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Abstract

We prove that 100% delay-fanlt testability is not necessary to guarantee the speed of
a combinational circuit. We show there exist path delay-faults which can never impact
the circuit delay (computed using any correct timing analysis method) unless some other
path delay-faults also affect it. These are termed robust dependent delay-faults and need
not be considered in delay-fault testing. Necessary and sufficient conditions under which
a set of path delay-faults is dependent are proved; this yields more accurate and larger
delay-fault coverage estimates than previously used. Next, assuming only the existence of
robust delay-fault tests for a very small set of paths (linear in circuit size), we show how
the circuit speed (clock period) can be selected such that 160% robust delay-fault coverage
is achieved. This leads to a quantitative tradeoff between the amount of testing effort (test
set size) for a circuit and the verifiability of its performance. Finally, under a bounded
delay model, we show that the test set size can be substantially reduced while maintaining
the delay-fault coverage for the specified circuit speed. Examples and experimental results
are given to show the effect of these three techniques on the amount of delay fault testing
necessary to guarantee correct operation.

1 Introduction

The need for ensuring the temporal (dynamic) correctness of circuits has led to the development
of delay-fault testing theory and methodologies [9]. Two fault models have been proposed for
delay-fault testing, namely gate delay-faults and path delay-faults. Of these the path delay-
fault model is more attractive since it models a larger set of defects and can give guarantees
on circuit performance [16]). However, because there can be an exponential number of paths
in a circuit, path delay-fault testing often requires very large test sets. This paper addresses
the issue of guaranteeing circuit performance using only a small (possibly linear size) test set.
For circuits where a 100% guarantee is not possible, we also address the question of providing
a large fault coverage guarantee with small size test sets.
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A path delay-fault occurs along a path P if the delay along P falls outside its specified
limits (in general, either upper or lower bounds). Each path has two possible long path delay-
faults associated with it, a rising delay-fault and a falling delay-fault. ! Short path delay-faults
can also occur and cause problems. Examples are in wave pipelined circuits, clocking schemes
using transparent latches, and asynchronous circuits. The goal of delay-fault testing is to certify
the absence of delay-faults that cause the manufactured circuit to fall outside its specified delay
bounds.

In this paper we focus on upper bounds on circuit performance. We show that the path
delay-faults in a circuit can be partitioned into two sets. For the first set, the occurrence
of one or more delay-faults can cause an increase in circuit delay. This set must be tested
for delay-faults to certify correct operation. It includes all robust testable path delay-faults
(RPDF). The delay-faults in the second set are termed robust dependent (RD) delay-faults.
The occurrence of these delay-faults cannot increase the circuit delay unless some non-RD
delay-faults also occur. Thus, RD delay-faults need not be tested to ensure that a manufactured
circuit operates at the desired speed.

We define the delay-fault coverage of a test set as the percentage of all non-RD delay-faults
guaranteed not to occur if the circuit passes the test set. This is different from the percentage
of all delay-faults that are robust testable. The latter is commonly called the delay-fault
testability of the circuit. There may be delay-faults in a circuit for which no robust test exists,
yet the absence of the delay-fault is guaranteed by the test set (since the circuit passed the
delay tests). Thus, delay-fault coverage is a function not only of the test set size but also of
the number of faults implied absent by the test set. The fault coverage of a test set can also
depend on the delay bounds used in the testing procedure.

The approach taken in this paper is different from all previous work in both delay-fault test
generation [8, 14, 13, 1] and synthesis [7, 12, 3, 4, 11, 6). Up to now the ability to detect delay
defects in a circuit has been measured by its delay-fault testability. Full testability requires
that every path has a robust test. However, the goal of delay-fault testing is to be able to
detect every delay defect that causes a late (early for short-path delay-faults) transition at some
output of the circuit during normal operation. Thus delay-fault testing serves to guarantee the
functional correctness (with respect to timing) of a circuit. In particular, paths along which
delay-faults can never individually affect circuit functionality are of no interest both in test
generation and synthesis. None of the previous work appears to have addressed this issue
of delay testing. In this paper we demonstrate that this aspect of delay testing is crucial in
providing a realistic estimate of the delay-fault coverage and also in reducing the delay testing
effort for most circuits.

This view of delay-fault testing also differs from the philosophy of stuck-fault testing.
The goal of stuck-fault testing is to determine a test for each fault or prove it redundant.
Removal of redundant stuck-faults also yields smaller area and better performance reliability.
This requirement of stuck-fault testing arises from a good correlation that exists between the
absence of stuck-fault defects and the reliability of the circuit; that is, a circuit with fewer
stuck-fault defects is more likely to operate correctly than one with more stuck-fault defects.
This is not the case with delay faults where a certificate of correct timing functionality at the
outputs of the circuit is desired. Hence, robust untestable paths are of no concern (and need
not be isolated or removed) if they cannot impact the circuit delay.

1Each path delay-fault is associated with a path. Since we are dealing with the impact of delay-faults on circuit
delay, we interchangeably refer to either the delay-fault or the associated path.




This paper contributes to the question of how much delay fault testing is necessary in three
ways:

1. Necessary and sufficient conditions for a set of delay-faults to be RD are derived. We
show that the delay-faults on any set of long false paths that can exist for any particular
delay assignment to connections in the circuit forms an RD set. This does not affect
the test set size since every RPDF still must be tested. However, it does give a more
realistic and better estimate of the delay-fault coverage.

2. We show how to trade-off delay-fault coverage and circuit speed. By relaxing the
operating speed for the circuit (this is the clock period in synchronous circuits), a larger
delay-fault coverage can be achieved. We call the minimum clock rate for which the
coverage is 100% the robust delay of the circuit. Using this concept, we present path
delay-fault testing methodologies whose test set sizes are linear in the size of the circuit
(as opposed to 100% RPDF testing which can be exponential in size).

3. Using a bounded delay model (the delay of a tested path is guaranteed to lie between both
upper and lower bounds) we formulate a simple linear program to reduce the delay-fault
test set size without decreasing the fault coverage.

Examples are given to illustrate these effects and the corresponding test set size.

The paper is organized as follows. The context for our work is provided by Section 2
which discusses the issues that arise in verifying circuit delays. Section 3 provides background
information on robust delay-fault testing and delay analysis. The concept of robust dependent
delay-faults is described in Section 4. Section 5 introduces the notion of robust delay and
illustrates the tradeoffs between testing effort and performance verifiability in circuits. Test
set reduction under a bounded delay model while maintaining the same fault coverage for the
specified circuit speed is discussed in Section 6. Section 7 illustrates how each of these three
aspects impacts the delay-fault coverage of a test set. Preliminary experimental results are
presented in Section 8. Finally, Section 9 discusses how the theory described here can be used
for the synthesis of circuits with 100% robust delay-fanit coverage.

2 Verifiable delay analysis

A connection is just a wire or a pin to pin path through a gate. A path is denoted as a sequence
of connections or points. A connection or point is denoted by a lower case letter, a path by an
upper case letter, and a set of paths by an upper case script character. The delay of a connrection
e = (a,b) between points a and b is denoted either (¢) or 5(a, b), and the delay of path P
is denoted 6(P). Delays may depend on whether a signal is rising or falling in which case a
delay is denoted 6" (e) or &/ (a, b). For a path P, 6"(P) means the delay of P when its output
is rising; similarly for falling.

A circuit design C is a net list of gates. In analyzing a design, typically one assumes some
delay model, for example a connection e has rising delay 6" (e) such that d,, < 6"(e) < d7,,,
(called a bounded delay model). Usually an analysis of the performance of a circuit design
derives properties about the design assuming that all connections meet their delay bounds.
For example, in timing verification [10], an upper bound 7 on the delay the circuit is computed,
where 7 is some complex function of the assumed delay bound parameters. Note that this



analysis is valid only for acceptable designs and manufactured circuits whose connections
meet the delay bounds.

To guarantee that a manufactured circuit C,, operates at some specified delay we must
make different assumptions since we know nothing a priori for the circuit under test. The
following information is known if Cy,, passes the test. Let @ be the set of palhs tested such

that for each P; € Q,
mi.n < E 6(e) < T
e€P;

where ¢, and 7%, depend on the type of testing done. Note that there are no assumptions
about delays on connections; only verifiable delays of paths are used. Only implicitly is there
an assumption about connection delays, i.e. there exists some fixed but unknown delay é(e)
on each connection e. Thus the circuit under test (the manufactured circuit) is Cr, = (C, 4)
where A is a vector of delay values, one value for each connection. We say A is a delay
assignment. We assume A° > 0 for connection e but no upper bounds are assumed; just that
certain sums are bounded:
‘ < E Ae mll

e€EP;

The fact that we have no delay model assumptions on connections does not preclude delay
analysis on C. We shall show that the following kind of analysis is possible. Let D C P,
where P is the set of all complete paths of C, i.e. paths from primary inputs to primary outputs
(such as those tested). It is possible that the following can be determined through analysis:
for any 7, if §(P;) < 7, P € P — D, then 6(P;) < f(7), P; € D. This implies that even
before a manufactured circuit Cy, is tested, we know that paths in D need not be tested for
guaranteeing C,,, as good or bad. In other words, if C,,, passes a delay test at speed 7 for paths
in P — D, then this implies that C,,, is guaranteed to operate correctly (by analysis) at speed
max(7, f(7)). Here f(7) is some function determined by analysis from the net list C.

We show two types of this kind of analysis in the paper. The first is where f(7) = 7; the
set of paths D for which such a property holds is called robust dependent. The second type
of analysis is where f(7) is a complex function evaluated by solving a linear program. Both
of these types of analysis are important in establishing an accurate estimate of the delay-fault
coverage of a set of paths Q that is tested.

Delay analysis has been the subject of intense research in the past few years. There are
two dimensions: the delay model used (unbounded?, bounded, fixed, etc.), and the type of
sequencing of input vectors assumed (single, double, multiple, periodic). Although our delay
model for Cy, = (C, A)is a fixed but unknown delay, the model for establishing 6(P;) < f(7)
can be obtained by any analysis that is a relaxed version of this. Thus even though §(e) = A®
for connection e of Cyy,, analysis methods assuming A%, < §(e) < A%, also give legitimate
bounds. Of course all the analysis methods used in this paper start only with the assumption
that 75, < 3, p, A® < 73, for those paths P; in the test set.

Note that the assumption that the circuitunder testis Cr, = (C, 4) forsome unknown fixed
delay assignment A considers static variations in delays that occur from one manufactured
circuit to another such as process variation, operating temperature, and circuit age. One
concern with this assumption is whether it accounts for the small uncertainties in delays during
circuit operation due to dynamic factors such as crosstalk, degraded signals, and slope factors.

2 An unbounded delay model is one where 0 < & < dines, i£. don = 0.




Since the analysis techniques used in computing the circuit delay are robust [10], i.e. the
delay estimate is a valid upper bound for each delay assignment that lies within the tested
lower and upper bounds. Thus, if C, passes the delay tests for the worst case upper and lower
bounds, every operation of Cy, within these delays bounds is also guaranteed to be correct. It
is also instructive to realize that delay analysis based on verifiable path delays is less likely
to be impacted by dynamic delay variations than delay analysis based on gate delays. This is
because it is likely that a small delay variation on a connection will not get reflected on the
path delay. Of course, nothing is known if C, operates outside these bounds; one is forced to
explicitly test Cy, in this case.

In summary, the delay analysis of this paper differs from the usual in that we perform
delay analysis using only verifiable path delays instead of non-verifiable connection delay
assumptions.

3 Definitions

3.1 Robust delay-fault testing

A brief definition for robust path delay-fault testing is provided in this section. The conditions
for robust delay-fault testing are rephrased from [16].

A controlling value for a gate f is a value at its input that determines the value at the
output independent of the other inputs, and is denoted A(f). For example, 0 is a controlling
value for an AND gate. A non-controlling value for a gate f is a value at its input which is
not a controlling value for the gate, and is denoted I(f). For example, 1 is a non-controlling
value for an AND gate. A simple gate is any one of AND, OR, NAND, NOR, and NOT. All
the results described here apply only to simple gates. Only these gates have controlling vs.
non-controlling values for each input. ’

Let P = {fo, fi, ..., fm} be a path where each f;, i > 0 is the output of a gate. The inputs
of f; other than f; are called side-inputs of f; along P and denoted S(f;, P). A path that
starts at a primary input and ends at a side-input of P is a side-path of P. A path delay-fault
occurs along path P if the delay along P falls outside its specified limits (in general, either
upper or lower bounds).

Definition 3.1 A test for a delay-fault is robust if and only if the test is valid independent of
delays on all the connections in the circuit. A circuit has 100% robust delay-fault testability
if and only if every path delay-fault has a robust test.

Definition 3.2 Let P = {fo, f1,..., fm}. A delay-fault for the rising (falling) transition at
Jm is said to be robust testable by the vector pair < vy, v, > if and only if at each node f;,
< v, v > yields the desired transition being tested, and for each g; € S(P, f;):

1. gj(v) = I(f;), and
2. if fi-1(v1) = I(f;), then there is no transition on g;.

The vector v, applied after v,, delayed by an amount greater than the longest path in the
circuit.




3.2 Path sensitization

Definition 3.3 A leaf-dag is a circuit composed of AND and OR gates with multiple fanout
and inverters only permitted at the inputs. An inverter is not allowed multiple fanout.

Every circuit (composed of simple gates) can be converted to a leaf-dag, albeit with
possibly an exponential number of gate duplications. ’

Definition 3.4 Thel-edge of apathina circuit refers to either the connection from the primary
input if no inverter is there, or else the connection immediately after the inverter.

Let 7 be the leaf-dag of C. Any delay assignment in C also exists in #; simply use the
same delay range on each connection in 7 as the correspording connection in C. However,
the converse is not true.

The following definition is adapted from [2]. Given a delay assignment and assuming an
initial unknown value on each connection of a circuit C, a path P = {fo, f1, ..., fm} in C is
true under a single vector v if and only if the following conditions hold at each gate f;,i > O:

1. If all inputs of f; are non-controlling, f;—; must be the last side-input to present the
non-controlling value,

2. If at least one input of f; is controlling, f;_; must be the first side-input to present the
controlling value.

This definition extends naturally to sensitization under a multiple vector inputdenoted vg, vy, ..., Un
with v, applied last. The single vector delay of a circuit is determined by the longest true
path under any input vector for the given delay assignment; similarly for multiple vector delay.
The delay of a manufactured circuit refers to the actual operating delay of the circuit and

is determined by the longest true path for the unknown delay assignment that exists in the
manufactured circuit.

The following theorem relates the testability of a multiple stuck-0 (stuck-1) fault on the
I-edges of each path of length at least L to the existence of a true path under a single vector
of the primary inputs whose rising delay is of length at least L. Given a set M of I-edges, the
multiple fault M stuck-0 (stuck-1) corresponds to a stuck-0 (stuck-1) fault on each I-edge in
M.

Theorem 3.1 (adapted from [5)) Let C be a given circuit and 1) its leaf-dag. Let P =
{Py, Py, ..., P,} be the set of all paths in C of length at least L, and let P, be the corresponding
paths in leaf-dag n. At least one P; € P is true under the vector v for the rising (falling)
transition at an output in C if and only if v is a test in 1) for the multiple stuck-0 (stuck-1) fault
on the I-edge of each path in Py,

Theorem 3.1 describes the exact condition for computing the delay of a circuit under a
single input vector. A tighter delay may be achieved by using a multiple vector criterion.
However, the single vector criterion is an upper bound on the delay achieved by any correct
multiple vector criterion. Thus, the existence of a test in 1 for the multiple stuck-fault on the
I-edges of each path in Py, (in Theorem 3.1) is a necessary condition for a path in P in C to
be true under multiple vector criterion. However, it is unknown if this is sufficient under a
multiple vector criterion.
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Figure 1: Redundant circuit with 100% robust delay-fault coverage

Corollary 3.1 Let C be a given circuit and ) its leaf-dag. Let P = {P,, P,, ..., P,} be the
set of all paths in C of length at least L, and let P, be the corresponding paths in leaf-dag 0.
At least one P; € P is true under the vectors vy, vy, ..., vn for the rising (falling) transition at
an output in C only if v, is a test in 1 for the multiple stuck-0 (stuck-1) fault on the I-edge of
each pathin P,.

4 Robust dependent delay-faults

4.1 Functional interactions between paths

We demonstrate with some examples the impact that the functional interaction between paths
can have on the delay-fault coverage.

Example:  Consider the simple circuit of Figure 1. There are six delay-faults (a rising
and falling transition delay-fault for each path). The paths {b, y, f} and {b, z, y, f} are robust
testable for falling transition delay-faults, but only path {b, y, f} is robust testable for the rising
transition delay-fault. Path {a, z, y, f} is robust untestable for both transitions and {b, z, y, f}
is untestable for the rising transition. _

First consider the case of a falling transition at the output f. We argue that whenever a
falling transition propagates along {a, z, y, f} a longer falling delay exists along {b, z, y, f}.
Assume that a falling delay propagates along {a,z,y, f}. The output of = changes (after
some delay) to O when any input switches to 0. Thus, b must be at 1 if the falling edge on
a propagates through z. If the falling transition at z is the last event to propagate through
v, input b of y must settle at 0 before the falling edge arrives at the input = of y. b must
have a transition on it from either O to 1 or 1 to 0 in order for this to happen under any delay
assignment. If b has a rising transition, the final value of f is 1, and the last event at f is a
rising edge. Hence the falling transition along {a, z, y, f} is not the last event at f. If bhas a
falling transition, b must be 1 at the moment a reaches z, since {a, z, y, f} is the longest falling
path. But since b eventually changes to 0, the path {b, z,y, f} is longer than {a, z,y, f} for
the falling transition. Since a robust test exists for {b, z, y, f}, the occurrence of this longer
delay-fault can be detected. Hence {a, z, y, f} need not be tested for the falling delay-fault if
{b,z,y, } is tested for a falling delay-fault.

Now consider the rising transition at the output of f. Assume that path {b, y, f} is tested

- for the rising delay-fault. To propagate the last rising edge to f along {a, z, y, f}, b must have




Figure 2: Irredundant circuit with 100% delay-fault coverage without 100% delay-fault testa-
bility

a rising transition. Thus, if {a, z, y, f} is the last rising edge, then the rising transition from b

through the output of y is later than that from z to the output of y. Hence {b, y, f} is longer

than {a,z,y, f}. Similarly, it can be shown that {b, z, y, f} cannot propagate the last rising

edge at f unless {b, y, f} has a longer rising delay. Thus neither {a, z,y, f} nor {b, z,y, f}

can affect the rising delay at f without implying that the rising delay of {b, y, f} is longer. ®
There are several conclusions to be drawn from the example:

1. The requirement of robust delay-fault testing is related to the sensitization of the path.
However, unlike path sensitization which is determined under a specific delay assignment
to the connections of the circuit, the requirement for testing a delay-fault along a path is
a delay-insensitive condition and must be valid for all possible delay assignments.

2. 100% robust delay-fault testability is not necessary for 100% robust delay-fault coverage.

3. Even 100% single stuck-fault testability is not necessary for 100% robust delay-fault
coverage. In Figure 1 the stuck-0 fauit on the AND gate is redundant. This is a
particularly significant since it is widely believed that a circuits without complete stuck-
fault coverage are not amenable to testing for delay-faults [3].

The question of whether circuits with 100% robust delay-fault coverage but without 100%
delay-fault testability must always contain redundant stuck-faults is resolved negatively by the
next example.

Example: The circuit shown in Figure 2 is 100% testable for single stuck-faults. Like the
circuit of Figure 1, the path {a, w, z, 2} for rising and falling transitions, and {b, w, z, z} for
rising transition are not robust delay-fault testable. All other paths are are robust testable and
the circuit has 100% delay-fault coverage; each untestable fault cannot affect the circuit delay
without the occurrence of delay-faults on some of the testable paths. [ ]

Of course, 100% RPDF is a sufficient condition for 100% delay-fault coverage. However
most synthesis techniques for 100% RPDF typically involve a large area penalty. Often the
performance of the circuit is also degraded. We will show sufficient conditions under which a
path need not be made robust testable. While we cannot claim that the condition is necessary,
we show topological conditions under which it is necessary.




4.2 Conditions for RD paths

Definition 4.1 Let D be the set of all path delay-faults in a circuit C and R a subset of D. If
Jor all T, the absence of delay-faults (> 7) in D — R implies the delay of C is < 7, R is said
to be robust dependent (RD).

A RD set is insensitive to the delay assignment, i.e. R can be eliminated from consideration
in delay-fault testing under every delay assignment. This is in contrast to some delay-faults
whose absence is implied under only some and not all delay assignments; this is considered in
Sections 5 and 6. Another significant point is that the implied delay of the circuit (“delay of C”
in Definition 4.1) may be computed by any comrect timing analysis method such as the single
or multiple vector criteria referred to earlier. For example, an RD set using a single-vector
criterion means that the implied circuit delay is computed according to Theorem 3.1.

With every rising (falling) path delay-fault is an associated path for the rising (falling)
transition. A set of paths is called a RD path-set if the delay-faults on the paths is an RD set.

We now state a sufficient condition for RD paths. An internally non-invertingcircuit is one
that has inverters only at the primary input leads of the circuit. Any circuit can be converted to
an internally non-inverting circuit with at most a single duplication of each gate of the circuit.

Lemma 4.1 Let 1) be an internally non-inverting circuit and let M be a set of I-edges. If M
stuck-0 (stuck-1) is redundant, then every subset of M is also stuck-0 (stuck-1) redundant.

Proof: Express each output as a function of the literals corresponding to I-edges of
7. Now each output may be viewed as a monotonic increasing Boolean function of these
Boolean literals. A stuck-0 (stuck-1) fault on a subset of I-edges cannot increase (decrease)
a monotonic increasing function. Since M is a redundant multiple stuck-0 (stuck-1) fault, it
does not decrease (increase) any output function; if it did M would be testable. Thus, neither
can any subset of M, which proves each stuck-0 (stuck-1) subset of M is redundant. [ |

Since every leaf-dag is an internally non-inverting circuit, the above result holds for all
leaf-dag’s.

Theorem 4.1 Let C be a given circuit and 1 its leaf-dag. Let R, be the paths in 7 corre-
sponding to a set of paths R in C. Let M, be the I-edges of R,. If M, stuck-0 (stuck-1) is
redundant in 7, then R is a rising (falling) RD path-set in C.

Proof: Let M, be stuck-0 redundant. Suppose path P € R of length L is true for the rising
transition for some delay assignment. By Corollary 3.1, the multiple fault corresponding to
a stuck-0 fault on the set F of I-edges of all paths of length at least L (for the given delay
assignment) is testable in 7. F' includes at least one edge e ¢ M, since M, and all its subsets
are stuck-0 redundant (Lemma 4.1). Thus some path outside R is a true path of length at least
L. By the definition of robust dependent delay-faults, this implies that R is an RD path-set in
C.

The proof for the delay of the falling transition is similar. |

Theorem 4.1 yields a sufficient condition under which a set of paths cannot affect the circuit
delay under any delay assignment. Even though a path P € R may become sensitizable under
some delay assignment, it does not determine the circuit delay, since there exists another path
Q ¢ R atleast as long as P. A delay-fault along P causes a delay at the circuit outputs if and
only if a delay-fault exists along Q. Thus, delay-faults for paths in R need not be tested.

9
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Figure 3: Sensitizable paths and RD delay-faults

The condition of Theorem 4.1 is sufficient. However it is necessary under the single vector
criterion for delay analysis and the assumption that C has the following property: given any
ordering of path lengths there exists a delay assignment to the connections of C that realizes
the ordering. In general, all circuits do not meet this requirement (leaf-dag’s do).

Theorem 4.2 Assume that each ordering of path lengths in a given circuit C can be realized
by some delay assignment. Let 1 be the leaf-dag corresponding to C, and R, the paths in n
corresponding to a set of paths R in C. Let My, be the I-edges of Ry. R isarising (falling) RD
path-set using the single vector criterion in C if and only if My, stuck-0 (stuck-1) is redundant
in 1.

Proof:
If part:  Given by Theorem 4.1.
Only if part: Assume the multiple fault M, stuck-0 is testable. Consider any delay
assignment that makes the paths outside R, shorter than all the paths in R,,. By assumption,
this partial order between the path lengths can also be satisfied in C by some delay assignment.
By Theorem 3.1, the delay of C is at least the length of the shortest path in R, since M, is
testable in 1. Consequently, R is not an RD path-set for the single vector criterioninC. ®
It is possible to develop a tighter necessary condition which takes into consideration only
those path orderings which exist for some delay assignments in a given circuit; however we
do not have any application for it as yet. We do not know a necessary condition for RD
delay-faults under multiple vector criteria for delay computation since the sufficient condition
for a path to be true under any of these criteria is unknown.
Example: We use the circuit of Figure 3 to explain the difference between path sensitization
and robust dependent delay-faults. Upper bounds on delays are shown within each gate; lower
bounds are assumed to be 0. Since the output s constant at 0, the last transition under any input
change is a falling edge. Thus the rising delay of the circuit is 0; hence we are not concerned
with testing for rising transition delay-faults. None of the falling transition delay-faults along
the three paths in the circuit (denoted P, Q, and R in the figure) is RPDFE. The sets { P} and
{Q} are both RD but the set {P, Q} is not RD; neither is { R} an RD set. However, under
different delay assignments each path is responsible for the last falling transition at the output
f. In the circuit shown on the left R is the longest sensitizable path; P and Q are the longest
sensitizable paths in the circuit on the right. Thus, although a path may be sensitizable under
some delay assignment it may still be part of an RD set. n

10



'We note that the statement of Theorem 4.1 is different from previous work in timing anal-
ysis [5]. The distinction is that the previous work provides a necessary condition under which
a path is sensitizable. In contrast, Theorem 4.1 provides a sufficient condition (Theorem 4.2
shows when this condition is also necessary) under which a set of paths (even possibly sensi-
tizable) cannot independently affect circuit delay. In the example of Figure 3 each of the paths
P, @, and R is a true path (and statically co-sensitizable) under different delay assignments.

4.3 False paths and RD delay-faults

We will refer to the intrinsic delay-fault coverage as the best fault coverage possible after the
identification of a maximal RD set. It is doubtful that identification of a maximum RD set will
be computationally tractable on most circuits. In practice, therefore, we are interested in an
estimate of the RD set which can be used to compute a lower bound for fault coverage. This is
termed the reported delay-fault coverage. A technique for identifying a large RD set is related
to the identification of long false paths in timing analysis [10].

Lemma 4.2 If R is an RD set, then every subset of R is also an RD set.
Proof:  Direct by using Lemma 4.1 on the éondition of Theorem 4.1. ]

Theorem 4.3 Let C be a circuit whose longest true path for all single vectors is less than L
under some delay assignment. Then the set of delay-faults on all paths of length > L is an RD
set.

Proof:  Let 7 be the leaf-dag corresponding to C. Without loss in generality consider the
rising transition delay of 1. By Theorem 3.1 the multiple fault M corresponding to a stuck-0
fault on the I-edge of each path of length > L is redundant. By Theorem 4.1, the delay-faults
on these paths is an RD set in 7. As stated earlier, since there is a one-to-one correspondence
between delay-faults in 7 and C, the result follows. [ ]

There exist well-known circuits with many long false paths and the above result eliminates
consideration of these paths in robust delay-fault testing. The theorem extends the RD property
to every set of long false paths under any delay assignment to the wires of the circuit. Since
a set of delay-faults is RD if the corresponding paths are long false paths, for any given delay
assignment, we have the flexibility of choosing a delay assignment to try to maximize the
number of long false paths. Heuristic algorithms based on this, such as the one described in
the next section, are being explored.

44 Finding an RD set

Theorem 4.1 states the sufficient condition for an RD set in a given circuit C in terms of
the testability of a multiple stuck-fault in the leaf-dag # corresponding to C. In practice,
the identification of redundant multiple stuck-faults and the transformation to a leaf-dag are
difficult to perform - the former requires large compute times, the latter usually requires
enormous space.

Before describing an algorithm to identify a maximal RD set, we state a result that allows
highly developed single stuck-fault redundancy identification methods to be exploited in
determining a maximal RD set.
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Theorem 4.4 Let C be a non-inverting circuit and M a redundant multiple stuck-0 fault in
C (faults considered on or after I-edges). Let Cp be the circuit obtained by replacing each
connection in M by 0. If P is a rising (falling) RPDF path in C, then P is rising (falling)
RPDF in Cpy.

Proof:  Assume P is rising RPDF in C but is not rising RPDF in Cps. P cannot be in any
rising RD set of C. There are two cases to consider since P is notrising RPDF in Cy. If some
edge in P is set to O then the rising RD set (determined by M) includes P, thus contradicting.
Thus P is non-RPDF in Cps and no edge of P is set to 0. Let < vy, v > be the robust rising
transition test for P in C. Consider any OR gate f in P. By Definition 3.2 each side-input
to f is at O under both v; and v, in C and there is no transition on these side-inputs. Since
C is non-inverting and a multiple stuck-0 fault is asserted, these side-inputs to f remain at 0
under v; and v2 with no transition even in Cs. Hence propagation of the rising transition at
any of the OR gates in P is not affected. Consider any AND gate in P. By Definition 3.2
each side-input to an AND gate is at 1 under v; in C. Since P is non-RPDF in Cy, at least
one side-input to one or more AND gates in P is 0 under v in Cs. In C, the output of P is 1
under v;. In C)s the output of P is 0. Hence v, is a test for M, thus contradicting that M is
redundant. |

The converse is not true; if P is RPDFin Cyy, it may not be RPDF in C. The theorem states
an important result about robust delay-fault testability; a path P that is rising RPDF remains
rising RPDF under removal of stuck-0 redundancies in a non-inverting circuit. This directly
gives us a strategy for identifying a maximal RD set. This technique identifies redundant
multiple stuck-faults by iteratively identifying redundant single stuck-faults. It eliminates the
need to unfold a given circuit into a possibly exponential size leaf-dag.

The algorithm operates on a non-inverting circuit C’ derived from a given circuit C by
duplicating each gate at most once. The main loop of the algorithm iteratively performs two
steps. First, redundant stuck-0 connections in C’ are identified and replaced by 0. C’ is
irredundant at the termination of this step. In the second step selective duplication of gates is
performed in C’. This possibly creates new redundant connections. These two steps are iterated
until the resulting C’ is fanout-free and irredundant. The paths in C’ not passing through any
constant connection form the non-RD set; the testability of these paths is determined in C to
compute the delay-fault coverage.

Simple heuristics are used to select the order of redundancy removal and duplication.
Redundant connections are determined in decreasing order of the number of paths passing
through them. This aims at eliminating the largest set of paths possible at each step. Duplication
is performed on a level by level basis from primary outputs to primary inputs. This allows
redundant connections to be created close to the primary outputs, thus potentially allowing the
elimination of large numbers of paths. While the resulting RD set is maximal, no claims are
made on whether this strategy yields a set that is close to the maximum RD set.

We illustrate the working of the algorithm on the circuit of Figure 5. The given circuit (top-
left in Figure) is non-inverting. Since there are no redundant single stuck-0 faults, we reduce
the fanout of gate z by duplicating it (top-right in Figure). There is now one redundant stuck-0
fault in the circuit. On removing it, the resulting circuit has no internal fanout greater than one
(bottom in Figure) and the algorithm completes. Thus the rising RD set for this circuit consists
of the paths {a,w, z, z, f} and {b, w, z, z, f} which pass through the redundant connection.
Note that if we had directly operated on the leaf-dag of the given circuit (shown in Figure 6)
the multiple stuck-0 fault is identified on the I-edges of these same two paths.
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Convert C to an internally non-inverting circuit C’
R={}
While (C' has any gate with fanout >1) {
While (C’ has a redundant stuck-0 connection e) {
Replace e by constant 0
R=RU{e}

Find gate g with fanout >1
Duplicate g and move fanout connections

so each duplicate has less fanout than ¢
}

All paths with some connection in R form rising RD set.

Figure 4: Algorithm to find a maximal rising RD set

5 Robust delay

In Section 4 it is shown that for 100% delay-fault coverage there should only be either RPDF
or RD delay-faults. But what about circuits that do rot meet this criterion? For these circuits,
one would like to get as much information about the circuit performance as possible from
the limited RPDF set. It is easy to see that testing only the RPDF set in such a circuit is not
sufficient to guarantee the circuit operates at the specified speed; some untestable non-RPDF
and non-RD delay-faults could cause the circuit delay to exceed specification. This raises the
question of whether there is a minimum clock period 7 such that the passing of the robust
tests for a RPDF subset will guarantee the circuit delay will never exceed  under all possible
delay faults. If such a T exists, then 100% delay-fault coverage (relative to 7) is achieved by
testing a fraction of the robust testable delay-fanlts. Obviously, the existence of 7 depends
on the topological distribution of the subset of RPDF tested. Here, we give a mild condition
that guarantees the existence of finite 7. A set of paths is called a RPDF path-set if every
delay-fault on each path in the set is RPDE.

Definition 5.1 The robust delay Tr of a circuit is the minimum circuit delay T that can be
guaranteed by testing all the RPDF delay-faults.

Theorem 5.1 Let D denote the set of all paths in a circuit C, P C D an RPDF path-set and
R C D aRD path-set. If every connection D — R appears along some path in P, then C has
finite robust delay.

Proof:  Let d be the maximum delay of any path in P and let n denote the maximum number
of edges in any path in C. Each path P; € P is tested to ensure that its delay does not exceed
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Figure 5: Heuristic algorithm on example circuit

Figure 6: Leaf-dag of example circuit
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d. Pick 7 = n * d. If the delay of some path Q in D — R exceeds 7, at least one connection
e in Q has delay exceeding d. But e is in some path P; € P (since e appears in some path in
P), and the delay of P; would exceed d contradicting our assumption. Hence no path in C
exceeds 7. Since the robust delay is no larger than 7, the result follows. ]

Theorem 5.1 relates the distribution of robust testable paths in a circuit and verifiability
of the circuit’s performance. If a circuit has a RPDF set that covers all the connections along
non-RD paths, the robust delay of the circuit is finite. Otherwise, it may be infinite, since delay
faults on some paths can cause the circuit’s delay to be any value without being detected on
RPDF paths. Hence, the robust delay is a measure of the verifiability of a circuit’s performance
under its available testability.

Although the robust delay may be too large to be useful, as will be explained below, upper
bounds on robust delay can be easily computed. How close the upper bounds are to the best
circuit performance will depend on the testing strategy used, e.g. fixed delay or variable testing
using upper and lower bounds.

§.1 Computing robust delay

To obtain an upper bound on robust delay, one can select any RPDF path-set P and test the
delays in P. Assume the (fixed delay) testing scheme latches the circuit outputs at some time
d. Let e € P refer to a connection in path P and R represent a RD set.- An upper bound on

robust delay is:
max (3 6(e),V Q ¢ (P UR)),d)

e€Q
subject to:

D 6(e)< d,YPEP

eEP
This is because a path can not have delay longer than the solution of the above linear program
without violating a constraining inequality, which implies a delay-fault on a tested path. Note
that the RD delay-faults are ignored.

In the bounded delay model the delay of each connection cis specified as [df,;,, dC,]- The
delay of a path P in this model is specified as [d2,,,, dZ, ]; these bounds could be determined
by summing up the minimum and maximum delays of connections in the path respectively.
Another issue of delay-fault testing is whether a variable or fixed clock speed is used during
application of the tests. A fixed clock period means that each path delay is verified to be less
than the (fixed) clock period of the circuit. However, a variable clock allows greater flexibility
to the testing process. In particular, paths delays can be verified against their lower and upper
bounds. We consider both situations; in particular, the added flexibility of a variable clock rate
helps in reducing the test set size after the identification of a dependent set.

Definition 5.2 Under the bounded model a short-path delay-fault occurs along P if and only
if the actual delay of P < dF,. A long-path delay-fault occurs if and only if the actual delay
of P>dE,,.

Although a long-path or short-path delay-fault causes a delay to fall outside specified bounds
we are only interested in detecting those delay-faults that slow down the circuit. Long-path and
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short-path delay-faults will be exploited only in reducing the size of the test set and implying
bounds on the delays of other paths, thus increasing the delay-fault coverage. 3

‘The upper bound on robust delay may be improved by using bounded delays for the paths
in P and testing to check that the upper and lower bounds are met (variable delay testing).

Theorem 5.2 An upper bound on the robust delay Tr of a circuit is:

= <max((}_ &(e), ¥V Q ¢ (P UR)),d)
e€Q

where
d = max(db,,)VP € P

dia <) 8(e) <df,, VP EP

eEP
where P = set of all RPDF paths and R = a maximal RD set®.

Proof: Let 7 be the optimal value of the above linear program, Then the only paths longer
than 7 form a RD set. By definition, delay-faults in & can only be responsible for the delay if
the delay on some non-RD paths is at least as much. Since the latter are accounted for in the
linear program, the delay of the circuit is less than 7. Further, 7 is the minimum delay that can
be guaranteed by testing the RPDF paths given the selected RD set R; so 7g is no more than
T ]

It can be seen that the closer dX,, and df,, are, the tighter the bound will be, because the
feasible space is more restricted. Another way to improve the bound is to use a larger RPDF
set, so that more constraining inequalities are introduced to further reduce the feasible space,
hence, tightening the upper bound. This will be illustrated in the examples in the next section.

An interesting case is when the circuit is 100% robust delay-fault testable and the entire
RPDF set is tested. Then, the constraining inequalities are lower and upper bounds on all the
paths. Obviously, the linear program yields the maximum path delay. Hence, in this case
robust delay reduces to the usual notion of delay.

It is also interesting to note that the notion of the delay of a circuit is now tied to its
testability. If 100% delay-fanlt coverage is achievable for a specified delay, it is “safe” to use,
since it can be guaranteed. Thus, regardless of the true delay computed by accurate timing
analysis, the delay value that can be verified is the "usable” delay; verifiability of this delay
depends on the amount of available testability. With 100% robust delay-fault testability, the
true delay can be verified and thus is usable. For circuits with less than 100% delay-fault
testability, the verifiable delay is the robust delay, possibly greater than the true delay. Thus,
the notion of robust delay captures the relationship between the amount of testability of a circuit
and its "usable” delay. This usable delay varies with the amount of the circuit’s delay-fault
testability.

3A robust test for short-path delay-faults must be generated. It is known that a vector pair < v;, v > tests fora
long-path delay-fault for a rising or falling transition if and only if < vz, v > tests for a short-path delay-fault for
the opposite transition along the same path [17]. R

4In general, we need to replace each §(a;, a;) in the inequalities by 8" (a5, a;) or 6/ (a;, a;), as appropriate to
each rising or falling path, if 6" # §7.
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Figure 7: Computing robust delay

5.2 Examples

Here we give examples to demonstrate the computation of upper bounds for robust delays 7
and illustrate their magnitudes relative to the delay d used to test the RPDF delay-faults.
Example:  The circuit of Figure 7 is 100% single stuck-fault testable and but only 16 out of
the 26 (rising and falling) path delay-faults are RPDF (about 62% testability). Although some
paths are non-RPDF and non-RD, fortunately the set of testable paths form a path-cover, and
the circuit has finite robust delay. Assume each connection has the bounded delay [0.9, 1.0].
The delay of each path is bounded by the sum of the lower and upper bounds of the connections
in the path. Assume the RPDF faults pass the tests for short-path and long-path delay-faults.

The RPDF paths for both rising and falling transitions, denoted by P are: {a,e¢, f, h, k,n},
{0, ¢ f) 9, j, m}s {b) dr fa h) k; ﬂ},{b, da f) y’j’ m}’{cx 9, k, n}y {ct 9, j’ m}o {b7 d) i) I}v {ar d) ir ’}-
The robust delay is obtained as:

maz () 6(z)), VQ ¢ P
TEQ

such that
3.6 < é(a,e)+6(e, f)+6(f,h)+6(h,k)+6(k,n) <4
36 < 6(a,e)+6(e, f)+6(f,9)+6(9,5)+6(,m) <4
36 < 8(b,d)+6(d, )+ 8(f, h) + 6(h, k) + 6(k,n) <4
36 < 6(b,d)+6(d,f)+6(f,9)+6(9,5) +6(ji,m) <4

18 < b(c,g)+6(g, k) + 6(k, n) <2
18 < é(c,9)+6(g,5) + 6(j,m) <2
18 < 6(b,d)+ 6(d, i) +56(,1) <2
18 < §(a,d)+ 6(d, i)+ 8(i,1) <2

The linear programming result is 4.40. Therefore, with only 62% testability, 100% fault
coverage can be achieved with the robust delay 7r = 4.40, only 10% more than the computed
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Figure 8: 4-bit parity checker

delay of 4.00. Note that this is exactly the robust delay of the circuit (not a bound) if the upper
and lower bounds on each path were precise.
Under a floating delay model where only the upper bound is available, this scheme produces

a higher robust delay:
maz (3 6()), VQ ¢ P
z€EQ
such that
&(a,e) + (e, f) + 6(f, h) + 6(h, k) + &(k,n) <4
6(a,e) +8(e, f) + 6(f,9) + 6(g9,5) + 6(j,m) <4
8(b,d) + 8(d, f) + 8(f, h) + 6(h, k) + 6(k,n) <4
6(b,d) + 6(d, f) + 6(f,9) + 6(9,5) + 6(j,m) <4

6(c,9) + 6(g, k) + 6(k, n) <2
6(c,9) + 8(g,5) + 6(j, m) <2
8(b,d) + 6(d, i) + 6(i, 1) <2
6(a,d) + 6(d, ) + 6(3,1) <2
The linear programming result is 8.00, twice as much as the computed delay. [

Example:  Figure 8 shows a more realistic circuit, a 4-bit parity checker in which all 32
delay-faults are RPDF. We assume each connection has delay [0.9, 1]; these are only used to
derive bounds on path delays. If we test all delay-faults, we get the computed delay as the
robust delay. By testing only a fraction of the delay-faults we can observe how the magnitude
of robust delay varies with the percentage of the tested faults. In Figure 9 the first column
in the table is the number of delay-faults (out of a total 32) that are tested; the second is the
percentage tested; the third is the robust delay.
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Test set size | % testability | Robust Delay
32 100 4,00
30 94 440
28 88 440
26 81 440
24 15 8.00
22 69 8.00
20 63 8.00
18 56 8.00
16 50 8.00

<14 <44 00

Figure 9: Test set size vs. robust delay for parity checker

From the table, it can be seen that the computed delay of 4.00 can be verified by testing
all RPDF faults; call this 100% testing. With 81% testing, 90% of the computed delay can
be verified, i.e. 4.40 vs. 4.00; with as little as 50% testing, twice the computed delay can
be verified. Below 44% testing, some delay faults may lengthen the circuit delay yet remain
undetected in the testing, thus yielding infinite robust delay. Figure 10 plots the variation of
robust delay versus the testing effort.

The test set of size 16 is linear in circuit size since each RPDF path includes some
connection not covered by any other RPDF path. ]

The above examples illustrate that the amount of testing can be tailored to fit the required
performance. Higher performance requires more testing. Fairly tight upper bounds on robust
delay can be obtained with low testing effort. In particular, a test set linear in circuit size
allows a remarkably high verifiable performance. .

6 Delay-faults under bounded delays

In this section we illustrate the use of a bounded delay model in reducing the test set size for
robust delay-fault testing.

Not all non-RD delay-faults need be tested under the bounded delay model. The fact that
tested paths have delays within specified lower and upper bounds can be used to reduce the
number of delay-faults tested. There are two aspects that deserve attention. First, the clock
period that is applied while performing the delay-fault testing must be variable. Second, only
bounded delays on complete paths are exploited in reducing the test set. This is because
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Figure 10: Robust delay vs. testing effort tradeoff

bounded delays on connections cannot be verified by testing; typically, bounds on connections
are only used in determining bounds on path delays.

The goal is to perform two (one long-path and one short-path) tests on a few selected paths
rather than a single long-path delay-fault test on a larger set of paths. This is possible if the
occurrence of each of the untested delay-faults is prohibited by the absence of delay-faults on
the tested paths. Under these conditions, this test strategy yields 100% delay-fault coverage.
Example: Consider the example shown in Figure 11. Each edge has bounded delay
specified as [1,2] except the edge f which has delay [6, 10). Let the specified clock period
be 16. Assume that all but the bold path have been tested and each falls within its lower and
upper bounds (taken as the sum of the lower and upper bounds, respectively, of each edge in
the path). We argue that the bold path does not have to be delay-fault tested. This is done by
proving that any assignment that slows down the chosen path (causing its delay to be greater
than 16) causes some other tested path to also speed up or slow down outside its specified
bounds. The proof is expressed as a linear program expressing the condition that the chosen
path be the only one to exceed the clock period.

9 <é@@)+6(d)+8(f)+6(9) <16
9 <Bd+6(d)+6(f)+6(9) <16
3 <6(b)+6(c)+6(9) <6
8 < é(e)+6(f)+4(9) <14
6(a) + 6(c) + 6(9) > 16

This set of constraints is not feasible (under the additional constraints that the delay of each
edge be non-negative); this demonstrates that the path {a, ¢, g} cannot have the only delay-
fault that slows down the circuit. Note that the bounds on the connections are not used, e.g.
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Figure 11: All paths need not be delay-fault tested under bounded delay model

1 < é(a) < 2 is not used since it is not verified. | |

Based on the above example, given a set of non-RD delay-faults, implications using the
bounded delays may be used to reduce the test set size by formulating a series of linear
programs. While an exact version of such an algorithm appears intractable, a heuristic
algorithm that is intuitively promising is under development.

7 Computing delay-fault coverage

‘We take the position that the fault coverage should reflect the confidence that ore can have
after testing that the circuit is correct, i.e. in this case can be operated correctly at some speed
7. It should reflect the percentage of faults tested out of all faults that really need to be tested.
Having seen three different dimensions of delay-fault testing namely (1) RD sets (2) bounded
delay testing and (3) implied path delays, we show that each is essential in computing a realistic
value for the delay-fault coverage. We propose the following formula for delay-fault coverage.

Proposition 7.1 Let F denote the set of all path delay-faultsina circuit, and R denote a robust
dependent (RD) set. Given a test set T, let T denote the delay-faults that are robust tested by
T for bounded delays. For a specified circuit speed 7, let I(T , ) denote the set of non-RD
delay-faults whose absence (delay less than ) is guaranteed by testing T. IRC(7) denotes the
intrinsic (or maximum) delay-fault coverage achievable to guarantee correct circuit operation
with delay at most T, and RFC(7) denotes the reported delay-fault coverage. Then:

(71 + 117, 7))
(IF1-1RD)

It is apparent from the formula that not using one or more of the three aspects introduced in
this paper will decrease the reported delay-fault coverage. For example, in the denominator

IFC(7) 2 RFC(7) =
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we find only those delay-faults that need to be tested, 7 — R; thus the RD set appears. In
the numerator, the implied set I(7 , 7) appears accounting for the third effect. Bounded delay
testing is implicit in the term I(7, 7) since this kind of testing would allow more path delays
to be implied. The effect of R is slightly similar to redundant faults in stuck-fault testing -
since no test is necessary for a redundant fault, this should be subtracted from the set of all
faults in computing coverage.

An open question is how far the reported delay-fault coverage is from the intrinsic delay-
fault coverage. This depends on whether there exist any other effects among delay-faults not
captured by the three phenomena described in this paper, e.g. are there other implied faults or
are there other faults that need not be tested.

8 Resuits

We show results on MCNC benchmark circuits. Each circuit is first optimized using the
standard script (called script.rugged) in the SIS system [15]. The lower bound on delay fault
coverage, determined using the heuristic described in Section 4.4, is compared against the
robust delay-fault testability in the optimized circuits. The first column is the circuit name;
the second is the total number of delay-faults (rising and falling transitions); the third gives
the size of the RD set found; the fourth lists the size of the RPDF set; the fifth gives the robust
delay-fault testability. The column FC-1 gives the fault coverage computed using only the
RD set. Note the substantial increase in this compared to the testability. For example, 93%
of the total delay-faults in bw are identified as an RD set resulting in an increase from 0.01 to
0.20. The column FC-2 gives the fault coverage achieved by using a variable testing speed
but only using upper bounds on the path delay (lower bounds assumed O for all paths). A
unit delay is assumed on each connection in the circuit. In this case, any non-RD path whose
delay is implied to be a finite number if the circuit passes the RPDF tests is considered tested.
Except for the circuits with 100% testability, the circuits do not have finite robust delay since
100% fault coverage cannot be achieved for any finite delay. Despite this, all the circuits
show very high fault coverage. For example, the coverage in bw is now raised from 0.21 to
0.66. Considering that the testability is 0.01, this is a significant increase. However, note that
FC-2 ignores the speed of the circuit. To get the coverage reported, the circuit may have to be
slowed down considerably.

Notice the large number of RD paths identified by the algorithm of Section 4.4 for every
example, except those with 100% testability. We have also tried different heuristics from those
described in Section 4.4. For example, the unfolding was performed from primary inputs
towards primary outputs; in another case we tried unfolding in decreasing order of the number
of paths through the gates in the circuit. While we have observed variations in the size of
the maximal RD set identified by each heuristic, the technique of Section 4.4 yields the best
quality results and also appears to have less memory requirements in the unfolding.

Compare the results for the un-optimized and optimized versions of a 32-bit carry-skip
(or carry-bypass) adder, cbp.324. The circuit is composed of eight 4-bit carry-skip adders
connected in cascade. Notice that Boolean optimization techniques cause a dramatic increase
by a factor of 87 in the number of paths (delay-faults). Yet the fault coverage in the resulting
circuit is almost the same as the initial circuit. The effect of the usefulness of RD sets is
demonstrated by the size of the non-RDR set which is 0.08% of the total number of delay-
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[ Name | #PDF | #RD | #RPDF | Testability | FC-1 | FC-2
] 310 102 157 0.51 0.75 | 083
conl 444 0 44 1.00 1.00 | 1.00
z4ml 526 246 187 036 | 067 | 090
misex2 758 317 373 049 | 085 | 099
misex1 1144 744 254 022 | 064 | 096
9sym 1184 216 674 057 | 070 | 089
vg2 1576 0 1576 1.00 1.00 | 1.00
apex7 1960 98 1775 091 095 | 097
sao?2 2706 1548 626 023 | 054 | 083
clip 3710 2865 612 016 | 072 | 089
1d73 3816 2837 624 016 | 064 | 091
e64 4290 0 4290 1.00 1.00 | 1.00
Sxpl 5246 4346 447 009 | 050 | 0.79
rds4 6290 4573 911 015 | 053 | 083
duke2 8320 4466 3050 037 | 079 | 094
apex6 9898 3815 4743 048 | 078 | 096
alud 25626 | 18637 | 3509 014 | 050 | 087
bw 49864 | 46873 627 0.01 021 | 0.66
rot 58734 | 39552 | 11917 020 | 0.62 | 097
des 240232 | 118827 | 94719 039 | 078 | 097
cbp.32.4t | 256128 | 221176 | 11154 004 | 032 | 085
cbp.324 | 22278702 | 22260784 | 7474 | 00003 | 042 | 0.83

t: Initial un-optimized circuit

PDF = All path delay-faults in optimized circuit

RD = Chosen RD set

Non-RD = Path delay-faults which are not in chosen RD set

RPDF = Robust testable delay-faults

FC-1 = (# RPDF) / (# Non-RD)

FC-2 = (# Tested faults) / (# Non-RD)

Tested faults = Non-RD faults whose absence is guaranteed if circuit passes RPDF tests at
finite speed

Figure 12: Lower bound on delay-fault coverage
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faults in the circuit. 5

The number of false paths for any delay assignment is a lower bound on the size of the
RD set (Theorem 2?). Some of the circuits shown above have few false paths under a unit
gate delay model, yet have a large maximal RD set. While the maximum RD set size provides
some indication of the number of false paths (it is an exact indicator assuming all possible path
length orderings (Theorem 4.2)) that may exist for a specific delay assignment, an interesting
problem for the future will be to better understand this relationship.

9 Conclusions

We have shown that the delay-fault coverage achievable by a test set is relative to the speed at
which operation is desired. This observation helps address the issue of how much delay-fault
testing is required to guarantee that a circuit operates correctly at its specified speed in three
ways:

1. For a specified circuit speed, there exist path delay-faults which never need to be
tested, since they cannot affect the circuit delay without some other delay-faults (which
are included in the set to be tested) also impacting the circuit delay. Necessary and
sufficient conditions for the existence of these delay-faults, called RD sets, are proved.
We show that delay-faults on any set of long false paths that occurs, given any delay
assignment to the connections of the circuit, forms a RD set. This yields an effective
lower bound on the size of the RD set. This theory increases the fault coverage reported
for robust delay-fault testing. Previous methods use testability (i.e. the percentage of
delay-faults that are RPDF) in reporting coverage. However, the size of the test set is
not affected since every RPDF still must be tested.

2. The next aspect describes the possible tradeoff that exists between the circuit speed and
the delay-fault test set size required to guarantee that a manufactured circuit operates
at that speed. This is termed the verifiable performance of the circuit and denotes the
usable delay relative to the desired testing effort that can be guaranteed. The notion
of robust delay of a circuit is used to represent the minimum useful delay of a circuit
under a given bounded delay model. The quantitative tradeoff between the robust delay
and the testing effort has been formulated using a linear program, while also accounting
for the presence of RD delay-faults. In particular, linear (in circuit) size test sets are
shown to provide 100% delay-fault coverage with a very small decrease in the verifiable
performance.

3. The final aspect reduces the delay-fault test set size without decreasing the delay-fault
coverage or changing the desired circuit speed. Under a bounded delay model, where
the delay of a tested path is guaranteed to lie between some upper and lower bound, a
simple linear program is formulated to identify delay-faults that do not require testing.

Each of these concepts were demonstrated on examples; however comprehensive experi-
ments remain for the future. We are presently developing effective heuristics to obtain good

SExperimental results on even larger circuits will be reported in the final version of the paper; our results are
presently restricted by the efficiency of the current ATPG program used.
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solutions with low computational costs. Preliminary experiments were reported and show
encouraging results.

A primary application of this theory will be the synthesis of circuits with 100% robust
delay-fault coverage. The results of this paper prove that 100% testability is not necessary for
100% delay-fault coverage. Based on the techniques introduced to reduce the complexity of
delay-fault testing, synthesis for circuit with 100% fault coverage becomes a two-step process.
(1) A circuit may not have 100% fault coverage for a specified speed, yet a little reduction in
speed may guarantee 100% fault coverage; this occurs without any modification to the circuit.
This first step of the synthesis process brings the tradeoff between performance and coverage
into consideration. (2) If the fault coverage or circuit performance is not satisfactory after
the first step, we synthesize circuits which have delay-faults which are either RPDF or belong
to a single RD set; this is a weaker condition that 100% robust delay-fault testability. An
optimization step to reduce the size of the test set by exploiting accurate delay information
on paths, derived from accurate gate modeling, is used. We are in the process of exploring
techniques for synthesis of circuits for 100% fault coverage based on this approach.
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