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Abstract

We present a technique to analyze the forces and dynamics of a class of
mechanical systems, called finger-like systems, which may be viewed as an
extension of simple robots to include networks for force/displacement gen
eration and transmission. Finger-like mechanical systems can be described
using a graph-theoretic approach to force and displacement transmission.
Branches consist of actuators, cables, springs, and other building blocks.
Upon specification of the connectivity graph and branch behaviors, a sym
bolic mathematics program can generate the affine maps from actuator con
trol variables to mechanical system torques and forces. This process system
atizes and simplifies the determination of biological and robotic mechanical
dynamics.
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Introduction

1 Introduction

In this paper, a class of mechanical systems called finger-like systems is intro
duced for which a graph-based method for manipulator analysis and design
is given. Finger-like systems may be viewed either as an extension of sim
ple robots (to include force and displacement generation and transmission
networks) or as a special case of non-rigid body robots (where the actua
tor related cables and springs permit useful simplifications). Motivation for
the study of finger-like systems comes from biomechanical models of fingers
where muscle actuators are separated from the fingers by low mass and low
friction tendons [12, 2]. From the perspective of robotics, finger-like systems
are useful models of manipulators with cable-driven joints. An important
theme of this work is the generation of tools which aid in both the analysis
and design of robot systems.

Graph theory has numerous engineering applications in systems which
are modeled as a network of interacting elements. The most common appli
cations are in lumped parameter models of mechanical systems and electrical
circuit. Some of the best known graph-based system analysis tools include
bond graphs [8], linear graphs [11], and signal flow graphs [10]. The ap
proach of this paper resembles linear graphs, such as that used by Durfee et
al. [6], but exploits the structure of finger-like systems to obtain the nonlin
ear dynamics of the underlying mechanical system. The kinematic analysis
of tendon drivenmanipulators by Tsai and Lee [13] is also a general, graph-
based method but is restricted to systems in which there is no tendon stretch
or splitting and where circular pulleys are present at each rotary joint. In
this paper a formalism called tableau analysis [5] is used to obtain and solve
systemsof simultaneous equations relating the actuator system's branch and
node variables.

The related papers of Becker et al. [1] and Buchner et al. [2] analyze the
kinematics of a human finger but do not offer a general algorithm suited
to automation. A larger body of work can be found on specific tendon-
actuated robot hands (e.g. Jacobson, McCarthy, and Salisbury). The work
of Jacobson et al. on the MIT/Utah hand [7] contains a summary of past
efforts as well as new contributions.

This paper provides a general, systematic formulation of dynamics and
leads to insights on the design and analysis ofactuator networks. We begin
in Section 2 with an example and short review of robot dynamics followed
by essentials of graph theory. Section 3 presents the main results of the
paper: a definition of finger-like systems, an algorithm for the solution of
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their dynamics, and a proof of this algorithm. Finally, in Section 4 we
apply this technique to several examples, including a simplified model of the
human finger. Final remarks are given in Section 5.
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2 Preliminaries

Before proceeding directly with a formal presentation of finger-like systems,
a selective review of mechanical system dynamics and graph theory is pre
sented. In addition to fixing notation, this permits the main results to be
presented succinctly in the subsequent section.

2.1 Lagrangian treatment example

The equations of an open-chain rigid-link robot manipulator can be derived
using Lagrange's equations. Given the kinetic energy K and potential energy
V as a function of the robot's configuration 9 and its time derivative 0, we
define the LagrangianL(0,9) = K(9, 9)-V(9). The dynamics of the system
obey Lagrange's equations,

d_ fdL\ _dIL_
dt \diiJ d$i ~ Til

where r,- represents the actuator forces applied conjugate to the direction of
motion <?,-. This is frequently written in matrix notation as

M{9)9 + C(0,0)9 + N(0,9) = r, (1)

where M(9)9 are the inertial forces, C(9,9)9 represents the Coriolis and
centrifugal force terms, and N(9,9) are the nonlinear frictional forces as well
as (D$V)T(9) (the partial derivatives of potential energy V with respect to

For biomechanical robots in particular, cables or tendons may be con
nectedto the underlying mechanical system in a complex ways as they bend
around joints, bearing surfaces, and travel through tendon sheaths. To in
troduce our methods which, treat this general class of systems, consider the
1-joint example of Figure 1. The actuator network is composed of two ten
dons which are guided around joints and bones to their attachment points.
The analysis in this section employs a classical Lagrangian mechanics ap
proach and the Jacobian to derive the influence of cable tensions on the
robot's dynamics. In Section 4 we shall reanalyze thisrobot using the graph-
based approach described for finger-like systems. While this type of actuator
network is admittedly simple, it illustrates some important ideas in formu
lating equations of motion using a Lagrangian technique. It is also a useful
starting point of models of mechanical hands which use tendon drives.
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Figure 1: Simple 1 joint mechanical system with configuration parameterized
by angle 9. There are two actuators modeled as force generators, F\ and
F2.

The actuator inputs are the two force generators with forces F\ and F2
and corresponding branch displacements x\ and x2. Force generator 1 is
anchored to reference node 0, denoted (0). Cable 1 consists of spring K of
zero rest length and inextensible cable of length L\ and acts on the robot's
mechanical structure at node (1). The length of a hypothetical string which
travels the actuator cable's path from (0) to (1) is written as g\{9) + L\.
From Figure 1 it is apparent that g\{9) increases as angle 9 increases.

Similarly, the second actuator network consists of a force generator an
chored at reference node (0) in series with cable 2 which has length L2 and
acts at mechanical structure node (2). As before, g2(9) + L2 denotes the
length of a string along the actuator network's path from (0) to (2). In this
case, g2{9) decreases as angle 9 increases. We model the travel along the
two actuator network pathways of Figure 1 with simple polynomial models
as employed by [2]: gi(9) = Rx9 and g2(9) = -{R2 + R'29)9.

A set of generalized coordinates for this system is (0, xi) which cap
tures both the mechanical system's configuration 9 and the actuator spring
displacement via both 9 and x\. The Lagrangian L for this system is

L=§fPM(0)0 - [Vg{9) +§(fll(0) - x{fK(9l{9) - «o] , (2)

where Vg is the potential energy due to gravity. A more general problem
would associate K with a symmetric, positive semidefinite stiffness matrix.

Following (1), Lagrange's equations are

M(e)e^c(e,e)e^{D0vgf{e) + {DmfK(9l{e)-x{) = r
-K(gx(9) - Xl) = -Ft, (3)
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where r is the generalized force conjugate to velocity 9 applied by F2 (F\s
action was captured via spring extension g\{9) - x\). The negative sign
associated with F\ is a result of our convention that tension correspond to
positive force. Equation (3) is a mixed algebraic-differential equation.

Using the principle of virtual work, we relate the joint torque to tendon
force F2 as r = (Dog2)T(-F2). Again, the negative sign results from our
convention that tensile forces be positive. Combining this with (3) and the
definitions of g\ and g2 yields

M(9)9 +C(9,9)9 +(D9Vg)T(9) =( -Rx (R2 +2R'29) )( £ ) (4)

which relates applied actuator forces to the robot's dynamics. Note that
in this example we were able to calculate the joint torque due to pulling
on the tendons without actually calculating the forces over the complex
bearing surfaces. This is one of the primary advantages of using generalized
coordinates.

2.2 Graph theory

In this section we discuss. the application of graph theory to mechanical
systems. See [3] for a mathematically precise description of graph theory
and [5] for a description of many of the tools used here, presented in the
context of circuit theory.

Actuator networks as graphs

Implicit in network models of mechanical systems is a graph structure com
posed of nodes or vertices and branchesor edges. Nodes represent points of
confluence of branches (actuator elements). Associated with each branch is
a displacement x (the distance across the nodes delimiting the branch such
that extension corresponds to x > 0) and force / (such that a tensile force
corresponds to / > 0). The graph structure is directed since we must assign
reference directions for summing branch displacements and forces. The re
sulting directed graph, or digraph, is represented bythe notationQ= (AT, 5),
where Afis a set of nodes and B is a set ofbranches between pairs of nodes.
Table 1 summarizes our notation.

There is an important distinction between the models we have chosen
for mechanical systems and those of electrical systems. In electrical circuit
theory, the branch direction is chosen arbitrarily and used as a reference for



6 Preliminaries

Table 1: Summary of notation and symbols used in this paper to represent
actuator networks as a graph.

Description Notation

attachment point, node (n)

mechanical element, branch bt-

branch displacement Xi

branch force fi
node displacement w.r.t. ref. node en

spring (zero rest length), / = Kx A. K

indep. force generator, /,- = F(9) _0£W
indep. displ. generator, X{ = L{9) -®£«
controlled force generator, /,- = h(9,x,f) _^h[9,x,f)

controlled displacement generator, X{ = g(9,x, f) -^PL^f)
undirected actuator graph g° = (Afo,B°)
directed actuator graph q = (at,b)
augmented graph (w mech. sys.) g* = (Ar*,B*)

specification of the branch variables (voltage and current). In our actuation
network, extension and tension are intrinsic quantities and independent of
branch direction. The direction of a branch is used when summing dis
placements and forces to obtain the net displacement or force at a node.
This difference can lead to false intuition if force is directly associated with
current and displacement with voltage.

Given a system's digraph, we construct an incidence matrix which models
the interconnectivity of Q. Given n nodes and b branches, we define the nxb
matrix Aa = (an) by

aij = <
+1 if branch j enters node i
—1 if branch j leaves node i

0 otherwise.

We define the (n-l)xb reduced incidence matrix A as the matrix obtained
by deleting from Aa the row corresponding to the reference node, which may
be chosen arbitrarily.

An important concept in graph theory and our development of finger
like systems is the tree of a graph. A tree of a connected graph Q is a
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subgraph which satisfies three fundamental properties: (1) it is connected,
(2) it contains all of the nodes of Q, and (3) it has no loops. In general, a
graph has many trees. There is a unique path along a tree between any pair
of nodes.

Given a connected digraph Q and tree 7", the branches of Q may be
partitioned into two disjoint sets: those which belong to T (called tree
branches or twigs) and those which do not belong to T called links or chords.
Since digraph Q has 6 branches and n nodes, there are n —1 twigs (easily
shown by induction) and t = 6 —(n —1) links. Every link of T and the
unique path on the tree between its two nodes constitute a unique loop
called the fundamental loop associated with the link. There are precisely t
fundamental loops.

The vertex law condition that the net force acting at any node must be
zero is given by Af = 0. This is the analog of Kirchhoff's Current Law
(KCL). Furthermore, the net displacement around any loop must also be
zero, analogous to Kirchhoff's Voltage Law (KVL). Although this is written
most directly using a loop matrix (e.g. Bx = 0), for the purposes of the
incidence matrix based tableau equations discussed below, the path lawKVL
is expressed as x = ATe [5].1

Linear algebraic formulation

In general, a model of a branch's displacement or force can include branch
displacements or forces elsewhere in the network. In this case we write a set
of simultaneous equations incorporating all the branch rules as h(x, /, u) =
0. Any dependency on node displacements e can be eliminated since e is
determined by a directed sum of branch displacements. For the case when
the &* branch's rule isan affine function ofthebranch variables, the branch
rule has the form Tkx+A*/ = $fcu+^. Combining the k = 1,..., bbranch
equations we write Tx + A/ = $u + /z, where u is a vectorof control inputs
(e.g. independent forces and displacements) and \i is a vector of constants.

*The reduced incidence matrix A is a special case of a cut set matrix Q in which the
cut sets are chosen to be all branches incident on each node. Next consider the original
digraph augmented by branches from the reference datum node to all other nodes. These
branches form a tree which spans the graph and contains no loops (since they all fan
out from the reference node). These branches of a tree are called twigs and thus we
identify e with xtwig. Branches of the digraph which are not twigs are termed links and
every link has a corresponding unique loop. On all such loops, KVL may be expressed as
x = Q xtwig. The identification of e with xtwig and A as a special case of Q completes
the argument.
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A network is well-posed if given a fixed set of inputs u, the branch
currents and forces are uniquely defined. Under this assumption, the system
of equations which must be satisfied is

That is, given the input forces and displacements, u, we wish to find the
corresponding branch displacements and forces w = T~1u. This is clearly
possible only when the square tableau matrix T is invertible. This is true if
and only if the system is well-posed.

Tableau analysis incorporates the loop and node constraints together
with the branch rules as implicit equations in a unified framework. It is
distinguished from nodal and loop analysis by not relying on each element's
force being a function of its displacement and vice versa. This generality
facilitates its use in automated solution algorithms such as that employed
by SPICE, a widely available electrical circuit simulation package.

Tellegen's theorem, given below, is a graph theoretic result which has
an interpretation as the conservation of power (and hence energy). Since
Tellegen's theorem holds for any such a, it holds for x(t) and x(t + 8t) and
thus (xTf)(t) = 0. This result is used later in this paper to derive the action
of the actuator network on the mechanical system.

Theorem 1 (Tellegen) Fix a reduced incidence matrix A. Let x and e be
any set of branch and node displacements such that x = ATe. Furthermore,
let f be any set of branch forces such that Af = 0. Then

xT/ = 0.

Proof. Since xT = eTA and eTAf = 0, then xTf = 0. •
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3 Finger-like Robot Systems

The review of mechanical system dynamics and graph theory in the previous
section serves as a foundation for the results of this section. We now combine

these tools to study the structure of finger-like biomechanical systems.

3.1 System description and assumptions

A finger-like system consists of 2 parts: an actuator-related system and an
underlying mechanical system. The mechanical system M is a collection of
rigid bodies constrained to move in its configuration space 0. In general,
configuration 9 includes angular as well as rectilinear quantities which, for
this paper, take the form 9 € 0 C Rn. For the purposes of this development
of finger-like systems, we assume M to already possess a formulation of
its intrinsic dynamics (perhaps developed via Lagrangian mechanics) in the
form of a second order differential equation expressing a balance of forces
conjugate to configuration velocities:

M(9)9 + C(9,9)9 + N($, 9) = 0.

The function N may contain friction or other dissipative forces in addition
to forces derived from potential fields including gravity and spring forces.

The actuator system A consists of a collection of force and displace
ment transmission elements which obey certain restrictions. These elements
interact with each other and the mechanical system at junctions or nodes.

Assumption 1 Branches join at nodes and exist in a quasi-static force
equilibrium. That is, any dynamics of A are much faster than those of M
and so to track the behavior of M we need only look at ,4's equilibrium
forces and displacements.

Assumption 2 The geometry of the actuator system elements is a function
only of configuration 9. Having frozen 9, finite displacements of the nodes
and branches of A occur in a fixed geometry. This assumption enforces a
1-D like nature to the actuator network which we shall exploit.

Denote the set of all nodes in the actuator system as M° and the set
of all actuator branches as B°. The nodes and branches together form the
connected graph Q° = {N°,B°). If this graph is not initially connected, it
maybe made connected by a process called hinging where disjoint subgraphs
are joined at a common reference node.
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Assumption 3 Connected graph Q° is fixed over the entire configuration
space, 0.

Each branch has 2 scalar variables associated with it: displacement x
and force /. We define positive displacement to be an increase in length of
a branch. We take positive force in a branch to be that associated with the
lengthening of that branch if it were a spring (i.e. tensile force in a branch is
positive, compression is negative). Additionally, each branch has a direction
that may be represented as an ordered pair of its nodes. Such definitions
may be extended to rotary springs, gears, and other elements in a similar
fashion, although they will not be developed here.

Each node n has a single scalar variable, its displacement en from the
reference node (0). Node displacements have the interpretation of directed
distance which agrees with the conventional notion of distance if all the
branches along a path from (0) to (n) are similarly directed.

Assumption 4 The laws governing the behavior of the branch elements
are affine in the set of branch variables and external inputs u.

As an example of a branch law, a spring with rest length a and spring
constant k observes / = k(x —a). More generally, for the vector of all
branch forces / and displacements x there exist matrices A(0), T(9), $(9)
and vector fi(9) and exogenous input vector u such that

Af+Tx = $u + /j,.

Such a representation permits independent force and displacement sources,
controlled sources, and multiport composite elements such as gears and pul
leys.

The set of nodes Af° may be partitioned into those nodes which are
in contact with the mechanical system, A/jJf, and those which are purely
actuator related, M%. Assumption 2 restricts actuator branches incident
on nodes M% to be essentially colinear (see node (3) in Figure 2). This
restriction is not necessary at nodes A/]^ since they are fixed as functions of
9 and one could equivalently alter the angle of incidence at the very site of
attachment arbitrarily.

Definition 1 A finger-like robot system is a mechanical system M with
undriven dynamics

M(9)9 + C(9,9)9 + N($, 0) = 0

which has been augmented by an actuator-related force/displacement gen
eration and transmission system A such that assumptions 1-4 are satisfied.
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3.2 Constructing the actuator graph

The actuator graph corresponding to A must be augmented to properly re
flect the interaction with the mechanical system. To construct the complete
actuator graph, we follow these steps:

1. Specify an undirected graph Q° representing the actuator network.

2. Assign directions to the branches and form a digraph Q.

3. Augment Q to model interaction with' the physical system and form
digraph Q*.

The first step entails describing the interconnections between elements of
the actuator network. In step 2, the geometry of this attachment is made
explicit by defining which direction the actuator elements act relative to
each other. Finally, in the last step, the interaction between the mechanical
system and the actuator network is specified.

Original actuator graph, Q°

The algorithm for constructing the actuator digraph Q* begins with a rep
resentation of the network as an undirected graph, Q°. Each branch in this
graph corresponds to a physical device in the actuator system, such as a
spring, force generator (muscle), or length of tendon. Nodes correspond to
connections between these devices and to ends of devices which terminate
on the mechanical system. We use (0) to represent the reference node and
require that it be fixed on the mechanical system and independent of config
uration 9. In a biological finger, a convenient choice for the reference node
is a proximal skeletal site such as a muscle's point of origin in the forearm.

Formation of Digraph, Q

We next convert the original undirected graph Q° into a directed one, Q. This
step basically consists of choosing arbitrarily certain branch directions and
propagating consistent direction assignments over the remaining branches
of the graph.

The assumption that the actuator geometry is fixed for 9 fixed implies
that the actuator network has a l-dimensional nature. That is, wherever two
actuator branches join, they either act in the same direction (cojoined) or in
opposite directions (contrajoined). An example of this is shown in Figure 2.
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-*2
<3) 61 ^L (3)

63

Cojoined Contrajoined Digraph
branches: 62 and 63 branches: 61 and 63 representation

Nodal incidence list for node (3): {621 b$\ 61}

Figure 2: Examples of muscles which act in the same and opposite directions
on a node. Note the 1-D nature of branch interaction at node (3) on the

left. A nodal incidence list is formed by partitioning the incident branches
into two disjoint sets of cojoined branches.

The physical arrangement at each node in J\f% is summarized by a nodal
incidence list (see Figure 2) which may in turn be derived from a graphical
diagram of the actuator network. The nodal incidence list bookeeps the
relative directions of branches incident on a node.

The directions assigned to the branches must be consistent with the force
summation (and hence physical placement) of the actuator branches. If two
actuator branches intersect at a node in A/jJf, which corresponds to attach
ment with the mechanical system, it is not necessary for branch pairs to act
in a l-dimensional fashion, as discussed above. Thus, to propagate branch
direction assignments we only need consider branches incident on nodes in
M% and incorporate the information embodied in the nodal incidence lists.

Branch direction assignment proceeds according to the following steps.
First, construct a modification of Q°, denoted Qm, in which all branches
which terminate on a node in A/Jf receive distinct nodes in Affa. Next, form
a tree for Qm and for each twig incident on root node (0), choose a direc
tion arbitrarily and ascend its subtree using the nodal incidence lists at each
node to assign branch directions. The remaining undirected branches are
links of Qm and their direction is determined by the two nodal incidence
lists at their nodes. For simplicity, we assume that a consistent direction
assignment around all fundamental loops is always possible. Fundamental
loops for which this is possible are termed directable loops (see Appendix A
for examples of undirectable loops and methods for overcoming this limita
tion). At the conclusion of this process, all branches in C/m, and hence Q°,
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are now directed. The result is a digraph representation of the actuator
system, Q= (A/\B).

At the time the branches are labeled, the laws that govern each branch
may also be stored. We cannot yet solve for the relations among the ac
tuator elements, however. The mechanical system M, considered frozen at
configuration 9, constrains node positions and branch displacements and has
not yet been tied to the actuator system. In order to obtain force balance at
the nodes in A/if, the digraph must be augmented with displacement sources
to bookkeep forces which act on M. Additionally, actuator branches act on
M by crossing bearing surfaces such as pulleys. For this case, the lengths of
actuator loops are affected by configuration 9 and configuration dependent
displacement sources need to be introduced into loops to maintain meaning
ful loop constraints.

Finger-like system augmented digraph, Q*

To construct the augmented graph, £*, we require a tree for the actuator
digraph Q. For each node (n) € A/a/ \ (0), attach a displacement generator
between (0) and (n) such that the net length (sum of the directed branch
lengths) around the newly created loop is zero. The magnitude of the dis
placement generator relies on the physical geometry of the actuator system
and requires additional information beyond the individual branch relations.
This process is continued for each node in A/if.

To complete the construction of Q*, the loop constraints for each funda
mental loop are incorporated. For each such loop, insert a branch in-series
with the link such that the net length (sum of the directed branch lengths)
around the loop is zero. Again, this information is derived from the physical
geometryof the actuator systemand requires additionalinformation beyond
the individual branch relations.

As a result of augmenting the digraph with these displacement sources,
a consistent and complete digraph representation of A acting upon M is
obtained. We denote this augmented digraph of the finger-like system as
Q* = (A/**, 5*). The branches of Q* may be partitioned into two disjoint
sets: B*A from the original actuator system, and B%j from the augmentation
to incorporate the mechanical system. With the inclusion of the mechani
cal system's action, the whole system becomes thermodynamically closed—
power is exchanged between A and M, but is conserved. By Tellegen's
theorem, power is conserved (xTf = 0) in Q*. Since B* = BA Utfj^, the
power delivered to/from the mechanical system from/to the actuator system
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is given by the branch forces and displacement velocities of branches B

Tableau equations

The tableau equations for Q* may be formed as

/ 0

Af*

0 I. (5)
\ $(9)u + n(9)

This system of linear equations is comprised of three parts: node force
balance (Af —0), loop constraints (x = ATe), anddevice law characteristics
{£(9)x + A(9)f = $(9)u + fi(9)). The device law characteristics are allowed
to vary as the robot configuration varies. This is often necessary since as the
robot configuration 9 changes, the actuator network geometry changes. The
actuator system's interconnections might also change with configuration but
in this treatment are considered fixed or to have been reflected in the device

laws.

The inverse of the tableau matrix exists by the well-posedness assump
tion and premultiplication of both sides of (5) yields the branch and node
variables as functions of 9 and u.

3.3 Main results

Lemma 1 The actuator network variables e, a, / are affine functions of the
control input forces and displacements u under the restriction that the under
lying robot's state (9,9) is fixed and the actuator mechanism is well-posed.
To fix notation we write

e = Pe(9)+ Qe(9)u
x = ATPe(9) + ATQe(9)u
f = Pf(9) + Qf(9)u.

Proof. The inverse of the tableau matrix exists by the well-posedness as
sumption. The result follows upon inverting (5). •

Theorem 2 The joint torques applied by the actuator network are affine in
control input u

r = G(9)u + S(9).



3.4 Remarks 15

Proof. Let B^f C B* be the set ofbranches in Q* which model the interaction
between the actuator and mechanical systems (i.e. the augmented branches
of the previous section). Each of these branches consists of an independent
displacement generator which models the branch displacement as a function
of 9. Hence

Xa =: Pa(0),

where xa is the vector of branch displacements of the augmenting, indepen
dent displacement generators. Since these branches fully describe the power
transfer between the actuator and mechanical systems, we can apply the
principle of virtual work. Let /„ be the branch forces associated with xa so
that

T = (D0Paffaia
vT= (DdPay (Pf(9) + Q}(9)u) o»

where the last equation is obtained by restricting the full set of branch force
equations to the augmenting branches, B^. Denning

S(9) := (DePaf Pf(9)\a
G(9) := (D0Pa)TQf(9)\a

completes the proof. •

Corollary 1 The dynamics for a finger-like system have theform

M(9)9 + C(9,9)9 + (DeV)T(9) = G(9)u + S(9). ' (6)

Equation (6) reveals the actuator control inputs u enter linearly through
the G(9). For overactuated systems, G(9) is non-square with a null space
corresponding to inputs in which internal actuator tensions may vary with
out developing net force on the mechanical system. The S(9) term models
spring-like energy storage in the actuator network. If input u is zero, then
S(9) is the restoring force generated as a result of bending the finger away
from its equilibrium position. Robots driven by torque motors at their joints
are a special case with S = 0, G = J, and u = r.

3.4 Remarks

In this formulation, models of actuator systems may include elements that
respond to forces or displacements elsewhere in the system. Unless these
relationships are balanced in a particular fashion, however, the resulting
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system will not be reciprocal. In a Lagrangian based formulation of dy
namics, at a particular configuration 9 the potential energy stored in the
actuator branches is V(x). Branch force, then, is the gradient of the po
tential function / = VXV = (DXV)T. The linear map between 6x and 6f
is the hessian, D^V, which is symmetric by the equality of mixed partials.
It is possible in finger-like systems, however, to obtain nonsymmetric linear
maps and thus go beyond the realm of a direct Lagrangian formulation.

This symmetry is the hallmark of a reciprocal system. Roughly speaking,
in a reciprocal system if an additional force 6f across branch i causes a
additional displacement 6x across branch j, then applying 6f across branch
j should cause displacement 6x across branch i. Many linear and nonlinear
system models are not reciprocal, including elementary models of transistors
and fluidic amplifiers. The inclusion of controlled sources often results in a
lack of reciprocity. For example, the method used here allows us to embed an
affine control law as part of the actuator network rather than as a separate
stage outside of the mechanical and actuator systems. An example of a
nonreciprocal system will be given in Section 4.2.

Tableau analysis allows a general class of actuator networks. Both dis
placement-controlled force sources and force-controlled displacement sources
may be included within the same framework. This greatly facilitates au
tomating the solution over such techniques as nodal and loop analysis. Our
exposition applies to actuator networks which are affine in the control in
puts, having fixed 9. Nonlinear actuator networks can be approached in a
similar fashion provided the actuator kinematics has a unique solution. This
corresponds to the condition that the T matrix in (5) be invertible. If the
nonlinear system is invertible in this sense, then we can write / = Pf(9, u)
and hence

r=(D9Pa)TPf(9,u)\a.

Solving for actuator branch forces / in closed form will not generally be
possible for the nonlinear case and numerical methods must be employed.

Although the actuator network may contain numerous implicit relations,
the form of the equations for affine networks allows a simple computer imple
mentation. We have implemented the calculations required for the finger-like
analysis in Mathematica [14], a symbolic manipulation program. By speci
fying a node and branch list together with selected relations for the lengths
along certain actuator system paths, it is possible to solve for G(9) and
S(9) in symbolic form. All of the examples presented in this paper were
analyzed using this software. The software is available via anonymous ftp
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from robotics.berkeley.eduin the directory pub/Fingerlike.
We also note that in the case that the branch extensions are linear in

the configuration variable 9, G and S become constant matrices. Simplifi
cations are possible, then, when mechanical pulleys of uniform radius are
present where tendons move across joints (e.g. many tendon-driven mechan
ical hands [13]). In the following example, however, G is dependent on 9.
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Figure 3: Branch and node assignments for Figure 1. The solid lines are
branches of the actuator system graph. The thick lines form a tree which
spans the graph and the thin lines are the links (of which there are none in
this example). Dashed lines correspond to augmenting branches.

4 Examples

4.1 Finger-like treatment of previous example

In this section we illustrate the graph based technique for finger-like systems
with the 1-joint robot shown in Figure 1 and previously analyzed by a La
grangian formulation in Section 2.1. We begin by labeling the nodes and
branches of the system (see Figure 3). To assign directions to the branches,
we note that the reference node (0) is part of the mechanical system and
hence we can assign directions arbitrarily to b2 and 65. Once these directions
are chosen, all other directions in the graph are directed similarly, since the
branches in each tendon act in the same direction (cojoined).

To augment the digraph, we attach displacement generators from nodes
(1), (2) € Mm to node (0). These displacement generators bookkeep the
extension of the tendons by requiring that the net displacements around
resulting loops is zero. The displacements are determined by using the
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models described in Section 2.1:

xi(9) =
x2(9) =

^2 + ^3 + X4
X5 + xe

Ii + R\9
L2 - (R2 + R'29)9.

We now proceed with the tableau analysis. The incidence matrix for the
system, with its branches and nodes labeled, is

b\ b2 63 64 65 66 67

A« =

(1) +1 0 0 +1 0 0 0

(2) 0 0 0 0 0 +1 +1
(3) 0 +1 -1 0 0 0 0

(4) 0 0 +1 -1 0 0 0

(5) 0 0 0 0 +1 -1 0

(0) -1-1 0 0-1 0 -1

with the bottom row corresponding to the reference node (0). Note that
all columns have exactly one +1 and one -1 entry (each branch enters and
leaves once) and the sum across the rows is the net number of branches
entering or leaving the given node.

Next we write the device laws for each branch. Letting x represent the
displacement across the branch and / the tension, we use the primitive
device laws described in Table 1. We have

ri 0 0 0 0-0 01
0 0 0 0 0 0 0
0 0 -K 0 0 0 0
0 0 0 10 0 0
0 0 0 0 0 0 0
0 0 0 0 0 10
0 0 0 0 0 0 1

ro 0 0 0 0 0 01
0 10 0 0 0 0
0 0 10 0 0 0

X + 0 0 0 0 0 0 0
0 0 0 0 10 0
0 0 0 0 0 0 0
0 0 0 0 0 0 0

We construct the tableau matrix

/=
0
0

F2
0

+

fpf)\
0

£1
0

\P2(0)J
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and solve Tw = u to obtain

/ P} \Pi-Fi/K-Li
Fi/K

Li
Pi — L2

\ P2 I

Examples

1 Fx *
Fi
Fi
F2

\-F2J

e =

Pi
P2

Pt-Fx/K-Li
Pi-Lx

\ P2-L2 )

x = , and / =

The augmenting branches are bi and b7 and hence we have

and

xa =

fa =

SiS) == ™
ft j

t =D$P„(6)T U=(Wi DePi )(^
=(-JJ, (fl2 +2B'2») )fJJ. (7)

The analysis above is consistent with the results of the Lagrangian tech
nique given in Section 2.1 above. The righthand side of (4) is identical to
the expression for r in equation (7. In a completely Lagrangian derivation,
S(9) would be lumped into (DqV)t since it is a potential energy term. In
this simple example, however, 5 = 0. Also, since the force generator inputs
act directly on the underlying mechanical system, the actuator matrix G(9)
is simply the Jacobian transpose (D$P)T. The Mathematica code used to
analyze this example is given in Table 2.

It is interesting to consider the case where nodes (1) and (2) in the
example above are coincident. In this case, the construction of digraph Q
involves an intermediate digraph Qm where these nodes are again separated.
The analysis could proceed using Qm and would be identical to that just
described. Instead, the finger-like procedure to generate augmented digraph
Q* would first add a displacement generator from (0) to the common node
in Mm and then insert another displacement generator to enforce the loop
constraint. Solving the tableau equations for this new graph yields the same
solutions for actuator branch variables and the same differential equation for
the dynamics.
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(* examplel.m - Mathematica solution to example *)
«Fingerlike. m

(* Tendon displacement functions *)
Pl[theta_J := Rl theta + LI

P2[theta_] := -(R2 + R2p theta) theta + L2

BuildTableau[ex1,

Nodes[{nl,n2,n3,n4,n5,base}];

(* Branch lavs for upper tendon *)
bl = Displacement [base, nl, PI [theta]];
b2 = Force[base, n3, FI];
b3 = Spring[n3, n4, K];
b4 =» Displacement[n4, nl, LI];
(* Branch lavs for lover (non-compliant) tendon *)
b5 = Force[base, n5, F2];
b6 » Displacement Cn5, n2, L2] ;
b7 a Displacement [base, n2, P2[theta]];

];

A = IncidenceNatrixCexl]; (* get incidence matrix *)
v = SolveTableau[exl]; (* solve tableau eqs *)

tau = FingerlikeTorques[exl, {bi,b7}, {theta}];

Table 2: Mathematica listing for solution to 1-joint robot example. This
example uses the package Fingerlike,mdescribed in Appendix B.sec.

4.2 Biomechanical example of nonreciprocity

Consider the system shown in Figure 4. In this model the actuators are
arranged in an agonist-antagonist pair. The net force developed on the
mass M depends indirectly on the inputs u\ = F\ and u2 = F2: actuator
force is modified by the displacements or stretch of the opposing cables or
tendons. Such a system may be viewed as anextension of Figure 1 and is a
simple model of the knee-jerk stretch reflex [4].

Unless <7i2 = g2\, the system is not reciprocal. As a result, the appli
cation of Lagrangian mechanics is blocked at the stage of writing down an
expression for the potential energy. However, it is possible to represent Fig
ure 4 by a reciprocal (spring-mass-spring) mechanical system with a more
complex actuator system attached to it. Such atreatment would not exploit
the algebraic structure of finger-like systems as directly.
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Figure 4: A nonreciprocal biomechanical system. This diagram represents
a simple version of the stretch reflex in biological motor control. The action
of an agonist-antagonist pair is modeled by two pairs of force generators.
The centrally derived contraction signals are modeled by independent force
generators Fi and F2. The action of muscle spindle stretch receptors on
spinal alpha motoneurons is modeled by the controlled force generators.
The (la fiber) stretch information is shown inhibiting the antagonist muscle
only (i.e., gij < 0, %̂ j), ignoring the excitation of the homonymous agonist
(for which gu > 0) [4]. This system is nonreciprocal if g\2 ^ 021.

Using the method described in this paper, it is possible to analyze this
nonreciprocal example. Generating the actuator graph with the appropriate
device laws and solving the corresponding tableau equation yields

m

Gi

G2

=S(9)+[Gl <*](£)
K\K2(g\2 + g2\) + gug2i(Ki + K2)

K\K2 - 012021
K2(Kx+g21)

K\K2 - 012021
Ki(K2 + gu)

K\K2 —012021

4.3 Human finger model, analysis

In this section we apply the finger-like method to analyze the kinematics and
dynamics of a simplified human finger model. The paper of Buchner, Hines,
and Hemami [2] treats a prototypical finger whichconsistsof 3 rotary joints,
5 muscle actuators, and both inextensible and spring-like tendons. This
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lateral band

zz^ns;iTF*

rminal band

P

Figure 5: Simplified representation of muscles and tendons involved in con
trolling a human finger [2]. The angles made by the proximal, middle, and
distal phalange (finger) segments are denoted 9\ through 9$. The joint or
hinge angles are denoted by <f>i = #i, 02 = 92 —9\, and fa = 9$ —92.
Actuation has been simplified to a set of 5 muscles: extensor digitorum
communis (ED), flexor digitorum profundus (FDP), flexor digitorum su-
perficialis (FDS), the palmar and dorsal interossei (Int), and the lumbri-
cals (Lum). The ED tendon splits into medial and lateral bands between
joints 1 and 2 and the Lum muscle branches off the FDP tendon. The
metacarpal-phalangeal (MCP) joint is nearest the wrist with the proximal
interphalangeal (PIP) and distal interphalangeal (DIP) joints further out.

model, shown in Figure 5, employs a number of tendon cables and includes
complex pulley and tendon sheath pathways as part of the actuator network.
The configuration of the underlying robot is described by the angles of the
3 skeletal segments 9\, 92i and #3. Actuator muscles are modeled as force
generators: extensor digitorum (ED, fi), palmar and dorsalinterosseus (Lit,
F4), flexor digitorum profundus (FDP, F2), flexor digitorum superficialis
(FDS, F3), and the lumbricals (Lum, F5).

The actuator network diagram of Figure 6 is a reformulation of the
anatomy of Figure 5 and serves to guide the analysis of the complete sys
tem's dynamics. The four nodes where the actuator network contacts the
robot mechanical object are labeled (l)-(4). The Buchner et al. model
conforms to the finger-like requirements since tendon mass and friction is
assumed negligible. The dynamics are readily formed from combining the
usual Lagrangian mechanics formulation for the robot rigid bodies and the
finger-like system actuator matrix G(9) and. actuator network spring forces
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S(9):
M(9)9 + C(9,9)9 + (DgV)T(9) = S(9) + G(9)u

where u = (fi,..., F5) is the vector of muscle force inputs.
The solidlines in Figure 6 areallbranches of the actuator system digraph

Q. The thick lines form a tree which spans the graph and the thin lines
are the links. The finger-like system digraph is not complete without two
additional nodes, (13) and (14), and six additional branches, 615-620* This
augmentation of the actuator system completes the full system digraph,
Q*, by adding the constraints resulting from the mechanical system. It is
through these six augmenting displacement sources that the actuator and
mechanical systems exchange power. These displacement sources come from
two distinct categories:

• Force balance at nodes (l)-(4) is accomplished by augmenting the
graph with displacement sources, 615-613. The addition of these bran
ches in parallel with the path from the reference node (0) to the
mechanical system attachment nodes is done in a fashion which im
plements the actuator geometry as a loop constraint and thus satisfies
the loop or path law (KVL).

• The zero sum of branch displacements around the two fundamental
loops indexed by links 610 and 613 is accomplished by augmenting the
graph with displacement sources, 619 and 620- The insertion in series
with the corresponding link automatically satisfies the force balance
vertex law (KCL).

The functions for these displacement sources comes from length and joint
angle measurements on humans during surgery or postmortem. In Buchner
et al. these relations are given quadratic approximations. A good example
is the displacement source of Figure 6's branch 16 where x\e = —[Ra\4>\ —
R&fa]* The term R^fa—R^fa is the length from reference node (0) along
the Interosseous muscle and tendon to the site of attachment, node (4). The
positive values for R41 and R42 provided by Buchner et al. are consistent
with the path taken by the Interosseus tendon bu. It travels on the palmar
side of joint 1 so that extension of the joint (positive B\ direction) leads to a
lengthening of the interosseus muscle/tendon combination. Similarly, since
the tendon travels on the dorsal side of joint 2, extension of this joint leads
to a decrease in the length of the interosseus muscle/tendon combination.

In Buchner's development, e is the relative displacement of the lateral
band and terminal tendon versus the medial band and K is the associated
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t (1)

f (2)

PI = —#1101 —(#12 —#1202)02 —#1303
P2 = (#21 + #2101)01 + (#22 + #22«02 + (#23 + #23^3)03
P3 = (#31 + #310l)01 + #3202
P4 = #4101 - #4202

P5 = -[#5101 - (#52 + #52^2)02 + #1101 + (#12 - #12^)02]
P6 = #H01 + #1202 + #4101 - #4202

Figure 6: Network diagram of finger-like version of Buchner et al. finger
model corresponding to the more anatomically based Figure 5. Hinge angles
0i, 02, and 03 are positive in the direction of extension. The finger is shown
folly extended in its reference configuration 0; = 0. Common reference
node (0) is shown at left. Nodes (l)-(4) are the sites of attachment of
the actuator network to the mechanical system. Bold lines indicate tree
branches, dashed lines correspond to augmenting branches.
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spring constant. The springs Ka and Kb in Figure 5 represent an equivalent
description (Ka = K/(l - a) and Kb = K/a) so that the series spring
K = KaKb/(Ka + Kb).

The Buchner et al. paper contains a basic error, in addition to some mi
nor misprints. They implicitly assumed nodes (1) and (2) were connected
together and thus, in our finger-like system parlance, wrote the equivalent
of the loop constraint for the fundamental loop indexed by branch 613 as
going back along the FDP's tendon, 614. The impact of this error on their
analysis of muscle forces during finger motion trajectories is unclear, but is
an example of the complexity of tendon kinematics. After having structured
the analysis by the finger-like methods described in this paper it would be
more difficult to make such a mistake.

The solution for Buchner et al. finger model, derived using the software
package described in Appendix B, is given by

G11 = #11

(?12 = -#21 - 2#2i0i

(?13 = -#31 - 2#310i

(?14 = —#41

(?15 = #21 —#51 + 2#2i01

G2i =

f^a#12 + -K&#12 —2ffa#i202
Ka + Kb

G22 = —#22 —2#2202

G23 = —#32

G24 = #42

<?25 = #22 + #52 + 2#2202 + 2#5202

G31 =
ff0#13

Ka + Kb

(?32 = —#23 —2#2303
G33 = 0

£34 = 0

G35 = #13 + #23 + 2#_303

and a stiffness term

Si == C1
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„ -2ffaf:6#/1202(#i2022 ~ #1303)
2 Ka + Kb

9 KaKbR13(-R'12(f>22 +#i303)
3 #* + #&

There are clearly many possible geometric quantities and forces and dis
placements which could be identified. A virtue of the finger-like system
results described above is a focusing on a reduced set of variables sufficient
to describe the dynamics.

4.4 Human finger model, control

From the standpoint of trajectory generation, the actuator redundancy re
quires some resolution scheme. At each point in time along a desired trajec
tory, 9(t), there appear to be 2 degrees of freedom remaining after choosing
5 muscle forces to provide 3 joint torques. The minimum-norm actuator
force approach has been championed in biological systems by Pellionisz [9],
wherein:

u+ =G+(m9 +C+N-S). (8)
However, it encounters difficulties as a result of nonnegative cable/muscle
force restrictions.

In general, there may be a subset of to branches which are cable-like in
the sense that their branch forces, denoted /c, must be > 0. Modifying the
notation of Lemma 1 slightly, we restate this in terms of the existence of
inputs u € Ue = {u : fc = Pc(9) + Qc(9)u > 0}. A necessary and sufficient
condition for the existence of admissable inputs u G Uc which can produce
arbitrary joint torques r is that ker((?) f) Uc be nonempty. In order to reject
arbitrarily large disturbances, it is sufficient that u be both in ker(G) and
that Qc(9)u > 0. Under this condition, one could always add enough of
u € ker(G) to input u+ in equation (8) to keep fc > 0. The existence of a
kernel or null space of G requires overactuation, and so redundancy serves
an important role in tendon driven systems.

A sample trajectory where the Buchner finger model is flexed and then
extended over an interval of one second was created to illustrate all these
ideas. A sequence of finger configurations is shown in Figure 7 with corre
sponding finger segment angles and torques shown in Figure 8. -

Actuator forces necessary to achieve this trajectory are shown in Fig
ure 9. The set of muscle forces computed from equation (8) are all in the
±10 N range which correspond to weights of about ±1 kg. Also shown in
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Finger Simulation. 12-Jun-90
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Examples

Figure 7: Sequence of finger configurations at 0.1 second intervals. The
sequence begins with the finger fully extended and at zero velocity. One
half second later, the finger is almost folly flexed. The remainder of the
trajectory is nearly the reverse of this portion.

Figure 9 are the set of smallest (2-norm) muscle forces which also command
the same motion, but obey the positivity constraints. These forces are in
the 0-150 N range, an increase by a factor of roughly 10 in dynamic range.

The muscle input forces to achieve this trajectory depend, rather sen
sitively, on the precise trajectbry. Near the fully flexed configuration, a
5% variation in joint angles requires a twenty-fold increase in input force.
Thus it is apparent that good robot design and control algorithms are
complementary—the controller can avoid trajectories near highly sensitive
configurations and good design can make these less likely.

Design heuristics for a finger-like system might include the following over
the robot's workspace:

• Maintain a small actuator related spring force, ||5(0)||, so that actuator
inputs are not transferred into stored energy.

• Seek a large induced norm ||G(0)|| for good mechanical advantage,
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1

Theta 1-3 Trajectories. 12-Jun-90

0.1 0.2 0.3 0.4 05 0.6 0.7 0.8 0.9 1

Time (sees)

Theta Coord Total Torque. 1-3 Trajectories. 12-Jun-90

Figure 8: Finger segment angles 9 and corresponding conjugate torques r
over the 1 second example trajectory shown in Figure 7.

efficiently transforming inputs into mechanical system torques.

• Arrange the actuation network such that the condition number of G(9)
is small, implying balanced actuators.

• Design to provide sufficient actuators and attachment sites and/or
loops to control the mechanical system. If there are fewer augment
ing displacement sources than configuration variables, then it is not
possible to instantaneous achieve trajectory matching. However, aver
age matching may still be possible (e.g. nonholonomic system control
schemes which generate bracket direction motion).

The finger-like system analysis tools described in this work are offered to
assist in the evaluation of designs.

29
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0'

Muscle Actuator Force 1-5 Trajectories. 12-Jun-90
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Figure 9: Muscle actuator force trajectories to provide the torque and mo
tion of Figures 7 and 8. The top panel shows the forces which are computed
at each point in time by (8), a straightforward least squares solution. The
bottom panel shows input force trajectories when subject to the additional
restriction of nonnegative actuator and tendon forces. The dynamic range
of these inputs is about 10 times greater to obey nonnegativity constraints.
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5 Conclusion

We have presented a graph-theoretic method to derive the quasi-static re
lationship between a control input u and the resulting joint torques r =
G(9)u + S(9) for a class of tendon-driven systems referred to as finger-like
systems. As a result of this simple dependence on input u, control laws
for this class of systems may be based on those already in use. Informa
tion relating inputs u to applied torques r and branch forces / is accessible
through a tableau analysis of the actuator branch variables. This informa
tion is useful for both the selection of inputs and the design of the actuator
system itself.

The finger-like system algorithm consists of the following steps. The
actuator system is represented as a graph, Q° whose branches correspond to
elements such as cables, springs, and actuators which are joined at nodes.
Device law characteristics are entered as well as a descriptionof the geometry
of branches incident on the nodes. From this information a directed graph,
£7, of the actuator system is formed. The digraph is then augmented with
displacement sources to model the interaction between the actuator and
mechanical systems. This final digraph, </*, is used for tableau analysis and
the solution of all branch and node variables at a particular configuration
9. The expressions for branch displacement and force in the augmenting
displacement sources are used to determine the actuator-applied torques on
the underlying mechanical system.

The process has been automated with the help of symbolic manipulation
software. This technique allows complicated actuator networks with inter-
dependencies of force and displacement to be analyzed in a straightforward
manner. The primary advantages of this method axe its systematic and
computational nature.
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Undirectable Loop: b2,63
b2 6_ (

i<
/

(0)
(1)

Loop Constraints:

*i + («2 + «s)/2 = Cip3](tf)
/2 = A

f2 + /3 = /l

Undirectable Loops

Directable Loop: 62,63
62 (1) 61 /

(0)

(2) 63

Loop Constraints:

X2 + £3 = C23(0)

A = A

A = A + A => A = o

Figure 10: Two loops with different nodal incidence lists at node (1) illus
trate the physical reason for undirectable loops. Indeed the simplest example
consists of just one branch in a similarly constructed self loop. The loop dis
placement constraint conforms to intuition in that a frictionless hook placed
in the loop and pulled to the left extends branches 61, 62, and 63 in a manner
which determines (x\ + (x2 + xz)/2)(9).

A Undirectable Loops

The possibility of encountering undirectable loops arose previously in Sec
tion 3.2 during the discussion of branch direction assignment. A graph con
sists entirely of directable loops if consistent directions can be assigned to all
twigs and links, thereby forming Q. A simple illustration of an undirectable
loop appears in Figure 10.

The finger-like analysis technique may be extended to encompass cer
tain undirectable loops at the expense of introducing additional variables to
bookkeep transformed branch and node variables belonging to the affected
loop(s). The technique is illustrated in Figure 11. It is significant that there
are no branches incident on the nodes of this undirectable loop except those
belonging to the loop itself. Such a loop is termed an isolated undirectable
loop.

As a result of the transformation, an equivalent problem is formulated
in terms of the primed set of variables. Note that x' = Hx and /' = 5"-1/,
where if is a diagonal matrix of l's and 1/2's. The tableau equations,
T'w* —u', again consist of three setsof algebraic relations: A'f = 0 (vertex
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laws), -(A1)1V + x' = 0 (loop laws), andT'x' +A'f = $u+fi (device laws).
The directed graph in Figure ll's third panel provides the incidence matrix
A! and hence the first two algebraic relations. The device law relations,
given originally in terms of the unprimed variables, Tx + A/ = $u + p. are
readily cast into the primed variables using H and H"1.

This example may be extended to situations with multiple, isolated,
undirectable loops. This follows by induction since each undirectable loop
may be resolved by a transformation into a completely equivalent prob
lem. The original graph Q° is assigned directions in procedure consisting of
choosing arbitrarily certain branch directions and propagating, consistently,
direction assignments over the remaining branches of the graph. If an assign
ment inconsistency appears when closing isolated, fundamental loops, then
each such loop is rendered directable by transforming it into an equivalent
digraph. A comprehensive treatment for arbitrarily arranged undirectable
loops is not yet available.
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Undirectable Loops
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•

e
C\0)

x[ = Xi
x2/2

/. = A

fi = 2A
4 = s3/2 & = 2A

xi + x'2 + x'3 = C (9)

Figure 11: The original undirected loop consisting of 62 and 63 is shown
in the top panel, Q°. The loop is broken at node (1), the unique node of
this loop closest to the root (0). The branch and node variables associated
with this loop have been relabeled with primes and a new node, (30, has
been introduced and marked as belonging to Mm• The loop displacement
constraint is thus introduced, forming digraph Q*. Finally, the relations
between the primed and original variables are shown (fourth panel).



Tableau analysis with Mathematica 35

B Tableau analysis with Mathematica

This appendix describes two Mathematica packages which can be used to
perform tableau analysis on finger-like systems. The first package,Tableau .m,
defines functions for describing and analyzing tableau equations. The sec
ond package, Fingerlike.m, provides an alternative interface to Tableau.m
which simplifies the description and analysis of finger-1 ike systems.

B.l Tableau, m

The first step in performing a tableau analysis is specifying the network.
This is done with the BuildTableau command:

BuildTableau[networkName,
Nodes[list];

brand-Name = Branch [from, to, mile];

]

The Nodes command specifies the list of nodes in the system. The reference
node must be the last node in the Nodes list. The node names are used to

specify branches.
The Branch statement assigns a rule to the branch and gives the branch

a name for future reference. The name of a branch may be omitted. Branch
rules have the form

lhs == rhs

that is, they are a Mathematica relationship. Within a rule, the following
special variables are recognized:

Displacement [branchName] displacement across a branch
Force [branchName] force across a branch

Displacement 0 displacement across the current branch
Force • force across the current branch

Branch rules must be linear in the Force and Displacement variables. All
other terms are considered to be independent inputs.

To solve for the branch displacements and forces in an actuator network,
use the SolveTableau command:

{e, x, f} a SolveTableau[networkName]
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where e, x and f are

e node displacements
x branch displacements
f branch forces

If the actuator network is not well-posed, an error message is printed.

B.2 Fingerlike.m

The Tableau.m package can be used to analyze mechanical tendon networks.
Several special branch rules have been added to simplify the network build
ing process. These rules are available via the Fingerlike.m package:

Spring [from, to, K] linear spring between two nodes
Force [from, to, u] force generator
Displacement [from, to, u] displacement generator

Force and displacement generators may be either dependent or independent.
The argument u should be an expression (not a relation) which evaluates to
the force in the branch.

Fingerlike.m also defines some commands for extracting information
from the tableau solution that is useful in finger-like analysis:

FingerlikeTorques[networkName, branchList, thetaList, {e,x,f}]

Calculate the torques conjugate to thetaList as a function of the
branch forces of branchList. {e,x,f} may be omitted, in which case
it is recalculated.

FingerlikeExtensions[networkName, branchList, {e,x,f}]
Calculate the extensions across the listed branches. {e,x,f} is op
tional.

FingerlikeHatrices[tauList, forceList]
Calculate the matrices G(9) and S(9) that satisfy r = S(9) + G(9)f.

The optional {e,x,f} argument allows a previously stored solution of the
tableau equations to be used.

B.3 Program listings

The program listings for the tableau analysis package are contained on the
subsequent pages. In the listings the branch displacements and forces are
referred to as v and i, respectively.
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* Tableau.m - tableau analysis for linear dynamic circuits
*

* R. Murray and K. Pister
* June 18, 1990

*)

Needs["Struct'"];

(* Make sure we don't overwrite the Null symbol (for debugging) *)
SetAttributes[Null, Protected];

(* Default options associated with a system *)
defaultOptions = {

nodeList->{}, (* node names *)
branchList->U, (* branch names *)
hingeRule->(}, (* rule for hinging together nodes

incidenceMatrix->U,

gammaMatrix->{},
lambdaMatrix->{},
inputVector->{}

};

(* incidence matrix *)

(* displacement coefficients
(* force coefficients *)
(* input coefficients *)

(* Return the incidence matrix of a tableau system *)
IncidenceMatrix[name_Struct] := incidenceMatrix /. StructToRules[name];

(* SolveTableau - solve the tableau equations *)
SolveTableau[name_Struct] :=

Block[
(sysopt » StructToRules[name], A,T,w, e,v,i>,

(* Get the reduced incidence matrix *)
A = Drop[(incidenceMatrix /. sysopt), -1];

(* Put together the Tableau matrix *)
T •=» stackRows[

stackCols[zero[nodeCount-1], zero[nodeCount-l, branchCount], A],
stackCols[-Transpose[A], IdentityMatrlx[branchCount], zero[branchCount]],
stackCols[zero[branchCount, nodeCount-1],

(gammaMatrix /. sysopt), (lambdaMatrix /. sysopt)] ];

(* Now find the solution *)
If[ Det[T] -» 0,

Print["SolveTableau: tableau equations are singular"];
Return[Null] ];

w = LinearSolve[T,
Join[Table[0, [nodeCount+branchCount-1]], inputVector /. sysopt]];

(* Partition the result and return it *)
e = Take[w, nodeCount-1];
v = Takefw, (nodeCount,nodeCount+branchCount-l}J;
i = Takefw, -branchCount];

[e,v,i]
];

('
* BuildTableau - build a system up from statements

Statements:

Nodes

Branch
declare the nodes in the system (must be first)
declare a linear branch rule

* Specific types of systems can be implemented by defining functions
* which call Branch with a current/displacement relationship.
*)

(* Variables used while we are building systems *)
system = Null; (* system being build *)
branchCount =0; (* number of branches *)
nodeCount =0; (* number of nodes *)
ruleCount =0; (* current branch number *)

(* Rules for different passes of the compiler *)
buildRule :=» Hold[Set[name_, branch_[args ]]] :> Hold[branch[args, name]];
countRule :» [ buildRule, Hold[Nodes(list_]] :> Hold[Null] };

(* Function for building up a Tableau equation *)
SetAttributes[BuildTableau, HoldAll];
BuildTableau[name_Symbol, body_CompoundExpression] :=

Set[name, BuildTableau[body]];

BuildTableau[body_CompoundBxpression] :°
Block[

U,

(* Freeze the first level expressions so that we can evaluate at will *)
holdBody - wrapHoldfbody];

(* Initialize global variables *)
system = RulesToStruct[defaultOptions];
nodeCount = branchCount => 0;

(* First pass - figure out how many branches there are *)
Apply[Release, Hold[holdBody /. countRule]];
branchCount -> Length[branchList /. StructToRules[system]];

(* Now go through and evaluate the original expression *)
ruleCount =0;
Apply[Release, Hold[holdBody /. buildRule]];

(* Replace the tableau matrix with its transpose *)
SetStructValue[system,
incidenceMatrix -> Transpose[incidenceMatrix /. StructToRules[system]] ];

system

];

(* Store the list of nodes *).
Nodes[names_List] :=

Block[

U,

(* Check to make sure all of the names are symbols *)
Iff Not[And 66 Map[SameQ[Headf#], Symbol]&, names]],

Print["Nodes: invalid node list"];
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Return[Null]];

SetStructValue[system, nodeList->names];
nodeCount ° Length[names];

];

(* Hinge a bunch of nodes together *)
Hinge[names_List] :=

Block[
(base = names[[l]]>,
(*! This needs some error checking !*)

(* Create a rule for node name replacement *)
SetStructValue[system, hingeRule -> Map[Rule[#, base]&, Rest[names]]];

(* Store the rule associated with a branch *)
Branch[fromNode_, toNode_, equation_, branchName_:Null] :«=

Block[
(sysopt = StructToRules[system], branchBqn, branchLabel = branchName,
fromlndex, tolndex, arow, mrow, nrow, urow, hingeRule],

(* Make sure we know how many nodes there are *)
If[ branchCount == 0,

(* First pass; just store the rule name *)
(* Don't use return because this boots us out of compound *)

(* Check to make sure the branch name is valid *)
If[ branchLabel == Null, branchLabel = Unique["branch"] ];
Iff Not[SameQlHead[branchLabel], Symbol]],
Print["Branch: invalid branch name: ", branchLabel];
Return[Null];

]/

(* Save the branch name in our list *)
SetStructValue[system,
branchList -> Append[branchList /. sysopt, branchLabel]],

(* Else *)
If[ nodeCount M 0,

Print["Branch: missing node list"];
Return[Null] ];

(* See if there is a hinge rule *)
hingeRule •» hingeRule /. sysopt;

(* Figure out the indices of the nodes *)
fromlndex = listOffset[fromNode /. hingeRule, nodeList /. sysopt];
tolndex = listOffset[toNode /. hingeRule, nodeList /. sysopt];
If[fromlndex == 0 11 tolndex == 0,
Print["Branch: can't find node ", fromNode, " or node ", toNode];
Return[Null]];

(* Keep track of the fact that we got a new rule *)
++ruleCount;

(* Add the entry to the incidence matrix *)
arow ~ Table[0, (nodeCount}];
arow[[fromlndex]] = -1; arow[[tolndex]] = 1;

(* Figure out the branch rule *)
If[(branchEqn= branchRule[equation, ruleCount]) •== Null, Return[Null]];

(* Set the relevant options in the system options list +)
SetStructValues[system,

incidenceMatrix -> Join(incidenceMatrix /. sysopt, (arow}],
gammaMatrix -> Join[gammaMatrix /. sysopt, {branchEqnf[1]]} ],
lambdaMatrix-> Join[lambdaMatrix /. sysopt, (branchEqnf[2]j} ],
inputVector -> Append(inputVector /. sysopt, branchEqnf[3]] ]

];

(* Allow the use of Displacement[branch] and Force[branch] *)
SetAttributes((Displacement, Force}, Listable];

(* Figure out the linear rule associated with a branch *)
branchRule[eqn_, offset_] :=

Block[
(Mrow, Nrow, branches = branchList /. StructToRules[system), expr},

(* First convert the equation into an expression *)
If[Not[SaraeQ[Head[eqn], Equal]],

Print["branchRule: rule is not of the form lhs == rhs"];
Return[Null] ];

(* Convert equation to expression and set up defaults *)
expr •= eqn[[l]] - eqn[[2]] /. (
Forced -> Force [branches [[offset] ]],
Displacement[] -> Displacement[branches[[offset]]] };

(* Make sure we were given a linear equation *)
If[(Max 66 Exponent[expr, Displacement[branches]]) > 1 ||

(Max 66 Exponent[expr, Force[branches]]) > 1,
Print["branchRule: rule is not linear"];
Return[Null] ];

Mrow = Coefficient[expr, Displacement[branches]];
Nrow = Coefficient[expr. Force[branches]];
(Mrow, Nrow, Mrow. Displacement[branches] + Nrow. Force[branches] - expr}

];

V
* Utility functions

* We collect here various utility functions that may not exist on
* all systems.

SetAttributes[wrapHold, HoldAll]
wrapHold[expr_] := Mapf Hold, MapAt(Hold, Holdfexpr], (1, 0}], (2}] [[1]]

(* Find position a single element in a list; return offset or 0 *)
listOffset[expr_, list_] :=

Block[
(pos = Position[list, expr]},
If[SameQIpos, (}], 0, pos[[i,i]]]
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];

(* Stack matrix columns together *)
stackCols[mats ] :=

Block!

U,j},
Table[

Joint Flatten[Tablet(mats)[[j]]Hi]], (j,Length[(mats}]}], 1] ],
(i, Length! [mats}[fl]] ]}]

];

(* Stack matrix rows together *)
stackRows[mats ] :» Join[Flatten[(mats), 1]];

(* Matrix of zeros *)
zero[nr_, nc_] := Table[0, (nr), (nc}];
zeroinr ] := zerofnr, nr];

_ISI_____i__iP
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(*
* Fingerlike.m - fingerlike kinematics
*

* Richard M. Murray
* June 24, 1990

*)

MapfNeeds, ("Tableau*", "Struct*", "Jac*"}];

(* Figure out the torque on the skeleton due to the actuator network *)
FingerlikeTorques[system_Struct, skeletalBranches_List, theta_List,
tableau_:Null] :=
Block!

(w = tableau, e,v,i, Pe, skeletalOffsets),

(* First solve the Tableau equations (if necessary) *)
If! w —» Null,

If[ (w = SolveTableau!system]) == Null, Return(Null] ]];
(e,v,i) = w;

(* Now extract out the pieces that we need *)
skeletalOffsets =
Map[listOffset[t, branchList /. StructToRules[system]]&, skeletalBranchesX

];
lf[ Min 66 skeletalOffsets == 0,
Print I"FingerlikeTorques: can't find all skeletal branches"];
Return[Null] ];

(* Figure out the kinematics *)
(* For fingerlike systems Pe can be calculated from branch displacements *)
Pe = v[[skeletalOffsets]];
Transpose[JacfPe, theta]] . i[(skeletalOffsets]]

];

(* Figure out the muscle extensions on a given set of branches *)
FingerlikeExtensions[system_Struct, branchNames_List, tableau_:Null] :=

Block[
(w » tableau, e,v,i, branchOffsets},

(* First solve the Tableau equations (if necessary) *)
If I w — Null,

If[ (w = SolveTableau[system]) == Null, Return(Null] ]];
(e,v,i} •= w;

(* Now extract out the pieces that we need *)
branchOffsets =
Map!listOffset[#, branchList /. StructToRulesIsystem]]&, branchNames];

If[ Min 66 branchOffsets == 0,
Print["FingerlikeExtensions: can't find all branches"];
Return[Null] ];

(* Extract the relevant branch extensions *)
v[[branchOffsets]]

];

(* Seperate fingerlike torque into G and S *)
FingerlikeMatrices[tau_, f_] :=

Block[
(expandTau, G, S},

expandTau •= Expand ftau];
G •= Map [Coefficient [#, f]&, expandTau];
S = tau - G.f;
(G, S}

1;

('
* BuildTableau statements for fingerlike systems

Spring[from, to, K]
Force[from, to, F]
Displacement[from, to, D]

attach a spring between nodes
independent/dependent force generator
independent/dependent disp. generator

Spring[from_, to_, K_, args_
Branch[from, to, Force[] »

_] :=
K Displacement[], args];

Force [from_, to_, F_, args ] :«=
Branch[from, to, Force!] =» F, args];

Displacement [from_, to_, X_, args ] :=
Branch[from, to, Displacement!] == X, args];

(*
* Utility functions
*

* We collect here various utility functions that may not exist on
* all systems or are internal to other Packages.

*)

(* Find position a single element in a list; return offset or 0 *)
listOffsetIexpr_, list_] :=

Block[
(pos = Position[list, expr]}.
If[SameQIpos, {}], 0, pos[[1,1]]]

];
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* Jac.m - jacobians and Lie derivatives
*

* John Hauser

* 1989
*

*)'

BeginPackage["Jac'"]

Jac::usage = "Jac[f,x] computes the derivative of f with respect to x.";
Lie::usage = "Lie(f,g,xJ computes the Lie bracket of f and g wrt x.";
LieD::usage = "LieD[f,h,x] compute the Lie derivitive of h wrt f.";
Adj::usage = "Adj[vl,v2,x,k] calculate the kth bracket of v2 wrt vl.";

Begin["Private'"]

Jac[f_, x_]
If[

VectorQ( f ],
Table[ D[ f[[i]], x[[j]] ], (i, Length[f]} , (j, Length[x]} ],
Table[ D[ f, x[[j]] ], (j, Lengthlx]} ]

Lielvl_, v2_, x_] := Jac[v2,x].vl - Jac[vl,x].v2

Adjlvl , v2_, x_, k_] :=
If[ k==0, v2, Lie[ vl, Adj[ vl, v2, x, k-1 ], x] ]

LieD[f_, h_, x_] := Jac[h,x].f

Endf]
EndPackage[]

USUI
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* Struct - package for handling lists of name/value pairs
*

* RMM 8/8/90
*

* This package mimics the functionality of the Options interface in
* a limited way. Namely, it maintains variables which are lists of
* rules and provides functions for changing the values of the rules.
* Internally, rules are stored in a list of pairs format.
*

* I wanted to use Attributes instead of Struct/Member, but the name was
* already taken.
*)

BeginPackage["Struct'"]

(* Convert a list of rules to a list of pairs *)
RulesToStruct[rules_List] :=• Struct 66 Map[ruleToPair, rules];
ruleToPair[Literal[Rule[name_, value_, hidden ]]] := (name, value};

(* Convert a list of pairs into a list of rules *)
StructToRules[list Struct] := List 66 Map[Rule 66 #&, list];

(* Set the value of an element in a structure *)
SetAttributes[SetStructValue, HoldFirst]
SetStructValue!list_Symbol, Literal[Rule[name_, value_, hidden_

list[[ findName[list, name], 2 ]] - value;

SetAttributes[SetStructValues, HoldFirst]
SetStructValues[name_Symbol, rules ] :=
Map[SetStructValue[name, #]&, {rules}]

findName[list.

EndPackage[]

name ] Position[list, name][[1,1]]

]]]

Biiiiiii
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C Mathematica Listings

This section contains the Mathematica listings used to analyze the examples
presented in the body of the paper. These files use the tableau analysis
package described in Appendix B.

C.l examplel.m

(*
* examplel.m - Mathematica solution to example #1

* RHH 31 May 91

*)

«Fingerlike.m

(* Tendon displacement functions *)
PI [theta.] := Rl theta + LI

P2[theta_] := -(R2 + R2p theta) theta + L2

BuildTableau[exl, •
Nodes[{nl,n2,n3,n4,n5,base}];

(* Branch lavs for upper tendon *)
bl = Displacement [base, nl, PI [theta]];
b2 = Force[base, n3,Fl];
b3 = Spring [n3, n4, K] ;
b4 = Displacement[n4, nl, LI];

(* Branch laws for lover (non-compliant) tendon *)
b5 = Force[base, n5, F2];
b6 = Displacement [n5, n2, L2];
b7 = Displacement[base, n2, P2[theta]];

];

A = IncidenceMatrix[exl]; (* get the incidence matrix *)
v = SolveTableau[exl]; (* solve the tableau equations *)

tau = FingerlikeTorques[exl, {bl,b7}, {theta}];
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C.2 example2.m

(*

* example2.m - Mathematica solution to example #2

* RMM 31 May 91
*

* This system is similar to that of example #1, except that nodes 1 and
* 2 are combined into a single node (nl). As a consequence, a loop is
* generated and an extra node must be added (al).
*

*)

«Fingerlike.m

(* Tendon displacement functions *)
PI[thetaJ := Rl theta + LI

P2[thetaJ :» -(R2 + R2p theta) theta + L2

BuildTableau[ex2,
Bodes[{nl, al,n3,n4,n5,base}] ;

. . (* Branch lavs for upper tendon *)
bl » Displacement[base, nl, PI[theta]];
b2 = Force[base, n3, FI];
b3 a Spring[n3, n4, K];
b4 » Displacement[n4, nl, LI];

(* Branch lavs for lover (non-compliant) tendon *)
b5 » Force [base, n5, F2];
b6 a Displacement [n5, al, L2];
b7 a Displacement [al, nl, LI -L2 + PI [theta] - P2[theta]];

];

A a IncidenceMatrix [ex2]; (* get the incidence matrix *)
v » SolveTableau [ex2]; (* solve the tableau equations *)

tau a FingerlikeTorques[ex2, {bl,b7}, {theta}];
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C.3 example3.m

(*
* example3.m - Mathematica solution for example #3

* RMM 18 Feb 91

♦

* This system contains an example of branch lavs vhich depend on
* displacements at other locations in the netvork.
*

*)

«Fingerlike.m

BuildTableau[ex3,

Nodes[{nl,n2,n3,n0}];

bl a Force[nO, nl, FI];

b2 a Force[nO, nl, gl2 Displacement[b5]];
b3 a Spring[nl, n3, Kl];
b4 a Displacement [nO, n3, theta];

b5 a Force[n2, nO, F2];
b6 a Force[n2, nO, g21 Displacement[bl]];
b7 a Spring[n3, n2, K2];

]

A a IncidenceMatrix[ex3]; (* get the incidence matrix *)
v a SolveTableau[ex3]; (* solve the tableau equations *)

tau a Simplify[ FingerlikeTorques[ex3, {b4}, {theta}] ];
{G, S} a FingerlikeMatrices[tau, {F1,F2}];
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C.4 buchner.m

(*

* buchner.m - Mathematica solution to Buchner finger example

* RMH 31 May 91
*

* For simplicity, ve assign all tendons zero length. Since ve are
* interested only in differential relationships, this eliminates
* extra constants.

*)

«fingerli.m

(* Define the displacement functions used belov *)
PI = -Rll phil - (R12 - R12p phi2) phi2 - R13 phi3; (* ED *)
P2 = (R21 + R21p phil) phil + (R22 + R22p phi2) phi2 + (* FDP *)

(R23 + R23p phi3) phi3;
P3 a (R3i + R3ip phil) phil + R32 phi2; (* FDS *)
P4 = R4i phil - R42 phi2; (* Int *)

P5 a -(R5i phil - (R52 + R52p phi2) phi2 + Rll phil + (* Lum-ED *)
(R12 - R12p phi2) phi2);

P6 » -(-Rll phil - R12 phi2 - R41 phil + R42 phi2);

BuildTableau[buchner,

Nodes[{nl,n2,n3,n4,n5,n6,n7,n8,n9,nlO,nil,nl2,nl3,nl4,n0}];

(* Muscle elements *)

bl a Force[nO, nl2, FI]; (* extensor digitorum *)
b2 » Force[nO, nlO, F2]; (* flexor digitorum profundus *)
b3 a Force[nO, n9, F3]; (* flexor digitorum superficialis *)
b4 a Force[nO, n8, F4]; (* palmar and dorsal interosseus *)
b5 a Force[nlO, nil, F5]; (* lumbricals *)

b6 a Displacement[n5, nl, 0]; (* ED tendon segments *)
b7 a Displacement[n6, n5, 0];
b8 a Spring[nl2, n6, Ka]; (* ED spring divider *)
b9 a Spring[nl2, n7, Kb];
blO a Displacement[nl3, n4, 0];

bll » Displacement[n8, n4, 0]; (* Int tendon segment *)
bl2 a Displacement[n9, n3, 0]; (* FDS tendon segment *)
bl3 a Displacement[nl4, n5, 0]; (* Lum tendon segment *)
bl4 a Displacement[nlO, n2, 0]; (* FDP tendon segment *)

(* Displacement generators accross mechanical interface nodes *)
b!5 a Displacement[nO, nl, PI]; (* ED *)
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bl6 a Displacement [nO, n4, P4]; (* Int *)
bl7 a Displacement [nO, n2, P2]; (* FDP *)
bl8 a Displacement [nO, n3, P3]; (* FDS *)

(* Displacement generators due to actuator loops *)
bl9 a Displacement [nil, nl4, P5]; (* Lum-ED loop *)
b20 a Displacement [n7, nl3, P6] ; (* Int-ED loop *)

];

(* Create lists of useful quantities •)
phi a {phil, phi2, phi3}; (* configuration variables *)
F a {FI, F2, F3, F4, F5}; (* input forces *)
ActuatorBranches a {bl5, bl6, bl7, bl8, bl9, b20};

(*

A a IncidenceMatrix[buchner]; (* get the incidence matrix *)

(* This calculation takes a *long* time *)
tau a FingerlikeTorques[buchner, ActuatorBranches, phi];
{6, S} a FingerlikeMatrices[tau, F] ;

(♦ Save the results so ve don't have to rerun this section *)

Save["buchner.out", A, tau, 6, S]

*)
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