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Abstract

We prove that 100% delay-fault testabilityis not necessary to guarantee the speed of
a combinational circuit We show there exist path delay-faults which can never impact
the circuit delay (computed using any correct timing analysis method) unless some other
path delay-faults also affect it These are termed robust dependent delay-faults and need
not be considered in delay-fault testing. Necessary and sufficient conditions under which
a set of path delay-faults is dependent are proved; this yields more accurate and larger
delay-fault coverage estimates than previouslyused. Next, assuming only the existence of
robust delay-fault tests for a very small set of paths (linear in circuit size), we show how
the circuit speed (clockperiod) can be selectedsuch that 100%robust delay-fault coverage
is achieved. This leads to a quantitative tradeoff between the amount of testing effort (test
set size) for a circuit and the verifiability of its performance. Finally, under a bounded
delay model, we show that the test set size can be substantiallyreduced while maintaining
the delay-fault coverage for the specifiedcircuit speed. Examples and experimentalresults
are given to show the effect of these three techniques on the amount of delay fault testing
necessary to guarantee correct operation.

1 Introduction

The need forensuring the temporal (dynamic) correctnessofcircuits has led to the development
ofdelay-fault testing theory and methodologies [9]. Two fault models have been proposed for
delay-fault testing, namely gate delay-faults and path delay-faults. Of these the path delay-
fault model is more attractive since it models a larger set of defects and can give guarantees
on circuit performance [16]. However, because there can be an exponential number of paths
in a circuit, path delay-fault testing often requiresvery large test sets. This paper addresses
the issue of guaranteeingcircuit performanceusing only a small (possibly linear size) test set
Forcircuits where a 100% guaranteeis not possible,we also address the question ofproviding
a large fault coverage guaranteewith small size test sets.

'Research supportby HertzFoundationand SRC
^Research supportbyFujitsu Laboratories Ltd.



A path delay-faultoccurs along a path P if thedelay along P falls outside its specified
limits (ingeneral, either upper or lower bounds). Each path has twopossible longpath delay-
faults associated with it,a risingdelay-fault anda falling delay-faultl Shortpath delay-faults
canalsooccurandcauseproblems. Examples arein wavepipelinedcircuits, clockingschemes
usingtransparent latches, andasynchronouscircuits. Thegoal ofdelay-fault testing is tocertify
theabsenceof delay-faults thatcausethemanufactured circuitto falloutsideits specified delay
bounds.

In this paper we focus on upper bounds on circuit performance. We show that the path
delay-faults in a circuit can be partitioned into two sets. For the first set, the occurrence
of one or more delay-faults can cause an increase in circuit delay. This set must be tested
for delay-faults to certify correct operation. It includes all robust testable path delay-faults
(RPDF). The delay-faults in the second set are termed robust dependent (RD) delay-faults.
The occurrence of these delay-faults cannot increase the circuit delay unless some non-RD
delay-faults also occur. Thus, RD delay-faults need not be tested to ensure that a manufactured
circuit operates at the desired speed.

Wedefine the delay-fault coverage of a test set as the percentageof all non-RD delay-faults
guaranteed not to occur if the circuit passes the test set This is different from the percentage
of all delay-faults that are robust testable. The latter is commonly called the delay-fault
testability of the circuit There may be delay-faults in a circuit for which no robust test exists,
yet the absence of the delay-fault is guaranteed by the test set (since the circuit passed the
delay tests). Thus, delay-fault coverage is a function not only of the test set size but also of
the number of faults implied absent by the test set. The fault coverage of a test set can also
depend on the delay bounds used in the testing procedure.

The approach taken in this paper is different from all previous work in both delay-fault test
generation [8,14,13,1] and synthesis [7,12,3,4,11,6]. Up to now the ability to detect delay
defects in a circuit has been measured by its delay-fault testability. Full testability requires
that every path has a robust test However, the goal of delay-fault testing is to be able to
detect every delay defect that causes a late (early for short-pathdelay-faults) transition at some
output of the circuit during normal operation. Thus delay-fault testing serves to guarantee the
functional correctness (with respect to timing) of a circuit In particular, paths along which
delay-faults can never individually affect circuit functionalityare of no interest both in test
generation and synthesis. None of the previous work appears to have addressed this issue
of delay testing. In this paper we demonstrate that this aspect of delay testing is crucial in
providing a realistic estimate of the delay-fault coverage and also in reducing the delay testing
effort for most circuits.

This view of delay-fault testing also differs from the philosophyof stuck-fault testing.
The goal of stuck-fault testing is to determine a test for each fault or prove it redundant
Removal ofredundant stuck-faults also yields smallerarea and better performance reliability.
This requirement of stuck-fault testing arises from a good correlation that exists between the
absence of stuck-fault defects and the reliability of the circuit; that is, a circuit with fewer
stuck-fault defects is more likely to operate correctly than one with more stuck-faultdefects.
This is not the case with delay faults wherea certificate of correct timing functionalityat the
outputs of the circuit is desired. Hence, robust untestable paths are of no concern (and need
not be isolated or removed) if they cannot impact the circuit delay.

xEach path delay-fault is associated with apath. Since weare dealing with theimpact of delay-faults oncircuit
delay,we interchangeably referto eitherthe delay-fault orthe associated path.



This paper contributes to the question ofhow muchdelay fault testing is necessary in three
ways:

1. Necessary and sufficient conditions for a set of delay-faults to be RD are derived. We
show that the delay-faultson any set of long false paths that can exist for any particular
delay assignment to connections in the circuit forms an RD set This does not affect
the test set size since every RPDF still must be tested. However, it does give a more
realistic and better estimate of the delay-faultcoverage.

2. We show how to trade-off delay-fault coverage and circuit speed. By relaxing the
operatingspeed for the circuit (this is the clockperiod in synchronouscircuits),a larger
delay-fault coverage can be achieved. We call the minimum clock rate for which the
coverage is 100% the robust delay of the circuit Using this concept we present path
delay-fault testing methodologies whose test set sizes are linear in the size of the circuit
(as opposedto 100%RPDFtestingwhichcan be exponential in size).

3. Usinga boundeddelaymodel(thedelayofa testedpathis guaranteedto lie betweenboth
upperand lowerbounds)we formulate a simplelinearprogramto reducethe delay-fault
test set size without decreasing the fault coverage.

Examples are givento illustratetheseeffects and thecorresponding test set size.
The paper is organized as follows. The context for our work is provided by Section 2

which discusses theissues thatarisein verifyingcircuitdelays. Section 3provides background
information onrobustdelay-fault testing anddelay analysis. Theconcept of robustdependent
delay-faults is described in Section 4. Section 5 introduces the notion of robust delay and
illustratesthe tradeoffs between testing effort and performance verifiability in circuits. Test
set reduction undera bounded delaymodelwhilemaintaining the samefault coverage for the
specified circuit speed is discussed in Section 6. Section 7 illustrates how each of these three
aspects impacts the delay-fault coverage of a test set Preliminary experimental results are
presented in Section 8. Finally,Section 9 discusseshow the theory described here can be used
for the synthesisof circuitswith 100%robustdelay-fault coverage.

2 Verifiable delay analysis

A connection is just a wireor a pin to pinpaththrougha gate. A path is denotedas a sequence
of connectionsor points. A connectionor point is denotedby a lowercase letter,a path by an
upper case letter, and a set of paths by an uppercase script character. The delay ofa connection
e = (a, 6)between points a and6 is denoted either 6(e) or 6(a,6),and thedelay of path P
is denoted S(P). Delays maydepend on whether a signal is risingor falling in which casea
delay isdenoted 6r(e)or 6* (a,6). For apath P, 6r (P) means the delay ofP when itsoutput
is rising; similarly for falling.

A circuitdesign C is a net list of gates. In analyzinga design, typicallyone assumes some
delay model, forexample a connection e hasrising delay 6r(e) such thatd^ < <5r(e) < d^,
(calleda bounded delay model). Usuallyan analysisof the performance of a circuit design
derives properties about the design assuming that all connections meet their delay bounds.
For example,in timingverification [10],an upperboundr on the delaythecircuit is computed,
where r is some complex function of the assumed delay bound parameters. Note that this



analysis is valid only for acceptable designs and manufactured circuits whose connections
meet the delay bounds.

To guaranteethat a manufactured circuit Cm operates at some specified delay we must
make different assumptions since we know nothing a priori for the circuit under test. The
followinginformationis known if Cm passes the test Let Q be the set of paths tested such
that for each P, € Q,

where r^,, and r^ depend on the type of testing done. Note that there are no assumptions
about delays on connections; only verifiable delays of paths are used. Only implicitly is there
an assumptionabout connectiondelays, i.e. there exists some fixedbut unknowndelay 6(e)
on each connection e. Thus the circuit under test (the manufactured circuit) is Cm = (C, A)
where A is a vector of delay values, one value for each connection. We say A is a delay
assignment. Weassume Ae > 0 for connectione but no upper boundsare assumed;just that
certain sums are bounded:

r1'. < ^ Ae <t* .'nun — / j " — 'max*

e€Pi

The fact that we have no delay model assumptions on connections does not preclude delay
analysis on C. We shall show that the following kind of analysis is possible. Let D C P,
where V is the set ofall complete paths ofC, i.e. paths from primary inputs to primary outputs
(such as those tested). It is possible that the following can be determined through analysis:
for any r, if 6(Pt) < r, P,- € V - V% then 6(Pj) < f(r), Pj G V. This implies that even
before a manufacturedcircuit Cm is tested, we know that paths in V need not be tested for
guaranteeingCm as good or bad. In other words,if Cm passesa delay test at speed r for paths
in V - V, then this implies that Cm is guaranteedto operatecorrectly (by analysis) at speed
max(r, f(r)). Heref(r) is somefunction determined byanalysis from thenet list C.

We show two types of this kind of analysis in the paper. The first is where f(r) = r; the
set of paths V for which such a property holds is called robust dependent. The second type
of analysis is where f(r) is a complex function evaluated by solvinga linearprogram. Both
of these types of analysis are important in establishing an accurate estimate of the delay-fault
coverage of a set of paths Q that is tested.

Delay analysis has been the subject of intense research in the past few years. There are
two dimensions: the delay model used (unbounded2, bounded, fixed, etc.), and the typeof
sequencing of input vectors assumed (single, double, multiple, periodic). Although our delay
model forCm = (C,A) isa fixed butunknown delay, themodel forestablishing 6(Pj) < f(r)
can be obtainedby any analysisthat is a relaxedversionof this. Thus eventhough6(e) = Ae
for connection e of Cm, analysis methods assuming A^ < 6(e) < A^tx alsogive legitimate
bounds. Of course all the analysis methods used in this paper start only with the assumption
that r^j, < ]£e€P< ^e < ri« for those paths Piinthe test set

Notethattheassumptionthat thecircuitundertestis Cm = (C, A) forsomeunknownfixed
delay assignment A considers static variations in delays that occur from one manufactured
circuit to another such as process variation, operating temperature, and circuit age. One
concern with this assumption is whether it accounts for the small uncertainties in delays during
circuit operation due to dynamic factors such as crosstalk, degraded signals, and slope factors.

2Anunboundeddelay model isonewhere 0 <S < da^.U. d^b = 0.



Since the analysis techniques used in computing the circuit delay are robust [10], i.e. the
delay estimate is a valid upper bound for each delay assignment that lies within the tested
lowerandupperbounds. Thus, ifCm passes thedelaytests forthe worstcaseupperandlower
bounds,every operation of Cm within thesedelaysboundsis alsoguaranteed to be correct It
is also instructive to realize that delay analysis based on verifiablepath delays is less likely
to be impactedby dynamic delay variations thandelayanalysis basedon gatedelays. This is
because it is likely that a small delay variation on a connection will not get reflected on the
pathdelay. Ofcourse,nothingis known if Cm operates outsidethese bounds;one is forcedto
explicitly test Cm in this case.

In summary, the delay analysis of this paper differs from the usual in that we perform
delay analysis using only verifiable path delays instead of non-verifiable connection delay
assumptions.

3 Definitions

3.1 Robust delay-fault testing

A briefdefinitionforrobustpathdelay-fault testingis providedin this section. The conditions
forrobustdelay-faulttesting arerephrased from [16].

A controlling value for a gate / is a value at its input that determines the value at the
output independent of theother inputs, and is denoted A(f). For example, 0 is a controlling
value foran AND gate. A non-controlling value fora gate / is a valueat its inputwhichis
not a controlling value for thegate, andis denoted /(/). For example, 1 is a non-controlling
value for an AND gate. A simple gate is any one of AND, OR, NAND, NOR, and NOT. All
the results described hereapplyonly to simple gates. Only these gates have controlling vs.
non-controllingvalues foreach input

LetP = {/o, /i,..., fm]bea path where each /,-, i > 0 istheoutputof agate. Theinputs
of /,- other than /,_i are called side-inputs of /, along P and denoted S(/», P). A path that
starts at a primary inputandends ata side-inputof P is a side-path of P. A path delay-fault
occurs along path P if the delay along P falls outsideits specified limits (in general, either
upper or lower bounds).

Definition 3.1 A testfor a delay-fault is robust if and only if the test is valid independent of
delays onall the connections in the circuit. Acircuit has100% robust delay-fault testability
ifand onlyifevery pathdelay-fault hasa robust test.

Definition 32 Let P = {/0, f\,..., fm}. A delay-faultfor the rising (falling) transition at
fm is saidtoberobust testablebythe vector pair< v\, vi > ifandonly ifat each node ft,
< vi, vz > yields the desired transition being tested, andfor each 9j GS(P, /,•);

J. 9jM = I(fi),and

2. iffi-i(v\) = I(fi), then there is notransition on§j.

The vector vi applied after vx, delayed by an amount greater than the longest path in the
circuit.



3.2 Path sensitization

Definition 33 A leaf-dag is a circuit composed ofAND and OR gates with multiplefanout
andinverters onlypermitted at the inputs. An inverter is notallowed multiplefanout.

Every circuit (composed of simple gates) can be converted to a leaf-dag, albeit with
possibly an exponentialnumberofgateduplications.

Definition3.4 The I-edgeofapathina circuit refers toeitherthe connectionfrom theprimary
input ifno inverter is there, or else theconnection immediately aftertheinverter.

Let rj be the leaf-dag of C. Any delayassignment in C also exists in rj; simply use the
same delay range on each connection in 17 as the corresponding connection in C. However,
the converse is not true.

The following definition is adapted from [2]. Given a delay assignment and assuming an
initial unknownvalueon each connection ofa circuit C, a path P = {/o, f\,..., fm] in C is
true under a single vector v ifand only if the following conditions hold at each gate /»,«> 0:

1. If all inputs of fi are non-controlling, /,_i must be the last side-input to present the
non-controlling value.

2. If at least one input of /, is controlling, /,_i must be the first side-input to present the
controlling value.

This definition extends naturallyto sensitizationunderamultiple vector inputdenoted vo,vi,..., v„
with vn applied last The single vector delay of a circuit is determined by the longest true
pathunder any input vector for the given delay assignment; similarly for multiple vectordelay.
The delay of a manufactured circuit refers to the actual operating delay of the circuit and
is determined by the longest true path for the unknown delay assignment that exists in the
manufactured circuit.

The following theorem relates the testabilityof a multiple stuck-0 (stuck-1) fault on the
I-edges of each path of length at least L to the existence of a true path under a single vector
of the primaryinputs whose risingdelay is of lengthat least L. Given a set M of I-edges, the
multiple fault M stuck-0 (stuck-1) corresponds to a stuck-0 (stuck-1) fault on each I-edge in
M.

Theorem 3.1 (adapted from [5]) Let C be a given circuit and rj its leaf-dag. Let V =
fPi, ^21 •••>Pn) bethesetofallpaths in Coflengthatleast L, and let Pn bethe corresponding
paths in leaf-dag rj. At least one Pi G P is true under the vector vfor the rising (falling)
transition atanoutput in C ifandonly ifv is a test in rjfor the multiple stuck-0 (stuck-1)fault
on theI-edgeofeachpathin Vn.

Theorem 3.1 describes the exact condition for computing the delay of a circuit undera
single input vector. A tighter delay may be achieved by using a multiple vector criterion.
However, the single vector criterion is an upperbound on the delay achieved by any correct
multiple vectorcriterion. Thus, the existenceofa test in tj for the multiple stuck-faulton the
I-edges of each path in Vv (in Theorem 3.1) is a necessarycondition for a path in V in C to
be true under multiple vector criterion. However, it is unknown if this is sufficient under a
multiple vector criterion.



>JD-TT>-
Figure 1: Redundant circuit with 100%robust delay-fault coverage

Corollary3.1 Let C be a given circuit andr) its leaf-dag. LetV = {Pi, P2,..., Pn} be the
setofallpaths in C of length at least L,andlet Pn bethe corresponding paths in leaf-dag rj.
Atleast onePi e Vis true under the vectors v0} vi,..., vnforthe rising (falling) transition at
anoutput in C only ifvnisa test in rjfor the multiple stuck-0 (stuck-1)faultonthe I-edge of
eachpathin Vv.

4 Robust dependent delay-faults

4.1 Functional interactions between paths

We demonstrate with someexamples the impact thatthe functional interaction between paths
can have on the delay-fault coverage.
Example: Consider the simple circuit of Figure 1. There are six delay-faults (a rising
and falling transition delay-fault foreach path). The paths {b, y, /} and{6,x, y, /} are robust
testable forfalling transitiondelay-faults, butonlypath {6,y, /} isrobust testable for therising
transition delay-fault Path {a, x, y,/} isrobust (intestable for bothtransitions and {b,x,y,f}
is untestable for the rising transition.

Firstconsiderthe case of a falling transition at the output /. We argue that whenevera
falling transition propagates along {a, x, y, /} a longer falling delay existsalong {6,x, y, /}.
Assume thata falling delay propagates along {a, x, y, /}. The outputof x changes (after
some delay) to 0 when any input switches to 0. Thus, 6 must be at 1 if the falling edge on
a propagates through x. If the falling transition at x is the last event to propagate through
y, input 6 of y must settleat 0 before the falling edge arrives at the input x of y. 6 must
have a transition on it from either0 to 1 or 1 to 0 in order forthis to happen underany delay
assignment If 6 has a rising transition, the final value of / is 1, and the last event at / is a
risingedge. Hence the falling transition along {a, x, y, /} is not the lasteventat /. If 6hasa
falling transition, bmustbe 1atthemoment areaches x, since {a, x, y, /} isthelongest falling
path. But since beventually changes to 0, the path {6,x, y, /} is longer than {a, x, y, /} for
the falling transition. Sincea robust test exists for {6,x, y, /}, the occurrence of this longer
delay-fault can be detected. Hence {a, x, y, /} need notbe tested for the falling delay-fault if
{6,x, y, /} is tested fora falling delay-fault

Now consider the risingtransition at the outputof /. Assume thatpath{6, y, /} is tested
for the risingdelay-fault To propagate the lastrisingedge to / along {a, x, y, /}, 6must have
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Figure2: Irredundant circuitwith 100%delay-faultcoverage without 100%delay-faulttesta
bility

a risingtransition. Thus, if {a, x, y, /} is the lastrisingedge,thentherisingtransition from b
through the outputof y is laterthanthat fitom x to the outputof y. Hence {6, y, /} is longer
than {a, x, y, /}. Similarly, it canbe shown that{6,x, y, /} cannot propagate the lastrising
edgeat / unless {6, y, /} hasa longer rising delay. Thus neither {a, x, y, /} nor {6,x, y, /}
canaffect the risingdelayat / withoutimplyingthattherisingdelayof {6, y, /} is longer. •

There are several conclusions to be drawn from the example:

1. The requirement of robust delay-fault testing is related to the sensitization of the path.
However, unlike path sensitization which is determined under a specific delay assignment
to the connections ofthe circuit the requirement for testing a delay-fault along a path is
a delay-insensitive condition and must be valid for all possible delay assignments.

2. 100% robust delay-fault testability is not necessary for 100%robust delay-faultcoverage.

3. Even 100% single stuck-fault testability is not necessary for 100% robust delay-fault
coverage. In Figure 1 the stuck-0 fault on the AND gate is redundant This is a
particularly significant since it is widely believed that a circuits withoutcomplete stuck-
fault coverage are not amenable to testing for delay-faults [3].

The question ofwhether circuits with 100%robust delay-fault coverage but without 100%
delay-fault testability must always contain redundant stuck-faults is resolved negatively by the
next example.
Example: The circuit shown in Figure 2 is 100% testable for single stuck-faults. Like the
circuitof Figure 1, the path{a, w, x, z] forrisingand falling transitions, and {6, w, x, z) for
rising transition are not robust delay-fault testable. All other paths areare robust testable and
the circuit has 100% delay-fault coverage;each untestable fault cannot affect the circuit delay
without the occurrence of delay-faults on some of the testable paths. •

Ofcourse, 100% RPDF is a sufficient condition for 100%delay-fault coverage. However
most synthesis techniques for 100% RPDF typically involve a large area penalty. Often the
performance of the circuit is also degraded. We will show sufficient conditions under which a
path need not be made robust testable. While we cannot claim that the condition is necessary,
we show topological conditions under which it is necessary.

8



4.2 Conditions for RD paths

Definition 4.1 LetV be theset ofall pathdelay-faults in a circuit C andft a subset ofV. If
for all t, theabsenceofdelay-faults (> r) inV —ft impliesthedelayofCis<r,Ris said
to be robust dependent (Kb).

A RD set is insensitive to the delay assignment, i.e. ft can be eliminated from consideration
in delay-fault testing under every delay assignment This is in contrast to some delay-faults
whose absence is implied under only some and not all delay assignments; this is considered in
Sections5 and6. Anothersignificantpointis thatthe implieddelayofthe circuit("delayofC
in Definition 4.1) may be computed by any correct timing analysis method such as the single
or multiple vector criteriareferred to earlier. For example, an RD set using a single-vector
criterionmeans that the implied circuit delay is computed accordingto Theorem 3.1.

With every rising (falling) path delay-fault is an associated path for the rising (falling)
transition. A set of paths is calleda RD path-set if the delay-faults on the paths is an RD set

We now statea sufficient condition forRD paths. An internallynon-invertingcircuit is one
that has invertersonly at the primaryinput leadsof the circuit Any circuitcan be converted to
an internallynon-inverting circuit with at most a single duplicationof each gateof the circuit

Lemma 4.1 Let rj be an internally non-inverting circuit andlet M bea set of I-edges. IfM
stuck-0 (stuck-1) is redundant, then every subsetofMis also stuck-0 (stuck-1) redundant.

Proof: Express each output as a function of the literals corresponding to I-edges of
t). Now each output may be viewed as a monotonic increasing Boolean function of these
Boolean literals. A stuck-0 (stuck-1) fault on a subset of I-edges cannot increase (decrease)
a monotonic increasing function. Since Mis a redundant multiple stuck-0 (stuck-1) fault it
does not decrease (increase) any output function; if it did M would be testable. Thus, neither
can any subset of M, which proves each stuck-0 (stuck-1) subset of M is redundant •

Since every leaf-dag is an internally non-inverting circuit the above result holds for all
leaf-dag's.

Theorem 4.1 Let C be a given circuit and rj its leaf-dag. Letftn be the pathsin rj corre
sponding to a set ofpathsft in C. Let Mn be the I-edges offtn. If Mr, stuck-0 (stuck-1) is
redundant in rj, thenft is a rising (falling)RDpath-setin C.

Proof: Let Mr, be stuck-0 redundant Suppose path P G ft of length L is true for the rising
transition for some delay assignment By Corollary3.1, the multiple fault correspondingto
a stuck-0 fault on the set F of I-edges of all paths of length at least L (for the given delay
assignment) is testable in»?. F includes at least oneedge e £ Mn since Mn andallits subsets
are stuck-0 redundant (Lemma 4.1). Thus some pathoutside ft is a true path of length at least
L. By the definitionofrobustdependentdelay-faults, this implies that ft is an RD path-setin
C.

The proof for the delay of the falling transition is similar. •
Theorem 4.1 yields a sufficientconditionunderwhich a setofpathscannotaffect the circuit

delay under any delay assignment Even though a path P € ft may become sensitizable under
some delay assignment it does not determine the circuit delay, since there exists another path
Q &ft at leastas long as P. A delay-faultalongP causes a delayat the circuitoutputsif and
only ifa delay-fault exists along Q. Thus, delay-faults for paths in ft need not be tested.



Figure 3: Sensitizablepaths and RD delay-faults

The conditionofTheorem4.1 is sufficient Howeverit is necessaryunder thesinglevector
criterion for delay analysisand the assumption that C has the followingproperty: given any
ordering of path lengths there exists a delay assignmentto the connectionsof C that realizes
the ordering. In general, all circuits do not meet this requirement (leaf-dag's do).

Theorem 42 Assume that each ordering ofpathlengths in a givencircuit C canbe realized
bysomedelayassignment. Let 17 be theleaf-dag corresponding to C, andftn thepathsin rj
corresponding toa setofpathsft in C. Let Mn betheI-edgesofftr,.ft isa rising (falling)RD
path-set usingthesinglevector criterion in C ifandonlyifM^ stuck-0 (stuck-1) is redundant
inrj.

Proof:

If part: Given by Theorem 4.1.
Only if part: Assume the multiple fault Mv stuck-0 is testable. Consider any delay
assignmentthat makes the paths outsideftr, shorter thanall the paths in ftn. By assumption,
this partialorder betweenthepath lengthscanalsobe satisfied in C by somedelayassignment
By Theorem 3.1, the delayof C is at least the length of the shortest path in ft, since Mn is
testable in i?. Consequently,ft is not an RD path-set for the single vector criterion in C. •

It is possible to develop a tighter necessary conditionwhich takes into considerationonly
those path orderings which exist for some delay assignments in a given circuit; however we
do not have any application for it as yet We do not know a necessary condition for RD
delay-faults under multiple vector criteria for delay computationsince the sufficientcondition
for a path to be true under any of these criteria is unknown.
Example: Weuse thecircuitof Figure3 toexplainthedifferencebetweenpathsensitization
and robust dependent delay-faults. Upper bounds on delays are shown within each gate; lower
boundsare assumedto be 0. Since theoutputis constantat 0, the last transitionunderany input
change is a falling edge. Thus the rising delayof the circuit is 0; hence we are not concerned
with testingfor rising transitiondelay-faults. Noneof the fallingtransitiondelay-faults along
the threepaths in the circuit(denotedP, Q, and R in the figure) is RPDF. The sets {P} and
{Q} are bothRD but the set {P, Q} is notRD; neither is {R} an RD set However, under
differentdelay assignments each path is responsible for the last fallingtransitionat the output
/. hi the circuit shownon the left R is the longestsensitizable path; P and Q are the longest
sensitizable paths in the circuit on the right Thus, although a path may be sensitizable under
some delay assignment it may still be part of an RD set •
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We note that the statement ofTheorem 4.1 is different from previous work in timing anal
ysis [5]. The distinction is that the previous work provides a necessarycondition under which
a path is sensitizable. In contrast, Theorem 4.1 provides a sufficient condition (Theorem 4.2
shows when this condition is also necessary) under which a set of paths (even possibly sensi
tizable) cannot independently affect circuitdelay. In the example ofFigure3 eachof the paths
P, Qy and it! is a truepath(and statically co-sensitizable) underdifferentdelayassignments.

43 False paths and RD delay-faults

We will refer to the intrinsicdelay-fault coverage as the best faultcoveragepossibleafter the
identification ofa maximal RD set. It is doubtful that identification ofa maximum RD set will

be computationallytractable on most circuits. In practice, therefore, we are interested in an
estimateof the RD set which canbe used to computea lowerbound for faultcoverage. This is
termedthe reporteddelay-fault coverage. A technique foridentifyingalargeRD set is related
to the identificationof long falsepathsin timing analysis[10].

Lemma 4.2 If ft is anRDset, then every subset offt is also anRDset.

Proof: Directby using Lemma 4.1 on the condition ofTheorem 4.1. •

Theorem4J Let C bea circuit whose longest true pathfor all single vectors is lessthan L
under some delay assignment. Then the setofdelay-faults onallpathsof length >LisanRD
set.

Proof: Let r; be the leaf-dag corresponding to C. Without loss in generality consider the
risingtransition delayof r?. By Theorem 3.1 the multiple fault M corresponding to a stuck-0
fault on the I-edge ofeach path of length > L is redundant. By Theorem 4.1, thedelay-faults
on these pathsis an RD set in 17. As statedearlier, since thereis a one-to-onecorrespondence
between delay-faults in 77 and C, the result follows. •

There exist well-known circuitswith many long falsepathsandthe above resulteliminates
consideration ofthesepaths inrobustdelay-fault testing. The theorem extendstheRD property
to every set of long false paths under any delay assignment to the wires of the circuit Since
a set of delay-faults is RD if the corresponding paths arelong false paths, forany givendelay
assignment, we have the flexibility of choosinga delay assignment to try to maximize the
number of long false paths. Heuristic algorithms based on this, such as the one described in
the next section, are being explored.

4.4 Finding an RD set

Theorem 4.1 states the sufficient condition for an RD set in a given circuit C in terms of
the testability of a multiple stuck-fault in the leaf-dag 17 corresponding to C. In practice,
the identification of redundant multiple stuck-faults and the transformation to a leaf-dag are
difficult to perform - the former requires large compute times, the latter usually requires
enormous space.

Before describing an algorithmto identify a maximal RD set we statea result thatallows
highly developed single stuck-fault redundancy identification methods to be exploited in
determining a maximal RD set

11



Theorem4.4 Let C bea non-inverting circuit and M a redundant multiple stuck-0fault in
C (faults considered onorafter I-edges). Let Cm bethe circuit obtained by replacing each
connection in M byO. If Pisa rising (falling) RPDF path in C, then P is rising (falling)
RPDF in CM.

Proof: Assume P is rising RPDF in C but is notrising RPDF in Cm. P cannot be in any
rising RD setofC. There are twocases toconsider since Pis notrising RPDF in Cm. If some
edgein P is set to 0 thentherising RD set(determined by M) includes P, thuscontradicting.
Thus P is non-RPDF in Cm andno edgeof P is set to 0. Let < v\, vi > be the robustrising
transition test for P in C Consider any OR gate / in P. By Definition 3.2 each side-input
to / is at 0 under both v} and vi in C andthere is no transition on theseside-inputs. Since
C is non-invertingand a multiple stuck-0 fault is asserted, these side-inputs to / remainat 0
under vx and v% with no transitioneven in Cm- Hence propagation of the rising transition at
any of the OR gates in P is not affected. Considerany AND gate in P. By Definition 32
each side-input to an AND gate is at 1 under v% in C. Since P is non-RPDF in Cm, at least
one side-input to one or more AND gatesin P is 0 under vi in Cm . In C, the output of P is 1
under vi. In Cm the output of P is 0. Hence vz is a test for M, thus contradicting that M is
redundant •

The converse is not true;ifP is RPDFin Cm . it may notbe RPDFin C. The theorem states
an important result about robust delay-fault testability; a path P that is rising RPDF remains
rising RPDF under removal of stuck-0 redundancies in a non-inverting circuit This directly
gives us a strategy for identifying a maximal RD set. This technique identifies redundant
multiple stuck-faults by iteratively identifying redundant single stuck-faults. It eliminates the
need to unfold a given circuit into a possibly exponential size leaf-dag.

The algorithm operateson a non-invertingcircuit C derived from a given circuit C by
duplicating each gate at most once. The main loop of the algorithm iteratively performs two
steps. First redundant stuck-0 connections in C" are identifiedand replaced by 0. C" is
irredundant at the termination of this step. In the second step selective duplication of gates is
performedin C. This possiblycreates newredundantconnections. Thesetwo stepsare iterated
until the resultingC" is fanout-free andirredundant The pathsin C not passingthroughany
constant connection form the non-RD set; the testabilityof these paths is determined in C to
compute the delay-fault coverage.

Simple heuristics are used to select the order of redundancy removal and duplication.
Redundant connections are determined in decreasing order of the number of paths passing
through them. This aims at eliminating the largestsetofpathspossibleateachstep. Duplication
is performed on a level by level basis from primaryoutputs to primary inputs. This allows
redundant connections to be created close to the primaryoutputs, thus potentially allowing the
elimination of large numbers of paths. While the resulting RD set is maximal, no claims are
made on whether this strategy yields a set that is close to the maximum RD set.

We illustratethe working ofthe algorithmon the circuitofFigure5. The given circuit(top-
left in Figure) is non-inverting. Since there are no redundantsingle stuck-0 faults, we reduce
the fanoutofgate x by duplicatingit (top-rightin Figure). There is now one redundantstuck-0
fault in the circuit On removing it the resultingcircuithasno internal fanoutgreater thanone
(bottom in Figure)and the algorithm completes. Thus the risingRD set for this circuit consists
of the paths {a, w, x, z, /} and {6, w, x, z, /} which pass through the redundant connection.
Note that if we had directly operated on the leaf-dag of the given circuit (shown in Figure 6)
the multiple stuck-0 fault is identified on the I-edgesof these same two paths.
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Convert C to an internally non-inverting circuit C
n = {}
While (C has any gate with fanout > 1) {

While (C has a redundant stuck-0 connection c) {
Replace e by constant 0
ft = ftU{e}

}
Find gate g with fanout > 1
Duplicate g and move fanout connections

so each duplicate has less fanout than g
}
All paths with some connection in ft form rising RD set.

Figure 4: Algorithm to find a maximal rising RD set

5 Robust delay

In Section4 it is shownthat for 100%delay-fault coverage there shouldonly be eitherRPDF
or RD delay-faults. But what about circuits that do not meet this criterion? For these circuits,
one would like to get as much information about the circuit performance as possible from
the limited RPDF set. It is easy to see that testing only the RPDF set in such a circuit is not
sufficient to guarantee the circuit operates at the specifiedspeed; some untestable non-RPDF
and non-RD delay-faults could cause the circuit delay to exceed specification. This raises the
question of whether there is a minimum clock period r such that the passing of the robust
tests for a RPDF subsetwill guaranteethe circuitdelaywill neverexceed r underall possible
delay faults. If such a r exists, then 100%delay-faultcoverage (relative to r) is achieved by
testing a fraction of the robust testable delay-faults. Obviously, the existence of r depends
on the topological distributionof the subsetof RPDF tested. Here, we give a mild condition
that guarantees the existence of finite r. A set of paths is called a RPDF path-set if every
delay-fault on each path in the set is RPDF.

Definition 5.1 The robust delay rR of a circuit is theminimum circuit delay r thatcan be
guaranteedby testingall theRPDF delay-faults.

Theorem 5.1 LetV denote theset of allpathsina circuit C, V C V anRPDFpath-set and
ftCVa RDpath-set. Ifevery connection V —ft appears alongsomepathin V, then C has
finite robustdelay.

Proof: Let dbe themaximum delayofanypathinV andlet n denotethemaximum number
of edges in any path in C. Each path P,- € Pis testedto ensure that its delay does not exceed
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d. Pick r = n * d. If the delay of some path Q in V - ft exceeds r, at least one connection
e in Q has delay exceeding d. But e is in some path P, 6 P (since e appears in some pathin
P), and the delay of Pi would exceed d contradicting our assumption. Hence no path in C
exceeds r. Since the robust delay is no largerthan r, the result follows. •

Theorem 5.1 relates the distribution of robust testable paths in a circuit and verifiability
of the circuit's performance. If a circuit has a RPDF set that covers all the connections along
non-RD paths, the robust delay of the circuit is finite. Otherwise, it may be infinite, since delay
faults on some paths can cause the circuit's delay to be any value without being detected on
RPDF paths. Hence, the robust delay is ameasureofthe verifiability ofacircuit's performance
under its available testability.

Although the robust delay may be too largeto be useful, as will be explained below, upper
bounds on robust delay can be easily computed. How close the upper bounds are to the best
circuitperformance will dependon thetestingstrategy used,e.g. fixeddelayorvariabletesting
using upper and lower bounds.

5.1 Computing robust delay

To obtain an upper bound on robust delay, one can select any RPDF path-setV and test the
delays in P. Assume the (fixed delay)testingschemelatches the circuitoutputsat some time
d. Let e 6 P refer to a connection in path P and ft represent a RD set. An upper boundon
robust delay is:

max((£*(e),V0*0>Ufc)),d)

subject to:

£%)< d,VP€V

This is becausea pathcan not have delaylongerthanthe solutionofthe above linearprogram
without violatinga constraininginequality, which implies a delay-faulton a tested path. Note
that the RD delay-faults are ignored.

hi theboundeddelaymodel thedelay of each connection cis specifiedas [dmin, <£,,J. The
delay ofa path P inthis model is specified as [dmin, d£j; these bounds could bedetermined
by summing up the minimum and maximum delays of connections in the path respectively.
Another issue of delay-fault testing is whether a variableor fixed clock speed is used during
application of the tests. A fixed clock periodmeans that eachpathdelay is verified to be less
than the (fixed) clock periodof the circuit However,a variableclock allows greater flexibility
to the testing process. In particular, pathsdelays can be verified against their lower and upper
bounds. We considerboth situations;in particular, the added flexibility ofa variableclock rate
helps in reducing the test set size after the identificationofa dependent set

Definition 5.2 Under theboundedmodela short-path delay-fault occursalongP ifandonly
ifthe actualdelay ofP< dj^. Along-path delay-fault occurs ifand only ifthe actual delay
0/PX&*.

Although a long-path or short-pathdelay-faultcausesa delay to fall outside specified bounds
we areonly interested in detecting those delay-faults that slow down the circuit Long-path and
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short-path delay-faults willbe exploited onlyin reducing thesizeof the test set and implying
bounds on thedelays of otherpaths, thus increasing thedelay-fault coverage.3

The upperboundon robustdelaymaybe improved by usingboundeddelaysfor the paths
in V and testing to checkthat theupperandlowerbounds aremet (variable delaytesting).

Theorem 52 Anupper boundon therobust delaytr of a circuit is:

rR <max((£ *(e), VQ* (V Uft)), d)

where

d = max(OVP€P
and

<&<£%)<<&*, VPeP
e€P

where V = setofallRPDF pathsandft-a maximal RD set*.

Proof: Let r be the optimal value of the above linear program. Then the only paths longer
than r form a RD set By definition, delay-faults in ft can only be responsible for the delay if
the delay on some non-RD paths is at least as much. Since the latter are accounted for in the
linear program, the delay of the circuit is less than r. Further, r is the minimum delay that can
be guaranteed by testing the RPDF paths given the selected RD set ft; so tr is no more than
r. •

It can beseen that thecloser dj^ and d£ax are, the tighter thebound will be, because the
feasible space is more restricted. Another way to improve the bound is to use a larger RPDF
set, so that more constraining inequalities are introduced to further reduce the feasible space,
hence, tightening the upper bound. This will be illustrated in the examples in the next section.

An interesting case is when the circuit is 100% robust delay-fault testable and the entire
RPDF set is tested. Then, the constraining inequalities are lower and upper bounds on all the
paths. Obviously, the linear program yields the maximum path delay. Hence, in this case
robust delay reduces to the usual notion ofdelay.

It is also interesting to note that the notion of the delay of a circuit is now tied to its
testability. If 100% delay-fault coverage is achievable for a specified delay, it is "safe" to use,
since it can be guaranteed. Thus, regardless of the true delay computed by accurate timing
analysis, the delay value that can be verified is the "usable" delay; verifiability of this delay
depends on the amount of available testability. With 100% robust delay-fault testability, the
true delay can be verified and thus is usable. For circuits with less than 100% delay-fault
testability, the verifiable delay is the robust delay, possibly greater than the true delay. Thus,
the notion of robust delay captures the relationshipbetweentheamount oftestabilityofa circuit
and its "usable" delay. This usable delay varies with the amount of the circuit's delay-fault
testability.

3Arobust testfor short-path delay-faults mustbegenerated. Itisknown that avector pair < «i, vj > tests for a
long-path delay-fault for a rising or falling transitionif and only if < *a, «i > tests for a short-pathdelay-fault for
the opposite transition along the same path [17].

4In general, weneed toreplace each £(<*,•, aj) inthe inequalities by6r(<w, a,) or5'(a;, a,), as appropriate to
eachrising orfalling path, if 6r ^ 6*.
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Figure 7: Computing robust delay

5.2 Examples

Here we give examples to demonstrate the computationof upper bounds for robust delays tr
and illustrate their magnitudes relative to the delay d used to test the RPDF delay-faults.
Example: The circuitof Figure7 is 100% singlestuck-faulttestableand but only 16out of
the 26 (risingand falling)pathdelay-faults are RPDF(about62% testability). Althoughsome
paths are non-RPDF and non-RD, fortunately the set of testable paths form a path-cover, and
the circuit has finiterobust delay. Assume each connection has the boundeddelay [0.9,1.0].
The delay ofeach path is boundedby the sumof thelower and upperbounds of theconnections
in the path. Assume the RPDF faultspass the tests for short-pathand long-pathdelay-faults.

TheRPDFpaths for bothrisingandfallingtransitions,denotedby P are: {a, e, /, h, k, n},
{a, e, /, 9,h ™}, {&. <*> /»**> *> *}.{&, <*> /»9»h ™},{c,g,*, n},{c,g,j, m},{&, d} i, /},{a, rf, i, /}.
The robust delay is obtained as:

max(%26(x))i VQgP

such that

3.6 <%,e) + 6(e,/) + 5(/,/0 + $(M) + 6(Jb,n) <4
3.6 <6(a,e) + 6(e,f) + 6(f,g) + 6(gJ) + 6(jim) <4
3.6 <6(btd) + 6(dJ) + 6(f}h) + 6(h,k) + 6(k,n) <4
3.6 <6(b,d) + 6(dtf) + 6(ftg) + 6(g)j) + 6(j,m) <4
1.8 <6(cig) + 6(g,k) + 6(k,n) <2
1.8 <6(c,g) + 6(g,j) + 6(j1m) <2
1.8 <6(b,d) + 6(d,i) + 6(i,l) <2
1.8 <6(atd) + 6(d,i) + 6(i,l) <2

The linear programming result is 4.40. Therefore, with only 62% testability, 100% fault
coverage can be achieved with the robust delay tr = 4.40, only 10% more than the computed
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Figure 8: 4-bit paritychecker

delay of4.00. Note that this is exactly the robustdelayofthe circuit (not abound) if the upper
and lower bounds on each path were precise.

Undera floatingdelay model whereonly the upperboundisavailable,this scheme produces
a higher robust delay:

max (%2 6(x)), VQ<£ V
xeQ

such that
6(a, e) + 6(e, f) + 6(f, h) + 6(ht k) + 6(k,n) < 4
6(a, e) + 6(e, f) + 6(/, g) + 6(g,j) + 6(j, m) < 4
6(b, d) + 6(d,f) + 6(f h) + 6(h,k) + 6(k,n) < 4
6(b,d) + 6(d,f) + 6(f,g) + 6(gtj) + 6(j,m) <4
6(c,g) + 6(g,k) + 6(k,n) <2
*(c,y) + *(f.i) + *W,m) <2
6(6,d) + 6(d, ») + «(*,/) <2
*(old) + Wt).+ *(tf/) <2

The linear programmingresult is 8.00, twice as much as the computed delay. •
Example: Figure 8 shows a more realistic circuit, a 4-bit parity checker in which all 32
delay-faults areRPDF. We assume each connection hasdelay [0.9,1]; theseare only usedto
derive bounds on path delays. If we test all delay-faults, we get the computed delay as the
robust delay. By testing only a fraction of the delay-faults we canobservehow the magnitude
of robust delay varies with the percentage of the tested faults. In Figure 9 the first column
in the table is the number of delay-faults (out of a total 32) that are tested; the second is the
percentage tested; the third is the robust delay.
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Test set size % testability Robust Delay
32 100 4.00

30 94 4.40

28 88 4.40

26 81 4.40

24 75 8.00

22 69 8.00

20 63 8.00

18 56 8.00

16 50 8.00

<14 <44 oo

Figure 9: Test set size vs. robust delay for parity checker

From the table, it can be seen that the computed delay of4.00 can be verified by testing
all RPDF faults; call this 100% testing. With 81% testing, 90% of the computed delay can
be verified, i.e. 4.40 vs. 4.00; with as little as 50% testing, twice the computed delay can
be verified. Below 44% testing, some delay faults may lengthen the circuit delay yet remain
undetected in the testing, thus yielding infinite robust delay. Figure 10 plots the variation of
robust delay versus the testing effort.

The test set of size 16 is linear in circuit size since each RPDF path includes some
connection not covered by any other RPDF path. •

The above examples illustrate that the amount of testing can be tailored to fit the required
performance. Higher performancerequiresmore testing. Fairlytight upper bounds on robust
delay can be obtained with low testing effort. In particular, a test set linear in circuit size
allows a remarkably high verifiable performance..

6 Delay-faults under bounded delays

In this section we illustrate the use ofa bounded delay model in reducing the test set size for
robust delay-fault testing.

Not all non-RD delay-faults need be tested under the bounded delay model. The fact that
tested paths have delays within specified lower and upper bounds can be used to reduce the
number of delay-faults tested. There are two aspects that deserve attention. First, the clock
period that is applied while performing the delay-fault testing must be variable. Second, only
bounded delays on complete paths are exploited in reducing the test set This is because
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Figure 10: Robust delay vs. testing effort tradeoff

bounded delays on connections cannotbe verifiedby testing;typically,bounds on connections
are only used in determining bounds on path delays.

The goalis to performtwo (onelong-pathandone short-path) tests on a few selectedpaths
ratherthan a single long-pathdelay-fault test on a larger set of paths. This is possible if the
occurrenceof each of the untested delay-faults is prohibitedby the absenceof delay-faults on
the tested paths. Under these conditions,this test strategy yields 100%delay-faultcoverage.
Example: Consider the example shown in Figure 11. Each edge has bounded delay
specified as [1,2] except the edge / which has delay [6,10]. Let the specified clock period
be 16. Assume that all but the bold path have been tested and each falls within its lower and
upper bounds (taken as the sum of the lower and upper bounds, respectively, of each edge in
the path). We argue that the bold path does not have to be delay-fault tested. This is done by
proving that any assignment that slows down the chosenpath(causing its delay to be greater
than 16) causes some other tested path to also speed up or slow down outside its specified
bounds. The proof is expressed as a linearprogram expressing the condition that the chosen
path be the only one to exceed the clock period.

9 < 6(a) + 6(d) + 6(/) + %) <16
9 < 6(b)b +6(d) + 6(f) + 6(g) < 16
3 < 6(b) + 6(c) + 6(g) <6
8 < 6(e) + 6(f) + 6(g) < 14

6(a) + 6(c)+ 6(g) > 16

This set of constraints is not feasible (under the additionalconstraints that the delay of each
edge be non-negative); this demonstrates that the path {a, c, g} cannothave the only delay-
fault that slows down the circuit Note that the bounds on the connections are not used, e.g.
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Figure 11: All pathsneed not be delay-faulttested underboundeddelay model

1 < 6(<0 < 2 is not used since it is not verified. •
Basedon the above example, given a set of non-RD delay-faults, implications using the

bounded delays may be used to reduce the test set size by formulating a series of linear
programs. While an exact version of such an algorithm appears intractable, a heuristic
algorithmthat is intuitively promisingis underdevelopment

7 Computing delay-fault coverage

We take the position that thefault coverage should reflect the confidence that one can have
aftertestingthatthe circuitis correct, i.e. in thiscasecanbe operated correctly at some speed
r. It shouldreflectthe percentage of faults testedout of all faults thatreallyneed to be tested.
Havingseen threedifferent dimensionsofdelay-faulttestingnamely (1) RD sets(2) bounded
delaytestingand(3)impliedpathdelays,we showthateachis essential in computingarealistic
value forthe delay-faultcoverage. We propose the followingformula fordelay-faultcoverage.

Proposition 7.1 LetT denote thesetofallpathdelay-faults ina circuit, andft denotea robust
dependent (RD) set. Given a testset T, let T denote thedelay-faults that arerobust tested by
Tfor bounded delays. For a specified circuit speed r, let I(T, r) denote the set ofnon-RD
delay-faults whose absence (delay lessthan t) is guaranteedbytesting T. IFC(r) denotes the
intrinsic (ormaximum) delay-faultcoverage achievable toguarantee correct circuit operation
with delay atmost r, andRFC(r) denotes the reported delay-fault coverage. Then:

IFCM >RFC(t\ - (m+W*»DIFC(r) >RFC(r) - m_m •

It is apparent from the formulathat not usingone or moreof the threeaspects introduced in
this paperwill decrease the reported delay-fault coverage. For example, in the denominator
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we find only those delay-faults that need to be tested, T - ft; thus the RD set appears. In
the numerator, the implied set I(T, r) appears accounting for the thirdeffect Boundeddelay
testingis implicitin the term I(T, r) sincethiskindof testing wouldallowmorepath delays
to be implied. The effect of ft is slightly similar to redundant faults in stuck-fault testing -
since no test is necessary for a redundant fault this should be subtracted from the set of all
faults in computing coverage.

An open question is how far the reporteddelay-faultcoverageis from the intrinsicdelay-
fault coverage. This depends on whetherthereexist any othereffects among delay-faults not
capturedby the three phenomena describedin this paper, e.g. arethere other implied faultsor
are there other faults that need not be tested.

8 Results

We show results on MCNC benchmark circuits. Each circuit is first optimized using the
standardscript (called script jrugged) in the SIS system [15]. The lower bound on delay fault
coverage, determined using the heuristic described in Section 4.4, is compared against the
robust delay-fault testability in the optimized circuits. The first column is the circuit name;
the second is the total number of delay-faults (rising and falling transitions); the third gives
the size of the RD set found; the fourth lists the size ofthe RPDF set; the fifth gives the robust
delay-fault testability. The column FC-1 gives the fault coverage computed using only the
RD set Note the substantial increase in this compared to the testability. For example, 93%
of the total delay-faults in bw are identified as an RD set resulting in an increase from 0.01 to
0.20. The column FC-2 gives the fault coverage achieved by using a variable testing speed
but only using upper bounds on the path delay (lower bounds assumed 0 for all paths). A
unit delay is assumed on each connection in the circuit In this case, any non-RD path whose
delay is implied to be a finite number if the circuit passes the RPDF tests is considered tested.
Except for the circuits with 100% testability, the circuits do not have finite robust delay since
100% fault coverage cannot be achieved for any finite delay. Despite this, all the circuits
show very high fault coverage. For example, the coverage in bw is now raised from 0.21 to
0.66. Considering that the testability is 0.01, this is a significantincrease. However,note that
FC-2 ignores the speed of the circuit To get the coveragereported,the circuitmay have to be
slowed down considerably.

Notice the large number of RD paths identified by the algorithm of Section 4.4 for every
example, except those with 100% testability. We have also tried different heuristics from those
described in Section 4.4. For example, the unfolding was performed from primary inputs
towards primaryoutputs; in another casewe tried unfolding in decreasingorderof the number
of paths through the gates in the circuit While we have observed variations in the size of
the maximal RD set identified by each heuristic, the technique of Section 4.4 yields the best
quality results and also appears to have less memory requirements in the unfolding.

Compare the results for the un-optimized and optimized versions of a 32-bit carry-skip
(or carry-bypass) adder, cbp32.4. The circuit is composed of eight 4-bit carry-skipadders
connected in cascade. Notice that Boolean optimization techniques cause a dramaticincrease
by a factorof87 in the number of paths (delay-faults). Yet the fault coverage in the resulting
circuit is almost the same as the initial circuit The effect of the usefulness of RD sets is

demonstrated by the size of the non-RDR set which is 0.08% of the total number of delay-
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Name #PDF #RD #RPDF Testability FC-1 FC-2

rd53 310 102 157 0.51 0.75 0.83

conl 444 0 44 1.00 1.00 1.00

z4ml 526 246 187 0.36 0.67 0.90

misex2 758 317 373 0.49 0.85 0.99

misexl 1144 744 254 0.22 0.64 0.96

9sym 1184 216 674 0.57 0.70 0.89

vg2 1576 0 1576 1.00 1.00 1.00

apex7 1960 98 1775 0.91 0.95 0.97

sao2 2706 1548 626 0.23 0.54 0.83

clip 3710 2865 612 0.16 0.72 0.89

rd73 3816 2837 624 0.16 0.64 0.91

e64 4290 0 4290 1.00 1.00 1.00

5xpl 5246 4346 447 0.09 0.50 0.79

rd84 6290 4573 911 0.15 0.53 0.83

duke2 8320 4466 3050 0.37 0.79 0.94

apex6 9898 3815 4743 0.48 0.78 0.96

alu4 25626 18637 3509 0.14 0.50 0.87

bw 49864 46873 627 0.01 0.21 0.66

rot 58734 39552 11917 0.20 0.62 0.97

des 240232 118827 94719 0.39 0.78 0.97

cbp.32.4f 256128 221176 11154 0.04 0.32 0.85

cbp.32.4 22278702 22260784 7474 0.0003 0.42 0.83

f: Initial un-optimized circuit
PDF = All path delay-faults in optimized circuit
RD = Chosen RD set

Non-RD = Path delay-faults which are not in chosen RD set
RPDF = Robust testable delay-faults
FC-1 = (# RPDF) / (# Non-RD)
FC-2 = (# Tested faults) / (# Non-RD)
Tested faults = Non-RD faults whose absence is guaranteed if circuit passes RPDF tests at
finite speed

Figure 12: lx>werbound on delay-fault coverage

23



faults in the circuit 5
The number of false paths for any delay assignment is a lower bound on the size of the

RD set (Theorem ??). Some of the circuits shown above have few false paths under a unit
gatedelaymodel, yet havea large maximal RD set While themaximumRD set size provides
someindicationofthenumberof false paths (it isanexactindicatorassuming allpossible path
length orderings (Theorem 4.2)) thatmay exist fora specific delayassignment aninteresting
problemfor the future will be to betterunderstand thisrelationship.

9 Conclusions

We haveshownthatthedelay-fault coverage achievable by a test set is relativeto the speedat
which operation is desired. This observation helpsaddress the issueof how much delay-fault
testing is required to guarantee thata circuitoperates correctly at its specifiedspeed in three
ways:

1. For a specified circuit speed, there exist path delay-faults which never need to be
tested, since they cannot affect the circuitdelay without some other delay-faults (which
are included in the set to be tested) also impacting the circuit delay. Necessary and
sufficient conditions for the existenceof thesedelay-faults, calledRD sets, are proved.
We show that delay-faults on any set of long false paths that occurs, given any delay
assignment to the connections of the circuit, forms a RD set This yields an effective
lower boundon the size ofthe RD set This theoryincreases the faultcoverage reported
for robust delay-faulttesting. Previous methodsuse testability(i.e. the percentage of
delay-faults that are RPDF) in reportingcoverage. However, the size of the test set is
not affected since every RPDF still must be tested.

2. The next aspectdescribes the possible tradeoffthatexists between the circuitspeedand
the delay-fault test set size required to guarantee that a manufactured circuitoperates
at that speed. This is termed the verifiableperformance of the circuit and denotes the
usable delay relative to the desired testing effort that can be guaranteed. The notion
of robust delay of a circuit is used to represent the minimum useful delay of a circuit
undera given boundeddelaymodel. The quantitativetradeoffbetween the robustdelay
and the testingeffort hasbeen formulated usinga linearprogram, while alsoaccounting
for the presenceof RD delay-faults. In particular, linear (in circuit) size test sets are
shown to provide 100%delay-faultcoveragewith a very smalldecrease in the verifiable
performance.

3. The final aspectreduces the delay-fault test set size without decreasing the delay-fault
coverage or changing the desired circuit speed. Under a bounded delay model, where
the delay of a tested path is guaranteed to lie between some upperand lower bound,a
simplelinear program is formulated to identifydelay-faults thatdo notrequire testing.

Eachof these conceptswere demonstrated on examples; howevercomprehensive experi
ments remain for the future. We arepresently developingeffective heuristics to obtaingood

sExperimental results on even larger circuits will bereported inthe final version of the paper; our results are
presentlyrestricted by the efficiencyof the current ATPG program used.
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solutions with low computational costs. Preliminary experiments were reported and show
encouraging results.

A primary application of this theory will be the synthesis of circuits with 100% robust
delay-faultcoverage. The resultsof this paper provethat 100%testabilityis not necessary for
100%delay-faultcoverage. Basedon the techniques introduced to reduce the complexity of
delay-fault testing,synthesis forcircuitwith 100% faultcoverage becomesa two-stepprocess.
(1) A circuit may not have 100% faultcoverage for a specifiedspeed, yet a little reductionin
speed may guarantee100% fault coverage; this occurswithout any modification to the circuit
This first step of the synthesisprocess bringsthe tradeoffbetween performance and coverage
into consideration. (2) If the fault coverage or circuit performance is not satisfactory after
the firststep, we synthesize circuitswhich have delay-faults which areeitherRPDFor belong
to a single RD set; this is a weaker condition that 100%robust delay-fault testability. An
optimization step to reduce the size of the test set by exploiting accurate delay information
on paths, derived from accurate gate modeling,is used. We are in the process of exploring
techniques for synthesis ofcircuits for 100%faultcoveragebased on this approach.
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