Self-

Test. Test issues associated with each level of system integrationcan be easily dealt with

using the hierarchical test strategy and debug procedure described in Chapters 2 and 5

respectively. Hence, prototypes designed with our integrated CAD system can be

functionally verified in a timely fashion.
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The mundane tasks of writing test programs for a target systemare automated by the test

program generation software. The testprogram generation software extracts the necessary

information required to generate a test program from several high level testability

description languages.

Various issues related to the incorporation of test into the system design flow, test

hardware implementation, Boundary Scan path routing, test vector generation, and

testability hardware description languages are addressed in this work. The research

presented here can be categorizedinto two majorareas: test hardware and test software.

The contributions made in each of these areas as a result of the work presented in this

dissertation is described in the sections that follow. Additionally, some of the open

problems for future research are discussed, which in some cases are related problems that

were outside the scope of this work butnonetheless, arise as adirect consequence of the

contributions.

7.1 Test Hardware

The test hardware includes circuitry or components that must be either added toachip

or aboard inorder to improve its testability, as well as, acustom board for controlling the

hardware that is added toadesign. This hardware impacts the circuit's area, pin count and

delay, which mustbe balanced against the gains achieved in using them. Hence, ameans

of determining these costs would be of vital use. Moreover, increases in chip area and/or

logic complexity increase power consumption and decrease yield rendering tools that

determine theeffectof these costs equally useful. Although there are costs associated with

implementing chip level hardware, they are minimal when compared to the expense of

testing acomplexboard or systemwhere testability was notconsidered at all.
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7.1.1 Boundary Scan Macrocell

The boundary scan macrocell automatically generates the minimumcircuitry required

by the JTAG Boundary Scan standard from a set of designer provided parameters. The

designer needonly provide parameters that determine the boundary scan register length

andthe overallshapeof the macrocell. It is implemented in a scalable CMOS standard cell

technology and is described in the SDL language. The macrocell also has provisions for

supporting one internal scan path. A future enhancement to the macrocell must include

provisions for supporting chips that contain multiple internal scan paths.

7.1.2 Boundary Scan I/O Pads

Boundary Scan I/O pads have also been developed for situations where a chip design

may be constrained by core area and are fixed number of I/O pins. In this case, the

Boundary Scan cells become part of the I/O pad circuitry. This provides a designer with

more design options when he or she is considering using Boundary Scan. Placing the

Boundary Scan cells in the I/O pads as opposed to placing them inside the chips core

circuitry reduces the delay costs associated with their implementation. At present, pads

only exist in 2u CMOS technology, but in the future, pads for sub-micron technologies

needto be developed. Again, care mustbe taken in their design to ensure that they do not

impact circuit area or performance. Furthermore, these cells can be modified to support

AC parametric tests like delay faults.

7.1.3 Boundary Scan Components Library and Test Modules

The elements of the Boundary Scan components library only constitute a fraction of

thedevices thatare currently available asnew devices are introduced. It is anticipated that

as other testability bus standards like the Module Test and Maintenance Bus (PI 149.5)
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evolve, controllers and interface chips that support it will become available too. When

they do, they too mustbe added to the existing test components library. The components

of this library can then be combined forming dedicated test modules, that implement

higher level system test functions. A direction one would take in the future would be to

determine what is the smallest combination of components that will provide the most

amount of test functionality.

7.1.4 Test Master Controller Board

The design and implementation of a generic test master controller board that can be

configured using software to implement avariety of standard testability bus protocols,

Boundary Scan in particular, was presented inChapter 3. With this board, it is possible to

test and diagnose defective components and interconnects at the chip, board, subsystem,

and system level viaBoundary Scan test bus. It is intended to beused in a system that

employs a hierarchy of testability buses. Some of most important attributes of this board

are its:

• dynamic reconfigurability - its functionality isdetermined bysoftware during initializa

tion which also makes it extremely flexible.

• compatibility - fits in well with our system hardware development environment

• lowcost - compared to conventional Automatic Test Equipment

• and better performance - capable of running testat system speeds where most Auto

matic Test Equipment cannot.

7.2 Test Software

The software tools described in Chapter 4 support a hierarchical test strategy for

integrating test into our system design environment. These tools perform tasks such as
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automatic test hardware generation, automatic test pattern generation for combinational

logic and board interconnect, and automatic test program generation from high level

languages.

7.2.1 Testability Hardware Design Tools

Several tools that address testability issues as part of the design process have been

developed. Most importantly, these tools relieve the designer of the mundane and

redundant tasks required to implement adesign for testmethodology. For example, the

JTAGtool tackles issues associated with board level scan path chaining, as well as,

perform allof the pre-processing required for board interconnect testing, while PLDS is

used to generate the input file required by the Xilinx XACT software from a high level

behavioral description of the test controller.

At present, the JTAGtool only deals with issues associated with single scan path rings,

however, it cannot support multiple scan path rings or hybrid ring/star scan path

configurations. Supporting multiple and hybrid scan pathconfigurations presents new

questions which should be addressed in future work such as:

• what is the most efficient way to configure the rings such that they impose minimal

impacton test application time, easeimplementation, andtest development?

• and for densely populated boards, how should components be placed where they

impose minimal impact on routing?

Another issue that's independent of the scan path configuration problem is what affect

does Boundary Scan components have on system reliability?
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7.2.2 Test Vector Generation Tools

The test vector generation tools described in Chapter 4 produce efficient test patterns

for testing combinational logic and board interconnect. Using the Scan Path test

methodology affords us two distinct advantages: 1) it allows us to control and monitor

internal logic nodes and 2) it simplifies the test generation problem. Assuming a chip is

designedwith the Scan Path test methodology, theTest Generation System uses PODEM,

a well known combinational logic test generation algorithm, to produce tests.

The algorithms used to generate tests that will detect wiring faults in board interconnect

implement some variation of a simplemarching scheme, where a logic value (1 or 0) is

written to and read from each Boundary Scan cellin the scan path. Though this scheme

produces a simple test vectorset, the time required to apply the test is O (N ) where N is

the numberof bits in the scan path. It is obvious from this that as N increases so does the

test application time. This wouldwarrant future investigation into algorithms thatwill

produce a minimal sizetestvector setin order to reduce the testapplication time without

any compromise in diagnostic resolution. Also, with system operating athigher and higher

speeds, these algorithms can perhaps be enhanced to produce tests thatwill detect line

delay faults. Another issue that should be addressed is how can use the results of a test to

drive the repair process.

7.2.3 Testability Hardware Description Languages

BSDL is away to provide aconsistent description of chip designs complying with the

Boundary Scan standard. By writing BSDL files, designers can specify the exact

implementation of a chip's Boundary Scan features. CTL complements BSDL by

describing howtousethese chips for chip level testing. MTL, ontheother hand, isusedto

describe how to use these chips forboard leveltesting. However, since CTL and MIL are
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confined to the chip and board levels, a system level or hierarchical test description

language thatencompasses the chip, board, and systemlevels would be extremelyuseful.

One such language that is being strongly considered for standardization is called

Hierarchical Scan Description Language (HSDL) developed by Texas Instruments. HSDL

extends and complements BSDL by describing how devices are connected at the board,

system, or MCM level.

7.2.4 Test Program Generation

A major advantage to automating the test program generation process is the reduction

in the time required to develop them. The generation process starts with the preparation of

test description files, writtenin high level languages, for eachchip andboard. Tools have

beenprovided to translate these test descriptions into a test program thatruns on the TMC

board to controlthe test hardware implementedon the target board.

Althoughtest program generation reduces test program developmenttime, it takes time to

manuallycreate the test description files it uses.Hence, automatic generation of these files

would reduce the overall test development time even further. This canbe accomplished by

generating them as a by-productof the chip andboard synthesis.
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Appendix A: bsdl Files

— BSDL description of Texas Instruments 74bct8244 Octal D Flip-Flop

source

revision

date

/sccs/scan/src/s.74bct8244

13.1

04/22/91-22:30:35

entity ttl74bct8244 is
generic (PHYSICAL_PIN_MAP : string := "DW_PACKAGE");

port (Gl_BAR:in bit; Y:out bit vector(1 to 8); A:in bit vector(1 to
8) ;

GND, VCC:linkage bit; G2 BAR:in bit; TD0:out bit; TMS, TDI,
TCK:in bit);

use STD_1149_l_1990.all; ~ Get Std 1149.1-1990 attributes and
definitions

attribute PIN_MAP of ttl74bct8244 : entity is PHYSICAL_PIN_MAP;

constant DW_PACKAGE:PIN_MAP_STRING:="G1_BAR:1,
Y: (2,3,4,5,7,8,9,10), « &

"A: (23,22,21,2 0,19,17,16,15)," &
"GND:6, VCC:18, G2_BAR:24, TDO:ll, TMS:12, TCK:13, TDI:14";

constant FK_PACKAGE:PIN_MAP_STRING:="G1_BAR:9,
Y: (10,11,12,13,16,17,18,19)," &

"A:(6,5,4,3,2,27,26,25)," &
"GND:14, VCC:28, G2 BAR:7, TDO:20, TMS:21, TCK:23, TDI:24";
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attribute TAP_SCAN_IN of TDI
attribute TAP_SCAN_MODE of TMS
attribute TAP_SCAN_OUT of TDO
attribute TAP SCAN CLOCK of TCK

signal is true;
signal is true;
signal is true;
signal is (20.0e6, BOTH);

attribute INSTRUCTION_LENGTH of ttl74bct8244 : entity is 8;

attribute INSTRUCTION_OPCODE of ttl74bct8244
"BYPASS (11111111, 10001000, 00000101,

: entity is
10000100, 00000001),

normal

test

"EXTEST (00000000,
"SAMPLE (00000010,
"INTEST (00000011,
"TRIBYP (00000110,
"SETBYP (00000111,
"RUNT (00001001,
"READBN (00001010,
"READBT (00001011,
"CELLTST(00001100,

10000000),"
10000010),"
10000011),"
10000110),"
10000111),"
10001001),"
10001010),"
10001011),"
10001100),

'TOPHIP (00001101, 10001101),

'SCANCN (00001110,
'SCANCT (00001111,

10001110),
10001111)"

- Boundary Hi-Z
- Boundary 1/0
- Boundary run test
- Boundary read normal
- Boundary read test

— Boundary selftest

- Boundary toggle out

- BCR Scan normal

- BCR Scan test

attribute INSTRUCTION CAPTURE of ttl74bct8244 : entity is
'10000001";

attribute INSTRUCTION_DISABLE of ttl74bct8244 : entity is "TRIBYP";

attribute REGISTER_ACCESS of ttl74bct8244 : entity is
"BOUNDARY (READBN, READBT, CELLTST)," &
"BYPASS (TOPHIP, SETBYP, RUNT, TRIBYP)," &

"BCR[2] (SCANCN, SCANCT)"; — 2-bit Boundary Control Register

attribute BOUNDARY CELLS Of ttl74bct8244 : entity is "BC 1";
attribute BOUNDARY_LENGTH of ttl74bct8244 : entity is 18;

attribute BOUNDARY REGISTER of ttl74bct8244 : entity is
— num cell port function safe [ccell disval rslt]

"17 (BC 1, G1_BAR, input, X)," & - - Merged Input/Control
"17 (BC 1, * control, 1)/" & - - Merged Input/Control
"16 (BC 1, G2__BAR, input, X)," & - - Merged Input/Control
"16 (BC 1, * control, D," & - - Merged Input/Control
"15 (BC 1, A(l), input, X)," &
"14 (BC 1, A(2), input, X)," &
"13 (BC 1, A(3), input, X)," &
"12 (BC 1, A(4), input, X) ," &
"11 (BC 1, A(5), input, X) ," &
"10 (BC 1, A(6), input, X)," &
"9 (BC 1, A(7), input, X)," &
"8 (BC 1, A(8), input, X) ," &
"7 (BC_1, Y(l), output3, X, 17, 1, Z)," & — cell 17 @ 1

-> Hi-Z.

"6 (BC 1, Y(2), output3, X, 17, 1, Z)," &
"5 (BC 1, Y(3), output3, X, 17, 1, Z)," &
"4 (BC 1, Y(4), output3, X, 17, 1, Z)," &
"3 (BC_1, Y(5), output3, X, 16, 1, Z)," & — cell 16 @ 1

-> Hi-Z.

"2 (BC 1, Y(6), output3, X, 16, 1, Z)," &
"1 (BC 1, Y(7), output3, X, 16, 1, Z)," &
"0 (BC 1, Y(8), output3, X, 16, 1, Z)";
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end ttl74bct8244;

— BSDL description of Texas Instruments 74bct8245 Octal Transceiver

source

— revision

date

/sccs/scan/src/s.74bct8245ab

13.1

04/22/91-22:30:36

entity ttl74bct8245ab is
generic (PHYSICAL_PIN_MAP : string := "DW_PACKAGE");

— This BSDL description for the '8245 treats the AA' signals as
inputs
-- and the XB' signals as outputs, that is, as a unidirectional
device.

port (DIR:in bit; B:out bit vector(1 to 8); A:in bit vector(1 to
8);

GND, VCC:linkage bit; G NEG:in bit; TDO:out bit; TMS, TDI,
TCK:in bit);

use STD_1149_l_1990.all;
definitions

— Get Std 1149.1-1990 attributes and

attribute PIN_MAP of ttl74bct8245ab : entity is PHYSICAL_PIN_MAP;

constant DW_PACKAGE:PIN_MAP_STRING:="DIR:1, B:(2,3,4,5,7,8,9,10), "
&

"A: (23,22,21,20,19,17,16,15)," &
"GND:6, VCC:18, G_NEG:24, TD0:11, TMS:12, TCK:13, TDI:14";

constant FK_PACKAGE:PIN_MAP_STRING:="DIR:9,
B: (10,11,12,13,16,17,18,19)," &

"A: (6,5,4,3,2,27,26,25)," &
"GND:14, VCC:28, G_NEG:7, TDO:20, TMS:21, TCK:23, TDI:24";

attribute TAP__SCAN_IN of TDI : signal is true;
attribute TAP_SCAN_MODE of TMS : signal is true;
attribute TAP_SCAN_OUT of TDO : signal is true;
attribute TAP_SCAN_CLOCK of TCK : signal is (20.0e6, BOTH);

attribute INSTRUCTION_LENGTH of ttl74bct8245ab : entity is 8;

attribute INSTRUCTION_OPCODE of ttl74bct8245ab : entity is
"BYPASS (11111111, 10001000, 00000101, 10000100, 00000001),"

normal

'EXTEST (00000000, 10000000)," &
'SAMPLE (00000010, 10000010)," &
'INTEST (00000011, 10000011)," &
'TRIBYP (00000110, 10000110)," &
'SETBYP (00000111, 10000111)," &
'RUNT (00001001, 10001001)," &
'READBN (00001010, 10001010)," &
'READBT (00001011, 10001011)," &
"CELLTST(00001100, 10001100),"

— Boundary Hi-Z
— Boundary 1/0
— Boundary run test
— Boundary read normal
— Boundary read test

— Boundary selftest
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test

"TOPHIP (00001101, 10001101)," &

'SCANCN (00001110, 10001110)," &
'SCANCT (00001111, 10001111)";

— Boundary toggle out

— BCR Scan normal

— BCR Scan test

attribute INSTRUCTION_CAPTURE of ttl74bct8245ab : entity is
'10000001";
attribute INSTRUCTION_DISABLE of ttl74bct8245ab : entity is

'TRIBYP";

attribute REGISTER_ACCESS of ttl74bct8245ab : entity is
"BOUNDARY (READBN, READBT, CELLTST)," &
"BYPASS (TOPHIP, SETBYP, RUNT, TRIBYP)," &
"BCR[2] (SCANCN, SCANCT)"; — 2-bit Boundary Control Register

attribute BOUNDARY_CELLS of ttl74bct8245ab : entity is "BC_1";
attribute BOUNDARY_LENGTH of ttl74bct8245ab : entity is 18;

attribute BOUNDARY_REGISTER of ttl74bct8245ab : entity is
— num cell port function safe [ccell disval rslt]

— Sets direction A to B

— Merged Input/Control
— Merged Input/Control
& — Treat this as an

& — Treat this as an

& — Treat this as an

& — Treat this as an

& — Treat this as an

& — Treat this as an

& — Treat this as an

& — Treat this as an

"17 (BC_1, DIR, input, 1)," &
"16 (BC_1, G_NEG, input, X)," &
"16 (BC_1, *,
"15 (BC_1, *,

internal cell

"14 (BC_1, *,
internal cell

"13 (BC_1, *,
internal cell

"12 (BC_1, *,
internal cell

"11 (BC_1, *,
internal cell

"10 (BC_1, *,
internal cell

"9 (BC_1, *,
internal cell

"8 (BC_1, *,
internal cell

"7 (BC_1, B(l),
-> Hi-Z.

"7 (BC_1, A(l),
"6 (BC_1, B(2),
"6 (BC_1, A(2),
"5 (BC_1, B(3),
"5 (BC_1, A(3),
"4 (BC_1, B(4),
"4 (BC_1, A(4),
"3 (BC_1, B(5),
"3 (BC_1, A(5),
"2 (BC_1, B(6),
"2 (BC_1, A(6),
"1 (BC_1, B(7),
"1 (BC_1, A(7),
"0 (BC_1, B(8),
"0 (BC_1, A(8),

end ttl74bct8245ab;

control, 1)," &
internal,X),"

internal,X),"

internal,X),"

internal,X),"

internal,X),"

internal,X),"

internal,X),"

internal,X),"

output3, X, 16, 1, Z)," & — cell 16 @ 1

input, X)," & — Merged Input/Output
output3, X, 16, 1, Z)," &
input, X)," & — Merged Input/Output
output3, X, 16, 1, Z)," &
input, X)," & — Merged Input/Output
output3, X, 16, 1, Z)," &
input, X)," & — Merged Input/Output
output3, X, 16, 1, Z)," &
input, X)," & — Merged Input/Output
output3, X, 16, 1, Z)," &
input, X)," & — Merged Input/Output
output3, X, 16, 1, Z)," &
input, X)," & — Merged Input/Output
output3, X, 16, 1, Z)," &
input, X)"; — Merged Input/Output
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— BSDL description of Texas Instruments 74bct8245 Octal Transceiver

— source : /sccs/scan/src/s.74bct8245ba

13.1

04/22/91-22:30:37

revision

date

entity ttl74bct8245ba is
generic (PHYSICAL_PIN_MAP : string := "DW_PACKAGE");

— This BSDL description for the '8245 treats the 'B' signals as
inputs
— and the 'A' signals as outputs, that is, as a unidirectional
device.

port (DIR:in bit; A:out bit vector(1 to 8); B:in bit vector(1 to
8);

GND, VCC:linkage bit; G_NEG:in bit; TDO:out bit; TMS, TDI,
TCK:in bit);

use STD_1149_l_1990.all; — Get Std 1149.1-1990 attributes and
definitions

attribute PIN_MAP of ttl74bct8245ba : entity is PHYSICAL_PIN_MAP;

constant DW_PACKAGE:PIN_MAP_STRING:="DIR:1, B:(2,3,4,5,7,8,9,10), "
&

"A: (23,22,21,20,19,17,16,15)," &
"GND:6, VCC:18, G_NEG:24, TDO:ll, TMS:12, TCK:13, TDI:14";

constant FK_PACKAGE:PIN MAP STRING:="DIR:9,
B: (10,11,12,13,16,17,18,19)," &

"A: (6,5,4,3,2,27,26,25)," &
"GND:14, VCC:28, G_NEG:7, TDO:20, TMS:21, TCK:23, TDI:24";

attribute TAP_SCAN_IN of TDI : signal is true;
attribute TAP_SCAN_MODE of TMS : signal is true;
attribute TAP_SCAN_OUT of TDO : signal is true;
attribute TAP_SCAN_CLOCK of TCK : signal is (20.0e6, BOTH);

attribute INSTRUCTION_LENGTH of ttl74bct8245ba : entity is 8;

attribute INSTRUCTION_OPCODE of ttl74bct8245ba : entity is
"BYPASS (11111111, 10001000, 00000101, 10000100, 00000001),"

&

"EXTEST (00000000, 10000000)," &
"SAMPLE (00000010, 10000010)," &
"INTEST (00000011, 10000011)," &
"TRIBYP (00000110, 10000110)," & — Boundary Hi-Z
"SETBYP (00000111, 10000111)," & — Boundary 1/0
"RUNT (00001001, 10001001)," & — Boundary run test
"READBN (00001010, 10001010)," & — Boundary read normal
"READBT (00001011, 10001011)," & — Boundary read test
'CELLTST(00001100, 10001100)," & — Boundary selftest

normal

test

"TOPHIP (00001101, 10001101)," & — Boundary toggle out

"SCANCN (00001110, 10001110)," & — BCR Scan normal
"SCANCT (00001111, 10001111)"; — BCR Scan test
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attribute INSTRUCTION_CAPTURE of ttl74bct8245ba
'10000001";

attribute INSTRUCTION_DISABLE of ttl74bct8245ba
'TRIBYP";

entity is

entity is

attribute REGISTER_ACCESS of ttl74bct8245ba : entity is
"BOUNDARY (READBN, READBT, CELLTST)," &
"BYPASS (TOPHIP, SETBYP, RUNT, TRIBYP)," &

"BCR[2] (SCANCN, SCANCT)"; ~ 2-bit Boundary Control Register

attribute BOUNDARY_CELLS of ttl74bct8245ba : entity is "BCJL";
attribute BOUNDARY_LENGTH of ttl74bct8245ba : entity is 18;

attribute BOUNDARY_REGISTER of ttl74bct8245ba : entity is
— num cell port function safe [ccell disval rslt]

17 (BCJL, DIR, input, 0)," &
'16 (BCJL, G_NEG, input, X)," &
'16 (BC_1, *,
"15 (BC_1, *,

internal cell

"14 (BC_1, *,
internal cell

"13 (BCJL, *,
internal cell

"12 (BC_1, *,
internal cell

"11 (BC_1, *,
internal cell

"10 (BC_1, *,
internal cell

"9 (BC_1, *,
internal cell

"8 (BC_1, *,
internal cell

"7 (BCJL, A(l),
-> Hi-Z.

7 (BC 1 r B(l),
6 (BC 1 , A(2),
6 (BC 1 r B(2),
5 (BC 1 f A(3),
5 (BC 1 r B(3),
4 (BC 1 r A(4),
4 (BC 1 r B(4),
3 (BC 1 r A(5),
3 (BC 1,f B(5),
2 (BC 1, A(6),
2 (BC 1, B(6),
1 (BC 1, A(7),
1 (BC 1, B(7),
0 (BC 1, A(8),
0 (BC 1, B(8),

end ttl74bct8245ba;

control, 1)," &
internal,X),"

internal,X),"

internal,X),"

internal,X),"

internal,X),"

internal,X),"

internal,X),"

internal,X),"

— Sets direction B to A

— Merged Input/Control
— Merged Input/Control
& — Treat this as an

& — Treat this as an

& — Treat this as an

& — Treat this as an

& — Treat this as an

& — Treat this as an

& — Treat this as an

& — Treat this as an

output3, X, 16, 1, Z)," & — cell 16 @ 1

input, X)," & — Merged Input/Output
output3, X, 16, 1, Z)," &
input, X)," & — Merged Input/Output
output3, X, 16, 1, Z)," &
input, X)," & — Merged Input/Output
output3, X, 16, 1, Z)," &
input, X)," & — Merged Input/Output
output3, X, 16, 1, Z)," &
input, X)," & — Merged Input/Output
output3, X, 16, 1, Z)," &
input, X)," & — Merged Input/Output
output3, X, 16, 1, Z)," &
input, X)," & — Merged Input/Output
output3, X, 16, 1, Z)," &
input, X)"; — Merged Input/Output

BSDL description of Texas Instruments 74bct8373 Octal D Latch

source : /sccs/scan/src/s.74bct8373

revision : 13.1
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date 04/22/91-22:30:38

entity ttl74bct8373 is
generic (PHYSICAL PIN MAP string := "DW PACKAGE");

port (CLK:in bit; Q:out bit vector(1 to 8); D:in bit vector(1 to
8) ;

GND, VCC:linkage bit; OC NEG:in bit; TDO:out bit; TMS, TDI,
TCK:in bit);

use STD_1149_l_1990.all;
definitions

— Get Std 1149.1-1990 attributes and

attribute PIN_MAP of ttl74bct8373 : entity is PHYSICAL_PIN_MAP;

constant DW_PACKAGE:PIN_MAP_STRING:="CLK:1, Q:(2,3,4,5,7,8,9,10), "
&

"D: (23,22,21,20,19,17,16,15)," &
"GND:6, VCC:18, OC_NEG:24, TDO:ll, TMS:12, TCK:13, TDI:14";

constant FK_PACKAGE:PIN MAP STRING:="CLK:9,
Q: (10,11,12,13,16,17,18,19)," &

"D: (6,5,4,3,2,27,26,25)," &
"GND:14, VCC:28, OC NEG:7, TDO:20, TMS:21, TCK:23, TDI:24";

attribute TAP_SCAN_IN of TDI
attribute TAP_SCAN_MODE of TMS
attribute TAP_SCAN_OUT of TDO
attribute TAP SCAN CLOCK of TCK

signal is true;
signal is true;
signal is true;
signal is (20.0e6, BOTH);

attribute INSTRUCTION_LENGTH of ttl74bct8373 : entity is 8;

attribute INSTRUCTION_OPCODE of ttl74bct837 3 : entity is
"BYPASS (11111111, 10001000, 00000101, 10000100, 00000001),

normal

test

'EXTEST (00000000, 10000000)," &
'SAMPLE (00000010, 10000010)," &
'INTEST (00000011, 10000011)," &
'TRIBYP (00000110, 10000110)," &
'SETBYP (00000111, 10000111)," &
'RUNT (00001001, 10001001)," &
'READBN (00001010, 10001010)," &
'READBT (00001011, 10001011)," &
"CELLTST(00001100, 10001100),"

"TOPHIP (00001101, 10001101)," I

'SCANCN (00001110, 10001110)," &
'SCANCT (00001111, 10001111)";

— Boundary Hi-Z
— Boundary 1/0
— Boundary run test
— Boundary read normal
— Boundary read test

— Boundary selftest

— Boundary toggle out

— BCR Scan normal

— BCR Scan test

attribute INSTRUCTION_CAPTURE of ttl74bct8373 : entity is
'10000001";

attribute INSTRUCTION_DISABLE of ttl74bct8373 : entity is "TRIBYP";

attribute REGISTER_ACCESS of ttl74bct8373 : entity is
"BOUNDARY (READBN, READBT, CELLTST)," &
"BYPASS (TOPHIP, SETBYP, RUNT, TRIBYP)," &

"BCR[2] (SCANCN, SCANCT)"; — 2-bit Boundary Control Register
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attribute BOUNDARY CELLS of ttl74bct8373 entity is "BC 1";

attribute BOUNDARY_LENGTH of ttl74bct8373
: entity is$ 18;

attribute BOUNDARY REGISTER of ttl74bct8373 : entity is

— num cell port function safe [ccell disval rslt]
"17 (BC 1, CLK, input, X), " &

"16 (BC 1, OC NEG, input, X), " & - - Merged Input/Control
"16 (BC 1, * control, 1), " & - - Merged Input/Control
"15 (BC 1, D(l) , input, X), " &

"14 (BC 1, D(2) , input, X), " &

"13 (BC 1, D(3) , input, X), " &

"12 (BC 1, D(4) , input, X), " &

"11 (BC 1, D(5) , input, X), " &

"10 (BC 1, D(6) , input, X), " &

"9 (BC 1, D(7) , input, X), " &

"8 (BC 1, D(8) , input, X), " &
"7 (BC_1, Q<1), output3, x, 16, 1, Z)," & — cell 16 @ ]

-> Hi-Z.

"6 (BC 1, Q(2) , output3, x, 16, 1, Z)," &
"5 (BC 1, Q(3) f output3, x, 16, 1/ Z)," &
"4 (BC 1, Q(4) , output3, x, 16, 1, Z)," &
"3 (BC 1, Q(5) , output3, x, 16, 1/ Z)," &
"2 (BC 1, Q(6) , output3, x, 16, 1, Z)," &
"1 (BC 1, Q(7) , output3, x, 16, 1/ Z)," &
"0 (BC 1, Q(8) , output3, x, 16, 1/ Z)";

end ttl74bct8373;

— BSDL description of Texas Instruments 74bct8374 Octal D Flip-Flop

— source : /sccs/scan/src/s.74bct8374

revision

date

13.1

04/22/91-22:30:40

entity ttl74bct8374 is
generic (PHYSICAL_PIN_MAP : string := "DW_PACKAGE") ;

port (CLK:in bit; Q:out bit_vector(l to 8); D:in bit vector(1 to
8);

GND, VCC .-linkage bit; OC NEG:in bit; TD0:out bit; TMS, TDI,
TCK:in bit);

use STD_1149_l_1990.all; ~ Get Std 1149.1-1990 attributes and
definitions

attribute PIN_MAP of ttl74bct8374 : entity is PHYSICAL_PIN_MAP;

constant DW_PACKAGE:PIN_MAP_STRING:="CLK:1, Q:(2,3,4,5,7,8,9,10), "
&

"D: (23,22,21,20,19,17,16,15)," &
"GND:6, VCC:18, OC_NEG:24, TDO:ll, TMS:12, TCK:13, TDI:14";

constant FK_PACKAGE:PIN MAP STRING:="CLK:9,
Q:(10,11,12,13,16,17,18,19)," &

"D: (6,5,4,3,2,27,26,25)," &
"GND:14, VCC:28, OC_NEG:7, TDO:20, TMS:21, TCK:23, TDI:24";

attribute TAP_SCAN_IN of TDI : signal is true;



attribute TAP_SCAN_MODE of TMS
attribute TAP_SCAN_OUT of TDO
attribute TAP SCAN CLOCK of TCK

signal is true;
signal is true;
signal is (20.0e6, BOTH);

attribute INSTRUCTION_LENGTH of ttl74bct8374 : entity is 8;
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attribute INSTRUCTION_OPCODE of ttl74bct8374
"BYPASS (11111111, 10001000, 00000101,

: entity is
10000100, 00000001),"

"EXTEST

"SAMPLE

"INTEST

"TRIBYP

"SETBYP

"RUNT

"READBN

"READBT

"CELLTS

(00000000,
(00000010,
(00000011,
(00000110,
(00000111,
(00001001,
(00001010,
(00001011,
T(00001100,

10000000),
10000010),
10000011),
10000110),
10000111),
10001001),
10001010),
10001011),
10001100),

normal

test

'TOPHIP (00001101, 10001101),

- Boundary Hi-Z
- Boundary 1/0
- Boundary run test
- Boundary read normal
- Boundary read test

— Boundary selftest

- Boundary toggle out

- BCR Scan normal

- BCR Scan test

'SCANCN

'SCANCT

(00001110,
(00001111,

10001110),
10001111)"

attribute INSTRUCTION_CAPTURE of ttl74bct8374
'10000001";
attribute INSTRUCTION_DISABLE of ttl74bct8374 : entity is "TRIBYP";

attribute REGISTER_ACCESS of ttl74bct8374 : entity is
"BOUNDARY (READBN, READBT, CELLTST)," &
"BYPASS (TOPHIP, SETBYP, RUNT, TRIBYP)," &
"BCR[2] (SCANCN, SCANCT)"; -- 2-bit Boundary Control Register

attribute BOUNDARY_CELLS of ttl74bct8374 : entity is "BC_1";
attribute BOUNDARY LENGTH of ttl74bct8374 : entity is 18;

entity is

->

ttribute BOUNDARY REGISTER of ttl74bct8374 : entity is
— num cell port function safe [ccell disval rslt]

"17 (BC 1, CLK, input, X), " &

"16 (BC 1, OC_NEG, input, X), " & — - Merged Inpu
"16 (BC 1, *

/ control, 1), " & — - Merged Inpu
"15 (BC 1, D(l), input, X), " &

"14 (BC 1, D(2), input, X), " &

"13 (BC 1, D(3), input, X), " &

"12 (BC 1, D(4), input, X), " &

"11 (BC 1, D(5), input, X), " &

"10 (BC 1, D(6), input, X), " &

"9 (BC 1, D(7), input, X), " &

"8 (BC 1, D(8), input, X), " &

"7

Hi-Z.

"6

(BCJL, Q(D, output3, x, 16, 1, Z)," & — c

(BC 1, Q(2), output3, x, 16, 1, Z)," &
"5 (BC 1, Q(3), output3, x, 16, 1, Z)," &
"4 (BC 1, Q(4), output3, x, 16, 1, Z)," &
"3 (BC 1, Q(5), output3, x, 16, 1, Z)," &
"2 (BC 1, Q(6), output3, x, 16, 1, Z)," &
"1 (BC 1, Q(7), output3, x, 16, 1, Z)," &
"0 (BC 1, Q(8), output3, x, 16, 1, Z)";

end ttl74bct8374;
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-National Semiconductor-

entity scanl8245t is
generic (PHYSICAL_PIN_MAP : string := "SSOP_PACKAGE");

port (Gl_NEG:in bit; Al:inout bit_vector(0 to 8); A2:inout
bit_vector(0 to 8);

G2_NEG:in bit; Bl:inout bit_vector(0 to 8); B2:inout
bit_vector(0 to 8);

GND:linkage bit vector(0 to 7); VCC:linkage bit vector(0 to
3);

DIRl:in bit; DIR2:in bit; TD0:out bit;
TMS, TDI, TCK:in bit);

use STD_1149_l_1990.all; — Get Std 1149.1-1990 attributes and
definitions

attribute PIN_MAP of scanl8245t : entity is PHYSICAL_PIN_MAP;

constant SS0P_PACKAGE:PIN_MAP_STRING:="G1_NEG:54, G2_NEG:31," &
"Bl: (2,4,5,7, 8,10, 11, 13, 14),

B2: (15,16,18,19,21,22,24,25,27)," &
"Al: (55,53,52,50,49,47,46,44,43),

A2: (42,41,39,38,36,35,33,32,30)," &
"GND:(6,12,17,23,34,40,45,51)," &
"VCC:(9,20,37,48)," &
"DIR1:3, DIR2:26, TDO:28, TMS:1, TCK:29, TDI:56";

constant PLCC_PACKAGE:PIN_MAP_STRING:="G1_NEG:54, G2_NEG:31," &
"Bl: (2,4,5,7, 8,10, 11,13, 14),

B2: (15,16,18,19,21,22,24,25,27)," &
"Al:(55,53,52,50,49,47,46,44,43),

A2: (42,41,39,38,36,35,33,32,30)," &
"GND:(6,12,17,23,34,40,45,51)," &
"VCC:(9,20,37,48)," &
"DIR1:3, DIR2:26, TD0:28, TMS:1, TCK:29, TDI:56";

attribute TAP_SCAN_IN of TDI : signal is true;
attribute TAP_SCAN_MODE of TMS : signal is true;
attribute TAP_SCAN_OUT of TDO : signal is true;
attribute TAP_SCAN_CLOCK of TCK : signal is (25.0e6, BOTH);

attribute INSTRUCTION_LENGTH of scanl8245t : entity is 8;

attribute INSTRUCTIONJDPCODE of scanl8245t : entity is
"BYPASS (11111111)," &
"EXTEST (00000000)," &
"SAMPLE (10000001)," &
"HIGHZ (00000011)," &
"CLAMP (10000010)";

attribute INSTRUCTION_CAPTURE of scanl8245t : entity is "00111101";
attribute INSTRUCTION_DISABLE of scanl8245t : entity is "HIGHZ";

attribute REGISTER_ACCESS of scanl8245t : entity is
"BYPASS (HIGHZ,CLAMP)"; — HIGHZ and CLAMP

attribute BOUNDARYJZELLS of scanl8245t : entity is "BC 1, BC 4";
attribute BOUNDARY_LENGTH of scanl8245t : entity is 807 ~
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"5 8 (BC 4 r A2(4) , input, X)," &

"5 9 (BC 4 r A2(5) r input, X)," &

"6 0 (BC 4 r A2(6) r input, X)," &

"61 (BC 4 r A2(7) , input, X)," &

"62 (BC 4 r A2(8) , input, X)," &

"63 (BC 4 , A1(0) , input, X)," &

"64 (BC 4 r Al(l) , input, X)," &

"65 (BC 4 , Al<2),, input, X)," &

"66 (BC 4 r Al(3) , input, X)," &
"67 (BC 4 r Al(4)4, input, X)," &

"68 (BC 4 r Al(5),, input, X)," &

"69 (BC 4 r Al<6), input, X)," &

"7 0 (BC 4 r Al<7), input, X)," &
"71 (BC 4 r Al(8), input, X)," &

"72 (BC 1 * control, 0)," &
"73 (BC 1 *

r / control, 0)," &
"74 (BC 4 r G2 NEG, input, X),"
"75 (BC 4 r DIR2, input, X),'' &
"7 6 (BC 1 * control, 0)," &
"77 (BC 1 * control, 0)," &
"7 8 (BC 4 r Gl NEG, input, X),"
"7 9 (BC 4,t DIR1, input, X)" t

end scanl8245t;

— Motorola 68040 BSDL description

-- source : /sccs/scan/src/s.68040

revision : 13.3

- date : 12/05/91-07:40:19

entity MC68040 is

generic(PHYSICAL_PIN_MAP:string := "PGA_18xl8");

port(TDI in bit;
TDO out bit;
TMS in bit;
TCK in bit;
TRS1r: in bit;
RSTC): buffer bit;
IPElID: buffer bit;
CI01JT: out bit;
UPA: out bit_vector(0 to l);
TT: inout bit_vector(0 to l);
A: inout bit_vector (0 to 31);
D: inout bit vector(0 to 31);
LOCJIE: out bit;
LOCJI: out bit;
R W: inout bit;
TLN: out bit_vector (0 to 1);
TM: out bit_vector(0 to 2);
SIZ: inout bit vector (0 to 1);
MI buffer bit;
BR buffer bit;
TS inout bit;
BB inout bit;

900618



TIP: out bit;
PST: buffer bit vector(0 to 3);
TA: inout bit;
TEA: in bit;
BG: in bit;
SC: in bit vector(0 to 1);
TBI: in bit;
AVEC: in bit;
TCI: in bit;
DLE: in bit;
PCLK: in bit;
BCLK: in bit;
IPL: in bit vector(0 to 2);
RSTI: in bit;
CDIS: in bit;
MDIS: in bit;
EGND: linkage bit_vector(1 to 23);
EVDD: linkage bit_vector(1 to 12);
I GND: linkage bit_vector(1 to 12);
IVDD: linkage bit_vector(1 to 7);
CGND: linkage bit_vector(1 to 2);
CVDD: linkage bit_vector(1 to 6);
PGND: linkage bit_vector(1 to 3);
PVDD:

);
linkage bit_vector(1 to 2)

use STD_1149_l_1990.all;

attribute PIN_MAP of MC68040

— 18x18 PGA Pin Map

entity is PHYSICAL PIN MAP;

173

constant PGA_18xl8 : PIN_MAP STRING :=
"TDI: S3, " &
"TDO: T2, " &
"TMS: S5, " &
"TCK: S4, " &
"TRST: T3, " &
"RSTO: R3, " &
"IPEND: SI, " &
"CIOUT: Rl, " &
"UPA: (Q3, Ql), " &

(P3, P2), " &
(L18, K18, J17, J18, H18, G18, G16, F18, E18, F16, PI,

Nl, Ml, LI, Kl, K2, Jl, HI, J2, Gl, Fl, El,

Dl, F3, E2, CI, E3, Bl, D3, Al), " &
(C3, B3, C4, A2, A3, A4, A5, A6, B7, A7, A8,

AlO, All, A12, A13, Bll, A14, B12, A15, A16, A17, B16,

A18, C16, B18, D16, C18, E16, E17, D18), " &
'LOCKE: R18, " &
'LOCK: SI8, " &
'R_W: N16, " &
'TLN: (Q18, P18), " &
'TM: (N18, M18, K17), " &
'SIZ: (P17, P16), " &
'MI: Q16, " &
'BR: T18, " &

\\mm

"A:

N3, «
&

G3, «

&
«

"D:

A9, x\

&

C15, //
&
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"TS: R16, " &

"BB: T17, " &

"TIP: R15, " &

"PST: (T15, S14, R14 , T16), " &
"TA: T14, " &

"TEA: S13, " &

"BG: T13, " &

"SC: (T12, S12), " &

"TBI: Sll, " &

"AVEC Til, " &

"TCI: T10, " &

"DLE: T9, " &

"PCLK R9, " &

"BCLK R7, " &

"IPL: (T8, T7, T6), " &

"RSTI S7, " &

"CDIS T5, " &

"MDIS S6, " &

"EGND: (S2, Q2, N2, L2, H2, F2, D2, B2, B4, B6, B8,
BIO," &

" &

«

B13, B15, B17, D17, F17, H17, L17, N17, Q17, S17, S15),

"EVDD: (R2, M2, G2, C2, B5, B9, B14, C17, G17, M17, R17,
S16)," &

"IGND: (T4, R4, L3, K3, C7, C9, Cll, K16, M16, R13, Rll,
SIO)," &

"IVDD : (R5, M3, C8, CIO, C12, L16, R12), " &
"CGND (C6, C13), " &

"CVDD (J3, H3, C5, C14, H16, J16), " &
"PGND (S9, RIO, R6) , * &
"PVDD (S8, R8) ";

— Other Pin Maps here when documented

attribute TAP_SCAN_IN of TDI:signal is true;
attribute TAP_SCAN_OUT of TDO:signal is true;
attribute TAP_SCAN_MODE of TMS:signal is true;
attribute TAP_SCAN_CLOCK of TCK:signal is (10.0e6, BOTH);
attribute TAP_SCAN_RESET of TRST:signal is true;

attribute INSTRUCTION_LENGTH of MC68040:entity is 3;

attribute INSTRUCTION OPCODE of MC68040:entity is
"EXTEST (000)," &
"HI_Z (001)," &
"SAMPLE (010, 011)," &
"SHUTDOWN (100, 101)," &
"BYPASS (111, 110)";

attribute INSTRUCTION_CAPTURE of MC68040:entity is "001";
attribute INSTRUCTION^ISABLE of MC68040:entity is "HI_Z";

attribute REGISTER_ACCESS of MC68040:entity is
"BYPASS (SHUTDOWN, HI_Z) ";

attribute BOUNDARY_CELLS of MC68040:entity is
"BC_2, BC_4";

attribute BOUNDARY_LENGTH of MC68040:entity is 184;

attribute BOUNDARY_REGISTER of MC68040:entity is
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"172 (BC_4, TBI, input, X), " &
"173 (BC_4, AVEC, input, X) , " &
"174 (BC_4, TCI, input, X), " &
"175 (BC_4, DLE, input, X) , " &
"176 (BC_4, PCLK, input, X) , " &
"177 (BC_4, BCLK, input, X) , " &
"178 (BC_4, IPL(O), input, X) , " &
"179 (BC_4, IPL(l), input, X), " &

—num cell port function safe ccell dsval rslt
"180 (BC_4, IPL(2), input, X) , " &
"181 (BC_4, RSTI, input, X) , " &
"182 (BC_4, CDIS, input, X) , " &
"183 (BC_4, MDIS, input, X) ";

attribute DESIGN_WARNING of MC68040: entity is
"A non-standard clocking protocol on BCLK must be observed
"when entering Boundary Scan Test Mode.";

end MC68040;



APPENDIX B: Test Hardware

And Software Organization

Most of the software tools and hardware libraries described in this thesis. This

appendix describes the organization and location of the test hardware and software, test

programs, SDL files for the new parts and hardware modules can be found in the

following directories.

I. Test Hardware

This directory is organized into two parts: chip level hardware and board level

hardware. The files and directories in each of the subdirectories are listed below.

a. ~siera/tesmw/chiplevel/bscan
This directory contains chip level macro that generates all of the circuitry required to
support the Boundary Scan architecture described in Chapter 3.

b. ~siera/testhw/boardlevel/TMCboard

This directory contains all SDL files for the Test Master Controller Board.
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c. ~siera/testhw/boardlevel/SDL.MODULES
This directory contains all of the dedicated board level test modules described in
Chapter 4.

d. ~siera/testhw/boardlevel/SDL.LEAF
This directory contains leafcells for all of the programmable parts used in the TMC
board design.

e. -siera/testhw/boardlevel/NEWPARTS
This directory contains SDL files for all of the components used in the TMC board
design.

f. ~siera/tesmw/boardlevel/BSDL.FILE
This directory contains Boundary Scan descriptions of all of the Boundary Scan
components.

The guidelines listed below are provided to ensure correct operation of
the JTAG_MACRO described in Chapter 3.

1. LSB of Boundary Scan Register must connect to BSRin

2. LSB of Internal Scan Register must connect to INTin

3. MSB of Internal and Boundary registermust connect to tdi

4. INPUT_MODE signal must drive MODE signal of inputBSR registers

5. OUTPUT_MODE signal must drive MODE signal of output BSR registers

6. phil must be connected to the globalclock

7. tdi, tdo, andtms must be brought out to the package pins

8. tdiand tmsmustbedriven byunbuffered pads because they contain internal pullups

9. tdo must drive a tristate padcontrolled by EN

10.SCAN is the control signal for the internal scan register

n.rstb is the active low reset signalused to reset the IR, andTAP controller

12.CLK_DR, Shift_DR, and Upd_DR are control signals for the BSRregister

i3.oe_in isused for tristate orbi-directional pads, this is the user generated control signal

i4.The pad order must be followed whenusing the bspads, I/O .....TDI.TMS.TDO....I/0,
otherwise use any preferred ordering.

n. Test Software

Thetestsoftware directory is also partitioned into two parts: chip level tools and board

level tools. The two chip level tools are oct2tgs and JTAGtool. The man page for oct2tgs
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already exists in ~lager/SUN4_2.0/LagerIV while the man page for JTAGtool is listed

below.

JTAGtool(l) SIERA Tools Users Manual JTAGtool(l)

NAME

JTAGtool - threads all of the Boundary Scan components
contained in an OCT structure_instance view of a board
design.

SYNOPSIS

JTAGtool [-=V vov_flags] [-=E on_error] [-q] [-L Logfile]
[-d] cell

DESCRIPTION

JTAGtool is used to thread all of the Boundary Scan chips in
a board design in the order they appear in the design hierarchy
and it also generates a file containing the design netlist which
is to be used later for debugging purposes. The input must be
it must be a hierarchical OCT view.

INPUT

The input is taken as the cellname indcated on the command
line. If the view and/or facet are omitted, the contents
facet of the SIV is used.

JTAGtool requires that the OCT views contain the following
properties:

When using the structure_instance view:

i. The cell:structure_instance:contents facet must have
the direction properties attached to all the formal
terminals. Also, the formal terminals should contain
the nets they are connected to.

OPTIONS

-=V: reserved to control design manager VOV
(not used yet)

-=E: cause fatal errors to core dump (on_error = "core")
or exit(on_error = "exit")

-q: turn off terminal messages
-L: Log file name
-d: debug mode
cell: name of cell:structure_instance to be processed

SIERA Release 1.0 Last change: Aug 1992 1

JTAGtool(1) SIERA Tools Users Manual JTAGtool(1)

AUTHOR

Kevin T. Kornegay (UC Berkeley)
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The procedure for using the M2C tool is described below.

Using M2C

Before using this tool, the usermust prepare anMTL description of the board under

test and aCTL description for allof its Boundary Scan components.

An MTL file consists of a part that describes theconfiguration of the board under test

and another part that describes how the board is to be tested using the test specific

statements described in Chapter 5.

The CTL file consists of aBSDL description of the part and one or more template-

based oruser-defined TDM procedures.

Once the CTL and MTL files are prepared, the user can generate atest program by

executing M2C boardname, where boardnamcmtl is the name of the MTL file. Then

execute genTarget to create the test program. The test program which is written in C is

placed inadirectory called workDIR. Compile the executable files using the Unix make

utility on the boardname.mak file produced by genTarget. Pop up awindow on the target

VME card cage and load theexecutable file on the VME CPU board and execute thetest

program. M2C and genTarget are located in ~siera/testsw/bin.Examples are located in

~siera/testsw/examples.
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