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Abstract

A new technique for stabilizing nonholonomic systems to trajecto
ries is presented. It is well known (see [2]) that such systems cannot
be stabilized to a point using smooth-static state feedback. In this pa
per we suggest the use of control laws for stabilizing a system about a
trajectory, instead of a point. Given a nonlinear system and a desired
(nominal) feasible trajectory, the paper gives an explicit control law
which will locally exponentially stabilize the system to the desired tra
jectory. The theory is applied to several examples, including a car-like
robot.

1 Introduction

There has been a great deal of recent research on the problem ofstabilizing
a system with nonholonomic (nonintegrable) constraints on its velocities [1,
5, 12]. Of course, by Brockett's necessary conditions for stability, one may
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An Exponentially Stabilizing Control Law

demonstrate that systems with nonintegrable velocity constraints cannot be
stabilized to a point with smooth static-state feedback [3]. Given this result,
researchers have offered both non-smooth feedback laws [6] and time-varying
feedback laws [12] for stabilizing simple mobile robots to a point. However,
it is fair to say that these approaches are not yet fully general.

Our approach is to stabilize about trajectories instead of points. Given
a feasible trajectory for the system generated by an open-loop path planner,
we can compute the linearization of the system about this nominal trajec
tory. If the linear time-varying system thus obtained is uniformly completely
controllable in a certain sense (to be made explicit in §2), we define a linear
time-varying feedback law which will locally stabilize the system about this
nominal trajectory.

Thus, the problem this paper solves is: given a nonholonomic system, a
feasible desired trajectory to follow, a known clearance between obstacles,
and a measure of accuracy of the sensors, find a control law which will sta
bilize the system to this path, avoiding the obstacles robustly in the face of
disturbances.

In §2 we present our control law and show it to be exponentially conver
gent. In the following sections, we apply this control law to various nonholo
nomic systems, including the system generated by the Heisenberg control
algebra, a wheeled mobile robot called Hilare, and a front wheel drive car.

In the examples, we focus on mobile robots with an objective of creating
a composite controller that will: first, have off-line computation of a tra
jectory which avoids the obstacles [9]; second, apply the control law given
here to stabilize the system to the open loop collision-free trajectory; third,
while executing, use sensors to detect possible collisions due to poor a priori
information. In this case, new information can be used to update the model
of the environment and restart the process. Such a controller would be able
to reject many types of disturbances including noise in the sensors, initial
condition errors, and errors introduced along the trajectory.

2 An Exponentially Stabilizing Control Law

We consider a system:

x = f(x)+g(x)u (1)
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x G Rn states

u € Rp inputs

x°(t) Desired trajectory
u°(t) Nominal Inputs

Remarks: Weshall focus on systemswhere f(x) is identicallyzero. Systems
like this are called "drift-free" and encompass most of the models used in the
literature. However, the methodwe present here isgeneral enough to include
systems like(1) which have non-zero drift terms. Thus the proofs will include
the drift terms, although the worked examples are all drift-free.

Inspired by the result on linear systems found in [4], we have picked the
following control law:

Proposition 1 (A Stabilizing Control Law)
Given a system of the form (1), a desired trajectory x°(-), and a nominal
input u°(-), define the following:

B(t) := g(x°(t))

Suppose that \\B(t)\\ is bounded for all t. Define $(Mo), contained at each
time t in Rnxn to be the solution to the differential equation $(i,io) =
A(t)$(t,t0) with $(<o,*o) = /. Further, define for some a > 0;

Hc(to,t) = f ee^-^t0,T)B{T)B(r)T^{t0,r)TdT
If there exists a 6 such that Hc(t, t + 6) is bounded away from singularity *
for all t, then define Pc(t) as follows:

Pc(t) := HZ%t + S)

Now, if there exist two numbers p™,pM such that:

0 < tfI<Pc(t)<fFl V*GR+

xIf the linear time-varying system isuniformly completely controllable over intervals of
length 6 > 0 then He(t,t + 6) is uniformly invertible.
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Then, for any function j(t) : R+ -»• [|, oo), continuous and bounded, the
linear time varying feedback law:

u = u°-<y{t)B{t)TPc{t)(x-x°)
locally, uniformly, exponentially stabilizes the system (1) to the desired tra
jectory x°(t) at a rate greater than 2ap™(pJf )-1 > 0.

Proof: First, define the error signal e and error input v as:

e = z-x°€Rn

v = u-u°eRp

We solve for the dynamics of these error signals using the Taylor Series
expansions:

e = f(x0 + e) + g(x0 + e)(u0 + v)-f(x0)-g(x0)u0

=(g(xV«(x-))e+̂ +̂)(,0)e+h.o,.
All terms with dependencies on a;0, u° will be rewritten as functions of time.
In addition to A(t),B(t), define o(e,u,i) to be the higher order terms plus
the terminvolving***:

o(e,u,t) = f1(e,t)-r-^{x°)e-rg1{e1v,t)
with:

9i(e,v,t) = g(x° +e)(u° +v) -g(x°)(u° +v)-%"° +9v)e

Me,t) =/(*» +e) - %(*"> ~f(*°)
(2)

Note that since v = —,y(t)BT(t)Pc(t)e, we mayrewrite o(e, v,t) so it depends
only on e,t; call this o(e,t). We wish to show:

Um supJM = 0 (3)
IMI-ooo Hell
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We know that:

o < iimSuPi!^#
" IMI-ooS ||e||
< Um mphM-rt)fm(t)e,t)\\
" IMM«>p ||e||

ll/i(M)||hm sup nJ ,; , Jn +
IMM *>o ||e||

lim mJ^{x0)^--^Brit)PM)ee^
MM *>o ||e||

The second term is zero. Note that \\j{t)BT(t)Pe(t)e\\ < K\\e\\ for some
K < oo as 7(*),!?(*), Pc(*) are bounded for all t. This implies that the first
and third terms are zero as well.

Thus:

e = A(t)c+ B(t)v + o(e,v,t)
e = A(*)c + o(c,t) (4)

with:

A(<) = A(t) - 7(«)B(*)B(0rP.W

Inspired by [4], we pick a Lyapunov function:

V(e,t) = eTPc(t)e (5)

and calculate its time derivative along trajectories of the system (4). One
may verify that:

Pc(t) = -6aPc(t)-Pc(t)A(t)-AT(t)Pc(t)
+Pc(t)[B(t)BT(t) - e-4o^(i, t+ 6)B(t + 6)BT(t + 6)$T(t, t+ S)]Pc(t)

Thus the time derivative of the Lyapunov function is:

V(e,t) = -eT[6aPc(t)-r(2'y(t)-l)Pc(t)B(t)BT{t)Pc(t)]e
-eTe'4a6Pc(t)^{t,t-r 6)B(t +6)BT(t + £)$T(M + 6)Pc(t)e
+2eTPc(*)6(e,*) (6)
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Note that if*y(t) > j,Vt, then thefirst two terms in (6) areless than orequal
to —6ap™||e||2. Secondly, because of (3), there exists a number e > 0 such
that:

||o(e,t)|| < ap^rfniell.Ve such that ||e|| < e

This implies that:

\2eTPc(t)o(e,t)\ < 2aPr||e||2,V||e|| < e

Thus, now similar to [4], we may say that:

K(e,<) < -4ap™||e||* (7)

Further we may state that:

V(e,t) < -4ap™(pf)-»V(e)t) (8)

Finally we may conclude:

V(e,t) < Vieo^e-40"?^-^-^

IkWII < ||e(<b)||.
'c

which gives us the specified convergence rate for the error signals •.

Remark 1: This convergence rate may be shown to be independent of p™
and p%*. To demonstrate this, define z,y:

z = ey

y £ R with

y = ay

Now we wish to solve for the dynamics of z.

z = (A(t) + al)z + 6(e,t)y

We will pick the same Lyapunov equation and calculate its derivative, using
the same arguments as before:

V(z,t) = zTPc(t)z
V(*,t) < -4ap-||^||2 + 2^PcWo(e,^
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Given the exponential convergence of e when it starts sufficiently close to the
origin, we may say that after some time T the last factor may be bounded
as follows:

\2zPc(t)6(e,t)y\ < 2ap™||2||2

Thus we may write, as before, that:

V(z,t) < -2aPri|*||2

And following equations (8) and (9) we will obtain the same convergence
rate, ap™(p^)~l. However, we may note that:

11*11 = e-e-^MIIell

Thus, if z is exponentially convergent at a rate ap^pj*)"1 after some time
T, then e is exponentially convergent at a rate ap^(p^f)"1 + a > a after
some time T, thus for a sufficiently large k we may state that:

||*|| < ke-a^-^\\z0\\D

Remark 2: For some regulator applications, it is desirable not to need
information on the future trajectoryofthe system. To dealwith this concern,
define Pr{t), similar to Pc(^), againassuming the inverse in the formula exists:

Pr(t) = (H^t-6))-1

Notice that this matrixis dependent on past values ofthe trajectory and not
onfuture values. As before, if there exists two numbers p? and p^ such that

0 < p?I<Pr(t)<pMl VteR+

then for any ~f(t) : R+ —• [|,oo), continuous and bounded, the linear time
varying feedback law:

U = U° - TW^W1'Pr(t)(x ~ X°)

locally uniformly exponentially stabilizes the system (1) at a rate greater
then a.
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The proof is similar to the last control law and so will be left to the
interested reader. It is useful to note that:

Pr(t) = -6aPr(t)-Pr(t)A{t)-AT(t)Pr(t)
+Pr(t)[B(t)BT(t) - eAaS$(t,t - S)B(t - 6)BT(t - 6)$T(t,t- S)]Pr{t)

We have applied this control law to three example systems. The first is
chosen because its simple structure allows for the explicit computation of the
control laws. The second is the Hilare-like mobile robot, without drift, and
the third example is a front wheel drive car.

3 Example: the Heisenberg Control Alge
bra

Here we will consider one of the simplest nonholonomic systems: the system
whose control Lie algebra is the Heisenberg algebra with two generators [2].
The differential equations are as follows:

X\ = U\

x\ = 1*2

Xz — #2^1 (10)

This system's straightforward structure allows us to compute the control
laws in closed form. We will investigate two trajectories for this system, a
"trivial" trajectory which is just a point, and a straight line.

Much of the control law can be found without reference to the specific
form of the desired trajectory. The first step is to find the matrices A(£), B(t).

A(t) =

B(t) =

d(gu°)
dx

ro o 0

0 0 0

.0 w? 0

9(*°)
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With these, the state transition matrix associated with this particular
A(t) can be found. Using the fact that $(£o,*o) = / and that $(£, to) satisfies
the differential equation $(Mo) = j4(i)$(t,*o), it can be shown that:

*(*,*>) =
1 0 0

0 1 0

0 x\{t)-x\{t0) 1

Now that we have the state transition matrix, we solve for the derivative of
Hc(io, t) as follows,

Ecfo,t) = e4a^-H(t0it)B(t)B(t)T^T(t0it)
1 0

_ fi4a(t0-t)
— e

«8(«)
0 1 aJ(«o) - *?(*)

L«S(t) «S(«o) - «?(«) («J(t))8 +(x?(<0) - *»«)2 J

The first nominal trajectory that we choose is the trivial one, where the
system stays fixed at a given point for all time. Note that stabilizing to this
trajectory is equivalent to finding a point stabilization feedback law. The
trajectory is highly degenerate in the sense that both nominal inputs axe
zero. We choose our desired point x°(t) to be the origin, (0,0,0).

It may be shown that in this case, Hc(t0i t) has the following form (for
a = l):

Hc{tQ,t) =
1 - e'0"' 0 0

0 l-e<°-< 0

0 0 0

Thus the matrix Hc(t, t+6) is not invertible for any choice of 6, we cannot
find the matrix Pc(t) = #"*(*,* + 6) which is used in the definition of the
control law, and therefore the method presentedin this paper cannot be used
to stabilize the system (10) to a point.

Thesecond sample trajectory will beless trivial. We have chosen thestraight
line in state space described by x°(t) = (0,2,0), with nominal input u°(t) =
(0,1). This trajectory is somewhat degenerate in the sense that one of the
nominal inputs is zero. However, since the matrix Hc is invertible, our strat
egy will work for this trajectory. In fact, the determinantof Hc is independent
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oftime, as can be seen by the following formula (where a = 1):

det(J5Te(t,t + *)) = l-e3' + (3 + *2)(e-25-e-5)

We can choose any value of 6 for which the previous expression is non-zero.
In our simulation, 6 = 1 was chosen. (Note: nearly identical simulation
results are obtained for the trajectory given by u°(t) = (1,0)).

The initial error for this simulation was (0.2,-0.3,0.2). The simulation
was run for 8 seconds, and the results are given in Figures (1-3). As the
graphs of the state variables were in general difficult to interpret, we have
instead shown the error coordinates e(t) and the error inputs v(t) versus
time.

•1IMI «1<->I «I(.1 nun mi

Figure 1: Plot of errors e Figure 2: Graph of the error
versus time. The errors all inputs t; versus time. Note
quickly converge to zero for how all inputs are bounded
this path. aad smooth.

4 Trajectory Stabilization for a Simple Non
holonomic Mobile Robot: Hilare

Hilare is a wheeled mobile robot created at LAAS, Laboratoire d'Automatique
et d'Analyse des Systemes, located in Toulouse, France [8]. This robot has
two parallel wheels which can be controlled independently. By command
ing the same velocity to both wheels, the robot moves in a straight line. By
commanding velocities with the same magnitude but opposite directions, the
robot pivots about its axis. Although the actual input is the acceleration,
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Figure 3: This xux2 phase plot shows the actual trajectory, projected onto
the (a?!,^) plane. The desired trajectory is a straight line along the x2 axis.

Figure 4: Model of the mobile robot Hilare.

we are doing only a kinematic analysis and assumingthat we can control the
velocity. See Figure 4 for a diagram of Hilare.

Assuming that wheel velocities are the inputs, one may model Hilare as
follows:

ii = cos(x3)wi

X2 = sin(a:3)wi
is = U2 (ii)

Note from Figure 4 that the coordinates (xi, £2) represent the position of the
robot in the plane, and £3 is its orientation.

Again, one would hope the system's straightforward structure allows the
control laws to be computed in closed form. The first step is to find the
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matrices A(t), contained in R3x3, and B(t) which is contained in R3x2:

«<> • *E»
0 0 -sin(x§)u?
0 0 cos(x§K
0 0 0

B(t) = g(x°)

Now the state transition matrix associated with this particular A(t) may
be found. Using the fact that $(*0,*o) = / and that $(t,*o) satisfies the
differential equation $(i,i0) = A(i)$(i,*0), it may be shown that:

where:

*(Mo) =
1 0 /5(*,*o)
0 1 /c(Mo)
0 0 1

/.(Mo) = jf-«in(*§(r))ti;(r)*
/e(Mo) = J*<X*{4(T))*tl(T)dT

Now that we have the state transition matrix, we can solvefor the deriva
tive of Hc(t0, t) as follows,

#c(Mo) = e*to-H(to,t)B(t)B(t)T*{to,t)
cos2(s°) + pa cos(s°)sin(a;°) + /s/c /.

cos(s°) sin(s°) + /./c sin2(s°) + /c2 /c
/. /. 1

However, for the nominal trajectories x° that we have chosen to simulate,
the integrals /„ fc do not have a closed form. Thus we cannot directly com
pute the control law, and so we must computethe matrix Pc and the control
law numerically. In doing so the following identity is useful:

*(*,< + *) = A(t)$(t,t + 6)-$(t,t + 6)AT(t + 6)

The first nominal trajectory for this system (Hilare) is generated by the
inputs ui = sin(*),u2 = cos(<). We set a = 0.1,6 = 1.0. After one cycle this

_ e4a(t0-t)
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input steers the system in the direction given by the Lie bracket of the two
input vector fields, or [01,42]. The initial condition was chosen to be (-0.1,
0.2, 0.1), and the simulation was run for 2w seconds. See Figures (5 - 7) for
results.

•11*11 «(•!) •!(•)

Figure 5: Errors e versus Figure 6: Error inputs v ver-
time. sus time.

Figure 7: This phase plot shows the nominal and actual
trajectories projected onto the (xi,x2) plane (the orien
tation of the robot is not shown). The desired trajectory
starts at (0,0) whereas the actual trajectory has an initial

•offset of (-0.1,0.2). Note how quickly and smoothly the
system converges to the desired trajectory.

The secondnominal trajectory to which we have applied our stabilization
procedure is a circular path. This choice was inspired by the work of Reeds
and Shepp [11], who showed that time-optimal paths for Hilare-like robots
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with actuator limits consist of straight-line segments and arcs of circles.
The nominal input for this trajectory is u° = (1,1). We set a = 0.1, £ =

1.0 as before. We again choose an initial condition error of (-0.1, 0.2, 0.1),
and run the simulation for 2x seconds. See Figures (8 - 10) for the results.

«ii«i urn •!(•!

Figure 8. The errors e versus Figure 9. Error inputs v ver-
time. sus time.

Figure 10: This phase plot shows the nominal and actual
trajectories, projected onto the (xi,x2) plane (the orien
tation of the robot is not shown). The desired trajectory
is the perfect circle. Note how quickly and smoothly the
system converges to the desired trajectory.

Although we have used the same values of a,£ and initial error as in
the previous example, the convergence seems less rapid, indicating that the
convergence rate depends on the chosen trajectory. However, the convergence
rate is also a function of a, which we are free to choose. If we needed faster
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Figure 11: The front wheel drive car.

convergence, we could simply choose a larger a.

5 Trajectory Stabilization for a Front Wheel
Drive Car

We consider now a front-wheel drive car. This system is also controllable [10],
although two levels of Lie Brackets must be taken to show this. We quote
here the kinematic equations, the reader interested in their derivation may
consult [10]. A sketch of the car is found in Figure 11.

The system equations for the front wheel drive car (assuming velocities
as inputs) are:

&i = cos (£3) COS (£4)Ifi

x2 = cos(x3)sin(a;4)ui

x3 = u2

x4 = -sin(x3)ui (12)

where (xi,x2) is the position of the car in the plane, x3 is the angle of the
front wheels with respect to the car (or the steering wheel angle), x4 is the
orientation of the car with respect to some reference frame, and the constant
L is the length of the wheel base.
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The matrices A(t),B(t) are:

A(t) =
d(gu°)

dx»

0 0

0 0

0 0

0 0

B(t) = g(x°)

- cos(:c!J) sin(a;!j)uj - cos(x§) sin(a:!})tij
- sin(x3) sin(xj)wj cos(x§) sin(a:S)itJ

0 0

£ cos(xg)u? 0

Inspired by [10], we chose the nominal input it0 = (sin(*), cos(2<)), roughly
corresponding to a parallel- parking maneuver (see Figure 14). Again, we
chose a = 0.1,£ = 1.0. After one period (T = 27r), this input steers the
system in the direction given by the second-level nested Lie bracket of the
two input vector fields (i.e. [^1,^1,^2]])- Because the equations for this
example are not simple, wehave not tried to find Hc in closedform; all of the
computations were done by the simulation program. The initial condition
was chosen to be (0.1, -0.1, 0.05, 0.2), and the simulation was run for 2x
seconds. Figures (12 - 14) show the results. Note the rapid convergence to
zero in the error terms.

•tl«> «tim umi mi*i

Figure 13: The
Figure 12: Plot of errors e control inputs v versus time,
versus time. Note that they are bounded,

smooth, and go to zero.
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Figure 14: This phase plot shows the desired and the actual trajectories
projected onto the (xi,x2) plane (the orientation of the car and the steering
wheel angle are not shown). The desired trajectory is the one whichstarts at
(0,0). Note how quickly and smoothly the control law stabilizes the system
to this trajectory.

6 Conclusions

The control law and simulation results presented in this paper suggest that
for nonholonomic systems, stabilizing to a trajectory is a better problem to
consider than stabilizing to a point. It should be noted that for drift-free
systems, allpoints are equilibrium points (in the sense that with zero input,
the system will remain at rest).

However, if one adopts our point of view, one must also face the problem
of finding feasible trajectories; a rich problem which has not been solved for
all systems. Excellent work has been done [7, 9, 10, 11, 13] in this area,
and methods for finding trajectories exist for a wide range of nonholonomic
systems (including all of the examples found in this paper).

In the context of non-kinematic models such as the real Hilare robot, the
inputs are not the motor velocities but the torques, and thus the problems
involving drift should also be examined. The control law presented here can
be applied to stabilize systems with drift; however it is not as clear how
to go about choosing the nominal trajectory. Further work could include
the exploration and testing of other control laws for stabilizing linear time-
varying systems.

17
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The control law presented in this paper is robust to three types of error:
initial condition errors, perturbations introduced along the trajectory, and
noise in the sensor data. We have only shown the convergence results when
there is an error in the initial condition, but it can be seen that the effects
of the other two types of errors also are reduced using this law.

In summary, the path to a composite controller for mobile robots is: 1)
Utilize the path planners to generate a nominal open-loop trajectory. 2)
Apply the control law developed in this paper to stabilize the system to this
nominal trajectory. 3) During operation of the robot, low-level sensor data
can be used to avoid collisions caused by a priori errors in the knowledge of
the environment. This new knowledge can be used to plan a new feasible
nominal trajectory and find its associated stabilizingcontrol law.
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