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Abstract

Complex digital systems are designed with hardware modules that interact by

transferring information and synchronizing their inputs and outputs. The modules can

be constructed from avariety of single IC components to subsystems, and typically they

have incompatible I/O and communication protocols. A large portion of the integration

time is thus devoted to designing the interfaces between interacting modules. This

thesis presents a design methodology and behavioral synthesis techniques for

integrating hardware modules into a system. The interface between modules, which can

obey arbitrary protocols, is generated from a high-level system specification developed

especially for describing inter-module communication. Central to the design

methodology are libraries that contain system level module generators and a strategy to

capture the protocol and timing information necessary for interface synthesis.

Application of the interface design methods toward systems for general-purpose

computing and real-time robot control are also described.

Robert W. Brodersen

Chairman of Committee
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CHAPTER 1

Introduction

The emphasis in today's computer systems is on interconnecting computation and memory

modules so that information can be shared and distributed. This is evident across a variety of

applications such as general-purpose computing,a network communication node, real-timerobot

control, and even a portablemulti-media terminal integrating speech and video capabilities.The

one common design approach they all have to reduce design time and costs is using modules to

form new and larger modules which canbe reused in otherrelated applications.

Designing such systems is a complex problem because a hierarchical module is built using

components and subsystems, or submodules, from various technologies and with a variety of

timing strategies. Advances in the VLSI industryoffer today's designerapplication-specific ICs

(ASICs), multi-chip-modules (MCMs), field programmable devices (FPGAs and PLDs),

memories, general-purpose digital signal processors (DSPs), and even system busses and card

cages, among other off-shelf devices, as shown in the board-levelexamples in Figure 1-1. Using

various technologies contributes to two main design problems. The first is how to partition the

complete system function onto hardware and software. The second is how the make the hardware



single-board
computer

local bus

Figure 1-1 : Real-Time System using Various Technologies

modules communicate and synchronize properly when integrated into a system.

The interface module is a special system module whose function is to interconnect communicating

modules. Integrating the hardware is a real design problem, because each of the interacting

components may be using arbitrary and incompatible I/O protocols to communicate with its

environment. This thesis focuses on interfacing which is one of the two main design problems.

The distinction between interface modules and other system modules is made, solely, because

interfaces coordinate and synchronize the transfer of information between modules that, on the

other hand, do the actual data processing by implementing the various computation algorithms

required by the system function. Interfaces are concerned with the I/O structure and behavior of

the processing modules to be interconnected, rather than what the processing modules internally

do. Applications of interface modules range from simple protocol converters to intelligent I/O

processors for communication between a microprocessor subsystem and peripheral devices. An



example of a protocol converter is a circuit thattranslates betweenthe 2-phase and the 4-phase

handshake protocols. Typical and morecomplex applications include systemand multiprocessor

bus interfaces, direct-memory-access (DMA) controllers, I/O processors, and even application-

specific protocol processors that interconnect custom modules.

1.1 Design Issues

To clarify what ismeant inthis thesis bythe term interface module1 the following examples

provide typical interface applications from various systems. These examples are alsoused to give

a sense for the key issuesanddifficulties involved in designing interface modules.

VME System Bus Interface

Figure 1-2shows an example of a systembus interface providing readandwrite access from

theVME systembus to the shared memoryportof a uni-processor module. During a writeaccess,

theVMEbusfVMEbus] is the source of address and data information, while theuni-processor port

is the destination of address and data. In the read transfer, address information still flows from the

VMEbus to the uni-processor port, but data flows in the opposite direction. The read and write

access alsorequires the decoding of theupper VME address bits to determine if the uni-processor

address spacehas been selected. Accordingly, the interface exercises conditional control over the

communications. To synchronize the transfer with their environment, both the VMEbus and uni

processor port use a signaling protocol exercised on control signals and depicted with timing

diagrams. The protocols shown are somewhat simplified to clarify the example. Bothmodules use

different protocols, so the interface alsoadapts betweenthe protocols to meet time constraints such

as set-up and hold times and time between signal transitions (also called events). What is

important to observe in this example is that the interface module performs system-level

1The word "interface" isalso used inliterature to refer to the physical, electrical and logical characteris
tics ofa functional module's I/O boundary.



communication functions as well as localcommunication functions, the former being address

decoding and the later being protocol synchronization andtiming.

Done

DTACK L

Figure 1-2: Interface forVMEbus andUni-processor

Protocol Processor for TMS320 to Optical Link

The next interface is an application-specific protocol processor that couples the TMS320

digital signal processor[TMS320] to a TAXI optical transmitter[TAXIxmt] for access to a robot

control peripheral. As shown in Figure 1-3, theTMS port sends address and data words on parallel

busses usingthe indicated handshake protocol shown. The transmitter device hasa single bus that

carries onlyoneof thewords ata time. Tocoordinate thecommunication, theinterface accepts and

places the two TMS words into internal storage and releases the TMS porthandshake. Then it

multiplexes the address and data transfers, attaching a header to eitherword before sending it to
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Figure 1-3 : Interface forTMS320 Signal Processor to TAXI OpticalTransmitter

the transmitter on the CI andDI signal inputs. So, in this application, the interface performs data

storage and formatting functions as well as the protocol resolution function. This example points

outhow the communication performance is affectedby the interface design. If the interface didnot

store the TMS address and data, the TMS would have to hold those words until the interface

completes the multiplexing. This reduces the potential bandwidth of theTMS port, especially if it

communicateswith modules otherthan the optical transmitter.

DMA Controller for Video Decompression

The lastexample, providing morecomplex control than the previous examples, is aninterface

module in a video decompression subsystem. It transfers blocks of pixel words from a frame-

buffer memory to a digital-to-analog converter(DAC) upon command from the host module. In

Figure 1-4, the host initiates the communication by sending a starting memory address and then

handing the communication control over to the interface. The interface uses the start address to

sequentially transfer consecutivepixelsin memory to the DAC. Duringeachtransfer, the interface



Figure 1-4: Interface for DMA control of a "Video Frame Buffer

generates a new memory address by incrementing the previous address, and interlocks memory

and DAC protocol events to synchronizethe pixel transfer. When a block of pixels is transferred,

the interface module issues an interrupt to the host, completing the communication cycle. This

interface exemplifies direct-memory-access communications, whichrequires the interface to have

computation capabilities as well as control of communication between multiple source and

destination modules.

All the examples describeddemonstrate the threeprimary functions ofan interfacemodule:

a. Establishing the physical path to move the basic information to be transferred from source to
destinationmodules. This includes routingand storage of information, transformations such at
formatting, logical and arithmeticcomputations, and even parallel-to-serial conversion. Basic
informationconsistsofdata, address andread/write/status signals[Stone82].



b. Sequencing the transfers between the modules, such as exercisingconditional or looped
transfers. Controlling memory read/write access and decoding areexamplesof conditional
control; a DMA block transfer is anexample of looped control.

c. Synchronizing communication modulesduring a transfer. The I/O protocol of each module
must be executedby interlocking andsequencing control events on the control I/O of modules
to meet protocol andtime constraints, suchas setup andhold times, while meeting the system
bandwidth requirements.

Inbrief, the interface physically linksand resolves thedifferences between theinputs and outputs

of communicating modules, while meeting module protocol/time constraints and system

performance requirements. It is importantto notice that interfacemodules exercise two levels of

control. One is the sequencing of events as defined by the module's protocol, and the other is

sequencing from transferto transferas definedby the inter-modulecommunication behavior.

The examples described alsohighlight themainissues of interface design:

a. The specification method for inter-module communication behavior, which becomes the
interface functionality andperformance requirements.

b. The specification method for the I/O characteristics of anarbitrary module,especially the I/O
structure and protocol, and include electrical characteristics.

c. Generation method for the interface module.

All these issues are addressed in this thesis.

1.2 Motivations and Objectives

The previous examples are typical interface modules for avariety of applications. Even for the

VMEbus interface which is of medium complexity, these examples highlight the enormous

amount of detailed information required to generate these interfaces. This includes local time

constraints andprecedences between signal transitions, andalsosystem-level functions such as

decoding oraddress generation for block transfers. In addition, generally there maybemultiple

source anddestination modules. Sincemodules often use differentI/O protocols to communicate,

system timing does not follow aconsistent scheme. A major amount of system design timecan be

spent on generating the interfacecircuitrybetween system modules.



To reduce the complexity of integrating hardware modules, this work explores and develops a

designmethodology, specification and synthesis techniques for the automated generation of the

interface circuitry from a behavioral specification of the interface. Because of the large amount of

details and design knowledge needed to design interfacemodules, the dominating goal of the

approach to be presented is to raise the design abstraction to a level higher than the logic or

timing diagram level. This means generating the interface module from a behavioral-style

specification mat is shorter man lower-level structural (logic) specifications, easierto write and to

understand, and therefore to change. Previous approaches toward interfacedesign tended to focus

on a subsetof the threedesignissuespreviously discussed, anddid not integrate the approach with

a system level design methodology and CAD tools.

The ability to synthesize interfaces is crucial to reducing the design complexity of system

integration, and to ensure functionality and required performance. It also enables the design of

reusable modules and supports modular system design, since it eliminates the need to design

multiple modules that perform the samecomputation but satisfy differentI/O protocol constraints

which arise in different applications or due to component performance upgrades. Most

importantly, it allows a non-expert to integrate hardwarewithout having to understand the

complex and detailed timing personalities ofeachindividual module in the system.

1.3 Overview

Interface design is an integral partof a complete system design methodology. This section

describes themethodology, shows how interface generation fits intothe larger picture, and givesa

briefdescription of aninterface design approach that addresses theissues and objectives discussed

in the previous two sections.

The system designenvironmentis SIERA which supports the behavioral andphysical designof

real-time dedicated systems from a mixed behavior and structure description



[Srivastava91a][Sun91]. SIERAextends the concept of aVLSI silicon assembler and compiler to

hardware module generation at the board level. Again, the system is composed of components

from various technologies. As shown in Figure 1-5, system hardware is produced using amix of

module generators for ASICs [Chu89][Thon89][Rudell88][Shung91] and programmable logic

[Yu91], and anICmodulelibrary. The module library stores design information about off-the-shelf

Mixed behavior &
structure description

ASIC

Generators

(HYPER, OTO-SI,
LAGER)

Programmable Logic

Generators

(PLDS, CommercialTools)

Parameters

I
Module

Library

Behavior
description

I
Interface

Generator
s <AtOHA)

t
Custom IC

VYTTJOt I
Aotoi Yiiinv pi n dai Off-shelf Pre-designed InterfaceActel Xilmx PLD PAL Parts Subsystems Hardware

Figure 1-5 : Hardware Module Generation in SIERA

components and pre-designed subsystems, and it plays a central role in the interface design

approach. Importantly, it captures information about the I/O structure and I/O signaling protocol,

whether asynchronous orsynchronous, of each module in thelibrary.

Originally, integrating the ASICs, programmable logic, and library hardware into a hierarchical

module or the entire printed-circuit-board wasdone through manual design. The interface module

generator ALOHA converts a behavioral description of the interface module into logic, which is

particularly useful at the systemlevel. In addition, it is hierarchical in thatALOHA canintegrate

components from the three basicgroups intoahigher level module whichcanbe put back into the

module library for reuse in other applications.
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Interface design should startwith auser specification of the inter-module communicationbehavior

for the particular application and also the I/O protocol constraints for each module involved. From

the behavioraldescription, the interface logic is generated, which is then physically implemented

by interconnected IC components such as FPGAs, off-the-shelf ICs and even ASICs. Since the

goal is to achieve a high-level design abstraction, the generationprocess is automated with tools

for different levels of abstraction. The design flow is shown in Figure 1-6. It has a high-level

design phase and a low-level design phase.

High-Level Design Low-Level Design

Algorithm-level
Behavioral
Synthesis

Jser
Specification
(IDL)

Event-level
Behavioral
Synthesis

L^J Logic
Synthesis

Logic-level Time
Netlist + Constraints
(BDS, SDL) (CLOVER)

Figure 1-6: Design Flow for Interface Generation

Physical
Design

Hardware
Implementation

At the high-level phase, ALOHA provides for the user a high-level input language to describe the

inter-module communicationbehavior, whichis the interface functionality at the algorithmic level.

The language, called IDL, models the communication as a network of modules that transmit and

receive data through ports. The IDL description essentially specifies the temporal and spatial

mapping of sourcedata streams to destination data streams in a manner that is independentof the

modules' protocols and technologies. The I/O protocols and timing of the modules is stored in the

module library, thus hiding these low-level details from the user.

From here, ALOHA synthesizes the interface from the behavioral domain into the structural

domain, elaborated in Figure 1-7. Synthesis between these two levels ofabstractionis called high-

level or behavioral synthesis. The strategy ALOHA takes is to first translate the user specification
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into an internal representation, andthen perform a series of transformations that refine the design

specificationthrough two levels of abstraction to get the interface logic. The abstractions arethe

flow graph representation[McFarland90], which effectively handles datapath and transfer

sequencing requirements of the specified communication algorithm, and the event graph

[Borriello87][Chu87a] (also calledsignal transition graph or STG), which effectively represents V

O events and time constraints. The event graphs corresponding to the I/O protocols for the

communicating modules aremerged according to the data flow describedin the IDL description to

produce a event graph for the entire interface module. From these two types of graphs and a

generic interface template, ALOHA produces the register-transfer-level logic, netlist, and timing

description for the interfacemodule, in the BDS[Segal88], SDL[Richards], and ASTG [Moon91]

and CLOVER[Doukas91] formats, respectively.

Finally, the low-level design phase takes the logic and timing description into physical

implementation. Since logic synthesis techniques are at a fairly mature state, at this point the

designsystem links in existing logic synthesis andverification tools to performlogic optimization

and mapping to appropriate technologies. The logic level description can then be implemented

with FPGAs or PLDs, off-shelf components specialized for system interconnect, and even ASICs

using the module generators shownin Figure 1-5. Commercial tools areused forboard placement

androuting[Racal], bringingthe integrated modules into the physicaldomain.

It is this top-down methodology thatdistinguishes mis work from the previous works in interface

synthesis and overcomes some of their limitations.



13

1.4 Summary

The following chapters describe previous work related to interface design and then the design

approachand techniques used in this work. Chapter 2 summarizes previous work and shows their

relationship to the work here. Since the originalcontributions of this work are made in the high-

level design phase, a complete description will be given of the module library, the specification

language,and the behavioral synthesis approach. Chapters 3 and 4 focus on the module library and

language, respectively, while individual phases of interface synthesis are elaboratedin Chapters 5

through 8. The low-level design phase and synthesis results are presented in Chapter 9. Chapter 10

concludes with a summary of contributions, and gives future research directions in both the high-

level design and low-level design phases, as well as extensions of this work to support a wider

range ofapplications.



CHAPTER 2

Previous Work

The workdescribed in this thesis applies anumber of concepts from hardware systemdesign,

language and graph based specifications, behavioral synthesis, and synthesis of asynchronous

control logic. This chapter presents previous workrelated to interface generation and highlights

the features that are useful in addressing the design issues and in achieving the high-level

abstraction goals discussed in Chapter 1.

The approaches toward the specification and synthesis of interface circuits in the past has

developed in two different directions. This dichotomy stems from the different perspectives taken

by researchers from the asynchronous design community and researchers from the behavioral

synthesis community that typically implement algorithms using asynchronous design style.

14
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2.1 Synthesis for Asynchronous Design

Over the past 30 years, there has been considerable research on synthesis for control logic

using an asynchronous design methodology. Currently, as system complexity and physical size

grows, the ever-increasing clock skew problem has given this research area a new thrust The

emphasis of this has been on communication timing and synchronization that is independent of a

globalclock. Interface generationtypically starts from an event level abstraction. The control logic

is producedusing either graphs or flow tables (a finite statemachine representation) or is directly

mapped from a CSP-like language. Graph basedalgorithms aremost common and arereviewed in

this section. In these methods, a graph is used to represent the precedence and timing relationships

between input and output signal events [Chu87a].

Section 1.1 of Chapter 1 discussed the three primary functions of an interface module. Of these

three, the protocol synchronization problem has been most extremely analyzed, and with less

results in handling the data path requirements and control from one transfer to the next. So, these

techniques areapplicable to synthesis of protocolconverters,but do not address the needs ofmore

complex interface modules.

Synthesis from Signal Transition Graphs

The work in synthesis of self-timed control logic based on the signal transition graph (STG)

provides formalisms for specification and synthesis [Chu86][Chu87a]. The STG is derived from

petri-net theory to represent behavior between input and output signal transitions. The approach

assumes that all system modules, to be interconnected with the synthesized control logic, use the

4-phase handshake protocol. Also, the control logic can have unknown but finite gate delays and

zero wire delays.

The input specification is also a STG that represents the interlocked handshake events between

communicating modules. The STG representation for the handshake between a source and
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destination is illustrated in Figure 2-1. The node is a signal transition (not value), such as the rising

edge of Reql, denoted by Reql+. An edge shows the precedence between two signal transitions.

So, the edge labeled "el" indicates that the Reql rising edge from the source causes the Req2

rising edge at the destination, essentially initiating the transaction. An underlined node is an output

event from the interface. The entire graph is the sequence of protocol events that synchronize the

transaction. The graph is cyclic, since the protocol repeats for the next transaction.

Source
Interface

Dest

Guarded Command:

[Reql+ -* Req2+;
Ack2+ -» Ackl+;
Ackl+ -» Req2-]

r<Reql+

Ackl+

I
Reql-

l
Ackl-

*W

el *\Req2+

\
•Ack2+

I
Ack2

\J

Figure 2-1: Signal Transition Graph for a Handshake Communication

The input STG is checked for properties that display potential deadlock and other incorrect

behavior (called hazard) in the implementation. An important property is called persistency and it

specifies that when a transition is enabled (but has not occurred yet), the occurrence of some other

transition does not disable it (or cancel it) [Chu87a]. The highlighted node, Req2-, in Figure 2-1 is

a non-persistent transition, since it is enabled by the Ackl+ stimulus and may be disabled if Ackl-

occurs before the Req2 output signal reacts to Ackl+, due to a long circuit delay between the two

signals. The STG structureis then manipulated to eliminate all of these fatal properties. In Figure

2-2, the insertion of an additional edge "e2" makes the transition persistent, eliminating a possible

hazard.

From the "good" STG, boolean equations are synthesized by transforming the STG into a lower-
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Ack2

Figure 2-2: Persistent STG and Logic Implementation

level state transition graph. The resulting circuit implementation is insensitive to the internal

delays. Overall, synthesis is a set of formal transformations performed on the entire STG.

After the basic theory of STGs was developed, further work explored design abstraction and

performance issues [Meng89]. All system modules used the 4-phase protocol, and this assumption

allowed a user specification in which the handshake protocol is implied. In the Guarded Command

specification [Meng89][Martin86][Dijkstra75], the basic statement is a precedence relationship(s)

between source and destination handshake events, essentially abstracting only those precedences

that interlock the communication. Figure 2-1 shows the guarded command for that example.

The full STG is then constructed from the guarded command and the individual handshake STGs.

Synthesis proceeds using the techniques discussed above. Importantly, it was recognized that the

STG structure itself can reveal the expected performance of the circuit to be synthesized. The

cycle in the STG with the longest delay determines the performance limit. The delay is

accumulated from the individual delays of the edges in the cycle. In the example ofFigure 2-2, the

critical cycle is highlighted, and the transfer throughput is the inverse of the cycle delay time.

Other works related to performance evaluation from graphs is also presented in [Ramamoorthy80].

The winning feature of the STG method is the representation itself. The STG concisely and
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effectively captures both event precedence andconcurrency. The accompanying theoryprovides

methods for checking if potential deadlock andhazard conditions exist, and for estimating the

communication throughput, before thecircuit is evensynthesized. Although the STG canrepresent

arbitrary protocols and time constraints, the synthesis technique does not work with these

assumptions. This may not be a limitation withinASICs sincethechip designer candetermine the

internal timing strategy, but it is a serious problem whenusingoff-the-shelfcomponents wherethe

system designerhas no controlover the I/O specifications.

There also havebeenmanyotherworks that employthe STG ora similar representation, but they

use alternative synthesis methods in an attempt to overcome some of the above limitations

[Vanbekbergen90][Nowick91][Moon91][Lavagno91]. The synthesis techniques mentioned so far

are based on formal transformations. However, there are also techniques that use compiler

methods whichtakea specification based on theCSP language andmapit directly to control logic

using a set ofbuilt-in rules [Martin86]perkel91].

Synthesis from Event Graphs

Synthesis using STGs is theoretically founded and insists on strict assumptions about the

circuit environment and internal delays. The event graph is a very similar representation, but the

assumptions are relaxed and synthesis based on it has used heuristic rule-based techniques

[Borriello87]. In contrast to the STG methods, the communicating modules can use a mix of

synchronous and asynchronous protocols thathave time constraints. Given the gatedelaysof the

implementing technology and theeventgraph for theinterlocked protocol events, thecontrol logic

is producedto meet the required functionand time constraints.

The event graph for the example of Figure 2-1 is shown in Figure 2-3. There aretwo differences

between the event graph and signal transition graph. First, the event graph is acyclic, using start

and end nodes which mark the first and last events of the protocols. Second, in additionto the

precedence edge, there is an additional type of edge - the time constraint edge - which only
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specifies a time constraint between two events and does notimply causality like the former. The

time constraint edge is shown with a dashed edge, and the precedence edge may beweighted with

time constraints and delays. The differences are superficial, since the STG can easily beextended

into anevent graph, and theevent graph caneasily bereduced intoa STG.

?ReTql+

Ackl+

^Req2+

100ns min JsQas max

Ack2+

Reql- ^

Ackl- Ack2-

4

Protocol Logic

note: SR flip-flops have 15nsdelay

Figure 2-3 : Event Graph for a Handshake Communication

Ack2

Janus [Borriello87] is a synthesis tool that generates the control logic in three phases. First, all

output signals aredriven byanSR flip-flop, and the events that cause a rising edge onthe output

arelogically ANDed at the Setinput of the flip-flop, while events that cause thefalling edge are

ANDed at the Resetinput. This mapping is carried out for all output control signals until a

"skeletal" circuit is constructed, also shown inFigure 2-3. Since theevent graph models events on

data signals, synthesis can construct simple datapaths from wires, latches, tri-statebuffers and

multiplexers. In the second phase, path delays areextracted from thelogic network which is then

checked for timing violations and hazard conditions. Janus adjusts thedelays along thepath

causing theerror, by selecting another gate from thelibrary (same function butdifferent delay) or

inserting additional delay elements. In theexample, the20ns delay element is inserted to enforce

the "100ns min" time constraint, because circuit delays arenotlong enough tomeet it It is during



20

this phase that problems like non-persistency are detected and fixed. However, the synthesis

technique does not have the formalism to check for deadlock. Finally, Janus performs

combinational and sequential logic minimizations on the "corrected" circuit to produce the

"optimized" circuit

In summary, Janus compiles a first-pass circuit from anevent graph through local transformations,

and then it detects and fixes timing violations and hazards in subsequent passes. The strongest

feature of Janus is its ability to synthesize for time constraints. In contrast, the STG-based methods

reverse that order; the initial STG is checked for hazards and corrected, and then the circuit is

synthesized using globaltransformations. Its strongest feature is the representation andunderlying

theorythatallowsthe intendedI/Obehavior andperformance to be verifiedbeforesynthesis. From

a high-level design perspective, it is desirable to combine the best features ofboth.

2.2 Synthesis for Synchronous Design

For over a decade, therehas been research in behavioral synthesis that starts from an abstract

algorithmic specification of the system andcreates the logic structure at the register-transfer level

(RTL) [McFarIand90][Walker91]. The research from this communityhas alsomadecontributions

toward interface specification and synthesis. The algorithm is usually specified textually with a

hardware description language (HDL), and it describes the mappingof input data sequences to

output data sequences [Hartenstein87], with little - if any - constraints on the internal structure.

Historically, behavioral synthesis hasits roots in thearea of processor design. The methodsuse the

synchronous designmethodologywheresystem timing relieson a global clock. Also, they were

developed specifically .to serve the data path and sequential control needs of a processor design.

The specification and synthesis methods reflects these roots.

Not all HDLs have facilities to describe I/O event and timing behavior. The ISYN synthesis

system [Nestor86] does provide the ISPS language [Barbacci81] for describing function and
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extensions for entering local timing constraints. The CADDY system also allows timing

constraints and checks them forconsistencybefore synthesis [Camposano86]. These amount to a

description of the event sequencing and timing in a linear program,which does not naturally

expose concurrency like the STG or event graph.

The first step of synthesis is compilingthe specification into an internal representation suitable for

automated techniques. Usually, the representation is a graph that represents the control and data

operation dependencies in the specification. These graphs arecalled control/data flow graphsor

justflow graphs. Figure 2-4 illustrates a generic flow graph. A node is a data operation such as an

addition, while a data edge shows data dependency and a control edge (dashed) represents

sequential execution. I/O signalevents areconsidered as an input or output operation [Nestor86],

like the output node in the example. Time constraints are expressed as weighted control edges

between nodes. Some synthesis systems such as HAL [Paulin89] and ELF [Girczyc84] requirethe

designerto enterevents and time constraints directlyinto the flow graph.

A^

B_>

si: X=(A+4)*(B+5)
next

s2: Output(Done,l);

time(sl,s2) > 50ns;

X^

Done

A| B

stepl: r. ><D

step2: Iy*<3>
iks

step3:

step4: (OUT}*®

Done

Figure 2-4: Example of a Flow Graph and Scheduling

In the next core steps of synthesis, data operations are put into a control step for execution, or

scheduled, such that dataandcontrol dependencies arenot violated. A control step lasts one clock

cycle which must be less than any time constraint specified. The ISYN and ADAM [Hayati89]
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systems provide enhanced scheduling techniques for event operations and time constraints.

Scheduling is done in conjunction with resource allocation which involves assigning the

operations to hardware elements such as functional units, storageand busses. In other words,

scheduling gives data operations a time to happen,and allocationgives them a place to occur.

Their combined goal is to meet constraints on throughput, area, hardware utilization or even

power. The last synthesis step is mapping, or binding, the operations to a network of datapath

hardware from a library anda statemachine description for the controller.

The flow graph representation and synthesismethods have been highly successful for processor-

oriented applications. Here, data computation andhigh level control arethe main functions, and,in

contrast to STG and event graph methods, there is only a few event precedences and time

constraints. Considering the three primary functions of an interfacemodule, behavioral synthesis

techniques can be most effective for handlingthe datapath requirements and control from one

transfer to the next.

Oneof themaindrawbacks of synthesizing interface modules usingflow graph techniques is thatit

compromises the potential communication performance. Protocol events usually occur

asynchronously. However, the flow graph method treats events as operations and they too are

schedule into synchronous control steps to meet time constraint. This precludes events from

occurring as soon as permitted by the protocol, and the resolution of the clock must be finer than

the smallest time constraint

2.3 Other Specifications and Representations

In addition to the presented research related to interface generation, there are others thatsolely

address specification or representation. The specifications model the system as a set of

communicating processes. The representations are graphical, mixing data flow andevent behavior.

In specification, the SLIDE language was developed specifically for describing I/O event and
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timing behavior [Parker81]. The protocol behavior is described by a linear sequence of event

statements which maybeconditioned onan internal variable orexternal signal. Thesequence may

also include subsequences inside a loop. No clock signal is implied. A wait construct supports

specification of time constraints between consecutive statements. Unlike the other HDLs

presented, SLIDE is supported by a simulator and verification techniques, making thelanguage

useful for designing I/O protocols. However, the language makes modeling synchronous behavior

tedious because every event mustbedescribed with respect to an explicitly stated clock edge, and

text entryusinga language makesmodeling concurrency difficult.

From thedistributed systems community, the SSCS specification language can abstract the inter

process communication behavior, as well as model the low level details of I/O event behavior

[Bochman83]. Because the high-level specification used in ALOHA was mostinfluenced by this

specification, a SSCS example is given in Figure 2-5 which shows the abstract communication

between an user and a server process (or module). Thenotation of interest is theexpression (user/

request)t.X . It specifies that a process U communicates through its port named user, which

employs a request type of interaction and delivers the parameter valueX. The user port I/O

structure and protocolhave not been defined yet The index i numbers individual interactions in a

sequence of interactions.

process type server i§

user: service-access;

constraint

(userlresponse)iY =FUNCTIONduserlrequest^X)
end server;

Figure 2-5 : An SSCS Specification

The key contribution of thisworkis that it recognizes theneed for a step-wise refinement of the

initial inter-process specification into detailed data types, port structure and protocol of the
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interaction, although the work does not say how to do the refinement. In contrast, the behavioral

synthesis methods presentedin the previoussectionmixes the abstract algorithmicbehaviorwith

the more detailed I/O events, and attempt to synthesizedirectly from that one representation. This

has made synthesis difficult, because behavioral synthesis methods were developed from the

algorithmic perspective and then forced to work with the event level abstraction [McFarland90].

Other research in graphical representation are the OE-graph [Borriello88a] and DE-graph

[Whitcomb92] representations. Both mix data operation andevent behavior andhave formalisms

lacking in the flow graphs described in the previous section. The representations distinguish

between two types of nodes: the data operation node and the event node. In the OE-graph

representation, operation nodes areexecuted when specified input events arrive, and they produce

output events or wire values according to a function described with a C++ (programming

language) routine. The OE-graph representation is supported by the simulator OEsim [Amon91a].

It is easier to use for describing arbitrary I/O protocol behavior compared to the SLIDE language.

However, not all OE-graphs are becauseof the freedom in specifying the node behaviorwhich

may not have an implementation. In the DE-graph, the operation nodes must come from a library

of elementary nodes.The representation is supported by anunderlying data base system. It can

express only a subsetof thebehavior thatOE-graphs can, but will haveahardware implementation

mat can be synthesized from an arbitrary and consistent graph, although no particular synthesis

method is proposed.

2.4 Summary

This chapterhas described much of the existing work related to generation of interfaces.

Specifications ranged from graphs to languages, some of which mixed data flow and event

behaviorand others focused only on one aspect

Relevant synthesisefforts are summarized in Figure 2-6.The vertical axis of the figure represents
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behavioral abstraction level, which is the relationship between inputs and outputs of the

communication. The horizontal axis indicates the types of structural components matrealize the

desired communication, which includes the datapath functional units, multiplexors andregisters,

the logic for systemcontrol flow, and the logic for protocol conversion. The figure illustrates the

goal of this work, labeled ALOHA, thatraises the level of design abstraction and performs a

complete synthesis of the interface. Froma high-level description of the system communication,

ALOHA automatically creates the complete detailed interface implementation. Previous synthesis

BEHAVIOR

High-level System
Communication ~~l—

Data Flow and
Control Flow

Timing and
Synchronization

Boolean Equation

Datapath Units, Protocol
Transfer Control Conversion

Logic Logic

Figure 2-6: Previous Synthesis Works and ALOHA

STRUCTURE

work has emphasizedproducing a partial solution basedon just the flow graph or event graph

representation, andhas required a detailed specification of the I/O event and timing behavior from

the designer. Enumeration of suchprotocol details does not provide enough automation for system

design using various technologies.
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This work draws from specificationand synthesis concepts in asynchronous design, behavioral

synthesis and distributed systems research, while introducing new ones to achieve its goal. An

interface specification language, based on SSCS [Bochman83], is especially developed for high-

level input that is independentof the module protocol and technology details through the use of a

module library. Forautomatic synthesis,the designspecification is refinedinto the flow graph and

event graphrepresentations. Concepts from behavioralsynthesis are applied toward the data path

and high-level controlneeds, while signal-transition graph and event graph methods are applied

toward the I/O protocoland timing requirements.



CHAPTER 3

Module Library and

I/O Specification

The design of a complex hierarchical system begins with IC components as the primitives.

From these elements, multi-component modules are formed, and then these submodules in turn

can be interconnected to generate higherlevel modules. A key strategy for minimizing the design

effort is to form a collection of components and modules that can be reused among several

applications. Just as VLSI chip design has reusable cell libraries, board-level system design also

benefits from a module library. The modules range from singlecomponents to entiresubsystems,

such as aTTL logic componentanda uni-processor subsystem.

The purpose of the module library is to hold information and models, related to each member

module, to drive tools for module generation and simulation. The SIERA module library,

introduced in Chapter 1, originally provided information about the module's algorithmic,

structural and physicalcharacteristics, suchas combinational logic descriptions, I/O signalnames,

netlist of submodules and package types [Srivastava92].

These types of information are sufficient for driving the ASIC generators, programmablelogic

27
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generators,and board place and route tools. But, it is not enough to generate the interfaces, since

this task requires knowledge of the I/O protocols that communicatingmodules use. This type of

information is usually found in data sheets and specification manuals. To effectively drive the

ALOHA interface generator, the protocol information was introduced in electronic form into the

library. The module library supports interface generation during the high-level specification and

the synthesis step as shownin Figure 3-1, repeated fromChapter 1 to highlight the role the library

plays in interface design.

High-level^
Behavioral

Specification

Synthesis from

Flow graph

Generate

Event graph

Generate

Structure

Logic-level

Netlist

Figure3-1: The Module Library and InterfaceGeneration

This chapter first presents an overviewof the modulelibrary, followed by background on module

I/O communications. This is provided to giveanunderstanding of how I/O protocols are specified

andrepresented in the modulelibrary, presented in the subsequent sections.

3.1 Overview of Module Library

The module library in SIERA contains structurally specifiedboard-levelhardware modules.

To make the modulesreusable, parameters are specified with a library moduleandgiven specific

values whenaninstance is generated for a particular application, in effectcustomizing themodule.

SIERA actually carries three types of libraries meeting low-level to high-level design needs. A

package library contains physical information about the geometries of various board level
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packages such asthrough-hole DIP and PGApackages, and surface-mount packages such asSOIC

orPLCC. The primitive library holds single ICchips, discrete components and connectors such as

fiber opticreceivers and transceivers, RAMs, digital signal processors, andeven A/D andD/A

converters. The subsystem library hashierarchical modulesmadeup of the elements from the first

twolibraries and other subsystem modules. An extensive description of the SIERAmodulelibrary

andaccompanying module generators is given in [Srivastava92].

A relatively simple example of a subsystem moduleand the parameter facility is a static RAM

module. It is described by parameters corresponding to thememory size (in bytes) and the word

width (in bits), a netlist of individual memory components and line drivers, and floor plan

coordinates specifying howindividual RAM components are tiledto generate thememoryarray. A

complex example is a uni-processor module based on aTMS320C30 DSPcore, multiple types of

local SRAM memory, and a dual-port RAM for host communications, and described by a

parameterized structure. Its parameters are the size of eachmemory type, number of memory

mapped I/O slavedevices, andthe memoryand I/O address map.The address decoder in the uni

processor is a singleFPGA submodule created by the programmable logic generator [Yu91], and

its parameter is the nameof a file containing thecombinational logicdescription. So, parameters

alsoprovidea way to mix behaviorinto the structural specification.

Overall, a parameterized module canbe described in thebehavior, structure and physical domains

and with its simulation model. Algorithmic behavior is specified with either the applicative data

flow language SILAGE [Hilfinger85] or a C-like sequential language [Thon89], while

combinational behavior is described with the BDS language. The structural netlist andphysical

information is textually specified in the SDL language. VHDL models orTHOR functional models

support simulation.

Among all this information thatcomeswith a library module, the module I/O signals (structure)

and I/O protocol (behavior) are the ones of interest for interface generation. The I/O structure is
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specifiedby the SDL language, and the protocol is modeled with event graphs and specifiedwith

the AFL description language [Rabaey90], and the languages provide a user-interface into the

OCT standard database [Harrison86].

Table 3-1 shows a subset of the librarymodules and their I/O description.The modules range from

a D/A converter primitive to a frame buffer subsystem and a VME system bus. The size of a

module's I/O structure is indicated by the dataand address bus width, and the number ofcontrol

signals. Modules employ one or more I/O protocols, depending on the type of communication to

be carried out But, only one protocolcan be exercised at a point in time, such as the read or write

protocol. Also shown is the number of I/O events, event precedencesand non-zero time constraints

that compose the signaling protocol. Most importantly, the numbers convey a sense of the

enormous amount of low-level detailed information the library captures about each module. In

fact, for the more complex modules, the numbers represent only a small fraction of the total

amount The table demonstrates the effort in design entry that a designer is saved from each time a

library module is reused.

3.2 Module I/O Communications

So far, this thesis has covered the function ofan interface,design goals and generalinterfacing

techniques. Before progressing into the details of the module libraryimplementation and design

techniques, this section formally looks at the way modulescommunicate through their I/O ports.

The port is a collection of signals linking the module to its environment, hence the term I/O port.

This really means more than just a set of wires. A port has three layers: the mechanical

specification, the electrical specification, and the functional or logical specification. The

mechanical specification is related to the physical aspects of the port and includes geometrical

dimensions, connectors formounting the module within a system, andalso strength andreliability.

The electrical factor governs the requirements that must be met by the input and output signals
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Table 3-1: SampleModulesfrom the SIERALibrary

Module Name Description - I/O Structure and Protocol

DAC811 Digital to analog converter -
12-bit data, 6 control signals.
Digital port enabled by a load pulse with separate write and
select signals. 14 events, 13 precedences, 2 time constraints.

AD7870 Analog to Digital converter -
12-bit data, 4 control signals.
Digital port uses 3-wire four-phase handshake; issues inter
rupts. 8 events, 10 precedences, 4 time constraints.

Am7968 Transmits parallel data over a serial fiber-optic link -
8/9/10-bit data, 4/3/2-bit command word, 2 control signals.
Digital port uses a 2-wire four-phase handshake.
8 events, 9 precedences, 7 time constraints.

IDT7134 4K x 8 Dual-Port static RAM module-

8-bit bidirectionaldata, 12-bit address, 3 control signals.
Read and write accessescontrolled by a chip enable signal, and
acknowledgesupon access. 20 events, 23 precedences, 6 time
constraints total.

Framebuffer Two bank video frame buffer based on dual-port SRAMs -
Primary accessport: 8-bit data, 13-bit address,4 control sig
nals. Read and write accesses use four-phase handshake with
bank select. 10 events, 13 precedences, 3 time constraints each.
Interrupt port: Separate 5/32 input/output data bus, 3 control
signals. Input and output transfersuse four-phase handshake. 8
events, 13 precedences, 5 time constraints.

VMEbus VMEbus standard system bus (IEEE P1014/D1.2) -
32-bit data, 32-bit address,7 address modifiers, 1 write control,
3 data transfer control,10 interrupt control, 11 arbitration con
trol, 6 misc. control signals.
Read and write data transfers:3-wire four-phase handshake. 36
events, 38 precedences,22 time constraints.
Interrupt acknowledge and pass protocols: combination of the
four-phase handshake and daisy-chain token passing. 30
events, 51 precedences, 19 time constraints.
Bus arbitration protocol: combinationof handshake and daisy-
chain token passing. 6 events, 7 precedences, 2 time con
straints.



32

such as load capacitances, voltage levels for logical zero and one, and noise margins. The

functional specification deals with the I/O structureand the sequencing and timing of signal events

that the module port and its environment must comply with to ensure a proper exchange of

information. This signalingconvention is called the I/O protocol.

Overall, the port provides a black-box view of the module. Its specification is only concerned with

what happens on the boundary of the module rather than what is happening internally, and

compliance with its specification guarantees propercommunication between the module and its

environment. The other modules communicating with the module of interest may be a processing

module (if it uses a compatible port specification) or an interface module if communication is not

straight-forward. Of the three layers, the interface generation methods discussed here focus on the

protocol specification. The following discusses issues of port I/O structure and protocols in more

depth.

3.2.1 I/O Structure

The I/O structureof a module port consists of a set of input and output signals. Some of these

signalsconvey the information of interest Othersignals implement an I/O protocol to synchronize

the information transfer between the module and its external world. This leads to a natural

partitioningof the port signals into two logical subgroups. Not discussed here is a third group of

signals that provide DC power to the module, usually suppliedby a system bus.

The first is called the information group,consistingof signalssuch as data, addressand command.

What is importantabout these signals is theirvalue or meaningrepresented by their logic levels.

Oncetransferred, they areusedby modules to evaluate functions, invoke a response orchange the

internal state. Figure 3-2 illustrates the I/O structureof a TAXI optical receiver module and the

VME system bus module. The TAXI module uses data lines only, while the VMEbus has data,

addressand command (the WRTTEJL signal).
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control signals

The second is thecontrol group. These signals carry outthe I/O signaling events according to a

protocol to synchronize communications. The important characteristics of these signals are the

signal transitions and the timing between them. Three common types of control signals are data

handshake lines for the timing of a data transfer, the interrupt lines for timing of requests for
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services, andarbitration signals for resolving conflicts overaccess to a shared resource. Practically

all modules use the data handshake lines, like the two modules in Figure 3-2. Interrupt and

arbitration control is usually confined to microprocessor modules, peripheral devices and

microprocessor-based system busses [Stone82], such as the VMEbus.

Possibly morethan in anyother area, economics influences theI/O structure usedby amoduleport

[Clements87]. Ports thatuse parallel data and address ports withdedicated lines for interrupts and

arbitration have higher costs than a port employing a serial data line and no hardware support for

interrupts and arbitration. Of course, the parallel port will provide higher communication

bandwidth especially when used in local communications only, as opposed to system

communications. The NuBus standard attempts to a compromise between communication

performance and cost by providinga parallel set of information lines on which connectedmodule

ports multiplex data and address [NuBus].

Modules canhavemorethan oneI/O port, of course, since the port itself is justa logical grouping

of all themoduleI/O signals. An example is theTAXI optical receiver with two separate ports for

the C data and the D data, shown in Figure 3-2. However, ports may share information signals but

not controlsignals. Anotherexampleis a dual-port RAM. Eachindependentporthas its own data

and address information signals, andcontrollines to time the readandwrite accesses.The readand

write access have different signaling and timingrequirements, and this example shows thata

module port may use more than one protocol for different types of communications with the

environment.

3.2.2 I/O Protocols

To communicate with the system, a modulesynchronizes eachinformation transfer through its

portusing an I/O protocol. The protocol defines the sequence of I/O events and time constraints

thatmustbe obeyed during a transfer, and also possibly data formatting and representation rules.
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TTie I/O protocols accompanying a library modulecancome frommany sources. The I/O protocols

used by off-shelf components in the primitive library can be found in TTL, memory and

component data books from the commercial vendor.They are depicted with timing diagramsand

tables of time constraints (also called switching or AC characteristics). In the case of ASICs and

FPGAs, the port structure and signaling protocol is defined by the designer of the circuit, rather

than the manufacturerof the technology, and typically documented with timing diagrams too. The

I/O protocolsof subsystems formed from these variouscomponents are also user-defined. In the

last two cases, the system designercan determine the cost and performancerequirements of the

module I/O ports, and customize the protocol to optimally meet the needs.

In general, the I/O protocols in use today fall into two broadclasses of I/O protocols [Thurber72],

categorized by how the timing of a transfer is controlled. At one end of the spectrum are

synchronous protocols which use a clock control signal to time each data transfer. At the other end

areasynchronous protocols which use handshakecontrol signals to interlock module port timing

with its environment

Figure 3-3 illustrates the typical synchronous protocolused by an ASIC. All information signals

stabilize within a set-up time of a rising (or falling) clock edge, and must remain stable within a

hold time. A transfer lasts one clock period, with the rise event marking the beginningand the fall

event marking the end of the transfer. In this way, communication with the module occurs in lock-

step advancing with each new clock cycle. Synchronous protocols areeasiest to implement of the

three,because they require only a clock oscillatorto control the timing. They work well for local

communications because they offer fast transfers on physical interconnects that have negligible

clock skew, provided that eachmodule cancommunicate at the designatedclock speed.

If a module communicates to a mix of other modules with varying operating speeds, the

asynchronous I/O protocols offers more efficient use of the interconnection bandwidth. Figure 3-4

shows the fully asynchronous VMEbus protocol for data/address write access. The key feature of
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Figure 3-3 : Synchronous I/O Protocol (ASIC)

this class of protocols is a pairor requestand acknowledge signals,where an event on the former

marks the beginning of a transfer, and an event on the later is issued to acknowledge that the

transfer has been successful. The time between the request and acknowledge event is the access

time of the module, and in this way fast and slow modules can each participate in the

communication at their own speed. The VMEbus request signals are AS_L (address strobe) and

DS_L (data strobe), and DTACK_L is the acknowledge. Information signals, like data D and

address A, are defined to be stable with respect to the handshake events data strobe DS_L and

AS_L, respectively. Hie VMEbus protocol uses a 4-phase handshake protocol where the request

and acknowledgesignals must be resetbefore the next transfer can occur, leadingto two overhead

events per transfer. Other examples of asynchronous protocols are the 4-phase handshake

MultiBus standard [Multibus] and the 2-phase handshake Futurebus standard

[Futurebusa][Futurebusb]. Asynchronous protocols are generally used by system busses or

general-purpose processors which communicate with modules of various speeds, and where the

physical interconnect length and capacitance is non-negligible. Compared to synchronous

protocols, asynchronous I/O protocols arenon-trivial to implement

Of course there arevariations within the two classes, and also and hybrids between the two. The

semisynchronous protocols use handshake signals synchronized to a clock signal. The NuBus

protocol is an example of this.
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Figure 3-4 : Asynchronous I/O Protocol (VMEbus)

I/O ports canbe master or slave ports. Master ports initiate thecommunication by issuing requests

on an output request signals. Slave ports participate in the communication when requested, since

their request signal is an input. There are modules that are both master and slaves, but not

simultaneously. An example is a DMA controller. It is a slave to the host processor when it is

configured with the start address and block size, but it assumes a master role when it accesses the

main memory andthe peripherals on the system bus.

The following section describes the specification methodforanyclassI/O protocols in the module

library.

3.3 The I/O Protocol Specification Method

As shown in Figure 3-1, ALOHA generates interface modules from a behavioral description.

The behaviorconsists of the interface functionality and a set of system design constraints. The

functionality is the high-level communication pattern between interacting system modules and is

described by the IDL language presented in the next chapter. The design constraints are the low-

level event sequencingand time constraints imposed by I/O protocols of the interacting modules.
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They are already captured for the designer in the module library using the representation and

specification methods presented below. It should be mentioned here that the design constraint

designers usually think in terms of is the data transfer throughput. This constraint is actually

determined by the protocol time constraints. If a source moduleuses a synchronous protocol with a

10MHzclock rateto transfer data to anasynchronous destination port,then the interfacegenerated

must fulfill this constraint, and must provide a 10MHz transfer rate also assuming that the

destination port can operatedat this rate.

3.3.1 Protocol Specification with Event Graphs

An I/O protocol is characterized by signal events and precedences between events, including

timing relationships. Events can also occur concurrently. In Figure 3-4, the VMEbus write

protocol has a high degree ofconcurrency, although the timing diagram doesnot effectively reveal

it When the DTACK_L falling edge occurs, the remainder of the handshake andchanging of

information valuescanoccurconcurrently before the next transfer. So, a protocol representation

must model synchronous and asynchronous I/O events, precedences, concurrency and time

constraints, andmust also be suitable for simulation andsynthesis. The directed cyclicgraph meets

these requirements, and a hybrid of the STG [Chu87a] andevent graph [Borriello87] waschosen

tomodel I/Oprotocols. Throughout thisthesis, thishybrid will be called an"eventgraph" because

it is a succinct term.

There is a one-to-one to correspondence between the timing diagram and the event graph

representation. Figure 3-5demonstrates thisprinciple witha static RAM componentThe I/O port

structure and timing diagram that describes its write access protocol was obtained from a data

sheet. A signal event suchas the chip select falling event (CS_L-), corresponds to a node in the

graph. Event precedences correspond to a graph edge. For example, theaddress must becomevalid

before chip select falls, andthis set-up relationship between the two events is modeled withedge

e4 in the graph. A time constraint, such as the 5ns minimum address set-up time, specifies an
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interval of time in which an event precedence can occur. The time constraint is represented as a

weight associated the edge. In theevent graph, multiple edges branching from a node model the

concurrency between subsequent events. Tracing the cycles in the event graph, the write I/O

protocol is described as follows: data, address and write information signals stabilize; then the chip

select signal asserts onthe falling edge; followed byitsrising edge which completes the chip select

active-low pulse; and finally the information signals becomeinvalid.

A module port mayusemultiple protocols. The static RAM uses a different I/O eventsequence for
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the read accesscompared to the write access. This requires one event graph for the read protocol

and another for the write protocol.

To specify an I/O protocol in the module library, a library developer can manually translate the

timing diagram into an event graph, andthenuse the AFL graph description language to textually

enter the graph into the library. The AFL language basically describes the structure of the graph

with a list of nodes, edges and their connectionsand properties. This is analogous to a structural

netlist. Besides a language, anothermethod for specifying I/O protocols is entering them with a

timing diagram editor, like WAVES [Borriello88b]. For IC components, this amounts to

duplicating the timing diagrams as they appear in the manufacturers' data sheets. However, for

ASICs and subsystems where the I/O protocol is not pre-defined, it is better to design new

protocolsusing event graphs, becausethe representation can clearly and cleanly show sequential

and concurrent behavior.

The following describes the event graph representation, includingits node andedge elements, and

corresponding AFL specificationin more detail. The complete AFL syntax for event graphs is

provided in Appendix A.

The Graph

To illustrate the AFL specification, the AFL description corresponding to the SRAM event

graph (in Figure 3-5)is shown in Figure 3-6. Onlya portion of thecomplete description is shown,

but enoughto give aconcrete understanding of how thespecification is usedin themodule library.

The graph is cyclic since theprotocol repeats for each new RAM access. The special nodelabeled

"start" points to the initial event of the protocol, marking the beginning of a transfer In the AFL

specification, the event graph is given a unique name that serves to identify the protocol it is

representing, such as "writem" in the example.The RAM is a slave device, and the model_name

"slavep" reflects this. If it were a master, then the "masterp" model.name would be used. The



/* I/O Protocol for SRAM write access */

(GRAPH (NAME writem)
(MODEL ( (model_name slavep) ))
(ARGUMENTS ( (port sram) (timeunit ns) ))
(NODELIST

(NODE
(NAME nO))
(ARGUMENTS (

(signal CS_L)
(value f)
(direction in)
(valid DATA)
(valid ADDR)
(valid WE_L)

(IN_CONTROL (el e2 e4 el elO) )
(OUT_CONTROL (eO) )

)
(NODE

(NAME n3)
(ARGUMENTS (

(signal ADDR)
(bitvectwidth 8)
(bitvectbase 0)
(value s)
(direction in) ))

(IN_CONTROL (e3) )
(OUT_CONTROL (e4) )

)
)
(CONTROLLIST

(EDGE
(NAME eO)
(CLASS control)
(ARGUMENTS ( (min 40) ))
(IN_NODES (nO) )
(OUT NODES (nl) )

)
(EDGE

(NAME e4)

(CLASS ctrlinfo)
(ARGUMENTS ( (min 5) ))
(IN_NODES (n3) )
(OUT NODES (nO) )

)
)

Figure 3-6 : AFL Description for the SRAM Write Protocol
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name of the module port that uses the described protocol and the time units that the time

constraints areexpressed in is given in the ARGUMENTS fieldof the specification.

The I/O Event

The node representsa signalevent, whether the signalis of type information or control. In the

AFL specification, the event node is given a name that uniquely identifies it among other nodes

listed, like "nO" for the CS_L- event. A node description contains characteristics about thatevent,

held in the arguments field. The important ones arethe signalname on which the event occurs, the

transition value, and directionof the signal, as shown for the chip select falling event. Events on

bus information signals, such as DATA, will alsohave the bus width and least significantbit index

specified. The default value is one bit and zero index, respectively.

Signals are allowed to take on the transition values listed in Table 3-2, adapted from the SCALD

value system [McWilliams80]. Control signals may only take on the rising, falling and high-

impedance values, while information signals are allowed to take on stable, unknown, high-

impedance, or specific bit-vector values.

Table 3-2 : Signal Value System

Value Meaning

+ rising, signalchangingfrom low to high

- falling, signalchangingfromhigh to low

s stable, signal is stable at some bit vector value

bit vector signalis stableat a specificbit vector value

x unknown, signalvalue is unknown or don't care

z high-impedance, signalis at high-impedancestate

The optional characteristic, valid,ofaneventnames thesignals thatare stable, or"valid", uponthe
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occurrence of the event. In the example, thechipselect fall event indicates thataddress, data and

the write enable signal to the memory are valid. Soitsnode specification specifies this with the

"valid" argument. There is also the invalid characteristic that is thecounterpart of the valid

argument

Event Precedences and Time Constraints

Event precedence corresponds to agraph edge. For instance, edge eO in Figure 3-5 shows that

the CS_L+ event must follow the CS_L- event In the AFLspecification, an edge also has aunique

name,like "eO" for this precedence relationship.

Timeconstraints oreventcircuit delays between events, represented asweights attached to edges,

are specified in the edgeARGUMENTS, such as the40 ns minimum CS_L active-low pulse

width. Currently, the AFL specification supports the min-max-avg delay model where a time

constraint is expressed withaminimum tomaximum bound, and anoptional average timebetween

thebounds. If noneare specified, then thebounds takeon zerominimum and infinite maYimnm by

default. More complex delay models can be used, such as statistical models,but they are not

currently supported by design tools. Sometimes, when a module with an internal clock uses an

asynchronous protocol, a timeconstraint ordelay is a function of theclockperiod. In this case, it is

specified as a string in edge ARGUMENTS. For example, instead of 'min 40ns', the constraint

appears as 'min "3*clock"\ whereclock is the clock period.

The timeconstraints and delays shown so far were associated with precedence edges. Sometimes,

theI/O protocol will specify a timeconstraint between two events that do nothavea precedence

relationship. To express this, theeventgraph representation provides a second type of edge called

the timingedge.Figure 3-9 showsdashed timingedges.

Lastly, the structure of the eventgraph (connectivity betweennodesand edges) is described by the

DECONTROL andOUT.CONTROL field of the node specifications, andthe IN_NODES and
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OUT_NODES field of theedge specifications. In summary, theAFL specification emphasizes the

structure of the event graph, andconveysbehavioral properties through the ARGUMENTS field.

3.3.2 Examples of Event Graphs

The full eventgraph for the ASIC ofFigure 3-3is shown in Figure 3-7.The interesting feature

is how periodicity in a synchronous protocol is specified. The clockcontrol signal has a 50% duty

cycle anda period of 100ns. This is implemented withminimum andnummiim time constraints of

equal valueassociated with theedges that directly connect theclockrising and falling events. The

event graph also shows that the synchronous protocol can be thoughtof as a special case of a

handshake protocol that usesonly therequest control signal withperiodic rise and fall events.

5ns min

50ns min
50ns max

Figure 3-7 : Event Graph for a Synchronous ASIC Protocol

Figure 3-8 illustrates the complete event graph representing the VMEbus write protocol from

Figure 3-4. It has a loop for thehandshake between thedata strobe DS control signal and the

acknowledge DTACK signal, and another for the handshake between the address strobe AS and

the DTACK. The graph also shows the high degree of concurrency between event after the

acknowledge event, DTACK-, has occurs. This allows theremainder of theprotocol to complete
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quicker thanif events occurred sequentially.

Figure 3-8: Event Graph for the VMEbus Write Protocol

The VMEbus event graph shown is just one of 5 events graphs that cover the VMEbus data

transfer, interrupt and arbitration protocols. All the others, except one, are equally or more

complex than the one shown. Evidently, this graph illustrates that manual entry of the I/O

protocols into the module librarycan be error-prone, motivating the need for consistency checking

and simulation.
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3.4 Consistency Checking and Simulation

When an AFL specification of an event graph is entered into the module library, the library

user-interface also performs an automatic check of the event graph description for connectivity

and consistency errors. In addition, protocolbehaviorcan be simulated using the OEsim simulator

[Amon91a]. Simulation provides a way to check the correctness of the I/O protocol specification.

Unlike consistency checking, it allows the designer to evaluate the performance of an I/O protocol

before the logic or physical hardware is designed.

Consistency Checking

Consistency checking catches syntax errors in the AFL specification entered by the library

developer and also fatal behavioralerrors evident from the event graph structureand properties.

Errors in the specified protocol behavior are detected in two ways by the user-interface.Hie first

uses the graphstructure to find errors, checking connectivity between nodes and edges in the event

graph. Obvious errors are nodes that have no input edges or no output-edges, resulting in events

thatnever happenor in dead-end. Edgesmust have exactlyone input node andexactly one output

node, and this is also checked.

The second check inspects node and edge properties to detectconsistency errors. Signal names

appearing in a node specification must have been declared in the I/O port structure. Time

constraints specified with anedge musthave increasing minimum, average, and maximum values.

At the graph level, the time constraint betweenall pairs of eventsmust not conflict. This means

that the minimum time along any pathbetween the two events must be less than the maximum

time along any of the otherpaths, as illustrated in Figure 3-9.
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Simulation

Simulation of an I/O protocol validates its correctness and performance. For example, the

library developer may enter the wrong time constraint value for the event graph of a ofif-shelf

module. In another example, the I/O protocol being defined fora custom module in development is

simulated for possible deadlock conditions and also to evaluate the potential performance. In

either way, the I/O protocol is verified before it is entered into the module library. I/O timing

behavior is simulated using the OEsim simulator [Amon91a]. The simulation model is based on

the OE-graphrepresentation, discussed in Chapter 2. Experience with OEsim has shown it to be a

valuable tool for designing I/O protocols.

The model is directly generated from the event graph AFL specification. Currently, this is

manually done, but it can be automated using the following rules. Illustrated in Figure 3-10, the

OE-graph elements of interest for modeling I/O protocols are the event node, the operation node

(graphically a box), and the precedence edge that represent dependence between an event and an

operation node. Protocol behavior is modeled as operation nodes that are triggered by incoming

events to produce outgoing events within the module's circuit delay. The circuit delay may not be

part of the protocol specification, and is distinguished from a time constraint. Figure 3-10 shows

how a simulation model is generated from the event graph for the SRAM write protocol in Figure

3-5. An event node in the event graph maps to an event node in the OE-graph. Its incoming
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precedence edges collectively translate to a operation node in OE-graphthat produces die event of

interest when all the predecessor events have occurred. OE-graph edges are inserted to the model

to connect the predecessor events nodes to the operation node and the event node under

consideration.Hie operationnode is an instanceoperationnode model from a simulation library.

"wrrtem"event graph:
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Figure 3-10 : OE-graph Model for SRAM Write Protocol

In addition to the constant delay model, OEsim can simulate delays based on the uniform

distribution model, wheredelays are specified within a minimum andmaximum bound. Unlike

many simulators, OEsim has timeconstraint checking and reporting capabilities. Time constraints

specified in the event graph are translated into the OE-graph format using alibrary of constraint

functions that have been developed already. The functions include minimum, maximum, set-up

andhold time constraints andthe function parameters are the minimum and/or maximum time

bounds. During simulation, OEsim will continuously monitor timing between events and flag any

violations, inserting warning messages into the simulation results.

The user initiates simulation with an input signal event, such as CS_L+. During the simulation run,

the user provides the input events while the model generates events occurring onoutput signals.
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3,5 Extensions to the Module Library

The modulelibrary captures the low-level details of moduleprotocol, structure and physical

properties intoacentral database, hiding these details from thedesigner. It supports the principle

of design reuse and modularity. This is the key impactthat the module library has on system

design.

As mentioned in Section 3.2,electrical characteristics are part of the module specification. This

information can also be entered into the library, and then used to drive module generators

including the interface generator; however, this has not been implemented so far. The electrical

characteristics of a modulevital to interface design are the I/O signal levels andcapacitances. The

first is concerned with logic levels, noise margins and tri-state or open-collector properties.

Interface generation can use this information to determine the appropriate type of line driver or

receiver forconvertingvoltage levels anddrivingloadcapacitances.

In Section 3.1, the library approach described assumes that the modules have pre-defined

protocols.This makes obvious sense for off-th e-shelf components, but other modules like ASICs,

FPGAs and subsystems are parameterized to generate an instance when the module is called from

the library. Conceptually, in this case, the I/O protocol does not need to be pre-defined and can be

determined when the module is generated. To support this approach, a library of protocol

templates can be added to the module library. This fourth type of library would contain a minimal

yet comprehensive set of parameterizable I/O protocols from which the designer can choose for

the particular application. Figure 3-11 illustrates this concept with a synchronous protocol. The

information signals are Data and Addr, and the control signals are CLK and RDY. The RDY signal

allows the I/O port to indicate which clock cycles transmit valid data.The parametersare the clock

period, duty cycle, and the width of data and address.

Important issues in using protocol templates are, first, deciding which protocol to use and, second,

what the parameter values should be. These decisions will be determined by communication



Addr

Data

CLK

<zz>

Se? (Hold
TimeS* / Tune

min=SetTime

min=HoldTime

Period

<* *•

Duty
Cycle
(%)

nun, max =

DutyCycle* Period

W

min, max =

DutyCycle*Period

Figure3-11: Template for a Synchronous I/O Protocol

50

performance and cost requirements, such as thedesired throughput, timingcharacteristics of the

interacting modules, and the size of the I/O port. Protocols can be simulated with OEsim, as

discussed in Section 3.4.



CHAPTER 4

High-Level System

Specification

High-level design starts from a specification of the desired hardware behaviorwhich consists

of the functionality and the designconstraints. Forinterface generation, the constraints are the

event sequencing and time constraints imposed by the I/O protocols of interacting system

modules. The functionality corresponds to theinter-module communication pattern, concentrating

on the global data and control flow requirements. While the module library captures the detailed

protocol constraints, the input language describes the desired functionality. The IDL language

provides the designer anentry pointinto the ALOHA interface generator.

The goal of the specification method is to abstract system communication to a level that is

independent of the module protocol and technology details, while being easy to use and

expressive, At this level, what is known is the inputandoutputsignals of interacting modulesand

their functional relationship. There is no knowledge about the internal structureof the interface

module that implements the communication. The key issue centers on "what the interface is

doing/' This chapter focuses on how the IDL language describes this to achieve a high-level

design abstraction. As shown in Figure 1-7 of Chapter 1, the interface generator transforms the
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high-level specification into an internal representation and then synthesizes the internal structure

and execution sequence, which are the subject of subsequent chapters.

This chapter first presents the underlying model that defines the semantics of the input language.

Then, an introductory example demonstrates the key features of the language. Afterwards, the

language features are discussed in more detail, and applied to more examples. Finally, the chapter

addresses simulation issues at the system level.

4.1 Specification Model

Describing system communications requires modeling the data and control flow behavior

between interacting modules. Data flow refers to the routing of information from source modules

to destination modules, including any transformationsto be performed during the transfer. Control

flow refers to the sequencingof transfers, such as exercisingconcurrent, sequential, conditionalor

looped transfers. The specification method models system communication as a network of

modules that transmit and receive information through their ports. Information streams from the

source ports are spatially and temporally mapped to information streams at the destination ports.

The interface is the actual entity that implements the mapping; so, modeling the inter-module

behavior amounts to specifying the interface function. This model is further described below.

4.1.1 I/O Transaction

As discussed in Chapter 3, a module port is a source or destination of information or both.

Information canbe data, address orany othervalueto be communicated. An I/O transaction is the

transmission orreception of a single information value (or packet) between themodule port and its

environment, obeying the port protocol, of course. The time for one transaction to execute is

considered thebasic unitof timein a sequence of transactions. This is illustrated in Figure 4-1 for

a processor initiating a sequence of read and write transactions. Duringread transactions, the
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processor is the source of address and data values, while it is the source of address and the

destination for datavalues duringwrite transactions.

time protocol
a T~
i 1 write

^

i+1 read

addresspacket

address packet

transaction

data packet

data

Figure 4-1: Processor I/O Transactions

port

;

The transaction concept is adapted from the port interaction concept used in the SSCS

specification model [Bochman83] and thenotionof sample sequences in digital signal processing

[Oppenheim89]. The SSCS model does not explicitly speakof I/O protocols, but it promotes the

abstract notionof interaction types. This hasbeenapplied toward I/O protocols to meet the special

needs of interface specification. The useful feature in the sample sequence model is allowing

information to come from a current or pastsamples.

The I/O transaction requires identifying the module port, an information value, and the I/O

protocol used. This means the name of the port, the name of the I/O signal that passes or accepts

the information,and the name of the protocol. It does not need to know about the I/O events and

timing details of the protocolbeing used.

4.1.2 Inter-module Transfer

The I/O transaction only models what happens at one end of the communication, but

information transfers involve at least two ends. The specification model maps a stream of

information values from source transactions onto a stream of values for destination transactions.
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Each mapping to a destination value corresponds to a inter-module transfer. The interface

implements the sequence of mappings. Figure 4-2 illustrates an example of an interface that

transfers data from a sourceportto a destination port

transfer

Dest
DATA

value

time (
protocol

'r
y value

receive data tt^

a s

data

receive data k^ data

receive data
•

•

Interface

data

Figure 4-2 : Inter-module Transfers
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send

send
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Beyond the basic transfer, a transfer may involve a transformation of the source values, such as

arithmetic or logic operations,before it is routed to the destination. Source values also can be from

a current or past port sample. These comprise the data flow behavior.The interface can also map

source sequences to destination sequences in a concurrent fashion, conditioned on some

information value,oriteratively for a finite amount of times, implementing control flow behavior.

As the interface facilitates a sequence of transfers, it also executes a lower level sequence madeup

of interlocked protocol events for each transfer. The IDL specification models the higher level of

behavior, while the event graph modelsthe lower levelofbehavior. The protocol details are hidden

from the designer by the module library.

4.2 An IDL Specification Example

Since inter-module communications tends to be control dominated rather than data

computation dominated, it is natural to use a procedural language as the input specification.
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Accordingly, the high-level specification developed especially to describe inter-module

communications is a procedural hardware description language, called IDL (interface description

language).

IDL has many features that are found in other hardware description languages. The inputs and

outputs of the described module are declared, followed by a description of the behavioral

relationship between the outputs and inputs. The special feature of IDL is that the behavioral

description is independent of the protocol details. Relevant languages investigated before

developing IDL can not achieve this level of abstraction. The VHDL simulation language can

express communication behaviorat the desired level. However, for synthesis, VHDL is tedious to

use andresultsin amuch longerdescription due to more overhead comparedto the equivalentIDL

description, defeatingthe concise andeasy to use goal. Also, since only a small subsetofVHDL is

relevant to describing interfaces and can be synthesized from, it would be necessary to define a

VHDL subset which in effect is IDL. The simulation strategy is to translate the IDL specification

into a VHDL model, discussed in Section 4.5.

This sectionprovides an example to demonstrate the high-level specification method for interface

behavior. It introduces the key IDL specification elements, which arethe port declaration, the I/O

transactions and the inter-moduletransfers. A complete treatmentof the language is given in the

following section.

Figure 4-3 shows illustrates a simple example of a processor that writes into a static memory

module.To simplify the example, thememory writesignal is hardwired to the logic one level. The

protocol and time constraints that the interface must meet is shown in the memory and processor

event graphs, which arecaptured in the module library. The IDL specification from the designer

has two parts: the port declarations followed by the specification body. First, in the specification,

all the modules involved in the communication are declared with the PORT statement. These

modules areinstancesofmodules chosen form the module library. For example, the memory Mem
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IDLspecification:

DESIGNmyjnterface

PORT PROCESSORProc;
SOURCE Proc.D<7:0>, ProcA<7:0>, Proc.WR;

ENDPORT;
PORT SRAM Mem;

DEST MemADDR<7:0>;
BIDIRECT Mem.DATA<7:0>;

ENDPORT;

ROUTINE main;
W (Proc.WR EQL 7') THEN

MemlwritemADDR<7:0> =ProclwritepA<7:0>;
MemlwritemDATA<7:0> =Procfwritep.D<7:0>;

• ENDIF;
ENDROUTINE;

ENDDESIGNmyjnterface;

Figure 4-3 : IDL Specification for a Processor to Memory Write Interface
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is an instance of the SRAM library primitive described in Figure 3-5of Chapter 3. In addition,

signals usedin the specification body andtheirdirection aredeclared within the PORTdeclaration.

In general, multiple instances of a library module can be listed in one PORT declaration. This is

useful forcommunication involving a bank ofmodules, suchas a bank of staticmemories. In that

case, the instances would be uniquely named,such asMeml, Mem2, Mem3, etc.

In the specification body, denoted by ROUTINE, the interface functionality is described usingthe

I/O transaction concept. The notation for a transaction is:

module instancejiame/pmtocoljiame.signaljiame

It states that the namedmodule porthas a word on the named signalterminal to be transmitted or

received using the namedprotocol, for example, Memlwritem.ADDR<7:0>. The protocol name

identifies theeventgraph from themodule library that represents the I/Oprotocol. In the example,

writem and writep refers to the library eventgraphs shown in Figure 4-3. In general, moduleports

may employ more than one type of protocol, and the specific protocol named in the IDL

transaction will be chosenby the designer depending on the application requirements.

By using the transaction concept together with the underlyingmodule library, the user does not

need to specify the details of the protocol nor the control I/O signals of modules on which the

signaling protocol occurs. In fact, inFigure 4-3, thecontrol signals Req, Ack and CS_L in theblock

diagram do not appear in the input specification. The event graphs in the module library contain

information about the protocols, time constraints andcontrol signals that make up the low-level

behavior of each module.

The I/O transaction only describes one end of the inter-module communication. An inter-module

transfer is described with the assignment "=" notation, where the right side is the source

transaction and the left side is the destination transaction. In the example, the first IF statement

conditions any write transferon the statusof the processorwrite signal, WR. If the condition is

met, thereis a byte address andbyte data transfer, where the processor uses its writep protocol and
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the memory uses its writem protocol. In effect, the interlocking ofprotocol events that synchronize

any transfer is implied in the assignment statement rather than explicitly stated. The

communication routine implicitly returns to the beginningonce it reaches the end, repeating ad

infinitum.

In addition to the key features presented above, the specification also allows transfers to use data

operations. Source bit vectors can be put through a logic or addition function, appearing on the

rightsideof the assignment statement. Then theresult is transferred to the destination portnamed

on the left side. Besides the conditional IF feature, transfers can be embedded in concurrent,

sequential or iterativecontrol statements. These aretypical of hardware description languages. In

Figure 4-3, the "{" and "}" brackets surround the concurrent data and address transfers.

The input language described allows the designer to concisely express communication behavior,

since theknowledge ofprotocol details comes from theunderlying library andis transparent to the

designer. The model presented works well for describing a wide rangeof interface functions.

Further, the language andmodulelibrary minimizes theredesign effortif a moduleexperiences a

change in its I/O specification. Forinstance, an upgraded memory with a shorter set-up time

constraint and faster access time may replace theolder version in the modulelibrary. This change

is reflected in themodulelibrary, whilethe original high-level specification is still applicable. In

keeping with a system design approach, the combined use of the input language and module

library provide the proper levelof abstraction and support modular design.

4.3 The IDL Specification

This section formally surveys themain features of the IDL specification andgivesexamples to

illustrate how they areused. Currently, the language provides the minimum set of constructs that

allow tiie designer to easily and briefly describe theinterface behavior. Although it wasdeveloped
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as a synthesis language,all its constructscan also be simulated.The IDL grammarand its parseris

implemented with the Lex and Yacc facilities. Appendix B describes the syntax in detail.

4.3.1 Design Declarations

As shown in Figure4-4, the entire IDL descriptionis surroundedby the DESIGN declaration,

where the designer can choose an arbitrary name to identify the interface. The language allows

symbolic names for constant bit vectors or non-negative integers, and any of these are declared

next Examples where this feature is useful is a communication mat requires incoming address to

be compared to the destination address (specified as a constant), or a communication that requires

the source data to be logically ANDed with a mask (specified as a constant) before it is sent to the

destination.

DESIGN designjiame

CONSTANT constantjiame = value;

PORT library module_name instance], instance!,...;'

SOURCE signal!, signal2,...;

VEST signal], signal2,...;

BTDTRECT signal], signal2, ...;

ENDPORT,

Block Declarations

ENDDESIGN;

Figure 4-4: Design, Constant and Port Declarations

After the CONSTANT declarations in Figure 4-4, all the module ports participating in the

communication are listed along with the information signals involved, as shown in the figure. In

tiie PORT statement, the library name is first given followed by the instance names. The direction

of the I/O signal is either source, destination or bidirectional. Sources (declared with SOURCE)
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are inputs into the interface. Destinations (declared with DEST) are outputs of the interface.

Bidirectionalsignals (declared with BIDIRECT) carrysignals that flow in either direction.

Finally, within the DESIGN declaration are the block declarations which contain the specification

body. Blocks are described below.

4.3.2 Block Declarations

An interface can be made up of independent and concurrently running blocks. This is similar

to the process notion in distributed systems or the processnotion in VHDL [Lipsett89].The actual

behavior of the interface is described within the BLOCK declaration, shown in Figure 4-5. The

block can be thought of as an external infinite loop. Once the sequence of statements described

inside the block has completed execution, behaviorautomatically returns to the top statement.

BLOCK blockjiame
ROUTINE routinejiame;

statements

ENDROUTINE;

FUNCTION function_name<return-bit-width>(parameter], parameter!,...);
BDS "filejiame";

or statements

ENDFUNCTION;

PROCEDURE procedurejiame;
statements

ENDPROCEDURE;

RESEIPROC reset name;

statements;

ENDRESETPROC;

ENDBLOCK;

Figure 4-5 : Block, Routine, Function and Procedure Declarations
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Inside the BLOCK, behavior is partitioned into four possible subgroups. The first is the

ROUTINE. This declaration contains thedescription of inter-module transfers, including data and

control flow. To cleanlyorganize a complexbehavioral description, DDL provides the FUNCTION

and PROCEDURE declarations.

The function is a subprogram to themainroutine, and it only describes combinational logicusing

either IDL combinationallogic operators or the name of a BDS formatted file. It returns the value

of a bit vector using the RETURN statement. BDS is a language for specifying combinational

logic and is compatible with the MIS logic synthesis system [Segal88]. Forexample, the function

is very useful for describing interfaces thatdecode addresses in a memory mapped system.The

address map can be described in the FUNCTIONdeclaration and is kept separate from the main

routine. The main routine calls the decoding function at the appropriate time in its program, and

the function is instantaneously evaluated. During synthesis, the actual evaluation time will be

scheduled.

The PROCEDURE declaration is a subprogram to the mainroutinethat describes a subsequence

of inter-module transfers. It does not return a value to themainroutine. Its body is described with

any IDL dataoperationor control statement. It is best used when system communications involves

repeatinga subsequenceat various points in the specifiedbehavior.

The fourth subblock is the reset procedure declaration, RESETPROC. It is a special function that

runsconcurrently with the main routine. It monitorsinput signals, such as those indicatingstatus,

and whenever it detects a specifiedcondition, it interrupts the control flow in the main routine and

returnscontrol to the first statement In this way, the interface is reset

The following subsections describehow behavioris specified in the ROUTINE declaration.
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4.3.3 Transactions and Transfers

As described in the previous sections, the I/O transaction is a singleinformation value passing

through a port implying the signaling protocol. Specifying a transaction does not mean the

interface instantaneously samples the information signal. Instead it is interpreted as the interface

samples the signal when a control event indicates that information is valid on that signal.The

designer doesnot need to know whichcontrol event,or the timeconstraint governing the sampling

set-up or hold times. That information is captured in the module library and will be extracted

automatically duringsynthesis.The I/O transaction is specifiedas:

moduleJnstancelprotocol.signal<msb:lsb>

and its semantics wereexplained in the previous section. The moduleJnstance and signal names

must be specified.Usually, the signalis informationrather thancontrol, since signals like dataand

address are the actual information being transferred between modules. If no protocol is named,

then this literally means the instantaneous value of the signal, independent of the any control

event Also, if the most significant and least significant bit index, msb and Isb, arenot specified,

then the signalis one bit wide. When only a portion of the total signal width is specified in the

routine, the outside bits are regarded as "don't care" at that moment in time.

The inter-module transfer is a mapping of a source transaction to a destination transaction. The

most basic transfer an interface cancarry out is directly sending a packetof information from one

source to one destination port,and thisbehavior is expressed with the assignmentstatement,"=".

Examples are the address and data transfers from processor to memory in Figure4-3. It is

important to emphasize again thatthe assignment statement represents a complete transfer cycle,

where the data transfer andevent-level synchronization occur jointlyandconcurrently. Protocol

eventssuchasclock orhandshaking is impliedand transparent to thewriter ofthe IDL description.

In general, an inter-module transfer caninvolve multiplesource ports and transformations. The

general form ofa transfer statement is:
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Destjransaction =FunctionyfiSrcjransactionl, Srcjransaction!,...);

The next two sections describe IDL data andcontrol operations thatextend the transfer statement

beyond the strictone-to-onemappingbehavior.

4.3.4 Data Operation Expressions

Data operations manipulate values from input transactions and produce a new value. They

consists of the very simpleconstant and bit selection expressions, delay operation, logical and

arithmetic operations, andrelational expressions.

Constant and Bit Selection Expressions

The constant expression is a constant bitvector oraninteger. For example, these three statements

assign the samebinaryvalue to the destination signal:

Memfwritem.DATA<7:0> = '0001000]';

Memlwritem.DATA<7:0> = 17;

Mem/writem.DATA<7:0> = MyConstant;

Integer expressions in an assignment statement are translated to the equivalent binary

representation. MyConstant is the symbolic name of the '00010001' bit vector declared before the

PORT definitions.

Bit selection is simplychoosing a bit sliceof avectored signal. So,

Proc/writep.DATA<7:4>;

ProclwritepJ)ATA<7>;

selects theupperhalfandthemost significant bit of the DATA byte. Complex interface functions,

such asbyteswapping and concatenation, are expressed by composite bit selection operations. For

example, in the following statements, thememory receives a byte formed by swapping the upper

and lower halfof the processorbyte.

{Memlwritem.DATA<7:4> =Procfwritep.D<3:0>;
Memlwritem.DATA<3:0> =Proc/writep.D<7:4>;}
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The bit selection feature canalso demonstrate how communication involving multiplesources and

destinations is described. In this example, the full memory byte is formed by concatenating half

bytes from two processors, Procl and Proc2.

PORT PROCESSOR Procl, Prod;

ROUTINE main;

{Memlwritem.DATA<7:4> = Procl/writepI><3:0>;

Mem/writemI>ATA<3:0> =Proc!/writep.D<3:0>;}
ENDROUITNE;

The description alsoshows thatalthough two instances of the processor modulearedeclared, both

processor transactions name the writep protocol. This is becauseprotocols arenot instantiated, but

used by reference.

Delay Operation

Values from past signal samples can be referenced in a statement by using the sample delay

operation,"@N". N is a positive integer. So, the statements

{Memlwritem.DATA<7:4> =Proc/writep.D<7:4>;

Mem/writem.DATA<3:0> =Proc/writep.D<3:0>@l;}

indicate thattheupper half of thememory byte comes from the current processor byte, whilethe

lower halfcomes from theprevious sample. The delay operation is theonly data operation that has

state. Its use implies memory hardware in the interfaceto be synthesized, since the interfacewill

need to hold the pastvalue in temporary storage.

Logical and Arithmetic Operations

Logical operations include the logical invert NOT, logical AND, OR, NAND, NOR and XOR

expressions. All accept two inputs exceptfor thecomplement whichworkswith oneinput, and all

can accepttransaction values or constants. An example is the following statementthat masks the

source word as it is sent to the destination.

Memlwritem.DATA<7:0> =Proc/writep.D<7:0> AND '11110000';
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Arbitrary and complex combinational logic manipulations can be described within the

FUNCTION declaration, discussed in a previous section. In the routine body, the function is

invoked with the function call expression. For example, this statement calls a function that

contains the combinational logic description ofa check sum function.

Mem/writem.DATA<7:0> =Check(Proc/writep.D<7:0>);

The current IDL language implementation only supports the addition "+" and increment "-in

constant" arithmetic operations. These are sufficient, because inter-module communications

practically only use these types. Usually, they are used in applications that require address

generationsuch as in directmemory access.

Relational Expressions

The relational expressions, EQL and NEQ, test forequalityor inequalitybetween two variables or

a variableand a constant. An example of this is:

IF (Proc/writep.WR EQL T ) THEN...

Here, a positive result from the equality test causes the flow ofcontrol to branch.

4.3.5 Control Flow Statements

The IDL language provides four ways of expressing control behavior. These are the

conditional statement, concurrent construct, sequential statement and the loop statements.

Complex control over the sequencing of transferis achieved by appropriately combining these

statements.

Conditional Specification

The first control flow operation is the conditional IF statement. It was introduced earlierin Figure

4-3. It has the general form:

IF condition-exprTHEN

statements
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ELSE

statements

ENDIF;

The condition_expr is a boolean control function. When it evaluates to true, it causes control to

branch to tiie first set of statements. Otherwise, control branches to tiieset of statements following

the ELSE clause. The ELSE clause is optional, and if it is omitted and the condition_expr

evaluates false, controlwill exit the IF statement continuing with the following statement.

Concurrent Specification

Concurrent actions are specified by surrounding them with the "{" and "}" brackets. It too was

previously introduced in Figure 4-3. Specifying concurrent operations shows the maximum

concurrency that can be achieved. Some sequential behavior may emerge because of data

dependenciesbetween certainoperations.

Behavior consists of many concurrency levels. The event graph represents fine-grained

concurrency between I/O events.While the BLOCK declaration described abovecaptures course-

grained concurrency between independently operating hardware. The degree of concurrency

discussed here falls between the event and block extremes. It describes concurrent transfers

between related modules, rather than parallel communications among independent modules as in

the BLOCK case.

Sequential Specification

Sequential behavior is theexecution of anaction following thecompletion of another. Specifying

sequential behavior forces control precedence even if consecutive transfers have no data

dependencies. It is expressedby separating statements with the statement:

NEXT( (srcj>ortl), (srcj)ort!),...);

The NEXT keyword implies tiieprecedence. However, on its own, it cancause ambiguities about

how consecutive transfers are executed. To illustrate this, consider the sequential behavior
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specified as:

Mem/writem.DATA<7:4> = Proc/writep.D<7:4>;

NEXTO;

Memlwritem.DATA<3:0> =Proc/writep.D<3:0>;

In the first transfer, the memory receives data from the processor. On the next transfer, it is not

clearwhether the processorhas actuallyproducednew data for the second transfer to memory or if

tiie processor portremains at the samestateasbefore. To clarify this issue, the src_portarguments

in the NEXT statementallow the designer to specify the sourceports that have a new data sample.

In the IDL implementation, if the name of the source portis absentin a NEXT statement, then it is

assumed that the portremainsat its old value, as in the example above. In this case, the interfaceto

be synthesized may require a memory element to capture the old sample from the processor To

specify that the processor porthas a new sample for tiienext transfer to memory, its name is listed

in the NEXT statement as:

Memfwritem.DATA<7:4> =Proc/writep.D<7:4>;

NEXT((Procj);

Mem/writem.DATA<3:0> = Proclwritep.D<3:0>;

In the behavioraldescriptionabove, multiple assignmentsaremade to the same destinationsignal,

DATA. The IDL model allows multiple assignmentsover a sequence of transfers. It does not allow

multiple assignments within a concurrent set of statements, since that would result in conflicting

values being sent to a destination. Also the end of a ROUTINE implies a NEXT statementwhere

all declared source ports produce a new value as the behavior returns to the beginning of the

routine.

Loop Specification

Loop behavioris capturedby the ITERATE or WHILE statements. Interfaces that perform block

transfers or multiplex parallel data onto a serial line can be conveniently described with these

features. Examples are given in the following section.
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The first statement specifies a fixed numberof times a pieceof behavior is repeated. It has the

form:

ITERATE indexFROM constantl To constant! DO

statements

ENDTIERATE;

The indexvariable is local to the iteration loop and does not needto be pre-declared. The constant

is aninteger constant ora symbolic constant name. The ITERATE statement is effectivelya short

handnotation for a repeated setof statements separated by the NEXT statement.

When behavior is iterated overa number of times that is data dependent theWHILE statement is

used. Here the numberof iterations is known only at run time, whereas it was known at compile

time in the ITERATE case. The statement is specified as:

WHILE expr DO

statement

ENDWHILE;

As longas the expression expris true, tiieloop repeats.

4.3.6 Limitations

The IDL specification method has two main limitations. The first is related to non-

deterministic behavior and the second is concerned withconcurrent/sequential control flow.

Currently, the IDLlanguage onlydescribes deterministic behavior. As the sequence of statements

progresses, tiie next action is exactly known. Even in conditional statements, as tiie branch taken is

determined at run-time, the set of branches is known, and the behavior in each of its branches is

predictable. However, sometimes inter-module communications involves arbitration where several

modules contend for a shared resource, such as shared memory ora bus,and only onewins in the

arbitration process. Strictly speaking, this behavior is non-deterministic, since the outcome of

arbitration is unpredictable. In practice, arbitration is usually implemented by an algorithm or
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policy that is deterministic butmakes the result look fair yetrandom [Guibaly89]. Examples are

priority-based orround robin algorithms, and they can belogically expressed in the IDL language

or with the BDS language.

The method of specifying concurrent actions allows subgroups of concurrent operations to be

nested within aconcurrent construct, "{...}". Also, the sequential NEXT statement can specify

precedence betweensubgroups of concurrent operations. This method of specifyingconcurrent

and sequential behavior modelscontrol flow asa series of parallel branches. This is shownin the

left-hand control flow graph of Figure 4-6, where the circles represent a transfer ordata operation

and edgesrepresent precedence. However, concurrent and sequential control can have a more

general flow like that shownon the rightsideof the figure. In fact, an event graph models this

general form ofcontrol precedence. So, thecurrent IDL language canonly model a subset of all

possible control flows. In practice, interface behavior canbe adequately modeled with thecurrent

control flow features, and the set is not sorestrictive as the previous statement may indicate. For

unrestricted control flow, the language needs to be enhanced with fork/join statements, which is

supported by a few other hardware description languages suchthe AHPL language developed in

the early days of HDLs [Hill78].
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IDL Control Flow General Control Flow

Figure 4-6 : Control Flow Examples
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4.4 IDL Examples

The previous sections havedescribed themainIDL features. In this section, they areapplied to

four representative but morecomplex interface examples compared to the one from Figure 4-3.

These examplesdemonstrate how thelanguage is used to describe particular types ofbehavior. So,

the given IDL descriptions show the specification body, leaving out the portdeclarations. The full

descriptionsare given in Appendix B.

VME System Bus Interface

Figure 4-7 (on two pages)illustrates the inter-module communicationbetween the VME system

busanda static RAM modulewithbuiltin acknowledgment The interface provides read andwrite

access from bus to the memory. The VME protocol and timing aredescribed with an event graph

for the read cycle and another for the write cycle (on second pageof Figure 4-7). Similarly, the

RAM has a separate event graph for its read and write cycles. In the IDL specification, the

dtbjead, dtbjvrite, readm, andwritem protocol names referto theseevent graphs, respectively.

The IDL description also highlights how the FUNCTION declaration and the conditional IF

statement are used to specify the interface's decoding function. The outer IF statement conditions

any read or write accesson successful decoding, invoked by the function call,decode. Decoding

for VME memory mapped modules is quite complex, so the decoding function is described in a

separate BDS file to achieve a cleaner IDL specification. The file is named in the FUNCTION

declaration with the BDS statement

The innerIF statement selects the read access transfers or the writeaccess transfers depending on

the status of the vme WRTTE_L signal, which is considered an information type signal. The write

access consists of three concurrent transfers, and the same holds for the read access. In the first

transfer, the interface generates a constant bit value that is sent to the memory WEL signal. The

other two transfersoccur directly between the VMEbus and the memory.
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BLOCKvmejnterface

ROUTINE main;

! comment: if memory moduleselected

IF (decode(vmelall.A<14:ll>lWORD_LAM<5:0>JACK_L) EQL T ) THEN
IF (vmelall.WRITE_L EQL '0') THEN / write access

{mem/writem.WEJL= '0';

memlwritemA<10:l> = vme/dtbjvriteA<10:l>;
mem/writem.lO<15:0> = vme/dtbjvrite.D<15:0>;}

ELSE / read access

{mem/readm.WE_L='r;

memlreadmA<10:l> = vme/dtbjead.A<10:l>;
vme/dtbjead.D<7:0> -memlreadm.lO<7:0>;}

ENDIF;

ENDIF;

ENDROUTINE;

FUNCTION decode<0>(w<3:0>, x, y<5:0>, z);
BDS "decoderbds";

ENDFUNCnON;

ENDBLOCK;

Figure 4-7 : IDL Description for VMEbus Interface
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In the block diagram, the VME control signals (ASJL, DSL andDTACKL) and the memory

control signals (GS_L and DONE_L) are used for protocol signaling. They do not appear in the

high-level input specification, since they are hidden in themodulelibrary as shownby the event

graphson the second page of Figure4-7.

TMS320 to Optical Link Interface

The interface from Figure 1-3 in Chapter 1 provides a good example of how multiplexed

communication is described with the IDL language. The specification is shownin Figure 4-8,and

it references the shownevent graphs from themodulelibrary.

The TMS320 based uni-processor presents address and data and parallel busses. The TAXI port

must accept these words on its DI signalbus over two separate and consecutive transactions. A

TAXI wordon theDl bus must also be accompanied by aheader on the CIsignal bus,

In the IDL description, the first set of concurrenttransfersconsist of the TMS address and header

transfer. The header '00' is generated by the interface. The TMS data is sent on the secondset of

transfers, asspecified by theNEXT statement. This statement is thekey in describing multiplexed

behavior. Notice that theTMS source port isomitted from the NEXTargument list, specifying that

source data from the previous transferis used for the second transfer.
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BLOCK tmsltaxi

ROUTINE main;

IF (tms/allXRWL EQL '0') THEN

{taxUxmt.Dl<3:0> = tms/exb_writeXA<3:0>;
taxilxmt.CKl :0> = '00';}

NEXTO;

{taxi/xmt.DI<7:0> = tms/exbjvriteXD<7:0>;
taxi/xmt.Cl<l :0> = '01';}

ENDIF;

ENDROUTINE;

ENDBLOCK;

Figure 4-8 : IDL Description for TMS320 to Optical Link Interface
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A/D Module to Optical Link Interface

Figure 4-9 demonstrates how block transfers are specified andhow the PROCEDURE declaration

is used. The sourceis an A/D module consisting of six individual converters sharing an I/O port,

and the destination is the TAXI port. The interface first transmits a header, and then sequentially

transfers six consecutive A/D words to theTAXI port

In the IDL description, the header and A/D transfers are separatedby the first NEXT statement.

The statement "xmit();n is a procedure call to the procedure named xmitwhich contains the header

transfer. Although it is a trivialapplication of the procedure facility, this example does show how

use of the procedure organizes the behavioral description, keeping it clean. Following the first

NEXT statement is an ITERATE statement specifying six iterations of two concurrent actions.

First, the interface generates an address value,;, and transfers it to the A/D module address lines,

SEL<2:0>,using the bjeadl protocol (shownin the event graph ofFigure 4-9). The integervalue

j represents the equivalent 3-bit binaryvector. The second action transmits the data provided by

the selected A/D converter to the TAXI port, which uses the xmt protocol shown in the figure.

Sincethe two transfers areconcurrent, thebjeadl I/O protocol is cycledonly onceeven though it

appears in two statements. The NEXT statement at the end of the ITERATE body specifies thatthe

A/D moduleadvances to thenext transaction for the following transfer to theTAXI port.
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BLOCK adcltaxi

ROUTINE main;

xmit(); / procedure call

NEXTO;

ITERATE; FROM 0 TO 5 DO

{ adc/b readl.SEL<2:0> =j; ! generateaddressfor AIDmodule

taxi/xmtDl<9:0> = adc/bjeadl.DB<9:0>;} ! sendAID word to taxi
NEXT((adc));

ENDTTERATE;

ENDROUTCNE;

PROCEDURE xmit;

{taxilxmt.CKl :0> = '10';} ! transmit header

ENDFROCEDURE;

ENDBLOCK;

Figure4-9 : IDL Description for A/D Module to Optical Link Interface
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Optical Link to D/A Module Interface

Demultiplexed transfers between a TAXI optical receiverand a D/A module are described in

Figure 4-10. In this example, words from two consecutive TAXI transactions are collected and

sent to the D/A module; the first word serves as the address to the module and the second is the

data to be converted. It illustrates a transfer thatinvolves the@ delay and functioncall expression.

The specification body begins with the NEXT statement which has the argument "taxid'. This

argument is the instance name of the TAXI module. Accordingly, by the end of sequential

statement, one transaction from the TAXI port has occurred. The following concurrent construct

contains two transfers. In the first transfer, the input is a 10-bit word from the previous TAXI

transaction, as shown with ihe"taxidfrcvD.Do<9:0>@l" expression. The decode function

logically transforms the word into an address which is assigned to the D/A BankSel destination

signal. In the second but concurrenttransfer, the input is a 10-bit word from the currentTAXI

transaction, and it is assigned to the D/A datasignal. In summary, the NEXT statement essentially

forces the interface being described to transfer two consecutive words from the TAXI portwhen

the second word has arrived.

Summary

The presented four examples demonstrate how the input language can describe system

communicationsat ahigh level ofabstraction. Compared to the event graphs, the IDL specification

method is brief andrelatively easy to write. It captures the data andcontrol flow particular to the

interface application, whichis theessence of the communication. The details of the I/O protocols

arecaptured by event graphs in the module library. This saves the designer from re-entering the

protocol specification asmodules arereused in differentapplications.
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BLOCK taxildac

ROUTINE mam;

NEXT( (taxid));

{ dac/dacbjvrite.BankSel<5:0> = decode(taxid/rcvD.Do<9:0>@l);
dac/dacbjvrite.D<9:0> = taxidlrcvD.Do<9:0>;}

ENDROUTINE;

FUNCTION decode<5:0>(x<9:0>);

BDS "decoderbds";

ENDFUNCTTON;

ENDBLOCK;

Figure 4-10 : IDL Description for Optical Link to D/A Interface
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4.5 Simulation

To achievea successfulimplementation, a specification method is much moremeaningful with the

support of a simulator. The primary goal is to confirm that the described inter-module

communication behavior is actually what tiiedesigner hadintended and to evaluate the expected

communication performance. At the system level, simulation avoids the details of the internal

interface structure and implementation.

Anotherpurpose of system level simulation is to gather statistics aboutthe messagetraffic through

the interface. This informationcan be applied to determine the optimum depth of buffers (also

calledqueue,FIFO or pipelinememory) inserted into the communication path(the interface) to

meet throughputrequirements. Buffers aremost useful for supporting burst transfers between a

fast and a slowmodule. In effect, each module communicates with thebufferat its own speed and

does not see the other module. The buffer decouples the response time of the slow module from

the fast one. An optimum depth, or range of depths, is such that the buffer is full during

communications (neither empty noroverflowing). This parameter is difficult to determine because

detailed statistics about the system traffic areusually undefined early in the design. So, the

determined buffer depth is only as goodas the model for portdelaysand transaction burstiness.

Besidessimulation, there are alsootheranalytical methods for sizingbuffers [Amon91b]. But, the

qualityof theirresults alsorelieson the quality of the traffic model.

Generating a Simulation Model

The IDL language was developed for synthesis and does not have an accompanying simulator.

Instead, the VHDL simulation language is used to model system level communication. The

mapping from IDL to VHDL is complex andresults in a much more lengthy simulationmodel

than the original synthesis specification, asoutlined belowandillustrated in Figure 4-11.
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Each module port in the IDL specification (not the same as VHDL "ports") corresponds to a

VHDL process which is thought ofasa I/Oprocess. The I/O process provides communications for

themodule port with its environment through VHDL ports made up of information signals and a

two-phase handshake pair, using a readyanda done signal, that emulates synchronization. The

handshake is strictly used as a synchronization mechanism in simulation and is unrelated to the

actual moduleprotocol. The details of the actual protocol are not modeled to keep simulation at a

high abstraction level. The interface maps to one or moreVHDL processes, depending on the

number of concurrent constructs in the IDL description. In 4-11, the concurrent operation

corresponds to one VHDL process which is by definition a concurrent operation. The interface

process hasa port (in the VHDL sense) which corresponds to each I/O process. The portconsists

of information signals and a two-phase handshake pair of ready anddone signals.

In the I/O process model, the delay between thehandshake ready and done eventreflect thecycle

timespecified by themodule I/O protocol. Intheinterface process model, delays between itsready

and done events can be the estimated delay of the interface circuit to be synthesized. To keep

simulation atahighabstraction level, individual timeconstraints suchasset-up and holdtimesare

not modeled but reserved for simulationafter synthesis.

The data flow within the IDL concurrentoperation directly maps to the VHDL syntactic

equivalents within the process. For example, the IDL transfer (an assignment statement)

corresponds to theVHDL signal assignment "<=". The IDL function andprocedure is the sameas

theVHDL function and procedure, respectively. IDL logicoperations, suchas "AND", map to

their respective VHDL logic operation, such as"and". The IDL sample delay"@N", wherethe

integerN is the delay amount, is the only data flow constructwhich does not have a directVHDL

mapping. Although not the only way, thisoperation canbe modeled in VHDL with a static array

variable that is local to the process (actually, VHDL does not even allow global variables). The

array acts as a FIFObuffer, an its size is the same as the delay amount.
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IDLspecification:

DESIGNmyjnterface

PORT PROCESSOR Proc;
SOURCE Proc.D<7:0>, ProcA<7:0>, Proc.WR;

ENDPORT;
PORT S&4M Mem;

DESTMem.i4Z>Z>fl<7:0>;
BIDIRECr Mem.DATA<7:0>;

ENDPORT;

ROUTINE mam;
IF (Proc.WR EQL 7*) THEN

{MemlwritemADDR<7:0> =ProclwritepA<7:0>;
Memlwritem.DATA<7:0> =Proc/writep.D<7:0>;}

ENDIF;
ENDROUTCNE;

ENDDESIGN myjnterface;

Figure 4-11: VHDL model of Module Ports and the Interface
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Returning to the IDL concurrent operation, if it were nested in a conditional (IF) or loop

(ITERATE and WHILE) statement, then these control statements also carry into the VHDL

process andsurrounding theVHDL data flow statements. The IFconstruct maps to theVHDL "if

statement, the ITERATE constructbecomes the VHDL "for ... loop" statement and the WHILE

constructcorresponds to the VHDL "while... loop". In a different scenario, if there was a second

IDL concurrent operation following the onein the example (the two are separated with a NEXT

statement), then another VHDL process is created for the second concurrent operation. The first

process produces a token upon completion of execution, and this token is passed to the second

process to activated it With the token passing scheme, simulation emulates sequential behavior in

the IDL specification. It is importantto emphasizehere that the NEXT behavior is different from

the conceptof sequential executionwithin a VHDL process.

This section has described what is involved in generating the VHDL model from the IDL

specification. The maincomplexities are modeling theconcurrent and sequential behavior and tiie

sample delayoperation. The key mapping techniques are usingVHDL processes to modelmodule

ports and the interface, usinga two-phase handshake to model synchronization, and token passing

to model sequential behavior. At present, the VHDL model is manually generated. To support

automatic generation, each module portshould haveacorresponding VHDL model in themodule

library. The modelshavenot yet beeninstalled into the library. The generation process starts by

parsing theIDLspecification, thentranslating it intothe flow graph design representation, whichis

described in thenextchapter. Finally, theVHDLmodel is created from the flow graph. The library

models and automatic generation tool remain as future enhancements to the ALOHA system.



CHAPTER 5

Design Representation

In the larger taskof integrating system hardware, behavioral synthesis automatically generates

the structural implementation of an interface module from anabstract behavioral specification

while meeting I/O protocol constraints. The behavior defines the inter-module communication

function, and structure specifies anetwork of register-transfer-level logic components. From here,

low-level design takes overto produce theactual physical implementation. Because it starts from

an abstract level, behavioral synthesis is also called high-level synthesis.

The first step of behavioral synthesis is to translate the input specification into a design

representation useful for synthesis, as shown in Figure 5-1. The behavior that needs to be

represented consistsof system-level data and control flow, and also I/O event sequencing and

timing. A key feature of the design methodology presented in this work is separating thedesign

representations for the two behavior levels. The design representation for system-level behavior is

based on thecontrol/data flow graph. The eventgraph represents the lower levelof behavior, and

is generated according to the data flow described in the flow graph and the I/O protocols captured

in the module library. By describing behavior in two separate representations, the synthesis
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process is simplified. In contrast, otherrepresentations have been developed that singly capture

both levels of behavior in one and the same representation. They permit iterative application of

some of the synthesis procedures, but make the control of the synthesis process more difficult

[Nestor86][Whitcomb92]Porriello88a].

High-level

Behavioral
Specification

Synthesis from

Flowgraph

Generate

Event graph

Figure 5-1: Translation Step in Behavioral Synthesis

Generate

Structure

Logic-level

Netlist

This chapterdescribes the flow graph design representation that drives behavioral synthesis in

ALOHA. This includes the basic representation elements, and describes how a high-level IDL

specification is translated into a flow graph. Examples of flow graphs arealso provided. Synthesis

from flow graphs andevent graph generation are discussed in subsequent chapters.

5.1 The Flow Graph Representation

The flow graph is currently the most widely used representation for behavioral synthesis

[McFarland90], although parse treesarealsoused [DeMicheli88]. The graph contains both the

data flow and control flow implied by the input specification. Specifically, this means the data

operations, data dependencies, control operations and control dependencies. Examples of flow

graphs from other synthesis systems include the CMUDA Value Trace [McFarland78], the ADAM

DDS [Knapp84] and the HYPER CDFG [Chu89] among others [Treleaven82] [Davis82]

[Orailaglu86]. The common features between all these different flow graphs are nodes that
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represented data and control operations, and directed edges that represented data and control

dependencies. The ALOHA flow graph has thesesame features in addition to a special extension

for abstractly representing I/O protocol synchronization, which was not addressed by the other

flow graphrepresentations.

This sectionuses simple examples to illustrate how the designrepresentation captures data flow

behavior andthenhow it captures control flow behavior. It should be kept in mind that flow graphs

generated from typical interfacespecifications aremuch more complex than the examples shown.

The next sectiongivesmoredetails about deriving the flow graphs from the DDL specification.

5.1.1 Data Flow

Figure 5-2 showsthe equivalent graph for data flow in the processor to memory writeexample

of Figure 4-3 in Chapter 4. The graph has primitive nodes to representassignment and data

operations suchas constant, delay, logical and arithmetic operations. So, both the address anddata

transfers in the exampletranslate to separate assignment nodesin the flow graph. Data dependency

edgesrepresent the inputsandoutputof adata flow node. A data flow nodeis fired wheninputsare

available on its input edges, andit produces a result on the outputedgewithin the computation

timeof thatnode. To maintain abstraction, thecomputation timeis assumed to be oneunitof time.

In the figure, the first assignment node is driven by aninput edge corresponding to the processor

address, andthe assignment node in turn drives the outputedge corresponding to the memory

address. Input and output edges of data flow nodes do not carryany information about I/O

protocols implied in the input specification.

For systemlevel transfers, source and destination ports are synchronized by interlocking the I/O

protocol events. This behavioris represented by a special type of node, called the sync node. As

shown in Figure 5-2,a syncnodeis associated to a data flow node. It is essentially anabstraction

that represents an I/O synchronization operation thatis jointlyandconcurrently executed with a

data operation. Attached to thesyncnode, theprotocol dependency edge identifies the I/O protocol
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Figure 5-2: Data Flow Graph for a Processor to Memory Write Interface
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(captured in the module library) usedby the operation's source or destination ports. It provides the

link between behavior in the flow graph andbehavior represented in the event graph. In general,

there may be multiple sources andonedestination portpertransfer, andthe syncnode will have an

edge for each unique source protocol and an edge for the destination protocol. Comparing the

transfer statement to the flow graph equivalent, the behavior modeled by an I/O transaction is split

across the data flow node and the sync node.

Figure 5-3 providesanother example of a data flow graph thathas complex operation. The AND

operation provides output directly to the Memory, and, for this reason, an assignmentnode at the

output is considered redundant and is omitted. A constant is viewed as a data flow node that

continuouslygenerates a constantvalue. Both the constantand delay nodes have a parameter that
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specifies theirconstant and delay values, respectively. A sync node is associated with the AND

nodeand with the delay node. A data operation with inputs and outputs thatare internal to the flow

graph does not have an associated sync node.

specification:

flow graph:

Mem/writem.DATA<3:0>-Proclwritep.D<3:0>@l AND'1101';

MemJ>ATA<3:

Proc.D<3:0>

Memlwritem

?dwritep

Figure 5-3 : Data Flow Graph with aComplexOperation

Although a flow graph represents behavior, its data flow nodes and dependency edges do imply

somehardware but saynothing about the particular implementation. In Figure 5-2, the result of

synthesis will include wires that actually transmit theaddress and data from the processor to the

memoryand logic that converts between thetwo I/O protocols. However, the final solution may or

may not include latches to buffer thetransfer, and usually there are multiple ways to interlock the

I/O protocol events. The flow graph does notinherently specify such design parameters. These are

imposed by the synthesis process.

5.1.2 Control Flow

The flow graph representation uses control nodes to capture concurrent, conditional and loop

behavior. Control dependency edges represent sequential behavior. Control nodes are hierarchical,

containing a subgraph for thedata and control flow within their scope.

Figure 5-4 illustrates conditional control in the flow graph for the processor to memory write
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example of Figure 4-3. The IF node is hierarchical, while the other nodes are primitives. The

address anddata nodes arecontained within the IFcontrol node, and will be executed concurrently

only when the input condition (or guard) to the IF node is true. The condition "Proc.WR EQL 1"

corresponds to the condition-expression of the IF statement It is actually represented with the

parse tree data structure within the guard node. For the sake of classification, the guard node is

considered a data flow node that generates the conditionstatuson a dataedge to the IFnode.

specification:

flow graph:

IF (Proc.WR EQL 7') THEN
MemlwritemADDR<7:0> = Proc/writepA<7:0>;
Mem/writem.DATA<7:0> =Proclwritep.D<7:0>;

ENDIF;
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Figure5-4: Control/DataFlow Graph for Processorto Memory Interface

ITERATE andWHILE loop behavior alsocorresponds to hierarchical nodes in the flow graph. For

example, if the data transfers of the previous example were embedded in a loop rather than a

conditional statement, the equivalent flow graph will look like the one shown in Figure 5-5. An

ITERATE control node has three parameters corresponding to the index variable, the minimum

index value and the andmaximum index value. In the example the parameter values are"i", 0 and

3, respectively. The data flow nodes contained in these nodes areallowed to execute concurrently

unless datadependencies or an explicit controldependency is implied.

Concurrent behavior has the simplest control node representation. It too corresponds to a
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ITERATE i FROM 0 TO 3 DO

Mem/writem.DATA<7:0> - Proc/writep.D<7:0>;
HTERATE;
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Figure 5-5 : Flow Graph with IterateControl Node

hierarchical nodein the flow graph, butit has neither conditional inputs nor parameters. It implies

that the data operations it contains execute concurrently except when restricted by data

dependencies. The concurrent version of the processor to memorywriteexample is illustrated in

Figure 5-6.

specification:

flow graph:

{Mem/writem.ADDR<7:0> = Proc/writep.A<7:0>;
Memlwritem.DATA<7:0> = Proc/writep.D<7:0>;}
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Figure 5-6 : Flow Graphwith Concurrent Control Node

Finally, a control precedence edgerepresents sequential behavior, corresponding to a NEXT

statement in tiieinputspecification. An edgedirected from the first nodeto a second nodespecifies

that the first nodemustbe executed tocompletion before thesecond is fired. It is analogous to the

precedence edge in event graphs. In Figure 5-7,a control edgeplaces the two data transfers in a

linear flow.
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Created as a convenience for synthesis, the start node and its output control edge in Figure 5-7

mark the first data orcontrol action implied in the input specification. All the flow graphs for the

previous examples have a start node, butthey were omitted to simplify the figures.

specification:
Memlwritem.DATA<7:4> = Proclwritep.D<7:4>;
NEXT();
Memlwritem.DATA<3:0> = Proclwritep.D<3:0>;

flow graph: (p
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NEXT x
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...ii;- control dependency
-<- datadependency

protocol dependency
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MemJ)ATA<3:0£ /C\ PjocD<3:0>

Memlwritem fcypA Proclwritep

Figure 5-7: Flow Graph with Control Precedence Edge

5.2 Translating from Specification to Flow Graph

Thetranslation step brings the high-level input specification intotheequivalent flow graph

representation. It provides the bridge between the designer's input and the synthesis tools.

Translation is a multi-step process itself, starting witha direct mapping between IDLdata and

control flow constructs to flow graph node and edge elements. This is followed by several passes

that transform theinitial flow graph into a form suitable for subsequent synthesis tools totake over

the design.
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5.2.1 Basic Construction

All the data flow constructs in the IDL language have anequivalent flow graph primitivenode.

Table 5-1 lists the different data flow nodes in the behavioralnode library. It also shows the IDL

counterpart of a node, the number of input and output edges and the names of parameters

associated with the node. All tiienodeshave one or two inputs andexactiy one output, except for

the sync, function and guardnode. The sync node is listed among the data flow nodes, altiioughit

represents an I/O synchronization operation rather than actual data manipulation. It has an

unlimited number of edges.

Table 5-1: Data Flow Nodes

Description Node Name IDL Construct Inputs/Outputs Parameters

assignment u_" «_>» In /Out none

constant constant 'binaryjvalue' None / Out value

delay "@" "@" In /Out delay

NOT "!" NOT In/Out none

AND "&" AND Inl In2 / Out none

OR "1" OR Inl In2 / Out none

NAND "!& NAND InlIn2/Out none

NOR "!l" NOR Inl In2 / Out none

XOR "A" XOR InlIn2/Out none

add "+"
«,»»

InlIn2/Out none

increment "++" "++" In/ Out none

equal relation «<, , ,» EQL InlIn2/Out
*

none

not eql relation "!=" NEQ InlIn2/Out none

function comb FUNCTION */Out BDS file name

guard guard none */Out none

synchronize sync none *
none
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The function nodecontains the parse tree representing the combinational logic described in the

IDL function declaration, andhas an input edgecorresponding to eachargument in the function

call. Sometimes, the logic function is described in aBDS file name, and the function node captures

thatas a parameter valuerather than as a parse tree. The guard node alsocontains the parse tree

equivalent of an IDL description. The node generates a token when its input values meet a

particular condition. The token is placed on a data edge that fires a conditional node.

With the exception of the NEXT and RESTARTstatement, the IDL control flow constructs map

onto a hierarchical node. Sequential behavior specified by the NEXT statementcorresponds to a

control edge, and the RESTART constructcorresponds to a primitive node. Table 5-2 shows the

types of control flow nodes in the behavioral node library, their IDL counterpart and any

associated parameters. A looporconcurrent statement, aswell as the procedure orreset-procedure

Table 5-2 : Control Flow Nodes

Description Node Name IDL Construct Parameters

if condition IF IF none

else condition ELSE ELSE none

concurrency CONC "{r none

iteration ITER ITERATE index, min, max

while WHILE WHILE none

procedure procedure name PROCEDURE none

restart restart RESTART none

start S none none

declaration, map to one hierarchical node. A start node is inserted into the flow graph. It has an

outputcontrol edge that points to the first nodesin the control flow to be executed, as specified in

the input specification. When a reset-procedure is specified, the startnode is driven by a guard

node containing the reset-procedure function.
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The IF statement actually translates to two possible hierarchical nodes; one for the body of the

THEN clause, and another for the body of the ELSE clause. Both are driven by the same input

condition produced by a guard node that corresponds to the condition-expression in the IF

statement. The ELSE node fires when the input condition evaluates to false. Like the example

specification in Figure 4-7, an IDL description canhave IF statements nestedwithin another IFor

ELSE clause. This configuration translates to anIFnodedriven by a guard node thatcontains the

composite condition-expressions of the individual IF statements.

So far, it may seem that the data andcontrol flow in the flow graph have been treated as disjoint

entities. In actuality, the design representation views data flow as primitive behavior that takes

place in time according to a specified control behavior.So, all data flow nodes are contained within

hierarchical control nodes. For example, an IF node allows the data flow nodes to fire when a true

token arrives on its input conditionedge, andan iterate node sequences the data flow within its

scope through the specifiednumber of times. The procedure node allows its data andcontrol flow

to fire when it is calledin the main flow graph. Even a singledata transfer is contained within a

concurrent control node.

5.2.2 Flow Graph Passes

Once the basic structure of a flow graph is constructed from the input specification, it is

brought through transformations that alter orrefine its structure in amanner that is independent of

the input specification but useful toward synthesis.These transformations aredescribed in these

next two subsections.

The first pass eliminates redundancies in the derived flow graph. SinceELSE nodesexecutewhen

their inputcondition have a false token, they are transformed int IFnodesthat are driven by the

complement of the original inputcondition. This simple transformation helpsto simplify the flow

graph representation while maintaining the original information.
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The second pass expands hierarchical procedure nodes. When a procedure is called in the control

flow of themain flow graph, the subgraph contained in the procedure nodeis promoted to the top

level and replaces the procedurenode. After this pass, no procedure nodes remain in the flow

graph.

The third pass unrolls the iterate loops. A hierarchical iterate nodein the flow graph is expanded as

in the procedure case. Its subgraph is replicated the specified number of times. Then the subgraphs

areplacedin the main flow graph and ordered linearlyusing control edges.

Strictly speaking, the passes described here areoptional. They arenot necessary for successful

synthesis, but they do help to simplify the synthesis process because they simplify the flow graph

structure. The synthesis techniques can focus on creating the logic from tiie representedbehavior

ratherthan on what kind of behavior is hidden in the flow graph structure. Of course, possible

disadvantages are higher hardware costsand longer critical path delays in the final implementation

compared to the resultsbasedon a more sophisticated flow graph.

5.2.3 Clustering

The passes described abovemanipulate the control flow in the flow graph. On the otherhand,

the cluster transformation works at the data flow level. Basically, it logically groups data flow

nodes that compose a complete inter-module transfer.

In the flow graph of Figure 5-4, the address and data transfers arerepresented as two separate

operations. Nevertheless, they are acmally partof a larger transfer involving synchronization

betweenthe processor and memorymodule. Clustering looks for this situation in the flow graph.

Specifically, it identifiesconcurrent data operations with input and output signals from common

source or destination ports. To do this, as shown in Figure 5-8, all hierarchical control nodes are

inspected for data flow nodeswhoseassociated syncnodedepends on the commonI/O protocols.

Their sync nodes are then merged into one sync node and associated with each data flow node,
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forming a clustered set of data flow nodes.The example shows the address and dataassignment

are associated to one sync node, implying that the individual transfers occur jointly with a

interlocked sequence of I/O protocolevents.

MemADDR<7:0>/^\PrpcA<7:0>
(jf)''' *\^ wr" MemJ)ATA<7:0S \. JFroc3<7:0>

^*—*^ *'»

Memlwritem—(syncV—Proc/writep

Figure 5-8 :Clustered Flow Graph for Processor to Memory Interface

In the previous example, data flow nodes thataredata-independent wereclustered because they

have a protocol dependency. Sometimes, data flow nodes that have a data dependency but

unrelated protocols are also clustered. For example, the flow graph from Figure 5-3 shows the

delay @ node providing data to the logical AND node. Each of these nodes is associated with

separate sync nodes linked to different protocols. If these data dependent nodes are coupled into

one complex operation, then they can be clustered, as shown in Figure 5-9. The new flow graph

shows that the processor port is synchronized to the memory portwhen the data operations are

executedwithin one transfer cycle. In this example, thecluster transformation is only responsible

for merging sync nodes andassociating them with a clustered set of data operations. The actual

decision to cluster data flow nodes that are protocol-independent is madeduring a later synthesis

step.

Clustering merges syncnodes of related data flow nodes, transforming the original graph intoa

form moresuitable for implementation. In thissense, it is can be considered a core synthesis step.
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Figure 5-9: Clustering Data Flow Nodes Into aComplex Operation

5.3 Flow Graph Examples
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Using simple examples, theprevious sections havedescribed thedesign representation and the

translation of an IDL specification into a flow graph. In this section, the representation method is

applied to the first three examples presented in Section 4.4 of Chapter 4. The flow graph

representations are more detailed in construction and appearance compared to their IDL

specifications. This is expected, since synthesis refines the design specification by definition, and

translation is the first step. Theseexamples demonstrate how behavioral synthesis raises the level

ofabstraction at which a designer worksby providing the front-end translator.

VME System Bus Interface

Figure 5-10 illustrates the flow graph thatdescribes the inter-module communicationbetween

theVME systembus and a static RAM module. The corresponding IDL specification is shown in

Figure4-7 of Chapter4.

There is an IF node for the write and the read access. The read IF node was an ELSE node before a

flow graph passwas performed. EachIFcontains threedataflow nodes.The first is aconstantnode

that models thetransfer of aconstant bitvector to thememory WE_L signal. Notice that aconstant

transfer does not map to a constant node thatdrives anassignment node,because the assignment

node is considered redundant. The second and third data flow nodes are assignmentnodes that
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Figure5-10: Flow Graph for VMEbus Interface

model the address and data transfer. These three nodes are associated to one sync node

representing the synchronization between the VMEbus and the memory obeying their write access

protocols. Theinitial flow graph, constructed from direct translation, actually associates separate

sync nodes with each of the three data flow nodes. The clustering transformation merges them.

In the flow graph, behavior represented on parallel control flow branches mustbe mutually
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exclusive. So in the example, the two IFnodes can never be fired at the same time.

The decode function in the input specification is part of the condition expression within the IF

statement Upon translation into a flow graph, thatbehavior is contained within a guard node that

fires the IF node.

In the block diagram, the VME control signals (AS_L, DSL and DTACKL) and the memory

control signals (CSjL and DONEjS) are used for protocol signaling. These signals and the

protocol event graphs do not appear in the flow graph, sincethey arehiddenin themodule library.

TMS320 to Optical Link Interface

The flow graph representing multiplexed communication between the TMS320 uni-processor

and the TAXI optical transmitter (see Figure 4-8 in Chapter 4) is shown in Figure 5-11. The

concurrent address and header transfer is captured in the top IF node, while the concurrent data

andheadertransfer is contained in the bottom concurrent node. The sequential execution from the

address to the data transfer, specified by the NEXT statement, is represented by the control edge

connecting the top IF node to the concurrent node. Within the control nodes, the data flow nodes

areclusteredand associated with a sync node representing the synchronizationbetween the TMS

source and the TAXI destination.

In the IDL specification, both concurrent constructs are nestedin tiie IF statement andoccuronly

when the condition-expression evaluates to true. In contrast, the flow graph represents the first

concurrentconstruct with an IFnode, andthe secondconcurrentoperationwith a concurrentnode.

It would seem that the second one could be captured as an IF node. However, this is unnecessary

andredundant In the flow graph, the IFnode fires only when the input conditionevaluates to true.

Then, only after the concurrenttransfers within the IF node have completed, the next concurrent

transfers can execute. Since the control precedence implies that the second set is conditioned on

the first, the flow graph behavior is equivalent to the specified behaviorin the input description.
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A/D Module to Optical Link Interface

Figure 5-12 demonstrates howlooped behavior is represented in the flow graph. Itcorresponds

to the IDL specification shown in Figure 4-9 of Chapter 4 describing thecommunication between

an A/D module and the TAXI opticallink.

Translation from specification to flow graph first substitutes thecontents of theprocedure inFigure

4-9intothespecification bodywhere theprocedure call is made. The procedure content is justthe

transfer of a constant value. This transfer translates to a constant node contained in a concurrent

node, as shown in the left flow graph of Figure 5-12. The following NEXT statement maps to a

control edge, implying precedence between the first transfer and a block of transfers. The
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hierarchical ITERATE nodecaptures the address and data word transfer. When the loop node is

unrolled, the assignment node for the address transfer is transformed into a constant node that

takes on tiieactual value of the loop indexvariable. The left flow graph in the figure illustrates the

flow graph after the unrolling pass. Unrolling creates a linear flow of six "concurrent" control

nodes, containing the subgraph from the original ITERATE node.
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5.4 Summary and Implementation Issues

The flow graph design representation is implemented using the HYPER flowgraph policy

[Rabaey90]. It can also be stored in the OCT database. In fact, the translator outputs a textual

description of the constructed flow graphin HYPER's AFL format

The translator constructs a hierarchical flow graph from the behavior contained in the ROUTINE

declaration of the input specification.At the top level, control edges originateat the startnode and

flow from control node to control node. Figure 5-13 shows an example of a top level flow graph.

Control nodes represent conditional, concurrent and loop behavior while the control edges

©

Gl->^ffuardyWyY G2^gm^>TlFij

NEXT

(CONCX" i:min..maxfTTER).

.ill-- control dependency
.<— data dependency

Figure 5-13 : Example of Control and DataFlow Hierarchy

represent precedence. The start and conditional control nodes are fired by a guard node that

generatesa token based on input conditions.When fired, the dataandcontrol flow within the scope

of the control node are allowed to execute. The end of the control flow occurs at a control node that

has no output control edges. So, the combineduse of controlnodes and edges at the top level

represents when communication actions can happen. The data flow nodes and edges within the

hierarchical nodes representhow the actionshappen.

The designrepresentation described is flexible anddescribes a wide variety of behavior. However,
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the current implementation of the synthesis software imposes a few restrictions on the flow graph

structure. First, only one level of hierarchy is accepted in the flow graph. Themain flow graph

contains hierarchical control nodes and precedence edges.Within the controlnodes are the

primitive data flow nodes. No more levels ofhierarchy are allowed. So, if the behavior inthe input

specification results in a flow graph withmultiple levels of hierarchical nodes, the translator will

have to flattened the original graph until one level of hierarchy iscreated. Actually, practically all

behavioral synthesis systems incurrent use require flattened flow graphs [Walker91]. The second

restriction is related to control precedence. Behavior represented on parallel branches in the

control flow mustbe mutually exclusive. So, in Figure 5-13, the input conditions labeled Gl and

G2 are never true at the same time. This assures that nodes on both branches do not execute

simultaneously. Both these restriction make the flow graph compatible withthecurrent state of the

synthesis software, and are notlimitations of thedesign representation.

Besides performing a one-to-one mapping from the input specification to the flow graph, the

translator performs elementary checks for inconsistencies and basic optimizing transformations.

Examples are typechecking, converting integer types to binary vectors, in-line expansion of

procedures and loop unrolling. However, the current translator implementation lacks sophisticated

checks and optimizations, such aschecking for multiple assignment within aconcurrent construct,

dead codeelimination andcommonsub-expression elimination. Inclusion of suchabilities intothe

translator implementation will promote it into acompiler. For this reason, the term "translate" was

chosen over "compile" to describe the front-end of the synthesis tools.



CHAPTER 6

Synthesis from

Flow Graphs

Starting from the system communication behavior of an interface module and a set of I/O

protocol constraints, the core stepsof behavioral synthesis find a register-transfer structure that

implements the intended behavior whilemeeting theconstraints. The flow graph representation

describes thecommunication behavior, while theevent graph captures the protocol constraints in

the module library.

Synthesis isathree phase process that refines abstract behavior into astructural implementation, as

illustrated in Figure 6-1. First, the initial flow graph is transformed by performing clustering,

scheduling and allocation. These techniques adjust the flow graph characteristics to create or

optimize the system-level data and control flow implementation, while preserving the* specified

behavior. Second, event graphs corresponding to the I/O protocols of interacting modules are

interlocked to create event sequences for protocol synchronization. The interlocked event graphs

are generated according to the data flow described in the transformed flow graph. Finally, from the

final flow graph andthe interlocked events graphs, the behavior is mapped into a structure. The

next threechapters present thesecore synthesis steps.
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This chapter focuses on the flow graph transformations. Amongthem, clustering wasdescribed in

the previous chapter. Scheduling and allocation in ALOHA are themain topics here. The input to

the synthesis transformations is a flow graph translated from the input specification. The output of

synthesis is a final flow graph ready for mapping onto structure. The first section explores thekey

problems and objectives of scheduling and allocation. The next two sections presents the

scheduling and allocation techniques. The lastsection provides examples of transformed flow

graphs.

6.1 Synthesis Issues

At this pointof interface generation, the flow graph represents the communication behavior to

be implemented in hardware. The behavior consists of data flow and control flow from the input

specification. For example, Figure 6-2 illustrates the interface presented in Section 4.4 that

demultiplexes two words, arriving sequentially from a TAXI opticalreceiver module, to the

destination module which is abank of D/Aconversion units. As shown inthe flow graph, the first

word contains theaddress of aspecific bank, and it isdelayed by onetransaction cycle. The second

word contains the actual data to be written intoa D/A unit After the address is delayed (control

flow), it is decoded into the individual select lines usingthe "decode" function, andboth the data
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and select words can be sent to the D/A module (data flow). To simplify the illustration, the

hierarchical control nodeshavebeen flattened andthe syncnodesomitted.

taxildac
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taxid.Do<9:0> dacD<9:0>

Figure6-2 : Flow Graph for Demultiplexed Transfers

The data and control flow captured in the initial flow graph are just the minimum high-level

constraints that the final implementation must fulfill. The exact time at which an operation is

executed andthe exacthardware element whichexecutes the behavior are still open. To illustrate

this, Figure 6-3 shows two possible solutions for the above example. The left-side solution is

obvious. In the first timestep, theaddress word is delayed by storing it in aregister. In thesecond

time step, the stored address is decoded by combinational logic and sentwith the arriving data

word to thedestination on parallel busses. The precedence from the delay to thedecode operation

is imposedby data dependency, and the precedence from the delay to the data assignment is

derived from explicitcontrol dependency in the initial flow graph. The right-side solution is less

obvious. The decode function is executed first and its result is delayed by storing it in aregister.

During the second time step, theresult in storage is exported to thedestination along with thedata
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word on parallel busses. Boththesolutions achieve theoriginal behavior, although they swap the

executiontime for decoding anduse registers of different widths.
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Figure 6-3 : Steps in Flow Graph for DemultiplexedTransfers

The example given demonstrates the key issues at this pointin synthesis. Tb actually implement

the behavior in hardware, synthesis needs to specify the time and the hardware resource that

executes the operation. Scheduling and allocationare flow graph transformations that address

thesetwo problems, respectively. Sincethere is usually a solution space thatsatisfies thehigh-level

constraints, synthesis guides the transformations according to an objective and a model of the

hardware structure. These are discussed below.

6.1.1 Objectives

Scheduling putseach flow graph operation into a control step for execution. A control step is

thebasicunitof time in a sequence ofoperations. For example, the time steps shownin Figure 6-3

are control steps. In the execution model used by ALOHA, a control step corresponds to one

transaction cycle, and the beginningof a cycle is marked by a protocolevent. The duration of the

cycle can vary from one to the next. In comparison, control steps for synchronous systems
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correspond to a clock cycle. This transformation produces a schedulewhich is just the sequence of

control steps and the operations within them, such as the two shown in Figure6-3.

Resource allocation determines the number and type of hardware elements required to implement

the data flow. Hardware elements include functional units such as adders and decoders for data

operations, storage units such as registers andlatches for signalvalues, and wires and busses for

transfers. The accompanying problem of assigning a specific hardwareinstance to a data flow

operation is known as resource assignmentor module binding. In this chapter, allocationwill be

used to collectively refer to both problems. Allocation is a simple process for interface

applications becausethey tend to be control-oriented rather than computation-oriented, unlike

DSPapplications which tend to have the opposite characteristics.

Scheduling and allocation areclosely interrelated, making the problemcomplex. A shortschedule

will likely require more hardware resources than a long schedule where few resources are shared.

Likewise, allocation places constraints on scheduling, causing a circular dependency. Few

behavioral synthesis systemsperform scheduling and allocation in only two separate phases. Most

switch between the two tasks iterativelyuntil an optimal schedule is produced [McFarland90].

Behavioral synthesis from flow graphs in ALOHA takes a similar strategy, andit is broken into

two main steps:

a. Generate an initial schedule that satisfies all data dependency and control precedence
constraintsin the original flow graph. Then allocate hardware units for the initial schedule.

b. Optimize the resource allocation andschedule producing the final schedule.

The technique for generating the initial schedule has beendeveloped specifically for interface

applications, while the scheduling and allocation optimizations areperformed with existing

techniques developed by tiiebehavioral synthesis research community.

Constraints are just conditions thatthe generated schedule must meet Optimizations seek to

minimizeor maximizesomemeasure of quality of the schedule. For example, the goal canbe to
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minimize the implementation area or the critical path, or it canbe to maximize throughput and

hardware utilization. Many existing synthesis systems seekto minimizearea given a throughput

constraint [McFarland90]. Interface applications tend to have datapaths that store and route

information rather thancompute results from the information. Accordingly, the datapaths are

dominated by storage and interconnect elements, such as busses and multiplexers, with some

functional unitslike adders and arbitrary combinational logic. Incomparison, DSPapplications are

dominated by register files, adders,multipliers and shifters. Because interfaces facilitate inter

module transfers, the synthesis method used in ALOHA seeks to minimizes the critical path

through storage and interconnect elements.

There are three other tasks that supportscheduling and allocation. The first is partitioning large

design specifications among multiple interface modules. This is difficult at the system level,

because more than one type of technology can be used, such as various FPGAs, TTL and other

technologies especially for system interconnects. The second task is estimating the throughput,

area (cost) orhardware utilization of design alternatives. The final taskis supplying information on

the technology library of available cells. These three are not discussed in detail, since thischapter

concentrates on the overall synthesis task.

6.1.2 Interface Template

The overall objective of schedulingand allocation is to bring behavior closer to a structural

implementation in the space of possible solutions. In addition to the flow graph execution model,

the two tasks aredirectedby a register-transfer model of the targetstructure. The structural or

architectural model is an interface template consisting of a datapath and two controllers

implemented with asynchronous sequential machines (FSMs), as shown in Figure 6-4. The

datapath provides the physical link for allocated inter-module transfers, and it executes data

operations. The interfaceFSM controls tiie schedule of transfers and internal operations, while the

protocol FSM executes I/O protocols to synchronize the transfers. The three blocks operate
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concurrently, but the interfacecontrollerFSM configuresandinitiatesany actionin the datapath or

protocol controller FSM. In contrast, the structural model used in traditional synthesis techniques

contains a datapath and one synchronous FSM. The main difference between the interface

templateand the traditional model is the additional FSM for protocol control.

Interface Template

Information A

Control A

data path

fDsel

interface

controller

EselJRffA fidy
protocol

controller

Figure 6-4 :The Target Structure

Information B

latch

Control B

Side A of the interface links the master ports to the slaveports on side B. The template supports

multiple source and destination ports. Details of the template blocks, the interaction betweenthe

blocks,andtherelationship of scheduling/allocation to the interface template are described below.

Datapath

The data pathblock implements data flow behavior. It contains the register-transfer units that

actually compute andmove information betweensource ports and destination ports. Assignment

and data operation nodes in the flow graph canbe mapped to parameterizable functional, storage

and interconnect units. Functional units include adder elements and combinational logic units.

Parameters wouldbe the width of the adder or thename of a BDS file for a combinational logic

unit. Storage units consist of registers or latches with separate input and output terminals. The
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parameter describes the width of theregister orlatch. The protocol controller derives clocks for

latching information into storage elements from asynchronous events. Currently, register files or

multi-port registers are notsupported. Interconnect units are tri-state buffers, multiplexors, wires

and busses. The last two can be uni-directional or bi-directional.

Allocation is the first step toward creating a datapath structure. It determines the numberof

hardware units that will make upthe datapath, and in this sense it determines the complexity and

speed of the datapath. As the interface controller sequences through the schedule of inter-module

transfers and data operations, the datapath is configured on eachcontrol step with the Dsel

configuration word, as shown in Figure 6-4.

Protocol Controller

The protocol controller sequences and times protocol events to synchronize clustered

transfers. Specifically, it contains the logic that executes behavior specified in the event graphs,

including time constraints. The protocol controller links the control signals of source and

destination ports, whereas the data path links the information signals. Each sync node in the flow

graph has a corresponding event graph to represent the protocol synchronization. When the

datapath exectutes transfers associated with a sync node, the protocol controller realizes the event

graph behavior. An event graph is enabled by the Esel select word issued by the interface

controller, as illustrated in Figure 6-4. The Esel word is accompanied by tiie4-phase handshake

signals, R and A. The next chapter describes how eventgraphs are generated fromthe syncnodes.

Scheduling is the only high-level transformation that is related to the protocol controller. As

explained in Chapter 5, Section5.2.3, a set of data flow operations in the flow graph thatare data

dependentbut protocolindependentmay be clustered. This type ofclusteringis performedduring

scheduling. Effectively, schedulinghas determined that tiie set of dataoperations areput into one

control step rather than over several. This may or may not simplify the protocolcontrollerlogic,

but it will reduce the latency of the corresponding datapath.



112

Interface Controller

Scheduling is the first step towardcreatingthe interfacecontrollerFSM. The central controller

implements the schedule and initiates the joint action of the data path and protocol controller.

Synthesis produces a hardwired FSM, and a control step in the schedule corresponds to a single

state of the FSM. On each control step, the controllerissues the Dsel word to configure the data

path,and it issues the Esel word to select the associated event graph in the protocol controller. The

FSM uses information signals, such as address and write status, to compute input conditions

(guards) that determine which of several mutually exclusive states to branch to. These states

correspond to the IF behavior.

In the interface template, the beginning of each control step, or FSM state, is marked by an

asynchronous local clockevent, rather than a synchronous clock event. The controller generates

the local clock from two signals. The first is the Rdy signal issuedby the protocol controller to

indicate that it is done executing thecurrent eventgraph. The second is a completion signal, not

shown in tiie figure, that indicates thecombinational logic internal to theFSMis done computing

thenext state andthe DselandEsel configuration words. This schemeis similar to the local clock

scheme used in [Hayes81].

6.2 Generating a Schedule

The initial scheduling phase takes a flow graph translated from the input specification, and

constructs a minimal schedule that meets all the data dependency and control precedence

constraints in the original specification. Upon completion, the original flow graph has been

transformed intoa flow graph witha sequence of control steps that govern control flow and that

contain data flow nodes. The resulting schedule may require more than theminimum amount of

hardware resources to achieve a given throughput, but the schedule is improved during a later

optimization phase.
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6.2.1 Creating Control Steps

Scheduling starts by creating control steps in the flow graph toplace the control and data flow

nodes. This is straight-forward because it is directly supported by the flow graph design

representation described in Chapter 5.The flow graph consists of hierarchical conditional (IF) and

concurrent (CONC) typenodes that are arranged in branches and sequences linked by control

precedence edges. Forexample, the flow graph in Figure 6-5 shows two branches ofcontrol flow.

The corresponding DDL description is also shown, butthe sync nodes are omitted to simplify the

illustration.

specification: flow graph:
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Figure6-5 : Initial Flow Graph

A hierarchical nodeonly contains data flow operations, whichcanbe executed in onecontrol step.

So, as the flow graph is traversed from the start nodedown the precedence edgesofeachbranch, a

control step is created for eachhierarchical controlnode, and the data flow operations within are
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assigned to that control step. This is shown in Figure6-6. Control step 1 has two possible branches

which are mutually exclusive. In effect, the control nodes and precedence edges in the flow graph

represent a default schedule that is maximally concurrent
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Figure 6-6: Scheduling of ControlandData Flow Operations

6.2.2 Scheduling Inputs and Outputs

The previous stepscheduled thecontrol and data flow operations. The next step is scheduling

when inputs to data flow operations are accepted by the interface and when the outputs are

exported. This is necessary because inputs from source ports canarrive earlier thanthe execution

time of the operation, and outputs to destination ports canhappen at a later time than the data

operation.

Determining from which control step an input value originates is morecomplex than creating

control steps or scheduling outputs. Starting from the flow graph produced in the previous step,

input scheduling visits every data flow operation, ignoring the delay operations. At each operation,
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it considers the input edges directlydrivenby source portsor the input edges driven by a delayed

version of source information. At this point in the process, input scheduling can encounter one of

three cases, as illustrated in Figures 6-6.
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Figure6-7 : Scheduling of Inputs and Outputs

In the first case, an input value arrives during the samecontrol step that the operation it drives is

scheduled into. Such inputs are scheduled into the same control step. As shown in Figure 6-7,

schedulingacceptsthe X input value to the OR node during the same control step. The input from

the Z transaction is scheduled into the same control step that the addition operation occurs.

ComparingFigure6-6 to Figure6-7, the schedulingdone in this case is obvious and does not alter

the flow graph schedule.

In the next two cases,a source portgenerates aninputvalue during an earlier controlstep thanthe

operation is scheduled into. In Figure 6-6, the Z input value to the assignment node in the third

control step is actually from a transaction occurring in the second control step, and this

demonstrates the second case. Because of the delay node, the input value to the addition operation
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is generated during a priorX transaction, andthis illustrates the third case. The only difference

between the two is that the latteruses a delaynode.

In eithercase, the inputsare scheduled into the appropriate control step,as shownin Figure 6-7. In

the flow graph, inputs originating from priortransactions are scheduled with a delay node. The

delay node is placedin the same control stepas the data flow operation of interest The input to the

delay node is the sourcetransaction from the prior controlstep, andthe output drives the operation

node. The difference in control steps between the source transactionand the operationnode is the

parametervalue of the delay node. In effect, the delay node represents a delayed version of a input

value scheduled into a prior control step. In Figure 6-6, both the X value to the addition and the Z

value to the assignment originate from priortransactions. Accordingly, scheduling delays the input

values by one control step, as illustrated in Figure 6-7. In the latter case, a delay node is created

and substituted for the assignment node, and the input edge to the delay node is connected to the

appropriate prior control step. In the former case,the delaynode already existed, so only the input

edge to the delay node is connectedaccording to the input schedule.

Scheduling an outputvalue is straight-forward. An outputvalue ofa data flow operation is always

scheduled for export in the same control step that the operation is in. So, output values are

exported as soon as possible. For example, in Figure 6-7, the OR, addition, and assignment

operations send their output values to the destination portOutduring the samecontrol step that

they areexecuted. There is no danger of contention over a destination signal, because the input

specification does not allow multiple assignment to a destinationwithin a concurrentconstruct

Scheduling outputsis a trivial task, andthe flow graph remains unaltered.

6.2.3 Initial Allocation

The initial scheduling is followed by an initial resource allocation step. Using the scheduled

flow graph, data flow operations are assigned tohardware units. Nodes representing arithmetic and

combinational logical operations are assigned to functional units. These include adders for
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arithmetic nodes, elementary logic gates for logic nodes, and a complex logic unit for each

function node. A property is attached to the data flow node indicating the type of functional unit

realizing the operation.

As described above, an input value generated by a sourcetransaction during a control step may be

used by an operation in a subsequent control step. Allocation provides a storage element to

temporarily capturethat input value. Forexample in Figure 6-7, the Z input feeds a delay node in

control step 3, and the X input drives a delay node in control step 2. Since the delay node

represents the need for temporary storage, it is moved to the control step that contains its source

transaction, illustrated in Figure 6-8. The output of the delay node is still the input to the

subsequent data flow operation in the original control step. If necessary, an assignment node is

used to export values stored from a priorcontrol step, such as the one shown in control step 3. The

parametervalue of the delay node represents the lifetime of the stored value.

Out=XOR "01-; 0J*pS ^JORy*.
@} StoreX

NEXT((X));

Out=Z+X@l; ^P2 C+^^0ut
'concY \

'@\ StoreZ

NEXTO;

step 3

Out=Z; (CONC)' f -\Qut

Figure 6-8 : Initial Schedule and Allocation
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Interconnect elements realize theassignment and constant operations. Assignment nodesrepresent

transfers and are assigned a wire or bus thatconnects the input value to the output value. In

contrast, constants areassigned a wire or bus thatis hardwired to the appropriate combination of

logic high orlow levels. Other interconnect elements include multiplexors and tri-state buffers.

Output signals thatcan be driven by multiple input signals require a multiplexer to resolve the

contention over the outputbus. Some signals may be bi-directional or set to a high-impedance

value. The data edgein a flow graph depicts signals as strictly inputor output, but it carries a

property indicating the bi-directional or high-impedance condition, and tri-state buffers are

assigned to signal busses. Multiplexors and tri-state buffers are actually allocated at the final step

ofbehavioral synthesis, described in Chapter 8.

Althoughrelational or guard nodes represent data operations, they are not implemented in the

datapath of the interface template. Instead, the behavior is realized in the interface controller. The

sync node is actually realized by the protocol controller. Since allocation assigns datapath

hardware units, these three nodes are ignored and considered during later synthesis steps.

The initial allocation process provides sufficient hardware units to implement theinitial schedule,

but not the minimum number. Functional and storage units can be shared among different data

flow operations. For example, a single ALU can execute the logical OR and the addition

operations inFigure 6-8, eventhough allocation assigns separate hardware. A storage element that

temporarily stores adata value canbereused for another data value aslongasthelifetimes of both

values donotoverlap. These are optimizations made inthe next synthesis phase. What is important

about the initial allocation is that it provides anupper bound on the number of hardware units

required to implement the initial oroptimized schedule. The measure can be used to guide

scheduling optimizations.

These steps conclude theinitial scheduling and allocation phase. The initial schedule meets allthe

data and control flow requirements specified in the original flow graph and is maximally
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concurrent Although it is not optimal, the schedule and resource allocation can be mapped onto

register-transfer logic in theinterface template. For animproved implementation, optimizations to

the schedule aremade beforemapping to hardware.

6.3 Scheduling and Allocation Optimizations

Initial scheduling puts each data flow operation into acontrol step. Initial allocation assigns

each data flow operation a dedicated hardware unit, such as an adder, latch or bus. Schedule and

allocation optimizations reduce thelength of theschedule and minimize thecritical path through

thedatapath to be implemented. This measure of quality is chosen overminimising area, because

interface applications emphasize inter-module transfers overinternal data computation. This

characteristic causes datapaths to be dominated by storage andinterconnect elements with some

functional units. Although functional units tend to occupy more area than storage orinterconnect

elements, there are few of them, and even the initial schedule and allocation will yield a

satisfactory implementation in terms ofarea.

6.3.1 Allocation issues

Allocation aims atminimizing thenumber of hardware components used to implement the

given schedule while minimizing the critical path. Theupper bound onthenumber of each type of

hardware elementwas found during the initial allocation phase. These numbers canbe used as a

starting pointWith the upper bounds, the schedule isoptimized (described below). If rescheduling

is successful, then the numbers can be reduced and a new schedule produced. This process of

allocation followed by scheduling is iterated until the operations canno longer be rescheduled

within the given resource limits.

The most important goal is to achieve a satisfactory compromise betweenthenumber of hardware

elements and thecritical path delay, because thetwo aims are conflicting. For example, ALU units
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can be shared among arithmetic and logical operations that occur in different control steps,

reducing the number of functional units. Similarly, input values with non-overlappinglifetimes

can be assigned to the same register, reducing the number of storage elements. However, the

savingsin area complicatesthe interconnection paths. The functional and storage elements require

multiplexors at their inputs since they are shared among multiple sources. Their outputs may fan

out to multiple destinations, increasing the capacitance on wires and busses. The cumulative effect

is increaseddelay on the criticalpath.

6.3.2 Scheduling Issues

The schedule is optimized by moving (rescheduling) data flow operations among control steps.

The earliest time an operationcan execute is the control step in which the last input arrives. The

latest an operation can execute is the control step in which the output must be produced. So, in

general, there is a window of consecutive control steps that the operation can be scheduled into

while satisfyingdata dependencyconstraints. This is illustrated by the flow graph on the right side

of Figure 6-9. The inputs to the add operation come from prior control steps and arecaptured by

the delaynodes. The operation can execute in eitherthe secondor thirdcontrol step. In Figure 6-8,

all the data flow operations have only one possible control step they can execute in while satisfying

the given datadependency requirements.

The initial schedule places each operation in the same control step as its output. In effect,

operationshave been scheduled for execution as late as possible (ALAP). Rescheduling the data

operation nodes can use any classical scheduling technique developed for conventional flow

graphs. These techniquesinclude as soonas possible(ASAP) scheduling [Thomas83][Trickey87],

list scheduling [Kramer90] [McFarland86] [Pangrle87] [Parker86] [Thbmas90], freedom-based

scheduling [Parker86], and force-directed scheduling [Cloutier90][Paulin89], listed from simplest

to most complex [McFarland90].

Currently, ALOHA uses ASAP scheduling. This algorithm improves the schedule by taking
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operations one at a time, and placing them into the earliest control step possible, within the

window of control steps andunderresource allocation limits. For example, in Figure 6-9 the

addition is moved from the third control step to the second step, as shown in the middle flow

graph. At this point, an optional transformation based on retiming decides if the In2 inputto the

add operation is captured in temporary storage or if, equivalently, the result of the addition is

stored. If it is the latter, the delay nodethat captures the In2 valuecanbe moved to the outputof

the addition operation, as shownin the last flow graph of Figure 6-9. Retiming maintains the

equivalent input/output behavior as the original flow graph. Rescheduling an operation also

requires house-keeping tasks such as inserting an assignment node in the third control step to

export the addition result. In Figure 6-8, the data flow operations can only be executed in the

control step that they are initially scheduled, so the flow graph remains unchanged. From

experience it has been found that ASAP scheduling produces reasonably efficient results for

interface applications.
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List scheduling in which operation nodesare prioritized will produce even more optimal results

than the ASAP algorithm, but it is more complex to implement [McFarland90]. Interface

applications that are more compute intensive, such as application-specific I/O processors, will

benefit most from list scheduling. ASAP scheduling easily meets the design requirements of

interfaces as complex as DMA controllers.

After the allocation and scheduling optimizations, the original flow graphhas been transformed

into a final flow graph thatcan be mappedto register-transfer logic basedon the interfacetemplate.

The final schedule defines states of the interface controller FSM, while allocation defines the

number and types ofhardware units in the datapath.

6.4 Examples of Scheduling and Allocation

This section presents fourexamples of schedulingandallocation, and shows how the two tasks

brings behavior toward a structural implementation. The first example is from Figure 6-2. The

other three arebased on the flow graphs, translated from the input specifications, in Section 5.3.

The scheduled and allocated flow graphs should be compared to the original ones. It is important

to keep in mind two points. First, the flow graphs represent the system communication behavior,

whichis the interface behavior. Second, the flow graph is implemented with the interface template,

which is the internal structure of the interface block shownin the following block diagrams.

Optical Link to D/A Module Interface

The initial flow graph for a module that interfaces the TAXI optical link to a bank of D/A

converters was shown in Figure 6-2. The TAXI link has a single bus for address and datawords,

andthe D/A hasa parallel address anddata bus.The flow graph describes two sequential transfers

which demultiplex address and data words from source to destination. The corresponding

scheduled and allocated flow graph is illustratedin Figure6-10. The combinational decode

function hasbeen scheduled into the first control step, whichis the earliest possible time it canbe
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executed. The address value to the decode function is captured in temporary storage to maintain

the integrity of the decode result, which is exported in the following control step. The other

alternative is to store the decode result instead of thedecode input The first was selected so that

the source portis released as soonas possible. The data wordtransfer is scheduled into the second

control step. The schedule consists of twocontrol steps, sotheinterface controller FSM sequences

through two states.

taxid/rcvD—(sync)

step 2

(CONCj

/ temp<5:0^j_\dac£cmkSel<5:0> _^f^\jfacJ)<9:0>
taxidDo<9:0>

taxidlrcvD—isyiuA— dacldacb write

Figure 6-10 : Schedule for the Optical Link to D/A Interface

VME System Bus Interface

Figure 6-11 illustrates the scheduled flow graph for inter-module communication betweenthe

VME system busand a static RAM module. There is really no difference between the original

clustered flow graph and thescheduled one, other than theformality of control steps. Boththeread

and write access, contained in anhierarchical IF node, are scheduled intoseparate control steps.

Unlike theprevious example, these control steps are mutually exclusive rather than sequential. The

interface controller monitors theaddress and write status inputs, and it generates the guard signals
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which choose thecontrol step to branch. Because there is no sequential control in this schedule,

optimizations actually reduced theFSMto apurely combinational controller.
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TMS320 to Optical Link Interface

The scheduled flow graph representing multiplexed communication betweentheTMS320 uni

processor andtheTAXI optical transmitter is shown in Figure 6-12. The IFcontrol operation and

its guard node is scheduled into the first control step, and the concurrent control operation isplaced

into a secondcontrol step.The schedule contributes to two control states in the interface controller

implementation. As shown in theoriginal flow graph of Figure 5-11, theinput to thedata word
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transfer actually arrives during aprior transaction. So,theTMS XDinputis scheduled into thefirst

control step. It is alsoallocated a storage element that holdsthe input for the data transfer in the

subsequent control step.

(CONC)''

Figure 6-12 : Schedule forTMS320 to OpticalLink Interface

Scheduling also transformed the syncnodeassociated with the data word transfer. Originally, the

sync node linked two I/O protocols, which were the TAXI and the TMS protocols. Because the

TMS input was scheduled in a priorcontrol step, the input to the data transfer in the new flow

graph is from an internal flow graph edge. So, the data transfer in the scheduled flow graph is

dependent only on one I/O protocol.
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A/D Module to Optical Link Interface

Figure 6-13 illustrates the scheduled flow graph representing communicationbetween an A/D

module and the TAXI optical link. The example demonstrates how iterated behavior is

transformed to a series of control steps. After loop unrolling, as shown in Figure 5-12, the

concurrentcontrol operations are scheduled into a linear flow of seven control steps. The last six

steps correspond to iterated behavior, one step for each iteration. Accordingly, the interface

controller FSM cycles through sevenstates. In the first state, theFSM configures the datapath for a

constant transfer and sets up the protocol controller to execute the destination protocol. In the

following states, the FSM configures the data path for a constant transfer and an inter-module

transfer. It also sets the protocol controller up to convert between the source and destination

protocols.

6.5 Summary

Of the three primary functions of aninterface module discussed in Section 1.1, the synthesis

techniques presented in this chapter specifically addresses the communication datapath and

transfer control needs. Scheduling and allocation techniques transform an initial flow graph into

onethatis ready for mapping toRTLunits in thetarget interface template. Scheduling orders inter

moduletransfers anddata operations intocontrol steps, assigning them a time to be executed by

the final interface hardware. Allocation determines the appropriate type and number of hardware

resources required to execute the transfer and data operations. The synthesis strategy first

generates aninitial schedule and allocation from the flow graph and optimizes the initial solution

into a final flow graph. The first part uses specially developed techniques, while the second part

usesavailable algorithms [McFarland90]. Together, the two techniques bring behavior closer to a

structural realization.
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CHAPTER 7

Generation of

Event Graphs

Comprehensive synthesis of interface modules includes a treatment of the functional

requirements and a treatment of the designconstraints. The previous threechapters have covered

the inter-module communication behavior, which is the functionality, and synthesis techniques

based on the flow graphrepresentation. This chapter focuses on synchronizing communicating

modules and synthesis techniques that account for I/O protocols and time constraints, which are

the designconstraints. Dealing with synchronization requires moving from the flow graph to the

event graph level.

The next synthesis phase takesa flow graph of scheduled transfers andoperations, andgenerates

event graphs thatrepresent protocol synchronization, as shownin Figure 7-1.The basic technique

uses the data dependencies of an inter-module transfer to interlock event graphs corresponding to

I/Oprotocols in themodulelibrary. The result is anoverall event graph specifying the sequencing

andtime constraints thatcorrectly synchronize the transfer. This phase links high-levelbehavior

captured in the flow graph to the low-levelbehavior captured in the event graph. From both these

behavioral specifications, thecomplete interface structure is synthesized.
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The first two sections of this chapter present the techniques for generating and optimizing

interlocked event graphs. The next section gives a summary, and the last section applies the

techniques to four examples.

7.1 From Flow Graph to Event Graph

The flow graph captures inter-module communication behavior using data operation nodes,

such as assignment, delay or sync nodes.The sync node is really a system-level abstraction for I/O

synchronization between source and destination modules. To synchronize a transfer, protocol

events are interlocked to meet the sequencing and time constraints of the individual modules. The

protocols arenamed by the sync node andcaptured in the module library with event graphs.

Forexample, Figure7-2 illustrates the processor to memory interface from Figure 5-2. The block

diagram, the input specification and clustered flow graph arerepeatedhere for convenience. The

processor transfers address and data information to the memory on a write cycle. The sync node

associated with the write transfer specifies that the processor and memory is synchronized by

interlocking events from the processorprotocolcalled "writep" and the memory protocol called

"writem". Each protocol event graphin the module libraryhas a unique name to identify it.
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Figure 7-2 : Flow Graph for Processor to Memory Interface

So, the synchronization problem is how to interlock the individual graphs, generating an overall

event graph that describes the synchronization procedure. The interlocking is determined by the

data dependencies and the performance requirements of the data flow associated with a sync node.

The basic technique for interlocking event graphs is presented below. It is applied to eachsync

node in the flow graph.

7.1.1 Generating the Initial Event Graph

To synchronize an inter-module transfer, therelated protocol event graphs areinterlocked into

an initial and overall event graph using the data dependency requirements of the transfer. This is

the first step in the event graph generation phase. The processor to memory write example

illustrates this step, as shown in Figure 7-3.
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For the sync node associated with the write transfer, synthesis starts by loading the named event

graphs for the source and destination ports from the module library. In the example, this consists of

the processor"writep" graphand the memory "writem" graph, shown on the right and left side of

Figure 7-3, respectively. Interlocking the source and destination event graphs uses the data

dependency principle: an event that indicates that information is available from the source must

precede the event that indicates that information has arrived at the destination. In Figure 7-3, the

REQ+ event indicates that the processor is presenting valid address and data, indicated by edges

e3 and e4, while the CSL- event signals that valid information is present at the memory port,

indicated by edges el and e2. To interlock the event graphs, an event precedence edge is thus

inserted from the source event to the destination event. In the example, the edge eO forces the

REQ+ event to trigger the CS_L- event, interlocking the "writep" and "writem" graphs into an
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overall event graphthat governs the synchronization procedure. Such an edge is called an interlock

constraint.

The key to the above synthesisstep is the interlock constraint In essence, the constraint provides a

synchronization point for the communication. When there aremultiple sources that concurrently

communicate with a destination, protocol events from the sourcesare interlocked with a common

destination event. Figure 7-4 illustrates this. The two processors transfer data to the memory

during one write cycle. Synthesis loads a copy of the memory "writem" event graph from the

module library, and also a copy of the "writep" event graph for each processor. The first processor

provides the upper half of the data byte, so an interlock constraint is inserted from event

Prod .REQ+ to event Mem.CS_L- (edge eO). The second processor provides the lower half of the

data byte, generating the interlock constraint from Proc2.REQ+ to Mem.CS_L- (edge el). The

interlocked event graph is formed from three individual event graphs. Likewise, when a source

port concurrently communicates with multiple destinations, a common source event is interlocked

with a protocol event at each destination. This is shown in Figure 7-5, where a single processor

writes two memory devices during the same write cycle. In either case, the interlock constraints

provide multiple synchronizationpoints for the communication.

Comparing Figure 7-2 to Figure 7-3, the input specification doesnot mention any time constraints,

such as the 40ns min time constraint from CS_L- to CSL+, or any control I/O signals used for

protocol signaling, such as CSJL andREQ. Synthesis introduces these details into the behavioral

representation during event graph generation. This phaseand the module library supportdesign

from a system abstraction level. Interlock constraints areequivalentto the interconnect edgesused

in Janus porriello88b] to interconnect event graphs before synthesizing the control logic. Also,

the constraints canbe formally expressed usingguarded commands [Martin86], which was applied

in [Meng89] asaninputspecification for synthesis ofhandshake circuits asdescribed in Chapter 2.

Forexample, the interlockconstraint in Figure 7-3 is expressedas:
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[Proc.REQ+ -» Mem.CSJL-]

The constraints for in Figure 7-4 is expressed as:

[Prod .REQ+AND Pmc2.REQ+ -> Mem.CS L-]
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And, the constraints in Figure7-5 is expressed as:

[Proc.REQ+ -» Meml.CSJL-; Proc.REQ+ -> Mem2.CS L-]
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The relationship of interlock constraints to interconnect edges and guarded commands

demonstrates thatthis synthesis phase is actually the front end to the synthesis of protocol control

logic.

7.1.2 Synchronization with Data Operations

The previous step synchronizes the source and destination ports which are external to the

interface. In addition, the transfermust be synchronized to the interface module itself. This is

covered by the second step in generating aninterlocked event graph. As described in Chapter 6,

the interface template includes aninterface controller thatconfigures both the datapath and the

protocol controller. This means that the interface controller synchronizes data operations to the

associated protocol conversion, represented with the interlocked event graph generated in the

above step.The datapath switchesto a new configuration according to the Dselword issuedby the

interface controller, while the protocol controller switches to a selected event graph according to

the Esel word,as shown in Figure 6-4. From the viewpoint of the protocol controller, the interface

controller is yet another source port, andit needs to be synchronized with the external ports.

The interface controller port is called "Ictrl". The Esel word is accompanied by a 4-phase

handshakeprotocol implemented on the requestand acknowledgecontrol signals, R and A. The

event graph for the Ictrlhandshake is built into the module library, and the R+ event indicates that

the Dsel and Esel word arevalid, as shown Figure 7-6. The handshakegraph is interlockedwith

the event graph generated from data dependencies of the external transfer. Since the Ictrl port is

considereda source,an event precedence edge is inserted from the Ictrl.R+ event to the destination

event. Figure7-7 illustrates this additional interlock constraint for the processor to memory

example.The [Ictrl.R+ -» Mem.CS_L-] interlockconstraint provides a second synchronization

point for the write transfer. The constraint is also a part of the complete event graph for the

multiple sourceanddestination examples in Figures 7-4 and7-5, though not shown.

The Ictrl handshake plays an importantrole when the transferis between external ports and the
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delay operation, which represents internal storage. In this case, the external ports consistof only

sources or only destinations. If they are only sources, then the internal Ictrl port acts as a

destination since the delay operation receives the input information. If they areonly destinations,

then the Ictrl port acts as a source since the delay operation provides information. Figure 7-8

shows an example of synchronizing the delay operation with an external source and also an

external destination. In the firstcontrol step of the flow graph, the delay operationcaptures an

input value in internal storage. So, the source protocol, "send" is synchronized with the Ictrl

handshake using the interlockconstraint [STRB+ -»IctrlA+], as shown in the top event graph. In

the second control step, the value captured in the delay node is exported to the destination. As

shown in the bottom event graph, the Ictrl handshake is synchronized with the destination

protocol, "recv" using the interlock constraint [Ictrl.R+ -» CS+].
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Figure 7-8 : Synchronizing Delay Operations with the Ictrl Handshake
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At this point, synthesishas generated aninitialinterlocked event graph for aninter-module transfer

that satisfies the data dependencyrequirements.

7.2 Optimizations

The interlock constraints introduced in previous steps arethe minimum amount ofconstraints

needed to correctly synchronize a transfer. The next synthesis phase inserts additional interlock

constraintsto optimize the final logic implementationof the event-level behavior.

7.2.1 Performance and Area Trade-offs

Buffers areinserted into an inter-module transfer for two possiblereasons. In eithercase, the

use of a buffer trades area for performance, and it affects how the source and destination event

graphs are interlocked.

First, inter-module transfers are often buffered to increase the system communication

performance. For example, a buffer (also called FIFO, queue or pipeline register) temporarily

stores M words of width N (bits) that are being transferred from a fast source port to a slow

destination port. Without the buffer, the source port must hold the data until the destination

acknowledges that it has received the data. With a buffer, the source device can release the data, as

soon as the buffer has latched it, and proceed to some computation task. In the meantime, the

destination devicecanread in the data at its own rate. However, for the gain in performance, the

communication implementation requires more area thanan unbuffered implementation. In the

bufferedcase,the MxN buffer itself requires additional datapath area. Also, to takecare of full and

empty buffer status, the controller requires extra logic andhence area. Using a buffer to increase

communication performance is a systemleveldecision madeby the designer.

A secondreason to buffer an inter-module transfer is to satisfy local time constraints. Here, the

source port provides valid data for a specific amount of time regardless of how long it takes the
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destination to capture the data. During the optimization phase, this situation is detected and

synthesis allocates a buffer (or any form of storage) to properly synchronize the transfer. To

illustrate this step, Hgure7-9 shows a slight variation of the processor to memory write transfer

The inter-module data flow is thesame as before, butthe processor uses a protocol implemented

with only arequest type signal, and the memory protocol uses arequest and acknowledge type

signal. As shown by the interlocked event graph, the source protocol does not have an

acknowledge. The destination receives corrupt data, because it acknowledges after the source has

already released the data. To maintain the integrity of the transferred data, a buffer is inserted to

the datapath to latch the data before the source releases it Of course, the memory has tocomplete

the write cycle before the nextprocessor word is latched. Incontrast to the first reason, buffering

makes for correct transfers rather than for maximum performance. Theoverhead of buffering is the

bufferitself and perhaps someextra protocol control logic.
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Figure7-9 :Transfer Synchronization Using a Buffer
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When the inter-module transfer is buffered, the interlocked event graph generated from data

dependency requirements is sufficient to properly synchronize the transfer. When the transfer is

unbuffered, the source canrelease its data only after the destination hasacknowledged capturing

the data. Additional interlock constraintsareneeded to ensure this condition, and are constructed

as follows.

Starting from the initial interlocked eventgraph, synthesis finds a protocol event indicating thatthe

destination has captured the data and a protocol event indicating that the source is allowed to

disassert its data. These arejust acknowledge eventsoccurring on control signals usingnames like

"ACK" or "DONE."The destination acknowledge must precede the source acknowledge, andthis

forms anadditional interlock constraint. For example, assume now thatthe processor andmemory

protocols use an acknowledge, as shown in Figure 7-10. The sourceand destination event graphs

areinterconnected with two precedence edges to properly synchronizethe transfer. The first is the

original interlock constraint that fulfills data dependency requirements. The second is the

acknowledge interlock constraint [DONE+ -» ACK+] that eliminates the need for a buffer, and

hence minimizes the implementation area.

7.2.2 Merging Event Graphs

So far, the interlocked eventgraphs have beengenerated and optimized for each syncnodein

the flow graph. The complexityof the protocol controller is determined by thenumberofdifferent

interlocked eventgraphs to be synthesized. Thenextoptimization merges interlocked eventgraphs

from different sync nodes to reduce the complexity of the final implementation. In otherwords,

some sync nodes can use the same interlocked event graph, even though the data dependence

requirements are different. The results is a smaller amount ofarea torealize the protocol controller.

This optimization may compromise thecommunication performance.

Event graphs can be merged only if they involve the sameset of ports. Figure 7-11 illustrates the

optimization. Suppose that the sync node in the first control step maps to the interlocked event
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Figure 7-10 : Interlocked Event Graph for Unbuffered Transfer

graph shown. There is only one synchronization point formed from the associated data

dependency. The syncnode in thesecond control step interlocks thesame individual eventgraphs

withtwo synchronization points, including anacknowledgment Looking atbotheventgraphs, the

second meets the interlock constraints of the first So, the first sync node canuse the sameevent

graphas the second one. The acknowledge constraint forces the source to wait for the destination

which increasing the write cycle time, but the original interlockconstraint is still met. The final

solution maps both sync nodes to the interlock constraints [Reql+ -> Req2+; Ack2+ -> Ackl+].

Only oneevent graph is implemented instead of two andleads to savings in area.
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7.3 Algorithm Summary

The first two sections have described how synthesis brings the design specification of the

interface from the flow graph level to the event graph level. Most importantly, these sections

demonstrate how behavioral synthesis and themodule library introduce protocol events and time

constraints into the design specification, hiding the low-level details from the designer. From the

data dependency requirements of a transfer, and the support of themodule library, protocol event

graphs are interlocked intoanoverall eventgraph thatdescribes the event-level synchronization,

including timeconstraints. The initial eventgraph is a minimum behavior specification that can

then be optimized to reduce theimplementation area orincrease communication performance. The

optimizations further build the interlocked eventgraph by adding interlock constraints.

At theconclusion of this step, the design specification consists of the flow graph, describing the

high-level data and control flow behavior, and a set of event graphs, describing the event-level

synchronization and timing behavior. Each syncnode in the flow graph hasa corresponding event

graph, and some sync nodes map to the same event graph. The flow graph is ready for

transformation into a register-transfer level datapath andinterface controller. The interlocked event

graphs serve as input to existing tools thatcan synthesizethe protocol controller logic. In the

interface template, the Esel word selects an event graph depending on the stateof the interface

controller.

The next section presents examples of interlocked event graphs generated from the techniques

discussed. The next chapter discusses the transformation from behavior in the flow graph and

eventgraphs to theregister-transfer structure implementation based on theinterface template.

7.4 Examples of Interlocked Event Graphs

The following examples use the four interface examples from Section 6.4 of Chapter 6 to

explain how the interlocked event graphs aregenerated from the flow graph and module library.
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Only the sync nodes within the scheduled flow graphs are shown in this section. The complete

scheduled flow graphs from Oiapter 6 arenot repeated here, but they should be looked at while

reading the following explanations.

Optical Link to D/A Module Interface

The scheduled flow graph for this interface which performs demultiplexed transfers from the

TAXI opticalreceivermodule to a bank of D/A converters was shown in Figure6-10. It contains

two sync nodes. The first represents synchronization between the source TAXI port and the

interfacemodule itself when a data word is latched into temporary storage. Since the destination is

the interface, the TAXI protocolis interlockedwith the Ictrlhandshake from the module library, as

shown in Figure 7-12. The DSTRB+ event indicates that the TAXI has a valid word on the Do bus,

and it triggers the Ictrl A+ event to synchronize the transfer, as expressed by the interlock

constraint [taxid.DSTRB+ -» Ictrl.A+]. The TAXI protocol has no acknowledge event,

and,normally, this synthesis phasewould allocate storage to capture the TAXI data word before it

is disasserted. However, the storage allocated during the scheduling phase already serves this

purpose,making another storageelement redundant

The second syncnode showsthattheTAXI portis synchronized with the D/A destination portasa

new TAXI word and the storedword aretransferred to the destination. The IctrlR+ event signals

that the storage element has a valid word, and the DSTRB+ event indicates that the TAXI module

is presenting a new data word.As shownin Figure 7-12,both theseevents areinterlocked with the

D/A LDAC_L- event, which signals valid address and data on the BankSel and D busses at the

destination. The synthesized interlock constraint is [Ictrl.R+ AND taxid.DSTRB+ ->

dac.LDAC_L-]. Since theTAXI protocol hasno acknowledgment, a storage element is allocated to

the transfer from the TAXI to the D/A.

In both control steps, source words are placed in temporary storage. This is implementedwith a

register or latchwhich uses a clock-typeevent to sample the input information. The clock event, or
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dacbjwrite" event graph
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Figure7-12: Interlocked Event Graphs for Optical Link to D/A Interface

latch event, is derived from events in the interlockedevent graph. Generating the latching events is

explained in the next Oiapter.
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VME System Bus Interface

Figure 6-11 illustrated the scheduled flow graph forread andwrite accesses between the VME

system bus and a static RAM module.

Figure 7-13 showsthe interlocked eventgraphs for the write transfer. During the writecycle, the

VMEbus presents new address (indicated by AS_L-), new data (indicated by DS_L-), and a new

read/write status (indicated by DS_L-). The memoryreceives all these three words upon the CS-

event. The syncnodeassociated to thewrite transfer interlocks theVME "dtb_write" protocol and

the memory "writem" protocol, loaded from the module library. Due to data dependencies,

synthesis generates the interlock constraint [Ictrl.R+ AND vme.DS_L- -» mem.CS-]. The DS_L-

event occursaftertheAS_L- event, as shownin theVME event graph, so it is used to indicate that

both the address and data are valid. During the optimization step, synthesisrecognizes thatboth

the memory and the VMEbus have acknowledgments and generates the interlock constraint

[mem.CS+ -» vme.DTACK_L-]t providing another synchronization point for the writetransfers.

Because the acknowledgment forces the VMEbus to wait for the memory access time, the write

transfer is unbuffered.

During the read access, the VMEbus is the source of address and read/write status, and the

memory is the destination of these words. As shownin Figure 7-14, this generates the interlock

constraint [Ictrl.R+ AND vme.DS_L- -» mem.CS-]. In thesame transfer, thememoryis the source

of the selected data word and the VMEbus is the destination. This generates the interlock

constraint [mem.Done- -» vme.DTACK_L-], since theDone- event signals that the memoryhas

placed the selected word on the data bus, and since the DTACKL- event indicates to the VME

master that the accesses word is available on the bus. It is important to observe here that the

acknowledge synchronization is generated from the data dependency of the read access, rather

than from optimizations.

In fact for theread access, the previous interlock constraint also serves astheacknowledgment for
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Figure 7-13 : Interlocked Event Graph for VMEbus Write Access
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the read/write status transfer, and this is recognized during the optimization step.The interlock

constraint [vme.DS_L+ -» mem.CS+] acknowledges the data transfer, and the constraint is

generated by synthesis during the optimization step. Optimizing for the address transfer is not

straight-forward compared to the other two. In this case, the address acknowledge constraint
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wouldconflictwith the data acknowledge constraint Toresolve this, synthesis only chooses oneof

the constraints, which is the data transfer, andthenaUocates a storage elementto the other, sincean

acknowledgment can not be used to hold the transfer.
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TMS320 to Optical Link Interface

This interface multiplexes address and data from the TMS320 uni-processor to the TAXI

optical transmitter, which can only send one of thewords ata time. The scheduled flow graph

describing the behavior is shown in Figure 6-12. In the first control step, theTMS and theTAXI

are synchronized astheaddress is transferred and as thedata is latched intotemporary storage; the

synchronization is represented by the syncnode. As shown in Figure 7-15, theTMS address and

data words are bothvalid when theXRDY_L- eventoccurs, and thetaxi accepts anew word when

its STRB signal is asserted. Accordingly, the event graphs are interlocked with the constraint

[tmsXRDYL- AND Ictrl.R+ -> taxi.STRB+]. Although the interface is the destination of the

stored data word, the [Ictrl.R+ -> taxi.STRB+] constraint works equally well as [tmsXRDYL- ->

IctrlA+], and the latter is not needed.

Both the TMS andTAXI protocols have an acknowledgment, and this potentially allows area

optimizations such as making the TMS data and address transfer unbuffered. However, the data

mustbe stored for scheduling reasons, and the acknowledgment is not exploited. Acknowledging

the address transfer with the precedence [taxi.ACK+ -» tmsXRDYL-] would conflict with the

[tmsXRDY_L- -> taxi.STRB+] constraint generated from data dependency requirements. For

correct synchronization, the address acknowledgment constraint is not used, and optimization

allocates an address latch to controlstep 1.

In the secondcontrol step, the only transfer is from the data storage element and constant in the

interface datapath to the TAXI port. The associated sync node shows that the Ictrl handshake is

synchronized to theTAXI "xmt" protocol, loaded from themodule library. As illustrated in Figure

7-15, datadependency requirements generate the interlock constraint [Ictrl.R+ -»taxi.STRB+].

No optimizations are made.

This example also demonstrates the subtleties of storage allocation. In the first control step, the

data storage element was allocated during scheduling of the flow graph operations. It holds data
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across multiple control steps. The address storage element is allocated during the event graph

generation step, because the source or destination time constraints are incompatible. It only holds
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data during one control step to maintain the integrity of a transfer. Section 7.2.1 explained that a

buffer, also a storage element, can be specified by the system designer to improve system

communication performance. Altogether, storage elements are used from the system level design

abstraction to the data flow and the low-level event abstractions.

A/D Module to Optical Link Interface

Figure 7-16 illustrates the interlocked event graphs generated from the scheduled flow graph

in Figure 6-13. The flow graph describes the communication behavior between an A/D conversion

module and the TAXI optical transmitter. In the first step, a constant generated by the interface is

sent to the taxi module. As shown by the associated sync node, the Ictrl handshake is interlocked

with the TAXI "xmt" handshake to synchronize this transfer. Since the interface is the source and

the TAXI port is the destination, the interlock constraint generated using data dependency is

[Ictrl.Req+ -> taxi.STRB'+]. Because the interface can hold the constant value for as long as

needed, the optimization step determines that the constant is neither latched nor is the

acknowledge constraint necessary.

For the iterated transfers, the A/D "bjreadl" and TAXI "xmt" protocols are interlocked, as

illustrated in Figure 7-16. The interface is the source of the constant address to the A/D module,

which accepts an address on the RD_L- event. The A/D module becomes the source of the

requested data to the TAXI destination. The A/D places valid data on the DB bus as indicated by

the RDJL+ event, and the TAXI accepts the data on its DI bus when the STRB+ occurs. From

these data dependencies represented in the flow graph and the information in the event graphs,

synthesis generates the interlock constraints [Ictrl.R+ -» adcJlD_L-; adc.RD_L+ -»taxiSTRB+].

Although the A/D and TAXI module both have an acknowledge signal, a data acknowledge

constraintwould conflict with the address transferconstraint, [adc.RD_L+ -»taxi.STRB+], and is

therefore not used. To insure transfer integrity, a storage element is allocated to the data word

transfer,as explained in Section 7.2.1.
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CHAPTER 8

From Behavior

To Structure

The ultimate goal ofbehavioral synthesis is to find aregister-transfer structure thatimplements

the specified behavior, represented with a flow graph and a set of event graphs. ALOHA

transforms a behavior specification into a structure based on the interface template of Figure 6-4,

consistingof a datapath and two sequential controllers. As shown in Figure 8-1, this is the final

phase ofhigh-level interface design.

High-level

Behavioral
Specification

Module

Library

Translate
Synthesis from

Flow graph

Generate

Event graph

Figure 8-1: RTL Structure Generationand the Design Flow

Interface
Template

i
Oenerste Logic-level

-Structure Netlist

The flow graph captures the data and control flow in inter-module communications. Its allocated
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data flow elementsaremappedto datapath units,andits control flow scheduleis mappedto a finite

state machine specification of the interface controller. The event graphs capture the I/O

synchronization requirements of a transfer, andthe protocol control logic is synthesized from the

representation. The final output from synthesis is a netiist of register-transfer units in the SDL

format [Richards], with someunitshavinga combinational logicdescription in tiie8DS [Segal88]

or EQN [Sentovich88] format, and also time constraints expressed in the CLOVER format

[Doukas91].

This chapter describes the techniques and issues in mapping from a flow graph andevent graph to

register-transfer level (RTL) hardware. The first section discusses datapath compiling. The second

covers synthesis of protocol controllogic from event graphs, and the thirddiscusses generation of

the interface controller logic.

8.1 Datapath

The datapath implements data flow behavior. It contains the register-transfer units that route

information betweensource and destination ports and performs computations on the information.

This section discusses datapath generation as shownin Figure 8-2.To construct the datapath, data

flow nodes and data edges in the flow graph are mapped to busses, multiplexors, functional units,

storage elements, and tri-state buffers.The construction is completely independentof the control

flow. Using the Dsel signal in the interface template, the datapath is made configurable on each

control step.

8.1.1 Compiling the RTL Network

The datapath is constructedin three steps.The multiplexors and output wires and busses are

generated first Then the storage and functional units arecreated, consistingof registers or latches,

adders and combinational logic units. The last step places tri-state buffers on the appropriate
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Figure 8-2 : Datapath Generation and Output Formats from Synthesis

output signals in the network. At each step, the newly created units are interconnected with the

previously createdunits using newly or previouslycreated busses. In this section, the term "bus"

refers to both a single wire and a bus, which is a collection of wires. The term "register" and

"latch" is also used interchangeably.

Multiplexors and Output Busses

The generation of output signals andmultiplexors uses a method similarto the one in [Hill78]

for microprocessor RTL programs. Data edges in the flow graph which are also outputs translate

into an outputbus in the in the datapath. The width of the bus is identicalto the width of the signal

represented by tiie data edge.

The need for a multiplexor is implied by the data flow among control steps rather than directly

mapped from a data flownode or data edgelike the otherdatapath elements. Multiple control steps

in the flow graphmay contain data flow nodes that place a value on the same output signal. To

buffer the multiple drivers from the output,the corresponding outputbus is assigneda multiplexor

(or mux). An input bus to the mux is created for each data flow node that places a value on the

output. The input is selected using an unique Dsel wire, which synthesis assigns and connects to

the mux. If all inputs are deselected, then the mux outputs a "0" logic level. To captureinput/Dsel
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relationship in the flow graph, the corresponding data flow node is annotated with the Dsel bit.

Figure 8-11 illustrates the Dsel annotation for the TMS320 interface, and the interface controller

synthesis uses this infoimation. In the next synthesis step, datapath units for the data flow node are

created, and their fan-outs areconnected to the appropriate mux input

To illustrate output bus and multiplexor creation, the VME interface described in Figure 6-11 is

used. The output dataedges are the VME dataD signal and the memory A, WE_L and 10 signals.

So, an output bus is generated for each. The only output that has more than one source is the

memory WE_L signal. In the write access it is driven by a constant "0" node, and in the read

access it is driven by the constant "1." So, a multiplexor is used to drive the WE_L signal, as

shown in Figure 8-3. Constants correspond to a hardwired logic level, and one input to the mux is

the "1" level while the other input is the "0" level. A Dsel bit is assignedto each constant input to

select between the two. The composite of the two Dsel bits forms the complete select word

Dsel<l :0>. This mux is formed regardlessof the VME interface schedule. If the write access were

followed by a scheduled read access, the datapath structurewill still be the same. Although not

explicitly in the flow graph, the address transfer is bufferedwith a storage element allocated during

the event graph generation, as shown in Figure 7-14. Such allocated storage is mapped to a latch,

as shown in Figure 8-3.

The multiplexornetwork created so far may be optimized.Forexample, in the above datapath, the

constant "0" will be transmitted to the mux output as long as Dsel<l> and Dsel<0> are

disasserted. So, the "0" input can be eliminated, resulting in a minimized multiplexoras shown in

the figure. In the final datapath netiist generated by ALOHA, a multiplexoris actually represented

using a combinational logicunit with a BDS description of the specificmultiplexorlogic function.

Functional and Storage Units

The data flow nodes, listed in Table 5-1, map to functional and storage units in the datapath.

This synthesis step takes careofall the node types from assignmentto addition,and to the function
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type. Assignment nodes translate to a bus, as expected. Mentioned above, a constant node is

implemented with a hardwired bit vector, where thevector is the parameter of the constant node.

Delay nodesrepresent allocated storage, and a register is created in the datapath. Logical NOT,

AND, OR, NAND, NOR and XOR nodesmap to a logic gateof tiie same function, while the add

nodemaps to anadder. Like themultiplexor case, synthesis creates a generic combinational logic

unit for FUNCTION nodes, and theunit's parameter is thenameof the "bds" file named by the

FUNCTION node. Fan-ins to the generated datapath units connect to other functional and storage

unitoutputs, orinputbusses. Fan-outs of generated units drive other functional units, storage units,

multiplexor inputs or output busses.

The datapath subblock for the BankSel<5:0> output signal in the optical link to D/A interface

illustrates this synthesis step. In the flow graph of Figure 6-10, theBankSel signal is produced by

capturing the Do input with a delaynode anddecoding the Do word with the function node in the
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firstcontrol step, and then exporting the decoded resultusing the assignment node in the second

control step. As shown in Figure 8-4, the delaynode maps to a storage element, and the function

node maps to a combinational unit with tiieparameter "decode.bds". The assignmentnode maps to

abus thatconnectsthe fan-out of the combinational unit to theBankSel output signal. At this point

in synthesis, a clock wire is also created for the storage elements. The clock is derived from

protocolevents occurringin the protocolcontroller; this is explained in a later section.

decode]

/ I
taxid.Do<9:0> dot decode.bds dac.BankSel<5:0>

Figure 8-4: Generating Functional and StorageUnits

Tri-state Buffers

Bidirectional signals in the flow graph are assigneda bidirectional bus in the datapath and a

tri-state buffer. As shown in Figure 8-5, one side of the bidirectional bus connects to the datapath

boundary, andit imports signals to the datapath on the X_in fork while exportingsignal to outside

ports on the X_out fork. A Dsel bit enables the tri-state buffer during a control step where the

X_out fork is used. Forexample, the bidirectional signals in the VME interfaceof Figure 6-11 are

the VME data, D, and the memory data, 10. From the previous steps, the data assignment

operations aremappedto two busses,illustrated in Figure 8-3.This stepcreates the tri-state buffers

and connects the two bidirectionalsignals.

At this point, synthesishascreated a netiistofregister-transfer datapath units.The networkcanbe

put through combinational logic optimizations that cluster the various combinational units in the
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X**

Bidirectional Signal

Figure 8-5 : Bidirectional SignalImplementation

datapath andminimize the logic and partition the logiconto specific hardware gates. Because of

the top-down design methodology used in ALOHA, theseoptimizations are made at tiielow-level

design phase whichincludes logicsynthesis. This is discussed in the lastsection of this chapter.

8.1.2 Deriving Latching Events

The datapath stores information with edge-triggered registers. Since system interfaces usually

operate in an asynchronous or mixed asynchronous/synchronous environment, the clock signal

that latches data into the register is derived from protocol eventsrather than from from a periodic

clock signal. The latching eventsare generated by the protocol controller, as shownin the interface

template ofFigure 6-4.

The key to deriving latching events is recognizing that information can be captured in a time

interval when the sourceis providing valid data and before the destination portmust receive it.

This makes sense intuitively. So, the earliest time the information can be latched into temporary

storage is upon the occurrence ofa sourceprotocol event that indicates it has valid data. The latest

time the information can be latched is upon the occurrence of a protocol event that indicates the
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information hasarrived at the destination. These facts translate to the principle: suitable latching

events are those which lieon the interlock constraint edge, described in Section 7.1.1 of Chapter 7.

Only the initial interlockconstraint corresponding to sending information from the source to

destination is considered.The acknowledgeinterlock constraintis not considered.The selection

principle applies even when the source or destination is an internal datapath register allocated

during scheduling. In both these cases, The Ictrl handshake serves as the protocol that

accompanies the internal registerport.

Forexample, the event graphs for the VME interface areillustrated in Figure 7-13. The event

selected to latch the address can be eitherDS_L- or CS-, both of which areused to interlock the

VME andmemory write event graphs. UDS_L- is chosen, then the latchdelaymust be less than

thecircuit delay from DS_L- to CS-. Otherwise, theintegrity of theaddress transfer is destroyed. If

the CS- event is used, then the memoryshould receive a delayed version of the CS signal, where

thedelay is greater than the latch delay. This also ensures theaddress transfer integrity.

The actual latching signal is formed by conditioning the selected latching event on the assigned

Eselword, whichenables theeventgraph associated to thecurrent inter-module transfer. Using the

VME example of Figure 7-13 to illustrate this, suppose the interlocked event graph for the write

cycle is enabled with the Esel<0> bit, and the graph for the read cycle is enabled with the

Esel<bit>. The write cycle address is latched with the signal formed from the logic AND of the

Esel<0> bit and the DS_L complement, (Esel<0> AND IDSJL). Similarly, theread cycle address

is latched with the signal, Esel<l> AND !DS_L. The composite latching signal for the address

latch is (Esel<0> AND !DS_L) OR (Esel<l> AND !DS_L), whichreduces to !DS_Lafter logic

minimization. The datapath in Figure 8-3 shows the latch signal. If there were no read cycle, then

the latching signal would just be (Esel<0> AND IDSJL).

The assignment of the Eselwordis covered in Section 8.2.2. The issueof how to choose latching

events from the event graph or STG is alsotreated in [Borriello88b] and [Meng88], respectively.
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8.1.3 Examples

The four standard examples used in the previous chapters serve as full design examples to

illustrate varioussteps in the design process. This chapter presents the final RTL specifications for

eachexample. In this section,the datapaths shownaresynthesized from the flow graphs in Section

6.4.

Optical Link to D/A Module Interface

The scheduled and allocated flow graph for demultiplexed transfers from the TAXI optical

link to D/A module was shown in Figure 6-10. Constructing this interface's datapath was mostly

explained in the Section 8.1.1. It is illustratedin Figure 8-6. The path from the TAXI Do input to

the D/A BankSel signal is constructed from the data flow shown in the first and second control

steps. The path from the input Do input the D/A output D accounts for the right assignment node in

the second control step. Initially, there was a separate latch at the beginning ofboth paths. One was

to take careof the delay node scheduledin the first control step, and the other is the latch (for Do)

allocated in the event graph generation phase, which is shown in Figure 7-12. Datapath

optimizations merged the two latches into the one shown in the datapath figure. Using the event

graphsin Figure 7-12, the Do word can be latched with the TAXI DSTRB rising edge. The DSTRB

control signal is routed from the protocol controller.

•*- dacD<9:0>

taxidDo<9:0> DQf

decode.bds dac£ankSel<5:0>

DSTRB

Figure 8-6: Datapath for the Optical Link to D/A Interface
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VME System Bus Interface

The complete datapath for theVME system businterface is shownin Figure 8-7. Section 8.1.1

explained how the multiplexor, address latch, and tri-state buffers for the bidirectional data bus

were generated from the flow graph in Figure 6-11. In the completedatapath, the threeDsel lines

form a Dselword, Dsel<2:0> issued by theinterface controller. Usingthe event graph in Figure 7-

14,theaddress latching eventis the falling edgeof theVME DSL control signal, routed from the

protocol controller.

mem.WE L

memA<10:l>

mem.IO<15:0>

mux •Dsel<0>

QD vme.A<10:l>

DS_L

Dsel<l>

vme.D<15:0>

Dsel<2>

Figure 8-7 : Datapath for VMEbus Interface

TMS320 to Optical Link Interface

The flow graph representing multiplexed communication between theTMS320 uni-processor

and the TAXI optical transmitter was shown in Figure 6-12.The datapath synthesized from the

data flownodesandedgesis illustrated in Figure 8-8.The TMS XA latchcorresponds to anaddress

latchallocated during generation of the event graphs, shown in Figure 7-15. In the first interlocked

event graph, the falling edge of the TMS XRDY_L signal is suitable for latching the TMS address

anddata. It is also possible to latchthe address with theTMS IOSTRBJL falling edge, while the
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data is still latched with the XRDYL falling edge.The multiplexor transfers the TMS address XA

ordataXD to theTAXI DIbus depending on which Dselbit is asserted. It is generated because the

TAXI DI signal receives address from theTMS XA signal during the first control stepand receives

data from allocated storage elementduring the second step.

QD .....__ fmrY/li'?*^

mux

RDY_L

taxi.DI<7:0> *+—

QD

T

• • usel<u>

fmcYn<'?,rts

RDYJL

u*ei**i s

Figure 8-8 : Datapath forTMS320 to Optical link Interface

The interface controller asserts the Dsel<0> selectline during the first control step, followed by

the Dsel<l> line during the second. This multiplexestheTMS address first andthen the data to the

TAXI destination. This exampledemonstrates how the datapath provides the link from sources to

destinations, but it is the interfacecontroller that determines when certain paths areenabled

according to the schedule..

A/D Module to Optical Link Interface

The datapath forblock transfers betweenanA/D moduleandtheTAXI opticallink is shownin

Figure 8-9. It is generated from the flow graph in Figure 6-13. During the first control step, the

interface sends a header '10' vector to the TAXI CI bus. This bus remains disasserted during the

next control steps. Accordingly, in the datapath, the first multiplexor passes the "10" bit vector to

the CI destinationwhen the Dsel<0> bit is asserted. It should be kept in mind that the multiplexor
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is just a functional requirement. In the final implementation, the multiplexor function may be

implemented with a AND gate instead of an actual mux gate. This will be determined during the

final step of logic synthesis.

taxi.CKl:0>

'001'
Dsel<l>

'010'
Dsel<2>

'Oil'
Dsel<3>

'100'
Dsel<4>

'101'
Dsel<5>

taxi.DI<9:0>

mux

mux

QD

T
RD L

•'10'
•Dsel<0>

adc.SEL<2:0>

adc.DB<9:0>

Figure 8-9: Datapath for A/D Module to Optical Link Interface

During the next six control steps, the interfaceconsecutively sends out a constant address. This

behavior is mapped to tiie secondmultiplexor. Each constantis selected with an unique Dsel bit.

Originally, the multiplexor had a constant '000' accompanied by a Dsel bit. Datapath

optimizations eliminated these two terminals, because a zero vector is passed when all the Dsel

bits have been disasserted. The complete Dsel word from the interfacecontrolleris Dsel<5:0>.

As shownin Figure 6-13, the address selects one of six converters in the A/D module to outputa

data word on the DBbus, which is transferred to theTAXI DI bus.The datatransfer is represented

with the assignmentnode in control steps 2 through 7. Each assignmentnode has identical input
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and output signals, so they map to one data link as shown in the datapath figure. As shown in

Figure 7-16, the event graph generation step allocated a data latch, which is inserted on the data

bus during this synthesis step.The data is latched with the A/D RDL control signal routed from

the protocol controller.

8.2 Protocol Controller

The synthesis of the protocolcontrollershown in Figure8-10 is elaborated in this section.The

protocol controller coordinates the sequencing and timing of protocol events to synchronize

clustered transfers. Specifically, it implements the behavior represented in the event graphs.

datapath

Dselt

interface
controller

Eselj fRdy

latch

pr<rtoatfc<3tiro8<#

Interlocked

Event
Graphs
(ASTG)

Synthesis

Ev0tiiGraphs
(external tool)

Boolean Logic
Equations

ALOHA
I/O netiist (SDL),
Time Constraints

(CLOVER)

Figure 8-10 : Protocol Controller Generation Using ALOHA and External Tools

There are three general techniques for synthesizing a logic network from the event graphs:

asynchronous, mixed asynchronous/synchronous and synchronous. Section 2.1 of Chapter 2

reviewed existing asynchronousand mixed asynchronous/synchronous techniques applicable to

automatically creating logic from event graphs. Toolsexternalof ALOHA arealreadyavailable to

synthesize the logic using the reviewed techniques, and they areused insteadof developing new

ones. In contrast, synthesis of the datapathand interface controller logic is built into ALOHA. The

netiist of protocol controller input and output signals and list of time constraints specified in the

event graphs are generated by ALOHA.
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Forthe sake ofcomplete coverage, this sectionsurveysall threetechniques andcomments on their

usefulness toward board-level systems. It also presents other important implementation details that

apply for any technique used. The section concludes by illustrating the synthesized control logic

for the standard four applications.

8.2.1 Synthesis from the Event Graph

Asynchronous Design Style

The techniques based on signal transition graphs can be used to synthesize asynchronous

deadlock-free and hazard-free logic [Chu87b] [Meng89] [Martin86] [Moon91]. They work best

with event graphs formed from asynchronous handshakeprotocols, such as the last three examples

presented above. Since STG-based techniques are based on the formalism of the representation,

they can detect deadlockandhazards in the logic to be synthesized from the graph input itself. The

graphs can also be manipulated to eliminate these types of conditions. However, the one real

limitation is that these synthesis techniques (rather than their representation) do not effectively

work for interfaces with mixed synchronous and asynchronous protocols which are present in

many real systems.

At the time of this writing, the only existing tools available to ALOHA for synthesizing the

protocol control logic are ones based on the STG. To link into these tools, ALOHA translates the

event graphs into the ASTG text format, which is compatible with two of these tools, Async

[Jones90] and ASTG [Moon91]. Althoughthey use different algorithms, both can synthesize the

asynchronous and delay insensitive finite-state machine from the STG versionof the event graph.

The FSM implementation consists of booleanequations for each output control signal,where an

output is also a state. Each output equation consists of product-terms describing the state of the

inputs and outputs that cause the next output level to rise or to fall. ASTG is partof the Berkeley

Sequential Interactive System (SIS), and it provides hazard-free and delay-insensitive verification

capabilities based on COSPAN [Har'E188][Moon92]. Async and ASTG considersonly the event
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sequencing constraints in the graphs, ignoring time constraints like its predecessors [Chu87b]

[Meng89] [Martin86], requiring the logic implementation to be verified for time constraint

violations thatmay be present in the protocol. Currently, the logic implementation is manually

modified to eliminate time constraint violations.

Mixed-mode Design Style

Janus is a tool that can synthesize protocol control logic from acyclic event graphs

[Borriello87]. The technique supports amix of asynchronous andsynchronous protocols and also

considers time constraints. This makes Janus readily suitable for real system interfaces, but no

suitable software implementation for our computer network was available at the time of this

writing. All the event graphs for the interface examples in the previous section canbe synthesized

with this tool.The resulting logicwill be hazard-free and satisfytime constraints, but it may not be

delay-insensitive (not including time constraints,of course) or deadlock-free. The last one is an

artificial limitation. Deadlock is a behavior condition where the sequential circuitgets stuck in an

unintended state. Fortunately, the condition canbe detected in the original cyclic event graph by

checkingif the graph is strongly connected. If it is not, then precedence edgescanbe modified or

inserted to make the graph strongly connected, yet satisfying the original precedence constraints.

Rromthe new event graph, a deadlock-free logicnetwork is synthesized.

Comparing the asynchronous and mixed-mode techniques, synthesis from acyclicevent graphs

canhave as robust resultsas the STG techniques as long as the event graph is treated like a STG

before synthesis. No matter which representation is used, it should be checked for hazard or

deadlock conditions before synthesis. The deadlock condition can be eliminated in the same

manner for either representation. However, no formal methods havebeendeveloped for specifying

how to manipulate the event graph to eliminate deadlock. Currently, thatis alsodonemanually.
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Synchronous Design Style

Besides the asynchronous ormixed asynchronous-synchronous realizations, the protocol

controller canalso be implemented witha strictly synchronous finite state machine. In fact, some

interface designs today are implemented with synchronous FSMs. The clock samples protocol

events according to its (clock's) own periodicity, which must be finer than the smallest time

constraint For example, if the interface converts between an asynchronous protocol with a"30ns

max" time constraint and a synchronous protocol with a clock period of 50ns, the protocol

controller clock should runusinga period less than 30ns. Also, a period greater than 50ns will

cause thecontrol logic tomisssynchronous events occurring every 50ns. The synchronous method

generates a FSM implementation with anequal or lessnumber of states than the previous two

methods and which uses the absolute minimum amount of product-terms. The penalty for less

complexity is a reduction in performance. This is because a periodic clockdoes not sample

asynchronous events as soon as the events occur. For example, an event occurring 60ns after a

50ns clock sample edge will be detected after the second clock sample (100ns). Whereas, the

asynchronous and mixed-mode controllers willreact toanyeventassoon astheeventoccurs.

Synchronous circuits operating in an asynchronous environment are susceptible to two possible

types of failures. First, synchronous control logic for mixed asynchronous and synchronous

protocols may have metastability problems. To reduce the chance of metastability, sampling of an

input protocol signal can bedone with a"metastability hardened" register orwith multiple stages

of registers [Kleeman87]. In the multi-stage technique, experience with actual implementations

[Srivastava91b] shows that twostages are usually sufficient for theminimum amount ofcadditional

hardware. Obviously, interfaces that integrate hardware operating from a single global clock are

ideal candidates for the synchronous implementation style. For physically large systems, such

interfaces can suffer from clock skew if the condition exists.



169

Perspective

This section has surveyed three implementation styles for the protocol control logic. The

appropriate style to choose depends on the types of protocolsbeing converted. Looking at this

issue from a high-level synthesis view,the key is thatALOHA can integrate any tool forsynthesis

from event graphs as they aremade available. The flow graph andevent graph representations do

not restrict the implementation of the event graph behavior to a particular style or synthesis

technique. Currently, ALOHA outputs the event graphs in the ASTG format which is compatible

with the Berkeley Synthesis tools, but other formats also can be obtained by translation. In

addition, information aboutthe time constraints must be passed on to the synthesis tools, the low-

level design tools or the simulation/verification tools. Timing information is accessed from the

protocol event graphs, and they too can be translated to various tool formats.

8.2.2 Synthesis from Multiple Event Graphs

The protocol controller can execute many event graphs. As inter-module communication

progresses from one transfer to the next, the interface controller selects the event graph that

accompanies the particular transferusing the Esel word, as shown in the interface template of

Figure 6-4. The previouslydescribed techniques synthesize logic for one event graph at a time.

ALOHA combines the individualsolutions to form a complete controllerby assigningEsel values

andadding logicconstraints, independent of the event graph synthesis technique used.

The Esel word is N bits wide, where N is the numberofunique interlockedevent graphs exercised

by the protocol controller. Each event graphis assigned an Esel value that enables it For the Nth

event graph, ALOHA forms the specific value by setting the (N-l)th bit to 1 and the other bits to 0.

Forexample, in the TMS320 interface ofFigure 7-13, the two event graphs contribute to a two bit

Esel word, Esel<l :0>. The interlocked event graph for the write access is selected with the

Esel<0> bit, or Esel<l:0>='01\ The interlocked graph for the read access is enabled with the

Esel<l> bit, or Esel<l:0>='10\ To capture this information in the flow graph, the sync node is
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Figure 8-11: Annotating A Flow Graphwith Assigned Dsel and Esel Bits
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A protocol controller that implements multiple event graphs also requires additional logic

constraints. As described before, the logic equation for an outputcontrol signal is synthesized

separately from each event graph. Then ALOHA conditions the entire logic expression on the

assigned Esel value. This is the first logic constraint. When an output signal is inactive in a

particular event graph, thenis must be set to a logic0 level if the signal is activehigh,or setof a

logic 1 levelif the signal is active low. This is the second logic constraint After the equations (for

an output)have been synthesized from eachevent graph, the final logic equation for an output

signal is the logical OR of the individual expressions. The resulting equation may have redundant

minterms, some of whichare retained to eliminate hazard conditions, whilethe others are dropped

to minimize tiie expression.
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8.2.3 Expressing Time Constraints

From experience with currently available tools, the designer has to manuallydealwith time

constraints at some point in the event graph synthesis phase or in the low-level design phase. To

support this, ALOHA produces a summarized list of all the time constraints in the CLOVER

format [Doukas91]. In fact, the list is similar to the tables found in data sheetsandspecification

manuals that describe time constraints or "AC characteristics". The CLOVER format has two

basictypes of statements. The first describes a general time constraint As discussed in Chapter 3,

a time constraint is an interval of time between two events,and an event is a transition on a signal.

Legal transition values are shown in Table 3-2 in Chapter 3. So, the time constraint statementhas

the format:

signal1 valuel -> [min_timemax_time] signal2value2;

The first signaland value pairdescribe the initial event, the second signal and value pairdescribe

the last event, and the closed intervaldescribes the time interval. The general CLOVER statement

is like a weighted guarded command. Examples of time constraints expressed in this format are

shown in Figure 8-12. The event graph for the SRAM write cycle is from the module library and

repeated from Figure 3-5. The fall and rise transition values are denoted with "f' and V,

respectively. The first CLOVER statement describes the address set-up time constraint. It

corresponds to the event precedence from address stable (ADDR s) to chip select falling (CS_L-).

The precedence has an explicit "5ns min" time constraintand an implicit infinite max time. The

CLOVER statementdenotes infinitemax time with "...". The time constraint from the chip select

rise to the datainvalid event has an explicit min andmax time.

The second type of CLOVER statementspecifically describes pulse widths. A pulse width is just

the time interval between a rise and fall transition occurring on the same signal,creatinga logic-

high pulse or a logic-low pulse. It has the formats:
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CLOVER Time Constraints:

ADDRs->[5...]CS_Lf;

CS_Lr->[510]DATAx;

width(CS_LO)>=40;

Figure 8-12: Time Constraints in the CLOVER Format
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width (signal value) >=min_time;

width (signal value) <=max_time;

The former is for minimum pulse width, and the latteris for maximum width. The transitionvalue

is either "0" or"1", representing alowpulse orhighpulse. For example, thetimeconstraint for the

chipselectlow pulseis shownin Figure 8-12. This statement is justa specialized andbrief form of

the general statement for pulse widths.
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8.2.4 Examples

This section presents the booleanequations that implement the event graphs for each of the

four standard examples.They were produced by the ASTG tool in the EQN format [Sentovich88].

The Esel signals were inserted after synthesis with ASTG. Included are the time constraints that

accompany each example. The time constraints are expressed in the CLOVER format, and they

should be compared to their interlocked event graphs in Section 7.4. This section uses each

example to highlight important but different features of the protocol controller logic and timing

specification.

Optical Link to D/A Module Interface

Figure 8-13 illustrates the I/O structure of the protocolcontroller inside the optical link to D/A

module interface, and it also gives the synthesized sequential boolean equations. The control

outputs are the D/A LDACJL signalandthe acknowledged signal to the interfacecontroller. From

the two event graphs in Figure 7-12, a boolean equation is synthesized for each output signal, as

shown in Figure 8-13 in the EQN format. To read an equation, "+" represents a logical OR, "*"

represents a logical AND, "!" means the complement of a signal, and ";" denotes the end of the

equation. Since the equationexpresses sequential logic, output signalshave a currentand previous

value. So, LDAC_L is the current value, while LDACJL' is the previous value.

Each output equation consists of product-terms describing the state of current inputs and previous

outputs that cause the current output level to rise or fall. For example, in the first event graph of

Figure 7-12, the output signal, A, is asserted when the R and DSTRB signals both become high.

This leads to the "taxid.DSTRB*Ictrl.R" product-term in the boolean equation for the Ictrl.A

signal, shown in Figure 8-13. In the second event graph, the output A is assertedwhen the R signal

becomes high, leading to the "Ictrl.R*Ictrl.A"' product-termin the same boolean equation.

Since the boolean equations are generated from two event graphs, the Esel<0> bit enables the

product-terms that implement the first event graph in Figure 7-12, while the Esel<l> bit enables
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LDAC L
- ^ j

dac

dac.LDAC_L =
Esel<0> +

Esel<l>*( !Ictrl.R*dac.LDAC_L' + !taxid.DSTRB*dac.LDAC_L' +
dac.LDAC_L'*Ictrl.A' + !taxid.DSTRB*Ictrl.A' );

Ictrl.A =

Esel<0>*( taxid.DSTRB*Ictrl.R + Ictrl.R*Ictrl.A' +
taxid.DSTRB*Ictrl.A' ) +

Esel<l>*( Ictrl.R*Ictrl.A' + Idac.LDAC L');

Figure 8-13 : Protocol Controller for Optical link to D/A Interface

the second event graph. Forexample, in the boolean equation for the R output,the product-terms

conditioned on Esel<0> produce riseand fall transitions on the outputaccording to the first event

graph. Also, the product-terms conditioned on Esel<l>produce output transitions according to the

second event graph.

The time constraints thatthis interface must satisfyare listed in Figure 8-14using the CLOVER

format The constraints areimposedby the individual ports involved in the communications, so

ALOHA generated them from the individual event graphs shownin Figure 7-12.The event graph

namecorresponding to a set of timeconstraints is givenin the"# Moduleport/protocol:" comment

line. The time constraintsare given in "ns" units.



# CLOVER Timing Constraints.
#

# Time Unit: "ns"

# Module port/protocol: dac/dacb write
#

width(dac.LDAC L 0) >= 50;
dac.LDAC L r -> dac.D x;
dac.D s -> [30 ...] dac.LDAC L f;
dac.LDAC L r -> dac.WR L 1,
dac.WR L 0 -> dac.LDAC L f,
dac.LDAC L r -> dac.NA L x,
dac.LDAC L r -> dac.NB L x,
dac.LDAC L r -> dac.NC L x,
dac.NA L s -> dac.LDAC L f,
dac.NB L s -> dac.LDAC L f,
dac.NC L s -> dac.LDAC L f,
dac.LDAC L r -> dac.BankSel x;
dac.BankSel s -> dac.LDAC L f;

# Module port/protocol: taxid/rcvD
#

width(taxid.DSTRB 1) >= 3*period/4;
taxid.DSTRB f -> taxid.Do x;
taxid.Do s -> [2*period/4 ...] taxid.DSTRB r;

Figure 8-14 :Time Constraints for OpticalLink to D/A Interface

175

VME System Bus Interface

Figure 8-15 shows the I/O structure and the boolean equations that implement protocol

conversion between the VMEbus and a staticmemory module. The VME DTACKL, memory

chip selectCS andinterface controller A outputs go to an external block. Using the event graphs

from Figures 7-13and 7-14,theboolean implementations are synthesized for each of these output

signals, as shownin Figure 8-15. There is also another equation for the signal x, whichis actually

a signal internal to the protocol controller. As explained before, the event graph structure is

modified with extra precedence edges to eliminate hazardousbehavior like deadlock. In addition,
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sometimes extra events need to be inserted to ensurethat the new event graph is implementable,

such as using x+ and x-.

mem \<*r
CS

Done

Interface

controller

(Ictrl)

*Q
/^ protocol

AS L

DS L

DTACK L
=•>

i vme

vme.DTACK_L =
Esel<0>*( Imem.CS' + vme.DS_L + x'*vme.DTACK_L' ) +
Esel<l>*( mem.CS' + mem.Done );

mem.CS =

Esel<0>*( !mem.Done*mem.CS' + !lctrl.R*mem.CS' +
Ictrl.A'*mem.CS' + !x'*mem.CS' + vme.DS_L +
!vme.DTACK_L' + !x'*!Ictrl.R*!mem.Done +
!x'*Ictrl.A'*lmem.Done ) +

Esel<l>*( !Ictrl.R*vme.DS_L + vme.DS_L*mem.CS' +
vme.DS_L*Ictrl.A' + !mem.Done*mem.CS' +
!Ictrl.R*mem.CS' + Ictrl.A'*mem.CS' );

Ictrl.A =

Esel<0>*( Ictrl.R*Ictrl.A' + Imem.CS' ) +
Esel<l>*( Ictrl.R*Ictrl.A' + Imem.CS' ) =
(Esel<0> + Esel<l>)*( Ictrl.R*Ictrl.A' + Imem.CS );

x =

Esel<0>*( vme.AS_L + x'*mem.CS' ) +
lEsel<l>;

Figure 8-15 : Protocol Controller for VMEbus Interface

ALOHA assigned the Esel<0> bit to select the event graph that synchronizes the write access,

shown in Figure 7-13. The Esel<l>bit selectsthe event graph in Figure 7-14 to synchronize the

readaccess.The CLOVER time constraints arelisted in Figure 8-16.



# C]

#
# Tj

-iOVER Timing Constraints.

Lme Unit : wns"

# Modu'le port/protocol: mem/writem2
mem CS L f -> [40 .. .] mem.ACK L f;
mem CS L r -> mem.ADDR x;
mem .ADDR s -> [5 ...] mem.CS_L f;
mem .CS L r •-> mem.WE_ L x;
mem .WE L 0 •-> mem.CS"-_L f;
mem CS_L r •-> [5 ...] mem.DATA x;
mem DATA s •-> mem.CS__L f;

# Module port/protocol: vme/dtb write
width(vme.AS L 1) >= 30;
vme DTACK L f -> vme AM x;
vme DTACK L f -> vme .IACK_L x;
vme AM S -> [10 ...] vme.AS_L f;
vme IACK L s --> [10 ..] vme.AS_L f;
vme DTACK L f -> vme A x;
vme DTACK L f -> vme LWORD L x;
vme .A S -> [10 ...] vme.AS L f;
vme LWORD L s -> [10 ...] vme.AS L f;
vme DS L r -> vme.WRITE L x;
vme WRITE L 0 -> [10 ...] vme.DS_L f;
vme DTACK L f -> vme D x;
vme D S -> [10 ...] vme.DS L f;

# Module port/protocol: mem/readm
mem CS L f -> [45 . . .] mem.ACK L f;
mem CS L r --> mem.ADDR x;
mem ADDR s •-> mem.CS__L f;
mem CS L r -> mem. WE" L x;
mem WE L 1 -> mem.CS"y f;
mem CS L r -> [0 301'mem.DATA z;
mem CS_L f -> [0 45] mem.DATA s;
mem DATA S -> mem.ACK_L f;

# Module port/protocol: vme/dtb read
width(vme.ASL 1) >= 30;
vme DTACK L f -> vme .AM x;
vme DTACK L f -> vme .IACK_L x;
vme .AM S -> [10 ...] vme.AS_L f;
vme .IACK L s --> [10 ...] vme.AS L f;
vme .DTACK L f -> vme .A x;
vme .DTACK L f -> vme .LWORD L x;
vme .A S -> [10 ...] vme.AS L f;
vme .LWORD L s -> [10 ...] vme.AS L f;
vme .DS L r -> vme.WRITE L x;
vme .WRITE L 1 -> [10 ...] vme.DS L f;
vme .DS L f -> vme.D s;
vme .D s -> <vme. DTACK _L f;

Figure 8-16 : Time Constraints for VMEbus Interface
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TMS320 to Optical Link Interface

The protocolcontrollerI/O and booleanequation for the TMS320 to optical link interface is

illustrated in Figure 8-17. It has threeoutput signals, and a booleanequation is synthesized for

eachoutput from the two interlocked event graphs in Figure 7-15.The Esel<0> bit selectsthe first

event graph which interlocks the TMS andTAXI protocols. The Esel<l> bit selects the second

event graph for synchronizing a transfer fromaninterface register to the TAXI port.

taxi •*•
STRB

ACK
>•

Interface

controller

(Ictrl)

33
jprsDtocoi

soniroiier

IOSTRB L
< —

XRDY L \

tms

tms.XRDY_L =
Esel<0>*( tms.IOSTRB_L*taxi.STRB' +

tms.IOSTRB_L*tms.XRDY_L' +
tms.XRDY_L'*taxi.STRB' ) +

Esel<l>;

taxi.STRB =

Esel<0>*( !tms.XRDY_L'*!taxi.ACK*Ictrl.R*!Ictrl.A' +
!taxi.ACK*taxi.STRB' +

!tms.XRDY_L'*taxi.STRB' +
!Ictrl.A'*taxi.STRB' ) +

Esel<l>*( Ictrl.R*!taxi.ACK*!lctrl.A' +
!taxi.ACK*taxi.STRB' + taxi.STRB'*!Ictrl.A' );

Ictrl.A =

Esel<0>*( taxi.STRB' + Ictrl.R*Ictrl.A' ) +
Esel<l>*( taxi.STRB' + Ictrl.R*Ictrl.A');

Figure 8-17 : Protocol Controller for TMS320 to Optical Link Interface

The time constraints that the interface must fulfill are shown in Figure 8-18.These constraints

come from the external port protocols, represented with the "xmt" event graph for the TAXI

protocol andthe "exb_write" event graph for theTMS protocol. Accordingly, ALOHA generates
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two sets of time constraints. As shown in the figure, the first set is the time constraints imposed by

the TAXI port.Forexample, the constraint "taxiSTRB r -»[0 40] taxiACK r" corresponds to the

40nsmax time constraint on the STRB+ to ACK+ precedence edge in Figure7-15. The "taxi.DI s

-»[5 ...] taxiSTRB r" time constraint describes the 5ns minset-up time for the TAXI DI datawith

respect to the STRB+ event. The "taxiSTRB r -> [15 ...] taxiDl x" constraint specifies the hold

time for the TAXI DI data with respect to STRB+. The precedence edge [STRB- -» STRB+]

corresponds to the time constraint "widlh(taxi.STRB0) >= 15".

The second set of time constraintsareimposed by the TMS port.The time constraint "tmsXA s -»

tmsJOSTRB_L f' specifies a Ons minaddress set-up time before the IOSTRBJb- event occurs.This

comes from the [XA s -»IOSTRB_L-] precedence edge in Figure 7-15. litis edge has no explicit

time constraints accompanying it, like the other examples above. In this case, the unweighted

precedenceedge implies a time interval from 0 to infinity, which is equivalent to Ons min.

# CLOVER Timing Constraints.
#
# Time Unit: nns"

# Module port/protocol: taxi/xmt
#
taxi.STRB r -> [0 40] taxi.ACK r;
taxi.STRB f -> [0 20] taxi.ACK f;
taxi.STRB r -> [15 ...] taxi.CI x;
taxi.CI s -> [5 ...] taxi.STRB r;
taxi.STRB r -> [15 ...] taxi.DI x;
taxi.DI s -> [5 ...] taxi.STRB r;
width(taxi.STRB 0) >= 15;

# Module port/protocol: tms/exb_write
#
tms.IOSTRB_L r -> tms.XD x,
tms.XD x -> tms.IOSTRB_L f,
tms.IOSTRB_L r -> tms.XA x,
tms.XA s -> tms.IOSTRB_L f,
tms.IOSTRBJL r -> tms.XR_W_L x;
tms.XR W L 0 -> tms.IOSTRB L f;

Figure 8-18 :Time Constraints for TMS320 to Optical Link
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A/D Module to Optical Link Interface

This protocol controller synchronizes the transfer of a header and then a block transfer both

from the A/D module to TAXI opticallink. As shown in Figure 8-19, the boolean equations that

implement synchronizationare synthesized from the two event graph in Figure7-16. The Esel<0>

bit enables the first event graph for the header transfer. The Esel<l> bit enables the second event

graph for the block transfer. The accompanyingtime constraints are listed in Figure 8-20.

taxi \. STRB

ACK

Interface

controller

(Ictrl)

rL ta

protocol
BUSY L

RD L j
=—• !

adc

adc.RD_L =
Esel<0> +

Esel<l>*( adc.BUSY_L*!taxi.STRB'*Ictrl.A' +
!lctrl.R*adc.RD_L' + adc.BUSY_L*adc.RD_L' +
adc.RD_L'*Ictrl.A' + !taxi.STRB'*adc.RD_L' );

taxi.STRB =

Esel<0>*( !taxi.ACK*Ictrl.R*!lctrl.A' +
!taxi.ACK*taxi.STRB' + taxi.STRB'*!Ictrl.A' ) +

Esel<l>*( !taxi.ACK*adc.RD_L' + !taxi.ACK*taxi.STRB' +
taxi.STRB'*adc.RD_L' ) ;

Ictrl.A =

Esel<0>*( taxi.STRB' + Ictrl.R*Ictrl.A' ) +
Esel<l>*( !adc.RD_L' + Ictrl.R*Ictrl.A' );

Figure 8-19 : ProtocolController for A/D Module to OpticalLink Interface

In Figure 8-19, the booleanequation for theRD_L output signal consists of two parts. The lastpart

consistsof product-terms that implement theRD_L rise and fall transitions shown in Figure 7-16.

Comparing the two interlocked event graph in the figure, theRD_L signal is only activeduring the
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blocktransfers. It remains inactive during theheader transfer of control step 1. On thiscontrol

step, theinterface controller issues Esel<0>=l and Esel<l>=0 connected totheprotocol controller,

whichin tum disables the product-terms and theRDL signal. RDL is activelow, so it is set to

logic level "1" to disassert it.

# CLOVER

#
# Time Ue

Timing Constraints.

lit: wns"

# Module

#
taxi.STRE

taxi.STRE

taxi.STRE

taxi.CI s

taxi.STRE

taxi.DI s

width(tax

port/protocol: taxi/xmt

r -> [0 40]
f -> [0 20]
r -> [15 ..
-> [5 ...]
r -> [15 ..
-> [5 ...]

i.STRB 0) >=

taxi.ACK r;
taxi.ACK f;
.] taxi.CI x;
taxi.STRB r;
.] taxi.DI x;
taxi.STRB r;

• 15;

# Module

#
adc.RD_L
adc.RD L

adc.CS_L
adc.RD_L
adc.DB s

adc.RD_L
adc.DB x

width(adc

port/protocol: adc/b_readl

f -> [0 70]
r -> adc.CS_
s -> adc.RD"
f -> [0 70]"
-> adc.RD L

r -> [5 50]
-> adc.RD L

.RD_L 0) >=

adc.BUSY_L r;
L x;

~L f;
adc.DB s;
r;

adc.DB x;

f;
75;

Figure 8-20: Time Constraints for A/D Module to Optical Link
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8.3 Interface Controller

The interface controller implements the flow graph schedule and configures the datapathand

protocol controller on each control step, using the Dsel and Esel words, respectively. The interface

controller is synthesized onto a hardwired finite state machine, where a control step of the flow

graph is equivalent to a single state of the FSM. Highlighted in Figure 8-21, generation of the

interface controller and also the timing interactionbetween the interface controller and the rest of

the interface are described below.

datapath

Dself

Interface
controller

Esett^Rdy

latch

protocol controller

Scheduled .
Flow grapFT^

Generate
, Interface
Controller

RTL netiist (SDL),

FSM specification
(BDS)

Figure 8-21: Interface Controller Generation andOutputFormats from Synthesis

8.3.1 Compiling the FSM Specification

At this point in the synthesis process, the flow graph schedule is represented by hierarchical

control nodes(conditional IFand concurrent CONQ and by control precedence edges. Recall, that

hierarchical iteration nodes have been unrolledinto concurrent nodes. A control node, or control

step,corresponds to auniqueFSM state, whilea precedence edgecorresponds to a statetransition.

Guard nodes thatdrivethe IFcontrol nodes determine whichone of several states to branch to, so

it maps to acondition on thestate transition. ALOHA constructs a state transition graph from the

schedule using these correspondences. Since thestate graph is another internal representation, it is

then translated into a specification of aMoore finite state machine in theBDS format [Segal88].
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Creating FSM States

A FSM state is created for each hierarchical control nodein the flow graph. Synthesis assigns

a symbolicname andbinary representation to eachstate as it is created. During translation to the

BDS specification, the state maintains both identifications. In a Moore implementation, the Dsel

andEsel selectwords are outputs dependent on the state. The specific outputvalue is formed from

all the annotated Dsel andEsel bits in the control stepunderconsideration. Figure 8-22illustrate

this stepwith theTMS320 interface example. This figure only showsthecontrol flow; the full flow

graphis shown in Figure 8-11. In Figure 8-22, the IF control node transforms to the first state,

whichoutputs the Dselword "01" and the Esel word "01". The CONC control nodemapsto the

second state, which outputs the Dsel word "10" and the Esel word "10".

scheduled flow graph:

©

stepl pO

tmsXR_W_L->^guardVWl]fY

taxi/all——(syna

Pi

step 2

state transition graph:

guard

Figure 8-22: Derivingthe StateTransition Graphfrom the Flow Graph

Creating State Transitions

Once all the FSM states have been created from the schedule, the next step is deriving the

transitions from one state to the next For each state, synthesis gets the correspondingcontrol step
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in the flow graph, and then traverses the outputprecedence edges. Eachedge leads to the next

control step, whichdetermines the next state. When traversing the output precedence edges, there

are three possible situations.

First, onlyoneprecedence edge exists and it leads to aconcurrentnode. The state corresponding to

the concurrent node is the only possible next state. The precedence edgelabeled "pi" in Figure 8-

22 demonstrates this case. It maps to the unconditional statetransition "tl".

Second, the precedence edge leads to one ormore IFnodes such as the "pO" edge in the Figure 8-

22. A state transition, such as "tO", is created for each branch and conditioned on the guard that

drives the corresponding IF node. The FSM uses information signals from external ports and its

current state to evaluate the guard. When there aremultiple IF nodes, only one guard evaluates to

true, so that the branches aremutually exclusive. If no guardsevaluate to true, then no branch is

taken, andthe interface controller remains in the same state. On thenext FSM cycle, the controller

evaluates the guardsagainuntil a true occurs.

In the last case, the original control step is the final step in the schedule, and thereare no output

precedence edges. The concurrent node in Figure 8-22 is an exampleof such a control step. The

interfacecontrolleractuallyrepeats the schedule, so the state transition returns control to the first

state, as illustrated by the transition labeled "tO" in the figure.

Optimizations

The constructed state graph canbe optimized to simplifythe FSM logic implementation. So

far, the interfacecontroller is assumed to be sequential. In some cases, it can be reduced to a

combinational controller. This optimization is made by examining the flow graph for exactly one

control step. For example, theVMEbus interface in Figure 8-28meets theserequirements, andits

state graph is reduced into acombinational truth table. In a sense, its interface controller is always

in a default statewhich is testing for a reador write access.
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Another optimization seeks to reduce the number of output signals from the interface controller,

instead of reducing the number of states as in the previous case. Figure 8-22 illustrates this

optimization. Since the Dsel and Esel word outputted from every state is identical to one another,

they canbe mergedonto one selectword. The numberof output signals in this case is cut in half.

After the state graph optimizations, ALOHA generates the BDS specification of a FSM that

configures the datapath and protocol controller according to the schedulecaptured in the flow

graph. Examples are shown later.

8.3.2 FSM Timing

The FSM logic compiled from the flow graph schedule describes the computational engine of

the interface controller. The complete controller consists of the FSM anda timingblock, as shown

in Figure 8-23. The FSM has state memory and a combinational corewhich is drivenby external

informationsignalsand the internal current state. The input information signalsareusually status

wordslike read/write, address thatneeds to be decoded andpossibly data. Resell is a special input

signal introduced by ALOHA to the interface controller structure. Under system control,asserting

the signalresets the interface. Specifiedin the BDS combinational logic format, the core produces

the next stateand the outputDsel/Esel selectwords,both ofwhich arelatchedinto a set ofmemory

elements.

Just like inter-module communications, the passing of information between the FSM and the

external ports, datapath and protocol controller need to be synchronized. The timing block

contains logic that generates events for the memory clock signal and the Ictrl handshake.

The Timing Block

In the timing block consists of three circuits. First, the completion circuit emulates the

computational delay of the FSM core. The Gol or Go2 signal carry an event that triggers the

beginning ofa computation cycle. The completion circuit detects either event (edge-triggered) and
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Figure 8-23 : Internal Structure of the Interface Controller
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Esel
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then delays the event by the worst case propagation delay of the combinational core. After this

amount of time, the next state NS and Dsel/Esel outputs arrive at the memory elements, and the

completion circuit generatesa "completion" event on the comp signal.

As shown in the figure, mere are two Go signals. Gol triggers any computation cycle where the

FSM next state depends on input information words. The accompanying request signal, Req,

indicatesthe input informationwordsarevalid, so it is connectedto Gol. Forexample in Figure 8-

22, the TMS320 to optical link interfacecontroller monitors the XR_W_L status, an input to the

FSM core, and its validity is indicated by ihelOSTRB_L, as shown in Figure 7-15. The falling

10STRB_L event is conveyed on Gol and detected by the completion circuit. The second Gol

signal is generated within the interface controller. It triggers any computation cycle where the
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FSMnext state depends only the present state PS and not on any external information signals. For

example, advancing to state_2 in the state transition graph of Figure 8-22 only depends on the

present state, whereas advancing to state_l depends on the input signal XRJVL. So, the second

computation cycle should be triggered by an internal event rather than an external event like

TMS320 IOSTRB_L-. In otherwords, the interface controller self-times its own computations

using the Zjo2 signal. The request signal R produced by the handshake circuit "HS" is fed back to

the Go2 signal, and its falling edge triggers a new computation cycle. The Gsel signal selects

between the two Go signals, and it is acombinational function of the present state. Figure 8-24

illustrates a possible implementation of thecompletion circuit. The two edge-triggered flip-flops

perform edgedetection, and the delay element should have a delay thatmatches the worstcase

propagation delay of the FSM core. In the case where there is no externalReq signal that

accompanies the input information, the completioncircuit reduces to only the delay element

driven by Gol. In thecase where the input information is usedin everycomputation cycle, the

completion circuit alsoreduces to the delay elementbut driven by Gol.

Gsel

Gol
•— *• comp

Ubl

Figure 8-24: Completion Circuit Implementation

In Figure 8-23, the clock circuit derives a local clock, called Lupdate, to latch the next state word

(NS) and the Dsel/Eselconfiguration words into the memories. The asynchronous clock pulse is
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generated when the next state and configuration words have been computed, as indicatedby the

completion event on the comp signal, and when the current transferhas finished executing, as

indicatedby the rdy event The protocol controller generates the ready event when all the external

protocol signals begin to disassert, which indicates the end of the current transfer. When the clock

circuit has detected both these events, an intemal delay element mimics the delay of the memory

elements, and producesa done pulse. Hazardous behaviorcan occur if the source port for the input

information words does not have an acknowledge protocol event, because the information word

may disassert while the FSM is still computing. In this case, the information words should be

latched with the Gol signal, as shown in Figure 8-23. A possible implementation for the clock

circuit is shown in Figure 8-25. Like the completion circuit, it uses two edge-triggered flip-flops to

detect signal events on the comp and rdy signals.The AND gate forces the clock circuit to wait for

both these events to occur before the delay element produces the done pulse.

11 Lupdate

HS Circuit

comp
»•done done

Figure 8-25: Clock and Handshake Circuit Implementations

As described in the previous chapter, the Ictrl handshake synchronizes the action of the protocol

controller to the interfacecontroller. The "HS" circuit in Figure8-23 generatesthe Ictrl request (R)

from the done signal and the acknowledge (A)issued from the protocolcontroller. The done signal
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triggers the handshake since a done event indicates that the memories have latched in new Esel

wordsused by the protocol controller (andDselwordsused by the datapath). Figure 8-25 shows a

possible implementation for the handshakecircuit

Perspective

Localclock generation is the key to timing the FSM evaluation of the next stateand outputs

andtiming the update of memory. This concept allows a synchronous design style for the FSM

along with asynchronous operation in a mixed asynchronous/synchronous environment In effect

theinterface controller is a locally clocked asynchronous FSM, combining the advantages ofboth

methodologies.

In the synchronous design style, memory is a clocked latch compared to a SR-latch or delay

element in the asynchronous FSMcase. The synchronous stylehasmuch easier design techniques

andmuch more efficientlogicimplementations compared to the asynchronous alternative, because

it is unaffected by combinational hazard andrace problems thatburdens the asynchronous style.

However, to avoidmetastability andretain the performance of an asynchronous design, the FSM

memory elements are latched with an asynchronous clock that is derived from local events rather

than from a periodic clock.The combined advantages are easyandefficient implementations and

good performance.

The locally clocked scheme described above works best for state machines that perform

computationsrather than protocol conversion. It is similar to the scheme used in [Hayes81]. Of

course, the technique described forgenerating thelocal clock is not the only way to do it Research

in local clock generation techniques from [Nowick91] [Chuang73] [Rey74] [Yenersoy79] arebest

applied to synthesis ofprotocolcontrollogic.
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8.3.3 Examples

The FSMdescriptions of theinterface controllers for the four standard examples are presented

here. This includes the state transition graphs and the equivalent BDS format descriptions, and

explanations of the stategraph applyequally well to the BDS equivalent In the BDS format the

"!" character denotes a comment line.

The descriptions onlyaccount for theFSMcore in theinterface controller. ALOHA also generates

a register-transfer netlist comprised of the combinational core, the memory elements and timing

circuits. The BDS description is a parameter of the corecell.This section uses eachexample to

highlight important yet different features of the interface controller implementation and

specification.

Optical Link to D/A Module Interface

Figure 8-26 illustrates the complete state transition graph derived from the scheduled flow

graph. The equivalent BDS description of thestate graph is shown in Figure 8-27. As explained in

Section 8.3.1, each control step corresponds toa state nodein thestate graph. For example, control

step 1 maps to the state node with the symbolic name "state_l," which in turn carries over to the

BDS description. Similarly, the second control step maps to the "state_2" node in the state

transition graph and the"state_2" value in theBDS description. The BDS description also assigns

aninteger code to each state asshown in the"State Assignments" portion of thedescription. The

integer codeis actually a short-hand notation for theequivalent binary code.

The statecalled "state_top" is a reset state that the interface controller starts up at when the

interface is reset. It corresponds to the start node intheflow graph. Thisstate isnotimplied by the

IDL input specification, and ALOHA introduces the reset state for all sequential interface

controllers. Discussed in Section8.3.2, theResetlsignal functions as an interface reset signal.

Shown with the shadededges, asserting Resetl forces the interface controller to return to the reset

state regardless of which state it is currently in. So, all the control step states have an output
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transition that leads to the reset state, which is taken if Resetl has a logic "1" level. The other

output transitions can be taken as long as Resetl has a logic "0" level, as illustrated with the solid

edges. In the BDS description, the first IF statement of the "main" ROUTINE describes the reset

behavior.

The interface controller FSM generates Dsel and Esel output values, as shown within the state

nodes of the state transition graph. The Dsel word controls multiplexors and tri-state buffers

created when the datapath was synthesized.The Esel word selects an appropriate event graph and

was assigned when the protocol controller logic was synthesized. During both those synthesis

phases, the data flow node (in the flow graph) that corresponds to a mux or tri-statebuffer and the

sync node (in the flow graph) that corresponds to an event graphareannotated with appropriate

Dsel or Esel bit When the state node is created, the Dsel bit vector is formed from the annotated

data flow nodes in the corresponding control step. Similarly, the Esel bit vector is formed from the

annotated sync nodes. For example, the sync node in the first control step of Figure 8-26 is

annotatedwith the Esel<l> bit, and the Esel<l> bit is inactive. So, the Esel<l :0> output word for

the "state_l" state is '01'. In the second control step, the sync node is annotatedwith Esel<l>. The

corresponding "state_2" state produces an Esel<l:0> output value of '10'. No data flow nodes

have a Dsel bit annotated to it, so the FSM for this particularinterface does not produce a Dsel

word. The output logic description is shown in the "Output Logic" section of the BDS description.

The interface controller FSM implements the state transition graph in Figure 8-26. Hie controller

is implemented as shown in Figure8-23. Forthis example, the completion circuit within the timing

block uses only the Gol input This simplification is made, because the input information is used

in every FSM cycle to compute the next state and outputs as shown in the signal transition graph.
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Figure 8-26 : Interface Controller for the OpticalLink to D/A Interface
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MODEL IctrlFsm

•! Outputs
nextState<l:0>,
zEsel<l:0>

!! Inputs
rst powerup_reset<0:0>,
taxic Co<l:0>,
Resetl<0:0>,
currState<l:0>;

!! State Assignments
CONSTANT state_top = 0;
CONSTANT state_l = IN
CONSTANT state_2 = 2;

! Subroutines:

ROUTINE reset<0:0>(xResetI<0>);
RETURN (xResetl);

ENDROUTINE reset;

! Main routine:
ROUTINE main;
!! State Transition Logic

nextState = currState; !default value

IF reset(Resetl<0:0>)
THEN nextState = state_top

ELSE SELECT currState FROM

[state_top]: BEGIN
nextState = state_l; END,

state_l]: BEGIN
nextState = state_2; END

[state_2]: BEGIN
nextState = state_l; END

[OTHERWISE]: BEGIN
nextState = state_top; END;

ENDSELECT;

!! Output Logic
zEsel = 00#2;
SELECT nextState FROM

[state_l]: BEGIN
zEsel = 01#2; END;

[state_2]: BEGIN
zEsel = 10#2; END;

ENDSELECT;
ENDROUTINE main;

ENDMODEL IctrlFsm;

Figure 8-27 : BDS Description of Interface Controller FSM
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VME System Bus Interface

The interfacecontroller for the VME system interfaceillustrates how optimizations generate a

combinational controller rather than a sequential controller. As shown in Figure 8-28, the flow

graph schedule does not contain any precedence between the read and write cycles. It only

specifies testing the input address and read/write status and branching to the write or read cycle.

Since the flow graph does not imply sequential control, the state transition graph is reduced to a

combinational representation. The flow graph shows three Dsel bits and two Esel bits. For the

write cycle, synthesis creates the Dsel<2:0> value '010' and the Esel<l :0>value '01'. For the read

cycle, Dsel<2:0> takes on the value '101' and Esel<l:0> takes on the value '10'.

The internal structure of the resulting interface controller is shown in Figure 8-28. The core is

specified by the BDS description in Figure 8-29. As illustrated by the structure and the "main"

routine in the BDS description, the core accepts VME address and read/write status inputs and

produces the Dsel and Esel words, and the core is independent of a state. The output latches in

Figure 8-28 buffer the two select words from the datapath and protocol controller.There is no

feedback from the core output back to its input andhence no state. Also, there is no reset signal.

In the BDS description, the subroutines correspond to the guards in the flow graph. Since this

example has two guards that control the IF nodes, there are two BDS subroutines. The "main"

routine corresponds to the overall control flow in the flow graph. For this example, the first IF

statement produces the Dsel/Esel values for the write access, while the second IF statement

produces the select values for the read access.

The original DDL specification, in Figure4-7 conditions both the write and read on the result of a

decode function described with its own BDS file (not shown). To account for this, the controller

core includes a combinational subcell (not shown) described by the decode BDS. The subcell's

output is the decode result This output is an input to a main cell described by the BDS description

of Figure8-29. In this description, the input called"return_6"corresponds to the subcell's output
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MODEL IctrlFsm

!! Outputs
zDsel<2:0>,
zEsel<l:0>

!! Inputs
return_6<0:0>,
vme WRITE_L<0: 0>,
vme A<14:11>;

! Subroutines:

ROUTINE cond_4<0:0>(xp_9K0:0>,xp_92<0:0>, dummy) ;
STATE g_6;
STATE g_5;

g_6 = xp_91<0:0> EQL 1#2 ;
g_5 = xp_92<0:0> EQL 0#2 ;
RETURN (g_6 AND g_5 );

ENDROUTINE cond_4;

ROUTINE cond_9<0:0>(xp_93<0:0>,xp_94<0:0>,dummy);
STATE g_ll;
STATE g_10;

g_ll = xp_93<0:0> EQL 1#2 ;
g_10 = NOT (xp_94<0:0> EQL 0#2 );
RETURN (g_ll AND g_10 );

ENDROUTINE Cond_9;

! Main routine:

ROUTINE main;
!! Output Logic

zDsel = 000#2; ! default value for outputs
zEsel = 00#2;

IF cond 4(return 6<0:0>,vme WRITE L<0:0>,0) THEN
BEGIN

zDsel = 010#2;
zEsel = 01#2;END

ELSE IF cond 9(return 6<0:0>,vme WRITE L<0:0>/0) THEN
BEGIN

zDsel = 101#2;
zEsel = 10#2;

END;

ENDROUTINE main;

ENDMODEL IctrlFsm;

Figure 8-29 : BDS Description for Interface Controller

196



197

TMS320 to Optical Link Interface

The complete state transition graph generated from the schedule for the TMS320 to TAXI

optical link interface is illustrated in Figure 8-30. The equivalent BDS description is shown in

Figure 8-31. TheFSMand timing are implemented as shown inFigure 8-23.

The IF control node maps to the "state_l" state node, while the CONC control node maps to the

"state_2" state node. The"statejop"reset state "statejop" is introduced by synthesis. TheResetl

attached to the input transition shows that the reset state is entered whenever the Resetl input is

asserted. Similarly, theXR_W_L complement on theinputtransitions to "state_l" shows that state

is enteredfrom "state_top" or"state_2"when thatconditionis met The conditioncomes from the

guard node thatenables the IF behavior (see corresponding DDL description in Figure 4-8). In

general, thecondition specified withtheIFbehavior maps toconditions attached to the transitions

in the state transition graph.

flow graph:

stepi

tmsJCR_W_L

taxilall

step 2

CD

state transition graph:

Resetl OR tmsXR W L

tmsXR W L

Figure 8-30 : Interface Controller forTMS320 to OpticalLink Interface



MODEL IctrlFsm

1! Outputs
nextState<l:0>, zDsel<2:0>, zEsel<l:0> =

!! Inputs
tms XR_W_L<0:0>, Resetl<0:0>, currState<l:0>;

1! State Assignments
CONSTANT state_top=0, state_l=l, state_2=2;

! Subroutines:

ROUTINE reset<0:0>(xResetI<0>) ;
RETURN (xResetl);

ENDROUTINE reset;

ROUTINE cond_6<0:0>(xp_78<0:0>,dummy);
STATE g_8;
g_8 = xp_78<0:0> EQL 0#2 ;
RETURN (g_8);

ENDROUTINE cond 6;

! Main routine:

ROUTINE main;
!! State Transition Logic

nextState = currState; default value

IF reset(Resetl<0:0>)
THEN nextState = state_top
ELSE SELECT currState FROM

[state_top]: BEGIN
IF cond_6(tms XR_W_L<0:0>, 0) THEN

nextState = state_l; END;
[state_l]: BEGIN

nextState = state_2; END;
[state_2]: BEGIN

IF cond_6(tms XR_W_L<0:0>,0) THEN
nextState = state_l; END;

[OTHERWISE]: BEGIN
nextState = state_top; END;

ENDSELECT;

!! Output Logic
zDsel = 00#2; zEsel = 00#2; 'default value

SELECT nextState FROM

[state_l]: BEGIN
zDsel = 01#2; zEsel = 01#2; END;

[state_2]: BEGIN
zDsel = 10#2; zEsel = 10#2; END;

ENDSELECT;
ENDROUTINE main;

ENDMODEL IctrlFsm;

Figure 8-31: BDS Description for Interface Controller FSM
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A/D Module to Optical Link Interface

Figures 8-32 and 8-33 showthe state transition graph andBDS description generated from the

schedule for block transfers between an A/D moduleand the TAXI optical link. The real BDS

description is very lengthy, so the"State Assignments" portion andthe resetsubroutine havebeen

omitted tocondense the description. The reset subroutine is identical to the onein Figure 8-31.

The start nodein the flow graph corresponds to thereset state in the state transition graph. The first

control stepmaps to "state_l", and the subsequent six control stepscorrespond to states "state_2"

through "state_7." The interface controller cycles through these seven states to coordinate the

transferof a headerword followed by six consecutive A/D words.

The flow graph shown in Figure 8-32originated from the initial flow graph constructed from the

IDL input specification, as shown in Figure 5-12. The iteration node was expanded to six

individual concurrent nodes, which in turngenerated six control states for the interface controller

FSM. In implementation, the sequencing due to iterations can be controlled with a counter. In

effect, the generated BDS description is alsoa description ofa counter.

The interface controller FSM implements the state transition graph. For this example, the

completioncircuitwithin the timing block uses only the Gol input This simplification is made,

because the inputinformation is usedin everyFSMcycle to compute the next state and outputs as

shown in the signal transitiongraph.
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MODEL IctrlFsm

!! Outputs
nextState<3:0>, zDsel<7 :0>f zEs el<l:0> =

!1 Inputs
Resetl<0:0>, currState<3:0>;

! Main routine:
ROUTINE main;
11 State Transition Logic

nextState = currState; 1 default value

IF reset(Resetl<0:0>)
THEN nextState=state top

ELSE SELECT currState FROM

[state_top]: BEGIN
nextState = state 1; END;

[state_l]: BEGIN

nextState = state 2; END;
[state_2]: BEGIN

nextState = state 3; END;
[state_3]: BEGIN

nextState = state 4; END;
[state_4]: BEGIN

nextState = state 5; END;
[state_5]: BEGIN

nextState = state 6; END;
[state_6]: BEGIN

nextState = state 7; END;
[state_7]: BEGIN

nextState = state _1; END;
[OTHERWISE ]: BEGIN

nextState = state top; END;
ENDSELECT;

!! Output Logic
zDsel = 000000#2; zEsel = 00#2; ! default values

SELECT nextState FROM

[state_l]: BEGIN

zDsel = 000001#2; zEsel = 01#2; END;
[state_2]: BEGIN

zDsel = 000000#2; zEsel = 10#2; END;
[state_3]: BEGIN

zDsel = 000010#2; zEsel = 10#2; END;
[state_4]: BEGIN

zDsel = 000100#2; zEsel = 10#2; END;

[state_5]: BEGIN

zDsel = 001000#2; zEsel = 10#2; END;
[state_6]: BEGIN

zDsel = 010000#2; zEsel = 10#2; END;
[state_7]: BEGIN

zDsel = 100000#2; zEsel = 10#2; END;
ENDSELECT;

ENDROUTINE main;

ENDMODEL IctrlFsm;

Figure 8-33 : BDS Description for Interface Controller FSM
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8.4 Summary

This chapter hasdescribed themapping of thebehavior in the flow graph andeventgraph toan

RTL structure and logic. The synthesis of the datapath and interface controller is built into

ALOHA,whereas ALOHAuses external tools that are already available to synthesize theprotocol

controller. The final specification of the register-transfer implementation includesa SDL netiist of

generic logic units for the datapath and interface controller, consisting of logic 1 wires, logic 0

wires, busses, registers, adders, primitive logic gates, combinational logic units, delay elements

andtiming circuits. The logic functions forcombinational logic units are described in BDS, such

as mux or decode functions. The netiist for the protocol controller is accompanied by sequential

boolean equations in the EQN format and time constraints in the CLOVER format. From the RTL

design abstraction, low-level design takes the logic and timing description into the physical

implementation, and therelated issues are presented in thenext chapter.



CHAPTER 9

Low-level Design

and Results

Transforming flow graphs and event graphs into a RTL structure and logic description

concludes the high-level design of interface generation, as shown in Figure 9-1.The low-level

design phase transforms the RTL design specification through the logical andphysical abstraction

levels to get the final physical implementation. Toolsarealready available for both logic synthesis

and physicaldesign, and they areutilized instead of developingnew ones within ALOHA.

High-Level Design

Algorithm-level
Behavioral
Synthesis

User
Specification
(IDL)

Event-level
Behavioral
Synthesis

Logic-level Time
Netiist + Constraints
(BDS, SDL) (CLOVER)

Figure 9-1: Design Flow for Interface Generation
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9.1 Logic Synthesis

The OCTTOOLS collection of logic synthesis tools can perform logic optimization and

minimization [Octtool91], and mapping ontoa desired technology. The MIS [Rudell88] andSIS

[Sentovich88] tools take a two level approach toward logic synthesis. First, the technology

independent optimizations andminimizations are made. The minimizations includeeliminating

redundancies from boolean expressions in the BDS or EQN format. Optimization tools include

NOVA whichassigns binary vectors to FSM states tominimize thelogicofthe combinational core

[Villa88].

At this level, there is onevery important issuespecifically related to system interfaces. This is how

the boolean equations for the protocol controller are minimized andoptimized. Much of the MIS

and SIS techniques assume a synchronous design style, which does not suffer from "static/

dynamic hazard" and "races" as the asynchronous design stylesdoes [Eichelberger65] [Torng72].

These two typesof problems appear at thelogic level and can notbe detected at the eventgraph

level. The results from MIS and SIS canbe simulated given gate delays and corrected manually to

eliminate detected hazards and races. The ASTG package within the SIS targets the asynchronous

style, but theresulting optimized and minimized logic mustbe implemented in thetwo-level sum-

of-products form, which is difficult for many programmable device technologies (PLDs and

FPGAs). The booleanlogic in the datapath andinterface controller canuse the results from MIS or

SIS directly.

After the technology independent phase, MIS or SIS performs the technology mapping from the

logic description to the actual physical hardware cells. This also includes technology dependent

optimizations. Suitable technologies for systeminterfaces include programmable devices, off-the-

shelfcomponents specialized for system interconnects, and evenASICs for high-performance and

application-specific interfaces. Programmable devices result in quickimplementation timesand

are reconfigurable, which is highly desirable for interface functions likedecoding anaddress map.
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Many complex system interfaces today are implemented with a mix of technologies rather than

just one. This complicates the technology mapping task, since there are so many types of

technologies available. This also leads to the issue of selectingthe appropriate technologies for a

certain interface application. Programmable devices have traditionally served as decoding or glue

logic functions like protocol conversion. However, FPGA architectures have been growing in

complexity over the past few years, andthey are expectedto grow further in the years ahead. As

this happens, FPGAs willbe suitable to implement main stream computational tasks aswellas the

glue logic. It is thus becoming possible for one or more FPGAs to implement entire complex

system interfaces.

At the technology dependent level, themain issue is howto select theparticular technology(s) and

hardware cell(s) that a RTL unit or primitive logic gate is mapped to. Recall that the RTL

specification only places structural requirements. Forexample, the edge-triggered registers in the

datapath and interface controller allocated by ALOHA represent a generic register thathas one N-

bit inputterminal, oneN-bitoutput terminal and aclock signal. Manytimes, the technology being

mappedonto provides several types of registers which all satisfy these requirements, but may

differ in polarity of the latching edge. Anotherissue is how to implement the delayelements. If a

technology does not have such a primitive, then a chain of gates will have to be used.

9.2 Simulation

The VHDL simulationof the DDL input specification only addresses the globalcommunication

requirements but not the event-level protocol requirements. For completeness, simulation or

verification is neededto check thatthe technology dependent logic implementation satisfies timing

constraints. VHDL [MCC91] has extensive delay modeling capabilitiesnecessary for effective

simulation of timing behavior.THOR [THOR] is another simulator that will give sufficient but not

excellent timing results, because its delay modeling capabilitiesare simplistic.
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9.3 Physical Design

After technology mapping, the design consists of a netiist (or schematic) of hardware cell

instances. Physical design brings the netiistinto the physical implementation at the board level or

chip level. For instance, the PLDS package [Yu91] partitions and maps a logic netiist onto

programmable logic devices using MISII for logic synthesis and translating the result to the

manufacturer formats such as those for the Actel FPGA, Altera PLD and Xilinx FPGA. Another

software package converts the board level netiist and placement information stored in the OCT

database into the input format of a commercial tool [Racal], which does the final multilayer

routing and generation of gerber files for actual board fabrication.

9.4 Summary of Results

A first version of the ALOHA interface generator has been implemented in the C

programming language, consisting of approximately 20,000 lines of sourcecode developed over

18-manmonths. The organization of the software implementation is elaborated in Appendix C.

The IDL specification, library ofprotocols, andhigh-level synthesismethods have been applied to

several examples representative of a wide class of applications. The major ones were used to

illustrate the specification and synthesis concepts described in the previous chapters, andexamples

wereactually simplified to keep the example sizesreasonable within the space of achapter.

Table 9-1 summarizes the design results from the examples. The first called "vme2sram'\ was

one of the motivating examples for this research. It is a VMEbus interface providing read and

writeaccess from the VMEbus master to a slavestatic memorymodule.The second interface was

used in a image processing system [Chandrakasan91], and the interface is a similar but more

complex version of the first example. It was implementedon a printedcircuitboardand tested for

successful functionality and performance, providingearly confidence in the presented design

methods. The last three examples were from a robotcontroller and robot peripheral subsystems
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[Srivastava92]. The synthesized resultshave also been simulated.

All these examples demonstrate that from a compact andhigh-level input description, ALOHA

automatically generates thecorresponding flow graphs, event graphs, and finally aninterface logic

Table 9-1: Interface Examples and Results

Design
Name

Communication Descriptionand
I/O Protocols Description:

# data bits,# address bits,# control signals /
# events, # precedences, # timing constraints

Results

Speed

access

rate

Datapath

# functional units

Protocol Ctrl1
# event graphs/
# states/
#p-terms/
# literals

Interface
Ctrl

#FSM
states

vme2sram

pipelined
version

sequential
version

Provides pipelined read and write
access from the VMEbus host to a
static RAM module.

VMEbus readprotocol: 16,21,6/21,20,17
VMEbus write protocol: 16,21,6/21,22,17
SRAM readprotocol: 16,10,3/10,14,8
SRAM write protocol: 16,10.3/10.15,7

Non-pipelined read and write access from
the VMEbus host to a static RAM module.

4Mhz
1 read data latch
1 write data latch
1 address latch
address decoder

1 address latch
address decoder

2/4/10/13

1/2/2/6

2

0

vme2image
Read and write communications from a
VMEbus host with memory-mapped
ASICs on an 9U VME board for real-time
image processing.

VMEbus read protocol: 16,21,6 / 21,20,17
VMEbus write protocol: 16,21,6/21,22,17
ASIC read protocol:8,0,3 / 8,12,5
ASIC write protocol-12,0,3 / 8,10,5

3Mhz
1 tri-state buffer

for data
1 address latch
address decoder

2/8/10A8 2

adc2taxi
Block transfers from a bank of AD7870
A/D converters to an Am7968 TAXI fiber
optic transmitter. Part ofa 14"xl6" board
for robot arm sensing.

AD7870 protocol: 10,0,3/8,12,8
Am7968 protocol:12,0,2 / 8,11,7

lOMhz 1 data bus
status & error

handling logic
address decoder

2/8/15/10 13

tms2taxi
Time multiplexed communication ofdata
and address packets from the TMS320C30
DSP to an Am7968 TAXI transmitter. Part
of a 14"xl6" board for robot control.

TMS320C30 DSP protocol: 4,5,4 /10.13.6
Am7968 protocol:12,0,2 / 8,11.7

lOMhz
2 multiplexers
1 data latch

2/8/9/7 3

taxi2dac
Time demultiplexed packet communica
tions from an Am7969 TAXI fiber optic
receiver module to a bank of DAC811 D/A
converters. Part of a 14"xl6" board for
robot arm sensing.

Am7969 protocol: 12.0.4 / 6.6,3
DAC811 protocol:10,0,6/ 8,15,11

6Mhz
1 data bus
1 data latch
address decoder

2/8/10/7 3

]for sum-of-products form
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implementation. They also show the two main advantages of the describeddesign methodology.

Hrst, the design methodology and CAD supportrelieves the user from gathering, learning and

dealing with communication and synchronization details (flow graph, event graph, timing and

structure). The non-expert can produce functional interface between various modules, since the

expertise is moved into the synthesis system.

The second advantage is the savings in system hardware design time offered by automating

interface generation. Table 9-2 shows the CPU times on a SPARCstation2 for each of the design

examples. The second column gives the total ALOHA run-times for synthesizing the interface

netiist (SDL), logic (BDS), event graphs (ASTG) and time constraints (CLOVER) from the user-

provided IDL specification. The other columns show the CPU time for each of the major

transformation in the synthesis process, not including translation from the IDL specification.

Column 3 shows the cumulative time for flow graph clustering, scheduling and allocation, as

described in Chapter 6; column 4 gives the time for generatingevent graphs from the flow graph

and module library, as described in chapter 7; finally, the last column indicates the time for

generating an interface structure implementation from the flow graph as described in Chapter 8.

Table 9-2 : CPU Times for Interface Examples

Design
Name

ALOHA

Synthesis

Synthesis
from Flow

Graph

Generate

Event

Graphs

Generate

RTL

Structure

vme2sram .9s .6s .3s .4s

vme2image .9s .6s .3s .4s

adc2taxi 1.0s 1.1s .Is .5s

tms2taxi .7s .5s .Is .3s

taxi2dac .6s .4s .2s .2s



CHAPTER 10

Conclusions And

Future Directions

The work presented provides the design methodology and computer-aided techniques for

interconnecting and synchronizing communicating modules into a system. A partof the SERA

system design environment, the ALOHA interface generator achieves its primary goal ofreducing

theeffortrequired from a designer to integrate hardware. This allows thedesign focus tobe placed

on the system applicationand on the architectural issues.

Summarized in Figure 1-7 (Chapter 1), the design methodology presented takes a system-level

approach. It starts with a behavioral specification of an interface module and generates an

asynchronous logic-level implementation. The high-level inputspecification, amodulelibrary and

behavioral synthesis methods canhandle communication betweenmultiple source anddestination

modulesandamix ofarbitrary I/O protocols andtime constraints. Synthesis transforms the design

specification through two levelsof abstraction to generate the interface logic. ALOHA covers the

technology independent synthesis phase, while pre-existing andmaturedesign tools arepulledin

to generate the final gate-level and physical implementation.
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10.1 Conclusions and Contributions

This thesis has demonstrated that a critical issue in system level hardware integration is the

generation of interfaces between communicating modules. Typically, the modules use various

technologies and have incompatible I/O protocols; the interface must resolve these differences

while transferringinformation. The desire for a high-level design abstractionin the face of low-

level protocol details is the key difficulty in interfacing system modules and thus presents a

challenge in interface specificationand synthesis.The important lesson learned from attacking this

problem is that the solution can use concepts extended from VLSI chip design while it requires

new design techniques that addressissues specific to board-level interfacing.

Chip level design concepts that continue to be extremely useful at the system level are hierarchy,

module generators and libraries. Applying hierarchy to system design, system modules are

composed from finer grainedmodules in which the primitives are chip components from various

technologies. Module generatorsproduce system hardware(and even software) at each level in the

hierarchy. The interface is viewed as just another hardware module, but dedicated to

communication and synchronization tasks and is produced by the special generator ALOHA.

Interfaces are used to integrate hardware into a higher level module that can be placed into a

module library. Like chip level cell libraries, the module librarycontains information about each

module that the generators can use. The designmethodology presented applies the library method

to capture protocol information used by ALOHA.

The new ideas introduced by this work for the specification and synthesis of interfaces take

advantageof the above concepts. The key contributionsof this work are:

* A high-level interface specification language for describing inter-module communication
behavior. The IDL language is concise, expressive and easy to use. The specification is made
independent of the module technologies through a policy for capturing I/O protocols into a
module library.
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• New synthesis techniques for transforming a high-level behavioralspecificationof the interface
into the register-transfer level andevent graph implementations of the interface datapath and
controllers. The techniques arebased on the flow graph and event graphrepresentations, and
alsoaninterface template. Unlikeprevious workrelated to interface synthesis, thesetechniques
effectively support a wide range of interface applications from complex direct-memory-access
controllers to simple protocol converters.

* A modulegenerator, ALOHA, thatautomatically implements the abovespecification and syn
thesistechniques and thatis integrated intoa computer-aided-design environment, SIERA, for
system design. ALOHA covers design from the system level of abstraction to the timing and
synchronization level and then to the boolean logicand structural level. In contrast, previous
tools related to interfaces focused on onlyonelevelof abstraction and concentrated on synthe
sizing justthedatapath plus interface controller oronlysynthesizing theprotocol control logic.

Overall, thedesign methodology and ALOHAsynthesis toolraises the interface abstraction to the

system level compared to previous methods. As shownin Figure 1-7, the designer starts with

knowledge of die information I/O pins and theglobal inter-module communication requirements.

Just thisknowledge is sufficient for specifying aninterface module. The designer does not needto

know the internal interface structure orbehavior. The details related to protocol eventsand time

constraints local to amodule port are already captured in thelibrary. Without themodule library,

the designer would have to gather the information from data sheets, become familiar with all the

protocols and describe anenormous amount of events and timingconstraints as part of the input

specification. To demonstrate this, the input IDL descriptions for the standard exampleswere

shown in Section 4.4 (Chapter 4), and the protocol descriptions were shown in Section 7.4

(Chapter 7). With the support of abstraction, the designer only deals with the inter-module

communications, and is relieved from dealing with the synchronization andtimingrequirements.

Comparing the input descriptions of Section 4.4 to the datapaths of Section 8.1.3, the protocol

control logic and time constraints shown in Section 8.2.4, and the central interface controllers of

Section 8.3.3, the design method presented hides low-level design details from the designer and

significantly reduces the design effort to go from behavioral specification to logical structure.

Raising the design abstraction to the system level allows a non-expert or system designer to

produceinterfacesand easily integrate hardware into the system, as demonstratedby the examples.
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1(K2 Future Directions in System Integration

The pastchapters presented a top-down treatment of interface generation. The abstraction

levels ranged from system architecture, toregister transfer, toboolean logic, to ICcomponents and

finally to board layout Open areas for enhancements to ALOHAand long-term research questions

stemming from this work arepresentedhere for all abstraction levels.

10.2.1 ALOHA Enhancements

This sectiondiscusses enhancements to the basicdesign methodologyandinterface generation

capabilities. Some were discussed in detail in the pastchapters, and some currentlyuse a manual

solution.All these enhancements couldbe immediateupgrades to ALOHA.

* Automatically linking the system hardwarearchitecture generated in SIERA to the ALOHA
synthesis software. Currently, the IDL input specificationis manually defined by the system
designer. Ideally, it should be generated from the architecture ofcommunication hardwaremod
ules, which SERA produces a VHDL simulation model for [Srivastava92].

* Specifying communication constraints and arbitration behavioras partof the inter-module
communication requirements. Constraints includecommunication throughput, channel buffer
depthandeven power. Arbitration in its pureform is non-deterministic, but uses a deterministic
algorithm in practice. The current IDL language implementation canexpress bufferdepth, but
theother features willneed newhigh-level constructs. Communication throughput and arbitra
tioninvolveatleast onesource and onedestination port, sotheir constructs willneedto specify
these parameters.

* Automatically generating the VHDL simulation model from the IDL input specification. Cur
rently, the model is manually constructed. The simulation model is used to validate the inter
modulecommunication specification. Also, simulation canbe effectivelyapplied toward com
munication performance evaluation and adjusting systemcommunication parameters, such as
arbitration algorithm and bufferdepth. Section 4.5 discusses VHDL modelgeneration in detail.

* Extending the module library to include I/O electrical characteristics and parameterized I/O
protocols. The first allows synthesis to meet electrical constraints. The second is useful for

designing application-specific modules where theI/Oprotocol is not pre-defined. Bothof these
are further discussed in Section 3.5.

* Graphical editor foreventgraphs. The eventgraph iscurrently entered intothelibrary usingthe
AFL ascii text format (seeAppendixA). A graphical entrysystemwouldallowtheuserto enter
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nodes, precedence edges, and properties on both those objects such as signalname, transition
valueandtime constraints. The usershould alsobe ableto selectnodes,edgesandproperties to
modify them. The eventgraph consistency checksdiscussed in Section 4.5 canbe incorporated
intotheeditor system, and theeditor should also outputs theAFL description to store the proto
col into the module library. Another alternative is a timing diagram editor and a translator
which transforms the timing diagram into the event graph equivalent and AFL description for
synthesis. An example ofa timing diagram editor is Waves [Borriello88b].

* Automatically generating the OEsimmodel for event graphs. The model supports both validat
ing the library event graphs and interlocked event graphs. Model generation details arepre
sented in Section 3.4

• Enhancements to flow graph synthesistechniques. This includeschecks for all types of incon
sistencies, some discussed in Section 5.4. Also, support of the "WHILE" control construct,
unrestricted control flow, user-defined internal states and user-defined buffers increase the basic

synthesis capabilities. Another important feature is estimating cost and performance from the
flow graph and underlying register-transfer units. These enhancements would be useful for
effective synthesisof complex interface modulessuchas DMA controllers and I/O processors.

• Incorporating other control logic synthesis tools. As discussed in Section 8.2.1, besides ASTG
there areother existing techniques for generating the protocol control boolean logic from the
event graphs. An example is Janus formixed asynchronous/synchronous environments.

10.2.2 Long-term Directions

Although this thesis has presented a detailed and top-down methodology for designing

interface modules, there are other importantand related problems that are open for long-range

research directions. This section generally describes the issues, some of which currently use

manual techniques.

* An important aspect of system specification is designing the communication channel. Hie
research presented in this thesis assumes that the inter-module communication behavior is

given. Naturally, an extended research topic is determining what the inter-modulecommunica
tion shouldbe, given that the system is modeledby concurrent andcommunicating processes
(implemented by ahardware or software module). A majordesign issueis allocating communi
cationchannelsamong interacting processes; in other words, whether severalprocesses should
share one physical channel or multiple (but not necessarily the same number) of channels.
Examples are multiplexing large messages across a smaller width bus, and, at the extreme,

transmitting parallel dataon a serial link. When many master modules sharean assigned chan
nel, this leads to the problem ofeither schedulingindividual transferson the channels a priorito
avoid contention (static), or allowing the modules to arbitrate over the channel when they need
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to communicate (dynamic).

Other related design related issues include designing anefficient and fair arbitration algorithm,
and determining the optimal channel bufferdepth. Anotherproblem is how to achieve high-
level communication synchronization. Choices include polling oran interrupt mechanism. The
solutionto all the above interrelated problems depends on various factors suchas communica
tion throughput and channel utilization. Some of these issues have been explored by the
research in system architecture design for SIERA [Srivastava92], which providesa starting
point.

Anothersystemlevelissuerelated to theabove topic is the design and verification of I/Oproto
cols for application-specific modules and busses. For basiccommunications, this usuallycon
sists of the information transfer protocol (or message passingprotocol). Formodules and
busses that handlean array of communication function, this includes the transfer protocol,
interrupt protocol and arbitration protocol. Design factors to consider are communication per
formance, global versus local communications, diversity of ports to be interconnected, and the
application. Protocol styles include asynchronous and synchronous timing, and hybrids
between the two.

Compared to thecurrent techniques in ALOHA, sophisticated scheduling and allocation meth
ods for complex data andcontrol flow behavior present an open area in behavioral synthesis
research. This is especially important to automatically generate complex modules such as con
trollers and I/O processors. In fact, from ahigh-level perspective, the presented synthesis tech
niques should be combined with new and existing methods to generate entire subsystems that
implementanoverall communication function. Examples are a networkcontrol nodeoraninte
grated imagedecompression anddigital-to-analog conversion module.The modules are formed
from several submodules. Subsequently, the behavioral synthesis task for such subsystems is
difficult since it must be partitioned amongdifferent hardware modules. The hardware is cho
sen from many available technologies such as various FPGAs, TTL drivers and various IC
components for system interconnection.

Logic synthesis techniques for mixed synchronous-asynchronous environments. Currently,
logic synthesis forlogicminimization and synchronous design style is mature. However, in the
course of the research presented in this thesis, a majorbottleneckin the generation path was
synthesizingasynchronous control logic from the interlocked event graph to satisfy*time con
straints andverifyingthe logic fortimeconstraints. The basicstrategy is: first checkandcorrect
the inputevent graph for deadlock and hazard conditions, andthen, given a technology (gate
library), produce a minimized gate-level implementation that satisfies the time constraints. Per
formance constraints are considered a part of the time constraints. In the first phase, an open
research topic is methods that specify exactlyhowto modify the event graph to eliminate the
problem conditions, andpastSTG research provides some starting points [Chu87a][Meng89].
The second phase canuse pastevent graph research as a starting point rBorriello92]. Research
in both phases is becomingmore andmore important as a varietyof programmable hardware
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(PLDs andFPGAs) are madeavailable for bothcontrol logicanddatapath functions.

• At the physical level, a complete treatment of the system integration problemincludes the
design of physical interconnects from thechip-level to the package andto theboard-level. Cur
rently, technology is scaling downand moving toward high-density packaging suchas surface
mount. This allows dense systems to run at very high speedswhile the global interconnects
remain aslongasthey werewith previous technologies. The physical interconnect suffers from
transmission line impairments such ascrosstalk and reflections. Overthe past years, thishas
become anactive area of research and open areas include design rules for minimising transmis
sion lineproblems, layout extraction for printed-circuit boards, quickestimation based on the
extracted layout, as well as automatically generating models for simulationand verification of
critical nets.

Theprevious chapters have covered interface design methods from thesystem architecture level of

abstraction to theboolean logic levelof abstraction. The openareas of research, described in this

chapter, range from system specification down to board layout. The overall challenge is a

comprehensive solution for the system integration problem which requires and combines

knowledge and techniques from many disciplines within electrical engineering and computer

science.
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Appendix A: Event Graph

Format Description

A digital component or module has input and output terminals which convey signals. Some of

these signals carry the information of interest, such as data and address. Other signals, such as

control signals, synchronize the transmissionof information. For proper transmission, events (or

signal transitions) on the information andcontrol signals are sequenced according to a signaling

convention,or110protocol.The protocol may alsodefinedataformatting andrepresentation rules.

The protocol is characterizedby events and the precedencesbetween events, including timing

relationships, and event graphs areused to model this behavior. Nodes in the graph represent

events, and the directed edges representthe precedences. Weights on the edges represent timing

relationships. A modulemay use one ora set of protocols. For example, memory components use

different sequencesof events for the readand the write cycle. This requires two event graphs to

describe memory access,one for the read protocol and the other for the write protocol.

Figure A shows the block diagram fora staticmemory,andFigure B shows the timing diagram for

the protocol exercised during a write cycle. The equivalent event graph is in Figure C. Data,
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Table 1:Transition Value System

Value Meaning

r rising(+),signal changing from low to high

f falling(-), signalchanging from high to low

s stable, signal changing to stable at some bit value

bit vector signal is changing to stable at a specific binary value

X unknown, signal value is unknown or don't care

z high-impedance,signalis changing to high-Z state
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address and write enable are considered information typeof signals, while chip select is regarded

as a control signal. Each nodein the graph hasa corresponding transition in the timingdiagram.

The edges showthe basic precedence of events: data, address and writeenable signals stabilize,

then an active-lowchip select pulseoccurs, followed by data, address andwrite enable signals

becoming unknown, and finally cycle is allowedto repeat The 5ns minimum address set time

(relative to chip select falling), the40nsminimumchip selectstrobe width, and5ns minimum/1Ons

maximum datahold time (relative to chip select rising) are all timing constraints expressed as

weights on the appropriate edge. The startnode marks the firstevent of the cycle.

In the event graphmodel used by ALOHA, signal events areallowed to take on transition values

listed in Table 1. Control type signals use the rise, fall or high-impedance values; informationtype

signalsuse the stable, unknown, binary and high-impedancevalues. The model also requires that

events occurring on control type signals must be strongly connected, and there must not be any

redundant edges. The precedences between control events thus forms the skeleton of the event

graph, andmakes it cyclic. In Figure C, node nO, edge eO, node nl andedge el form the strongly

connected skeleton of the event graph.

The following describes the policy for the textual specification of event graphs for use in the

ALOHA synthesis system. The format is based on the AFL language [Rabaey90]. The AFL

specificaiton forthe event graph in Figure C is shownatthe endof thisappendix. It should be used

when reading the policy.

Policy for the Event Graph Format

Once again, an event graph is a composition of nodes andedges. A node represents a single

event or a collection of simultaneously occurringevents. In the second case, the node is actually a

subgraph which in turn contains nodes representing the events. AFL is a language from the

HYPER synthesis system that describes directed graphs as a list of nodes, edges and subgraphs.

Presentedbelow is the policy for using AFL to describeevent graphs for ALOHA.
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Event Graph Description Syntax

The format uses rounded brackets as delimiters, such that a lisp-like syntax is obtained(only in

resemblance). The basic statement has the following format:

statement := (keyword definition)
where

definition := atom II statement II list

atom :=integer II string
list := (definition*)

A string is either of the following format:

string := [A-Za-z][_A-Za-z0-9]*
or any double quoted entity "..."

The format supports three basic structures: the graph, the node and the edge. An event graph is

defined as a collection ofgraphs:

event graph := graph-definition graph-definition...

where the main event graph must be the first graph-definition, followed by the subgraphs.

Since the AFL-parser first passes the input description through the C-preprocessor cpp, the

language recognizes C-style comments (surrounded by "/*" and "*/") and the C-directives

#include and #define. The parser is also case sensitive to string atoms.

Graph-Structure

A graph is a named entity, which consists of a number of edges and nodes.

graph-definition :=
(graph

(name name-string)
(class 'MODULE")
(model ((model_name model-string)))
(arguments ((port port-string) (timeunit timeunit-string)))
(attributes ((mode validated) ))*
(nodelist node-definitions)
(controllist edge-definitions)
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)

Forthe main event graph, name-string is anameassigned to the protocol being described, suchas

"read" or"write". Forsubgraphs, name-string is "multievent#", where# is a unique integertag.

The class ofan event graphor subgraph is always,"MODULE".

For the main event graph, the model-string specifies whether the module port using the described

protocol is a master or slave port Master ports initiate data transactions while slave port can only

respond, model-string is either "masterp" or "slavep". For subgraphs, model-string must be

"multievent".

The port-string is the name assignedto the portwhich exercises the describes protocol.

timeunit-string is either"ms", "ns", or "us". Only one may be specified,and timing constraints in

the event graph are expressed in these units. The mode attribute "validated" is only used to show

that the event graphhas been checked forconsistency.

nodelist containsa list of all nodes in the graph, and controllist is a list of all event precedence

edges, node-definitions and edge-definitions respectively stand for a list of node of edge-

structures definitions, as defined below.

Node-Structure

A node is a named entity, embedded in a graph. Again, a node represents an event, or a

collection of simultaneous event via a subgraph. The label for the model is name-string, and the

class field specifieswhether the node represents a single event or multiple event. In the multiple

event case, the master field identifies the subgraph that contains the event nodes. Only the single

event nodes use the arguments field.

node-definition :=

(node
(name name-string)



)

(class class-string)
(master master-string)
(arguments argument-list)
(in.control edge-list)
(out.control edge-list)
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For single event nodes, name-string is "n#", class-string is "event", and master-string is

"event", where# is anunique integer tag. The argument-list is a list of properties that describes

the actual signaltransition, arguments is specified as:

(arguments (
(signal signal-string)
(bitvectwidth width-integer)
(bitvectbase base-integer)
(value transition-value-string)
(direction direction-string)
(valid valid-string)*
(invalid invalid-string)*
(phase phase-string)

))

where:

signal-string is the name of the signal on which the event occurs,
width-integer for bus signals, >= 1; optional, default=l if not specified.
base-integer is the l.s.b. of the bus, >= 0; default=0 ifnot specified.
transition-value-string is "r", "f", "z", "s", "x", or "bitvector" (Table 1).
direction-string is "in", "out", or "tri"(tri-state output).

and for describing events on control signals only:
valid-string is a nameofan informationsignal; optional.

Any information signal that is set-up before this event
(being described) is named in a valid field.

invalid-string is a name of an information signal; optional.
Any information signal that must be held past this event
(being described) is named in a invalid field.
This argumentis the counterpart of the valid argument

phase of the signal is "set" or "reset". Foran active high signal,
phase is "set" for the rising event and "reset" for the
falling event, and the opposite for active low signals.

Formultiple event nodes, name-string is "nn#", class-string is "Hierarchy", and master-string is
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thenameof theappropriate subgraph. Again ,#is anunique integer tag. This typeof nodedoes not

use the arguments field.

The class, master and arguments fields of anode describes theeventrepresented by thenode. In

contrast, it is the in_controlandout.control fields where connectivity betweennodesand edges

in the main event graph is specified. The edge-list for in_controI is a list of names of the input

edges to the node, whereasout_control specifies the output edges.The input or output edges must

be specifiedint the controUist of the event graph, as described below.Note that subgraphs do not

use in_control andout_control fields, sincethe events within them occursimultaneously.

Edpe-Structure

An edge is a named entity, embedded in a graph. Again, an edge representsprecedence and

can have timing constraints associatedto it. Three classes of edges can be defined, "control" class

edges representprecedence between two control events, whereas "ctrlinfo" class edges represent

precedencebetween a control and informationevent, and vice versa. Lastly, "timing" class edges

areused to specify timing constraints between two events thatdo not have a causal relationship.

edge-definition :=
(edge

(name name-string)
(class class-string)
(arguments argument-list)
(in_nodes node-list)
(outjnodes node-list)

)

*

name-string is a unique string.

class-string is "control, "ctrlinfo"or"timing" asexplained.

Timing constraints areexpressed in the arguments field. Currently, synthesis supportsthe min-

max-avg model of delays, and delays must be specifiedas integer constants. Non-constant delays

dependon a parameter(s), suchasclock period), canbe specified as a stringbut arenot recognized



by synthesis. The arguments format is:

(arguments (

(min min-atom)

(max max-atom)
(avg avg-atom)

))
where:

min-atom is aninteger >= 0, or string; optional, default=0.
max-atom is an integer>= 0, or string; optional,default=^infinity.
avg-atom is an integer>= 0, or string; optional.
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The node-list injnodes and theout_nodes fields name theinput and output node connected to the

edgeunder consideration. An edgehasoneand onlyonein.node, andoneandonlyone out.node.

Example AFL Specification

The AFL specification for the event graph in Figure C is shown below:

/* Event graph for
* module : Static RAM

* port : 8-bit data, 8-bit address
* protocol: write access
*/

(GRAPH
(NAME writem)
(CLASS MODULE)
(MODEL ( (model_name slavep) ))
(ARGUMENTS ( (port sram) (timeunit ns) ))
(NODELIST

(NODE
(NAME n0)
(CLASS event)
(MASTER event)
(ARGUMENTS (

(signal CS_L)
(value f)
(direction in)
(valid DATA)
(valid ADDR)
(valid WE_L)
(phase set) ))

(IN_CONTROL (el e2 e4 e7 elO) )
(OUT_CONTROL (e0) )

)



(NODE
(NAME nl)
(CLASS event)
(MASTER event)
(ARGUMENTS (

(signal CS_L)
(value r)
(direction in)
(invalid DATA)
(invalid ADDR)
(invalid WE_L)
(phase reset) ))

(IN_CONTROL (eO) )
(OUT CONTROL (el e5 e8 ell) )

)
(NODE

(NAME n2)
(CLASS event)
(MASTER event)
(ARGUMENTS (

(signal WE_L)
(value "0")
(direction in)) )

(IN_CONTROL (e6) )
(OUT_CONTROL (e7) )

)
(NODE

(NAME n3)
(CLASS event)
(MASTER event)
(ARGUMENTS (

(signal ADDR)
(bitvectwidth 8)
(bitvectbase 0)
(value s)
(direction in) ))

(IN_CONTROL (e3) )
(OUT CONTROL (e4) )

)
(NODE

(NAME n4)"
(CLASS event)
(MASTER event)
(ARGUMENTS (

(signal DATA)
(bitvectwidth 8)
(bitvectbase 0)
(value s)
(direction in) ))

(IN_CONTROL (e9) )
(OUT_CONTROL (elO) )

)
(NODE

(NAME n5)
(CLASS event)
(MASTER event)
(ARGUMENTS (

(signal WE_L)
(value x)
(direction in)) )

(IN CONTROL (e8) )
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(OUT CONTROL (e6) )
)
(NODE

(NAME n6)
(CLASS event)
(MASTER event)
(ARGUMENTS (

(signal ADDR)
(bitvectwidth 8)
(bitvectbase 0)
(value x)
(direction in) ))

(IN_CONTROL (e5) )
(OUT CONTROL (e3) )

)
(NODE

(NAME n7)
(CLASS event)
(MASTER event)
(ARGUMENTS (

(signal DATA)
(bitvectwidth 8)
(bitvectbase 0)
(value x)
(direction tri) ))

(IN_CONTROL (ell) )
(OUT CONTROL (e9) )

)
(NODE

(NAME startO)
(CLASS header)
(MASTER start)
(OUT CONTROL (e2) )

)
)
(CONTROLLIST

(EDGE

(NAME e0)
(CLASS control)
(ARGUMENTS ( (min 40) ))
(IN_NODES (n0) )
(OUT NODES (nl) )

)
(EDGE

(NAME el)
(CLASS control)
(IN_NODES (nl) )
(OUT NODES (nO) )

)
(EDGE

(NAME e2)
(CLASS control)
(IN_NODES (StartO) )
(OUT NODES (nO) )

)
(EDGE

(NAME e3)

(CLASS ctrlinfo)
(IN_NODES (n6) )
(OUT NODES (n3) )

)



(EDGE
(NAME e4)
(CLASS ctrlinfo)
(ARGUMENTS ( (min 5) ))
(IN_NODES (n3) )
(OUT_NODES (nO) )

)
(EDGE

(NAME e5)
(CLASS ctrlinfo)
(IN_NODES (nl) )
(OUT_NODES (n6) )

)
(EDGE

(NAME e6)

(CLASS ctrlinfo)
(IN_NODES (n5) )
(OUT_NODES (n2) )

)
(EDGE

(NAME e7)
(CLASS ctrlinfo)
(IN_NODES (n2) )
(OUT NODES (nO) )

)
(EDGE

(NAME e8)
(CLASS ctrlinfo)
(IN_NODES (nl) )
(OUT_NODES (n5) )

)
(EDGE

(NAME e9)
(CLASS ctrlinfo)
(IN_NODES (n7) )
(OUT_NODES (n4) )

)
(EDGE

(NAME elO)
(CLASS ctrlinfo)
(IN_NODES (n4) )
(OUT NODES (nO) )

)
(EDGE

(NAME ell)
(CLASS ctrlinfo)
(ARGUMENTS ( (min 5) (max 10) ))
(IN_NODES (nl) )
(OUT_NODES (n7) )

)

/* End of AFL */
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Appendix B: IDL

User's Guide

The IDL hardware description language was developed especially to describe inter-module

communication behavior at the system level. It is a procedural language and serves as the input

into the ALOHA interface generation system. Foruse with ALOHA, the language is coupled to the

SIERA module library, although it can be used in a stand-alone fashion for documentation. The

specification model is based on the SSCS specification for distributed systems, but it has an

appearance similar to the C programming language and the BDS language for combinational logic.

The IDL grammar is implemented with a parser that transforms the text description into a parse

tree data structure, with syntax error-reporting capabilities. A translatorprovides the front-end into

synthesis by constructing the flow graph data structure from the parse tree. The parser and

translator are described in Appendix C.

The behavioral model and semantics for the IDL language are treated in Chapter 4. Basically,

behavior is specified as a network of modules that transmit and receive data through ports. Inter

module transfers are a temporal and spatial mapping of source information streams to destination

streams. Describing a transfer includes the naming the I/O protocol each module uses to
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synchronize the transfer. The modules and protocols come from the SIERA module library. The

specification also includes standard data flow andcontrol flow features found in many hardware

description languages. This appendix describes the complete IDL format, consisting of syntax

rules and use restrictions. The current ALOHA synthesis implementation supportsmost of the

features. The features rernaining to be implemented will be pointed out The end of this appendix

presents full specification examples.

Language Constructs

Character Set

The input text of an IDL description consists of names, numbers and reserved keywords

separated by a space(s) or carriage return. Comments arepreceded by a *!' exclamation pointand

ended by a carriage return.

A legalname is a any doublequotedentity "..." or a stringformed from the character set:A-Z, a-z,

0-9,_ (underscore), and [] (square brackets). The first character of a string must not be anumber.

Numbers areeithera non-negative integers, suchas 0 or 25, or a bit vector surrounded by single

quotes, such as '1' or '01101\ Integers must be non-negativetoo. When an integer is used in an

assignment statement (described later), it is converted into the equivalent binary form.

Reserved Keywords

The following arereserved wordsand symbolsin IDL.They must not be used as names.

ALL AND BDS BDSFTLE BDSYN BIDIRECr BLOCK BUFFER

BVE CONSTANT DATAONLY DESIGN DEST DO ELSE

ENDBLOCK ENDDESIGN ENDFUNCTION ENDIF ENDTTERAIE

ENDPOKT ENDFROCEDURE ENDRESETPROC ENDROUTINE ENDWHTLE

EQL FALL FROM FUNCTION GEQ GTR IF INPUT ITERATE

LEQ LSS NAND NEQ NEXT NOR NOT OR OUTPUT

PACKL PACKR PORT PROCEDURE RESET RESE1PROC RESTART

RETURN RISE ROUTINE SHL SHR SOURCE STATE THEN TO
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WHILE XOR PLUSEQ RIGHTARROW LEFTARROW
! + - * / a ( ) { ,

< > = @ • : ; , "

Signals and Variables

Signals are inputs and outputs or internal vectors of the described behavior. They can be

thoughtof as physical wires, and synthesis will allocate hardware to realize them. Signals are

specifiedas a name and optionally with bit subscripts thatdefine theirwidth. The three formats for

a signal are:

Signal_name <msb: lsb > Signal_name <bit> Signal_name

Signal_name is a legal name. The bit subscripts msb, lsb and bit arenon-negative integers or a

symbolic name for an integer constant (discussed later). If the subscripts are omitted, then the

signal is one bit wide.

Variables serve as internal variables in a BLOCK declaration or indices in ITERATE and WHILE

loop statements. Specifying them does not necessarily imply a hardware implementation. A

variableis specified simply using a legalname.

I/O Transactions

As explained in Chapter 4, an I/O transaction defined as the triplet {module_instance,

protocol, signal}. It can also be the instantaneous signal value, so the pair {module.instance,

signal} is sufficient. The signal is defined as above. The protocol is the name of an event graph

from the module library. The module.instance is an instanceof a module from the library. The

transactionis specified as:

module_instance_name4)rotocol_name.signal module_instaace_name.signal
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Input Format

The DDL format is definedbelow using the BNF description. Keywords are shown in upper

case letters. User-defined names and numbers are shown in lower case italic letters, while

productions areshown in lower-case plain letters. Features in the "{ }" brackets may be repeated

zero ormore times, and those in "{ }+" may be repeated one ormore times. An optional feature is

surrounded by square brackets"[ ]".The vertical bar"I"represents a choice of items.

Any IDL descriptionhas a header that declares ports, input and output signals, and symbolic

constants used in the body. Then the behavioris actually specified in the body with localvariable

declarations, transfer (assignment) andcontrol flow statements, and data flow expressions.

An IDL description is contained in a DESIGN declaration:

DESIGN designjiame
{constant_declaration}
jport_declaration}+
{block_declaration}+

ENDDESIGN [designjiame];

A constant_declaration is a symbolicname fora non-negative integeror a bit vector:

CONSTANT constantjiame - number,

A port_declaration declares instances ofa library moduleandthe I/O signals used in the body:

PORT library module name instance name {,instance name};
{SOURCEsignal~[,signal};}
[VEST signal {,signal);}
{BTOIRECT signal {,signal};}

ENDPORT [library modulejiame];

A block_declaration contains the behavioral description. It consists of three types of local

variables (buffer, state and input) and four types of behavioral subblocks (routine, function,

procedureand resetproc). Currently, synthesis does not recognize the local variable declarations.

The semantics of the subblocks are explained in Chapter 4. They must not be recursive (calls

itself). Only the routine subblock may call the another subblock.The block declaration is defined

as:
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BLOCK blockname
[buffer.declaration}
{state_declaration}
{input_declaration}

ROUTINE routinejiame;
{statement}

ENDROUTINE;

{FUNCTION function name<return_bit_width>(parameterl{, parameter2});
{statement}! BDS ""file name";

ENDFUNCTION;}

{PROCEDURE procedure name;
{statement}

ENDPROCEDURE;}

[ RESETPROC resetjiame;
{statement}

ENDRESETPROC;]
ENDBLOCK [blockjiame];

Inter-module transfers may be buffered with memory called a queue, FIFO or pipeline buffer. The

buffer's depth is the number of signal values it can hold, and the width is the bit-width of the

signal. The depth is a system design parameter. A buffer declaration explicitly specifies local

memory, implying hardware within the BLOCK construct:

BUFFERbufferjiame(source_signal, destinationjsignal, width, depth);

Memoryless internal variables are declared in the following format They must not be a destination

signal declared in the PORT declaration. But they may also be outputs of the block that mey are

declared in.

STATE signal = initialjonstant_value;

An input signal to a block can be from the output ofanotherblock. This input signal is declaredas:

INPUT signal {,signal ];

A statement in a routine, function, procedure or reset-procedure can be one of two data flow

statements or nine control flow statements. The data flow statements are the assignment, which

represents an inter-module transfer, and the BDS statement which names a BDS file that describes

combinational logic. Control flow statements specifies how transfers are sequenced from one to

the next. They consist of the reset, restart, procedure call, return, next, if, iterate, while and
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concurrent statements. The bold curly brackets "{" and "}" below are actually brackets in the

specification. The formats for the statements are:

BDS "filejiame ";
transaction = expression;
RESET; I RESTART;
procedurejiameQ;
RETURN expression;
NEXT();
NEXT ((modinstname[,integer]) {,(module_instjiame[,integer])});
IF expressionTHEN {statement} [ELSE {statement} ]ENDBP;
DERATE index variable FROM integer TO integer DO {statement} ENDTTERATE;
WHILE expression DO {statement} ENDWHILE;
{ statements)}

Some statements above have restrictions regarding their use. The BDS and RETURN statements

are only used within a FUNCTION declaration. The RETURN statement causes a function to exit

and return a value to the ROUTINE subblock. The RESET statement is only used in a

RESETPROC declaration. When it is encountered in the RESETPROC procedure, control flow in

the ROUTINE is interrupted andreturned to the beginning. The RESTART statementis only used

in the ROUTINE declaration. Similar to the RESET statement, a RESTART control in the

ROUTINE to return to the beginning. Also, only the ROUTINE can make a procedure call, and

use the NEXT, IF, ITERATE andWHILE statements. The WHILE constructis not supported by

the current ALOHA synthesis implementation.

IDL expressions describe data flow behavior. An expression can be embedded within another by

surrounding it with parentheses, "(expression)". The innermost expressions are evaluated first

The expressionslisted below from highest to lowest precedence; the highest is evaluated first The

precedencecan be overriddenby using the parentheses. Expressionhave the formats:

number I constant
signal I transaction
(expression)
expression@//2/eger I expression@constant
functionjiame( argument{.argument}) ! argument is a signal or @ expression
expression + expression
expression EQL expression
expression NEQ expression
NOT expression
expression AND expression
expression NAND expression
expression OR expression



I expression NOR expression
I expression XOR expression

Examples
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The following four IDL descriptions demonstrate howvarious language declarations, expressions

and statements areused to describe inter-module communication behavior.The four examples

presentedin Section 4.4 of Chapter4 areactuallysimplified versions of the ones shown here.

The first specifies the behavior of a VMEbus interface to a single static RAM. It highlights

conditional behavior using the IF statement, which is controlled by the decode FUNCTION. The

actual function description is in a separateBDS file.

The second example describes multiplexed transfers between a TMS320 processor and a TAXI

optical link transmitter module. The TMS provides address and data on parallel lines in one

transaction. The interface sends the address first and then the data to the signal TAXI data line. It

illustrates the BUFFER declaration, the NEXT control statement and also a combinational logic

description in the FUNCTION.

Demultiplexed transfers between a TAXI optical receiver and a D/A module are described in the

third example. Here, words from two consecutive TAXI transactions are collected and sent to the

D/A module; the first word serves as the address to the module and the second is the data to be

converted. It illustrates a transfer that involves the @ delay and function call expression, and also a

RESETPROC declaration that involves the logical OR expression and the RESET control

statement.

The final example shows the IDL description for an interface between a bank of A/D converters

and the TAXI optical transmitter. It illustrates the CONSTANT declaration, the PROCEDURE

declaration, and an applicationof the ITERATE statement toward describing block transfers.



VME System Bus Interface

!IDL description: VMEbus read/write access to a SRAM module.

DESIGN vme_interface

! Interface inputs and outputs
PORT VMEbus vme;

SOURCE vme.WRITE L, vme.A<14:l>;
BIDIRECT vme.D<l3:0>;

ENDPORT;

PORT ml 621 mem; ! static RAM
DEST mem.WE_L, mem.ADDR<10:1>;
BIDIRECT mem.DATA<15:0>;

ENDPORT;

! communication behavior
BLOCK vme_interface

! main routine
ROUTINE main;

IF (decode(vme/all.A<14:ll>) EQL '1') THEN Isram decode
IF (vme/all.WRITE_L EQL %0' ) THEN Iwrite access

{mem/writem2.WE_L = *0';
mem/writem2.ADDR<10:l> = vme/dtb_write.A<10:1>;
mem/writem2.DATA<15:0> = vme/dtb write.D<15:0>;}

ELSE T read access
{mem/readm.WE_L = *1';
mem/readm.ADDR<10:l> = vme/dtb_read.A<10:1>;
vme/dtb_read.D<7:0> = mem/readm.DATA<7:0>; }

ENDIF;
ENDIF;

ENDROUTINE;

'.decode function

FUNCTION decode<0>(x<3:0>);
BDS "decoder.bdsw;

ENDFUNCTION;

ENDBLOCK;

ENDDESIGN vme interface;
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TMS320 Processor to Optical Link Multiplexing

! IDL description: TMS320C30 DSP to AMD AM7968 TAXI module.

DESIGN tms2taxi_interface

!Interface inputs and outputs
PORT tms_iobus tms;

SOURCE tms.XR_W_L,tms.XA<4:0>,tms.XD<3:0>;
ENDPORT;

PORT taxixmt_bus taxi;
DEST taxi.DI<3:0>,taxi.CI<1:0>;

ENDPORT;

!communication behavior

BLOCK tms2taxi_interface

BUFFER bufl(tms.XA<3:0>,taxi.DI<3:0>,4, 6); ! depth=6
BUFFER buf2(tms.XD<3:0>,taxi.DI<3:0>,4,6);

ROUTINE main;

IF (tms/all.XR_W_L EQL '0') THEN ! write access

Imultiplex tms address and data to taxi DI line.
IF (tms/all.XA<4> EQL %1') THEN

! send tms address and header

{taxi/xmt.DI<3:0> = tms/exb_write.XA<3:0>;
taxi/xmt.CKl:0> = '00';}

NEXT();
! send tms data and header

{taxi/xmt.DI<3:0> = tms/exb_write.XD<3:0>;
taxi/xmt.CKl:0> = '01';}

ENDIF;

! no multiplexing
IF ( decode(tms/all.XA<4:0>) EQL '1' ) THEN

{taxi/xmt.CI<1:0> = tms/exb_write.XD<l:0>;}
ENDIF;

ENDIF;
ENDROUTINE;

FUNCTION decode<0>(x<4:0>) ;
IF (x<4:0> EQL '00000') THEN RETURN '1';
ELSE RETURN %0' ;
ENDIF;

ENDFUNCTION;

ENDBLOCK;

ENDDESIGN tms2taxi interface;
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Optical Link to D/A Converter Module Demultiplexing

! IDL description:AM7969 TAXI module to D/A converter module.

DESIGN taxi2dac_interface

IInterface inputs and outputs

PORT taxircvr_dbus taxid;
SOURCE taxid.Do<9:0>;

ENDPORT;

PORT taxircvr_cbus taxic;
SOURCE taxic.Co<l:0>;

ENDPORT;

PORT dac_bank dac; ! bank of 9 dacs
DEST dac.D<9:0>,dac.BankSel<8:0>;

ENDPORT;

PORT DATAONLY rst;
SOURCE rst.powerup_reset;

ENDPORT;

! communication behavior
BLOCK demux

1collect two consecutive words from taxid and send to dac.
ROUTINE main;

NEXT( (taxid) );
{dac/dacb_write.BankSel<8:0> = decode(taxid/rcvD.Do<9:0>@1);
dac/dacb_write.D<9:0> = taxid/rcvD.Do<9:0>;}

ENDROUTINE;

FUNCTION decode<8:0>(x<9:0>);
BDS "decoder.bds";

ENDFUNCTION; -

RESETPROC reset;
IF (rst.powerup_reset EQL *1'

OR taxic/rcvC.Co<l:0> EQL "11') THEN
RESET;

ENDIF;
ENDRESETPROC;

ENDBLOCK demux;

ENDDESIGN taxi2dac interface;
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A/D Converter Module to Optical Link Block Transfers
• IDL description: AD7870 A/D converter bank to AM7968 TAXI module

DESIGN adc2taxi_interface

CONSTANT Iportaddr='1000'; ! address of A/D Iport

! Interface inputs and outputs
PORT DATAONLY status; 1 external command signals

SOURCE status.reset,status.err,status.int;
ENDPORT;

PORT taxi_xmt taxi;
DEST taxi.DI<9:0>,taxi.CI<1:0>;

ENDPORT;

PORT adc_bank adc; ! bank of 6 A/Ds and control port.
SOURCE adc.DB<9:0>;
DEST adc.CS_L<3:0>; ! CS L is the bank select.

ENDPORT; ~

BLOCK adc2taxi 1 communication behavior

ROUTINE main;
IF (status.err EQL '1') THEN • err=l

{taxi/xmt.CI<1:0> = %11';}
NEXT();
xmit(); 1 procedure call

ELSE

IF (status.int EQL '0') THEN ! err=0, int=0
xmit ();

ELSE ! err=0, int=l
{taxi/xmt.CI<1:0> = x10';} ! transfer header
NEXT();
ITERATE j FROM 0 TO 5 DO !send block of 6 words

{adc/b_readl.CS_L<3:0> = j;
taxi/xmt.DI<9:0> = adc/b_readl.DB<9:0>;}

NEXT( (adc) );
ENDITERATE;

ENDIF;
ENDIF;

ENDROUTINE;

PROCEDURE xmit;
{taxi/xmt.CI<1:0> = %01';}
NEXT();

{adc/b_readl.CS_L<3:0> = Iportaddr; I access A/D Iport
taxi/xmt.DI<9:0> = adc/b_readl.DB<9:0>;}

ENDPROCEDURE;

RESETPROC reset;
IF status.reset EQL yl* THEN

RESET;
ENDIF;

ENDRESETPROC;

ENDBLOCK;
ENDDESIGN;



Appendix C: ALOHA

Software Implementation

The ALOHA synthesis system consists of libraries, tools and the design examples used

throughout this thesis. It canbe a stand-alone system andalsoapoint tool within the SIERA CAD

environment for system design [Srivastava92].

This appendix serves as a guide to the ALOHA software. It should be read before using the

synthesis tools or modifying/compiling the source code.The first section shows how to compile

and run the software. The second shows the organization of the ALOHA software located in the

~siera home directory, andit explains whateach subdirectory contains.

Using ALOHA

The software is installed on the BroderSuns workstationcluster in the EECS Department,

currentlylocatedin the directory ~siera/shared/aloha. It runs in the UNIX operating system.

ALOHA provides two main tools located in ~siera/shared/aloha/bin. The validation tool,

validateEG*, performs consistency checks on I/O protocol event graphs which areinstalled into
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the library ~siera/shared/aloha/cellib (part ofmodule library discussed in Chapter 3). All event

graphs are described in the AFL format (see Appendix A) and must be in a file named

"root_name.afT. The synthesis tool, aloha*, generates the design RTL structure and event graphs

from agiven IDL description (discussed inChapter 4 - Chapter 8). The IDL file must benames

"root_name.idl". To run either of these two tools:

1. Deposit acopy of the file ~siera/shared/aloha/hyper and ~siera/shared/aloha/lager into the
working directory orhomedirectory. This file contains paths to ALOHA libraries.

2. Invoke "validateEG [-n] AFL_file",

AFL_file: root name of event graph AFL file

-n : do not dump new AFL file

or invoke "aloha [-1 -A -O -i -a -n -v] IDL_file",

IDL_file: root name of IDL file

-I: reads IDL file

-A: reads flow graph in AFL file (currently not supported)

-O: reads flow graph from OCT (currently not supported)
-i: debug information

-a: dumps final flow graph in AFL format

-n: dumps RTL netiist in AFL or SDL format,

combinational logic descriptions in BDS format,

interlocked event graphs in ASTG format,

time constraints in CLOVER format

-v: verbose mode used with -A flag

Currently, the typical command line will be "aloha -I -a -n IDL_file" or "aloha -I -n IDL_file".

The -i option provides error and warning messagesrelatedto synthesis. It is useful to the tool
developer rather thanthe tool user (usually the system designer).Currently, the error reporting
capabilities to the user is primitive.

The ASTG output produced by ALOHA drives the ASTG logic synthesistool. Currently, only the

SIS alphaversion in /usr/tools/async/sis/sis contains the ASTG package. The next beta release

installed into ~octtools should be used when made available.
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ALOHA Software Organization

The ALOHA synthesis tools are implemented in the C programming language, and uses the

graph data structures and utility libraries provided by the HYPER system in the ~hyper home

directory [Rabaey90]. Copies of the relevant HYPER include (.h) files and archived libraries (.a

files) have been made and deposited into the ALOHA source directory (/src/hyperLib). Currently,

the HYPER archivesarecompiled forthe Sun4 workstations. When installingALOHA on another

machine, the HYPER archives must be recompiled from source codein ~hyper. A second caveat is

that the HYPER software uses data structures andutility libraries from ~octtools. So, it should

always be kept in mind that changes in ~octtools can affect the state of the ALOHA software.

The file organization of ALOHA is listed below. Many subdirectories haveaccompanying on-line

documentation in ascii and FrameMaker files. Tocompile anyof the ALOHA source code, use the

provided makefile in the directory containing the code.

The root directory of ALOHA located in ~siera/shared/aloha is organized as follows:
a. /src

Source codeand header files for main programs and utilityroutine libraries.

b. /lib

Libraries that support the ALOHA flow graph and event graph data structure. Keep inmind that
these two structures are based onthe HYPER graph data structure, /lib supplements the generic
librariesprovided by HYPER.

c. /bin

Binaries compiled from the sourcecode in /src. ContainsvalidateEG* and aloha*. The aloha*
tool is actually made up of routines in Idl2Flow*, Flow2EG*, Flow2DP* and FIow2IC*
programs also in the same directory.

d. /cellib

Library of I/O protocol event graphs for various hardwaremodules, each contained in a
subdirectory. A subdirectory has the AFL event graph files and FrameMaker pictorial
documentation. SeeAppendix A for details oninstalling event graphs.

e. /demo

Five design examples, each contained in a subdirectory. The four standard examples used to
illustrate design methods throughout this thesis are in /demo. Subdirectories contain a
README file explaining howaloha* was invoked to generate the output files.
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f. /doc

Ascii and FrameMaker documentation related to ALOHA software implementation and use.

The /lib and /src directories listed above contain subdirectories and files described below.

First, the /lib directory holds the following:

a. /ENODELIB

Library supporting the event graph data structure. Also has the event graph for the Ictrl
handshake protocol described in Section 7.1.2 and Figure 7-6.

b. /FNODELIB

Library of primitive flow graph nodes that support the flow graph data structure. Supplements
the ones found in ~hyper/COMMON/lib/NODELIB.

the /src directory contains the following subdirectories of source code and README files:

a. /system
Holds source code for the two main ALOHA tools, validateEG* and aloha*.

b. /hyperLib
Copies of include files from ~hyper/COMMON/include; copies of archived libraries from
~hyper/COMMON/src/flowLib, ~hyper/COMMON/src/transform and ~hyper/COMMON/src/
hyperUtil.

c. /flowLibAux

Library of utility routines that support the ALOHA flow graph data structure. Supplements the
generic HYPER library in ~hyper/COMMON/src/flowLib. The ascii README file documents
the prototypes and functionality of the flowLibAux routines.

d. AdlLib

IDL parser and pass routines. Implements the IDL grammar described in Chapter 4 and
Appendix B, using the UNIX Lex and Yacc facilities. Produces a parse tree called AST
(abstract syntax tree) and is thoroughly documented in README.ast.frame and
README.ast_attributes. Look at the documentation before modifying this source code!

e. /i2f

Translator that constructs an ALOHA flow graph data structure from an IDL parse tree. See
section 5.2.1 of Chapter 5 for details.

f. /timeconvert

First part of scheduler and produces initial flow graph schedule. Creates control steps,
schedules inputs and outputs, and storage allocation. Implements scheduling techniques
described in Section 6.2 of Chapter 6.

g. /schedule
Second part of scheduler. Implementing various scheduling details described in Sections 6.2
and 6.3, including some optimizations.

h. /cluster
Programsto insert sync nodes into the flow graph and cluster data flow nodes. Corresponds to
the synthesis techniques discussed in 5.1.1 and 5.2.3.
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i. /eventLib

Library of utility routines that support the event graph data structure. The event graph data
structure is based on the HYPER graph data structure, just as the flow graph is. The ascii
README file documents the prototypes and functionality of the /eventLib routines.

J. /f2e

Programs to generate interlocked eventgraphs from flow graph and I/O protocol event graphs
in ~siera/shared/aloha/cellib. Implements thetechniques described in Chapter 7.

k. /f2d

Programs to generate theRTLdatapath netiist from the flow graph. Corresponds thetechniques
shown in Section 8.1 of Chapter8.

I. /f2i

. Programs to generate theinterface controller netiist and FSMcore description (inBDS format).
Details described in Section 8.3.

m. AransLib

Library of utility routines to support BDS andCLOVER andSDL translator source code in
/translators.

n. /translators

Currently contains two low-level translators. Ast2Bds converts an AST parse tree
representation of combinational logic equations into the BDS format. AflToClover converts
time constraints in aevent graph from AFL format toCLOVER format. ALOHA internally
uses the AFL format to represent structural netlists. Afl2Sdl converts an Afl netiist
representation into the Sdl netiist format.
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