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ABSTRACT

- Signal flow graphs with dataflow semantics have been used in signal processing system simula-
tion, algorithm development, and real-time system design. Dataflow semantics implicitly expose
function parallelism by imposing only a partial ordering constraint on the execution of functions. -
They are also capable of representing data parallelism. This paper shows how the synchronous
dataflow model [17] can be used to graphically define algorithms while exposing their data paral-
lelism to a compiler or hardware synthesis tool. A “recursive iterator” notation is introduced to
achieve scalable graphical representations for certain algorithms. The SDF model is then
extended to multidimensional streams to represent and exploit data parallelism in certain signal
processing applications. The method is by no means general, but appears to have broad enough
applicability to be useful. The resulting semantics are related to reduced dependence graphs used
in systolic array design and to multidimensional streams in the declarative language Lucid. They
are more distantly related the stream-oriented functional languages Silage, and streams in the
dataflow language Id and the “synchronous” languages Lustre and Signal.

1.0 Motivation

To get competitive real-time implementations of signal processing applications, it is nec-
essary to exploit design-time information about the algorithms. No computation or control func-

tion should be deferred to run-time if it can be performed at the time software is compiled or

The author gratefully acknowledges the support of the National Science Foundation, the Semiconductor Research Corporation,
AT&T Bell Labs, Philips, and Rockwell.
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Motivation

hardware is designed. Hence, specification languages should reveal to the compiler or hardware

synthesis tool as much static information as possible.

This applies as much to control flow as data operations. Control-flow operations per- _
formed at run-time interfere with optimization possibilities, particularly exploitation of parallel-
ism. In software, conditional branches are a key problem. Compiler writers and computer
architects know that anywhere from 1/10 to 1/3 of all instructions are conditional branches, even

“for applications with totally predictable control flow. I contend that alternative representations of
algorithms could make analysis of the flow of control much easier, and hence make parallelizing

compilers much more effective, particularly for signal processing applications.

In this paper I show how a graphical programming environment like those commonly used
for signal processing can be adapted to expose data parallelism. In particular, we set the following
objectives for the syntax and semantics of graphical programs:

1. Hierarchy. This is essential to manage complexity, and is standard in graphical design envi-
ronments today.

2. .Scalability. In particular, the graphical definition of a computational module must be invariant

under problem size.

3. Static flow of control where possible. When flow of control is predictable, the semantics must

be simple enough that a compiler can completely analyze it.

4. Exploitable function and data parallelism. Graphical languages have been used to exploit
function but not data parallelism. We need both.

As a simple example, an FIR filter should be modular so that it can be used as a parameterized
unit. It should be a hierarchical block that can be used without concern for its internal structure.
Its internal structure, however, for applications requiring fast execution, should expose all exploit-
able parallelism to a compiler. So the filter should not be expressed using C-style “for” or “do-
while” loops, which are difficult to analyze for static control flow and data parallelism. Although
compilers have gotten better at such analysis, experience shows that languages with simpler

semantics such as Silage [13] (used in the Mentor/EDC DSPstation) or the flowgraph language
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Background

used in the Comdisco Procoder [21] can be compiled more efficiently. But in a graphical lan-
guage, data parallelism in the FIR filter should be exposed without “hard-wiring” the filter order
into the graphical specification, as would be required in most currently available graphical pro-
gramming environments. A not;iblc exception is the Mentor/EDC DSPstation which supports a
mixed graphical and textual functional specification that is scalable. The approach proposed in

this paper goes much further, however.

2.0 Background

Much of the motivation for this work stems from our design environments Gabriel [5] and
Ptolemy [7]. In these systems, signal processing algorithms are described graphically and either
simulated or used to synthesize a real-time implementation. We will periodically refer in this
paper to actors of the type used in these systems. Gabriel uses only one model of computation,
called synchronous dataflow (SDF). Ptolemy is much more flexible, although in this paper we will
only refer to its dataflow capability.

2.1 Dataflow
In the dataﬁbw model of computation, a program can be represented as a graph, where the
nodes represent actors (functions or operators with functional semantics) and the arcs represent
paths taken by tokens (which carry data) [11]. The actors can be fine grain (atomic machine oper-
ations) or large grain (functions of arbitrary complexity) [27]. In figure 1, each token produced by

Figure 1. A graphical dataflow program.

actor A is consumed by actor B. Each arc represents a semi-infinite ordered set of tokens. The
ordering need not be chronological (tokens may be produced or consumed out of order) as long as
data precedences implied by the ordering are respected. This is the source of much of the data par-

allelism we will exploit in this paper. A given token on an arc is produced once and consumed
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once, although it may be referenced more than once during the firing of B, and may even be refer-
enced in subsequent firings (the actor may access “past” tokens, as done in [5][7]). The firings of
actors are ordered in the same sense as the tokens on an arc are ordered. Actors may fire out of
order in time, or mﬁy have several simultaneous firings on different processors, as long as data

precedences are satisfied.

The diamond on the path between B and C is a delay, which we can interpret as an initial
token’on the arc. It implies that the n-th token consumed by C is the (# — 1) -th produced by B.
An initial value for the delay must be specified. A macro actor can have stare, which we will
model simply as a self-loop with a delay.

2.2 Functional, Stream-Oriented Languages
In figure 1, an arc represents a stream. Equivalent textual representations are easy to

devise. In Silage [13], a textual signal processing language with similar semantics, every symbol
in the language represents a stream. Instead of “actors” the language has functions and operators
with functional semantics. Consider the following segment of a program:

x=1+x@1;
x@@1 =0.0;

The symbol “x” represents an infinite stream. The language is declarative, so the order of the
statements makes no difference. The language has the notion of a global cycle, and a simple refer-
ence to a symbol “x” can be thought of as referring to the “current value” of x, or to the entire
stream. The syntax “x@1” is similar to the delay in figure 1, and is related to the “fby” or “cby”
operator in Lucid [2][26] and the “->" operator in Lustre [9]. It refers to the previous value, or
equivalently to the stream shifted by one token. The syntax “x@@1” initializes the stream x with
a value 0.0 so that the first reference to x@1 is defined. An equivalent graphical syntax is shown

in figure 2. The actor labeled “1” simply produces a continuous stream of ones. The initial value
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of the delay is shown adjacent to its diamond. In this paper, we will use a graphical syntax with
only occasional pointers to equivalent textual syntax.

o—&,

Figure 2. A graphical equivalent to the Silage program given In the text.

The semantics of streams gets much more complicated when streams with different rates
are permitted. Suppose, for example, that for every token in stream X there are two tokens in
stream Y. Since streams are infinite, this relationship cannot be ignored. One approach is to asso-
ciate with each stream a “clock,” as done in Lustre [9], Signal [3], and to some extent, Silage [13].
The clock of Y has twice as many ticks per unit time, and only every second token in Y aligns
with a token in X. For the most flexible of these languages, Signal, a powerful algebraic method-

ology has been developed to reason about relationships between clocks [3].

Our approach is different. The clocks are replaced by relative rates of production and con-
sumption. There is no concept of simultaneity of tokens (tokens in different streams lining up).
We argue that our approach is more in-keeping with the spirit of datafiow [10][11], and is more
easily parallelized at compile time. As explained below, it can support multidimensional streams,
combining thus the best features of Lucid with the best features of the “synchronous” languages
Lustre and Signal.

2.3 Synchronous Dataflow

For several years, we have been developing software environments for signal processing
that are based on a special case of dataflow that we call synchronous dataflow (SDF) [17]. The
Gabriel [5] and Ptolemy [7] programs use this model. It has also been used in Aachen [23] in the
COSSAP system and at Carnegie Mellon [22] for programming the Warp. As above, SDF graphs
consist of networks of actors connected by arcs that carry data. But the actors are constrained to
produce and consume a fixed integer number of tokens on each input or output path when they fire
[17]. The term “synchronous” refers to this constraint, and arises from the observation that the
rates of production and consumption of tokens on all arcs are related by rational multiples. Unlike
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the “synchronous” languages Lustre and Signal, however, there is no notion of clocks. Tokens

form ordered sequences, with only the ordering being important.

11.01 12.02 13 .03

Figure 3. A simple synchronous dataflow graph.

Consider the simple graph in figure 3. The symbols adjacent to the inputs and outputs of
the actors represent the number of tokens consumed or produced. Most SDF properties follow
from the balance equations, which for the graph in figure 3 are

r0, = r,l, (1)

r,0, = ril,. (2)
The symbols r; represent the number of firings (repetitions) of an actor in a cyclic schedule.
Given a graph, the compiler solves the balance equations for these values. Given this solution, a
precedence graph can be automatically constructed specifying the partial ordering constrains
between firings [16]. From this precedence graph, good compile-time schedules can be automati-
cally constructed [24][25].

SDF allows compact and intuitive expression of predictable control flow and is easy for a
compiler to analyze. Consider for instance the nested iteration described in figure 4. The balance

10 1 10 1 1 10 1 10
DO

Figure 4. Nested iteration described using SDF.

equations can be collected into matrix form

I+ =3 ’ ®)
where 9 is the zero vector, and the topology matrix is given by

oo

(4)
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The smallest integer solution to the balance equations is

# =110 100 10 1. (5)
which indicates that for every firing of actor 1, there will be 10 firings of actor 2, 100 of 3, 10 of 4,
and 1 of 5. '

The application of this model to multirate signal processing is described in [6]. An appli-
cation to vector operations is shown in figure 5, where two FFTs are multiplied. Both function and

Figure 5. Application of SDF to vector operations.

data parallelism are evident in the precedence graph that can be automatically constructed from
this description. That precedence graph would show that the FFTs can proceed in parallel, and that
all 128 invocations of the multiplication can be invoked in parallel. Furthermore, the FFT might
be internally specified as a dataflow graph (see below), permitting exploitation of parallelism
within each FFT as well. The Ptolemy system can use this model to implement overlap-and-add

or overlap-and-save convolution, for example.

“—e—
=

Figure 6. An SDF graph and its corresponding precedence graph.

More interesting control flow can be specified using SDE. Figure 6 shows two actors with
a 2/3 producer/consumer relationship. The precedence graph is shown on the right. From this, we
can construct the sequential schedule (A4, Ap, B4, Ag, Bo), among many possibilities. This sched-
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ule is not a simple nested loop, although schedules with simple nested loop structure can be con-
structed systematically [4]. Notice that unlike the “synchronous” languages Lustre and Signal, we
do not need the notion of clocks to establish a relationship between the stream into actor A and the
stream out of actor B.

24 The Token-Flow Model
) A Loosely speaking, the balance equations require that in the long run, the number of tokens pro-
duced on an arc must equal the number of tokens consumed. This concept has been extended to handle’
actors that are not SDF, or actors where the number of tokens produced or consumed is not fixed [8][19].

Consider the SWITCH and SELECT actors in figure 7. These route tokens conditional on a Boolean

Figure 7. Dynamic dataflow actors annotated with the expected
number of tokens produced or consumed per firing as a
function of p., the probability that a token from the
stream b; Is TRUE.

input. The number of tokens produced by the SWITCH or consumed by the SELECT is not
known, so in the token flow model that number is replaced with a symbolic placeholder. The bal-
ance equations now have symbolic unknowns, and the solution is found in terms of these
unknowns. The conceptually simplest interpretation for these unknowns is a probabilistic one, as
explained in the caption to figure 7. However, other interpretations are more useful, as explained
in [8].
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3.0 Relationship with Prior Work

A minor contribution of this paper is to show how for some algorithms, the SDF model
can expose data parallelism. Below we will show how recursive graphical descriptions can be

used to define some algorithms in a scalable way.

The principal contribution of this paper is to extend SDF to a multidimensional model in
order to exploit dafa parallelism. As such, the work is related to the large body of literature on
synthesizing systolic arrays from regular iterative algorithms [15]. The multidimensional model is
related to reduced dependence graphs commonly used in this field, but differs in that (1) the
model is a dataflow model rather than a direct specification of precedence relationships, (2) there
is no need for a homogeneous index space, and (3) the emphasis is on a programming methodol-

ogy with concise, scalable graphical syntax.

Programming for data parallelism has been accomplished in the past using single-assign-
ment, functional, or dataflow languages. The most relevant of these to this paper is Lucid [26], the
language with the best developed support for multidimensional streams. Like our model in this
paper, Lucid is designed to have clear semantics that a compiler can analyze, but it does not have

our emphasis on compile-time scheduling.

Skillcorn [26] argues that streams and functions on them are a natural way to model reac-
tive and distributed systems. Reactive systems include signal proceséing systems, but also include
servers and operating systems. They operate continuously and produce and consume unbounded
message sequences. Hence, languages designed for operating on such sequences, languages such
as Id [1], Lucid [2][26], Sisal [20], Lustre [9], and Signal [3] support streams. In Sisal and Id,
streams are lists fashioned after lists in Lisp, but with non-strict semantics. This means simply
that a function operating on the stream can begin operating on it before the entire stream has been

computed.
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4.0 Recursive lterators!

The SDF graph in figure 4 is scalable in that the graphical structure does not depend on the
amount of iteration. The “10” entries could easily be replaced with system parameters. However,
the structure of the iteration is rather simple. More interesting examples are, of course, more diffi-
cult to express. Sometimes, a graphical representation we call a “recursive iterator” is ideal. It is
scalable, concise, and elegant. We will illustrate it by giving a scaiable graphical representation of
an analysis/synthesis multirate filter bank and the decimation-in-time FFT, both using tlie SDF
model. These two examples illustrate most of the features of interest.

L F

QMF [— " F QMF

QMF Pl QMF
QMF

A 4
L]

» QMF

Figure 8. An analysis/synthesis filter bank under the SDF model. The depth of
the filter bank, however, Is hard-wired Into the representation.

Consider the system shown in figure 8. It shows a multirate signal processing application:
an analysis/synthesis filter bank with harmonically spaced subbands. The signal coming in at the
left is split by matching highpass and lowpass filters (labeled “QMF’). These are decimating
polyphase FIR filters, so for every two tokens consumed on the input, one token is produced on
the output. The left-most QMF only is labeled with its SDF parameters, but the others behave the
same way. The output of the lowpass side is further split by a second QMF, and the lowpass out-
put of that by a third QMF. The boxes labeled “F” represent some function performed on the dec-
imated signal (such as quantization). The QMF boxes to the right of these reconstruct the signal
using matching polyphase interpolating FIR filters. There are four distinct sample rates in figure 8

" 1. The author extends thanks to Jeff Robinson and Keith Rouse of Star Semiconductor for helpful discussions pertaining to this
section.
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Recursive Iterators

with a ratio of 8 between the largest and the smallest. A scalable parallelizable representation for
the decimating and interpolating FIR filters is given below, but for now we will just worry about
the representation of the system at this level of abstraction, where the filters are considered an

atomic unit.

The graphical representation in figure 8 is useful for developing intuition, and exposes
exploitable parallelism, but it is not so useful for programming. The depth of the filter bank is
hard-wired into the graphical representation, so it cannot be conveniently made into a parameter

of a filter-bank module. To solve this problem, we propose the representation in figure 9. A hierar-

—>| FB(D=3) [—>

FB(D > 0) ’
LN 1 FB(D=0) _
2 2 =3 F (=
— —>

1 1
QMF =P FB(D=D-1) QMF

Figure9. A “recursive Iterator” representation of the filter bank application.
This representation is scalable.

chical block called “FB” (for filter bank) is defined, and given a parameter D, the depth. For D>0
the definition of the block is at the left. It contains a self-reference, with the parameter of the .
inside reference changed to D-1. When D=0, the definition at the right is used. The system at the
top, consisting of just one block, labeled “FB(D=3)", is exactly equivalent to the representation in
figure 8, except that the graphical representation does not now depend on the depth. The graphical
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recursion in figure 9 can be expanded completely at compile time, exposing all exploitable paral-

lelism, and incurring no unnecessary run-time overhead.

x(0), X(0)
x(2 X(1)
x(1). X(2)
x(3 ' X(3)

Figure 10. A fourth-order decimation-In-time FFT shown graphically. The order
of the FFT, however, Is hard-wired into the representation.

A fourth-order decimation-in-time FFT is shown in figure 10. Again, as a graphical pro-
gram, this representation is extremely inconvenient. A scalable representation using recursive

iterators is shown in figure 11. When the FFT order N is a power of two greater than zero, the def-

=1 FFT(N=4) =—>

/" FFT(N > 0) : ‘ ‘ N\
1 TR
FFT(N=N/2) > >
\ —FrTNeN) J .
1 NN N
DIST [~—MFFT(N=N/2)}~L—p > »| com
\_ T\ -

Figure 11. A recursive-iterator representation of the decimation-in-time FFT.
This representation Is scalable. _

inition of the FFT block is shown on the left. The first block is a “distributor’”’, which collects two
input tokens and send the first one to the top output and the second one to the bottom output. The
resulting decimated-in;time sequences are sent to recursive instances of the FFT block with order
N replaced by N/2. These récursive references will be expanded at compile-time until the order is
one, at which time the trivial definition on the right will be used. The tokens returned by recursive
FFT instances are fed into a butterfly network. The triangles represent fixed gains (the “twiddle
factors™). Note that the value of these will depend on the parameter N at a given depth of the
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recursion as well as the position of a particular firing in the firing sequence. Expressing these

dependencies requires considerable functionality in the expression language used. The “COM”
actor (for “commutator”) collects N tokens on each input, then outputs them sequential, the top
inputs first. The resulting outputs will be in the same order as in figure 10. The DIST and COM

actors are used regularly in Ptolemy [7].

The representation in figure 11 satisfies all our objectives, and has the side benefit that it is
structured recursively, much like the derivation of the FFT algorithm itself. But there still may be
improvements. Instead of the butterfly operations explicitly specified as shown in figure 11, we
could use an FFT of some small order, set by a parameter. This would allow us to control the gran-

ularity through a parameter instead of being constrained to the finest available granularity.

5.0 Multidimensional Dataflow

The standard dataflow model suffers from the limitation that its streams are one dimen-
sional. Although a multidimensional stream can be embedded within a one dimensional stream, it
may be awkward to do so. In particular, compile-time information about the flow of control may
not be immediately evident. The multidimensional SDF model is a straightforward extension of

one-dimensional SDF. Figure 12 shows a trivially simple two-dimensional SDF graph. The num-

O(OA'I. 04.2) (IB.I'IB,Z)
A

Figure 12. A simple MD-SDF graph.

ber of tokens produced and consumed are now given as M-tuples. Instead of one balance equation

for each arc, there are now M. The balance equations for figure 12 are

74,104,1 = 78,115,1 (6)

74,204,2 = 7,212 (7)
These equations should be solved for the smallest integers Ty, ;» which then give the num-

ber of repetitions of actor X in dimension i.
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5.1 Application to Multidimensional Signal Processing
As a simple application of MD-SDF, consider a portion of an image coding system that
takes a 40x48 pixel image and divides it into 8x8 blocks on which it computes a DCT. At the top
- level of the hierarchy, the dataflow graph is shown in figure 13. The solution to the balance équa-

40, 48) (8,8)

(8,8)
<>

dimension 2
ﬁ

()

dimenslon 1

Figure 13. An Image processing application in MD-SDF.

tions is given by

a1 =Ta2 = L.Tpcr,y = 5.7pcr,2 = 6. 8
A segment of the index space for the stream on the arc connecting actor A to the DCT is
shown m the figure. The segment corresponds to one firing of actor A. The space is divided into
regions of tokens that are consumed on each of the five vertical firings of each of the 6 horizontal
firings. The precedence graph constructed automatically from this shows thai the 30 firings of the
DCT are independent of one another, and hence can proceed in parallel. Distribution of data to
these independent firings can be automated.

5.2 Flexible Data Exchange
Application of MD-SDF to multidimensional signal processing is obvious. There are,
however, many less obvious applications. Consider the graph in figure 6 above. Note that the first
firing of A produces two samples consumed by the first firing of B. Suppose instead that we wish
for firing A4 to produce the first sample for each of By and B». This can be obtained using MD-
SDF as shown in figure 14. Here, each firing of A produces data consumed by each firing of B,
resulting in a pattern of data exchange quite different from that in figure 6. The precedence graph
in figure 14 shows this. Also shown is the index space of the tokens transferred along the arc, with
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Figure 14. :Data exchange In an MD-SDF graph.
the shaded regions indicating the tokens produced by the first firing of A and consumed by the
first firing of B.

A DSP application of this more flexible data exchange is shown in figure 15. Here, ten

Figure 15. Averaging successive FFTs using MD-SDF.

successive FFTs are averaged. Averaging in each frequency bin is independent and hence may
proceed in parallel. The ten successive FFTs are also independent, so if all input samples are
available, they too may proceed in parallel. |

5.3 Computing Inner Products .

Consider the problem of repeatedly computing an inner product on a stream of vectors,
This can be easily elaborated into an FIR filter, although for conciseness we will stick to the
generic inner product. In particular, suppose we wish to express the inner product at its finest level
of granularity, and further that we require the graphical representation to have a structure that is
independent of the size of the vectors. To express this using 1D-SDF, we might try the configura-
tion shown in figure 16. Actors A and B each supply vectors of length 8 by producing 8 tokens
when they fire. The small white diamond is a “delay”, which in a dataflow context is simply an
initial, zero-valued token on the arc. The actor with the downward arrow is a “downsample.” It

simply consumes 8 tokens and outputs one of them, discarding the rest. This configuration will
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Figure 16. An attempt to use 1D-SDF to repeatedly compute inner products.
- correctly compute the first inner product, but when the second set of vectors are generated by
repeated firings of A and B, the delay on the feedback path will not be re-initialized. Hence, sub-
sequent inner products will be incorrect.

I have previously proposed a mechanism called “resetting delays™ that solve this problem

in the context of 1D-SDF [18]. However, the MD-SDF model provides a more elegant solution.

A delay in MD-SDF in associated with a tuple as shown in figure 17. It can be interpreted

(dy,dy)

O——0

Figure 17. A delay In MD-SDF Is multidimensional.

as specifying boundary conditions on the index space. Thus, for 2D-SDF, as shown in the figure, it
specifies the number of initial rows and columns. It can also be interpreted as specifying the direc-
tion in the index space of a dependence between two single assignment variables, much as done in

reduced dependence graphs [15].

Using MD-SDF delays, the repeated inner product can be specified as shown in figure 18.
The only significant difference between this and figure 17 is the multidimensional delay. Its effect
is illustrated schematically in figure 18, where the index space for the output of the delay is
shown. The shaded area is the initial condition specified by the delay.

5.4 Mixing Dimensionality
Note that in figure 18, 2D and 1D-SDF are mixed. We use the following rule to avoid any
ambiguity:
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x40

1Y 8.1) 1
1 1/ 1\ (
"D ’@"

1 Index space for variable X:

RSB P

/

N4

Figure 18. Repeated Inner products in MD-SDF.

* The dimensionality of the index space for an arc is the maximum of the dimensionality of the
producer and consumer. If the producer or the consumer specifies fewer dimensions than those
of the arc, the specified dimensions are assumed to be the lower ones (lower number, earlier in

the M-tuple). Hence, the two graphs in figure 19 are equivalent.

=0 ‘"’"" ~()
. (M,N) (KJ).

Figure 19. Rule for augmenting the dimensionality of a producer or consumer.

We can specify a comparable rule for delays:

« If the dimensionality specified for a delay is lower than the dimensionality of an arc, then the
specified delay values correspond to the lower dimensions. The unspecified delay values are

zero. Hence, the graphs in figure 20 are equivalent.

@(M,N) 3 (K-
@(M,N) (%0) (K,

Figure 20. Rule for augmenting the dimensionality of a delay.
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5.5 Polyphase Decimating FIR Filters
The inner product of figure 18 can be used to concisely describe a polyphase decimating
FIR filter while exposing all the parallelism in the algorithm. A 1D-SDF specification of such a
filter might look like figure 21. The input signal is divided into three phases, each of which is dis-

FIR subfilters

-/'P Phase 1
1

—l Phase 2

D'STL\ 3> Phase 3

Figure 21. A 1D-SDF specification of a polyphase decimating FIR filter. This
description does not expose all the parallelism and has the
decimation ratio graphically hard-wired Into it.

- tributed to a subfilter, and the outputs of the subfilters are added [12]. As a graphical description
of the algorithm, however, there are two major deficiencies. If we are restricted to 1D-SDF, then
the FIR subfilters must be implemented as atomic actors, in which case the description does not
expose all the parallelism in the algorithm. Moreover, the representation has the decimation ratio
of three graphically hard-wired into it. This means it cannot easily be made a parameter of the fil-
ter.

MD-SDF can be used to solve both these problems, as shown in figure 22. The inner prod-
uct from figure 18 is used as a module. The “Last N actor consumes one token and produces a
1xN array composed of the token consumed and the previous N-1 tokens consumed on previous
firings. The “matrix constant” actor has obvious functionality, and need not involve any run-time
activity. It supplies the filter coefficients with one phase per row. The transpose actor transposes

the input array. We will elaborate below on the run-time implications of these actors.

5.6 Matrix Multiplication
As another example, consider a fine-grain specification of matrix multiplication. Suppose
we are to multiply an LxM matrix by an MxN matrix. In a three dimensional index space, this can
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t der: N
Slgnal source Bl e Mo
(1,M)
Transpose o Parameter: (2,1)
M,1)
b |
Polyphase
LastN Matrix Constant filter coefficlents
1N N
1N (1,N)
inner Product
1
v
EL
(1,0)
r (M,1)

Downsample ‘
(1,1

Figure 22. A polyphase decimating FIR filter expressed using MD-SDF. This
representation exposes all the parallelism in the algorithm.

Original Matrix
Original Matrix

Dimensions
Element-wise product  Repeats

Figure 23. Matrix multiplication represented schematically.
be accomplished as shown in figure 23. The original matrices are embedded in that index space as
shown by the shaded areas. The remainder of the index space is filled with repetitions of the
matrices. These repetitions are analogous to assignments often needed in a single-assignment
specification to carry a variable forward in the index space. An intelligent compiler need not actu-
ally copy the matrices to fill an area in memory. The data in the two cubes is then multiplied ele-
ment-wise, and the resulting products are summed along dimension 2. The resulting sums give the
LxN matrix product. The MD-SDF graph implementing this is shown in figure 24. The key actors

used for this are:

Upsample:. In specified dimension(s), consumes 1 and produces N, inserting zero values.
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M,N,1)
Repeat 0 Transpose ° Parameter: (3,1,2)

(0,1,0)

¥ (1,M,1)

Downsample { §
(1,1,1)
L,1,N)

Transpose Parameter: (1,3,2)
(L,N,1)

Figure 24. Matrix multiplication in MD-SDF.
Repeat: In specified dimension(s), consumes 1 and produces N, repeating values.

Downsample: In specified dimension(s), consumes N and produces 1, d1scard1ng samples.

Transpose: = Consumes and M-dlmenswnal block of samples and outputs them with the dimen-

sions rearranged.
Upsample Downsample
(L,MJ)/\(L.M.N) (LMN) /N\LMY)
4©), (Vo—
Repeat Transpose
(LM,1) Z—\(LMN) (LMN)~ (MNL)
O— —o0—

Parameter: (2,3,1)

Figure 25. Some key MD-SDF actors that affect the flow of control.

These are identified in figure 25. Note that all of these actors simply control the way
tokens are exchanged and need not involve any run-time operations. Of course, a compiler then

needs to understand the semantics of these operators.

5.7 Polyphase Interpolating FIR Filters
‘ The matrix multiplication of figure 24 can be used to describe a polyphase interpolating
FIR filter [12] as shown in figure 26. This usés the matrix multiply from figure 24 as a module. It
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Figure 26. A polyphase interpolating FIR filter expressed using the MD-SDF
model. All the parallelism Iin the algorithm can be automatically
expioited.

also uses a new actor, the “matrix constant,” which repeatedly supplies the polyphase filter coeffi-

cients. Again, a good compiler will hopefully have no run-time activity associated with this actor.

‘5.8 Run-Time Implications
Several of the actors we have used perform no computation, but instead control the way
tokens are passed from one actor to another. In principle, a smart compiler can avoid run-time
operations altogether, unless data movement is required to support parallel execution. We set the

following objectives for a code generator using this language:

Upsample:  Zero-valued samples should not be produced, stored, or processed.

Repeat: Repeated samples should not be produced or stored.
Last-N: A circular buffer should be maintained and made directly available to downstream
actors.

Downsample: Discarded samples should not be computed (similar to dead-code elimination in
traditional compilers).

Transpose:  There should be no run-time operation at all, just compile-time bookkeeping.

It is too soon to tell how completely these objectives can be met.

DATA PARALLELISM IN GRAPHICAL SIGNAL FLOW REPRESENTATIONS OF ALGORITHMS 210f24



Multidimensional Dataflow

5.9 State
For large-grain dataflow languages, it is desirable to permit actors to maintain state infor-
mation. From the perspective of their dataflow model, an actor with state information simply has a
self-loop with a delay. Consider the three actors with self loops shown in figure 27. Assume, as is

(1,0) (0,1) (1,1
@

Figure 27. Three macro actors with state represented as a self-loop.

common, that dimension 1 indexes the row in the index space, and dimension 2 the column, as
shown in figure 13. Then each firing of actor A requires state information from the previous row
of the index space for the state variable. Hence, each firing of A depends on the previous firing in
the vertical direction, but there is no dependence in the horizontal direction. The first row in the
state index space must be provided by the delay initial value specification. Actor B, by contrast,
requires state information from the previous column in the index space. Hence there is horizontal,
but not vertical dependence among firings. Actor C has both vertical and horizontal dependence,
implying that both an initial row and an initial column must be specified. Note that this does imply
that there is no parallelism, since computations along a diagonal wavefront can still proceed in
parallel. Moreover, this property is easy to detect automatically in a compiler. Indeed, all modern
parallel scheduling methods based on projections of an index space [15] can be applied to pro-
grams defined using this model.

5.10 Asynchronous Actors
The token flow model, which permits SWITCH and SELECT actors, can be easily
extended to multiple dimensions by simply allowing symbolic placeholders inside the M-tuples
giving the number of samples produced and consumed by an actor. This is necessary to use multi-
dimensional dataflow over non-rectangular index spaces. However, we have a great deal of work
to do yet before a practical programming language making use of this can be devised.
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6.0 Caveats

A graphical programming model based on dataflow that supports multidimensional
streams has been outlined. However, we have only defined a language in sufficient detail to illus-
trate some simple examples. It is not clear at this point that a language based bn these principles
will be easy to use. Certainly the matrix multiplication program in figure 24 is not very readable.
Algorithms with less regular structure will only be more obtuse. This difficulty will be exacer-
bated when a multidimensional DF language based on the token flow model is developed. How-
ever, the analytical properties of programs expressed this way are compelling. Parallelizing
compilers and hardware synthesis tools should be able to do extremely well with these programs
without relying on runtime overhead for task allocation and scheduling. We conclude, therefore,
that further investigation is certainly warranted. At the very least, the method looks promising to
supplement large-grain dataflow languages, much like the GLU “coordination language” makes
the multidimensional streams of Lucid available in large-grain environment [14]. It may lead to
special purpose languages, but could also ultimately form a basis for a language that, like Lucid,
supports multidimensional streams, but is easier to analyze, partition, and schedule at compile

time.
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