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ABSTRACT

'Signal flow graphs with dataflow semantics have been used in signal processing system simula
tion, algorithm development, and real-time system design. Dataflow semantics implicitly expose
function parallelism by- imposing onlya partial ordering constraint on the execution of functions.
They are also capable ofrepresenting data parallelism. This paper shows how the synchronous
dataflow model [17] can beused to graphically define algorithms while exposing their data paral
lelism to a compiler or hardware synthesis tool. A "recursive iterator" notation is introduced to
achieve scalable graphical representations for certain algorithms. The SDF model is then
extended to multidimensional streams to represent and exploit data parallelism in certain signal
processing applications. The method is by no means general, but appears tohave broad enough
applicability to be useful. The resulting semantics are related to reduced dependence graphs used
in systolic array design and to multidimensional streams in the declarative language Lucid. They
are more distantly related the stream-oriented functional languages Silage, and streams in the
dataflow language Id and the "synchronous" languages Lustre and Signal.

1.0 Motivation

w**^*^^

To get competitive real-time implementations of signal processing applications, it is nec

essary to exploit design-time information about the algorithms. No computation or control func

tion should bedeferred torun-time if it can be performed at the time software is compiled or

The author gratefully acknowledges the support ofthe National Science Foundation, the Semiconductor Research Corporation,
AT&T Bell Labs, Philips, and Rockwell.
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Motivation

hardware is designed. Hence, specificationlanguages should reveal to the compiler or hardware

synthesis tool as much static information as possible.

This applies as much to control flow as dataoperations. Control-flow operations per

formed at run-time interfere with optimization possibilities, particularly exploitation of parallel

ism. In software, conditional branches are a key problem. Compilerwriters andcomputer

architectsknow that anywhere from 1/10 to 1/3 of all instructions are conditional branches, even

for applications with totally predictable control flow. I contend that alternative representations of

algorithms could make analysis of the flow of control much easier, and hence make parallelizing

compilers much more effective, particularly for signal processingapplications.

In this paper I show how a graphical programmingenvironment like those commonly used

for signal processingcan be adaptedto expose data parallelism. In particular, we set the following

objectives for the syntax and semantics of graphical programs:

1. Hierarchy. This is essential to manage complexity, and is standard in graphical design envi

ronments today.

2. Scalability. In particular, the graphical definitionof a computational module must be invariant

under problem size.

3. Staticflow ofcontrol where possible. When flow of control is predictable, the semantics must

be simple enough that a compilercancompletelyanalyze it

4. Exploitable function anddataparallelism. Graphical languages havebeenused to exploit

function but not data parallelism. We need both.

As a simpleexample,an FDR. filter should be modular so thatit canbe used as a parameterized

unit. It should be a hierarchical block that can be used without concern for its internal structure.

Its internal structure, however, for applications requiring fast execution, should expose all exploit

able parallelism to a compiler. So the filter should notbe expressed usingC-style"for** or"do-

while"loops, whichare difficult to analyze for static control flow and data parallelism. Although

compilers have gotten better at such analysis, experience shows that languages with simpler

semantics such as Silage [13] (used in the Mentor/EDC DSPstation) or the flowgraph language
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Background

used in the Comdisco Procoder [21] can be compiled more efficiently. But in a graphical lan

guage, data parallelism in the FIR filter should be exposed without "hard-wiring" the filter order

into the graphical specification, as would be required in most currendy available graphical pro

gramming environments. A notable exception is the Mentor/EDC DSPstation which supports a

mixed graphical and textual functional specification that is scalable. The approach proposed in

this paper goes much further, however.

2.0 Background
;:.::::::::::::::::::>::x::::;:::::^

Much of the motivation for this work stems from our design environments Gabriel [5] and

Ptolemy [7]. In these systems, signal processing algorithms are described graphically and either

simulated or used to synthesize a real-time implementation. We will periodically refer in this

paper to actors of the type used in these systems. Gabriel uses only one model of computation,

called synchronous dataflow (SDF). Ptolemy is much more flexible, although in this paper we will

only refer to its dataflow capability.

2.1 Dataflow

In the dataflow model of computation, a program can be represented as a graph, where the

nodesrepresent actors (functions or operators with functional semantics) and the arcs represent

paths taken by tokens (which carrydata) [11]. The actors can be fine grain (atomic machine oper

ations) or large grain(functions of arbitrary complexity) [27]. In figure 1,each token produced by

(a)—<|h^-*©

Figure 1. A graphical dataflow program.

actor A is consumed by actor B. Each arc represents a semi-infinite ordered set of tokens. The

ordering need not be chronological (tokensmay be produced or consumed out of order) as long as

dataprecedences implied by the orderingare respected. This is the source of much of the data par

allelism we will exploit in this paper. A given token on an arc is produced once and consumed
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once, although it may be referenced more than once during the firingof B, and may even be refer

enced in subsequent firings (the actor may access "past** tokens, as done in [5] [7]). The firings of

actors areorderedin the same sense as the tokens on an arc areordered. Actors may fire out of

orderin time, or may have several simultaneous firings on different processors, as long as data

precedences are satisfied.

The diamond on the path between B and C is a delay, which we can interpret as an initial

token on the arc. It implies that the /i-th token consumed by C is the (n -1) -th produced by B.

An initial value for the delay must be specified. A macro actorcan have state, which we will

model simply as a self-loop with a delay.

2.2 Functional, Stream-Oriented Languages

In figure 1, an arcrepresents a stream.Equivalent textual representationsareeasy to

devise. In Silage [13], a textual signal processinglanguagewith similar semantics, every symbol

in the language represents a stream. Instead of"actors*' the language has functions and operators

with functional semantics. Considerthe following segmentof a program:

x = 1+ x@1;
x@@1 = 0.0;

The symbol "x" represents an infinite stream. The language is declarative, so the orderof the

statements makes no difference. The language has the notionof a global cycle, anda simplerefer

ence to a symbol "x" can be thought of as referringto the "current value" of x, or to the entire

stream. The syntax"x@1"is similar to the delay in figure 1,andis related to the "fby** or"cby**

operator in Lucid [2][26] andthe "->** operator in Lustre [9]. It refers to the previous value,or

equivalently to the streamshifted by one token. The syntax"x<3>@ 1** initializes the streamx with

a value 0.0 so thatthe first reference to x@1is defined. An equivalent graphical syntaxis shown

in figure 2. The actorlabeled"1'* simply produces a continuous streamof ones. The initial value
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of the delay is shown adjacent to its diamond. In this paper, we will use a graphical syntax with

only occasional pointers to equivalent textual syntax.

0.0

G> «P
Figure 2. A graphical equivalent to the Silage program given in the text.

The semantics of streams gets much more complicated when streams with different rates

are permitted. Suppose, for example, that for every token in stream X there are two tokens in

stream Y. Since streams are infinite, this relationship cannot be ignored. One approach is to asso

ciatewith each stream a"clock,** as done in Lustre [9], Signal [3], and to some extent, Silage [13].

The clock ofY has twice as many ticks per unit time, and only every second token in Y aligns

with a token in X. For the most flexible of these languages, Signal, a powerful algebraic method

ology has been developed to reason about relationships between clocks [3].

Our approach is different The clocks arereplacedby relative rates of production and con

sumption. There is no concept of simultaneityof tokens (tokens in different streamslining up).

We arguethat our approachis more in-keeping with the spirit of dataflow [10][11], and is more

easily parallelized at compile time. As explained below, it can support multidimensional streams,

combining thus the best features of Lucid with the best features of the "synchronous** languages

Lustre and Signal.

2.3 Synchronous Dataflow

For several years, we have been developing software environments for signal processing

that arebased on a special case of dataflowthat we call synchronous dataflow (SDF) [17]. The

Gabriel [5] and Ptolemy [7] programs use this model. It has also been used in Aachen [23] in the

COSSAP system and at Carnegie Mellon [22] for programmingthe Warp. As above, SDF graphs

consist of networks of actors connected by arcs that carry data. But the actors are constrained to

produce and consume a fixed integer number of tokens on each input or output path when they fire

[17]. The term "synchronous** refers to this constraint, and arises from the observation that the

rates of production and consumption of tokens on all arcs arerelated by rational multiples. Unlike
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the "synchronous** languages Lustre and Signal, however, there is no notion of clocks. Tokens

form ordered sequences, with only the ordering beingimportant

1 J »l 2

Figure 3. A simple synchronous dataflow graph.

Consider the simple graphin figure 3. The symbols adjacentto the inputs and outputs of

the actors represent the number of tokens consumed or produced. Most SDF properties follow

from the balance equations, which for the graph in figure 3 are

rxOx = r2I2

r2^2 = r3^3-

0)

(2)

The symbols ri represent the numberof firings (repetitions) of an actor in acyclic schedule.

Given a graph, the compiler solves the balance equations for these values. Given this solution, a

precedencegraph can be automaticallyconstructed specifying the partial orderingconstrains

between firings [16]. From this precedence graph, good compile-time schedules canbe automati

cally constructed [24][25].

SDF allows compactandintuitiveexpression of predictable control flow andis easy fora

compiler to analyze. Consider for instance thenested iteration described in figure 4. The balance

iMT*0 1/^M 10^\1

Figure 4. Nested iteration described using SDF.

equations can be collected into matrix form

Tr = $

where o is the zero vector, andthe topology matrix is givenby

r =

10-1 0 0 0

0 10-1 0 0

0 0 1 -10 0

0 0 0 1-10

10,

(3)

(4)
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The smallest integer solution to the balance equations is

rT = [l 10 100 10 l]. (5)
which indicates that for every firingof actor 1, there will be 10 firings of actor 2,100 of 3,10 of4,

and 1 of 5.

The application of this model to multirate signal processing is described in [6]. An appli

cation to vector operationsis shown in figure 5, where two FFTs aremultiplied. Both function and

/TV 1£?/ M

Figure 5. Application of SDF to vector operations.

data parallelism areevident in the precedence graph that can be automatically constructed from

thisdescription. That precedence graph wouldshowthattheFFTs canproceed in parallel, andthat

all 128 invocations of the multiplication can be invokedin parallel. Furthermore, the FFTmight

be internally specifiedas a dataflow graph (see below), permittingexploitationof parallelism

within eachFFTaswell. The Ptolemy system canuse this model to implement overlap-and-add

or overlap-and-save convolution, for example.

Figure 6. An SDF graph and its corresponding precedence graph.

More interestingcontrol flow can be specifiedusing SDF. Figure 6 shows two actors with

a 2/3 producer/consumer relationship. The precedence graph is shownon the right From this, we

can construct the sequential schedule (At, A2, B-|, A3, B2), among many possibilities. This sched-
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ule is nota simple nested loop, although schedules with simple nested loop structure can becon

structed systematically [4]. Notice that unlike the "synchronous*' languages Lustre and Signal, we

donotneedthenotion of clocks toestablish arelationship between thestream intoactor A and the

stream out of actor B.

2.4 The Token-Flow Model

Looselyspeaking, thebalance equations require that in thelongrun, thenumber of tokens pro

duced on anarc must equal thenumber of tokens consumed. This concept has beenextended to handle

actors that are not SDF, or actors where thenumber of tokens produced orconsumed is not fixed [8] [19].

Consider the SWITCH and SELECT actors in figure 7. These route tokens conditional on a Boolean

SWITCH A b fTF\
J FV 'V SELECT J

Figure 7. Dynamic dataflow actors annotated with the expected
number of tokens produced or consumed per firing as a
function of p±, the probability that a token from the
stream £. Is TRUE.

input. The number of tokens produced by the SWITCH orconsumed by the SELECT is not

known, soin the token flow model that number isreplaced with asymbolic placeholder. The bal

ance equations now have symbolic unknowns, and the solution is found in terms of these

unknowns. The conceptually simplest interpretation for these unknowns is a probabilistic one, as

explained in the caption to figure 7.However, other interpretations are more useful, as explained
in [8].
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Relationship with Prior Work

3.0 Relationship with Prior Work

A minor contribution of this paper is to show how for some algorithms, the SDF model

can expose data parallelism. Below we will show how recursive graphical descriptions can be

used to define some algorithms in a scalable way.

The principal contribution of this paper is to extend SDF to a multidimensional model in

order to exploit data parallelism. As such, the work is related to the large body of literature on

synthesizing systolic arrays from regular iterative algorithms [15]. The multidimensional model is

related to reduced dependence graphs commonly used in this field, but differs in that (1) the

model is a dataflow model rather than a direct specification of precedencerelationships, (2) there

is no need for a homogeneous index space, and (3) the emphasis is on a programmingmethodol

ogy with concise, scalable graphical syntax.

Programming for data parallelism has been accomplished in the past using single-assign

ment, functional, or dataflow languages. The most relevant of these to this paper is Lucid [26], the

language with the best developed support for multidimensional streams. Like our model in this

paper, Lucid is designed to have clear semantics that a compilercan analyze, but it does not have

our emphasis on compile-time scheduling.

Skillcorn [26] argues that streams andfunctions on them are a natural way to model reac

tiveanddistributed systems. Reactive systems include signal processing systems, but also include

servers and operating systems. Theyoperate continuously and produce and consume unbounded

message sequences. Hence, languages designed for operating on such sequences, languages such

as Id [1], Lucid [2][26], Sisal [20], Lustre [9], and Signal [3] support streams. In Sisal and Id,

streams are lists fashioned after lists in Lisp,but with non-strict semantics. This means simply

that a function operatingon the streamcan beginoperating on it before the entire stream has been

computed.
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Recursive Iterators

4.0 Recursive Iterators1

The SDF graphin figure 4 is scalable in that the graphical structure does not depend on the

amount of iteration. The "10" entries could easily be replaced with system parameters. However,

the structureof the iteration is rather simple. More interestingexamples are, of course, more diffi

cult to express. Sometimes, a graphical representationwe call a"recursive iterator" is ideal. It is

scalable, concise, and elegant.We will illustrate it by giving a scalable graphical representation of

an analysis/synthesis multirate filter bank and the decimation-in-time FFT, both using the SDF

model. These two examples illustrate most of the features of interest

F

QMF

1
F

1

1

—* QMF

1

—¥

QMF

'—•

QMF—fr

—• F

QMFQMF F

Figure 8. An analysis/synthesis filter bank under the SDF model. The depth of
the filter bank, however, is hard-wired Into the representation.

Consider the system shownin figure 8. It shows a multirate signal processing application:

an analysis/synthesis filter bank with harmonically spaced subbands. The signalcoming in at the

left is split by matchinghighpass andlowpass filters (labeled "QMF*). These aredecimating

polyphaseFIR filters, so for every two tokens consumedon the input, one token is producedon

the output The left-most QMF only is labeledwith its SDF parameters, but the othersbehave the

sameway.The outputof the lowpass sideis further splitby a secondQMF, andthe lowpassout

putof thatby a thirdQMF. The boxes labeled "F"represent some function performed on the dec

imated signal (such as quantization). The QMF boxes to the right of these reconstruct the signal

usingmatching polyphase interpolating FIR filters. There are four distinct sample rates in figure 8

1. The author extends thanks to JeffRobinson and Keith Rouse of Star Semiconductor forhelpful discussions pertaining to this
section.
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Recursive Iterators

with a ratio of 8 betweenthe largest and the smallest. A scalable parallelizable representation for

the decimating and interpolating FIR filters is givenbelow, but fornow we will just worryabout

the representation of the system at this level of abstraction, where the filters areconsidered an

atomic unit

The graphical representation in figure 8 is useful for developing intuition, andexposes

exploitable parallelism, but it is not so useful for programming. The depth of the filterbank is

hard-wired into the graphical representation, soit cannot be convenientlymade into a parameter

ofa filter-bank module.To solve this problem, we propose therepresentation in figure 9. A hierar-

FB(D>0)

QMF

1
F

1

QMF

1 1

FB(D=D-1)

FB(D=3)

Figure9. A "recursive iterator" representation of the filter bank application.
This representation is scalable.

chical blockcalled "FB" (for filter bank) is defined, and given a parameter D, the depth. For D>0

the definition of the blockis at theleft It contains a self-reference, with the parameter of the

inside reference changed toD-l. WhenD=0, the definition attheright is used. The system atthe

top,consisting of justoneblock,labeled "FB(D=3)", is exactlyequivalent to therepresentation in

figure 8, except that the graphical representation does not now depend onthe depth. Thegraphical
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recursion in figure 9 can be expanded completely at compile time, exposing all exploitable paral

lelism, and incurring no unnecessary run-time overhead.

x(0)^ -^ TX(Q)

Figure 10. A fourth-order decimatlon-ln-tlme FFT shown graphically. The order
of the FFT, however, Is hard-wired into the representation.

A fourth-order decimation-in-time FFT is shown in figure 10. Again, as a graphical pro

gram, this representation is extremely inconvenient A scalable representation using recursive

iterators is shown in figure 11. When the FFTorder N is a powerof two greater than zero, the def-

FFT(N=4)

FFT(N>0)

FFT(N=N/2)

H>-
DIST

v_±
FFT(N=N/2)

Figure 11. A recursive-iterator representation of the decimatlon-in-time FFT.
This representation is scalable.

inition of the FFT block is shown on the left. The first block is a "distributor**, which collects two

input tokens and send the first oneto thetopoutput and the second oneto thebottom output The

resultingdecimated-in-time sequences are sent to recursiveinstancesof the FFT block with order

N replaced by N/2.These recursive references willbeexpanded atcompile-time until the order is

one, atwhich timethetrivial definition ontheright willbe used. The tokens returned by recursive

FFT instances are fedintoabutterfly network. The triangles represent fixed gains (the "twiddle

factors**). Note that thevalue of these willdepend onthe parameter N atagiven depth of the
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Multidimensional Dataflow

recursion as well as the position of a particular firing in the firing sequence. Expressing these

dependencies requires considerable functionality in the expression language used. The "COM"

actor (for "commutator") collects N tokens on each input, then outputs them sequential, the top

inputs first. The resulting outputs will be in the same order as in figure 10. The DIST and COM

actors are used regularly in Ptolemy [7].

The representation in figure 11 satisfies all our objectives, and has the side benefit that it is

structured recursively, much like the derivation of the FFT algorithm itself. But there still may be

improvements. Instead of the butterfly operations explicidy specified as shown in figure 11, we

could use an FFT of some small order, set by a parameter. This would allow us to control the gran

ularity through a parameter instead of being constrained to the finest available granularity.

5.0 Multidimensional Dataflow

...................

:x:x::::::y:o:x.::::y::::::.::::::::.o:::-:-::::x-::x^

The standard dataflow model suffers from the limitation that its streams are one dimen

sional. Although a multidimensional stream can be embedded within a one dimensional stream, it

may be awkward to do so. In particular, compile-time information about the flow of control may

not be immediately evident. The multidimensional SDF model is a straightforward extension of

one-dimensional SDF. Figure 12 shows a trivially simple two-dimensional SDF graph. The num-

0 •©
Figure 12. A simple MD-SDF graph.

berof tokens produced andconsumed are now given as M-tuples. Insteadof one balance equation

for each arc, there are now M. The balance equations for figure 12 are

rA,l°A,l = rB,lJB,l (6)

rA,2^A,2 = rB,2^B,2 (7)
These equations should be solved for the smallest integers rx ,-, which then give the num-

ber of repetitions of actor X in dimension i.
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Multidimensional Dataflow

5.1 Application to Multidimensional Signal Processing

As a simple application of MD-SDF, considera portionof an image coding system that

takes a 40x48 pixel image and divides it into 8x8 blocks on which it computes a DCT. At the top

level of the hierarchy, the dataflow graphis shown in figure 13. The solution to the balance equa-

40,48) (8,8),, N(8,8)
^^VDCT<jj

dimension 2

e T
o :

s

11

1

I

:

Figure 13. An Image processing application In MD-SDF.

tions is given by

rA,l = rA,2 = *>rDCT,l ~ 5>rDCTt2 = *>. (8)
A segment of the index space for the stream on the arc connecting actor A to the DCT is

shown in the figure. The segment corresponds to one firing of actorA. The spaceis divided into

regionsof tokens that are consumed on eachof the five vertical firings of eachof the 6 horizontal

firings. The precedence graph constructed automatically from this shows thatthe 30 firings of the

DCT are independent of one another, andhence can proceed in parallel. Distribution of data to

these independent firings can be automated.

5.2 Flexible Data Exchange

Application of MD-SDF to multidimensional signalprocessingis obvious. There are,

however,many less obvious applications. Consider the graph in figure 6 above. Note that the first

firing of A produces two samples consumedby the first firing of B. Supposeinsteadthat we wish

for firing A-| to produce the first sample foreach of Bi andB2.This can be obtained using MD-

SDF as shown in figure 14. Here, each firing of A produces data consumed by each firing of B,

resulting in a pattern of data exchange quitedifferent from that in figure 6. The precedence graph

in figure 14 showsthis. Also shownis the index space of the tokens transferred along the arc, with

14 of 24 DATA PARALLELISM IN GRAPHICAL SIGNAL FLOW REPRESENTATIONS OF ALGORITHMS
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Dataflow graph

Figure 14. :Data exchange in an MD-SDF graph.

the shaded regions indicating the tokens produced by the first firing of A and consumed by the

first firing of B.

A DSP application of this more flexible data exchange is shown in figure 15. Here, ten

128,1 1,10.

Figure 15. Averaging successive FFTs using MD-SDF.

successive FFTs are averaged. Averaging in each frequency bin is independent and hence may

proceed in parallel. The ten successive FFTs arealso independent, so if all input samples are

available, they too may proceed in parallel.

5.3 Computing Inner Products

Consider the problem of repeatedly computing an inner product on a stream of vectors.

This can be easily elaborated into an FIR filter, although for conciseness we will stick to the

generic inner product In particular, supposewe wish to express the inner product at its finest level

of granularity, and further thatwe require the graphical representation to have a structure thatis

independent of the size of the vectors. To express this using ID-SDF, we might try the configura

tion shown in figure 16. Actors A and B each supply vectors of length 8 by producing 8 tokens

when they fire. The small white diamond is a "delay", which in a dataflow context is simply an

initial, zero-valued token on the arc.The actorwith the downward arrow is a "downsample." It

simply consumes 8 tokens and outputs one of them, discarding the rest This configuration will

DATA PARALLELISM IN GRAPHICAL SIGNAL FLOW REPRESENTATIONS OF ALGORITHMS 15 of 24
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Q2—'+<gr w '—K&+
G>

Figure 16. An attempt to use 1D-SDF to repeatedly compute inner products.

correctly compute the first inner product, but when the secondset ofvectors are generated by

repeated firings of A and B, the delay on the feedback path will not be re-initialized. Hence, sub

sequent inner products will be incorrect

I have previously proposeda mechanism called"resetting delays" that solve this problem

in the context of ID-SDF [18]. However, the MD-SDF model provides a more elegant solution.

A delay in MD-SDF in associated with a tuple as shown in figure 17. It can be interpreted

O—<^-HD
Figure 17. A delay In MD-SDF Is multidimensional.

as specifying boundary conditions on theindexspace. Thus, for 2D-SDF, asshown in the figure, it

specifies thenumber of initial rows and columns. It can also be interpreted asspecifying thedirec

tion in theindex space ofadependence between twosingle assignment variables, muchas done in

reduced dependence graphs [15].

Using MD-SDF delays, therepeated inner product can be specified as shown in figure 18.

Theonly significant difference between this and figure 17 is themultidimensional delay. Itseffect

is illustrated schematically in figure 18, where the index space for the output of the delay is

shown. The shaded area is the initial condition specified by the delay.

5.4 Mixing Dimensionality

Note thatin figure 18,2D and ID-SDF are mixed. We use the following ruleto avoid any

ambiguity:
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QF^-K®—KB1
.1 Index space for variable X:

iiiii««fmmw

IIIIIIIIIII~r
::::::/i /

__ "^
z_^

::::::::/
:::::::::::::r.

Figure 18. Repeated Inner products In MD-SDF.

• The dimensionality of the index space for anarc is the maximum of the dimensionality of the

producerandconsumer.If the producer or the consumer specifies fewer dimensions than those

of the arc, the specified dimensions areassumed to be the lower ones (lower number, earlierin

the M-tuple). Hence, the two graphs in figure 19 areequivalent

(M,N) (K.1)/
Qf^-^Q

Figure 19. Rule for augmenting the dimensionality of a producer or consumer.

We can specify a comparable rule for delays:

• If the dimensionality specified fora delay is lowerthan the dimensionality of an arc, then the

specified delayvalues correspond to the lowerdimensions. The unspecified delayvaluesare

zero. Hence, the graphs in figure 20 areequivalent.

Figure 20. Rule for augmenting the dimensionality of a delay.
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Multidimensional Dataflow

5.5 Polyphase Decimating FIR Filters

The inner productof figure 18 canbe used to concisely describe a polyphase decimating

FIR filter while exposingallthe parallelism in the algorithm. A ID-SDF specification of sucha

filter might look like figure 21. The input signal is dividedinto three phases,each of which is dis-

FIR subfilters

Phase 1 — —•^

Phase2—!*^ft—•

Phase3 -^——JPhase 3

Figure 21. A 1D-SDF specification of a polyphase decimating FIR filter. This
description does not expose all the parallelism and has the
decimation ratio graphically hard-wired Into it.

tributed to asubfilter, and the outputs of the subfilters are added [12]. As a graphical description

of the algorithm, however, there are two major deficiencies. If we are restricted to ID-SDF, then

the FIR subfilters mustbeimplemented as atomic actors, inwhich case the description does not

exposeall the parallelism in the algorithm. Moreover, the representation has the decimation ratio

of three graphically hard-wired into it.This means it cannot easily bemade aparameter of the fil

ter.

MD-SDF can beused tosolve both these problems, as shown in figure 22. The inner prod

uct from figure 18 is used as amodule. The "Last N"actor consumes one token and produces a

lxN array composed of the token consumed and the previous N-l tokens consumed onprevious

firings. The "matrix constant" actor has obvious functionality, and need not involve any run-time

activity. It supplies the filter coefficients with one phase per row. The transpose actor transposes

the input array. We willelaborate below onthe run-time implications of these actors.

5.6 Matrix Multiplication

As another example, consider a fine-grain specification of matrix multiplication. Suppose

we are tomultiply an LxM matrix by an MxNmatrix. Inathree dimensional indexspace, this can
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Signal source (a

Transpose I

1

Ld.M)
iParameter: (2,1)

Rlter order: N
Decimation ratio: M

Matrix Constant
Polyphase
filter coefficients

Downsamplefl

Figure 22. A polyphase decimating FIR filter expressed using MD-SDF. This
representation exposes all the parallelism in the algorithm.

Original Matrix

Repeats

i

Dimensions

N / N
Element-wise product Repeats

Figure 23. Matrix multiplication represented schematically.

be accomplishedas shown in figure 23. The original matricesareembedded in that index spaceas

shown by the shaded areas. The remainderof the index space is filled with repetitions of the

matrices. These repetitions are analogous to assignments often needed in a single-assignment

specification to carry a variable forward in the index space. An intelligent compiler need not actu

ally copy the matrices to fill an area in memory. The data in the two cubes is then multiplied ele

ment-wise, and the resulting productsaresummed alongdimension 2. The resulting sums give the

LxN matrix product The MD-SDF graphimplementing this is shown in figure 24. The key actors

used for this are:

Upsample: In specified dimension(s), consumes 1 and produces N, inserting zero values.

Original Matrix
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Repeat

Downsample

Transpose

Multidimensional Dataflow

M) TfM.N)
1,1,1) i(M,N,1)

Transposedt JParameter: (3,1,2)
I.1.N) Ttl,M,N)

41,1.1)
Repeat C\

I0-.1.1)

^(0,1,0)
I.M.1)

,1,1)
,N)

Parameter: (1,3,2)

,1)

IU1

(L.N

Figure 24. Matrix multiplication In MD-SDF.

Repeat. In specifieddimension(s), consumes 1 andproduces N, repeating values.

Downsample: In specifieddimension(s), consumes N andproduces 1,discarding samples.

Transpose: Consumes andM-dimensional blockof samples andoutputs them with the dimen
sions rearranged.

Upsample
(L,M,1)/2N(L,M,N)

Repeat
(UM,1)/2v(L,M,N)

<t? •

Downsample
(L,M,N)xtx(L,M,1)

<±) •
Transpose

(L,M,NW(M,N,L)

—<Lr—•
Parameter: (2,3,1)

Figure 25. Some key MD-SDF actors that affect the flow of control.

These are identified in figure 25. Notethat all of these actors simplycontrol the way

tokens are exchanged and need not involve any run-time operations. Of course, a compiler then

needs to understandthe semantics of these operators.

5.7 Polyphase Interpolating FIR Filters

The matrix multiplication of figure 24can be used to describe a polyphase interpolating

FIR filter [12] as shownin figure 26.This uses thematrix multiply from figure 24 as a module. It
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Signal source [»]

LastN

id.N)

Filter order: N

Decimation ratio: M

Matrix Constant
Polyphase
filter coefficients

M)

Matrix Product

l,M)

Transpose^xj Parameter: (2,1)
J(M,1)

Figure 26. A polyphase interpolating FIR filter expressed using the MD-SDF
model. All the parallelism In the algorithm can be automatically
exploited.

also uses a new actor, the "matrix constant,'* which repeatedly supplies the polyphase filter coeffi

cients. Again, a good compiler will hopefully have no run-time activity associated with this actor.

5.8 Run-Time Implications

Several of the actors we have used perform no computation, but instead control the way

tokens are passed from one actor to another. In principle, a smart compiler can avoid run-time .

operations altogether, unless data movement is required to support parallel execution. We set the

following objectives for a code generatorusing this language:

Upsample: Zero-valued samples should not be produced, stored, or processed.

Repeat: Repeated samples should not be produced or stored.

Last-N: A circular buffer should be maintained and made directly available to downstream

actors.

Downsample: Discarded samples should not be computed (similar to dead-code elimination in

traditional compilers).

Transpose: There should be no run-time operation at all, just compile-time bookkeeping.

It is too soon to tell how completely these objectives can be met
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5.9 State

For large-grain dataflow languages, it is desirable to permit actors to maintain stateinfor

mation. From the perspective of their dataflow model, anactor with state information simplyhas a

self-loop with adelay. Consider the three actors with self loops shown in figure 27. Assume, asis

(1.0) (0,1) (1,1)

999
Figure 27. Three macro actors with state represented as a self-loop.

common, that dimension 1 indexes the row in the index space, anddimension 2 the column, as

shown in figure 13. Then each firing of actor A requires state information fromthe previous row

of the index space for the state variable. Hence, each firing of A depends on the previous firing in

the vertical direction, but there is no dependencein the horizontaldirection. The first row in the

state index space must be provided by thedelay initial value specification. ActorB, by contrast,

requires state information from the previous column in the index space. Hencethere is horizontal,

butnotvertical dependence among firings. Actor C has both vertical and horizontal dependence,

implying that both an initial row and an initial column must bespecified. Note that this does imply

that there is no parallelism, since computations along adiagonal wavefront can still proceed in

parallel. Moreover, this property is easy to detect automatically in acompiler. Indeed, all modern

parallel scheduling methods based onprojections of an index space [15] can beapplied to pro

grams defined using this model.

5.10 Asynchronous Actors

Thetoken flow model, which permits SWITCH and SELECT actors, can beeasily

extended tomultiple dimensions by simply allowing symbolic placeholders inside the M-tuples

giving the number of samples produced and consumed by an actor. This is necessary touse multi

dimensional dataflow over non-rectangular index spaces. However, we have a great deal of work

todo yetbefore apractical programming language making use of this can bedevised.
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6.0 Caveats

A graphical programming model based on dataflow that supports multidimensional

streams has been outiined. However, we have only defined a language in sufficient detail to illus

trate some simple examples. It is not clear at this point that a language based on these principles

will be easy to use. Certainly the matrix multiplication program in figure 24 is not very readable.

Algorithms with less regular structure will only be more obtuse. This difficulty will be exacer

bated when a multidimensional DF language based on the token flow model is developed. How

ever, the analytical properties of programs expressed this way are compelling. Parallelizing

compilers and hardware synthesis tools should be able to do extremely well with these programs

without relying on runtime overhead for task allocation and scheduling. We conclude, therefore,

that further investigation is certainly warranted. At the very least, the method looks promising to

supplement large-grain dataflow languages, much like the GLU "coordination language" makes

the multidimensional streams of Lucid available in large-grain environment [14]. It may lead to

special purpose languages, but could also ultimately form a basis for a language that, like Lucid,

supports multidimensional streams, but is easier to analyze, partition, and schedule at compile

time.
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