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Abstract

A number of recent papers have investigated the feasibility of synchronizing chaotic systems. Ex
perimentally one of the easiest systems to control and synchronize is the electronic circuit. This paper
examines synchronization in Chua's Circuit, proven to be the simplest electronic circuit to exhibit chaotic
behavior.
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1 Introduction

The essential property of a chaotic signal is that it is not asymptotically stable; closely correlated initial
conditions have trajectories which quickly become uncorrected. Recently it was shown that it is possible to
construct a set of chaotic systems so that their common signals will have identical, or synchronized, behavior.
Afraimovich, Verichev, and Rabinovich [1] consider two identical oscillators having chaotic behavior with
linear diffusion coupling:

x = y

y = -ky-x(l + qcos0 + x2) + 6(y/-y)
x' = j/

y7 = _Jby'-x'(l + gcos0 + x'2) + %-y') (1)

where 6 is a coupling parameter. They have shown that there exists a critical value S*, such that for all
6 > 6* the two oscillators have identical chaotic behavior independent of initial conditions: x(t) = x'(t) and

The basic construction of Pecora and Carroll [2,3], can be described as follows: Consider the autonomous
n-dimensional dynamical system

Now divide the system into two subsystems (u = (v, w))

dv „. N dw ... x ,_v—±G(v,w) -£ = H(v,w) (3)

where v = (t*i,...,um), g = (Fli...iFm), w = (txm+i,...,«„) and H - (Fm+1)...,Fn)
Next, create a new subsystem w' identical to the w subsystem. This yields a (2n —Tridimensional

system:

5 =0(.,«) §-*(.,«) ^ =H(v,w') (4)
The v —w system is called the drive system, and the w' subsystem the response system. If w'(t) converges
asymptotically to w(t) and continues to remain in step with w(t) the two subsystems are said to have
synchronized. The Lyapunov exponents of the response subsystem for a particular driven trajectory are
called conditional Lyapunov exponents (hereafter referred to as CLE). Pecora and Carroll have shown that
the necessary and sufficient condition for the chaotic trajectory w(t) to be asymptotically stable is for all of
the CLE to be negative.

Since its discovery in 1984 [4, 5] the Chua circuit has been studied extensively; see references in [6].
Its unique advantage over other chaotic systems lies in the fact that it is an extremely simple system yet
it exhibits the complex dynamics of bifurcation and chaos. In this paper we shall show experimentally,
numerically and theoretically (in some cases) that it is possible to synchronize Chua's circuit.

2 The Chua Circuit

Shown in Fig. la the circuit consists of a linear inductor L, a linear resistor R, two linear capacitors C\ and
Ci and a nonlinear resistor Nr. The circuit equations can be written as

Ci-jf- = x^c* - vCl) - g(vCl)
,., dvc? 1 . x

L~dt = ~VC* ^



where g(-) is a piecewise-linear function defined by:

g(vR) =GbvR +i(Ga - Gb) [\vR +Bp\ - \vR - Bp|] (6)

and is shown in FIG. lb. The slopes of the inner and outer regions are Ga and Gb, while Bp indicates
breakpoints.

Most of the analytical studies of the circuit havefocused on a dimensionless form of the equations which
is obtained by reseating the parameters of the system:

x = vCl/Bp y = vcJBp z = iL/(BpG) T= tG/C2
a = RGa b= RGb a = C2/Ci 0 = C2R2/L

which gives the state equations

x = oc(y - x - /(x))
y = x-y-rz

z = -/?y (7)

where

/(x) =6x +i(a-6)[|x+l|-|x-l|] (8)

and x = dx/dr.
We need two identical chaotic systems; let the second system be x^t)^^)^'^) with the same state

equations as (7). Establish a difference system f(r) =p(T),q(r)}r(r) with

p(r) = x(r)-x'(r)

?(r) = y^-yV)
r(r) = z{t)-z\t) (9)

Toinvestigate the synchronization ofidentical chaotic systems we would like to fix the parameters of the
Chua circuit so that the system exhibits a chaotic attractor; specifically the so-called double scroll attractor.
The following nominal values produce the double scroll:

Ci = lOnF Bp = IV
C2 = lOOnF Gh = -0.41
L = 18.75m# Ga = -0.76
G = 0.599mS

Which correspond to the rescaled parameters

a = 10.00 /? = 14.87
a = -1.27 6 =-0.68

These values will be fixed throughout the following discussion. This realization of the Chua circuit is
taken from [7]. Fig. 2 shows the double scroll attractor.

3 Coupled Systems

We consider a simple coupling of two Chua circuit systems:



x = <*(y - x - /(x)) + 6x{x' - x)
y = x-y + z + Syb/ -y)
i = _/?y + k(2'_Z)

x' = a^-x'-/(*'))+ **(*"*')
y> = x'-y' + z' + ^y-y')
i' = _/# + $,(*-*')

where for the x(resp. y,z) coupled system only 6x(resp. 6y,6z) is different from zero.

(10)

Proposition 1 Suppose that there exist values (6\,62) such that for 6\ <8 < 62, where 6 denotes 6X, 6y or
62, the real part of all eigenvalues of the matrices

and

—a —act —26x
1

0

—a —6a —26x
1

0

a

-1 - 26y
-0

a

-1 - 26,

0

1

-26,

0

1

-26z

are negative. Then the submanifold {x,y, z,x', j/7, z': x = x;, y= j/, z = z'} in the phase space 5ft6 of(10)
is stable in the sense that all trajectories in the two systems approach each other asymptotically, regardless
of initial conditions. It is assumed that the initial conditions are in the basin of attraction.

Proof:

From (9) and (10) we have

p = aq-a- a[/(x) - f(x')] - 26xp
q = p-q + r- 26yq

r = -pq - 26tr (11)

Since /(x) - f{x') = f'(r))(x - x') and f'(ij) takes two values a and 6, (11) reduces to the linear system

*P1 \ P
q=Aq
r r

where the matrix A is given by either of the matrices in Proposition 1. If the real part of all eigenvalues
of these matrices are negative it follows that the equilibrium of (11) is stable.
Remarks:

1. This theorem gives only necessary conditions for synchronization; in other words if we cannot find 6\
and 62 it does not mean that the system cannot be synchronized (see section 3.2, 3.3).

2. All computer simulations were done usingsoftwarepackage INSITE [8]. In all the computer simulations
the following identifications hold: x[l] = x, x[2] = y, x[3] = z. x[4,5,6] willvary according to individual
simulation. All transients were allowed to die out; only the steady state behavior is shown.



3.1 x-coupled system

Fig. 3 shows the experimental set-up. The state equations are:

x = a(y - x - /(x)) + Mx' - x) x' = atf - x'- f(x')) + 6x(x - x')
y=x-y+z y, = x'-y,-rzt
z = -0y z' = -fit/

where 6X = Ra/Rx. The difference system is

or

p = aq —ap —s.or —26xp

q = p-g + r

r = -fa

—a —Stat—26x a 0
1 -1 1

0 -0 0

(12)

where st = a, 6; t = 1,2. The characteristic equation is

A3 + (or + 8iot + 26x + 1)A2 + (Sia + 26, + /?)A +0(a + «,-a + 2^) = 0 (13)
or

A3 + «A2 + pX + <r = 0 (14)

If <r > 0, ^ > 0 and Kp-<r>0 then p = g= r = 0isa stable point and the subsystems will synchronize.
In the present case the value of 61 was found to be 5.56, and thus for all 6X > 5.56 the subsystems will
synchronize. For values of6X below this value the theorem makes no predictions; experimental and numerical
evidence indicates that the circuit will synchronize for 6X > 0.5. See Fig. 4a-b.

3.2 y-coupled system

The experimental set-up is shown in Fig. 5. The state equations are

x = or(y- x-/(*)) x'= atf - X'- f(x'))
y=x-y + z-r6y(y,-y) if = x' -y> + *' + 6y(y - y7)
z = -fo z' = -W

where 6y = R/R,..
Unfortunately we cannot apply Proposition 1 in this case because we found that at least one matrix in

Proposition 1 has positive eigenvlues. However, this does not imply that the y-coupled system will never
synchronize. Experimentally the system synchronized for 6y > 5.5 and numerically the system synchronized
for 6y > 1; see Fig. 6a-b.

3.3 z-coupled system

We only examined the circuit by computer simulation.

x = or(y - x - f(x)) x'= ct{y' - x' - f(x'))
y = x-y + z y7 = x' - y7 + z1
z = -Py + 6,(z'-z) zf^-M + 6z{z-z')

As in section (3.2) we cannot apply Proposition 1 to this system, for the same reason. Numerically
synchronization was found for 0.7 < 6Z < 2for a particular set of initial conditions; see Fig. 7.



4 Drive-Response Systems

Pecora and Carroll [2, 3] have shown that the subsystems will synchronize ifthe CLE of the response system
are ail negative. The CLE are found by calculating the Lyapunov exponents for the entire 2n-m dimensional
system and comparing these to the Lyapunov exponents of the n dimensional drive system. The remaining
n-m Lyapunov exponents will be the CLE ofthe response system. There is a relatively simple method to
see whether the CLE will be negative, given that the subsystem is linear. Let £(t) = w(t) - w'(t), and call
£ the difference system. Then we have

£(t) = w(t) - w'(t) = h(v, w) - h(v, w') (15)

If the subsystem is linear, we have

«0 =^(0 (16)
where A is an (n-m) x (n - m) constant matrix. Let the eigenvalues ofA be (Ax, A2,... A„_m). The real
part of these eigenvalues are by definition the CLE we seek.

If all of the CLE are negative then limbec f (<) = 0 and the subsystems will synchronize; if there is
a positive CLE the subsystems will grow farther apart as t -* oo and thus will never synchronize. An
intermediate case occurs if oneor more of the CLE are zero but none are positive; as t —• oo the subsystems
will be separated by a fixed distance R, dependent upon the initial conditions.

If the subsystems are linear circuits with passive elements it is trivial to calculate the CLE. If the
subsystems are nonlinear the CLE are not so easily determined; we must resort to computer software such
as INSITE.

In our paper the n-dimensional dynamical system of (2) will be the rescaled state equations (7). We will
investigate three kinds of drive-response systems:

Drive Response Subsystem

We examine each of these in turn.

(y»*)
(x,z)
(*>y)

linear

nonlinear

nonlinear

4.1 x-drive configuration

Fig. 8 shows the experimental set-up. The state equations become

x = a(y - x - f(x)) y7 = x - y7 + z'
y = x-y-rz z' = -/fy7

and the difference system in matrix form is

The eigenvalues are -~ ± \y/Af3 —It giving thesolution

£(r) = e-T/2(C,cos(v/4^T/2)r + Dsin(v^^l/2)r) (17)

Cand Dare constants of integration. The CLE are (-0.5, -0.5) and as expected lim^o,£(r) = 0. The
subsystems synchronize, see Fig. 9a-b.



4.2 y-drive configuration

Fig. 10 shows the experimental set-up. The state equations are

x = or(y - x - /(x)) x7 = a(y - x7 - /(x7))
y = x-y-\-z i7 = -/?y
i--0V

Note that the LC-tank circuit is redundant in view of the substitution theorem [9] and can be deleted.
Using INSITE the CLE are found to be (-2.5 ± 0.05, 0) As expected the subsystems synchronize. Because
the second eigenvalue is 0, z(r) and z'{r) will remain apart by a constant distance B =| z(0) —z'(0) |. See
Fig. lla-b.

4.3 z-drive configuration

Here we only examined the circuit by computer simulation. The state equations become

x = a(y - x - /(x)) x7 = 0(1/ - x' - f(x'))
y= x-y + z y7 = x7 - y7 + z
z = -0y

Using INSITE the CLE are found to be (-5.42 ± 0.02,1.23 ± 0.03). As expected the subsystems do not
synchronize.

5 Closing Remarks

This study raises some interesting questions, and encourages further investigation. How much can the
parameters of the subsystems be varied before synchronization is lost completely, and can this be predicted
theoretically? How does detuning of the basic frequencies affect the system? The simplicity and robustness
of the Chua circuit makes it a convenient vehicle to investigate all of these topics.
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FIGURES

la) Chua's circuit

lb) Nonlinear resistor (Nr) v-i characterisitc

2) The double scroll attractor; parameters C\ = lOnF, C2 = lOOnF, L = 18.75mH, R = 1.67 kfi, m0
= -0.35, mi = =0.76; horizontal axis (VCl) lV/div, vertical axis (VCa) 500mV/div

3) x-coupled configuration; 10k potentiometer used

4a) x-coupled synchronization, 6 = 0.5; initial conditions x[l] = -2, x[2] = 0.02, x[3] = 4, x[4] (x7) =
0-7, x[5] (y7) = 0.4, x[6] (z') = -0.8

4b) VCl-coupled synchronization, 6 = 0.5 (Rx = 3.34 kfi; horizontal axis: Vba, vertical axis: V'c ; both
axis 200mV/div a

5) y-coupled configuration; 10k potentiometer used

6a) y-coupled synchronization, 6 = 1; initial conditions x[l] = -2, x[2] = 0.02, x[3] = 4, x[4l (x7) = 0.7,
x[5](y7) = 0.4,x[6](z7) = -0.8

6b) Vfc2-coupled synchronization, 6 = 5.8 (R* = 290 Q; horizontal axis: VCl, vertical axis: Vj; \ both
axis lV/div

7) z-coupled synchronization, 6 = 1; initial conditions x[l] = 0.01, x[2] = 0.01, x[3] = 0.01, x[4] (x7) =
0.04, x[5] (y7) = 0.01, x[6] (z') = 0.01

8) x-drive configuration; op-amp from AD712 chip

9a) x-drive synchronization; initial conditions: x[l] = -2, x[2] = 0.02, x[3] = 4, x[4] (y7) = 0.4, x[5] (z')
= -0.8

9b) Vc,-drive synchronization; horizontal axis: Vca, vertical axis: V£3; both axis 200mV/div

10) y-drive configuration; op-amp from AD712 chip

11a) y-drive synchronization; initial conditions: x[l] = -2, x[2] = 0.02, x[3] = 2, x[4] (x7) = 0.7, x[5] (z') = -0.8

lib) Vca-drive synchronization; horizontal axis: Vclt vertical axis: V& ; both axis lV/div

Note difference in z - z' offset in Fig. 11a due to initial conditions
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