

Copyright © 1992, by the author(s).
All rights reserved.

Permission to make digital or hard copies of all or part of this work for personal or

classroom use is granted without fee provided that copies are not made or distributed
for profit or commercial advantage and that copies bear this notice and the full citation

on the first page. To copy otherwise, to republish, to post on servers or to redistribute to
lists, requires prior specific permission.

THE HIGH-LEVEL SYNTHESIS OF

MICROPROCESSORS USING INSTRUCTION

FREQUENCY STATISTICS

by

William Read Bush

Memorandum No. UCB/ERL M92/109

15 May 1992

THE HIGH-LEVEL SYNTHESIS OF

MICROPROCESSORS USING INSTRUCTION

FREQUENCY STATISTICS

by

William Read Bush

Memorandum No. UCB/ERL M92/109

15 May 1992

ELECTRONICS RESEARCH LABORATORY

College of Engineering
University of California, Berkeley

94720

THE HIGH-LEVEL SYNTHESIS OF

MICROPROCESSORS USING INSTRUCTION

FREQUENCY STATISTICS

by

William Read Bush

Memorandum No. UCB/ERL M92/109

15 May 1992

ELECTRONICS RESEARCH LABORATORY

College of Engineering
University of California, Berkeley

94720

The High-Level Synthesis of Microprocessors

Using Instruction Frequency Statistics

William R. Bush

May 1992

Department of Electrical Engineering and Computer Science

University of California

Berkeley, California 94720

Abstract

The RISC approach to computer design optimizes commonly executed instructions. This work au
tomates mat process at the microarchitectural level, synthesizing optimized microprocessor implementations
from behavioral, program-like specifications. It uses instruction frequency statistics to guide optimization, to
improve both the cost-performance ratio and the absolute performance of synthesized designs. Two specific
optimization techniques have been investigated. The first is trace scheduling, which was developed for mi
crocode and very long instruction word compilers, and was adapted in this work to the hardware synthesis
domain. The second is a new technique for allocating hardware resources based on dividing hardware oper
ations into two categories, those required to implement a design, and those that optionally improve its perfor
mance; optional operations are allocated in decreasing order of importance.

A hardware synthesis system was constructed to test these techniques, various versions of two sub
stantial microprocessors, the 6502 and the BAM (a RISC processor extended to support Prolog), were syn
thesized in a series of experiments. In general, trace scheduling increased the throughput of synthesized
hardware from 10% to 34%, at the cost of proportionally larger circuit area. The new allocation technique
demonstrated limited applicability in microprocessor optimization, but did make possible the automatic gen
eration of specialized microprocessors for applications that only use a subset of instructions.

The High-Level Synthesis of Microprocessors

Using Instruction Frequency Statistics

Copyright© 1991,1992

by

William Read Bush

The High-Level Synthesis of Microprocessors
Using Instruction Frequency Statistics

By

William Read Bush

A.B. (Harvard University) 1972
J. D. (Boston University School of Law) 1977

MS. (University of California at Berkeley) 1985

DISSERTATION

Submitted in partial satisfaction of the requirements for the degree of

DOCTOR OF PHILOSOPHY

in

Computer Science

in the

GRADUATE DIVISION

of the

UNIVERSITY OF CALIFORNIA at BERKELEY

Approved:

Co-Chain ..^r^^&^^^TTrrrr^r^...] /.&%?/?/.<
Co-Chain ... fC/\\ &n*y.T?>l /^/*o///

,um &ii?je:
<L.C\ J.pM.tJ?/...

Acknowledgements

This research was sponsored in part by the DefenseAdvancedResearch Projects Agency (DoD): Arpa
Order No. 6501, monitored by the Office of Naval Research under Contract No. N00014-88-K-0579, and
Arpa Order No. 4871, monitored by the Space and Naval Warfare Systems Command under Contract No.
N00039-84-C-0089.

I wouldlike to thankmy researchadvisor,Al Despain, for timelyinsights, for encouragement, and for
creating theresearch environment of theAquarius project I wantto thankmyco-chair, BobBrayton, fortak
ing on co-chairduties,and committeemembers RandyKatzand PeterBerckfor experiencing both my qual
ifying exam and dissertation.

I want to thank Joan Pendleton, of Harvest VLSI, for the use of her cell library, and for the generous
and extendeduse of computingresources.Frank Spies,of HarvestVLSI,provided the SPEC benchmarksta
tistics. SteveSchoettler, of UC Berkeley, wrotethe initial6502specification in Prolog.

I would like to thank KathrynCrabtreeand ReneSmith,of UC Berkeley, for invaluable help in navi
gatingthe extensiveBerkeley bureaucratic maze,and fellow students Rick McGeer, DaveUngar,and Dain
Samples, for timely advice and aid.

Most importantly, I wish to thankmy parents,Walterand Sally,and my comrade-in-arms, Ellen Peel,
for their enduringsupport

The High-Level Synthesis ofMicroprocessors

Using Instruction Frequency Statistics

Table of Contents

Chapter One: Introduction 1
How are microprocessors generated automatically? 1
What is high-levelhardwaresynthesisand how is it performed? 3
How can quality be improved with instruction frequencies? 3
How can the quality of improvements be measured? 3
Extended Table of Contents 4

Chapter Two: High-Level Hardware Synthesis » 5
Historical Introduction 5

High-Level Synthesis Tasks 5
Translation 5

Scheduling 6
Allocation 8

Chapter Three: An Introduction to Viper 11
The ASP Context 11

The Viper System 11
Chapter Four Behavioral Specification and Simulation in Prolog 13

Specification for Synthesis 13
Using Prolog 13
Restrictions 14

Extensions 14

Basic Extensions and Specifications 14
Extensions: Registers 17
Extensions: Register Files 17
Extensions: Operators 18
Extensions: System Support 19
Extensions: Simulation 20

A BNF Definition 20

Chapter Five: Translating Prolog into Register Transfers 23
Register Transfers 23
Compiler Optimizations 24
Mapping Behavior to Hardware Function 25
Enabling Conditions 26
The Operation of the Translator 26

Chapter Six: Common Case Optimization 29
The Nature of Instruction Frequency Statistics 29
A Figure of Merit 30
Common Case Optimization: Counts, Probabilities, and Orderings 31

Chapter Seven: Common Case Scheduling 32
Scheduler Input Translation 32
Scheduler Output Translation 33

Chapter Eight: Common Case Allocation 34
Highlights of Allocation 34
The Operation of the Data Path Allocator 37
Building Data and Control Paths 40

Chapter Nine: Experiment Overview 41

The Experiments 41
Benchmarks 41

Synthesis Paths 42
Using Viper 45
Functional Unit Library Summary 45
Behavioral Simulation Summary 45

ChapterTen: Simple Machine Results 46
Simple Machine Specifications 46
Simple Machine Experiments 48
Simple Machine Results 49

Chapter Eleven: 6502 Results 51
6502 Specifications 51
6502 Experiments 52
6502 Results 53

Common Case Scheduling Summary 56
Chapter Twelve: BAM Results 58

BAM Specifications 58
BAM Experiments 60
BAM Results 61

Chapter Thirteen: Pipelining 69
Pipelining Extensions 69
A Simple Pipelined Machine 73
An Alternate Pipelining Technique 73
Other Pipelining Issues 74

Chapter Fourteen: Conclusions and Future Work 75
Summary of Results 75
Conclusions 77

Observations 77

Extensions to Viper , 78
The Challenges to High-Level Synthesis 79

Bibliography 80
Appendix A: SMI Variants 87

TheSM2 87

The SMI with Multi-Port Memory 89
The Pipelined SMI 89

Appendix B: Instruction Frequency Data 92
The SMI 92

The Subset 6502 92

The Complete 6502 93
The BAM Benchmark Composite 93

Appendix C: Adding Operators and Functional Units 95
Value Producing Operators 95
Conditional Operators 95
Complex Operators 96
Register File Operators 96
Register File Mechanics 96
Summary 97

Appendix D: The ASP System 98
ASP Overview 98

Decomposition of Silicon Compilation 98
Specification: Executable Prolog 99
High-Level Synthesis 99
Specification: Data Paths and Control Paths 99
Boolean Synthesis 100

Specification: PLA 100
Specification: DataPathModules 101
Topological CircuitSynthesis 101
Specification: Sticks 102
Geometric Synthesis 103
Specification: Space 103
Representation Issues 104
The ASP Library 104

Appendix E: The Use of Prolog 105
Hardware Specification in Prolog 105
Experience with Prolog 107

ui

List ofTables and Figures

Figure 1-1: A SPARC Data Path 2
Figure 3-1: Viper Overview 12
Figure 9-1: Synthesis Paths Through Viper 43
Figure9-2: Information Flow Through Viper 44
Table 10-1: SMI-Based Designs 49
Table 10-2: SMI Results 50

Table 11-1: Simple Subset 6502 Designs 53
Table 11-2: Simple Subset 6502 Results 53
Table 11-3: Complete 6502 Designs 54
Table 11-4: Complete 6502 Results 54
Figure 11-1:6502 Individual Synthesis Results 55
Figure 11-2:6502 Average Synthesis Results 56
Table 11-5: A Comparison ofNormal and Trace Scheduled 6502 Designs 57
Table 12-0: BAM Feature Abbreviations 61

Table 12-1: BAM Architectural Variant Design Results 62
Table 12-2: BAM Variants Synthesized Using Benchmark Frequencies 62
Table 12-3: BAM Trace Scheduled Design Results 62
Table 12-4: BAM Modified Fetch Design Results 63
Table 12-5: BAM Mixed Fetch Design Results 63
Table 12-6: BAM Data Path Element Allocation 64

Figure 12-1: BAM Variants (Transfer Count Cost) 65
Figure 12-2: BAM Variants (Area Cost) •. 66
Figure 12-3: BAM Instruction Fetch Variants '. 67
Table 12-7: BAM Cost-Performance Data For Mixed Fetch 68

Table 14-1:6502 Result Summary 76
Table 14-2: BAM Result Summary 76
Table B-l: Benchmark Characteristics 93

Table B-2: Instruction Counts 94

Table E-l:C-Prolog Runtimes 107
Table E-2: Quintus Prolog Runtimes 108

IV

Chapter One: Introduction

A general principle of design is to optimize for common cases. Within the contextof globalrequire
mentsand constraints, improving the performance of commonly occurring cases often improves the overall
performance of a completedesign. The successful application of this principlerequires that commoncases
be identified, and that performance be effectively measured.

Thisdissertationapplies thisprincipleto theautomated high-level synthesisof hardware,microproces
sors in particular. For microprocessors, commonly executed instructions (common cases)are identifiedwith
instruction frequency statistics, and performance is measured in terms of instructions executedper unit of
time ([SPEC]).

The basicquestionaddressed by thisworkis,howeffectively canthequality ofautomatically generated
microprocessors be improved through the use of instruction frequency statistics? Quality in this context
meanseitherabsoluteperformance (making a microprocessor absolutely faster than it wouldotherwisebe),
or the ratio of performanceto cost (makinga morecost effectivemicroprocessor). Since the hardware syn
thesis system developed to answer this questioncan synthesize more than microprocessors, the work also
touches the more general question,howeffectively can high-level hardware synthesis be improved through
the application offrequency ofuse information?

Posing these questions immediately raises subquestions.

• How are microprocessors generated automatically?

• How can their quality be improved by using instructionfrequencies?

• How can such improvements be measured?

• More generally, what is high-levelhardwaresynthesisand how is it performed?

1. How are microprocessors generated automatically?

In this work,automaticallygeneratinga microprocessor meansproducing a microprocessorimplemen
tation from a specification automatically using a design automation computer program.

1.1. Specifications and Implementations

A completemicroprocessordesignexistsat severallevelsof detail ([Arch-Hayes], [Arch-H&P],[Arch-
Tanenbaum]). At die highest level is the instructionset architecture(ISA), "the portion ofmachine visible to
the programmeror compiler writer" ([Arch-H&P], page 89), that is, to the processor's users. At the lowest
level is the actual chip. In betweenare variouslevels,eachimplementing the one above it. The register trans
fer level(RTL),usingfunctional unitcomponents suchas adders,buses,andlatches, implements the ISA; the
logic gate level implements functional units; the transistor level implements gates; the layout level imple
ments transistors; and the physical chip implements layout

For this work, a microprocessorspecification is an ISA, and an implementation is its RTL implemen
tation. These levels are most closely related to computer architecture, and are most affected by instruction
frequencies. Lowerlevelsare moredistantfromarchitectural issues, and involvemoregeneralcomputeraid
ed design problems such as logic synthesisand compaction. Appendix D discusses these lower levels of de
sign.

An ISA is the specificationof the external behaviorof a microprocessor,and its RTL implementation
is its highest circuit oriented, structural implementation.

For example,consider the ISA definitions of theadd instruction in architecturemanuals for three cur
rent microprocessor architectures, the SPARC, the MIPS, and the BAM.

r[rd] <- r[rs1] + (r[rs2] or sign extnd(simm13))
([SPARC], page 6-7)

GPR[rdl <- GPR[rs] + GPR[rt]
([MIPS], page A-9)

rk <- rj+ rj
([BAM-Manual], page 17)

These quite similardefinitions arein registertransfer form, the formusually used for specifying ISAs.
Behavior is defined in terms of user-visible registers (register files in thiscase, with different indexing nota
tions) and programming-language-styleoperationson those registers. The plus and assignment operatorsare
abstract - they are not tied to specific ALUs, adders, or buses.

Now consider an RTL implementationofone these processors. The CypressCY7C601 SPARC imple
mentation's integerunit block diagram, depicted in Figure 1-1(from [SPARC], page2-1), shows amongother
elements anarithmetic-logical unit, a shifter, and a registerfile, connectedby associated buses. This diagram
illustratesthe implementation's commitment to a basic set of hardware elements and interconnections.

PC Adder

Source 1

Destination

Register File
136x32 bits

JL

Source 2

Arithmetic
and Logic Unit Shift Unit

Program
Counters

Address

Align

Processor State

Window Invalid
Trap Base

MultiplyStep

Align

Instruction/Data

Figure 1-1: A SPARC Data Path

Instruction
Decode

An importantpart of the implementation that does not appear in the diagram is control. The diagram
shows the processor's data path, but the signals that control the data path elements (that cause values to be
stored in registers, for example, or that select the function to be performedby the ALU) are missing.The con
trol path, controllingwhich and whenoperationsare performed, is as importantto the implementation as the
data path. Control paths are implemented with some type of finite state machine.

1.2. Generating Implementations Automatically

Hayes succinctly describes the problem of generatinga processor implementation at the register trans
fer level from an ISA specification, and identifies it as the register level design problem: "Given a set of al
gorithms or instructions, design a circuit usinga specifiedset ofregister level components which implements
the desired functions while satisfyingcertain cost and performancecriteria" ([Arch-Hayes],page 141).

This register level design problem is a parameterized optimization problem. In the case of micropro
cessors, performance criteria are usuallyexpressed in termsof speed or delay constraints,and cost in terms
of chip area constraints.

This problem is difficult, and contains NP-complete problems embedded in it There is no single ac
cepted technique for solving it efficiently and well. As Hayes observes, "Lacking appropriate mathematical
tools, register level design methods tend to be heuristic and depend heavily on the designer's experience"
([Arch-Hayes], page 141).

The register level design problem is an instanceof themore general high-level hardware synthesis prob
lem, which has been a focus of computer aided design research.

2. What is high-level hardware synthesis and how is it performed?

High-level hardware synthesis addresses the application independent form of the design problem de
scribed above for microprocessors. It maps general behavioral specifications to hardware structure ([Tutori
al]). It is not limited to the microprocessor domain.

Considerable high-level synthesis work has been done. Several high-level synthesis systems have been
constructed. Since the problem is hard, all such systems have various limitations, and have various styles.

This prior work is reviewed in Chapter 2, providing an extensive answer to the above subquestion.

The basic high-level synthesis system created as part of the work described here is presented in Chap
ters 3,4,5, and parts of 8.

3. How can quality be improved with instruction frequencies?

This is the fundamental question posed by this work. Various usage-based common case optimization
techniques are explored and evaluated, and are described in Chapters 6,7, and 8. These chapters more fully
answer this subquestion.

In general, this work uses instruction frequenciesto drive design choices. Such choices are reflected in
the order in which objects are processed, and in weights associated with possible design elements. Mecha
nisms are needed to, first, compute these weights and ordenngs, and, second, to use the weights and ordenngs
in synthesis decisions.

4. How can the quality of improvements be measured?

Different microprocessor implementations can be generated from the same specification. Thus, for this
work, unoptimized, base line implementations and optimized implementations are synthesized from the same
specification. Their quality can then be compared through the use of appropriate area and speed metrics.

The primary metrics conventionally applied to microprocessor implementations, and used in this work,
are relative chip area and speed. Speed can be described in a number of ways (including clock rate and in
structions executed per second); a performance metric is employed here, essentially cycles per instruction,
and is described in Chapter 6.

The experimental technique is fully described in Chapter 9, and results are presented in Chapters 10,
11, and 12.

5. Extended Table of Contents

The experiments constructed to answerthe fundamental questions raisedaboveentailedthe definition
and construction of a number of components:

(1) a hardware specification language, suitable for the definition of microprocessors;

(2) experimental microprocessor specifications;

(3) benchmark applications for instruction frequencies;

(4) a hardware simulator, and other mechanisms,for the collectionand managementof instruction frequen
cy data;

(5) a translator front end for the hardwarespecificationlanguage,able to translate it into appropriate inter
nal forms;

(6) a translator back end, capable of constructinghardwarefrom the front end's internal forms, and using
instruction frequencies in the process; and

(7) a well-characterized functional unit library.

These components and experiments are described in thirteen chapters. Five appendices complete the
work, describing some items in more detail, and presenting peripheral issues.

Chapter 2 reviews previous work in high-level hardware synthesis.

Chapter 3 introduces the Viper system, used in the experiments.

Chapter4 describes the system's hardware specification and simulation language.

Chapter5 presents the front end translator.

Chapter 6 discusses the collection and management of instruction frequency data, and the general na
ture of common case optimizations.

Chapter 7 describes common case scheduling transformations. The specific technique used is trace
scheduling, applied to the hardware synthesis domain.

Chapter 8 describes common case data path construction.The technique is a new one based on dividing
functional units into two categories, those required to implement a design, and those that will optionally im
prove its performance; optional functional units are allocated in decreasing order of frequency.

Chapter 9 presents an overview of the experiments, focusing on the different synthesis paths through
die system.

Chapter 10 describes a simple microprocessor and its synthesis.

Chapter11 describes the 6502 microprocessor and its synthesis.

Chapter 12 describes the BAM microprocessor and its synthesis.

Chapter13 describes extensions to Viper to generate pipelined designs.

Chapter14 presents general conclusions and potential future work.

Appendix A presents variants of the Simple Machine 1 microprocessor.

AppendixB describes the instruction frequency data used in the experiments.

AppendixC describes the process of adding operators and associated functional units to Viper.

Appendix D generally describes the various levels of the Advanced Silicon compiler in Prolog (ASP)
system, of which Viper is a part

AppendixE analyzes the experience of using Prolog for this work.

In addition, a companion document, A Prolog-Based High-LevelHardware Synthesis System: Source
Code and Examples ([Viper]), contains: the Prolog source code for the Viper system; the Viper functional
unit library; a complete Prolog specification of the 6502 microprocessor; two complete Prolog specifications
of the BAM microprocessor;and transcripts of the systembeing used to synthesize microprocessors.It is pub
liclyavailable in postscript form, via anonymous FTP, fromic.berkeley.edu.

This document and its companion were originally combined and filed as a U.C. Berkeley Ph.D. disser
tation.

Chapter Two: High-Level Hardware Synthesis

This chapterdescribespreviouswork in high-levelhardwaresynthesis,highlightinglimitationsand op
portunities.

1. Historical Introduction

The process of high-level hardware synthesis, the generation of hardware structure from a behavioral
specification (introduced in the previous chapter), has been under investigation for some time. Work at IBM
was first reported in 1969 [ALERT],and the first CMU system was described in 1979 [CMU-CAD]. Forty
systems are documentedin [Survey], which is not exhaustive. Four systems alone have been developedat
CMU ([CMU-CAD], [CMU-DA], [SAW-Intro], [Emerald]),and three efforts at AT&T are continuationsof
that work ([A2S], [Bridge], [CHARM]). Four have been developed at IBM ([ALERT], [YSC], [V], [HIS]).
Long, ongoing efforts exist at USC ([ADAM]), the University of Kiel ([MIMOLA]), IMEC (the Cathedral
DSP systems~ [Cathedral]),and the Universityof Illinois ([Chippe],continued at UC Irvine).The MacPitts/
MetaSyn/Silc system has existed for 10 years in various incarnations ([MacPitts], [Silc]), through various at
tempts to commercialize the technology.Books have been written on the subject ([SiliComp], [HLVS]).

The synthesisprocess itself is quitecomplex,and is not fully understoodor well characterized.Despite
the amount of research that has been done, further research continues to be done (it occupied four sessions at
the 1991 Design Automation Conference).

2. High-Level Synthesis Tasks

High-level synthesis is composed of three basic tasks-(see [Survey] and [Tutorial]):

• translation of a behavioral specification, written in a hardware description or programming language,
into an internal representation;

• scheduling of operations, which assigns each operator in the behavioral specification, such as"+", to a
hardware time step, or cycle (synchronous hardware is assumed); and

allocation of hardware elements, which assigns each operator to a piece of hardware, a"+" to an adder,
for example (this includes both the selection of hardware elements and the mapping of operations to
those elements).

These tasks are performed in the context of performance and resource constraints, with performance
constraints usually expressed in terms of speed or delay, and resource constraints in terms of chip area.

3. Translation

This task is essentially programming language compilation, from lexical input to intermediate repre
sentation, and is well understood (see [Dragon]). Most compiler optimizations used at this level, such as dead
code elimination, for example, apply to high-level hardware synthesis. Any effective synthesis system must
employ some of these common optimizations. See Chapter 5 for a list of such optimizations used in current
systems (and the ones used in this work).

Less common compiler optimizations, particularly those used by vectorizing and parallelizing compil
ers, such as loop unrolling, can also be applied (see [Dragon]). These optimizations are characterized by code
motion between basic blocks, and are, in general, large scale transformations. In high-level synthesis, such
transformations are performed in connection with scheduling and related scheduling optimizations, and are
discussed below.

4. Scheduling

The primary goal in scheduling is to balance higher performance (greater speed through greater con
currency) with lower cost (limited resources). In general, greater concurrency requires greater resources,
which permit more operations to be performed in parallel. Hence scheduling is dependent on resource con
straints and is thus affected by allocation.

Scheduling methods can be divided into two types. The first type always operates within the confines
of basic blocks (in the compiler sense, a basic block being a sequence ofconsecutive statements in which flow
ofcontrol only enters at the beginning and only leaves at the end). The second type moves operations between
basic blocks, in an effort to increase concurrency. The second type often must duplicate operations in order
to preserve correctness, further increasing cost for an added increase in performance.

4.1. Intra-Block Scheduling

The basic technique used for most intra-blockschedulingis list scheduling(see [Survey] - it is the most
popular high-level synthesis scheduling technique), which was developed for microcode compaction and has
been empirically validated for that domain (see [Trace]).

In list scheduling, a data dependency graph of operators is constructed, indicating which operators are
dependent on (the results computed by) others (the "list" in list scheduling refers to these lists of dependent
operators). The graph is then traversedsequentially,each operatorassigned a time step one greater (in the best
case) than that of the last operator on which it depends.

Sometimes more operatorscan be assigned to a timestep (basedonly on data dependencies)than hard
ware will support (two additions, for example, may be ready, but only one ALU may be available). In that
case, the scheduler must give priority to some operators, and delay the others.

Two priority functions are commonly used. The first uses the operator dependency lists ([A2S], for ex
ample). If delayed, an operator can potentially delay all its dependent operators in turn. Thus this priority
function gives priority to the operators with me greatestnumberof dependents.

The second employs die concept of mobility ([Chippe-Micro]),or, equivalently, freedom ([MAHA]).
Mobility refers to die number of potential time steps to whichan operatorcan be assigned,between when the
operator's data dependenciesare met (when its operandsare ready)and when the operator's result is required
by other operators (specifically, die difference between an operator's as-late-as-possible and as-soon-as-pos
sible time steps). If delayed, a less mobile operator has feweralternate time steps. Thus this priority function
gives priority to the operators with the smallest mobility.

List scheduling with mobility is used in this work in an intra-blockscheduling phase (see Chapter 8,
step 6).

A variant of mobility-based scheduling, called force-directed scheduling, was developed specifically
for high-levelsynthesis ([HAL-FDS]).It differs from listschedulingin one importantrespect.List scheduling
scans operators in order of dependency (using the dependencylists and processing them sequentially). Force-
directedscheduling,in contrast, scans operatorsin orderof mobility,least mobile first, thus giving mobility
absolute priority.The name of the techniquecomes fromdie analogyof mobility to a compressedspring -
the smaller the mobility the greater the force on the spring. Processing operators in order of least mobility
thuscauseseach step to result in the greatestreduction of force. Force-directed scheduling is now usedby 3
systems (see [Survey]).

An interesting list scheduling alternative can be found in the HYPER system ([HYPER]), which per
formsscheduling after allocation. The abovetechniques usepriority functions involving computations based
on specificationoperators; HYPER uses a priority function basedon allocated functional units. At each time
step the system computes, for each typeof hardware resource, the ratioof available resources over required
resources,and schedules the resource with the smallestratio (which is therefore in the shortest supply).

4.2. Inter-Block Scheduling

Transforming a design to increase concurrencyby moving operationsbetween basic blocks is a com
plex process,and potentiallyexpensivein duplicatedoperations. It has been studied to some extent, however,
because of the possibility of enhanced performance.

4.2.1. Flamel

The mostimportantsystem,for thisdissertation, is theFlamelsystem([Flamel], namedafter a medieval
alchemist),which compiles a restricted subset of Pascal to hardware.Significantly, it combines basic blocks
using a set of transformations, and decides whetheror not to apply a given transformation using execution
counts derived from benchmarks.

Specifically, Flamel uses five transforms.

Linemerge merges two basic blocks, one following the other, into one.

Altmerge merges the three blocks of an if-then-else (the test, the true arm, and the false arm) into one.
It does this by attachingmultiplexers,drivenby the output of the test, to the outputsof the true and false
arms.

Unroll unrollsa loop one iteration.It connectsthe loopoutputs to die loop inputs and usesa multiplexer
driven by the loop index to select which input is used.

Fullunroll is used to unroll a loop when the number of iterations is known. It operates like unroll, but
uses as many loop copies as there are iterations.

Tat-to-tab converts a test-at-top loop to a test-at-bottom loop, which is the form that unroll and fullun
roll require.

Note that transforms can be applied to the results of other transforms.

In most cases the nesting structure of blocks determines the order in which transforms are applied.
There are cases, however, where the order is ambiguous; Flamel imposes fixed priorities in those cases (al
ways choosing an altmerge over a linemerge, for example). The result of these fixed priorities is significant
- Flamel never has to decide which transform to apply, it only decides whether to apply one. The result is a
tree of transforms and blocks, with the initial blocks as leaves, and the results of transforms as internal nodes
(see Figure 4 in [Flamel]).

The question that Flamel must then address for each transform in the tree is, is it cost effective to apply
that transform? To answer the question Flamel computes die hardware cost and weighted performance
(weighted by execution frequency) of every block in the transform tree, including initial blocks and trans
formed blocks. It then does a preorder traversal of the transform tree. If a transformed block is faster, it uses
it; otherwise it does not apply the transform, but instead moves on to the transform's children in the transform
tree. This method results in globally optimal execution times.

Flamel is a model for inter-block optimization: it uses powerful transformations, and guides their ap
plication with execution frequencies.

Flamel does, however, have limitations.

• It is limited to five optimizing transforms, which do not handle all control structures.

• In order to generate an unambiguous transform tree, necessary for evaluating the utility of transforms,
it is committed to a predefined priority of transforms.

• It handles the movement of operators between blocks (effectively the combining of blocks) by intro
ducing multiplexers in the data path, along with associated value selection logic. This is more complex
and cosdy than adding states to the controlling finite state machine, and therefore can produce designs
that are far from being globally optimal.

4.2.2. The SUGAR system (early version)

Researchers at CMU have extensively investigated inter-block transformations ([CMU-BLT], [COR
AL], [CORALII], [CMU-DRT], [SAW]). The focus of this work has been interactive, user-driven transfor
mations. Only one effort automated the process.

An early version of the SUGAR system ([SUGAR]) used ordering information to optimize case state
ments.It allowed the user to annotate manuallya specificationwithorderinginformation,attaching priorities
to the arms of case statements. Execution paths through the case arms that did not meet a general delay con
straint were optimized in the order specified by the user, by movingoperationsout of the case arms in a man
ner similar to trace scheduling.

This approach is suggestive but limited.

4.2.3. The VSS System

The VHDL Synthesis System (VSS) ([VSS]) performs inter-block scheduling using loop unrolling and
percolation scheduling ([VSS-PS]), applying these programminglanguage techniquesto the domain ofhigh-
level synthesis.

Percolation scheduling was developed to increase concurrencyin programs executed on parallel hard
ware. It consists of a set of (four) atomic transformations that move operations over block boundaries, while
preserving correctness. These atomic transformations are applied under the guidance of various optimizing
heuristics.The heuristicsare typically driven by larger structuralprogram features (such as conditionalsand
loops).

The WSS heuristicsare concerned with loop optimization,and use the techniqueof loop unrolling.The
key to theiroperationis theobservation that, in mostcases,loopscanonlybe unrolleda few timesbeforedata
dependenciesmake further unrolling unproductive. The VSS heuristicsunroll a loop until a pattern of oper
ationsand dependencies emerge that is stable undermore unrolling. The result is provably optimal loop ex
ecution.

Conditionalsin the loop are handled,but substantial constraints limit the guaranteeof optimality (in
volvingthe distanceoperatorscan be moved,and regularity in theapplication of transforms).

TheVSStechnique is primarily aimedat DSPapplications (seetheexamples given),withcomputation-
intensiveloops. It is not general,and is further limitedin its ability to processconditionals.

4J. The Scheduling Opportunity

All the above inter-block scheduling techniques have limitations, as noted above. The primary one
commonto all is restrictedtransformation ability.The transforms are pattern-specific and limitedin their ap
plication. In addition, the VSSoptimizations are not driven by usage information.

Another system not so limited is the HIS system ([HIS]),which performsgeneral inter-blockschedul
ing.It optimally schedules eachexecution path through thedesign, and thenoptimally combines the individ
ualpathschedules. It is, however, computationally quiteexpensive. Eachscheduling step is formulated as a
clique partitioning problem (seescheduling below), which isNP-complete. Asolution thusrequires thesolv
ingof n+1 NP-complete problems, where n is dienumber of paths through thedesign.

It would be worthwhile to investigate a general, efficient, inter-block usage driven scheduler. In partic
ular, high-level syndiesis is similar to very long instmction word (VLIW) compilation (see [Bulldog] and
[Arch-H&P]), withthe instruction wordwidth(theavailable resources) not fixedin advance. It wouldbe ap
propriate to apply theinter-block trace scheduling technique developed for VLIW compilation to high-level
synthesis. See Chapter 7.

5. Allocation

Theprimary goalof allocation is togenerate costeffective datapaths. Thekeytoachieving thisgoalis
sharinghardware- havingseveral behavioral operatorsuse the same functional unit

Virtually all allocation techniques attempt to produceminimal hardwarewithin cost (area) and delay
(critical path) constraints. The techniques differ in how they determine minimal cost

A wide variety of specific allocation methods have been used. These methods tend to be somewhat id
iosyncratic,depending on paradigm (such as expert systems, or graphalgorithms), targethardware(available
functional units), problemdomain (such as microprocessors or digital signal processing), relation to schedul
ing, method of registerallocation, and method ofbus allocation.In particular,register and bus allocation, in
volving storage and connectivity, present different problems from functional unit allocation and binding;
nonetheless, all three types of allocation are related,and interact

In addition, most systems perform local optimizations and transformations, recognizing special case
operators (such as incrementers).These optimizations tend to be idiosyncratic (based on the available func
tional units). An effective synthesis system should employ some of these optimizations. See Chapters 5 and
8 for a description of the ones used in this work.

Note that allocation is related to scheduling (see [Tutorial]). Functional unit sharingis predicatedon the
knowledge that two operatorsbound to the same unit will not use it at the same time - that they are not sched
uled in the same cycle. Most allocation techniques assume at least a preliminary schedule. Some techniques
([MAHA], for example) modify the schedule.

Also note that, as mentioned above, allocation in generalrefers to both the selection of hardware ele
ments and the mapping ofoperationsto those elements. The second processis sometimes referred to as bind
ing, to distinguish it from the first.

5.1. Specific Allocation Techniques

The allocation problem can be formulatedas die processof trying to map operatorsassigned to different
time steps to the minimum number of functional units. It is then very similar to the register allocation problem
for compilers, which tries to map variables with different lifetimes onto the minimum number of registers.
Graph coloring and clique partitioning aredifferent graph-based solutions to the same problem, and are used
in high-level synthesis (see, for example, [YSC-Design] and [HIS-DP]).

The classic system to use this technique is FACET ((Facet], [Emerald]), which uses clique partitioning.
Recall that a clique is a complete subgraph(with every node connected to every other node). The formulation
is simple: construct a graphwhere the nodes areoperatorsand the edges indicate possible sharingofhardware
(operators assigned to different time steps that can use the same functional unit). The minimum hardware al
location is defined by die minimum number ofcliques, where each clique represents a set ofoperators mapped
to a functional unit. The clique partitioning problem, which determines that minimum number, is NP-com
plete (problem GT15 in [NP]). There are, however, good approximate algorithms (see [Facet]). The same
technique canbe used forothercasesof maximizingpotential sharing, variables andregisters, anddata trans
fers and buses in particular. The technique (and graphcoloring, formulated similarly, GT4 in [NP]) is used in
several systems (see [Survey]).

Another system that maps sets of operations onto functional units is the CHARM system at AT&T
[CHARM]. Unlike FACET, which attempts a global, simultaneous optimization, CHARM merges sets ofop
erations pairwise, choosing the most cost-effective merge, until no more merges are possible. The sets ofop
erations merged are disjoint - each operation is executed in a different time step. The system iteratively tries
merging all pairs of sets of disjoint operations, choosing the merge with the greatest hardware savings (cost
improvement) at each step. The cost improvement is the difference in cost between the two sets implemented
with separate functional units and with the same functional unit taking into account interconnection costs.
The Flamel system is similar ([Flamel]), but uses a different cost metric.

Some systems allocate individual operations sequentially, rather than in sets. The EMUCS allocator
([EMUCS], part of SAW [SAW]) works in mis manner, iteratively constructing a data path operation by op
eration. At each iteration step EMUCS constructs a table containing all the costs (for all possible implemen
tations) of implementing each of the as yet unimplemented operations. The system men implements the
operation with the greatest difference between cheapest and second cheapest cost (which can be thought of
as the cost of not implementing the operation this iteration).

Another system that allocates operations sequentially is the MAHA allocator from USC [MAHA].
Ratherthanprocessoperationson the basisof implementation cost,as EMUCS does, it processesthem in the
order they were scheduled.Operations are processed block by block, cycle by cycle. At any cycle, the oper
ation with the least freedom (see intra-block scheduling,above) is allocated first If an operation cannot be
implemented, becausedoingso wouldexceedhardware costconstraints, theoperationis delayeda cycle,with
the expectation that the necessary hardware may be free in that next cycle.

In contrast to the above local, greedy approaches, some systems use integer and linear programming to
solve the schedulingand allocationproblems.Unfortunately, thesesolutionsare quite cumbersome to define,
and are inefficient to solve ([LPS], [MIMOLA]).

Twoothersystems,SUGAR(describedin [SAW]), and theDesignAutomation Assistant([DAA]),fol
low the opposite strategy, being very specific insteadof very general.Rather than trying to solve general al
location and scheduling problems, they fundamentally use pattern matching. In the case of SUGAR, the
patterns are compiler-based (code templates, for example); with DAA they are rules in an expert system (im
plemented using OPS5). They both are tuned to generate processors and processor data paths, and are opti
mized for certain technologies (2-bus VLSI data paths for SUGAR, TTL for DAA). They are thus rather
limited.

Some systems add an optimization stage after translationand before scheduling and allocation. This
stage is in broad concept similar to the operation merging techniquesabove, but it is employed before alloca
tion,and mergesbehavioraloperators into clusters thatwill likelyresult in cost effectiveallocation,using var
ious prediction and partitioning metrics ([CMU-Cluster], [BUD], [A2S], [APARTY], [YSC-Partition],
[DFBS]). The process is analogized to floorplanning ([CMU-Cluster]).

5.2. The Allocation Opportunity

The above techniques attempt to minimize data path cost This is not necessarily desirable when de
signing for performance (that is, overall execution speed). Commonly executed operations are more impor
tant than infrequent ones. It would be worthwhile to investigate a greedy, iterative allocation technique that
gave priority to common operations. The MAHA operation-by-operation technique would be a reasonable
starting point See Chapter 8.

10

Chapter Three: An Introduction to Viper

Thischapterreviews the ASPhardware synthesis project and introduces its high-level synthesiscom
ponent Viper.

1. The ASP Context

The AdvancedSiliconcompilerin Prolog(ASP)is a full-range hardwaresynthesissystemthatproduc
es layoutfrombehavioral hardware specifications ([ASP-Intro]). It wasbegunas partof the Aquarius project
([Aquarius]), to provideCADsupport and to testPrologas an implementation vehicle.

Thegoalof theAquarius project wastoproduce high-performance Prologengines, realized inpartwith
specialized high-quality microprocessors (see[BAM]). Thusthefocus of ASPis single-chip microprocessor
synthesis, withina designdomainof singlesynchronous clockchipswitha singledatapathand controlpath.

ASP is automatic,top-down, and integrated. It doesnotemployinteractiveuser guidanceor automated
redesign. It is written entirely in Prolog, henceits implementation is both algorithmic and rule-based. In gen
eral the system is algorithmic, with rule-based local optimizations.

The ASP system includes (see [ASP-Prototype] and AppendixD): Viper (see below); Topolog, a mod
ule generator, which expands data paths to full gate-level netlists and generates gate matrix style layout;
Sticks-Pack, a technology independent compactor; a PLA generator(whichalso performs state assignment);
a left-edge-first channelrouter, and a globalplacerand router. The generalASP systemis described in Ap
pendix D.

2. The Viper System

Viper1 isthe high-level synthesis componentofASP. The paradigms and implementation ofViper have
been greatly determined by those of ASP.

Viperwas primarilyconstructedto synthesize microprocessors rapidly —to be usedas a tool for archi
tecturalexploration. It was designedto operatewithoutuser interaction. It was also designed to reflect an ar
chitect's perspective on synthesis, particularly in its use of instruction frequency statistics. It usesPrologfor
specification and implementation; the resulting experience with Prolog is documented in AppendixE. As a
resultof its microprocessor orientation, it is less concernedwith optimizingcomplex expressions (than, for
example,DSP orientedsystemssuch as [Cathedral]). The sourcecode for Viper is provided in [Viper].

Viper operates on input specifications written in executable Prolog. The level of specification is de
signed to be the lowest level that can still be executeddirectly by a Prolog interpreter. Such constructs as ar
chitected registers, bit fields, and a memoryinterfacecan be specified (and both simulated and synthesized).
Since the general ASP goal is to synthesizemicroprocessorsrather than compile general Prolog to hardware,
such language features as recursion and full unification are not supported. The output of Viper is a conven
tional collection ofconnected data path elements and a controlling finite state machine.

In general, high-level synthesis in Viper follows the form described in the previous chapter (see [Tuto
rial]). The primary paths of design flow through Viper are pictured in Figure 3-1.

Along the basic path, Prolog specifications are translated into register transfer level representations
(also in Prolog), which are used for interrelated hardware scheduling and allocation, which in turn produce
control and data paths (also in Prolog).

Additionalpaths involve instructionfrequency data collectionand its subsequent use during allocation
and trace scheduling, which itself involves an extra path in which RTL is modified.

1. Viper is not an acronym: it is the first part of the phrase "viperformance hardware synthesizer'

11

'/

trace scheduling

benchmarks

'/

Prolog Specification

'/

Translation instruction frequencies

RTL

Intra-Block Scheduling

Allocation -* 1

Control Path and Data Path

Figure 3-1: Viper Overview

The heart of this work traces these additional paths, and consists of scheduling and allocation tech
niques,eithernew or newly appliedto high-levelsynthesis,thataredrivenby instruction frequencies. These
arediscussed,along with othernecessarymechanisms,in Chapters 6,7, and8.The ensuingexperimentscom
pare the resultsof synthesizing microprocessors with andwithoutthose techniques. The detailsof the exper
imental approach arepresented in Chapter 9, andthe results in Chapters 10,11, and 12.

In detail, Viper operatesin nine major phases.

(1) It translates the Prolog input specification (Chapter 4) intoa data flow graph anda control flow graph
(Chapter 5).

(2) It converts the data flow graph intoanequivalent setof register transfers (Chapter 5).

(3) It optionally computesinstruction frequencies (Chapter 6).

(4) It optionallytrace schedules, usinginstruction frequencies (Chapter 7).

(5) It computespreliminary as-soon-as-possible dependency-based intra-block schedules (Chapter 8).

(6) It performs a preliminary allocation of functional units, guided by instruction frequencies (Chapter 8).

(7) It performs a final allocation andscheduling, again guided by instruction frequencies (Chapter 8).

(8) It connects theallocated functional units withbuses(Chapter 8).

(9) It packages theinformation generated inthe prior phases intoa form suitable foruseby lowerleveltools
(Chapter 8).

12

Chapter Four: Behavioral Specification and Simulation in Prolog

Thegoalof thehardware language design undertaken in thisdissertation wasto develop a straightfor
ward specification medium fora variety ofexisting microprocessors, within thelarger context of theASP
project (seeChapter 3),ofwhich thiswork was part. Thus thelevel ofspecification is relatively low (roughly
equivalentto ISPS [ISPS]), and the base language is Prolog([Prolog]).

Thedetailsof thisspecification medium follow, preceded bya general description of thespecification
languages thathave been used inhigh-level synthesis. Thismaterial ispresented sothatexamples andmicro
processorspecifications insubsequentchapters canbeunderstood. Further, theform ofbehavioraldescription
affectsdie optimizations and translation problems thata synthesis systemmustaddress.

1. Specification for Synthesis

Specification languages usedbyhigh-level synthesis systems areoftworoottypes, andthose rootshave
been modified in two basic ways.

The first language type is basedon somefamiliar programming language. Suchfoundations as LISP
([MacPitts] and [Silc]), OCCAM ([OCCAM]), Pascal([Flamel], [Chippe], and [MIMOLA]), and C ([HER
CULES]and [HAGGLER]) havebeen used.Typically,programminglanguagesare chosen because they are
familiar, are rootedin simple, general paradigms (such as LISPandOCCAM), andare easilymodified for
hardware specification.

The secondtypeof language is basedon a hardware simulation or specification language. VHDL
([VSS-VHDL]) and ISPS ([SAW])are examples. Simulation languages are simple to use in some ways be
causetheyhavebeendesigned todescribe hardware, butcauseproblems becausetheyusually allowthespec
ification of hardware structure as well as behavior, thus simultaneously supporting multiple levels of
abstraction. This is difficultfor synthesis systems to handle, which, in general,for simplicity, mapa single,
higher level of abstraction into a lower one.

Thetwocategories oflanguage modifications arerestrictions andadditions. Restrictions are introduced
to makehardware moreeasilyorefficiently synthesized, andusually involverestricting datatypes,withsome
additional limitson control constructs and operators (see,forexample, [MacPitts] and [Flamel]). Additions
are madefor the specification of hardware-oriented constructs, suchas interface signals,concurrency, and
resource constraints (see, for example, [MacPitts] and [Chippe]).

A noteworthy case of languagerestriction is the WSS system([VSS-VHDL]), whichuses the VHDL
hardwaresimulationlanguage. This systemracesseriouslanguage subsetproblemsbecauseVHDLsupports
mult-level simulation, andallowsspecification at morethanthepurely behavioral level.The VSSsystemim-
plementors decided notto restrict specifications to thebehavioral level; instead, they allow restricted speci
fication at all levels, and use the system to combine multi-levelspecifications.

2. Using Prolog

The advantagesand drawbacksof usingProlog for hardwarespecification are in general the same as
thoseforany programming language usedforbehavioral hardware specification. Itsadvantages are thatit is
familiar, it is rooted in a simple, general paradigm,and it is easily extended for hardware specification with
built-ins. Its limitationsall relate to the need to specify hardwaredetails ~ the representationof state (regis
ters), and low-levelfeatures (bit fields,priority interrupts, efficientbit testing,efficientoperators,and inter
faces).

Themicroprocessor specifications thatserveas inputtoViperare writtenina subsetof standardProlog
thatroughlycorresponds to the descriptive powerof ISPS([ISPS]). Specifications in this subsetcan be both

13

simulatedand synthesized. This general approachis similar to that taken with the MacPitts system for LISP
and with the Flamel system for Pascal.

The language has been both restrictedand extended(withbuilt-inssupportingsuch constructsas archi
tected registers, bit fields, and a memory interface) to support hardware specification.

This level of hardware specification is designed to be the lowest level that can still be executed by a
Prolog interpreter. It is essentially register transfer levelcomputationperformedin the context of Prolog con
trol structures. Higher level optimizing transformations ([SAW])can be layeredon topof this basic function
ality.

3. Restrictions

The microprocessor specification domain of ASP (the highest domain) makes standard Prolog ([Pro
log]) a reasonable choice as a specification language. Multiple asynchronous finite state machines, explicit
parallelism,and detailed off-chip interfacedescriptionsneed not be supported.The specificationdomain is
also constrainedby ASP's pragmaticpurpose (andreasonforexistence)as a synthesissystem. Specifications
must be effectively realizable in hardware.

The Prolog restrictions in particular are that:

(i) the specification must be deterministic (with only shallow backtracking),

(ii) it can contain no lists or structures,

(iii) it must be only tail-recursive, without true recursion, and

(iv) it can use only a limited set of built-ins.

It is also assumed that: procedures do not rail; in a case, all arms are tagged with only one literal in the
first position; in a case, all arms with the same tag are contiguous.

4. Extensions

On the other hand, the system also extends the standard Prolog built-in set, both to relax the above re
strictions somewhat in a controlled way, and to support hardware-specific operations.

The extensions consist of four classes:

(i) support for maintaining global state (in the form of registers and register files),

(ii) additional hardware-oriented operators (such as add with carry),

(iii) support for system functions (such as interfaces and memory), and

(iv) support for simulation.

The next section presents basic extensions in conjunction with a simple example; subsequent sections enu
merate the extensions in more detail.

5. Basic Extensions and Specifications

This section describes registers, fields, and memory, and their simulation, through a simple example
processor specification.

Registers and fields are special in that theycontainglobalstate information.They also havedefinitebit
widths and can overlap. Standard Prolog does not model objects with definite widths, nor does its single as
signment nature support overlapping values.

Viper allows the user to declare registers and fields with the constructs

stateRegister(<name>, <width>).
stateField(<field-name>, <register-name>, <field-position>).

14

Thusevery field is positioned within a specified register. More willbe said about <field-position> be
low, which can have one of two forms.

Registersand fields arereferencedwith the set andaccess built-ins, which have the format

access(<register-name>, <Prolog-variable>),...
set(<register-name>, <Prolog-variable>),...
access(<register-name>, <field-name>, <Prolog-variable>), ...
set(<register-name>, <field-name>, <Prolog-variable>),...

The accessbuilt-ins bind the values in the namedregistersand fields to the given Prologvariables,and
the set built-ins change the registerand field values.

A specification's state, whenrunning, is contained in its set of registers. Simulation oriented built-ins
are provided for creating and examining register sets.

In addition, a built-inis providedto changea specification'sstate. Individual registers aremodeled as
master-slave components, so thataccesses to a register retrieve its old value,distinct from its new value,
which is specifiedby set At some point the new valuemust replace the old one; this transition, or clocking,
occurssimultaneously forallregisters at intervals specifiedby the userwith thestateUpdate built-in.Thus in
the fragment

set(pc, 0),
set(ac, 1),
stateUpdate,
set(ac, -1),
access(ac, A1),
stateUpdate,
access(pc, P),
access(ac, A2),...

Al will be 1 and A2 will be -1. Note thatold values,unchangedby set, are carried over, so that P will be 0.
This general concept of state is similarto thatdevelopedby researchers interestedin addingobjects to Prolog
([Objects-Intensions], [Objects-Logical]).

Also note that the total state - the collection ofregisters- is implicit in the specification, and is not an
explicit structure thatcanbe referenced by the user.If it were explicit the usercould then refer to multiple
states, which would be useful for temporal reasoning but difficult to implement.

A finaladditionalset of built-ins provides a simple memory interface, an important (microprocessor
oriented) connection to the outside world. This memory design frame requires that a memory address register
and memory dataregisterbe declared; with those registersit performs readand write functions.

Now consideran example (this example is a recasting of one presentedin [ASP], which involved an
earlier, more limited model ofvariablesandregisters). It is the definition ofa simple Von Neumann machine,
defining the operationof microprocessor instructions. Individual instructionspecific clausesarecontainedin
a recursive instruction executing definition.

run :-

fetch,
stateUpdate,
access(memDR, opcode, OP),
execute(OP),
stateUpdate,
run.

run:- true.

The machine is composed of a fetch phaseand an execute phase, which arerecursively evaluated until
one fails. The machine has four registers, a programcounter (pc), an accumulator (ac), a memory address reg
ister (memAR), and a memory data register (memDR). The memDR has two fields, opcode and address.

The fetch phaseis defined asa clause thatretrievesan instruction from memory and increments the PC.

15

fetch :-

access(pc, PC), set(memAR, PC),
mem_read,
access(pc, OldPC), NewPC is OldPC+1, set(pc, NewPC).

An add instruction is defined with an execute clause.

execute(add):-!,
acc8ss(memDR, address, X), set(memAR, X),
mem_read,
access(memDR, T), access(ac, AC), A is T+AC, set(ac, A).

This specification itself is relatively abstract, comparedto many hardware specificationand simulation
languages. Explicit concurrency, timing, and hardwareentities (such as buses) are not present.

The specification can either be synthesized, or simulated with the aid of a package that provides the
necessary built-ins.

In fact, simulation can take two forms, depending on exactly how register fields are modeled. Fields
can be modeled either as Prolog structures, or as bits in a single integer word. Forexample, from the above
specificationthe memDR could either be a structurewith opcodeandaddressfields, so that anadd instruction
would be represented as

inst(add, 8).

(adding location 8 to ac), or it could be an integer, so that the same add instruction would be simply be the bit
pattern

1032

assuming an add opcode was represented as a 1 in an opcode field starting 11bits from the rightmost bit The
formerhigher-level form is appropriate for processors for which an assemblerdoes not exist, while the latter
is suitable for lower-level simulation of bit images.

For comparison, the exact field declaration forms and the symbolic and numeric register declarations
for the microprocessor example above are presented below.

% symbolic
stateField(<register-name>, <structure-name>,

<field-name>, <field-index>).
% numeric

stateField(<register-name>, <field-name>, (<first-bit> - <last-bit>).
% symbolic
stateRegister(ac, 16).
stateRegister(pc, 16).
stateRegister(memAR, 16).
stateRegtster(memDR, 16).
stateField(memDR, inst, opcode, 1).
stateField(memDR, inst, address, 2).
% numeric

stateRegister(ac, 16).
stateRegister(pc, 16).
stateRegister(memAR, 16).
stateRegisterjmemDR, 16).
stateField(memDR, opcode, (15-10)).
stateField(memDR, address, (9-0)).

With these definitions, we can define and execute a program with the above example processor speci
fication. The facts

% symbolic
mem(0, inst(add, 8)).
mem(1, inst(add, 9)).
mem(2, inst(stor, 10)).
mem(3, inst(halt, _)).

16

mem(8,2).
mem(9,3).
% numeric

mem(0,1032).% 1(1024)+8 inst(add, 8).
mem(1,1033).% 1(1024)+9 instjadd, 9).
mem(2, 5130).% 5(4096+1024)+10 inst(stor, 10).
mem(3,0000).% 0 inst(halt, _).
mem(8,2).
mem(9,3).

definea program andits data; Starting atlocation 0, addtwo numbers, 2 and3, in locations 8 and9, andstore
the result in location 10.

For completeness, the memory system simulator is

mem_read :-
acc8ss(memAR, Loc),
mem(Loc, Data),
set(memDR, Data),

memjwrite :-
access(memAR, Loc),
mem(Loc, _),!,
retract(mem(Loc, _)),
acc8ss(memDR, Data),
assert(mem(Loc, Data)).

mem_write :-
access(memAR, Loc),
access(memDR, Data),
assert(mem(Loc, Data)).

6. Extensions: Registers

Built-ins are provided for creatingand manipulating registers and bit fields with specified widths, and
for managing the state those registerscontain.These built-ins were introduced above, and consist of:

• stateRegister,

• stateField,

• access,

• set, and

test.

The last one, test, has the same form as set and access, and is a version of access that expects its value field
to be bound, and succeeds if that bound value is equal to the accessed value.

There are additional built-ins that support simulation:

• stateUpdate (for changing a specification's state in a master-slave fashion - see above);

• setDefault(<register>, <value>), which sets a default value for the given register that will be used by
the next stateUpdate unless explicidy overridden by a set;

• preset(<register>, <value>)> which tests to see if the given register hasbeen set since the last stateUp
date, and if it has returns the value; and

• statePrint, which prints out the register state of the simulation.

7. Extensions: Register Files

Many modern microprocessors use register files in addition to, or instead of, individual architected reg
isters ([MIPS], [SPARC], and [BAM]). Viper provides built-ins for creating and referencing these indexed
arrays of registers.

17

Register files are declared in a manner similar to individual registers,with an added size parameter,in
dicating the number of registers in the file. The declaration has the form

stateRegisterSet(<name>, <width>, <size>).

Thus the declaration

stateRegisterSet(r, 32,16).

would create 16 32-bit registers.

Register file references involve two quantities, the value to be reador written, and the index of the reg
ister to be modified. Such references can be modeled in two ways, basedon timing considerations,both sup
portedby Viper. The two models correspondto different possibleregister file hardwareimplementations. In
both models, register files have separate, and explicit (andpotentiallymultiple), readand write ports,each of
which has an associated index.

The firstmodel has the registerindex presentedto the register file in one cycle, and the value read from
or written into the file in the nextcycle. The secondmodel has the index presented and the value reador writ
ten in the same cycle.

The first, separatecycle model requiresno new built-ins. An ordinaryset built-in can be used to set up
the index, and an access or set built-in can be used to referencethe registervalue. The model does, however,
requiretwo new set and access operand forms, for the index and the value.These forms are,respectively,

port(<file-name>, <port-name>),...
% index reference
reg(<file-name>, <port-name>),...
% value reference

The port name refers to the read or write port

Thus register 10 in register file r is read via

set(port(r, read), 10),
access(reg(r, read), ReadValue),...

and is written with

set(port(r, write), 10),
set(reg(r, write), WrtteValue),...

The second, same cycle model requirestwo new built-ins.These built-ins take as argumentsa port,an
index, and a value, and reador write the value in one cycle. The built-ins have the form

rval(port(<file-name>, <port-name>), <index>, <value>),...
% read value

wval(port(<file-name>, <port-name>), <index>, <value>),...
% write value

In this model, register 10 in register file r is read via

rval(port(r, read), 10, ReadValue),...

and is written using

wval(port(r, write), 10, WriteValue),...

8. Extensions: Operators

Additional operators havebeendefined, to provide hardware oriented functionality. Theseoperators
canbeconstructed out ofregular Prolog (thebuilt-ins thatsimulate themobviouslyare), but theyare defined
explicitly so thatViperdoesnothaveto analyze thespecification anddetermine, for example, that twoadds,
withoneoperand aonebit field, canbe doneasanaddwithcarry. Suchanalysis caneasilybe layered on top
ofViper. The operatorsthat have been added are:

addc(<value-l>, <value-2>, <carry>, <result>) (add with carry),

subc(<value-l>, <value-2>, <carry>, <result>) (subtract withcarry),

18

• xor(<value-l>, <value-2>, <result>),

• ash(<value-l>, <value-2>, <result>) (arithmetic shift),

rotate(<value>, <carry>, <type>, <result>) (this is a one bit rotate, with <type> either « or »),

• min(<value-l>, <value-2>, <result>), and

• max(<value-l>, <value-2>, <result>).

Anotheroperator has been added as an optimization. It assigns the boolean output of a comparison, or
similar operation that produces a boolean value. For example, the fragment

t(Data):- Data = 0,!, set(psw, zeroflag, 1).
t(_):- set(psw, zeroflag, 0).

sets the zeroflag of the psw if Data is 0. When this is translatedit creates three basic blocks (one for the test,
one for the true arm, and one for the false arm). This can be collapsed to one basic block with the test value
(tval) operator,

t(Data):- tval(isZero, Data, Bool), set(psw, zeroflag, Bool).

which generates the boolean value Bool, which can then be used a regular value. This optimization reduced
the number of blocks in the 6502 specification from 213 to 93. As with the other operators, this tval form
could be recognized via analysis, but Viper takes as input the lowest level of executable specification. The
tval operator has the general form

tval(<test>, <test-value>, <result-boolean>)

where <test> can be isZero, isNeg, isOver, or isCarry.

9. Extensions: System Support

Additional built-ins have been defined to provide support for system-level functions, primarily in the
form of interfaces. These interfaces are simple and stylized, and Viper has the capacity to generate the hard
ware associated with them.

The most fundamental interface is the one to the memory system. This interface, and its simulation,
have been introducedabove. Both the simulatorand the synthesizer processmemjead and memjvritebuilt-
ins, and assume the proper data has been put into the registers named, by convention, memAR and memDR.
The memorysystem also supportsported memory,invokedby the built-insmem_read(<port-number>) and
mem_write(<port-number>). These referencesimilarlyindexed address and data registers, memAR(<port-
number>) and memDR(<port-number>).

There is also a bitwise interface to lines that can be tested and set synchronously. These lines are de
clared with the statelnterfacedeclaration, which defines the name of the bit line being declared.

Registers can also be used for input and output, as latches. Such registers are declared very much like
normal registers. A third argument is used in the stateRegister declaration to indicate direction (in or out).

Finally, priority encoders can be defined, so that sequential testing of flags can be avoided. Consider,
for example, the interrupt tests

interrupt :-
test(halt, 1), I,

interrupt :-
test(reset, 1),!,

interrupt :-
test(int, 1), I,

where halt, reset, and int are statelnterface lines. These tests will be performed sequentially. They should be
performed in parallel, and in priority order (halt being most important). To support this, for both simulation
and synthesis, the statePrioritybuilt-in is provided, which in the above case would be expressed as

19

interrupt :-
statePriority([halt, reset, int], Priority),
interrupt(Priority).

interrupt(halt) :-

interrupt(reset) :-

interrupt(int) :-

During simulation, the Priority variable is set to the symbolcorrespondingto the line that is raised. That
variable is then matched in the following unification to the proper interrupt clause. When synthesized, the
statePriority construct enables the appropriate interrupt line.

Note that, as with other hardware motivated features, this one could be recognized via analysis, but this
is the lowest level of executable specification.

10. Extensions: Simulation

Additional built-ins have been defined to support simulation. Several have been discussed already:
stateUpdate, setDefault, preset, and statePrint. Two additional ones are

• noSyn,which, when used as the first goal of a clause, blocks that clause from being synthesized, and

• stateCount(<count>),which returns the number of cycles, or stateUpdate goals, executed so far.

The noSynbuilt-in is particularly useful for clauses that perform error checks during simulation.

In addition, ofcourse, simulation requires executable versions of the register manipulation procedures,
the operators, and the system support functions.

11. A BNF Definition

In summary, the BNF definition of the syntax of Viper's specification language is:

<specification> ::= <declarations> <procedures>

<declarations> ::=

<declaration>

I <declarations> <declaration>

<declaration> ::=

stateRegister(<name>, <width>).
I stateRegisterSet(<name>, <width>, <size>).
/ stateField(<register>, <name>, <range>).
I statelnterface(<name>, <constant>).

<procedures> ::=
<procedure>
I <procedures> <procedure>

<procedure> ::= <simple-procedure> / <tagged-procedure>

<simple-procedure> ::=
<simple-clause>
I <simple-procedure> <simple-clause>

<simple-clause> ::= <simple-head> :- <clause-body>.
<simple-head> .:= <name> / <name>(<argument-list>)

<tagged-procedure> ::=
<tagged-clause>
I <tagged-procedure> <tagged-clause>

<tagged-clause> ::= <tagged-head> :- <clause-body>.
<tagged-head> ::= <name>(<tag>) / <name>(<tag>, <argument-list>)

20

<argument-list> ::=
<variable>

I <argument-list>, <variable>
<clause-body> ::= <basic-clause-body> / noSyn, <basic-clause-body>
<basic-clause-body> ::=

<goal>
I <basic-clause-body>, <goal>

<goal> ::=
<name>(<argument-list>)
I <conditional>
I <variable> is <expression>
I <viper-goal>
H
/fail

<conditional> ;:=

<expression> =:= <expression>
I <expression> =\= <expression>
I <expression> > <expression>
I <expression> < <expression>
I <expression> =< <expression>
I <expression> >- <expression>

<expression> ::=
<constant>

I <variable>
I - <expression>
I <expression> + <expression>
I <expression> - <expression>
I <expression> A <expression>
I <expression> V <expression>
I <expression> « <expression>
I <expression> » <expression>
I <expression> \ <expression>
I xor(<expression>, <expression>)
I ash(<expression>, <expression>)
I min(<expression>, <expression>)
I max(<expression>, <expression>)

<viper-goal> ::=
memjead
\mem_write
I mem_read(<port>)
I mem_write(<port>)
I access(<register>, <variable>)
I access(<register>, <field>, <variable>)
I set(<register>, <variable>)
I set(<register>, <field>, <variable>)
I test(<register>, <constant>)
I test(<register>, <field>, <constant>)
I tval(<test>, <variable>, <register>)
I addc(<variable>, <variable>, <carry>, <result>)
I subc(<variable>, <variable>, <carry>, <result>)
I rotate(<variable>, <variable>, <rotate>, <result>)
I rval(port(<name>, <tag>), <index>, <variable>)
I wval(port(<name>, <tag>), <index>, <variable>)

21

/ stateDefine
I statelnitialize
I stateList
j statePrint
I stateCount(<variable>)
I stateUpdate
I statePriority([<tag-list>], <variable>)

<test> ::= isNeg / isOver / isCarry / isZero

<rotate> ::=>>/«

<tag-list> ::= <tag> / <tag-list> , <tag>

<name> ::= <tag>

<port> ::= <constant>

<field> ::- <tag>
<register> ::= <tag>

I port(<name>, <tag>)
I reg(<name>, <tag>)

<width> ::= <constant>

<size> ::= <constant>

<range> ::= <constant> / <constant>-<constant>
<carry> ::= <variable>
<result> ::= <variable>

<tag> is a symbol
<variable> is a Prolog variable
<constant> is an integer constant

22

Chapter Five: Translating Prolog into Register Transfers

This chapterdescribes the componentof Viper that translates Prologspecifications into register trans
fers.This translator is important becauseits RTLoutputis usedby Viper's optimizing scheduling and allo
cationcomponents (and is used for obtaininginstruction frequency statisticsthroughsimulation). It also
performs optimizationsthat affect the quality of the final design.

It operates in four stages.

It scans the Prolog input specification for correctnessin terms of the subset of Prolog it supports.

It translates the Prolog into a data flow graph and an associatedcontrol flow graph.

It generatesa set of register transfersthat embodythe data flow graph.

It maps certain register transfers into simpler ones.

. Register Transfers

Viper is like other high-level synthesis systemsin that it translates input specificationsinto data and
control flowgraphs ([Survey]). The microprocessor orientation of ASP,however, emphasizing architected
registers and relatively simple expressions, has led to a subsequentchange in representation.The data and
control flow graphs are then converted into register transfers,whichserve as the unit of scheduling.They ex
plicitly represent latch-operation-latch sequential logic.

The data and control flow graphs are needed for translation and analysis. The RTL transfers are used
for simulation, scheduling, and allocation. The transfers introduce additional constraints: each data flow op
eration becomes an atomic transfer involving up to two source registers and one destination register. This tu
ple (in compiler terms) is easier to manipulate (scheduleand pattern match for allocation) than the general
graph, and maps readily into the register to register microarchitecturestyle of microprocessors.

Specifically, a register transfer has the form

rtran(<transfer-index>, <basic-block-identifier>),
<source-registerl>,
<source-register2>,
<operator>,

<destination-register>).

where rtran is a Prolog structure. Either source may be a constant; the second source may be none; the oper
ator may be move or a memory operation. The transfer index is a unique identifier (making a collection of
transfers a relation in the data base). This representation, more structured than its data flow analog, maps
readily into the register to register microarchitecture style of microprocessors.

Additionally,specificationsare divided into basic blocks (in the compiler sense); each block consists
ofa consecutive collection ofregister transfers, and within a block there is no transfer ofcontrol. In turn, these
basic blocks serve as another, larger unit of scheduling: within a basic block, register transfers can be sched
uled solely on the basis of data dependency.

The memory system presented in Chapter 4, for example, fits easily within this context Consider again
the add instruction.

execute(add):-!,
acc8Ss(memDR, address, X), set(memAR, X),
mem_read,
acc8Ss(memDR, T), access(ac, AC), A is T+AC, set(ac, A).

Its register transfer representation appears as

23

rtran(5, block(4), field(memDR, address), none, move, memAR).
rtran(6, block(4), memAR, none, mem_read, memDR).
rtran(7, block(4), memDR, ac, +, ac).

(assuming it occurs in block 4, starting at transfer index 5). The memory read uses memAR as a source and
memDR as a destination.

In general, the problem with this register transfer representation is how to represent expressions that use
temporaries (that generate values not stored in architected registers). Viper deals with this by explicitly cre
ating temporaries. For example, the fragment

... access(regA, A), access(regB, B),
Tis(A + B)»1,
set(regC, T),...

which adds A and B, shifts the sum right 1 bit, and stores the result in C, would be realized as

rtran(10, block(6), regA, regB, +, temp(1)).
rtran(11, block(6), temp(1), constant(1),», regC).

(assuming it occurred in block 6, starting at transfer index 10). Whether temp(l) is implemented as a latch or
a simple connection between the adder and the shifter is a matter of delays and timing.

Currendy, such temporaries are always implemented as a connection. Such constructs do not occur of
ten in the microprocessor specifications used in this work. For example, in one Prolog version of the 6502,
there are 22 such expressions (out of a total of 340 register transfers).

More importandy (since such combinational logic may be on the critical path in the data path), it is as
sumed that there is enough time in one cycle to read registers, perform computation, and store the result.

The translator also generates control dependency information important to pipelining (see Chapter 13).

2. Compiler Optimizations

Several systems perform various behavioral level optimizations that are based on programming lan
guage compiler technology ([CMU-BLT], [CMU-DRT], [SUGAR], [CADDY], [Flamel], and [HER
CULES]). Identified optimizations are: inline expansion (BLT, DRT, SUGAR, and HERCULES), procedure
formation (DRT), dead code elimination (BLT, DRT, SUGAR, and HERCULES), common subexpression
elimination (BLT and SUGAR), constant folding (BLT, SUGAR, and CADDY), constant conditional elimi
nation (HERCULES), block flattening (Flamel and HERCULES), moving loop invariants out ofloops (CAD
DY), various case optimizations (moving code into and out of case arms, case merging, and case flattening)
(BLT, DRT, and SUGAR), loop unrolling (BLT, CADDY, Flamel, and HERCULES), and operator strength
reduction ([Tutorial]). In addition, some systems attempt to transformthe resulting data flow graph into a ca
nonical form (DRT and [VSS]), removing stylistic programming idiosyncrasies. It should be noted that some
of these optimizations and transformations are applied interactively (DRT).

These optimizations can be grouped into four categories ([CORALII]):data transforms (such as dead
code elimination), control flow transforms (such as inlineexpansion),code motion (such as movingcode into
and out of case arms), and process transforms (creatingprocessesand pipeline stages).

The Viper translator performs two of these optimizations, a data transform, dead code elimination, and
a control flow transform, inline expansion. A third optimization,code motion, is performed by the trace
scheduler described in Chapter 7.

The translator makes a separate pass over the completed register transfers and state transitions, and
identifiesunreachablestates and their associated transfers. It also removesempty states that are only used for
indirection, that is, transitions that simply move to another state.

It also expands all procedures inline. Without microsubroutines this is necessary.Furthermore, in the
case of unconditional(single clause) procedures,whichbecomepart of the block into which they are expand
ed, it is desirable to do this because the more operations there are in a block the greater the opportunity for
parallelism (an idea behind trace scheduling - see Chapter7).

There are four classes of procedures for inlining purposes:

24

Thosethathaveonlyonesynthesizableclause. Suchprocedures simply becomemergedwiththecalling
block.No separatebasic block is created.The fetchprocedure fromChapter4, for example, is such a
procedure.

• Those that have literals in clause heads.These proceduresare effectively case statements. One basic
block is created for each clause. The execute procedure from Chapter 4 is such a procedure.

• Those that have only groundclauses (no clausebodies).Suchproceduresare realized as tables (PLAs),
and becomea special typeof register(inputvaluesare transformed into output values).No basic block
is created.

• Allother multi-clauseprocedures.These proceduresare generalconditionals,usually with a test in the
body of each clause. One basic block is created for the test, and one for the rest of the clause body.

Also note that the formal parameters ofProlog procedures do not have modes. Any parameter on any
call can be bound on entry (an input parameter)or unbound. This means that each call on a procedure can in
effect invoke a different one, with different parameter modes. This requires a substantial amount of book
keeping by the translator,which must monitor the bindingstatus of variables and instantiate different proce
dure versions. The key to this bookkeeping is a naming conventiondescribed below.

3. Mapping Behavior to Hardware Function

Animportantissuein synthesizing hardware structurefrombehaviorisdeterminingwhich typeof func
tional unit to use in implementinga given behavioraloperatoror expression.Synthesis systems sometimes
assume a generic type of ALU and a generic register type. Generating realistic microprocessors, however,
requires being more sophisticated in this mappingprocess,and using more specialized functional units.

There are a number ofplaces in Viper where the system recognizes the opportunity for such optimiza
tions. They resemblepeephole optimizations, in that they are generally local in context The contexts become
more local as the synthesis process proceeds, moving from expressions to individual operators.

Theseoptimizations can be implemented in two ways.The first methodof implementation consistsof
performing the optimizations inline, by doing (clause head) pattern matching in the Viper code. This is how
expressionmappingis done (seebelow).Thesecondmethodconsistsof consulting ancillary library files that,
given some input, return an appropriate mapping.This is the way that most operator mapping is done.

These two techniques appear similar, but in practiceare used for different problems. The first method
is appropriate for mappings that require more context, such as those for expressions, or in circumstances
where the problem is not well understood or easily parameterized. The second method is good in limited, well
understood contexts.

The collection ofancillary mapping files used by Viper constitute the Viper functional unit library, and
contain Prolog operator mappings and physical characterizationsof functional units.

The two subsequent sections present specific mapping tasks.

3.1. Expression Mapping

The RTL translator produces register transfers as described above. These transfers are optimized in an
associated stage (called mort ~ MOdify RTs), that producesan equivalent collection ofregister transfers, with
some transformed.

In particular, constructs such as adding and subtracting one, testing for one and zero, and setting fields
to one and zero, are recognized and transformed. For example, the transfers

rtran(..., pc, constant(1), +, pc).
rtranj..., r1, constant(1), -, r2).

become

rtran(..., none, none, inc, pc).
rtran(..., r1, none, dec, r2).

25

The mort phase also keeps track of transfers that use temporaries,and makes lists of transfers that are
part of the same expressions (and thus must be scheduled together). The expression above, for example, in
volving the addition and shift, would generate

exprt([10,11]).

3.2. Operator Mapping

The mapping ofa Prolog operator to hardware basically involves four pieces of information: the Prolog
operator, the equivalent hardware function, the type of functionalunit needed to implement the function, and
the generic class to which that functional unit belongs. This information is kept in a library file (called op-
map), and has the form

opMap(<op-name>, <fh-name>, <unit>, <class>).

In general, <fh-name> can be thought of as a renaming, <unit> as a binding, and <class> as a classi
fication. The <op-name> <fh-name> pair is unique; no two appear in different opMaps. The <fn-name>
alone is not unique; different units may implement the same function (such as increment). In such a case, the
first opMap in the file with the <fn-name> is the default implementation (it is the first one found by Prolog).
Also, associated with each class is the maximum number of buses it uses (in the structure opBusUse). This
information could alternatively be specified for each unit type.

For example, the plus operator is mapped with the entry

opMap(+, add, alu(Type), arlog).

translating it to the add operation of the ALU. Note that the exact type of the ALU (ripple, carry bypass, etc.)
is left unbound. It becomes bound later during the allocation phase. Also note that the ALU belongs to the
class arlog, which also includes incrementers.

In addition to this table driven mapping, some operators are recognized specially, using unification pat
tern matching, before the general mapping is done. These special cases involve incrementers and counters,
and setting bits to zero and one.

Operator mapping occurs during hardware allocation, which is described in Chapter 8. The complete
opmap file can be found in [Viper].

4. Enabling Conditions

The register transfer translator also generates control dependency information later used for common
case allocation (the subset feature described in Chapter 8) and pipelining(see Chapter 13). For each block,
the translator produces a list of enabling conditions for that block. These conditions have the general form

blen(<block>, [<condition-list>]).

If a block, for instance, implements a specific instruction, the execution of that block depends on the
fetched opcode being the opcode for that instruction. Consider, for example, the add instruction above. It is
dependent on the opcode case dispatch (which is performed in register transfer 4), and is represented

blen(block(4), [case(rt(4), field(memDR,opcode), add)]).

This case structure indicates the register transfer in which thecase dispatchis done, the value source, and the
particular value needed. Other possible conditions are conditional tests (see cond below) and true (uncondi
tional).

5. The Operation of the Translator

The RTL translator is the largest and most complexcomponentin Viper. Details of its operation are
presented in this section.

5.1. Procedures, Clauses, and Variables

Understanding the operation of the RTL translator requires understandingProlog procedures, clauses,
and variables, and the way they are designated by the translator.Remember that each goal, or procedure in-

26

vocation,can have different argumentsboundor unbound.This means that each goal can be thought of as
calling a (potentially) different procedure. Thus, in a specification,

• a procedure's name is its identifyingsymboland its arity,

• a procedureinvocationconsistsof the procedure name and an invocationinstancenumber,

• a clause name consists of a procedure invocation instance and a clause index number, and

• a variable name consists of a clause name and a variable index number.

Thus, for example, in

p(A),p(B),...
P(0).
p(V):-...

the designation for V associatedwith the secondinvocation p(B) is variable 1 of clause 2 of invocation2 of
the procedure p/1.

The structure of the code that processes input specifications in general follows the Prolog clause struc
ture; the Prolog clausebuilt-in is used to traverse the input. Viper procedures exist for processing input pro
cedures, their componentclauses, and the elementsof individualclauses - clause heads and arguments and
clause bodies.The different types of procedures- simpleinline, case, conditional, and table ~ are identified,
and their arguments and block structure are handled appropriately. Caller and callee variables are matched
and modes (bound, unbound) are propagated.

5.2. Data Flow and Control Flow Graphs

The translator first generates data and control flow graphs from an input specification. These graphs are
the highest level ofabstraction after executable Prolog, involving only Prolog operators (no functional units)
and no scheduling other than that required by dependencies.

Data flow nodes track the flow ofdata in the specification, and are of three types, source nodes, expres
sion nodes, and destination nodes. Source nodesprovide values from architected registers or constant values.
Expression nodes perform computations on sourced values. Destination nodes store values in architected reg
isters. The arcs between nodes represent the flow of values. Data flow nodes are represented in Prolog with
the facts

flowSrc(<block>, <source>, <value-arc>).
flowExp(<block>, <source-value>,

<source-value>,

<operator>,

<destination-value>).
flowDst(<block>, <destination>, <value-arc>)
flowArg(<block>, <type>, <old-arc>, <new-arc>).

<type> ::= condin / condom / inline

Each value arc is given a unique name, based on the context in which it appears. In fact, each arc cor
responds to a Prolog variable in the original specification,and takes on its associated variable name. The flo-
wArg construct associates variables in different procedures that are bound together by procedure calls (goal
invocations).

For example, the following data flow nodes produce a register transfer that increments the program
counter.

flowSrc(block(2) ,pc,v(c(i(p(fetch,0),1),1),1)).
flowExp(block(2),

v(c(i(p(fetch,0),1),1),1), 1,+,
v(c(i(p(fetch,0),1),1),2)).

flowDst(block(2),v(c(i(p(fetch,0),1),1),2),pc).
rtran(rt(3),block(2),pc,constant(1),+,pc).

27

Control flow nodes divide the specification into regions (blocks) of control, and consist of two types,
labels and jumps, which are represented with the Prolog facts

label(<context>, <tag>, <block>).
jump(<from-block>, <type>, <to-context>).
<tag> ::= <case-literal> / none
<type> ::=jump/ condf case

Labels associate clause names (see above), additionally annotated with literal tags in the case of case arms,
with basic block identifiers. Jumps are, in general, transfersof control to named clauses, or to sets ofclauses
in the case of cond and case.

There are five types of jumps:

Case dispatch. This jump selects and transfers to a case arm based on a tag value.

Conditional test success. This jump simply transfers to the next block (the remaining goals in the
clause).

Conditional test failure. This jump transfers to the next clause.

End of case or conditional clause. This jump transfers to the end of the entire case or conditional pro
cedure (using a manufactured label).

End of tail recursive clause. Such a clause has as its last goal an invocationofitself. The jump becomes
a transfer to the first clause of the procedure.

S3. Conversion to RTL

The data flow graph is next converted to the RTL (rtran) formpresented above. Not that the operations
performeddo not involvefunctional units, but are insteadabstractoperators, namely the Prolog operators
(built-ins)appearingin the data flowgraph.This RTLtranslation processassignsassociateddata flownodes
to a specificbasicblockand an "instant" for scheduling purposes (although pipeliningmaystretchthe instant
out in a regular manner).

The control flow graph is simplifiedinto finitestate machine transitions, combiningjumps and labels
intoblock-based transitions. Each possibletransition to a condor casearm is definedwith a separate transi
tion fact. The facts have the form

stran(<from-block>, <condition>, <to-block>).
<condition> ::= true

I case(<switch>, <tag>)
/ condf<operator>, <sourcel>, <source2>)
I cond(not(<operator>, <sourcel>, <source2>))

5.4. Error Detection

Detectingerrors in input specifications is important to the robustoperation of the translator, and is dif
ficultin Prolog,becausefailureis not necessarily an error. Experience witherrordetection is discussed in
[Viper], in the individual sectionsdescribing specific microprocessors. Anadditional registertransferscan
ningtool(rover) wasconstructed toaidinerrordetection. It identifiesanomalies associated withspecification
errors.

28

Chapter Six: Common Case Optimization

The overall goal of this work is to apply the idea of commoncase optimizationto high-levelhardware
synthesis. The first pan of this chapter describes how commoncases are identified in this synthesis context -
- how addressing modes and instruction frequenciesare determined and related to addressing mode and in
structiondefinitionsin specifications. The secondpart of the chapter discussesgeneral commoncase optimi
zation ideas. Subsequent chapters describe the common case optimizations used in Viper.

1. The Nature of Instruction Frequency Statistics

Instruction frequency statistics, the counts of how frequently the various instructions of an architecture
are used (running a given set of programs),are a specific form of informationthat can more generally be
called usage statistics.Usage statistics refer to the informationthat identifies how frequendy the various parts
of a design (of any hardware specification) are used. The following material is presented in terms of instruc
tion frequencies, but the mechanisms described are not specific to microprocessors.

1.1. Simulation

Instruction frequencies are determined by two components:

• a hardware specification that defines available functionality (an instruction set architecture), and

• a collection of benchmark software that, in conjunction with the specification (when executed on the
architecture), quantifies the use of the functionality.

The specification is, when simulated, an interpreted program, and the benchmarks its inputs, and the
usage statistics are thus the result of instrumenting the program during execution (simulation). The specifica
tion is subsequently compiled (synthesized), using the usage statistics.

The usage statistics, being measurements of a program, consists of branch probabilities and block exe
cution counts.

Viper collects this information at the register transfer level; branches and basic blocks are much easier
to monitor here than at the Prolog specification level. Register transfers are not directly executable in Prolog.
An RTL evaluator is used to interpret register transfers and finite state machine transitions.

A frequency count is maintained for each basic block and branch. This information has the form

freq(<tag>, <block>, <count>).
bran(<from-block>, <to-block>, <count>).

The tag argument in the frequency structure is effectively the name of the instruction the block implements
(instruction dispatches are case statements; the tag is in fact the case tag associated with the block) and is an
aid to human readability.

1.2. Annotation and Propagation

Not all usage statistics are gathered efficiently from direct simulation. Published instruction frequency
counts, in particular, are useful, especially for large benchmarks and lengthy simulations. Also, the imple
mentation of a processor may change, resulting in a changed specification with a different block structure,
and yet the instruction frequency statistics may still be accurate. Here, also, it would be inefficient to resim-
ulate.

Thus a second source of usage statistics, in addition to direct simulation, is annotation. The problem
with annotation arises from the need to relate usage statistics to specific blocks, identified by internal names
generated by Viper. The solution is to employ a separate binding phase which relates counts to blocks through
the use of instruction names and their equivalent case tags.

29

The basic count information is represented as facts of the form

count(<tag>, <count>).

which arethen bound to block names (retrieved fromtaggedstatetransitions), producing frequency structures
(see above). (This assumes tags are unique.)

There is another, similar case where annotationis useful, but for which propagation and binding to
block namesis morecomplex.This casearises through scheduling optimization techniques thatmodify the
specification andduplicate parts of it - thatproduce duplicate implementations of instructions (see trace
scheduling in thenext chapter). Here the problem is tobindcounts to instructions, withthecounts modified
by the probability of thatparticular instance of aninstruction implementation beingexecuted. This is again
done by the bindingphase, whichbindsexecution probabilities, derived from thecountdata, to blocks,by
propagating probabilities through the modifiedspecification using its statetransition graph.

The probability binding phase performs the following steps.

[1] It computesthe probability ofexecutionofeachinstruction andaddressing mode from the countdata.
It does thisby summingup thecounts forinstructions andaddressing modesseparately, anddividing
each specific count by the appropriatesum.

This yields a probability for each tag, of the form

tprob(<tag>, <probability>).

Inorderto perform thesecomputations the systemmustknow the typeof each counttag- whether the
tagidentifiesan instruction oran addressing mode.This information is packaged in structures thathave the
form

order(<class>, [<list-of-tags>]).

For example, the 6502 has

order(addressing, [zerop,...]).
order(instructions, [Ida,...]).

Importandy, the tagsin anorder structure arealsoordered by frequency. This ordering is important,
and is used in optimization.

[2] It locatesthe cycles in the state transition graph. This is necessary forthe correct operation of step
three.

[3] It traverses the statetransition graph, beginningin the startstatewith anexecution probability ofone.
It labelseach block (state) with the sum of the execution probabilities of its predecessor blocks, each
multipliedby the transition probability computedin the first step.The resultis anexecutionprobability
for each block, of the form

eprob(<block>, <probability>).

From these, frequency structures can be generated.

2. A Figure of Merit

Usage statistics can be used to calculate performance metrics for a design.

Cycles perinstruction, a common processor metric,is definedin [Arch-H&P], page37, as the sum, for
all instructions,of the number of cycles needed to execute eachinstruction type times the probability of that
instruction type being executed.

This metric translates, in the Viper context, to the sum, forall blocks, of the cycle length of eachblock
multiplied by the probabilityof the block's execution; ablock's cycle length, after scheduling, is the number
ofcycles needed to execute it. The Flamelsystem ((Flamel]) uses this metric to evaluatedesignchoices,and
the BUD ([BUD])and Siemens ([DFBS]) clusteringsystems compute the average cycle time fora design in
a similar fashion.

Viper also uses this metric. It is essentially a measure of delay - the largerthe number, the slower the
design. The longer a block is and the more frequently it is executed, the greater its weight Hence the smaller

30

the metric the fasterthe design - the shorterthe more frequentlyexecuted blocks. Viper calculates this delay
number for a design, using execution probabilitiesascomputed above, and scheduhng information described
in Chapter 8.

This metric is used extensively in Chapters 10,11, and 12 to evaluate the speed ofsynthesized designs.

3. Common Case Optimization: Counts, Probabilities, and Orderings

Human designers, in more or less formal ways, optimize common cases. Such common cases serve as
cues as to which partsof the design are important On the other hand, common cases cannot be given absolute
precedence.Global delay (critical path)and areaconstraintsmust be met, and less common cases (less com
mon instructions) usually must still be supported. Thus common case optimization is a greedy prioritizing
technique in the context of global constraints. It is also, in a sense, a global technique, because usage statistics
represent global information, indicating the overall relative prioritiesof various sections of a specification.

As can be seen from the above, usage information ultimately takes on several forms: raw counts, prob
abilities, and orderings. It can be used in several ways as well.

Counts andprobabilitiescanestablishthresholds,above which resourcesareallocatedandbelow which
they are not. In microprocessor synthesis such thresholds can be used to decide which instructions will be
implemented. Probabilities are also used in performance metrics, as with Flamel and BUD.

Orderings can be used to control the processing of a design, with more important parts of the design
processed earlier. Trace scheduling ([Trace]) is a microcode compaction technique that uses such orderings,
and is adapted in Viper for hardware synthesis (see Chapter 7). The SUGAR system ([SUGAR]) also uses
orderings, allowing the user to annotate manually a specification with ordering information, attaching prior
ities to the arms ofcase statements; Execution paths through the case arms are optimized in the order specified
by the user, by moving operations into and out of the case arms in a manner similar to trace scheduling.

31

Chapter Seven: Common Case Scheduling

The goal of schedulingis to get the mostdone in the shortestpossibletime.In the contextof hardware
synthesis,this goal takes the formof maximizingconcurrency withinconstraints. One constraintthat affects
most scheduling techniques is the condition that each basic block is a separatescheduhng domain, and oper
ationsin one basic block cannotbe movedto another.Such techniques cannotexploitinterblockparallelism.

Traceschedulingis a well known techniquethat avoids this limitation, gaininghigher degreesof con
currencyby scheduling operations based primarily on data dependencies and moving operations over block
boundaries ({Trace] and [Bulldog]).It was developedoriginallyas a microcodeoptimization technique, but
more recently has been applied to VLIW architectures.

It operatesby schedulingdifferentexecutionpaths,or traces,through a specification in turn,scheduling
the most frequently executed trace first Scheduling a trace typically involves moving operations over block
boundaries, which usually requires duplicating those operations on other traces (this movement process re
quires extensive bookkeeping). The result is that the more commonlyexecuted traces are shorter and have
more concurrency.

In general, trace scheduling trades control size and redundancy for concurrency and speed. It is essen
tially a greedy technique (greedy by trace), each trace being optimized globally within the constraints created
by its predecessors.

Viper's common case scheduling phase uses a trace scheduler written in Prolog by Richard Carlson,
another student in the Aquarius project [Trace-Carlson]. Viper translates its register transfers and state tran
sitions into the form used by Carlson's scheduler (with conditional state transitions ordered by frequency),
and then translates the results back into its own format The resulting reordered transfers proceed as usual
through synthesis.

Carlson's scheduler (referred to by him as a compactor) acceptsoptional constraints on the number of
ALU operations, bus transfers, and memory reads and writes per cycle. Viper uses the scheduler without con
straints, imposing them later during allocation. Carlson's notion ofa single type ofcombinational unit, ALU,
is too simple for effective allocation.

1. Scheduler Input Translation

Viper register transfers are translated into Carlson's form by scanning transfers block by block and in
serting control information between blocks of transfers; Carlson's form has a block-like structured syntax,
which makes it very human readable.

In addition, usage statistics are employed in ordering the transitions out of a state. The trace scheduler
assumes the choices in a set ofconditional state transitions are ordered by frequency, and uses that assumption
in selecting traces to schedule. Viper generates the transitions accordingly, using the order structures de
scribed in Chapter 6.

Input to the scheduler has the form

<specification> ::= / <operation> {, <operation>), end}.
<operation> ::=

<destination> <— <source> /
label(<tag>) /
goto([<target> {, <target>)])

<target> ::= <tag> / (<test>, <tag>)
<test> ::= (<value> <comparison> <value>)
<value> ::= <register> / <constant>

32

Sourcesand destinations can be registers, fields, tables,and memory locations (indicatedby mem(me-
mAR)). In addition, sourcescan be constants and expressions. For example, the add instruction presentedin
Chapter 4 would be translated to

label(block(4)),
memAR <- field(memOR.address),
memDR <-- mem(memAR),
ac <-- memDR + ac,

goto([block(2)])...

In addition, the scheduler supportsconstraintsthat forcedifferenttransfersto be scheduledon the same
cycle. Viperuses this feature to force expressions using temporaries to be scheduledtogether. For example,
the following constraints force the transfers, computation and test, to be done in the samecycle(otherwise
the temporary might have to be a latch).

{Q, Q, [force(m1,0), force(m2,0)]},
temp(1) <- ace + memDR,

{ml},
acc<~temp(1),

{m2},
field(p,zflag) <- 0 = temp(1)...

(The other lists and the zeros are for other types of constraints, unused by Viper.)

Unfortunately the above mechanism is not entirelyrobust,and an alternatemechanism is also used.
This mechanismsupports a list of destinations,all of whichare scheduledtogether. In this form, temporaries
are implicit,as are the operations on them (such as the zero test above).For example, the above addition can
be specified

[ace, field(p,zflag,isZero))] <- ace + memDR...

The third, isZeroargument in the field structureindicatesthat the fieldshould be assignedthe value of
a zero test done on the result of the addition.

2. Scheduler Output Translation

The scheduler generates output that has almost the same formas its input The output differs in that the
transfersare grouped in lists, and resource usage numbersare supplied in braces. For example, the output ver
sion of the simple addition instruction above is

[label(from1to2), Iabel(safe2), memAR<~field{memDR,address),
goto([from2to1]), {1,1,0,0}],

[label(from2to1), memDR<--mem(memAR), {0,1,1,0}],
[ac<-memDR+ac, goto([safe1]), {1,1,0,0}],

The resource usage monitors (unused by Viper) are number of ALU operations, buses used, memory
reads, and memory writes.

The trace scheduler output is then converted back into Viper form, by

(1) translating the register transfers into Viper format,

(2) creating block names, labels, and gotos,

(3) creating state transitions from the labels and gotos,

(4) eliminating dead code, and

(5) generating state transitions with cases and conds in Viper format

The result is a file that is exactly the same in format as the output of the Viper Prolog to RTL translator.

33

Chapter Eight: Common Case Allocation

ThischapterdescribestheViperdatapathallocator. Itfirstdiscusses common caseallocation, and high
lights other important features of the allocator. It then details the step by step operationof the allocator.

1. Highlights of Allocation

This sectioncovers the importantfeaturesof the Viperallocator. It describesthe constraintsthe alloca
tor uses,how it selects functional units, and how it performscommoncase allocation.In general, theallocator
was modeled on the MAHA allocator ([MAHA], see Chapter 2).

1.1. Global Constraints

Viper allocation is controlled by a delay constraintand a totalarea constraint, both suppliedby the user.
(There is an additional constraint, the maximum numberof busespossible, that currently comes from the tech
nology.)

The delay constraint, essentially a clock speed constraint,is given precedencein Viper, as it often is in
microprocessor design. Such designs are usually driven by memorysystem speeds, which bound clock
speeds.

The delay bound is also a more local bound than the area bound. A given functional unit's delay con
tributes only to the delays on the paths that unit is part of, while the unit's area affects the total chip area. It
is possible to partition total area into distinct clumps dedicatedto different classes of functional units
([Chippe]), as a way of localizing area contributions, but Viper does not do this.

Viper uses the delay constraint to select individualfunctionalunits, and uses the area constraint to con
trol the total number of functional units allocated.

The constraints are defined in an auxiliary file, and have the form

max(delay, <time>). % nanoseconds
maxfarea, <space>). % square microns

In addition, for design end points, maximally serial designs (no duplicate units) and maximally parallel
designs (as many duplicates as required by as-soon-as-possiblescheduling) can be generated automatically
by specifying special serial and parallel constraints. These constraints override the standard global area con
straint, and have the form

maxfser).
maxfpar).

1.2. Functional Unit Classes

There are in general two classes of functional units for allocation purposes, those necessary to imple
ment a design, and those extra units that will increase the design's performance.

The first class includes the required set ofarchitected registers, and one each of the combinational logic
units needed to perform the computations required by the specification, such as ALUs and shifters. These
units are just those needed for a minimum area, low performance serial design (that is, where register transfers
are evaluated serially, with no concurrency among transfers).

The second class consists of those additional units which, when added to a serial design, provide dupli
cate functions and allow operations to be done in parallel. This class includes such items as extra ALUs and
shifters, counter registers, and additional buses for transferringdata in parallel.

34

If, given an areaconstraint,adesign cannotbe createdwith the required functional units, it fails. On the
other hand, once the required functional units have been allocated, the optional functional units simply im
prove the performance of the design.

Common case allocation orders the selection of the functional units in that second, additional class. It
provides a metric for selection. The most frequendy used optional units are allocated first

13. Functional Unit Modification

Sometimes the functional unit implementing an RTL operator can be modified and optimized. There
are two circumstances when this can occur.

The first arises because, in mapping an operatorto a functional unit, the system chooses the most gen
eralapplicable unit This overall strategyis sensiblebecause,by and large, the more generala unit is the more
widely it can be used.

Sometimes, though, a unit can be specialized. In such a case, a functionalunit is degraded, from, for
example, an ALU to an incrementer, or from a barrelshifter to a one bit shifter, or from a comparator to a
zero detector.

The second unit changing circumstancearisesbecause the system initially implements registers as sim
ple load-store storage elements without combinational functions.

Occasionally, however, a registercan be augmented with a combinational function. This may, for ex
ample, occur with the register containing the programcounter; it could be changed to a counter, so that pro
gram counter operationscould take place in parallel with other arithmetic operationswithout requiring a
complete second ALU and associated buses.

1.4. Common Case Binding

The process of associating the operatorsin individual register transfers with hardware functions is a de
finitive act of synthesis. It implies a register transferschedule and an allocated set of functional units.

This binding process takes place in Viper after a tentative, as-soon-as-possible register transfer sched
ule has been calculated and functionalunits have been allocated through global needs analysis, this allocation
being limited to units that are clearly required. The binding process may reveal that, in any cycle, there may
not be enough hardwareresourcesto performall scheduledoperations(because of concurrency).There are
two possible solutions to this problem, allocatemore resources,or delay operations.Viper employs both these
solutions, ordering them in an attempt to produce a good overall design.

Viper first attempts to add functional units as needed, to support maximum concurrency. This attempt
may fail, because the requisite unit may exceed the total areabound for the design. If it fails, transfers will be
delayed until resources are available.This delay may not be significant It only affects the ultimate speed of
the design if the transferand its dependents areamong those that determine the total number of cycles in the
block (the block's critical path). Consider, for example, the fetch clause from Chapter 4, and its associated
register transfers.

access(pc, PC), set(memARf PC),
mem_read,
access(pc, OldPC), NewPC is OldPC+1, set(pc, NewPC).
rtran(1, block(2), pc, none, move, memAR).
rtran(2, block(2), memAR, none, menrwead, memDR).
rtran(3, block(2), pc, none, inc. pc).

Transfer 2 is dependent on transfer 1; these two transfersrequire that the block be two cycles long. Transfer
3, on the other hand, is dependent on neither,and is not partof the critical path. It may be delayed from cycle
1 to cycle 2 without affecting speed.

Binding in Viper is essentially a local activity, performed block by block, cycle by cycle, and transfer
by transfer. The order that blocks and transfers are processed is important

Viper processes blocks in orderof decreasing frequency. This guarantees that the extra resources allo
cated to support concurrency will be used in the more important blocks. These resources may or may not be

35

useful in the less importantblocks.Incontrast, lessfrequently executed blocksare morelikelyto bedelayed.
Such delays are less important to the overall performanceof the design.

Viperalsoorderstheprocessing of transfers ina cycle, basing theordering on thescheduling freedom,
or mobility, of each transfer. Considerthe abovefetch example. The blockrequirestwo cyclesto execute.
Transfer1 mustexecutein cycle 1 and transfer 2 incycle2. Transfer 3 can executein eithercycle 1 or cycle
2. Transfer 3 is thus mobile, while transfers 1 and 2 are not This concept (freedom in [MAHA],mobility in
[Chippe-Micro]) refersto thenumber of potential cycles a transfer canoccupy; it is thedifference between a
transfer'sas-late-as-possible andas-soon-as-possiblecycleassignments. Transfer3 hasa mobility of 2, while
transfers 1 and 2 have mobilities of 1.

Viperprocessestransfers in increasing orderof mobility, bindingthe less mobiletransfersfirst Thus
scarce resources are bound to less mobile transfers,with the expectationthat more mobile transfers will be
harmlesslydelayed and bound in a later cycle. The goal is to reduce the effect of delays on performance.

1.5. Individual Functional Unit Selection

Viperselects'each functional unitin turnusingthedelayconstraint. For a giventypeof functional unit,
such as ALU, the library of functionalunits is searched,from the slowest (and smallest) subtype(such as rip
ple carry) to die fastest (and largest) subtype (such as carry select).The first functional unit that meets the
delay constraint is chosen. Thus each selected functional unit is the smallest that meets the delay constraint.

Currendy, Viper simply applies the delay constraintdirectly to each functional unit selected.This is a
useful approximation because expressions in the specificationsencountered so far are simple, and a source-
operator-destination model is not grossly inaccurate.A simpleand easy improvement would be to add source
and destination delays. Another simple improvementwouldbe, in an expression with more than one operator,
to consider all subtype combinationsof operators,order them by total area, and choose the first (smallest)
combination that was less than the given delay constraint This would not be that expensive because, again,
expressions are simple.

Note that Viper uses the delay bound only for the data path, not for the control path.

Once the smallest functional unit meeting the delay constraint has been found, its area is added to the
total area consumed by the design and that total is checked against the global area constraint If this check
fails the design is unacceptable.

1.6. Characteristics of Functional Units

Two sets of functional unit libraries are available to Viper. The first is the ASP set, used by the ASP
system. The second is the Harvest set, developed as part of the Harvest CAD system.

The Harvest CAD system, developed by Harvest VLSI, is a sticks-based layout system, similar to the
lower levels of ASP, but written in C. It takes as its input structural design descriptions similar to those gen
erated by Viper, but, unlike ASP, uses human guidance to produce compacted layout The Harvest library is
well parameterized and complete, at least in terms of microprocessor synthesis. Its elements consist of com
pacted cells that have been characterized with SPICE, and thus its physical properties are well defined. It has
been used to generate an implementation of the BAM microprocessor. It can be found in [Viper].

For Viper, a functional unit has three basic characteristics, a type, a size, and a delay. For an element in
the ASP library, the functionality of which is specified in terms of gates, its size is the total number of gates,
and its delay is the longest path (in number of gates). For an element in the Harvest library, which consists of
compacted cells, its size is in square microns and its delay is in nanoseconds.

For example, the ripple carry Harvest ALU is characterized by

type(alu(ripple)).
de!ay(alu(ripple), N, D) :-

Dis2.5 + (1.2*N),!.
size(alu(ripple), 195, 45).
area(Type, N, A) :-

sizefType, X, Y),
AisX*Y*N,L

36

The delayand areaclauses take as input the widthin bitsof the ALU(N), and produce an appropriatelyscaled
result

The functional unit selection process uses Prolog's search and failure mechanism, which relies on the
order of elements in the functional unit library. Small, slower units appear first

1.7. Generating Design Subsets with Utility Constraints

Common case allocation as described thus far automatically limits resources based on area and delay
constraints. It can also limit resources based on a utility constraint That is, it can ignore the parts of a speci
fication that are utilized below some threshold amount, and simply not implement them.

The obvious example case is that of unused instructions. If a given application does not use an instruc
tion, and the processor is to be specialized for that application, then the implementation of that instruction can
be omitted.

It can also be desirable to omit seldom-used instructions, saving on data path and control area (and pos
sibly increaseclock speed),and implementtheminsteadin software.Some instructions,however,may be im
portant although seldom used (such as return from interrupt).

Viper supports all these case by using an optional utility constraint When given, the allocator simply
does not allocate functional units used by instructions that occur less frequently than the given value, effec
tively leaving such instructions unimplemented in hardware. The constraint has the form

maxfmin, <bound>).

In addition, implementation of instructions can be forced despite their numerical utility, through use of
the declaration

keep(<instruction>).

Thus the implementation of all instructions used less that 1%, with the exception of return from inter
rupt, is suppressed with

max(min, 0.01).
keep(rti).

2. The Operation of the Data Path Allocator

The datapath allocator is composed offour modules, sched (which performs initial as-soon-as-possible
and as-late-as-possible scheduling), needs (which determines overall hardware needs), decl (which actually
creates and binds functional units), and nets (which creates and schedules bus operations).

The specific steps the allocator takes are:

[1] Compute a tentative block-based as-soon-as-possible schedule (sched). Data dependencies be
tween transfers are determined and transfers are scheduled on a block by block basis, with each transfer
assigned a cycle number within its block. To aid in allocation (for computing mobility), the as-late-as-
possible schedule for each block is also computed.

The cycle assignments are represented as

cycle(<index>, <block>, <cycle>).

For example, the schedule for the three transfer memory read and add above, assuming they were the
first three transfers in the block, would be

cycle(5, block(4), 1).
cycle(6, block(4), 2).
cycle(7, block(4), 3).

The scheduler keeps track of the current value of each resource (definition and use - last write and sub
sequent reads) in each block. This bookkeeping is enough for dependency analysis and scheduling. The only
complexity is that, for fields in registers, dependency information must be managed both for the field and the
entire register (a field and the entire register cannot both be stored into during the same cycle). The value of

37

a register is defined by the last write of the entire register or the last write of any field, whichever is latest; in
contrast, the value of a field is defined by the last write of the entire register or the last write of that field.

The scheduler currently makes three simplifying assumptions, which are not restrictive given current
inputs; the scheduler could be extended if the need arose. The assumptions are:

• different fields of the same register are non-overlapping(this simplifies dependencyanalysis);

• if a value is storedin a register,or retrievedfrommemory,thenit willbe availablethe nextcycle (delays
could easily be put in the last use retriever); and

• all expressions can be computed in one cycle (thisassumes expressionsare implementedas purely com
binational logic; an expression is a collection of register transfers bound together in an exprt list - see
Chapter 5). In other words, register transfers using the same temporaries are codependent and are sched
uled together.

To aid in allocation, the scheduler also computes the as-late-as-possible schedule for each block. The
as-late-as-possibleschedule is represented in a mannersimilar to the as-soon-as-possible schedule,and for
the above example would be

as!ate(7, block(4), 3).
aslate(6, b!ock(4), 2).
aslate(5, block(4), 1).

[2] For each register transfer, note the resources it uses, along with associated usage statistics
(needs). The allocator accumulates information on hardware needs, examining the operators and oper
ands of each transfer in the design. The information on required elements is collected in structures of
the form

necessary(<type>, <name>, <count>).
required<frequency>, <count>, <type>, <fiinction>).
require^<frequency>, <count>, <type>).

The necessary structures are for operands, usually registers. The requiredstructures, accumulated for
both specific functions (such as add) and general functional units (such as ALU), are for operators, and de
scribe combinational logic. Information on specific functions is collected for the purpose of functional unit
modification.

Note that the usage information appears first in required structures because Prolog's sorting operations
(included in the setof operator) can be used to order sets of structures. The counts are simple unweighted oc
currence counts, unused by Viper but maintained as a possible aid to the designer.

For example, the transfers and associated statistics

rtran(7, block(4), memDR, ac, +, ac).
freq(add, b!ock(4), 0.15).
rtran(10, block(5), memDR, ac, A, ac).
freq(and, block(5), 0.05).

produce

necessary(reg, reg(ac), 4).
necessaryjreg, reg(memDR), 2).
required(0.15,1, alu(Type), add).
required(0.05,1, alu(Type), and).
required(0.20,2, alu(Type)).

Note that register names are packaged in the reg(...) structure, which makes it easy to identify such
names as registers.

In addition, optional facts record alternative implementationsof functions (using, for example, incre
menters and decrementers).

optional(<optional-function>, <required-function>,
<block>, <cycle>, <option-type>).

used(<type>, <block>, <cycle>, <count>, <RT-index-list>).

38

This stepalso implementsthe optionaldesignsubsetfeature,ignoringthe needsof blocks usedless than
a specified threshold amount (which are also not protected by a keep statement). Such blocks are labeled un
used.

[3] Compute functional unit summary use information (needs). The usage information for each type
of functional unit is summed.

[4] For each special functional unit type get the set of required functions; if the set is restricted then
modify the type (needs).

This step implements functional unit modification,discussedabove. The functional unit types are ALU,
shifter, and comparator; the function sets are increment/decrement, one bit shift, and compare with zero; The
new types are incremented one bit shifter, and zero detector.

[5] For each necessary or required element, create it within area and delay constraints (decl).

This step implements the functional unit selection process described above; the allocator creates a basic
data path using its smallest first strategy.

Declarations have the form

elem(<name>, <type>, <delay>, <area>).
elemFn(<name>, <function>).

The delay and area information is not used further by Viper, but is included as an aid to the designer.

For example, the above add and and register transfers generate

elem(o(alu,1), alu(rippie), 21.7,140400).
elem(reg(memDR), reg, 3.1, 59200).
elem(reg(ac), reg, 3.1,59200).
etemFn(o(alu,1), and).
elemFn(o(alu,1), add).

This example is based on the Harvest library, hence the nanosecond and micron data.

Note the naming conventions for functional units. Combinational units are named using an o(...) struc
ture (o for operator), with the structure arguments being the unit type and the unit number.

[6] For each block, in order of frequency, and for each cycle within each block, bind register trans
fer operators to functional units; create new functional units and delay operators as necessary
(decl).This step implements the binding process described above, using frequency and mobility/free
dom to order binding. Mobility is computed using the as-late-as-possible schedule generated during as-
soon-as-possible scheduling, being simply the difference between the two schedules.

The results of this step, in addition to possibly more functional units, are bindings of functional unit
functions to specific register transfers. These bindings have the form

enable(<name>, <function>, <block>, <cycle>, <transfer-index>).

which includes hardware and scheduling information. For example, the bindings of the add and and transfers
above are represented as

enable(o(alu,1), add, block(4), 3,7).
enabie(o(alu,1), and, block(5), 3,10).

given that they both use ALU 1 and both occur on cycle 3 of their respective blocks.

It may be the case that, due to lack of resources, an operator must be delayed beyond its range of mo
bility (in other words, the necessary resources are not available within its range of mobility). In such a case,
a forced cycle assignment is generated. Such an assignmentrequires a return to step one, because the depen
dency-based as-soon-as-possible schedule created in that step is no longer valid.

Such forced cycle assignments have the form

forsch(<index>, <block>, <cycle>).

These assignments are recognized and used by the scheduler in step one.

39

This step also participates in the design subset feature,ignoringunused blocksas labeled in step two.

[7] For each block and cycle, get the set of all register transfer source-destination pairs, and create
and schedule buses to move data between those pairs (nets).

This stepcreates busesbetween registersand functionalunits,and schedulesbus use. It attempts to min
imize the buses and connections created, within a greedy framework. It operates in five stages.

It schedules all source-destination pairs which are connected by a free bus.

It schedules all pairs in which the source is connected to a free bus. It connects the destination to that
bus.

It schedules all pairs in which the destination is connected to a free bus. It connects the source to that
bus.

For each remaining free bus it takes a remaining pair, connects the source and destination, and sched
ules the bus.

For all remaining pairs it allocates a new bus, connects the source and destination, and schedules the
bus.

The results of this step are scheduled data movements.These movements have the form

move(<bus>, <source>, <destination>, <block>, <cycle>).

For example, the moves of the add and and transfers above are represented as

move(bus(1), ac, port(o(alu,1),2), block(4), 3).
move(bus(2), memDR, port(o(alu,1),1), block(4), 3).
move(bus(3), o(alu,1), ac, block(4), 3).
move(bus(1), ac, port(o(alu,1),2), block(5), 3).
move(bus(2), memDR, port(o(alu,1),1), block(5), 3).
move(bus(3), o(alu,1), ac, biock(5), 3).

Note the ALU input ports.The ports are neededbecause the ALU has two inputs that must be distinguished.

3. Building Data and Control Paths

A bookkeeping phase follows data path construction. It collects together the relevant facts about the
developing design thathave been generated during the previous phases and packages them into the finite state
machine descriptions and data path netlists (described in Appendix D). It uses register transfers, state transi
tions, schedules, and functional unit and bus declarations and bindings to construct its output

40

Chapter Nine: Experiment Overview

This chapter describes the nature of the experiments used to test the effectiveness of the optimizations
described in previous chapters. It also describes the operation of the complete Viper system.

1. The Experiments

The experiments constructed to evaluate common case optimization used four variables:

(a) Speedand area constraints. Different speed constraints were used to control the allocation process.
Maximally serial and maximally parallel designs were generated as end points. These constraints are
described in Chapter 8.

(b) Instruction FrequencyStatistics. Different sets of statistics, corresponding to different benchmark ap
plications, were used with the same microprocessor specifications to synthesize different microproces
sors. The benchmarks used are presented below.

(c) SynthesisPaths.The synthesis path through the Viper system was varied to optionally include common
case scheduling and allocation. The various synthesis paths are discussed below.

(d) MicroprocessorSpecifications. Different microprocessor specifications of varying complexity were
used. The four primary specifications were: a simple eight instruction microprocessor (the SMI), an 11
instruction subset of the 6502, the full 6502, and a contemporary general purpose microprocessor min
imally extended to support Prolog (the BAM). These specifications are more fully described in subse
quent chapters.

The results of synthesis were quantified, and the quantities measured were:

(i) the number of register transfers produced by the design, a measure of input specification complexity;

(ii) the number of basic blocks and execution cycles generated by the design, a measure of control size;

(iii) the size of the generated data path;

(iv) and the overall performance (CPI).

The quantified results are presented in subsequent chapters.

2. Benchmarks

The Systems Performance Evaluation Cooperative, an independent organization, maintains a standard
ized set ofreal world, applicationsoriented benchmarks([SPEC]).The benchmarksare all large, long running
(5-10 minutes), UNIX based programs. Three of the SPEC benchmarks were used in the experiments:

• GNUC compiler(gcc). This benchmark consists of the compilation of 19preprocessed source files into
optimized assembly language.

• eqntott. This integer intensive test written in C translatesa logical representation of a boolean equation
into a truth table. It is 95% sorting.

• spice 2g6. This is an analog circuit simulation and analysis application, written in FORTRAN.

These are all substantial benchmarks. None of them were actually run using the Prolog specifications
synthesized in the experiments. They were instead run on a simulator written by Harvest in C for another ar
chitecture (SPARC). This approach was taken for four reasons:

• Properly simulating the benchmarkswouldrequireproperly targetedcompilers, under UNIX operating
system support, practically beyond the scope of this research.

• The benchmarks are quite large, and simulation speed is an issue. The gcc benchmark executes
1,241,283,108instructions,theeqntottbenchmark1,469,792,037 instructions,and the spice benchmark

41

22,843,194,799 instructions. The difference inefficiency between Prologand C is significant at this
scale.

• Withtheannotation mechanism described inChapter 6, actual simulation by thesynthesized specifica
tions is unnecessary.

• Thegoal of theresearch is toexplore theefficacy ofcommon case optimization. Precise benchmark
datais in factnotnecessary to testtheoptimization techniques. A variety of different instruction fre
quencies, tostimulate different optimization results, is the fundamental requirement of thebenchmark
data.

The Harvest SPEC results thus formed the basisof sets of instructionfrequencies used to drive synthe
sis.TheHarvest numbers weremapped to SMI and6502 instructions based on approximate similarities in
functionality. These approximate mappings areat least as realistic as small directly simulated benchmarks
would have been.The exact mappingsare describedin Appendix B and in [Viper].

In additionto the SPECbenchmarks, for someProlog-oriented experiments a composite of 25 Prolog
benchmarkswas used, which executed in total 50,283,248instructions (see [Suite]).These benchmarks in
cluded theeightWarren benchmarks (163,237 instructions) andtwolarge benchmarks, anextractfrom a Boy-
er-Moore theorem prover(22,211,221 instructions), anda databaseconstruction and querying program
(20,256,394 instructions). The BAMPrologcompiler andsimulator wereusedto compile andexecute the
benchmarks (see [BAM]).

3. Synthesis Paths

TheVipersystem wasconstructed toallowtheoptional useofcomponents thatcouldperform common
caseoptimizations. In thiswayunoptimized designs could becompared withoptimized ones. Figure 9-1pre
sents an overview of these different paths:

42

counts

•f probabilities J

Common Case Scheduling Normal Synthesis Path Common Case Allocation

Figure 9-1: Synthesis Paths Through Viper

(1) The normal synthesis path translates a specification into register transfers, and then uses the register
transfers to generate a data path and finite state machine.

(2) Common case scheduling transformationsadd an extra loop, taking register transfers and lists of in
structions ordered by frequency of use, and generating new register transfers that are fed back into the
normal path.

(3) Common case functional unit allocation uses instruction frequency counts to compute usage probabil
ities, which are in turn supplied to the Viper components that generate data paths and finite state ma
chines. These components are constructed to use default, uniform values if probabilities are
unavailable.

These paths are detailed more completely in Figure 9-2, which shows how intermediate representations
(in the form of files) flow through specific Viper modules.

43

Common Case Scheduling Common Case Allocation

Figure 9-2: Information Flow Through Viper

The individual modules ofViper are:

tran (see Chapter 5), which translates Prologinto registertransfers;

mort (see Chapter 5), which performs some simple optimizations on those transfers;

alloc (see Chapter8), which createsdatapathsand finite statemachines (andconsists ofthe component
modules sched, needs, decl, and nets);

prop (see Chapter 6), which computes probabilities from instruction counts, and binds and propagates
them to specifications;

comi (see Chapter 7), which converts Viper register transfers into compactor register transfers;

com (see Chapter 7), the compactor, which performs trace scheduling; and

como (see Chapter 7), which converts compactor register transfers back into Viper register transfers.

44

The input files for a design (for each experiment) are: the specification file (<spec>), the benchmark
data file (<freq>), and the constraint file (.max). The names of the files identified with angle brackets can be
arbitrary; the other files have as names the input specification file name prepended to the given extension.

Note that the common case scheduler (com)producesregister transfers just like those generated by the
translator (tran). In order to distinguish the two (so that files do not overwrite each other), the scheduler files
are given a special t extension (thus sml.rtl is the output of the translator, while smlt.rtl is the output of the
trace scheduler).

4. Using Viper

The Viper design process is managed with an executive, a Prolog program that the user loads and uses
to invoke individual tools. The executive in turn loads the specific tool module and input files, and writes the
output file with the proper extension.

Usage information (the count and ordering data of Chapter 6) is kept in a collection of files. These files
are named by design type (such as 6502), and benchmark (such as gcc). When a tool is invoked that requires
such a file, and more than one file is available, the executive queries the user for the specific data set name.
Each such file also includes a fact of the form

dataSource(<source>).

These facts are propagated through the Viper components, so that designs contain a record of the information
used to optimize them.

There are a few other modules that are part of Viper. There is a performance evaluator (thev), which
computes the cycles per instruction metric described in Chapter 6, a block and cycle counter (bloc), a verifi
cation module (rover), and a latch insertionmodule (red) discussed in Chapter 12.

Both C-Prolog and SICStus Prolog are used. C-Prolog is better for development (because it does not
require declarations); SICStus is better for larger problems (because it has garbage collection and can use
more memory). One module runs only in SICStus(com); several modules run in both (prop, sched, needs,
decl).

5. Functional Unit Library Summary

Viper functional unit library informationhas three different aspects, each of which is contained in a dif
ferent file, and the total of which conceptually constitutes the library. The individual aspects have been dis
cussed separately in prior chapters, and are summarized here:

• the mapping of Prolog operators to equivalentfunctionalunit functions (contained in the opmap file);

• area and delay estimates for functional units (contained in the lib file); and

• implementations of functional units (defined in lower level ASP and Harvest files).

In addition, some mapping (mostlyoptimization) is done inline by code rather than via library table
lookup (see the discussion of mapping in Chapter 5).

The complete opmap and lib files can be found in [Viper]; the process ofadding elements to the library
is described in Appendix C.

6. Behavioral Simulation Summary

Simulationwas discussed in part in Chapters4 and 6, and is summarizedhere. Viper currendy supports
two levels of simulation,one at the executableProlog level, and one at the register transfer level.The execut
able Prolog level is good for debugging specifications,verifying that specifications are correct The register
transfer level is good for gathering instructionfrequency statistics. The former level is supported by Prolog
built-ins; the latter level by an RTL interpreter. Simulation at additional levels could be added (such as at the
output of Viper), to verify the synthesisprocessand get more accurate electrical performance information.

45

Chapter Ten: Simple Machine Results

Thischapterdescribes theSimpleMachine 1 (SMI), partsof which appeared in previous chapters as
examples. It thendiscusses synthesis experiments using theSMI, andpresents the synthesis results.

1. Simple Machine Specifications

TheSimple Machine 1 (SMI) is indeed simple. It hasa single accumulator, a single addressing mode,
and implements theeightinstructions load, store, add,and,shiftrightonebit,jump,branch if negative, and
halt

Thissimpleexample haspragmatically proved quitevaluable, because it is simpleenough to be used
by prototypes tools,and yet complex enoughto be interesting and exposesubstantial issues.

It ispresented heretocomplete and unify theexamples given inprevious chapters, andtoshowthesim
plest complete input given to Viper.

1.1. The SMI Specification

The specification is composed of four maincomponents: register declarations, a maintail recursive
loop, an instruction fetch procedure, and a collection of execute clauses.

stateRegister(ac, 16).
stateRegister(pc, 16).
stateRegister(memAR, 16).
stateRegister(memDR, 16).
stateFie!d(memDR, inst, opcode, 1).
stateFie!d(memDR, inst, address, 2).

All of the registers are 16 bits wide. The opcode is the first field in the memory data register, and the
address field is the second.

run :-

fetch,
stateUpdate,
access(memDR, opcode, OP),
execute(OP),
stateUpdate,
run.

run:- true.

fetch :-

access(pc, PC), set(memAR, PC),
mem_read,
access(pc, OldPC), NewPC is OldPC+1, set(pc, NewPC).

execute(hatt):-!,
fail.

execute(add):-!,
access(memOR, address, X), set(memAR, X),
mem_read,
acc8ss(memDR, T), access(ac, AC), A is T+AC, set(ac, A).

execute(and):-!,
acc8ss(memDR, address, X), set(memAR, X),
mem_read,
access(memDR, T), access(ac, AC), A is TAAC, set(ac, A).

execute(shr):-!,
access(ac, AC), A is AC»1, set(ac, A).

46

execute(load):-!,
access(memDR, address, X), set(memAR, X),
mem_read,
acc8ss(memDR, T), set(ac, T).

execute(stor):-!,
access(memDR, address, X), set(memAR, X),
access(ac, T), set(memDR, T),
mem_write.

execute(jump):-!,
access(memDR, address, T), set(pc, T).

execute(bm) :-
access(ac, AC), AC<0,!,
access(memDR, address, T), set(pc, T).

execute(brn):-!,
true.

These run, fetch, and execute clauses were discussed in Chapter 4. Only the add execute clause ap
peared in Chapter 4; all execute clauses are presented here.

Simulation of this specification requires the built-ins stateRegister, stateField, stateUpdate, access, set,
mem.read, and mem.write, discussed in Chapter 4.

1.2. The Register Transfer Version of the SMI

The register transfer version of the SMI, generated by Viper and used for hardware allocation and
scheduling, is similar in content to the input specification, but differs in the method ofspecifying computation
and control. Separate access, is, and set goals have been associated into unified transfers. Prolog clause struc
ture has been replaced by labels and gotos.

This version is presented here to illustrate complete input to the Viper scheduler and allocator; it is in
the form accepted by the trace scheduler (see Chapter 7).

% Ordering data from spec
[label(block(2))(

memAR <~ pc,
memDR <~ mem(memAR),
pc<~pc+1,

goto([
((field(memDR,opcode) = add), block(4)),
((field(memDR,opcode) = load), block(7)),
((field(memOR.opcode) = and), block(5)),
((field(memDR,opcode) = stor), block(8)),
((fieldjmemDR.opcode) =brn), block(10)),
((field(memDR,opcode) = shr), block(6)),
((fie!d(memDR,opcode) = jump), block(9)),
((field(memDR,opcode) = halt), stop)

I),
label(block(4)),

memAR < - field(memDR,address),
memDR <-- mem(memAR),
ac <- memDR + ac,

goto([block(2)]),
label(block(5)),

memAR <- field(memDR,address),
memDR <- mem(memAR),
ac <- memDR A ac,

goto([block(2)]),
label(block(6)),

ac<~ac»1,

goto([block(2)]),

47

label(block(7)),
memAR <- field(memDR,address),
memDR <~ mem(memAR),
ac <~ memDR,

goto([block(2)]),
!abel(block(8)),

memAR <- field(memDR.address),
memDR <-- ac,
mem(memAR) <- memDR,

goto([block(2)]),
labe!(block(9)),

pc <- field(memDR,address),
goto([block(2)]),

label(block(10)),
goto([((ac <0), block(H)), block(2)]),

label(block(11)),
pc <~ field(memDR,address),

goto([block(2)]),
label(stop), end].

Theotherimportant inputsto thesystemare theinstruction countdataandtheglobal designconstraints.
An artificialset of instruction frequencies, used in the simulation experiments, alongwith a commonset of
constraints, appear below.

dataSource(spec).
order(instructions, [add, load, and, stor, brn, shr, jump, halt]).
srcClass(field(memDR,opcode), instructions).
% 40%

count(add, 25).
count(and, 15).
% 30%

count(load, 20).
count(stor, 10).
% 30%

count(brn, 18).
count(shr, 6).
count(jump, 5).
count(halt, 1).
max(delay,100).
maxjarea,10000000).

All of the SMI intermediate forms generated during synthesis, along with the associated interaction
with Viper, are presented in [Viper].

13. Other Simple Machines

Other versions of the SMI appear in Appendix A. They include a multiport memory version, a pipe
lined version, and the SM2. The pipelined version is discussed in Chapter 13.

The SM2 is an enhanced version of the SMI, with two general purpose registers and an 10 register. It
has four additional instructions: subtract, register to register move, no-op, and branch on tag. Although sim
ple, it is complex enough to support Aquarius Prolog. It was used in one synthesis experiment below.

2. Simple Machine Experiments

The SMI was synthesized a number of times using different constraints and benchmark inputs.

(a) To determine design end points, maximally serial and maximally parallel versions were generated.
These versions established the smallest and largest possible data paths.

(b) To establish a baseline for common case scheduling and allocation, the SMI was syndiesized with uni
form instruction frequencies, with and without trace scheduling. To be precise, uniform instruction fre-

48

quencies mean that, for any transfer of control, the probabilityof taking any branch is the same (and
nonzero).

(c) To further explore common case scheduling and allocation, a set of instruction frequencies was con
structed by hand, loosely based on SPEC benchmark data. The SMI was then synthesized with and
without trace scheduling.

(d) To explore the effect of a more severe delay constraint, the SM1 was synthesized with a delay a fifth
as large as that used in previous designs.

(e) Finally, for comparison, the SM2, a slightly more complex design, was synthesized using uniform in
struction frequencies.

3. Simple Machine Results

The results of synthesis were quantified.

(i) To have an approximate measure of input specificationcomplexity, the number of register transfers
produced by the design were counted.

(ii) To have an approximate measure of control (FSM) size, the number of basic blocks and execution cy
cles generated by the design were counted.

(iii) To measure data path size, the area of the generated data path was computed.

(iv) To measure the overall performance of the design, the cycles per instruction (CPI) performance metric
for each design was computed (see Chapter 6).

Synthesis constraints and variables are summarized in Table 10-1. Quantified synthesis results appear
in Table 10-2.

Processor Benchmark Optimization Area Delay Design Name

SMI -uniform- - -serial- 100 SMl-ser

SMI -uniform- - -parallel- 100 SMI-par

SMI -uniform- - 1000000 100 SMl-un

SMI -uniform- -trace- 1000000 100 SMl-un-T

SMI spec - 1000000 100 SMl-sp

SMI spec -trace- 1000000 100 SMl-sp-T

SMI spec - 1000000 20 SMl-sp-20

SM2 -uniform- - 1000000 100 SM2-un

Table 10-1: SMI-Based Designs

Notes:

Area constraints are in square microns. Delay constraints are in nanoseconds.

Special constraints include serial (allocate no optional functional units) and parallel (allocate all option
al functional units).

Benchmarks include -uniform- (for any branch, all probabilities are uniform).

49

Design Name Transfer Count Block Count Cycle Count Size CPI

SMl-ser 20 9 18 398000 4.8

SMI-par 20 9 18 398000 4.8

SMl-un 20 9 18 398000 4.8

SMl-un-T 20 13 19 398000 4.9

SMl-sp 20 ;, 9 18 398000 5.4

SMl-sp-T 20 13 19 398000 5.5

SMl^sp-20 20 9 18 453600 5.4

SM2-un 41 30 38 544400 4.3

Table 10-2: SMI Results

Notes:

• The cyclecountis thenumberofdistinctcyclesinthedesign. Therearefewerblocksthancycles (some
blocks require more thanone cycle to execute),and fewer cycles thanregister transfers (some register
transfers execute in parallel).

Size is the size of the data path, excluding buses, in square microns.

A number of observations follow from these experiments.

(1) The maximally serial andmaximally parallel data paths areidentical. They havean ALU, a one bit
shifter, four registers, including a memory interface, and three buses.

(2) The only difference between the uniform frequency versions is one more block in the tracescheduled
design, and hence a larger CPI (in general, moreblocks with the same numberof register transfers
means reduced scheduling freedom and lessened concurrency).

(3) The SPEC benchmark designs, because of weighting, have worse performance(higherCPI) than the
uniform frequency versions; they are otherwise identical.

(4) With a 100nanoseconddelay constraintthe system selectsaripplecarryALU; with the 20 nanosecond
constraint a carry bypass ALU is used, requiring more area.

(5) The SM2 is larger in all ways; its data pathhas two moreregisters and a comparator, comparedto the
SMI. It is nonetheless still a simple machine.

In sum, the SMI has served as an adequatebasic test of the Viper system, but is so simple that litde
opportunityexists for optimization. There are virtuallyno differences between the various synthesized de
signs.

50

Chapter Eleven: 6502 Results

This chapter introduces the 6502, discusses synthesis experiments using the 6502, and presents the syn
thesis results.

1.6502 Specifications

More extensive Viper experiments are based on the 6502 microprocessor. The 6502 was chosen be
cause it is both relatively small and relatively complicated. It has 61 instructions, 11 addressing modes, and
four types of interrupts.

The complete specification is given in [Viper]. Highlights are presented here.

The specification uses nine registers and 13 fields. The registers and fields are of varying sizes and
widths.

stateRegister(acc, 8).
stateRegister(x, 8).
stateRegister(y, 8).
stateRegister(pc, 16).
stateRegister(sp, 8).
stateRegister(p, 8).
stateRegister(memAR, 16).
stateRegister(memDR, 8).
stateRegister(t, 16).
stateField(p, nflag, 7).
stateField(p, vflag, 6).
stateField(p, bflag, 4).
stateField(p, dflag, 3).
stateField(p, (flag, 2).
stateFieldjp, zflag, 1).
stateField(p, cflag, 0).
stateField(pc, highpc, (15 - 8)).
stateField(pc, lowpc, (7 - 0)).
stateFieldjmemAR, highaddr, (15 -8)).
stateField(memAR, lowaddr, (7 - 0)).
stateFieldjt, highbyte, (15 -8)).
stateFieldjt, lowbyte, (7 -0)).

Eight of the registers are required; the t register is used internally for temporaries. The single bit fields
of the p register are required. Since the memory interface is just eight bits wide, high and low byte fields are
needed for the 16 bit registers.

The basic tail recursive fetch-execute cycle is considerably more complicated than that of the SMI.

run

run.

interrupt,
fetchl(lnst, Mode),
stateUpdate,
fetchO(Mode),
stateUpdate,
incrementPC(Mode),
execute(lnst),
stateUpdate,
run.

51

First, interrupts, if any,are handled. Second, theinstruction opcode byte is fetched. Third, theoperand
is fetched, the modeandlength of whichdepend on theopcode. Fourth, the program counter is incremented,
the size of which also depends on the opcode. Finally,the instruction is executed.

As an intermediate testof Viper,a simplesubsetspecification of the6502wascreated, with 11 instruc
tions(Ida, sta,adc,and,Isr, jsr,rts,jmp, bmi, nop,andrti), four addressing modes (abs, imm, ind,andzerop),
andthree typesof interrupts (int, reset, andhalt). Theoriginal, complete 6502 specification wasedited, with
the extra instructions and addressing modes removed.

Many of theexperiments usedinstruction frequencies based on instruction counts derived from SPEC
benchmarks. The first part of the gcc data file appears, for example, as

dataSource(gcc).
order(interrupts,[true,int,nmi,reset,halt]).
order(instructions,[lda,adc,inclora,and>bne,sta,beq,ldxlcmplroilinx,tax,ldy,

stx,sbc,cpx,jmp,rts,jsr,dec,pla,pha,iny,cpyltay,sty,bit,ror,lsr,dex,
bcclbcs,asi>txa,bmilbpl,tya,dey,eor>txsltsxlseilsed,sec,rti,plp,php,
nop,ctv,cli,cld,cic,bvs,bvc,brk]).

order(addressingl[accum,abs,immlzerop,absx,indx,zeropx,absy,indy,zeropy,ind]).
count(lda,1423040).
count(adc,968723).
count(inc,697446).

More informationabout these frequencies and theirderivation can be found in Appendix B and in [Vi
per].

2.6502 Experiments

The 6502 and its subset was synthesized a number of times using different constraints and benchmark
inputs.

(1) To determine design end points, maximally serialand maximally parallel versions of the subset were
generated. These versions established the smallest and largest possible data paths.

(2) To establish a subset baseline for common case scheduling and allocation, the subset was synthesized
with uniform instruction frequencies, with and without trace scheduling.

(3) To explore the effect of a more severe delay constraint, the subset was synthesized with a delay a fifth
as large as that used in previous designs.

(4) To further explore common case scheduling and allocation,three sets of subset instruction frequencies
were constructed by hand, based on SPEC benchmark data. The subset was then synthesized with and
without trace scheduling, using these three data sets.

(5) To test utility constraints and design subsets, a complete set of6502 instruction frequencies was created
with the frequencies of the extra (unused, non-subset) instructions set to zero. The original, complete
specification was then synthesized with this set and with the optional utility constraint defined to ignore
instructions with zero frequencies. The same frequency set and utility constraint were then used in com
bination with keep declarations to generate a slighdy more complete processor than the subset; all in
terrupts and all addressing modes were kept

(6) To establish a baseline for common case scheduling and allocationusing the complete 6502, the com
plete specification was synthesized with uniform instruction frequencies, with and without trace sched
uling.

(7) To explore common case scheduling and allocation, three sets of 6502 instruction frequencies were
constructed, based on SPEC benchmark data.The complete specification was then synthesized with and
without trace scheduling, using these three data sets.

(8) To furtherexplore design subsets, the three SPEC data sets were used in conjunction with a utility con
straint ofone percent to generate three 6502 subsets. In these designs all interrupts, addressing modes,
and four important instructions (rti, jsr, rts, and jmp) were kept

52

3.6502 Results

The results of synthesis were quantified using the same metrics as those used for the SMI.

The simple subset constraintsand synthesisresults appear in Tables 11-1 and 11-2,and the constraints
and results for the complete 6502 appear in Tables 11-3 and 11-4.

Processor Benchmark Optimization Area Delay Design Name

S6502 -uniform- - ; -serial" 100 S-ser

S6502 -uniform- - -parallel- 100 S-par

s6502 -uniform- - 1000000 100 S-un

s6502 -uniform- -trace- 1000000 100 S-un-T

S6502 -uniform- - 1000000 20 S-un-20

s6502 gcc - 1000000 100 S-cc

S6502 gcc -trace- 1000000 100 S-cc-T

S6502 eqntott - 1000000 100 S-eq

s6502 eqntott -trace- 1000000 100 S-eq-T

s6502 spice - 1000000 100 S-sp

S6502 spice -trace- 1000000 100 S-sp-T

6502 -uniform- -0%-subset- 1000000 100 6502-s

6502 -uniform- -0%-keep- 1000000 100 6502-k

Table 11-1: Simple Subset 6502 Designs

Design Name Transfer Count Block Count Cycle Count Size CPI

S-ser 122 20 54 480236 10.24

S-par 122 20 54 480236 10.24

S-un 122 20 54 480236 10.24

S-un-T 252 46 107 620636 8.57

S-unr20 122 20 54 535836 10.24

S-cc 122 20 54 480236 11.39

S-cc-T 252 46 107 620636 9.38

S-eq 122 20 54 480236 10.08

S-eq-T 144 36 64 620636 8.62

S-sp 122 20 54 480236 12.55

S-sp-T 252 46 106 480236 9.36

6502-s 122(340) 20(79) 64(171) 480236 10.24

6502-k 164(340) 27(79) 78 (171) 539436 10.24

Table 11-2: Simple Subset 6502 Results

Notes:

The trace scheduled designs involve 40 traces.

For automatically generated subset designs (using utility constraints), the transfer, cycle, and block
numbers include implemented counts and total counts (in parentheses).

53

Processor Benchmark Optimization Area Delay Design Name

6502 -uniform- ;-:.:.'::V'-:'. .':«";::-"-:"-":-::.v':' 1000000 100 6502-un

6502 -uniform- -trace- 1000000 100 6502-un-T

6502 gcc - 1000000 100 6502-cc

6502 gcc -trace- 1000000 100 6502-cc-T

6502 eqntott - 1000000 100 6502-eq

6502 eqntott -trace- 1000000 100 6502-eq-T

6502 spice - 1000000 100 6502-sp

6502 spice -trace- 1000000 100 6502-sp-T

6502 gcc -1%-keep- 1000000 100 6502-cc-s

6502 eqntott -1%-keep- 1000000 100 6502-eq-s

6502 spice -1%-keep- 1000000 100 6502-sp-s

Table 11-3: Complete 6502 Designs

Design Name Transfer Count Block Count Cycle Count Size CPI

6502-un 340 79 171 601744 11.28

6502-un-T 473 161 226 742144 10.29

6502-cc 340 79 171 601744 9.38

6502-cc-T 473 161 226 742144 7.73

6502-eq 340 79 171 601744 9.31

6502-eq-T 473 161 226 601744 7.69

6502-sp 340 79 171 601744 9.37

6502-sp-T 473 161 225 742144 7.53

6502-cc-s 215 (340) 40(79) 103 (171) 538992 9.18

6502-eq-s 179 (340) 33 (79) 87 (171) 518192 9.21

6502-sp-s 192 (340) 36(79) 94 (171) 538992 9.23

Table 11-4: Complete 6502 Results

Note: the trace scheduled designs involve 158 traces.

A number of observations can be made from these results.

(1) Moderate concurrency exists in the non trace scheduled designs. On the average, two register transfers
are executed per cycle.

(2) This concurrency is not due to multiple functional units, however, but multiple data transfersper cycle
(the subset serial and parallel designs have the same data path).

(3) Performance increases with the trace scheduled designs, as well as the size of the design (number of
register transfers).

(4) This increase is to some extent due to more concurrency via multiple functional units (two ALUs in
stead of one), but not entirely.

(5) The trace scheduler reorganizes the designs so that address computations are overlapped with instruc
tion execution (in some sense pipelining them). The exact structureof this reorganization (and the need
for multiple ALUs) depends on the relative importanceof various instructionsand addressing modes.

54

(6) Differentbenchmarks cause fairly wide differencesin performance measures, with maximum differ
ences of 25% (6502 subset, non trace scheduled), 9% (6502 subset, trace scheduled), 21% (complete
6502, non trace scheduled), and 37% (complete 6502, trace scheduled).

(7) As with the SMI, a 20 nanoseconddelay constraintcauses a faster(carrybypass) ALU to be chosen.

(8) The subset allocationoption correctlycreatedthe subset 6502 data path.

(9) The subsetkeep allocation optioncorrecdy created a slighdy larger subsetdesign with requiredaddi
tional functionality, adding two needed registers (x and y) to the data path.

(10) The one percentsubsets were alsocorrecdycreated. Forgcc, eqntott, andspice, 33,40,37 instructions
wereomittedrespectively.Performance was not substantially alteredfromthe complete designs,which
is to be expected, since the weight of the omitted instructions is small. Datapath area, however, was
decreased 10% to 14%, transfercount 37% to 47%, block count 49% to 58%, and cycle count 40% to
49%.

Performance (CPI)

12—I

.11 —

10—

9 —

8 —

7 -

6-

5 —

4 —

3 —

2-

1 -

0-

0

1 % subsets

0+-D

benchmark

X = uniform

• =gcc

O = eqntott

+ = spice

T
100 200

X

normal

300

Cost (Transfer Count)

400

Figure 11-1: 6502 Individual Synthesis Results

55

X

trace

9

500

Figures 11-1 and 11-2pictorially displaysomeof theseresults, relatingcost(in termsof registertrans
fers) to performance (CPI).Figure 11-2plots the geometric meanof all benchmarks for each typeof design
(subset, normal, and trace scheduled); in terms of cost-performance,normal designs are better than trace
scheduledones.Note that theonepercentsubsetdesignsarenotfasterthanthenormaldesigns,andare slower
than the trace scheduled ones, but are substantially smaller.

Performance (CPI)

12-

11—I

10-

9 —

8-

7 —I

6-

5 —

4 —

3-

2-

1 -

0-

0

T
100

X

200

T
300

X

400

X

500

Cost (Transfer Count)

Figure 11-2:6502 Average Synthesis Results

4. Common Case Scheduling Summary

The most interesting differences in designs are between trace scheduled and non trace scheduled ver
sions. Trace scheduling increases performance, but at some cost in control path size (number of cycles) and
data path size. Comparison of these quantities is summarized in Table 11-5. In general, the percentage CPI
improvements are less than the increased costs.

56

Design Name % Cycle Count Increase % Size Increase % CPI Improvement

S-un 98 29 19

S-cc 98 29 21

S-eq 19 29 17

S-sp 96 0 34

6502-un 32 23 10

6502-cc 32 23 21

6502-eq 32 0 21

6502-sp 32 23 24

Table 11-5: A Comparison of Normal and Trace Scheduled 6502 Designs

57

Chapter Twelve: BAM Results

This chapter describes the Berkeley Abstract Machine (BAM) and its implementation, discusses syn
thesis experiments using the BAM, and presents synthesis results.

1. BAM Specifications

The BAM is a contemporarygeneral purpose microprocessor minimallyextended to support Prolog
([BAM]and [BAM-Manual]). It has register files and just one addressingmode, in contrast to the 6502. The
structureof its fetch-execute loop is identicalto thatof theSMI. Its supportforPrologprimarilyconsistsof:

• a double word memory interface and associateddouble word instructions(ldd, std, stdc, pushd, push-
dc),

• taggeddata and associatedinstructions(ldi, sti, stid, cmpi, lea, btgeq,dref), and

• support for Prolog unification (uni, swb, swt).

BecausetheBAMitselfisan architectural experiment, andbecause it involves advanced features (such
as tags,a doublewordmemory interface, and register files), theViper experiments using BAM include var
ious architecturalalternativesand their resulting measurements, as well as common case optimization tests.

The BAM,as implemented for theseexperiments, has44 instructions andone register filecontaining
32 registers. The specification also usesa program counter, a program statuswordregister, and a temporary
register.

CompleteBAM specifications are given in [Viper]; highlights are discussedpresently.

1.1. Implemented Instructions

A few BAM instructionswere not implementedfor theseexperiments, either because they required un
interesting but substantial additions to the functional unit library, or because theyraisedperipheral specifica
tion issues.

The functional unit additions would have been to support28 bit (tagged) ALU operations;all 28 bit
instructions were omitted. Note that several functional units were added to support various instructions: ad
ditional comparison testsfor cmpand cmpi,unbound tag tests for swb, and multiport memory for double
word instructions.

The specification issuesinvolvepipelineinstruction annulling (btanandbtat), interaction betweenthe
processor and the cache (ldl and stu), interaction between theprocessor and the memory system(las),and
trapping (trapand rft). In general,these issuesrelate to specifying the largersystemcontext,an important
problem that is beyond the scope of this work.

The remaining, implementedinstructionsare: Id,ldx, st, stx, ldi, sti, slid, ldd, std, stdc,push, pusht, pop,
pushd,pushdc, add, addi, sub, and, andi, or, ori, xor, xori, sll, slli, sra, srai, srl, srli, umin, umax,cmp, cmpi,
bt, jmp, jmpr, call, btgeq, lea, dref, uni, swb, and swt.

Two subsets of these implemented instructions were created.

One was developed to establish a base line for measuring the cost of Prolog support It consists of all
non-Prolog and non-Prolog-inspired instructions (Id, ldx, st, stx, push, pop, add, addi, sub, and, andi, or, ori,
xor, xori, sll, slli, sra, srai, srl, srli, cmp, bt, jmp, jmpr, and call).

Another, larger subset was generated for testing the trace scheduler, which does not support a double
word memory interface. This subset simply omits the double word instructions (ldd, std, stdc, pushd, and
pushdc).

58

1.2. Register Files

Aswas described inChapter 4, Viper supports two models of register file access. Thefirst model has
the register index presented tothe register file inone cycle, and the value read from orwritten into the file in
the next cycle. The second model has the index presented and the value read orwritten in the same cycle.
Equivalent BAM specifications were written using both models, and most synthesis experiments were run
using both.

Inaddition, anautomatically generated variant of thesecond model wasdeveloped. Thisvariant ad
dresses thesituation where a register fileis unable toreada value and then writea valuein thesamecycle.
In such read-write cases a latch must be inserted between the read and the write.

Considerthe add instruction using the secondmodel. It reads two operandsfrom the register file and
stores the result, and appears thus:

execute(add) :-
access(memDR, opndt, I),
rval(port(r, li), I, Rl),
access(memDR, opnd2, J),
rval(port(r, r2), J, RJ),
Result is Rl + RJ,
access(memDR, opnd3, K),
wval(port(r, w), K, Result).

Assuming that the result cannot be stored in the same cycle, the specification would be rewritten thus:

execute(add) :-
% cycle 1
access(memDR, opndO, I),
rval(port(r,r1)>l,RI),
acc8Ss(memDR, opnd2_1, J),
rval(port(r, r2), J, RJ),
Result is Rl + RJ,
set(elatch, Result),
% cycle 2
access(elatch, RK),
access(memDR, opndl, K),
wval(port(r, w), K, RK).

Specifications in the first form can be manually translated into the second, but an automatic method,
operating at the register transfer level, was developed. Viper has a tool (in the mort optimization module --
see Chapter 9) that scans for sequences of read and writes, and inserts latches as needed (the tool also recom
putes exprt lists ~ see Chapter 5).

For example, the RTL representation of the add instruction with read and write in the same cycle, is:

rtran(25,block(7),field(memDR,opndO),port(r,r1),rval,tempval1).
rtran(26,block(7),field(memDR,opnd2_1)Iport(r,r2)>rval,tempval2).
rtran(27,block(7),tempval1,tempval2l+,tempval3).
rtran(28,block(7),field(memDR,opnd1),tempval3,wval,port(r,w)).

It is transformed into:

rtran(25,block(7),field(memDR,opndO),port(r,r1),rval,tempval1).
rtran(26,block(7),field(memDR,opnd2_1),port(r,r2),»val,tempval2).
rtran(27,block(7),tempval1,tempval2,+,elatch).
rtran(28,block(7),field(memDR,opnd1),elatch,wval,port(rtw)).

1.3. Specification Structure

Because the BAM is a relatively simple machine with a simple single word instruction fetch, and in
order to explore the effect of specification structure on optimization, versions of the BAM with instruction
fetch in various places were constructed.

59

These were: a) the conventional instruction fetch before instructionexecution - leadingfetch,

run :-

fetch,
access(memDR, opcode, OP),
execute(OP),
run.

run:- true.

b) fetch after execution - trailingfetch (which can benefit the trace scheduling process),

run :-

% this assumes an initial fetch, before run is called
access(memDR, opcode, OP),
execute(OP),
fetch,
run.

run:- true.

c) fetch witheach instruction - distributedfetch(which leadsto greater concurrency at the costof duplicate
register transfers),

run :-

access(memOR, opcode, OP),
execute(OP),
run.

run:- true.

execute(ld) :-

fetch.

execute(add) :-

fetch.

andd)a combined approach, using distributed fetch onlywithcommonly executed instructions (thelesscom
moninstructions usinga singletrailing fetch) - mixedfetch (which avoids thecostof duplicate register trans
fers for seldom used instructions).

2. BAM Experiments

Severaldifferentversions of the BAMweresynthesized. Thedesigns wereall synthesized witha delay
constraintof 33 nanoseconds (thecycle timeof themanually-designed BAMchip,whichwasfabricated and
runs at speed).

(1) To explore the relativecost of Prologsupport, BAMversions weresynthesized with 1) no Prologsup
port, 2) Prolog support minus double word instructions, and 3) complete Prolog support.

(2) To investigate thedifferentcostsof thedifferent registerfilemodels, versions usingthefirstmodel, the
second model, and the variant of the second model, described above, were synthesized.

(3) To determine the possibleadvantageof full dual portedmemory, in contrast to simplya wider bus to
memory, versions employing both mechanisms were generated.

(4) To test the efficacy of common case allocation,somedesignswere synthesizedusingan areaconstraint
that would limit the allocation of optional functional units.

(5) To explore common case scheduling and allocation and get benchmark-based performance measure
ments, some designs were synthesized using instruction frequencies derived from the Prolog bench
mark composite.

(6) To determine the cost of instruction execution only and assumingoverlapped instruction fetch,designs
were synthesized from partial specifications in which instruction fetch was omitted entirely.

60

(7) To test the utility of trace schedulingon the BAM specification, trace scheduled designs were generat
ed.

(8) To explore the effect of specificationstructureon trace scheduling, leading and trailing fetch versions
of the BAM were synthesized using trace scheduling.

(9) To investigatea manual alternative to trace scheduling, and for comparison with the immediatelypre
ceding experiment, distributed fetch versions of the BAM were synthesized.

(10) To explore a cost effective refinementof distributedfetch, mixed fetch versions of the BAM were syn
thesized. A special version of the translator (the tran module - see Chapter 9) was constructed to per
form this optimization.

3. BAM Results

The results of synthesis were quantified using the same metrics as those used for the SMI and 6502.
Since the area and delay constraints were the same for all designs, the tables of results are simpler than their
SMI and 6502 counterparts. In the tables, the name of each design encodes the features it has, using the fol
lowing abbreviations.

FeatureAbbreviation

no Prolog support nP
single word Prolog support Ps
double word Prolog support Pd
two cycle register file access 2c
one cycle access, one per cycle lcl
one cycle access, two per cycle Ic2
single word memory interface sw
double word memory interface dw
double port memory interface dp
leading instruction fetch If
trailing instruction fetch tf
distributed instruction fetch df

mixed instruction fetch mf

no instruction fetch nf

trace scheduled ts

Table 12-0: BAM Feature Abbreviations

Note: every design name contains, in order, one abbreviation from the first four categories.

The various architectural variants (register file models, instruction sets, and memory systems) are pre
sented in Tables 12-1 and 12-2 and Figures 12-1 and 12-2. Trace scheduling results are shown in Table 12-
3. The assorted instruction fetch variant results appear in Tables 12-4 and 12-5 and Figure 12-3. The number
of data path elements allocated for each design is summarized in Table 12-6. All the figures are in the form
of area-time graphs, using modified area and time metrics.

Unless otherwise indicated, designs were synthesized with unlimited area and uniform instruction fre
quencies.

61

Design Name Transfer Count Block Count Cycle Count Size CPI

nP-2c-sw-lf

nP-lcl-sw-lf

nP-lc2-sw-lf

106

102

102

28

28

28

67

57

40

2674016

2792416

2674016

4.32

4.12

3.76

Ps-2c-sw-lf

Ps-lci-sw-lf

Ps-lc2-sw-lf

178

176

176

56

56

56

113

99

79

2758904

2877304

2758904

5.24

4.91

4.47

Pd-2c^w-lf

Pd-lcl-dw-lf

Pd-lc2-dw-lf

230

221

221

61

61

61

129

116

94

2995704

3280760

3162360

5.38

5.02

4.57

Pd-2c-dp-lf

Pd-lc2-dp-lf

230

217

61

61

129

88

3162360

3554360

5.38

4.54

Table 12-1: BAM Architectural Variant Design Results

Design Name Transfer Count Block Count Cycle Count Size CPI

Ps-2c-sw-lf 178 56 113 2758904 5.34

Ps-lcl-sw-lf 176 56 99 2877304 4.85

Ps-lc2-sw-lf 176 56 79 2758904 4.60

Pd-2c-dw-lf 230 61 129 2995704 5.82

Pd-lcl-dw-lf 221 61 112 3280760 5.25

Pd-lc2-dw-lf 221 61 90 3162360 4.95

Pd-2c-dp-lf 230 61 129 3162360 5.82

Pd-lc2-dp-lf 217 61 88 3554360 4.93

Table 12-2: BAM Variants Synthesized Using Benchmark Frequencies

Design Name Transfer Count Block Count Cycle Count Size CPI

Ps-2c-sw-lf 178 56 113 2758904 5.24

Ps-2c-sw-lf-ts 197 101 129 2758904 5.29

Ps-lcl-sw-lf 176 56 99 2877304 4.91

Ps-lcl-sw-lf-ts 178 90 110 2877304 5.11

Ps-lc2-sw-lf 176 56 79 2758904 4.47

Ps-lc2-sw-lf-ts 179 73 90 3150904 4.66

Table 12-3: BAM Trace Scheduled Design Results

Note: the tracescheduled designs involve 107 traces.

62

Design Name Transfer Count Block Count Cycle Count Size CPI

Ps-2c-sw4£.ts 197 101 129 2758904 5.29

Ps-2c-sw-lf 178 56 113 2758904 5.24

Ps-2c-sw-tf-ts 346 104 183 3150904 *19

Ps-2c-sw-df 304 64 143 2758904 3.79

Ps-2c-sw-nf 175 56 111 2758904 3.24

Ps-lc2-sw-lf-ts 179 73 90 3150904 4.66

Ps-lc2-sw-lf 176 56 79 2758904 4.47

Ps-lc2-sw-tf-ts 328 80 149 3150904 3.60

Ps-lc2-sw-df 308 64 129 3150904 3.46

Ps-lc2-sw-df* 308 64 129 2758904 3.46

Ps-lc2-sw-nf 175 56 77 2758904 2.47

Pd-2c-dp-lf 230 61 129 3162360 5.38

Pd-2c-dp-df 392 69 167 3162360 3.82

Pd-2c-dp-nf 227 61 127 3162360 3.38

Pd-lc2-dp-lf 217 61 88 3554360 4.54

Pd-lc2-dp-df 379 69 144 3554360 3.35

Pd-lc2-dp-nf 214 61 86 13554360 12.54
Table 12-4: BAM Modified Fetch Design Results

Note: the design markedwith anasterisk (*) wassynthesized with anarea constraint of 3000000.

Design Name Cutoff Transfer Count Block Count Cycle Count Size CPI

Pd-2c-dp-tf 100% 230 61 129 3162360 5.82

Pd-2c-dp-mf 2% 290 68 154 3162360 4.79

Pd-2c-dp-mf 0.2% 338 70 166 3162360 4.57

Pd-2c-dp-mf 0% 395 70 169 3162360 4.55

Pd-2c-dp-df 0% 395 70 169 3162360 4.55

Pd-lc2-dp-tf 100% 217 61 88 3554360 4.93

Pd-lc2-dp-mf 2% 277 68 116 3554360 4.13

Pd-lc2-dp-mf 0.2% 325 70 130 3554360 3.94

Pd-lc2-dp-mf 0% 382 70 146 3554360 3.93

Pd-lc2-dp-df 0% 382 70 146 3554360 3.93

Table 12-5: BAM Mixed Fetch Design Results

Note: in the above table, the cutoff field indicates the point at which an instruction was implemented with
distributed as opposed to trailing fetch. Specifically, the cutoff value is the execution percentage(in the
benchmark composite) that an instruction must have to be implemented with distributed fetch. Thus, at the
endpoints, arecomplete trailing fetch and complete distributed fetch designs. In between are, for example,
2% designs, where every instruction that is executed more than 2% of the time is implemented using distrib
uted fetch.Note that0% mixed fetch designsarethe same as normaldistributedfetch designs (with a 0% cut
off every instruction uses distributed fetch).

63

Data Path Size ALUs Incrementers Memory Interfaces Latches Tag Logic

2674016 1 0 ••' 1 •. 0 o

2758904 1 0 1 0 1

2792416 1 0 : }:•:• 1 0

2877304 1 0 1 1 1

2995704 1 0 2 0 1

3150904 2 0 1 0 1

3162360 1 1 2 0 I

3280760 1 1 2 1 1

3554360 2 1 2 0 1 ,•

Table 12-6: BAM Data Path Element Allocation

Note: all datapathscontaina PCregister,a PSW register, a temporary register, acomparator, a shifter,and a
register file; the ALUs and counters are carrybypass. (The double word memory interfacecould be simpler
and smaller; the second ALUs could be incrementers.)

A number of observations can be made from these results.

(1) The different register file models yield expected differences in performance, with the more powerful,
fasterhardware producing faster designs. One cycle (lc2) designs are 17% faster than similarvariant
(lcl) designs, which arein turn6% fasterthan two cycle (2c)designs (from Tables 12-1and 12-2).One
cycle designs have a mean of 2.38 register transfers percycle, one cycle variants have 1.83 transfers
per cycle, and two cycle designs have 1.65 transfers per cycle.

(2) An obvious, but important resulting observation, is that underlying hardwarehas a significant influence
on performance, which may be at least as significant as optimization strategies.

(3) Prolog support has a cost Designs with single word Prolog support were 20% slower and 3% larger
(in data patharea)than designs with no Prologsupport,and double word designs were 2% slower and
13% larger than single word designs (from Tables 12-1 and 12-2).

(4) The CPI measure used in the above speed comparisons is to some extent misleading as applied. It cor
rectly shows how much more slowly an average instruction executes, but it does not indicate relative
execution times of complete benchmarks (designs with more complex instructions may very well be
fasterbecause fewer instructions overall will be executed - see, for example, the formula in [MIPS],
page 1-2). The CPI metric is appropriate for comparing different implementations of the same instruc
tion set, but it is inadequate for comparing designs with different instruction sets.

(5) Full double ported memory produced no performance improvement

(6) An areaconstraint combined with common case allocation, produceda more efficient design. The
bounded areadistributed fetch design in Table 12-4(Ps-lc2-sw-df) uses one ALU insteadof two, com
pared to its unbounded alternate. This second ALU is used in the unbounded version for PC increment
(in the add, addi, sub, and, andi, or, ori, xor, xori, and lea instructions). In the bounded design, the PC
increment is delayed a cycle and occurs in parallelwith the instruction memory read. Both the bounded
and unbounded designs have the same cycle count and CPI values.

(7) Use of the benchmark composite instruction frequencies, in contrastto uniform frequencies, did not af
fect the quality of the resulting designs. They did, however, result in higher calculatedCPI values, be
cause the commonly used, more heavily weighted instructions, for memory access and Prolog support
are longer instructions (taking more cycles).

(8) Removing the fetch clause to measureonly cycles perinstruction execution yielded the obvious and
anticipated two cycle improvement (instruction fetch requires two cycles, and is always executed). It
would be reasonable to pursue overlapped fetch and execution.

64

Performance (CPI)

6 -

Prolog support (Ps)

5 —

3 —

2 —

0

0

x

no Prolog support(nP)

I
100

X X

Prolog support (Pd -- double word)

I
200 300 400

Cost (Transfer Count)

(Each connected set of points includes 2c, lcl, and lc2 designs.)

Figure 12-1: BAM Variants (Transfer Count Cost)

(9) Trace scheduling with leading fetch produces results similar to those for the SMI (since instruction
fetch is simple and cannot be effectively merged with instructionexecution, there is no improvement).

(10) Trace scheduling with trailing fetch producessubstantialimprovementsin performance, in return for
increased cost in the form of duplicate register transfers; the instruction fetch transfers are replicated
in each instruction execution clause. For single word Prolog, trace scheduling causes a 25% CPI im
provement and a 94% increase in transfer count for two cycle register files, and a 24% CPI improve
ment and an 86% transfer count increase for one cycle register files (from Table 12-4).

65

Performance (CPI)

6 —i

4 —

2 —

0

0

Prolog support (Ps)

no Prolog support (nP) T

1
100 200 300

Prolog support (Pd)

400

Cost (Area/1000)

(Each connected set of points includes 2c, lcl, and lc2 designs.)

Figure 12-2: BAM Variants (Area Cost)

(11) Consideringthe difference in traceschedulingresultsbetween leadingand trailing fetch, it is apparent
that high level specificationstructureis important,and high level transformsare useful.

(12) The trailing fetch trace schedulingresultscanbe duplicated manuallywith distributed fetch.Forsingle
word Prolog,distributedcauses a 38% CPI improvementanda 71% increase in transfer count for two
cycle register files, and a 29% CPI improvement and a 75% transfercount increase for one cycle reg
ister files (from Table 12-4).

66

Performance (CPI)

6 —i

(13)

2 —

0

0

X

normalfetch (Ps-lf)

+
X

distributedfetch (Ps-df)
trace scheduled trailingfetch (Ps-tf-ts) £ +

+ = one cycle register file access (lc2)

X = two cycle register file access (2c)

100 200 300

Cost (Transfer Count)

400

Figure 12-3: BAM Instruction Fetch Variants

The mixed fetch structure produced interestingtradeoffs. At the 2% cutoff 14 instructions were distrib
uted (addi, Id, dref, ldd, st jmp, cmp, bt swt jmpr, btgeq, pushdc, lea, xori); at the 0.2% cutoff 13 more
were (umax, ldi, push, call, pusht pushd, cmpi, ldx, swb, pop, add, std, sti). The following table sum
marizes the cost-performance results; benefits are in terms of decreased CPI, and costs are in terms of
increased transfer count (with increased cycle count for comparison in parentheses). For the two cycle
designs, 86% of the benefit comes at 36% (61%) of the cost and virtually 100% at 65% (94%). For the
one cycle designs, 80% of the benefit comes at 36% (48%) of the cost and virtually 100% at 64%
(73%). Full distributed fetch and, by implication, trace scheduling, are not comparatively, cost effec
tive.

67

Design 2% Benefit 2% Cost 0.2% Benefit 0.2% Cost 0% Benefit 0% Cost

2c

lc2

19%

16%

26%(19%)

27% (32%)

22%

20%

47% (29%)

49% (48%)

22%

20%

72% (31%)

76% (66%)

Table 12-7: BAM Cost-Performance Data For Mixed Fetch

(14) A comparisonwith the fabricated BAM chip is difficult, becauseit is pipelined,andcontainsadditional
system functionality. The basic datapath is the same; extra incrementers and ALUs in the results pre
sented here are reflected in the rabricated BAM in its instruction pipeline and memory system.

68

Chapter Thirteen: Pipelining

Thischapterdescribestheextensionsmadeto the Vipersystemto supportpipelining. Theseextensions
are not part of the experimental sequencepresentedin the bulk of this work (which is concernedwith non-
pipelineddesigns),but theyare germanebecausethey demonstrate the utilityand flexibility of the overall
Viper framework, and becauseone specificextension(see RUP below) uses instructionfrequencies.

1. Pipelining Extensions

Pipelining, in Viperterms,meansthatdifferentinstructions executeat the same time,eachina different
Viper schedulingcycle (eachinstruction is definedby a basic block, or set of blocks,of register transfers).
Each Vipercycle is equivalentto a pipelinestage.A simpleadd instruction, for example (including specifi
cation, register transfers,and schedule,and using dual ported memory),

execute(add):-!,
access(memDR(1), address, X), set(memAR(2), X),
mem_read(2)>
acc8ss(memDR(2), T), access(ac, AC), A is T+AC, set(ac, A).

rtran(4,block(4),field(memDR(1),address),none,move,memAR(2)).
rtran(5,b!ock(4),rnemAR(2),none,m8m_read(2),memDR(2)).
rtran(6,block(4),rnemDR(2),ac,+,ac).

cycle(4,block(4),1).
cycte(5,block(4),2).
cyde(6,block(4),3).

requires three pipeline stages, one for each register transfer. As an add instruction executes sequentially cy
cles 1,2, and 3, other instructions are executing other cycles.

Pipelining affects a design in three ways.

• All instructions must take the same number of cycles to execute. The behavior of each cycle for each
instruction must be defined. (Viper does not generate the synchronization hardware needed to support
pipeline stalls or forwarding.)

• All instructions should use the same resources in the same (relative) cycles; otherwise, duplicate re
sources may be allocated. The add instruction above, for example, uses an ALU in cycle 3 (performs a
+). Other instructions performing ALU operations should do so in cycle 3 as well; otherwise another
ALU will be needed.

All data references must be synchronized, based on data dependencies. Forexample, the add instruction
reads and writes the accumulator in cycle 3; other instructions using the accumulator (such as condi
tional branches based on the contents of the accumulator) must take that into account

The process ofnormalizing and coordinating instructions required by the above conditions can be com
plex. Viper does not perform this process. It does, however, support the human designer in this effort in three
ways.

• Viper shows the designer how resources are being used and how values are being referenced, with an
additional tool.

Viper provides an additional operator that allows the human designer to add null cycles to instructions,
which aids in synchronizing resource and value use.

Viper assigns each register transfer to a pipeline stage, based on its cycle assignment

Additionally, the Viper allocator has been modified to generate hardware for pipelined data paths. It
allocates this hardware stage by stage (cycle by cycle), and not block by basic block, as is done for non-pipe-

69

lined designs. The resources allocated to a cycle must fill the needs of all instructionsexecutingthat cycle.
Furthermore, unlike non-pipelined designs, operations cannot be postponed a cycle. Thus, since all the oper
ations assigned to a cycle must be supported, and none can be delayed, no operations are optional, and needs
analysis is unnecessary.

These four Viper extensionsare discussedin more detail below.They required no changes to the basic
Viper frameworkor to data structures.Register transfers,data dependencyand schedulinginformation,func
tional unit declarations,and instructionfrequencyinformationare generatedand structuredas before. Refer
ring to the Viper modulesof Chapter 9, only the alloc module,describedin Chapter 8, needed modification.
Simulation of pipelined designs, however, would have required substantial changes to the Prolog and RTL
interpreters, and is not supported.

1.1. The delay Operator

The delayoperator allows the user to create null cycles explicitly in an instructiondefinition, in order
to normalize the various instructions in a design. The operatorabsorbsa cycle, and everything appearingafter
it (in the same basic block) is scheduled after it.

For example, consider the above three cycle add instruction, and a one cycle shift instruction.

execute(add):-!,
access(memDR(1), address, X), set(memAR(2), X),
mem_read(2),
access(memDR(2), T), access(ac, AC), A is T+AC, set(ac, A).

execute(shr):-!,
access(ac, AC), A is AC»1, set(ac, A).

In order for the shift to use the same pipeline as the add instruction,it must take three cycles,and change
the accumulator in the third cycle. Two delays accomplish this.

execute(add):-!,
acc8Ss(memOR(iy, address, X), set(memAR(2), X),
mem_read(2),
access(memDR(2), T), access(ac, AC), A is T+AC, set(ac, A).

execute(shr):-!,
delay,
delay,
access(ac, AC), A is AC»1, set(ac, A).

1.2. Assigning Register Transfers to Pipeline Stages

The process of assigning each register transfer to a pipeline stage starts with each transfer's cycle as
signment (as discussed in Chapter 8). Consider again the above add example and its cycle assignments

rtran(4,block(4),field(memDR(1),address),none,move,rnemAR(2)).
rtran(5,block(4),memAR(2),nonefmem_read(2),memDR(2)).
rtran(6,block(4),memDR(2),ac,+,ac).
cycle(4,block(4),1).
cycle(5,block(4),2).
cycle(6,block(4),3).

These cycle assignments bind each register transfer to a relative cycle within the add instruction's basic
block (block 4).

The difference between one of these cycles and a pipeline stage is essentially that a pipeline stage is
part ofa complete design, whereas a cycle is local to a basic block. In this case, three separate pipeline stages
(cycles) will be needed to implement the above three transfers, but they are not the first three stages of the
design. The add block is in fact preceded by a block containing a one cycle instruction fetch,

rtran(1,block(1),memAR(1),none,mem_read(1),memDR(1)).
rtran(2,block(1),rrtemAR(1),none,inc,memAR(1)).
cycle(1,block(1),1).
cycle(2,block(1),1).

70

The fetch is the first stage of the pipeline, and the above three add cycles correspond to stages two,
three, and four.

Thus a transfer'spipelinestageis its cycle assignmentincremented by the numberof cycles in the
blocks that precedeit The stageassignments for the above transfers are

stage(1,block(1),1).
stage(2,block(1),1).

stage(4,block(4),2).
stage(5,block(4),3).
stage(6,block(4),4).

Similarly, the (normalized)shift instructionabove is also precededby the same instruction fetch.

rtran(10,block(6),delay,delay,delay,delay).
rtran(11 ,block(6),delay,delay,delay,delay).
rtran(12,block(6),ac,nonelshr(1),ac).
cycle(10,block(6),1).
cycle(11,block(6),2).
cyde(12,biock(6),3).
stage(10,block{6),2).
stage(11,block(6),3).
stage(12,block(6),4).

The first step of the allocationand binding processdescribed in Chapter8 has been augmented to per
form stageassignment It firstcomputesanas-soon-as-possible schedule(asdescribedin Chapter8, with one
difference discussedbelow), which resultsin cycle assignments.It then examines eachblock in turn, produc
ing stageassignments forthatblock's registertransfersbasedon cycle assignmentsandthe stageassignments
of precedingblocks. It uses block enabling (Men) information,described in Chapter5, to determine the pre
decessors of each block.

The ASAP scheduling process for pipelining differs from non-pipelined scheduling in the way certain
controloperationsare handled. In general, a pipelineddesign does not have a single controlling finite state
machine,but rathera separate controller for each pipelinestage. As an instructionmigratesthroughthe pipe
line, it enablesvariousactionsby the different controllers. What this means for schedulingspecifically is that
certaincontroloperations are free, taking no cycles becausethey areperformedas a matterof course by the
stagecontrollers. In particular, opcode dispatchdoes not requireadistinct cycle, because it is built in to each
stage controller. The Viper ASAP scheduler has been modified accordingly.

13. Allocating Pipelined Data Paths

The Viper allocator,described in Chapter 8 in terms of seven steps, has been modified to generate pipe
lined data paths. The seven steps have been changed as follows:

[1] This step performs ASAP scheduling, and is discussed in the previous section.

[2], [3], [4]
These steps are concerned with needs analysis and have been removed.

[5] This step creates functional units. It no longer uses needs analysis, but instead allocates data path el
ements stage by stage. Foreach pipeline stage in turn,and instruction by instruction(using blen infor
mation), it examines the register transfersassigned to that stage, and creates the functional units needed
by those register transfers. It createsthem using the smallest first strategydiscussed in Chapter8.

[6] This step binds operators to functional units. It is different in that it no longer creates optional func
tional units (because none are optional), and no longer modifies cycle assignments (because instruc
tions have been normalized).

[7] This step is unchanged.

71

1.4. Resource Usage Patterns

Viper provides anadditional tool (called RUP)to analyzetheresource usagepatterns of instructions. It
classifies instructionsby the resourcesthey use eachcycle (functionalunits, registers, and memory), and
weights theresulting usagepatterns with instruction frequencies. Eachpattern canbe thoughtofasaresource-
basedreservation table([Arch-Kogge]). The RUPtool is theonly part of Viper that in generating pipelines,
uses instruction frequencies.

Viper simply calculates RUPdata; it doesnot use it. The humanuser,however,canuse the datato nor
malize instructions, conforming all instructionsto the samebasicpattern, andbasingthis pattern on the more
heavily weighted instructions.

Foreach resourceusage pattern,the following information is generated:

[<opcode-list>] <pattern-index>
<frequency> <pattern-count> <cycle-length> {<enabling-RT>}

where

• <opcode-list> is the list of instructions that follow this pattern;

<frequency> is the frequency (probability) of thispattern beingused(being the sum of the frequencies
of the listed instructions);

• <cycle-length> is the total number of cycles in the pattern; and

• <enabling-RT> is the index of the register transfer thatenables this pattern (see the discussion of blen
in Chapter 5).

The other items, <pattern-index> and <pattern-count>, areessentiallybookkeeping information(a unique
integer identifying the pattern,and the count of instructions that use it).

For each cycle in each pattern, the following information is displayed:

<cycle>/<stage> -<resource>
R:[<read-list>]
W:[<write-list>]

where

• <cycle> is the local cycle number (from stage binding above);

• <stage> is the pipeline stage number (from stage binding above);

• <resource> is the resource (functional unit or memory) used (if any);

• <read-list> is the list of registers read; and

• <write-list> is the list of register written.

All but <cycle> and <stage> may be absent and there may be multiple resources.

For example, for the above add and shift instructions, the patternsare

[add.and] <2>
0.273973 <2> (3) {rt(4)}

112

R:[field(memDR(1),address)]
W:[memAR(2)]

2I3 -mem(2)
3I4-ALU

R:[ac,memDR(2)]
W:[ac]

[shr] <3>
0.0410959 <1> (3) {rt(4)}

112

213

314 -SHF

R:[ac]
W:[ac]

72

Notethat thepattern usedby add is alsousedbyand.Alsonotethat the shiftpatternis almosta subset
of the add pattern. RUP does not try to merge the two.

RUP analyses of various versionsof the BAMcan be found in [Viper].

Another usefulguide for pipelining (notgenerated by RUP)is theoverallperformance metric intro
duced inChapter6 andusedextensively intheresultchapters. Thisweighted averageinstruction cyclelength
is an important design parameter, along with branch instruction frequency. It serves asan upper bound for
pipeline length.

2. A Simple Pipelined Machine

Asa testof theabovemechanisms, a pipelined version of theSMI of Chapter10wassynthesized. The
pipelined version differs in having normalized instructions with delay operators, and in having a no-op in
struction fordelayedbranches (theotherinstructions, carriedoverfromtheSMI, areadd,and,shr, load,stor,
jmp, brn, and halt).The completespecification can be foundin Appendix A.

The four stages of the resulting pipeline are:

(1) instruction fetch and PC increment;

(2) operand decodeand PC modification for branch instructions;

(3) memory read or write; and

(4) ALU operation and accumulator read and write.

Onedelayslot is needed for branch instructions - fetch occurs in stage 1, and thePC is modified in
stage2. In addition, twopreceding no-ops maybeneeded for thestorandbrn instructions, in order for them
to readthecorrectaccumulatorvalues;theyreferencetheaccumulator in stage2, and it is modifiedin stage4.

The resulting data path has

• two ALUs, one for PC increment and one for instruction execution (the first could be an incrementer);

• two sets of memoryaddress and data registers, one for instruction fetch and one for instructionexecu
tion;

• a shifter, and

• an accumulator and program counter.

The CPI performance of this pipelined SMI, usingthe instruction frequencies of Chapter 10, is 1.79
(including thecontribution of the extracycles needed by thestoreand branch instructions), making it three
timesfaster thanthe non-pipelined version. Thedatapathareais 786016 squaremicrons (usinga 100nano
seconddelayconstraint), almost twice the sizeof (388016 squaremicrons morethan) the non-pipelined ver
sion. The net performance/cost improvement is 1.5.

3. An Alternate Pipelining Technique

The techniquedescribedabove,usingthenon-pipelined version of Viperas a startingpoint, beginswith
a schedule (heavily influenced by the human designer via thedelayoperator), and generates a data path.

Analternate techniquewouldbe to startwitha data pathandscheduleoperationson it Such a technique
would tentatively involve four steps, some of which could be performedby human designers.

(a) Generateresourceusagepatterns for non-pipelined versions, to get preliminaryinformationabout the
design.

(b) Build a pipelined data path (perhaps manually),using resource usage information, branch frequency,
and CPI metrics.

(c) Scheduleregistertransferson thedatapath,perhapsdecomposing register transfers.Use theconceptof
mobilityand bypass stages to fit short sequences. The weight(and extent by cycles)of non-fittingin
structions is the figure of merit (the smaller the better).

(d) Improvethe design (perhapsmanually). Add hardware or use internalopcodes to fit long sequences.
Iterate to the previous step.

73

4. Other Pipelining Issues

One potential difficulty with the Viper approach is that Viper register transfers are not always the cor
rect atomic units for pipeline scheduling. Most current pipelined microprocessors further divide such trans
fers into additional cycles.

For example, the pipelined BAM microprocessor ([BAM])has a five stage pipeline: instruction fetch,
register read, ALU operation, memory operation, and register write.Some of these actions, like instruction
fetch,are complete proceduresin input specificationsthat takefullcycles to execute.Others, like register read
and write, are parts of cycles. The problem is that each pipelinestage should take roughly the same amount
of time.Commercialmicroprocessorsaddress this issue,balancingthe time taken by each stage. Any sophis
ticatedpipeline synthesizermust do this too, usingregisteraccesstime, memorydelay, and ALU speeds,as
wellas the techniqueof register result forwarding. A synthesizer shouldbe able, for example, to decide be
tweena four stage I-R-A-Wand five stage I-R-A-M-W pipeline, determining the value of the extra memory
stage. It should do this using implementation cost and performance metrics.

Another issue arises with specification.There traditionally was a clear distinctionbetween instruction
setarchitectures (ISAs)and microarchitectures (MAs). ISAsare implementation independent processorspec
ifications, usedby systemprogrammers and compilerwriters. MAsareprocessorimplementations by and for
hardware designers.Thisdistinctionexists for the DECVAXand IBM370architecture, for example,which
are conventional ISAs. Microprocessors have complicated the situation,however, particularly those with the
RISClabel,becausetheydeliberately exposeimplementation details,suchaspipelinelatency,to thecompiler
writer. Thus the startingpoint of Viper synthesis,the ISA, is inherently a bit hazy.

Implementation-independent specifications- specifications that imply no implementation - can no
longerbe expected,at least for the domain of current microprocessors. Synthesizersmustbe able to optimize
specifications withexplicitimplementation details,particularly exposed pipelines and pipelinedelayslots.
The BAM,for example, has five instructions (btgeq, swb,swt btan,andbtat) that requireinstruction annul
ling.

Othervariablesalsoaffectpipelining,and shouldbe takenintoaccountby synthesizers. The numberof
registerports,savingand restoring the pipeline(for interrupts), dealing withregisterfiledata dependencies,
and the frequency of branchinstructionsall affectpipelinearchitecture, andare hardto handleautomatically.

74

Chapter Fourteen: Conclusions and Future Work

1. Summary of Results

To review, the Viperhigh-level hardware synthesissystemhas been constructed,which producesdata
andcontrolpathsfrom behavioral specifications written ina subsetof Prolog.Execution countsderivedfrom
benchmark programs are usedto guideoptimization during synthesis. The systemusestracescheduling to
optimize designs, andemploys anoptimizing datapathallocation technique thatallocates optional functional
units in order of importance (that is, frequencyof use).

Various non-pipelined versions of threemicroprocessors havebeensynthesized: theSM1(asimpletest
case), the 6502, and the BAM (a contemporarygeneralpurpose microprocessor minimallyextended to sup
portProlog). Synthesis variables included: different execution countsfrom differentbenchmarks (toseehow
benchmarksaffected final designs); variouscost (area) and performance (delay) constraints; the use, or not
of tracescheduling(to determineits effecton performance and cost);and changes to the BAM specification
(to investigatethe effectsof specification structure on synthesisand optimization).

Resultingsynthesized designswereevaluatedandcomparedin termsof data path area, size of control,
andcyclesper instruction (CPI). Theresultswerenotcontrasted withresultsfromothersystems,becausethe
specifications and functional units used in this work are unique.

The primary 6502 synthesis results were:

(1-1) Moderateconcurrencyexists in the non trace scheduleddesigns. On the average, two register trans
fers are executed per cycle.

(1-2) This concurrency is not due to multiplefunctional units, but to multiple data transfers per cycle (the
subset serial and parallel designs have the same data path).

(1-3) The trace scheduler reorganizes the designs so that address computations are overlapped with in
structionexecution (in some sense pipeliningthem).The exact structure of this reorganization (and
the need for multiple ALUs) dependson the relative importanceof various instructions and address
ing modes.

(1-4) In general, the percentage CPI improvementswith trace scheduling are less than the increased costs.
Also, different benchmarkscause fairly widedifferences in CPI measures, with maximum differenc
es of 37%.

(1-5) The data path allocator can automatically create a reduced data path, ignoring instructions that are
utilized below some threshold amount (a utilityconstraint). Some instructions, however, may be im
portant although seldom used (such as return from interrupt), and may be explicitly retained (with
keep declarations).To test these features,a set of 6502 instruction frequencies was created with un
used instructions (with counts of zero). The complete specification was then synthesized with this
set and with the utility constraint defined to ignore instructions with zero counts. The same frequen
cy set and utility constraint were then used in combination with keep declarations to generate a
slightly more complete processor than the subset; all interrupts and all addressing modes were kept
These designs were correctly generated.

(1-6) To further explore reduced designs, threebenchmarkdata sets were used in conjunction with a utility
constraint of one percent to generate three 6502 design subsets. In these designs all interrupts, ad
dressing modes, and four important instructions (rti, jsr, rts, and jmp) were kept The one percent
subsets were correctly created. For gcc, eqntott and spice, 33,40,37 instructions were omitted re
spectively. Performance was not substantiallyaltered from the complete designs, which is to be ex
pected, since the weight of the omitted instructions is small. Data path area, however, was decreased
10% to 14%, and control 37% to 47%.

75

Benchmark Name % Cycle Count Increase % Data Path Size Increase % CPI Improvement

uniform

cc

eqntott

spice

32

32

32

32

: - 23
23

0

23

10

21

21

24

Table 14-1:6502 Result Summary

The primary BAM synthesis results were:

(2-1) Prologsupporthas a cost Designswith Prologsupport,using a single word memory interface,were
20% slower and 3% larger(in data path size) thandesigns with no Prolog support and designs with
a double word interface were 2% slower and 13% largerthan single word designs.

(2-2) The speed comparisons of (2-1), basedon CPI, are to some extent misleading as applied. They cor
rectly show how much more slowly an averageinstructionexecutes, but they do not indicate relative
execution times ofcomplete benchmarks(designswith morecomplex instructionsmay very well be
fasterbecause fewer instructionsoverallwill be executed - see, forexample, the formulain [MIPS],
page 1-2). The CPI metric is appropriate forcomparingdifferent implementations of the same in
struction set but it is inadequate for comparing designs with different instruction sets.

(2-3) The BAM microprocessorwas synthesized with different register files, some requiring two cycles
per access, some one cycle. The different register file models yield expected differences in perfor
mance, with the more powerful, fasterhardware producing fasterdesigns. Fast one cycle designs
were 17% faster than slower one cycle variantdesigns, which were in turn6% faster than two cycle
designs. One cycle designs have a mean of2.38 registertransferspercycle, one cycle variantshave
1.83 transfersper cycle, and two cycle designs have 1.65transfers percycle.

(2-4) Trace scheduling producessubstantial improvements in performance,in return for increasedcost, in
the form of duplicate register transfers; the instruction fetch transfersarereplicatedin each instruc
tion execution clause. For single wordProlog,traceschedulingcausesa 25% CPI improvement and
a 94% increase in transfercount for two cycle register files, and a 24% CPI improvement and an
86% transfercount increase for one cycle register files.

(2-5) In an attempt to reduce the cost of optimization,an alternative to trace schedulingwas developed,
which replicates instruction fetch only in commonly executed instructions(defined by a user sup
pliedcutoff threshold); instruction fetch is thusoverlapped forcommon instructions (for speed),and
not overlapped (duplicated) for uncommon ones, which saves control size. At a 2% cutoff 14 instruc
tions had overlapped fetch; at the 0.2% cutoff 13 more hadit The following table summarizes the
cost-performance results; benefits are in terms ofdecreasedCPI, and costs are in terms of increased
transfercount (with increasedcycle count forcomparison in parentheses). Forthe two cycle designs,
86% of the benefit comes at 36% (61%)of the cost and virtually 100%at 65% (94%). Forthe one
cycle designs, 80%ofthe benefit comes at 36%(48%)of thecost andvirtually 100%at64% (73%).

Design 2% Benefit 2% Cost 0.2% Benefit 0.2% Cost 0% Benefit 0% Cost

two cycle

one cycle 16%

26%(19%)

27% (32%)

22%

20%

^%(2QS)

49% (48%)

22%

20%

72% (31%)

76% (66%)

Table 14-2: BAM Result Summary

Viper was alsoextendedto generate simplepipelined designs; a pipelined version of the SMI wasgen
erated, whichwasthree times faster thanthenon-pipelined version, withanetperformance/cost improvement
of 1.5.

76

2. Conclusions

The basicquestion asked in Chapter 1 was, howeffectively can the qualityofautomatically generated
microprocessorsbe improved through the use ofinstructionfrequencystatistics?

In the course of this work, this question has become, howeffectiveare common case (trace)scheduling
and allocation?The simple, qualitative answeris, common case scheduling hasnoticeablyincreasedperfor
mance, but common case allocation has had a marginaleffect.

Commoncase schedulingincreasedtheperformanceof the synthesizedhardwareby increasingconcur
rency (primarily by movinginstructionfetchand addresscomputations), at a cost of proportionally greater
controlsizeanddata patharea.Theresultinghardware performance wasbetter thanany obtainableusingnor
mal, intra-blockscheduling techniques.Commoncase schedulingis more effective with complex designs
(which take advantageof common case scheduling's bookkeeping). The techniquealso has the advantageof
being general, automatic, and relatively efficient It is not tuned to certain high-levelconstructs (such as
loops), and does not require human guidance.

Common case allocationdemonstratedlittle applicabilityin microprocessorsynthesis. Opportunities
for multiple functional unit concurrency were rare, and virtuallyall functional units were required. The allo
cator did, however, make possible the easy, automaticgenerationof subset microprocessors, tailored to par
ticular applications.

The primary contributions of this work are:

• the successful application of trace scheduling to high-level synthesis, for general, automatic, usage-
driven inter-block performance improvements; and

• the development of common case allocation, which can be used with any block-by-block allocation
scheme, and which demonstrated its utility in generating microprocessor subsets.

3. Observations

Microprocessor synthesis is a reasonable synthesis domain in which to explore common case optimi
zations, because microprocessor specifications are rich in unequally weighted alternatives - different instruc
tions and addressing modes. If there were fewer alternatives, or if the alternatives were usually weighted
equally, design space explorable by common case optimization would be considerably smaller.

Also, designs must be relatively complex (and have the proper form) before common case scheduling
transformationsshow any benefit The SMI was not improved,but the 6502 was. The mean speed (CPI) im
provement for the 6502 and its subset was 21%. The leading fetch BAM was not improved, but the trailing
fetch BAM was.

Viper appears to be a plausible vehicle for rapid prototyping non-pipelined processors. At least it can
quickly generate nontrivial designs of moderate quality.

The underlying hardware components available to the system are important. The differences in BAM
performance, for example, between the different register file implementations,are as significant as synthesis
optimizations.

Specification structure is important. The differences in BAM performance between the different fetch
orders, for example, are as significant as synthesis optimizations.

Extensibility, whichprovides generality, is hard to do well incombination with optimization, which can
be context specific (see Appendix C on adding operators and functional units).

A subsidiary conclusion of this work is that Prolog proved to be an effective implementation vehicle
for Viper, excellent in expressive power and adequate in performance (see Appendix E).

Viper was successfully extended to support pipelined designs. One such design was synthesized, and
exhibited impressive cost-performance results. Such designs are, however, not easily generated, because, ef
fectively, the user must schedule all instructions by hand, guaranteeing that all will require the same number
of pipeline stages.

77

4. Extensions to Viper

A number of possible extensions to the current Vipersystem are possible.

4.1. Extensions to Common Case Allocation

Several extensions to and variations on common case allocationcan be explored. Such extensions and
variations are probably bestexplored withhardware specifications fordevices otherthanmicroprocessors
(featuring more complex expressions).

One possibility wouldbe to partition theglobalareaconstraint intorequired andoptional components.
Theseconstraintscouldalso additionally or alternatively be subdivided by type(suchas registersand ALUs).
Thispartitioning wouldalleviatethe globally greedy behavior of a singleconstraint

Anotherpossibility wouldbe to developdifferent metrics for functional unitselection. In the current
version of Viperthe mostfrequently usedoptional units areallocated first Otherpossible metrics forchoos
inga unit to addcouldbe: size (smallest first, which willultimately addthegreatest number of units), and
generality (most functions supported, which might have the greatest utility).

A variation of utilityconstrained allocation wouldbe to allocateresources for somepercentile of in
structions, rather than for some individualthresholdpercent For example,allocateresources for the instruc
tions that are used 90% or 95% of the time, rather than for individual instructions that are used more than 1%
of the time.This couldbe done by keepinga runningtotalof the frequencies of the instructions implemented
up to that point and allocate optional componentsup to a total cutoff frequency.

True data flowanalysis for referencing values,and subsequent errordetectionor automatic temporary
generation, is necessary. Currently the tracking of values in registers, and thedetection of the need for tem
poraries and their creation, (see brk and jsr in the 6502) is done manually.

The allocatorcouldbe moreintelligentaboutregisterports. It coulddetermine how manywereneeded
and assign them, rather than requiring user declarations and references.

Moregenerally, otheroperator-by-operatorallocators couldbeexamined (suchasEMUCS jEMUCS]),
and modified to use common case allocation.

4.2. Extensions to Hardware Implementation

The hardwaregeneratedby Vipercan be mademorecomplex and sophisticated, therebyincreasing the
opportunities for optimization (increasing also the difficulty and complexity of the optimization process).

First Vipercould bettersupportmorecomplicated expressions by treatingexpressiontemporaries in a
more sophisticatedmanner, potentiallyevaluatingan expressionover multiple clock cycles. This would re
quire interposing latches in the data path to hold such intermediatetemporaryvalues.This in turn would re
quire more complicated methods of computing clock frequency and dealing with delay constraints.

Second,Viper could producebetter designsby supporting moresophisticated finitestate machineim
plementations,and making choicesamong those implementations. Examplesare: PLA versussimple ROM
versusmicrosubroutines. To do this adequately,low levelestimates(ofcontrolspeedand size, for example)
would interact with high level decisions (such as the inlining of subroutines).

Third, Vipercould be improvedto generate moresophisticatedpipelineddesigns,performingdata path
drivenscheduling(seeChapter 13),takingintoaccountthenumberof registerports,savingand restoringthe
pipeline (for interrupts),dealing with register file data dependencies, and using the frequency of branch in
structions to control pipeline length.

43. Specification Extensions

In general terms, the system context (includingcachesand memory interfaces)needs to be specified.
Viper currently provides just a simple memory interface.

Operator and functional unit extensibility needs to be examinedand improved.It is currently rather dif
ficult to add new operators and functional units (see AppendixC). The process can be better parameterized
and more table driven.

For pipelined designs, it should be possible to specifypipeliningdetails, such as delay slots after in
structions, and instruction annulling.

78

5. The Challenges to High-Level Synthesis

In thelongrun,high-level hardware synthesis mustaddress several issuesif it is toproducehighquality
designs, andbe of use to hardware designers. High-level synthesis effortshavetraditionally beenfocusedon
scheduling and allocation.They are necessary partsof synthesis, and they are well-suitedfor algorithmicde
scriptionandanalysis. Buttheyarenottheonlydifficultor time-consuming aspectsof hardware design. Other
issues need to be solved.

• Real hardware is usuallydescribedat multiple levelsof detail. Some parameters and features (such as
pin specifications and timing waveforms) are lowlevel. Synthesis systemsmustbe able to effectively
handlesuchdetail.The problemis similar to theone facingthe implementors of the Adaprogramming
language, whomustsupporthardreal-time systems withperformance requirements in the contextof a
high-level language.

• A total hardwaresystemsolutionis needed. In particular, a contemporary microprocessor consists of
much more than an integer unit core. Caches and memorysystems are the focus of current micropro
cessordesign.Boardand systemlevel issuesalso need to be addressed. Effectivelysynthesizinga mi
croprocessor from an ISA requires all of these.

• High-levelspecification formis important(see,forexample,theeffectsof theplacementof instruction
fetch in the BAMspecification in Chapter12).Eveninter-block transformations like tracescheduling
are dependent on specification form. Interactivelyapplied, correctnesspreserving transforms, such as
those used in the System Architect's Workbench ([SAW]), are necessary.

• Target hardwareis important(see, for example,theeffectsof differentregister files in the BAMdesigns
of Chapter 12). In particular,availablecontrolpath implementations,register files, and functional units
affect the quality of designs. Synthesis systems should support multiple implementations, and pursue,
or let the user pursue, alternatives.

• Design management,software engineeringparadigms,and logic synthesis may obviate much of the
need for true high-levelsynthesis. Two fundamental reasonsfor using high-levelsynthesisare faster
design times and designs that are correct by construction. But with the right tools, more traditional
methods of design can be both speeded up and made less error prone.

On the other hand, the growing popularity of the VHDL language presents an opportunity. Synthesiz-
able subsets of it are being defined, with associated tools ([VSS], for example). Synthesis capabilities will be
more broadly available, and designers will become more aware of high-level synthesis support

79

Bibliography

[ADAM]
'Experience with the ADAM Synthesis System'; Rajiv Jain,Kayhan Kucukcakar, Mitchell J. Mlinar,
Alice C. Parker, 26th Design Automation Conference, 1989\ pp. 56-61.

[ADAM-Intro]
'A Design Utility Manager: the ADAM Planning Engine'; David W. Knapp, Alice C. Parker; 23rd
Design Automation Conference, 1986; pp. 48-54.

[ALERT] .
'Methods Used in an Automatic Logic Design Generator(ALERT)'; Theodore D. Friedman, Sih-
Chin Yang; IEEETransactions on Computers;July 1969;pp. 593-614.

[APARTY]
'Architectural Partitioning for System Level Design'; E. Dirkes Lagnese, D.E. Thomas; 26th Design
Automation Conference, 1989; pp. 62-67.

[Aquarius]
'Aquarius - A High Performance Computing System for Symbolic/Numeric Applications'; A.M. De
spain, Y.N. Patt; COMPCON 85.

[Arch-Hayes]
Computer Architecture and Organization, Second Edition; John P. Hayes; McGraw-Hill, 1988.

[Arch-H&P]
Computer Architecture: A Quantative Approach; John L. Hennessy, David A. Patterson; Morgan
Kaufmann, 1990.

[Arch-Kogge]
TheArchitectureofPipelined Computers; Peter M. Kogge; Hemisphere(Taylor & Francis), 1981.

[Arch-Tanenbaum]
Structured Computer Organization, Third Edition; Andrew S. Tanenbaum; Prentice-Hall, 1990.

[ASP-Intro]
'An Advanced Silicon Compiler in Prolog'; William R. Bush, Gino Cheng, Patrick C. McGeer, Alvin
M. Despain;1987 IEEEInternationalConferenceon ComputerDesign: VLSI in Computers and Pro
cessors, October 1987, pp. 27-31.

[ASP-Layers]
'Layering Expertise in a Full-Range HardwareSynthesis System'; William R. Bush, Gino Cheng,
Alvin M. Despain; IFIPWG10.2 Working Conference on CAD SystemsusingAI Techniques, June
1989.

[ASP-Prototype]
'A Prototype Silicon Compiler in Prolog'; William R. Bush, Gino Cheng, PatrickC. McGeer, Alvin
M. Despain; UC Berkeley CS Technical Report UCBICSD 88/476, December 1988.

[Aunt]
'Aunt'; PeterReintjes; Fourth Symposium on Logic Programming, September 1987.

[BAM]

'Fast Prologwith anExtended GeneralPurposeArchitecture'; BruceK. Holmer,BartonSano, Micha
el Carlton,PeterVan Roy, Ralph Haygood,William R. Bush, Alvin M. Despain,JoanM. Pendleton,
Tep Dobry; SeventeenthInternational Symposium on ComputerArchitecture,May 1990.

80

[BAM-Manual]
'The Berkeley AbstractMachine Instruction Manual'; Bill Bush, Mike Carlton,Alvin Despain,Ralph
Haygood,Bruce Holmer, BartonSano,PeterVan Roy, Charlie Burns, JoanPendleton; 12 December
1989.

[BECOME]
'BECOME: BehaviorLevel CircuitSynthesis BasedOn StructureMapping'; Ruey-Sing Wei, Steven
Rothweiler, Jing-Yang Jou;25thDesignAutomation Conference, 1988; pp. 409-414.

[Bridge]
'Bridge: A Versatile Behavioral SynthesisSystem'; Chia-Jeng Tseng, Ruey-Sing Wei, Steven G.
Rothweiler, Michael M. Tong, Ajoy K. Bose;25thDesignAutomation Conference, 1988; pp. 415-
420.

[BUD]
'Using Bottom-UpDesignTechniquesin theSynthesisofDigital Hardware fromAbstractBehavioral
Descriptions';Michael C. McFarland; 23rdDesign Automation Conference, 1986; pp. 474-480.

[A2S] 'Reevaluating the Design Space for Register-Transfer Hardware Synthesis'; M.C. McFarland; IEEE
International Conference on Computer AidedDesign, 1987; pp. 262-265.

[Bulldog]
Bulldog: A Compiler for VUWArchitectures; John R. Ellis; MIT Press, 1985.

[CADDY]
'Synthesizing Circuits from BehavioralLevel Specifications'; W. Rosenstiel, R. Camposano;Com
puter HardwareDescriptionLanguages and theirApplications (CHDL 85 Proceedings); 1985; pp.
391-403.

[Cathedral]
'An Efficient Microcode Compiler forApplicationSpecific DSP Processors';GertGoossens, JanRa-
baey, Joos Vandewalle, Hugo De Man; IEEE Transactions on Computer-Aided Design; September
1990; pp. 925-937.

[CHARM]
'A Global Dynamic Register Allocation and Binding for a DataPath Synthesis System'; Nam-Sung
Woo; 27th Design Automation Conference,1990; pp. 505-510.

[Chippe]
'An Expert-System Paradigm for Design'; Forrest D. Brewer, Daniel D. Gajski; 23rd Design Auto
mation Conference, 1986; pp. 62-68.

[Chippe-Micro]
'State Synthesis and Connectivity Binding for Microarchitecture Compilation'; Barry M. Pangrle,
Daniel D. Gajski; IEEEInternationalConference on Computer Aided Design, 1986; pp. 210-213.

[Chippe-Splicer]
'Splicer: A Heuristic Approach to Connectivity Binding'; Barry M. Pangrle;25th Design Automation
Conference, 1988; pp. 536-541.

[CHS]
'Design Considerations for a Prolog Silicon Compiler'; Patrick C. McGeer et alia;November 1985.

[CMU-BLT]
'Behavioral Level Transformation in the CMU-DA System'; Robert A. Walker, Donald E. Thomas;
20th Design Automation Conference, 1983; pp. 788-789.

[CMU-CAD]
"The CMU Design Automation System: An Example of Automated Data Path Design'; A. Parker, D.
Thomas, D. Siewiorek, M. Barbacci,L. Hafer,G. Leive, J. Kim; 16thDesign AutomationConference,
1979; pp. 73-80.

81

[CMU-Cluster]
'Computer-Aided Partitioning of Behavioral Hardware Descriptions'; Michael C. McFarland; 20th
Design Automation Conference, 1983; pp. 472-478.

[CMU-DA]
'Automatic Data Path Synthesis'; Donald E. Thomas, Charles Y. Hitchcock, Thaddeus J. Kowalski,
Jayanth V. Rajan, Robert A. Walker, IEEEComputer, December 1983; pp. 59-70.

[CMU-DR]
'A Model of Design Representation and Synthesis'; R.A. Walker, D.E. Thomas; 22nd Design Auto
mation Conference, 1985; pp. 453-459.

[CMU-DRT]
'Design Representation and Transformation in the System Architect's Workbench'; R.A. Walker,
D.E. Thomas; IEEEInternational Conferenceon ComputerAided Design, 1987; pp. 166-169.

[CORAL]
'Linking the Behavioral and Structural Domains of Representation in a Synthesis System'; RX.
Blackburn, D.E. Thomas; 22nd Design AutomationConference,1985; pp. 374-380.

[CORALH]
'CORAL II: Linking Behavior and Structurein an IC Design System'; Robert L. Blackburn, Donald
E. Thomas, Patti M. Koenig; 25th Design AutomationConference, 1988; pp. 529-535.

[CSSP]
'Synthesis of Optimal Clocking Schemes'; Nohbyung Park, Alice Parker; 22nd Design Automation
Conference, 1985; pp. 489-495.

[DAA]

An Artificial Intelligence Approach to VLSIDesign; Thaddeus J. Kowalski; Kluwer Academic Pub
lishers, 1985.

[DAA-Proto]
"The VLSI Design Automation Assistant: Prototype System'; TJ. Kowalski and DJE. Thomas; 20th
Design Automation Conference, 1983; pp. 479-483.

[DAA-Intro]
"TheVLSI Design Automation Assistant:What's in a Knowledge Base';TJ. Kowalski and D.E.Th
omas; 22nd Design Automation Conference, 1985; pp. 252-258.

[DFBS]
'Global Hardware Synthesis from BehavioralDataflowDescriptions';Josef Scheichenzuber,Werner
Grass, Ulrich Lauther, Sabine Maerz; 27th Design AutomationConference, 1990; pp. 456-461.

[Dragon]
Compilers: Principles, Techniques, and Tools; Alfred V. Aho, Ravi Sethi, Jeffrey D. Ullman; Addi-
son-Wesley, 1988.

[Emerald]

'Emerald: A Bus Style Designer'; C.-J.Tseng, D.P. Siewiorek; 21stDesignAutomation Conference,
1984; pp. 315-321.

[EMUCS]
'A Method of Automatic DataPath Synthesis'; CharlesY. Hitchcock m, Donald E. Thomas; 20th De
sign Automation Conference, 1983; pp. 484-489.

[Facet]

'Facet A Procedure for the Automated Synthesis ofDigitalSystems'; Chia-Jeng Tseng andDanielP.
Siewiorek; 20thDesignAutomation Conference, 1983; pp.490-496.

[Flamel]
'Ramel: A High-Level Hardware Compiler'; Howard Trickey;IEEE Transactions onComputer-Aid
ed Design; March 1987; pp. 259-269.

82

[Fred] 'An Object-Oriented, Procedural Database for VLSI Chip Planning'; Wayne Wolf; 23rdDesign Au
tomation Conference, 1986; pp. 744-751.

[Graph]
'Synthesis Techniques for Digital System Design*; R. Camposano; 22ndDesignAutomation Confer
ence, 1985; pp.,475-481.

[HAGGLER]
'A Novel Approachto the Synthesis of PracticalDatapathArchitectures Using ArtificialIntelligence
Techniques'; N.S.H. Brooks, RJ. Mack; 1988 IEEEInternationalConferenceon Computer Design,
pp. 388-391.

[HAL]
'HAL: A Multi-ParadigmApproachto AutomaticDataPath Synthesis'; P.G. Paulin,J.P. Knight,E.F.
Girczyc; 23rd Design AutomationConference, 1986; pp. 263-270.

[HAL-FDS]
'Force-Directed Scheduling in AutomaticDataPath Synthesis'; P.G. Paulin, JP. Knight;24thDesign
Automation Conference, 1987; pp. 195-202.

[HAL-FDLS]
'Scheduling and Binding Algorithmsfor High-LevelSynthesis'; Pierre G. Paulin, John P. Knight;
26th Design Automation Conference, 1989; pp. 1-6.

[HERCULES]
'HERCULES - A System for High-Level Synthesis'; Giovanni De Micheli, David C. Ku; 25thDesign
Automation Conference, 1988; pp. 483-488.

[HIS] 'Synthesis Using Path-Based Scheduling: Algorithms and Exercises'; Raul Camposano, Reinaldo A.
Bergamaschi; 27th Design AutomationConference, 1990; pp. 450-455.

[HIS-DP]
'Area and Performance Optimizations in Path-Based Scheduling'; Reinaldo A. Bergamaschi, Raul
Camposano, Michael Payer; 28th Design AutomationConference,1991; pp. 450-455.

[HLVS]
High-LevelVLSI Synthesis; Raul Camposano, Wayne Wolfe, editors; Kluwer Academic Publishers,
1991.

[ISPS]
'Instruction Set Processor Specifications (ISPS): The Notation and Its Applications'; Mario R. Bar
bacci; IEEE Transactions on Computers;January 1981; pp. 24-40.

[ITL] 'Synthesis and Optimization ofInterface Transducer Logic'; Gaetano Borriello, Randy H. Kate; IEEE
International Conference on Computer Aided Design, 1987; pp. 274-277.

[LPS] 'A Formal Method for the Specification, Analysis, and Design of Register-Transfer Level Digital
Logic'; Louis J. Hafer, Alice C. Parker; IEEETransactions on Computer-Aided Design; January
1983; pp. 4-17.

[LYRA]
'Data Path Allocation Based on Bipartite Weighted Matching'; Chu-Yi Huang, Yen-Shen Chen,
Youn-LongLin, Yu-Chin Hsu; 27th Design Automation Conference, 1990; pp. 499-504.

[MacPitts]
'MacPitts: An Approach to Silicon Compilation'; Jay R. Southard; IEEEComputer; December 1983;
pp. 74-82

[MacPitts-Intro]
'Generating Custom High Performance VLSI Designs from Succinct Algorithmic Descriptions'; Jef
frey Mark Siskind, Jay Roger Southard, Kenneth Walter Crouch; 1982 Conference on AdvancedRe
search in VLSI;pp. 28-39.

83

[MacPitts-Report]
'An Introduction to MacPitts'; J.R. Southard; MITLincolnLaboratory Project Report RVLSI-3,Feb
ruary 1983.

[MAHA]
'MAHA: A Program for DatapathSynthesis'; Alice C. Parker,Jorge T. Pizarro,Mitch Mlinar, 23rd
Design AutomationConference,1986; pp. 461-466.

[MBLO]
'MILO: A Microarchitectureand Logic Optimizer'; Nels VanderZanden, DanielGajski; 25th Design
Automation Conference, 1988; pp. 403-408.

[MIMOLA]
'A New Synthesis Algorithm for the MIMOLA Software System'; Peter Marwedel; 23rd Design Au
tomation Conference, 1986; pp. 271-277.

[MIPS]
MIPSRISC Architecture; Gerry Kane; Prentice-Hall; 1988.

[NP] Computers and Intractability; Michael R. Garey, David S. Johnson;W.H. Freeman, 1979.

[Objects-Intensions]
'Objects as Intensions'; Weidong Chen, David Scott Warren;FifthInternationalLogic Programming
Conference and Symposium; August 1988; pp. 404-419.

[Objects-Logical]
'Logical Objects'; John S. Conery; Fifth InternationalLogic Programming Conference and Sympo
sium; August 1988; pp. 420-434.

[OCCAM]
'OCCAM to CMOS: Experimental Logic Design Support System'; T. Mano, F. Maruyama, K. Ha-
yashi, T. Kakuda, N. Kawato, T. Uehara; ComputerHardware Description Languages and their Ap
plications (CHDL85 Proceedings), 1985; pp. 381-390.

[Oct] 'Data Management and Graphics Editing in the Berkeley Design Environment'; D. Harrison, P.
Moore, R. Spickelmier, AR. Newton; Proceedings ofthe IEEEInternationalConferenceon CAD,
November 1986.

[PLEST]
'PLEST: A Program for Area Estimation ofVLSI IntegratedCircuits'; FadiJ. Kurdahi, Alice C. Park
er, 23rd Design Automation Conference, 1986; pp. 467-473.

[Preditor]
'A VLSI Design Environment in Prolog'; Peter Reintjes; FifthInternationalLogic Programming
Conference and Symposium; August 1988; pp. 70-81.

[Prolog]
Programming in Prolog; WJ7. Clocksin, C.S. Mellish; Springer-Verlag, 1981.

[Prolog-DA]
'Logic Programming and Digital Circuit Analysis';W.F. Clocksin; Journal ofLogicProgramming;
March 1987; pp. 59-82.

[Prolog-HDL]
'Experience with Prolog as a Hardware Specification Language'; William R. Bush, Gino Cheng,
PatrickC. McGeer, Alvin M. Despain;FourthSymposium onLogic Programming, September 1987,
pp. 490-498.

[RLEXT]

'An InteractiveTool forRegister-Level Structure Optimization'; DavidW. Knapp; 26thDesignAu
tomation Conference, 1989; pp. 598-601.

[SAW]
Algorithmic and Register-TransferLevel Synthesis: The SystemArchitect's Workbench; D.E. Tho-

84

mas, E.M. Lagnese,R.A. Walker,J.A. Nestor,J.V. Rajan,RJL. Blackburn; Kluwer Academic Pub
lishers, 1990.

[SAW-Intro]
'The SystemArchitect's Workbench'; D.E. Thomas,E.M. Dirkes,R.A. Walker,J.V. Rajan,J.A.
Nestor, RJL. Blackburn; 25thDesign Automation Conference, 1988; pp. 337-343.

[Sehwa]
'Sehwa: A Program for Synthesisof Pipelines'; NohbyungPark, Alice C. Parker; 23rdDesignAuto
mationConference, 1986; pp. 454-460.

[Silc] "TheSilc Silicon Compiler Languageand Features'; T. Blackman, J. Fox, and C. Rosebrugh;22nd
Design AutomationConference,1985; pp. 232-237.

[SiliComp]
SiliconCompilation; Daniel D. Gajski, editor; Addison-Wesley, 1988.

[SLIMOS]
'Module Selection for Pipelined Synthesis'; Rajiv Jain, Alice Parker, Nohbyung Park; 25thDesign
AutomationConference,1988; pp. 542-547.

[SPARC]
SPARCRISC User's Guide; Cypress Semiconductor; 1990.

[SPEC]
SPECFact Sheet; Systems Performance Evaluation Cooperative, Fremont CA; 1989.

[SUGAR]
'Synthesis by Delayed Binding of Decisions' J.V. Rajan, D.E. Thomas; 22nd Design Automation
Conference,1985; pp. 367-373.

[Suite]
'AProlog Benchmark Suite for Aquarius'; R. Haygood; UCBerkeleyCSTechnicalReportUCBICSD
891509, April 1989.

[Survey]
A Survey ofHigh-Level Synthesis Systems; Robert A. Walker, Raul Camposano; Kluwer Academic
Publishers, 1991.

[Trace]
'Trace Scheduling: A Technique for Global Microcode Compaction'; Joseph A. Fisher; IEEE Trans
actions on Computers; July 1981; pp. 478-490.

[Trace-Carlson]
"The Bottom-Up Design of a Prolog Architecture'; Richard Carlson; UCBerkeleyCS TechnicalRe
port UCBICSD 891536, May 1989.

[Tutorial]
'Tutorial on High-Level Synthesis'; Michael C. McFarland, Alice C. Parker, Raul Camposano; 25th
Design Automation Conference, 1988; pp. 330-336.

[Two-Dim]
'Algorithms for Hardware Allocation in Data Path Synthesis'; Srinivas Devadas, A. Richard Newton;
1987 IEEEInternationalConference on ComputerDesign: VLSI in Computers and Processors, Oc
tober 1987, pp 526-531.

[USC-AT]
'Predicting Area-Time Tradeoffs for Pipelined Design'; Rajiv Jain, Alice Parker, Nohbyung Park;
24th Design Automation Conference, 1987; pp. 35-41.

[USC-DDS]
*AGeneral Methodology for Synthesis and Verification ofRegister Transfer Designs'; Alice C. Park
er, Fadi Kurdahi, Mitch Mlinar, 21st Design AutomationConference, 1984; pp. 329-335.

85

[USC-Interface]
'Representation of Control andTiming Behavior with Applications to Interface Synthesis';Sally A.
Hayati, AliceC. Parker, JohnJ.Granacki; 1988IEEE International Conference onComputerDesign,
pp. 382-387.

[USC-Overview]
'The ADAM Advanced Design Automation System: Overview, Planner, and Natural LanguageInter
face'; John Granacki,David Knapp, Alice Parker; 22ndDesignAutomation Conference, 1985; pp.
727-730.

[V] 'The V Compiler. Automating Hardware Design*; Viktors Berstis; IEEE DesignandTest; April
1989; pp. 8-17.

[VSS] 'Synthesis from VHDL'; Joseph S. Lis, DanielD. Gajski; 1988IEEE International Conference on
Computer Design, pp. 378-381.

[VSS-VHDL]
'VHDL Synthesis Using StructuredModeling'; Joseph S. Lis, DanielD. Gajski;26thDesignAuto
mation Conference, 1989; pp. 606-609.

[VSS-PS]
'PercolationBased Synthesis'; Roni Potasman, JosephLis, DanielD.Gajski;27thDesignAutomation
Conference, 1990; pp. 444-449.

[Viper]
A Prolog-BasedHardwareSynthesis System: Source Code andExamples; William R. Bush; May
1992.

[Y-Chart]
'New VLSI Tools'; Daniel D. Gajski, Robert H. Kuhn; IEEE Computer, December 1983;pp. 11-14.

[YSC]
'Structural Synthesis in the Yorktown Silicon Compiler'; R. Camposano; VLSI 87; pp. 29-40.

[YSC-Design]
'Design Process Model in the Yorktown Silicon Compiler'; Raul Camposano; 25th Design Automa
tion Conference, 1988; pp. 489-494.

[YSC-Partition]
'Partitioning Before Logic Synthesis'; R. Camposano, R.K. Brayton;IEEEInternational Conference
on Computer Aided Design, 1987; pp. 324-326.

86

Appendix A: SMI Variants

This appendix presents simple machine specificationsother than the SMI.

l.TheSM2

The SM2 is an enhanced version of the SMI, complex enough to run Aquarius Prolog. It has two gen
eral purpose registers and an 10 register. It has four additional instructions:subtract register to register move,
no-op, and branch on tag.

% SM2 - two register SM1
stateRegister(x, 16).
stateRegister(y, 16).
stateRegisterjpc, 16).
stateRegister(memAR, 16).
stateRegister(memDR, 16).
stateRegister(io, 16, output).
stateField(x, xtag, (15-12)).
stateFieldjx, xdata, (11-0)).
stateFieldjy, ytag, (15-12)).
stateField(y, ydata, (11-0)).
stateField(memDR, opcode, (15-12)).
stateField(memDR, address, (11-0)).

run :-

writeC-fetch ,),stateCount(C1),write(C1),nl,
fetch,!,

write('-update,).stateCount(C2),write(C2),nl,
statellpdate,!,

wrrte('~access'),nl,
access(memDR, opcode, OP),!,

writef-execute '),write(OP),nl,
i, execute(OP),!,

wrrte('~update'),stateCount(C3),write(C3),nl,
statellpdate,!,

wrJteC-recurse'J.nl,
run.

run:- true.

fetch :-

access(pc, PC), set(memAR, PC),
mem_read,
access(pc, OldPC), NewPC is 0ldPC+1, set(pc, NewPC).

execute(addx):-!,
access(x, X), access(y, Y), T is X+Y, set(x, T).

execute(addy):- j,
access(x, X), access(y, Y), T is X+Y, set(y, T).

execute(subx):-!,
access(x, X), access(y, Y), T is X-Y, set(x, T).

execute(suby):-1,
access(x, X), access(y, Y), T is X-Y, set(y, T).

execute(andx):-!,
access(x, X), access(y, Y), T is XAY, set(x, T).

execute(andy):-!,
access(x, X), access(y, Y), T is XAY, set(y, T).

87

execute(movx):-!,
access(y, T), set(x, T).

execute(movy):-!,
access(x, T), set(y, T).execute(shrx):-!,
accessjx, X), T is X»1, set(x, T).

execute(shry):-!,
access(y, Y), T is Y»1, set(y, T).

execute(loadx):- i,
access(memDR, address, M), set(memAR, M),
mem_read,
acc8ss(memDR, T), set(x, T).

execute(storx):-!,
access(memDR, address, M), set(memAR, M),
accessjx, T), set(memDR, T),
mem_write.

execute(loady):-1,
access(memDR, address, M), set(memAR, M),
mem_read,
access(memDR, T), set(y, T).

execute(story):-1,
access(memDR, address, M), set(memAR, M),
access(y, T), set(memDR, T),
mem_write.

execute(jump):-!,
access(memDR, address, M), set(pc, M).

execute(nop):-!,
true.

execute(bmx) :-
access(x, X), X<0,!,
access(memDR, address, M), set(pc, M).

execute(brnx):-!,
true.

execute(brny) :-
access(y, Y), Y<0,!,
access(memDR, address, M), set(pc, M).

execute(brny):-!,
true.

execute(brvx) :-
access(x, tag, T), T =:= var,!,
access(memDR, address, M), set(pc, M).

execute(brvx):-!,
true.

execute(brix) :-
access(y, tag, T), T =:= list,!,
access(memDR, address, M), set(pc, M).

execute(brix):-!,
true.

execute(brvy) :-
access(y, tag, T), T =:=var,!,
access(memDR, address, M), set(pc, M).

execute(brvy):-!,
true.

execute(brly) :-
access(y, tag, T), T =:=list,!,
access(memDR, address, M), set(pc, M).

execute(brty):-1,
true.

88

execute(outx):-!,
access(x, X), set(io, X).

execute(outy):-!,
access(y, Y), set(io, Y).

execute(halt):-!,
fail.

2. The SMI with Multi-Port Memory

The multi-portmemoryversionof the SMI includestwo memoryaddressand data registers.The first
memoryport is used for instructions,the secondfordata.Becausethereare no memoryconflicts, two memory
ports are not in fact needed.

The multi-port memory SMI declarations are

stateRegister(ac, 16).
stateRegister(pc, 16).
stateRegister(memAR(1), 16).
stateRegister(memDR(1), 16).
stateRegister(memAR(2), 16).
stateRegister(memDR(2), 16).

and the fetch procedure is

fetch :-

access(pc, PC), set(memAR(1), PC),
mem_read(1),
access(pc, OldPC), NewPC is OldPC+1, set(pc, NewPC),

The execute procedures are like their SMI counterparts, but use port two.

3. The Pipelined SMI

This section presents the specification of the pipelined SMI, described in Chapter 13, and associated
resource usage data.

The pipelined version of the SMI differs from the basic version in four ways.

• It uses two port memory, the first port for instructions and the second for data (allowing parallel access
es).

• It uses the memory address register of the first port as the program counter (saving a register and the
associated accesses).

• It employs delay operators to normalize instructions (see Chapter 13).

It has a no-op instruction for delayed branches.

% pipelined SM1, two port memory
% 4 cycle
% 1: fetch from memory and pc increment
% 2: execute operand setup
% 3: execute memory operation
% 4: execute ALU operation
% 1 delay slot (PC changed in cycle 2)
% 2 preceding nops required for brn (AC changed in cycle 5)
% 2 preceding nops required for stor (AC changed in cycle 5)
% case (execute) and cond (brn) take no cycles
% (they are subsumed in pipeline control)

stateRegister(ac, 16).
stateRegister(memAR(1), 16).
stateRegister(memDR(1), 16).
stateField(memDR(1), opcode, (15-10)).
stateField(memDR(1), address, (9-0)).

89

stateRegister(memAR(2), 16).
stateRegister(memDR(2), 16).

run :-

fetch,
access(memDR(1), opcode, OP),
execute(OP),
run.

run:- true.

fetch :-

mem_read(1),
access(memAR(1), PC), P1 is PC+1, set(memAR(1), P1).

execute(halt):-!,
fail.

execute(add):-!,
access(memDR(1), address, X), set(memAR(2), X),
mem_read(2),
access(memDR(2), T), access(ac, AC), A is T+AC, set(ac, A).

execute(and) :•!,
access(memDR(1), address, X), set(memAR(2), X),
mem_read(2),
access(memDR(2), T), access(ac, AC), A is TAAC, set(ac, A).

execute(shr):-1,
delay,
delay,

access(ac, AC), A is AC»1, set(ac, A).
execute(load):-1,

access(memDR(1), address, X), set(memAR(2), X),
mem_read(2),
access(memDR(2), T), set(ac, T).

execute(stor):-!,
access(memOR(1), address, X), set(memAR(2), X),
accessjac, T), set(memDR(2), T),
mem_write(2),

delay.
execute(jump):-!,

access(memDR(1), address, T), set(memAR(1), T),
delay,
delay.

execute(bm) :-
access(ac, AC), AC<0,!,
access(memDR(1), address, T), set(memAR(1), T),

delay,
delay.

execute(brn):-!,
delay,
delay,
delay,

true.

execute(nop):-!,
delay,
delay,
delay,

true.

90

The following resourceusage patternshave been simplified somewhat from the form presented in
Chapter 13, in an attempt to make them more readable. The frequency of each set of equivalent instructions
is given, followed, for each cycle, by the functional units used and the registers read and written. Note that
the first pattern is tagged [none]. This block is always executed (it is instruction fetch).

[none] 1
1 -mem(1)-ALU

R: memAR(1)
W: memAR(1)

[add.and] 0.25974
2

R: field(memDR(1),address)
W: memAR(2)

3 -mem(2)
4-ALU

R: ac, memDR(2)
W:ac

[shr] 0.038961
2

3

4-SHF

R:ac

W:ac

[load] 0.12987
2

R: field(memDR(1), address)
W: memAR(2)

3 -mem(2)
4

R: memDR(2)
W: ac

[stor]0.064935
2

R: ac, field(memDR(1),address)
W: memAR(2), memDR(2)

3 -mem(2)
4

[jump]0.0324675
2

R: field(memDR(1),address)
W: memAR(1)

3

4

[brn-true] 0.0701298
2

R: field(memDR(1),address)
W: memAR(1)

3

4

[brn-false] 0.0467532
2

3

4

[nop]0.279221
2

3

4

91

Appendix B: Instruction Frequency Data

This appendix describes howSPECbenchmark results obtained for a differentarchitecture, the
SPARC, weremapped to theSMI andthe6502.Theoverall approach wasto identify equivalent instructions,
categories of instructions, and operands, and use the corresponding counts.

The appendix also presents BAM instruction counts.

1. The SMI

TheSMI percentages weredeveloped by hand, basedoninstruction categories. Thesepercentages and
categories are similar to those for the subset 6502.

% 40%

count(add, 25).
count(and, 15).
% 30%

count(load, 20).
count(stor, 10).
% 30%

count(brn, 18).
count(shr, 6).
count(jump, 5).
count(hait, 1).

2. The Subset 6502

These percentages were also developed by hand,and are also based on instructioncategories. The
SPARC instructioncategories usedare noted in comments.Note that this isjust one of three(gcc, eqntot, and
spice) sets of frequencies.

% instructions (from cc)
count(adc,23.1). % all adds and subs
count(lda,20.7). % all loads
count(bmi,16.4). % all conditional branches
count(and,13.1). % all logicals
count(sta,7.7). % all stores
count(lsr,3.7). % all shifts
count(jsr,2.1). % subroutine call plus save
count(rts,2.1). % subroutine call plus restore
count(jmp,1.2). % branch always
count(nop,0.1).
count(rti,0.1). % rett
% addressing modes
% (using load)
count(abs,56.4). % rX + Y
count(imm,30.0). % rX + gO
count(ind,13.0). % rX + rY
count(zerop,2.7). % rX + 0 (equivalent to rX + gO)
% SPARC zerop equivalent, 13 bit immediate,
% appears in non-UNIX system code
% interrupts
count(true,1).
count(int,0.01).

92

count(reset,0.001).
co unt(halt,0.001).

3. The Complete 6502

The complete6502 implements a substantial numberof instructions and addressingmodes.Ratherthan
convertall the data by hand, for three separatebenchmarks, a programwas writtenthat performsthe conver
sionautomatically. It promptsforandaccumulates theappropriate SPARCdata,andgeneratescorresponding
6502 percentages.Some marginal6502 instructionshave predefinedlow percentages.

A complete listingof the translation programcan be foundin [Viper].

4. The BAM Benchmark Composite

As mentioned in Chapter 9, a compositeof 25 Prologbenchmarks,executing 50,283,248 instructions
in total, was used in synthesizing the BAM.The specificbenchmarks and instruction countsare give below.

Number of

Name Description Instructions

Executed

loglO Symbolic differentiation 851

ops8 Symbolic differentiation 901

timeslO Symbolic differentiation 1185

divide 10 Symbolic differentiation 1401

nreverse Naive reverse ofa 30-eIement list 7375

qsort Quicksort of a 50-element list 8835

serialise Calculate serial numbers ofa list 12609

query Query a static database (with integer arithmetic) 130080

boyer An extract from a Boyer-Moore theorem prover 22211221

browse Build and query a database 20256394

chat Parse a set of English sentences 3796408

zebra A logical puzzle based on constraints 2058133

tak Recursive integer arithmetic 1415394

sendmore - 1304335

polylO Symbolically raise a polynomial to the tenth power 1285629

reducer A graph reducer based on combinators 1087531

8queens Solve the eight queens puzzle 937425

nand A logic synthesis programbased on heuristic search 466892

metaqsort A meta-interpreter running qsort 123049

crypt Solve a simple cryptarithmetic puzzle 111147

prover A simple theorem prover 28007

fastmu An optimized version of the mu-math prover 27017

mu Prove a theorem of Hofstadter's mu-math 25058

flatten Source transformation to remove disjunctions 19020

hanoi Towers of Hanoi 8016

Table B-l: Benchmark Characteristics

93

The first eight benchmarks are the Warren benchmarks.
Insrruction...........Count

addi 8198725

Id 4571361

dref. 4132158

ldd 3929985

st 2925280

jmp 2832117

cmp 2674685

bt 2581352

swt 2317063

jmpr 2144650

btgeq 1967558
pushdc 1916694

lea 1139850

xori 1061891

umax 965228

ldi 879325

push 832686
call 780329

pusht 779646
pushd 679300
cmpi 612444

ldx 612179

swb 445601

pop 390229
add 263981

std 166983

sti 140490

uni 82643

stdc 69509

slli 56944

andi 48979

and 38389

umin 18539

sub 15598

or 5394

srli 5388

stx 34

sra 21

sll 15

ori 1

srai 1

stid 1

srl 1

xor 1

Table B-2: Instruction Counts

94

Appendix C: Adding Operators and Functional Units

This section describes the process of adding operators (built-ins) and associated functional units to Vi
per, with specificreference to the BAM.The generalprocessis importantfor two reasons.First, it affects the
structureof Viper.Second, it is of some practicalconsequence, since adding operators and functional units is
not uncommon, and hence should be relatively easy.

Summarizing the BAM additions monitored here, they are:

new, complex comparisons involving tagged data (for cmp and cmpi);

an additional test for unbound tags (for swb);

arithmetic shift (for sra and srai);

unsigned maximum and minimum (for umax and umin); and

register file support.

In the following, note that more wasrequired than makingnew entries in a library. Changes were made
to the Prolog translator (tran), the allocator (sched, needs, and decl), and the trace scheduler (comi, com, and
como), as well as to the library Gib and opmap).

1. Value Producing Operators

Three value producing operators - operators used in expressions to the right of is —were added for
BAM - arithmetic shift (ash), unsigned minimum (min), and unsigned maximum (max). These operators
have, in Prolog specifications, the form

ShiftedQuanttty is ash(Quantity, Shift),...
Minimum is min(Value1, Value2),...
Maximum is max(Value1, Value2),...

Translation. A clause was added for each operator to recognize it for error detection purposes (in scan-
Numeric).

Library. Library entries (in opmap and lib) were made for asr-shf, min-cmp, and max-cmp (in these
pairs, the first element is the operation and the second is the functional unit type).

Tracescheduling.In output conversion, clauses were added to recognize these operators as components
of expressions (in convertRTSource, which handles embedded expressions).

2. Conditional Operators

Two simple conditional operators were added, not equal (=\=) and an unbound tag test (tagvar), which
succeeds only when its first argument is unbound.

In Prolog specifications these operators have the form

Valuel =\= Value2,1,
tagvar(Tag1,Tag2),!,

Translation. A clause was added for each operator to recognize it as a conditional operator - as a goal
that might legitimately fail (in scanGoal).

Library. Library entries in opmap and lib were made for ne-cmp and tagvar-cmpvar.

Trace scheduling. In input conversion, a clause was added to map tagvar to a standard Prolog operator
(=) understood by the trace scheduler (in comOp). In output conversion, clauses were added to recognize
=\= and tagvar as control expressions (in convertSTExp), and a clause was added to map = back to tagvar
(in convertRT).

95

3. Complex Operators

One complex operator wasadded,tval.This operator takesasoneof its inputsa test to be performed
(eq, ne, Its, ltu, tageq, int, etc.) on its other two inputs, and produces as its resulta true-falsebit (see [BAM-
Manual], page9). Since it has four arguments (three inputsandan output), it must be represented with two
RTL transfers.

Specification. In Prolog specifications it has the form

tval(Test, A, B, Result), set(psw, tf, Result),...

It would naturally be represented in RTL as

rtran(ID, Block, Test, A, B, tval, Result).

if a transfercould have four operands,but is instead realized in two registertransfers

rtran(ID, Block, A, B, tval, Temp).
rtran(ID, Block, Temp, Test, tagcmp, Result).

whereTemp is an RTL temporary(not a latch or register), and the tagcmpoperator is a second,artificial op
erator always tied to tval.

Translation. A clause was added to recognize tval and create the extra tagcmp transfer (in scanGoal,
modeled after four operand addc and subc).

Library. Library entries were made for tagcmp-cmptag; the second, tagcmp operatorwas used as the
library key.

Allocation. A clause was added to recognize tval (in contrast to tagcmp) as an unneeded operator (in
needsOperator). Another clause was added to recognize tval as an unscheduled operator(in decUBindMap).

Trace scheduling. In output conversion, a clause was added to recognize tval as a component of the
tagcmp expression (in convertRTSource).

4. Register File Operators

Two register file Operators were added, rval and wval, which provide single cycle access to registers
in register files.

Specification. In Prolog specifications they have the form

rval(RegisterFilePort, Registerlndex, Value),...
wval(RegisterFilePort, Registerlndex, Value),...

Translation. A clause was added for each, to recognize it and to create the necessary data flow infor
mation about the port (in scanGoal).

Library. Mapping entries were made for rval-regfile and wval-regfile (in opmap only).

Allocation.Two clauses were added (in needsOperator)to recognize the operatorsas partof the register
file, not requiring independent allocation. Two other clauses were added to treatrval and wval as datamoves,
not computations (in declBindEnable).

Trace scheduling. In output conversion, a clause was added to recognize rval as a component ofexpres
sions (in convertRTSource).

5. Register File Mechanics

Additional support was needed for register file portsand two cycle accesses. In particular, the port and
register (reg) structuresbelow, for example,

% 1 cycle access
rval(port(Register, Port), Registerlndex, Value),...
% 2 cycle access
set(port(Register, Port), Registerlndex),
access(reg(Register, Port), Value),...

required additions.

96

Allocation.Clauses were added (to schedResourceand schedUse) to treat portsand regs as depending
on the same resource, for two cycle access scheduling purposes.Clauses were also added (in needsOperand)
to decompose portsand regs and recognize the neededregister files. An additional clause was added (in de-
clGetWidth) to get register file sizes from stateRegisterSet declarations.

Trace scheduling. Clauses were added (in src_use and dest_use) to schedule ports and regs properly
(through dependencies). In output conversion,a clausewasaddedto recognizereg(Name, Port) as a register
(in convertlsReg).

6. Summary

Adding the above eight operators involved considerably more than new entries in the functional unit
and operatormapping databases. Seven additionalmodules (tran, comi, com, como, sched, needs, and decl)
required modifications, adding 31 clauses in 16 procedures.

Some of these changes are to be expected; the register file models provide substantiallydifferent func
tionality, and more than half of the additions (17) support those models.

Another class of predictable changes involves syntax. It is understandable that adding new operators
will requireadded syntactic processing(including translation between normal and tracescheduled RTL for
mats). Again, more than half of the additions (18) involve syntax.

Nonetheless, this extension process is relatively complicated and delicate for a system user, an archi
tect, to embark on. Prolog's pattern matching style aids the process, such as it is, somewhat It is clear, how
ever, that Viper could be more parameterized, and the process simplified.

A further consideration, not addressed here, is the addition of simulation support, both at the Prolog and
RTL levels.

97

Appendix D: The ASP System

This appendix describes the levels of hardwaredescription in the ASP system,and outlines the opera
tion of the components at the various levels.

1. ASP Overview

The ASP system is based on two centralprinciplesof implementation. First, the hardwaresynthesispro
cess has been decomposed into many discrete layers,eachof which encapsulates a specific,narrowbodyof
expertise. Second, that expertise has been represented as both mles and algorithms, as appropriate.

We have adopted the first principle because we need to understand the hardwaredesign and synthesis
process well in order to automate it, and we can only understandit if we can divide up the overall process into
manageable,discrete subproblems.The general paradigmwe followis hierarchical,with each layer making
incrementaldesign decisions that are added to the accumulating knowledgeabout the design. When, during
system design, the implementation ofa given layer has been unclear,it has been subdivided into furthercom
ponent layers.

The disadvantage to this approach is that it is hierarchical,encountering the problem that many high-
level design decisions are made using low-levelknowledge (anobservation verified in [BUD]).Our solution
to this problem is to use accurate estimators whenever possible, and to constrain the high-level problem do
main to single-chip microprocessors. Ultimately, when all the individual levels are sophisticated enough, we
may develop design iteration techniques that allow humans or an expert system planner to improve designs.

We have adopted the second principle because of the basic nature ofmany CAD problems, and because
our implementation vehicle, Prolog, encourages it. ManyCADproblemsare computationallydifficult, being
NP-complete, and algorithmic approximation techniques,such as simulated annealing, are useful only for a
limited subset ofproblems. Data path allocation, for example, is frequentlydone heuristicalry (as is done in
[DAA] and [HAL]). On the other hand, much of hardware synthesis involves translation from one represen
tation to another, and much of this translation involves simple bookkeeping that can best be done in an algo
rithmic form (this issue was discussed in [DAA]). Furthermore, good algorithmic techniques exist for some
problems (compaction, for example), and yet they can be augmentedwith useful heuristics in key places (for,
say, dealing with diagonal constraints). Another system implementedin Prolog ([OCCAM]) has also used a
mixed approach.

Thus far we have found that our two principles have made the full-range synthesis problem tractable.
The hierarchical approach has been advantageous for four reasons.First, a primary goal ofASP is to automate
the synthesis process as much as possible; human interaction and, to a lesser extent, redesign, are less impor
tant Second, incremental redesign can be avoided by more global analysis and more accurate estimators at
higher levels. Third, a layered approach is more flexible in that there are no global data structures and thus
no global ramifications to representation changes, and preserving that flexibility is still desirable. Fourth, the
hierarchical approach and its limitations are worth exploring further.

2. Decomposition of Silicon Compilation

A full behavior-to-silicon compiler is a complex undertaking. We decompose the silicon compilation
problem into four major abstract problem domains, ordered hierarchically.

The top level ofour system is thebehavioral domain.This level generatesa data path (a set of functional
units), controlled by a finite state machine, from an input specificationwritten in Prolog. Both standard com
piler techniques and hardware-specific knowledge are used in this process. The ASP component performing
this task is called Viper.

The second level is the logic domain. The purpose of this domain is to present the behavioral component
with abstract components, and to map those components to boolean structures.This level synthesizes and

98

connects the finite state machine and functional units generated by the behavioral level. This level encom
passes the traditional tasks of state assignment and logic synthesis.

The third level is the circuit or functional domain, which includes placement routing, and control gen
eration.This levelconsistsof placingandconnectingtransistors, and operateson sticks-and-elements objects.

The fourth level is the geometric domain. This level involves the generation of design-rule-correct ge
ometry. This domain encompasses the tasks of compaction and device-level simulation.

Clearly there is some interaction between the levels. No layout generator can ignore the constraints in
herent in technology, such as, for example, the richer connectivity of two layers of metal. Similarly, the data
path allocator can only use known functional units.

3. Specification: Executable Prolog

The highest level ofspecification in ASP is executable Prolog. This level is discussed further in Chapter
4.

4. High-Level Synthesis

Viper is the high-level synthesis component in the ASP system, discussed in the body of this work.

5. Specification: Data Paths and Control Paths

This specification level is the symbolic output of high-level synthesis. It is the level of traditional func
tional level simulation. It defines data paths and associated finite state machines.

Data paths are defined in terms of functional unit types (such as registers and ALUs) and netlists con
necting them (buses and control lines). Functional unit declarations have the form

element(<type>, <name>,
[<input-bus-netlist>]', [<output-bus-netlist>]',
[<control-signal-netlist>]).

where <type> is the type of some functional unit known to the library. For example, an accumulator register
(the sign bit of which is used for negative value tests) and an ALU could be declared with

element(reg,ac,[bus(3)]l[bus(1)],[ac(sign)]).
element(alu,alu(1),[port(bus(1),1),port(bus(2),2)],[bus(3)]).

Finite state machines are defined in terms of states, where each state has the form

state(<state-name>, [<list-of-actions>], <next-state>).

<action> ::=move(<src>, <bus>, <dst>) / enable(<element>, <function>)
<next-state> ::= <state-name> / switch(<value>, [<list-of-cases>])
<case> ::= case(<condition>, <state-name>)

For example, the first state transition adds the values in ac and memDR, and stores the result in ac. The
second state transition simply selects the next state based on the opcode field of the memDR.

state(bc(2,3),
[move(ac,bus(1),port(alu(1),1))l

move(memDR,bus(2),port(alu(1)>2)),
move(alu(1),bus(3),ac),
enable(alu(1),add)],

bc(1,1)).

state(bc(1,3),

D.
switch(field(memDR,opcode),

[case(add,bc(2,1)),
case(sub,bc(3,1)),
case(load,bc(4,1)),
case(stor,bc(5,1))
...])).

99

Note that states (bc(l,l)), buses (bus(l)), and functional units (alu(l)) are named using Prolog structures rath
er that simple atoms (such as busl and alul).

6. Boolean Synthesis

Boolean synthesisinvolves therealization of boolean structures. Thisis theelaboration, downto thebit
level,of constructsgeneratedat the behavioral level.The finitestate machineis realized through the genera
tionof PLA equations,and thedatapath is completely specified, including all bit widths,controllines,buses,
multiplexers, and drivers.

Specifically, boolean synthesis consists of five steps.

• Explicit bus multiplexersand tri-state drivers are created.This requiresnew element declarations and
modified netlists, as well as modified state definitions (move actions are converted to enable the mul
tiplexers and drivers).

• The data path is expanded to include functionalunit bit widthsand to refer explicidy to bitwise control
lines.

• Ports and pads are declared.

State assignment is done.

• The equations for a PLA are generated. (Optionally,a ROM can be generated.)

Significantopportunitiesexist for improvingthis level.State assignment,PLA equationgeneration,and
ROM generation can all be optimized.

This level did not exist separately in the ASP prototypesystem ([ASP-Prototype]),in whichbehavioral
and boolean synthesis were combined. In the current systemthey have been split, which clarifies the separate
issues raised at each level.

7. Specification: PLA

ASP PLAs have an AND plane and an OR plane; input bit lines are fed to to the AND plane, the outputs
of which are then connected to the OR plane, from which the output bit lines are taken. This level of specifi
cation is similar in general purpose to BLIF (1/0 logical function matrix).

These inputs and planes are straightforwardly represented with the following forms.

plaln(<input-signal-name>).

plaAndOut(<and-signal-name>, [<list-of-inputs>]).
<input> ::= <input-signal-name>
j inv(<input-signal-name>)

plaOrOut(<output-signal-name>, [<list-of-and-signals>]).

plaAlias(<signal-name>, <output-signal-name>).

Note that inverted inputs are available to the AND plane. Note also the alias form, which is used for specifying
that two output signal names are equivalent and are generated by the same or term.

For example, these fragments illustrate the use of the forms:

plaln(state(0)).
plaln(state(1)).
plaln(state(2)).
plaln(state(3)).
plaln(ac(sign)).

plaAndOut(bc(3,1),
[inv(state(0)),state(1),inv(state(2)),inv(state(3))]).

plaAndOut(test(ac(sign),bc(10,1)),
[state(0),state(1),inv(state(2)),inv(state(3)),inv(ac(sign))]).

plaOrOut(state(3),
[bc(3,3),bc(4,1)lbc(4>2)lbc(6,1),test(ac(sign),bc(10,1))]).

plaAlias(reg(ac,fn),state(3)).

100

8. Specification: Data Path Modules

Data path modules are elaborated forms of theelements generated by behavioral synthesis. All elements
and all connectivity are fully specified.

Module declarations are similar to elements and have the form

module(<type>, <name>, <bit-range>,
<data-inputs>, <data-outputs>,
<control-inputs>, <control-outputs>).

where <bit-range> is the range of bits for which the module is defined.

A set ofmodules is arrayed into a data path during circuit synthesis. A data path consists ofa rectangular
structure with data buses running horizontally and control lines running vertically. Thus data and control lines
are separated in module declarations.

For example, the above elements expand into

module(reg,ac,15-0,
[bus(3)],[out(ac)]l[reg(ac,fn),reg(ac,clock)]l[ac(sign)]).

modu!e(ts,ts(ac,bus(1)),15-0,
[out(ac)],[bus(1)],[ts(ac,bus(1),fn)]>D).

module(alu,alu(1),15-0,
[bus(1),bus(2)],[out(alu(1))],
[alu(1,fn(1))lalu(1,fn(2))],U).

module(ts,ts(alu(1),bus(3)),15-0,
[out(alu(1))]I[bus(3)],[ts(alu(1),bus(3),fn)]l[]).

The ts modules are tri-state drivers for the buses. Necessary control lines have also been added. All these mod
ules are 16 bits wide.

The library of functional units currently consists of registers, latches, incrementers, ALUs, and shifters
(see the discussion of libraries below and in Chapter 8).

9. Topological Circuit Synthesis

The input to this level is a collection of module definitions. The output is a sticks-based layout descrip
tion. The data path generator creates individual bit slices and then arrays them.

Each bit slice is a strip of CMOS transistors. It consists of a horizontal row ofP transistors and a row
of N transistors, separated by a routing region, and bounded at the top and bottom by power and ground rails,
which are shared with the next bit slice. Buses run horizontally through the bit slice in the routing region;
control lines run vertically. Horizontal routing, including power, ground, and buses, is in metal-1; vertical
routing is done in metal-2.

There are three major issues with this form of layout:

• how the modules in a bit slice should be ordered, with the goal being to minimize the intermodule rout
ing in the channel;

• how the transistors within a module should be ordered, in order to maximize sharing of power and
ground connections; and

• how to connect heterogeneous bit slices, where slices differ from one another and yet must abut

In ASP, the module generator orders the bit slices using either the min-cut algorithm or simulated an
nealing; we are experimenting with the two methods. The Uehara- Van-Cleemputalgorithm was used for tran
sistor ordering, but we are currently using a depth first search. Heterogeneous bit slices are handled by
creating a hypothetical union bit slice that contains all possible modules; this union bit slice is then ordered,
and the resulting template is used to create each individual bit slice.

The input to the module generator as shown above consists of module names, types, and sizes, along
with a two-dimensional netlist with unique vertical names and generic horizontal names (which are instanti
ated bitwise by the module generator).

101

The module library consists of and-or-invert gatedefinitionsof module functionality. In fact the mod
ule generator consistsof two distinct pieces;one ordersmodulesandgenerates bit slices,andthe otherorders
transistors within a module and generates module layout The module library could define modules directly
in terms of layout and simply use the first part of the module generator.

The module generator in the ASP prototype system ([ASP-Prototype]) could not generate heteroge
neous bit slices.This limitation required a new datapathgenerator. The code wouldalsonot port from C-
Prolog to Quintus Prolog.

10. Specification: Sticks

This specification level is composed of wires andelements, which in turn can be transistors and con
tacts. This level is referred to as Sticks In Prolog (SIP). In detail,

wire(<material>, <from-point>, <to-point>, <width>, <signal>).

trans(<type>, <source-point>, <gate-point>, <drain-point>,
<width>, <length>,
<source-signal>, <gate-signal>, <drain-signal>).

cont(<type>, <center>, <offset>, <signal>).
<offset> ::- e / n / w / s / none

pin(<side>, <location>, <layer>, <electrical-node>, <label>).
<side> ::= top/ bottom/ left/ right

maxrow(<maximum-row-number>).
maxcol{<maxvmum-column-number>).

Pins are used to specify terminals on the cell, which is the collection of elements bounded by maxrow and
maxcol.

For example, an inverter can be represented as

wire(m1 ,pt(0,0),pt(0,5),1,1).
wire(m1,pt(0,1),pt(2,1),1,1).
wire(m1 ,pt(10,0),pt(10,5)f1,2).
wire(m1,pt(10,1)lpt(8,1),1,2).
wire(m1,pt(8f3),pt(2,3),1,3).
wire(m1,pt(6,3),pt(6,5),1,3).
wire(p,pt(8,2),pt(2,2),1 ,in).
wire(p,pt(6>0),pt(6,2),1,in).
trans(nd,pt(2,1),pt(2,2),pt(2,3),4,2>1,4,3).
trans(pd,pt(8,1)lpt(8t2)lpt(8,3))2,2,2l4)3).
cont(m1nd,pt(2,1),na,1).
cont(m1 nd,pt(2,3),na,3).
cortt(m1pd,pt(8,1),na,2).
cont(m1pd,pt(8,3),na,3).
pin(top,(6,0),p,1,4).
pin(bottom,(6,5),ml,1,3).
maxrow(10).
maxcol(5).

SEP is also hierarchical. Cells can be composed of other named cells to any depth. The composition
form is the cell, to wit

cell(<name>, <location>, <rotation>, <mirror>)

For example, four inverters can be arrayed with

cell(inv,pt(OfO),none,none).
cell(inv,pt(0,10),none,none).
cell(inv,pt(0,20),none,none).
cell(inv,pt(0,30),none,none).

When space information (see below) is added to SIP, CIF follows directiy.

102

11. Geometric Synthesis

The Sticks-Pack environment consists of a technology independentcompactor that creates spaced lay
out and simulation files from sticks-and-elements descriptions, a joiner that joins together cells generated by
the compactor, a global placer, a global router,and a simulatorthat simulatessticks-basedcells.

The compactor uses an algorithm similar to zone refiningto performa rough spacingof the elements.
Floor and ceding profiles for each layer of materialare maintained. Elements from the ceiling are moved di-
recdy across the molten region to the floor,wherespacingrequirements are calculated,and diagonalcon
straints are noted. Rules then are used to shift the elements to better fit their environment

Large layoutsin Sticks-Packare realizedbyjoiningsmallcells together. Leaf cells (cellsof the lowest
level consisting of transistors and wires) are compactedindividuallyand constitute the building blocks for
larger modules.

The globalplacerand router thenplaceand routeindividual compactedblocks to producethe final lay
out pp The output ofSticks-Pack is Space information (see below).

12. Specification: Space

This leveldefinesphysical locationand, in conjunction with its associatedSIP, is equivalentto CIF. It
maps the virtual grid locations used by SIP to physical locations,using the following forms:

row(<virtual>, <physical>, <cell>).
col(<virtual>, <physical>, <cell>).
rowbound(<lowest-physical-row>, <highest-physical-row>, <cell>).
colbound(<lowest-physical-col>, <highest-physical-col>, <cell>).
maxrow(<virtual-max>, <cell>).
maxcol(<virtual-max>, <cell>).
hix(<physical-max>, <cell>).
hiy(<physical-max>, <cell>).

For example, the inverter presented above in SIP is compacted to

row(0,6,inv).
row(1,32,inv).
row(2,32,inv).
row(3,32,inv).
row(4,32,inv).
row(5,32,inv).
row(6,56,inv).
row(7,56,inv).
row(8,96,inv).
row(9,96,inv).
row(10,122,inv).
col(0,20,inv).
col(1,20,inv).
col(2,48,inv).
col(3,76,inv).
col(4,76,inv).
col(5,76,inv).
rowbound(6,122,inv).
colbound(20,76,inv).
maxrow(10,inv).
maxcol(5,inv).
hiy(96,inv).
hix(128,inv).

103

13. Representation Issues

An early design of the system ([CHS]) used a common unifyingdata structure; this approach was aban
doned because the needs of and relationships between various synthesis components were poorly understood,
and because the resulting common data base would have required too great an implementation effort.

One issue that we have bypassed is automatedconsistency- from lower levels to higherand within a
level. We assume correctness by construction. This is a problem when humans modify the design, or when
low level information is passed up and redesign is done. This is a serious issue beyond our resources
([ADAM]). It also requires disciplined tool development ([CORALII]),which is difficult in our rapid proto
typing environment.

14. The ASP Library

Elements in the ASP library are defined in terms of blocks of gates. The definition essentially consists
of a netlist ofblocks. For example, a two input multiplexer is defined by

signals(mux2,[input1(N),input2(N)]l[output(N)]l[control(N)],Q).
block(mux2,cbar(N),inv(contro((N))).
block(mux2,outBar(N),

aoi(nor(and(cbar(N),input1(N)),and(control(N)linput2(N))))).
block(mux2,output(N),inv(outBar(N))).

The signals clause defines the input, output and control signals. Each block clause specifies an output and a
function for computing that output

104

Appendix E: The Use of Prolog

This appendix discusses the advantages and disadvantages of Prolog in light of the Viper and ASP ex
periences.

1. Hardware Specification in Prolog

Clocksin has applied logic programming to the automateddesign of digital circuits [Prolog-DA]. He
concentrated his effort on structural issues, rather than behavioral or geometrical ones, and considered the
problems of circuit rewriting, gate assignment determination of signal flow, and specialization of standard
designs.

In contrast, the ASP system attacks the entire hardware synthesis problem, from executable behavioral
specification to geometric layout This problem in turndecomposes into a number ofsubstantial subproblems,
including simulation (at various levels of design), the allocation of hardware resources, the construction of
finite state machines, the implementation of collections of boolean functions as topologicaUyefficient cir
cuits, the global placement and routing of various circuit blocks, and the effective compaction of two-dimen
sional layout

Clocksin essentially dealt with the representation of connectivity. The ASP system deals with the rep
resentation of behavior, connectivity, and geometry. After considerable practical experience and the explora
tion of alternatives, the ASP system gravitated to a paradigm different from Clocksin's.

1.1. Representations of Connectivity

Clocksin identified three methods of representingconnectivity, functional, extensional,'and definition
al. The functional method uses functional composition to build more complex functions out ofmore primitive
ones. For example, the and of the or of two signals, a and b, with the inversion of a third, c, is represented as

and(or(a, b), invert(c)).

The extensional method uses the same ground terms in different clauses as wire names to connect the
clauses. With this method the same example appears as

ceil(or, [a, b], [t1]).
cell(invert, [c], [t2]).
cell(and, [t1,t2], [out]).

where cells consist of a type, a list of inputs, and a list of outputs. The definitional method uses Prolog vari
ables as wire names, and composes functions by defining clauses with more primitive components appearing
as goals. In this style the example has the form

fn(A, B, C, Out) :-
or(A,B,T1),
invert(C, T2),
and(T1,T2, Out).

Clocksin prefers the definitional method, primarily because it is modular, hierarchical, and executable.

In general, the extensional method was chosen for ASP. It allows us to take advantage of the relational
database inherent in Prolog. Function and representation are coupled with the definitional and functional
methods; decoupling them with the extensional method makes it easier to explore and manipulate designs.
The price paid for this decoupling is the loss of direct execution and Prolog backtracking. The price is not
high, because simulation interpreters are easily constructed, and, in general, design space exploration requires
more control than simple backtracking.

The following subsections review various ASP specification levels in the light of these concerns; the
levels are introduced in Appendix D.

105

1.2. Behavioral Specification

It ispossible to carry machinestate in Prologvariables,passedfromone recursivecall to thenext, rather
thanusingregister declarationsand global state.This was donein theprototypeASPsystem;that versionof
Viperautomatically translated suchspecifications intotheform currendyacceptedby Viperas input Sucha
pre-synthesis step couldbe added.The currentinputis at the lowestlevelof executablespecification, reflect
ing the imminent realization of state as hardware registers.

1J. RTL Specification

It would be possible to represent register transfers in a definitional form. Prolog variables could be used
insteadof symbolic register names, and the transferscould be grouped in blocks of goals. The disadvantage
to such a representation is primarily with respect to synthesis.In scheduling, the transfers are scanned by in
dex in order. For allocation they are scanned by index, but also scanned by operator and by operand. The re
lationalpower of Prolog is very useful here. Also, with respect to register names, allocation requires that
registers be defined. The RTL simulator, which interprets transfersand transitions, was straightforward to
construct

1.4. Specification of Functional Unit Declaration and Use

It would certainly be possible to represent elements and states in a definitional form, replacing bus
names with Prolog variables. Bus allocation is important and done at this stage, however, and an ancillary
table relating element variables with allocated bus assignmentswouldbe necessary. The relational form is a
simpler mechanism for synthesis.

The functional unit level defines the control signals needed to drive the functional units, which in turn
represent the global state of the machine. This is a non-hierarchical, global level of description, to which the
extensional method is well-suited.

1.5. PLA Specification

The flattened, tabular, extensional form used here closely approximates the arrayed form of the final
PLA layout It is similar to the input forms required by various available PLA optimization tools (not written
in Prolog).

1.6. Data Path Module Specification

It would be possible to cast these modules in a definitional form, with the explicit connectivity replaced
by Prolog variables. The basic conceptual problem with the definitional form in this context is that variables
are dynamic connections reformed on each procedure call, whereas physical nets of connectivity are static,
formed once when the hardware is created. It would be possible to analyze a definitional specification and
bind net names to various variables, but, for synthesis, the static extensional form is more fundamental. Most
CAD systems use the extensional form (see [Oct] and [Preditor], for example).

1.7. Specification of Sticks

The sticks and space levels are layer-based. They represent geometry, and are no longer executable.
They are best stored relationally to simplify access, so that they can be scanned in different ways (such as all
elements of a specific layer, or all elements at a specific point) depending on the circumstances.

1.8. Specification Summary

Other systems have used Prolog for hardware specification ([Prolog-DA], [Aunt]), but they have not
used it in a full-range synthesis system. The ASP system covers many levels ofabstraction, and the constructs
needed at different levels vary considerably.

Nonetheless, the extensional method ofrepresentation has proved to be ofgeneral utility for synthesis,
because of its relational properties, and because it is a natural way of representing static connectivity.

106

2. Experience with Prolog

The remarks that follow reflect the pragmatic experienceof programming ASP and Viper in Prolog.

In this context the good aspects of Prologarethat it operatesat a high level of abstraction, cleanly
supportingpattern matching, relational databases,and powerfuland natural methods for iteratingover and
selectingobjects (especially setof); it hasa simple, powerfulparadigm; and, for the sortof rapidprototyping
donewithViper, Prolog strikesa goodbalance between speedof programming (fast)andspeedofexecution
(adequate).

The bad aspectsare: debugging - the process of debuggingin C-Prologand SICStus is primitive com
paredto debugging in Smalltalk, for example; largesystems arenot easy to construct -- the global database
paradigm clasheswith modularityrequirements, andthisclashhasnot been successfullyresolved; andassert
and retractareuseful and not completely developed- a method for localizing them (such as theories)would
be both naturaland lead to improved performanceand safety.

Speed of execution has historically been an issuesurrounding Prolog. It was in some circumstancesan
issue in the development of ASP.

It was not a problemwith Viper, using eitherSICStus0.6 or C-Prolog 1.5.Translating the base6502
versioninto register transfers usingC-Prolog, forexample,took a little under6 minuteson a Sun 3/50,anda
litde over a minute on a SPARCstation 1:

3/50: 342.4u 7.9s 7:04 82% 32:200k 36+17io 5pf+0w

SSI: 80.2u 2.8s 1:49 75% 0+712k ll+22io lOpf+Ow

Speed was a problem with some of the lowerlevel ASP tools, which hadto dealwith thousandsofgeo
metric elements, and were ordersof magnitude slower thanequivalent C programs. In particular, the ASP
compactorwas rewritten to use lists insteadof assertandretract in an effort to improve its performance.

Cell Version 1 Version 2 Version 3 Version 4

a3.sip 127.13 215.23 - 176.87

action.sip 152.95 200.15 - 161.48

atgen.sip 155.44 207.32 - 164.38

bs.sip 9699.06 - - -

instLatsip 103.72 142.15 - 141.60

inv.sip 5.30 23.52 - 19.90

latsip 131.92 175.43 - 147.85

passgate.sip 14.75 28.67 - 23.64

plaoutsip 6522.60 - - -

reg.sip 456.05 447.62 429.23 421.50

smlpla.sip 11722.4 - - -

smlreg.sip 912.69 1011.20 1020.51 -

smx.sip 3224.48 - - -

Table E-l: C-Prolog Runtimes

107

Version:

Cell Version 1 Version 2 Version 3 Version 4

a3.sip 37.20 - '-.'•• •• V-

action.sip 37.42 - - -

atgen-sip 35.39 - - -

bs.sip 2349.80 1732.71 1234.52 -

instLatsip 28.77 . - - -

inv.sip 3.15 3.78 * 2.84 2.93

latsip 28.58 - - -

passgate.sip 5.12 - - -

plaoutsip 1406.93 950.97 639.15 -

reg.sip 99.80 99.54 81.13 -

smlpla.sip 2325.05 1726.92 1190.63 -

smlreg.sip 205.53 200.53 168.49 155.52

snucsip 589.45 534.93 - -

Table E-2: Quintus Prolog Runtimes

1: the original version, with many asserts and retracts;

2: some (Xdist, Ydist, and fence) asserts and retracts go to lists.

3: most asserts and all retracts go to lists.

4: lists go to structured difference lists.

The improvements realized through successive versions clearly improved performance, but both speed
and memory usage were ultimately not competitive with equivalent tools written in C.

108

	Copyright notice1992
	ERL-92-109 (1 of 2)
	ERL-92-109 (2 of 2)

