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Abstract

We present some further stability results for cellular neural networks with nonlinear delay-

type templates. In particular, we show that there exists a globally asymptotically stable equi

librium point in CNN's with dominant nonlinear delay-type templates.

1 Introduction

CeUular Neural Networks (CNN) is a novel structure for nonlinear analog signal processing [1, 2].

Its applications for various practical problems have been demonstrated [3]. The nucleus of a specific

CNN functionality is defined by the analog cloning template which is a geometric and analog code

of the weights of local interactions of each cell (uniform analog processing unit).



Nonlinear and delay-type CNN's were introduced in [4]. Delay-type CNN templates are very

useful in motion related applications. In a more general setting, CNN appears as an appropriate

framework for sensory information processing organs [5]. .

In this paper we present a set of stability results of dominant nonlinear CNN's with delay.

2 General framework and earlier results

An M X N delay-type CNN with nonlinear templates is described by the state equations

kyl
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where > 0 for all We generally assume that the j4-template is space-invariant;

i.e., for all and n such that 1 < i,k,i + m^k m < M and 1 < i,/,i + n,/ -)- n < iV,

i4(i, j; fc, /)= i4(i-fm, j -l-n; l+n). Generally r^.kh space-invariant as well. Without

loss of generality, we will assume that C® = 1, A® = 1. The state voltage, input voltage, output

voltage ofa cell, is respectively, v®,^, and . We assume that the input is continuous and has

magnitude less than 1. The output voltage is %j W= /(»xi,(«))> /(®) = 5[i® + - I® - 111-

linear templates, i4(i,j; fc, /)(uyfcp Vy^^

Consider equation (1). We relabel the state variables u®-^ into a vector x of size n = MN.

Similarly, the input and output variables Vutj and are relabeled into u and y using the same

labeling order. The invertible ordering will be called cr, i.e. x^^ij) = v®^^. Furthermore, is

ordered into a matrix such that = '''uj-xi- The same ordering is used on r^.kH

yi4, and B to obtain A, A'', A„/, and B„/ respectively. After relabeling, the state

equations in (1) assume the following form of a system of functional differential equations (FDE):

'x = F(t, xx) - -x(t) + Ani(fi(x(t))) -1- A^f2(x(t - r))



+Bni(u(t)) + B'̂ u{t - r) + / (2)

where fi{x{t)) is defined as:

(/i(®))» = /(«,) (3)

and where A^f2{x(t - r)) is defined as:

- r)).- = - fd)) (4)
/f=l

The term B'^u{t —r) is defined as:

B-U(,t - T)i = •Uk{t - fg) (5)
fcrsl

We will assiime that A and B are continuous, and define

Amax{iJ;kJ)= sup A{iJ;k,l)(x,y)<oo (6)
(®.»)€[-!,1]^

•®max(^» 0 ~ sup 5(t, J J/)(®, J/) < 00 (7)

Define f = maxf/J to be the maximal delay and define Cf = C([—f, 0],IR**) to be the set of

continuous functions into IR" defined on the interval [—f, 0]. The function Xt € Cf is defined as

xt{s) = x(< + s) s € [-r, 0] (8)

We regard ^ 6 IR** as a function in Cf by setting ^(t) = ^ for t € [—f, 0], The zero vector in IR"

will be denoted 0, We say ^ < 17 for € IR" if < fH for all » 6 {1,...,n}. Similarly, (/> < ip

for € Cf if < tp{t) for all t € [—"T,©]. We define the interval [^,77] = {x € IR"|̂ < ®< »?}•

We define as the set of 0 € Cf such that 4>{t) € [^,77] for all t 6 [-'r,0]. The norm used

on matrices will be the norm induced by the norm in IR". We define IRJ = {x € IR**]® > 9}, For

<f> € Cf, |< |̂ = sup{|<^(t)|: t € hr,0]}

The initial conditions for the delay-type CNN is given by:

= t€[-f,0] (9)



We will assume that is a continuous function (vo(t) € Cf).

Symmetric, non-symmetric positive cell-linking and other types of A-templates have been shown

to have stable dynamics [1, 6, 7].

In [8] it has been shown that general and CNN-type neural networks with linear templates

and delay are stable under weU-dehned conditions. In addition, these conditions are also valid for

monotone nonlinear templates [9]:

Proposition 2.1 If a CNN with nonlinear and delay-type A-templates satisfies

(i) DAni(x) is an off-diagonally nonnegative matrix for a// x 6 [—1,1]",

(ii) is a nonnegative matrix (the template AJ has only nonnegative elements),

(Hi) DAni{x) is an irreducible matrix for all x € [—1,1]",

(iv) the set of equilibria is finite,

then the union of the basins of attraction of all stable equilibrium points will be a dense open set in

n?=i C'([-fi,0],]R), where fi = maxfjj.
3

The conclusion of the proposition implies that there are no stable limit cycles or strange attrac-

tors. For each set of initial conditions, there exists an arbitrarily small perturbation such that the

trajectory will converge towards an equilibrium point.

On the other hand, in [10] it was shown that symmetric A-templates in delay-type CNN's do

not necessarily imply stability and that stability is guaranteed for symmetric A-templates if the

delay is small enough.

3 Stability results for dominant nonlinear and delay-type tem

plates

The results in [8] can be extended to show that the CNN in equation 1 has an unique solution and

the range of dynamics can be calculated.

Proposition 3.1 Given the initial condition:

xo(t) = <t>{t), <l>{t) € Of (10)



then the nonlinear delay-type CNN has a unique continuous solution for t € [0, oo).

Proposition 3.2 If the initial condition is hounded by K, then all states Vfof a nonlinear delay-

type cellular neural network are bounded for all time in absolute value by the sum:

—N |/j

+ max (e *.01+ *,oDj (n)
and theuj-limit points ofVg^.{t) are bounded in absolute value byVmax^N. Thus for alU >

will eventually be bounded in absolute value € 4- Vmos —N.

In the rest of the paper, we will assume that the input is constant {u{t) = u for all t).

We consider templates which are "dominant" in the sense that the center elementis muchlarger

than the other elements in the template. This notion will be defined more precisely in the following

two theorems.

Using results in [11] we can show that if the norm jidj is less than 1, then the linear CNN
becomes contractive and has a globally asymptotically stable equilibrium point. We can extend

this to nonlinear delay-type CNN's as follows:

Theorem 3.1 Assume that a finite Lipschitz constantL existssuchthat |A„/(x)—An/(y)| < T\^—y\

for all X, y ^ [-1,1]". If a nonlinear delay-type CNN satisfy L-|-\A^\ < 1, then the delay-type and

nonlinear CNNin equation (1) contains a globally asymptotically stable equilibrium point.

Proof: we prove this by using a theorem of Razumikhin-type. A equilibrium point x*(t) = x*

must satisfy:

= Aniifiix*)) + A'(f2(x*)) + g = T(x*) (12)

where g = Bra(u) 4- 4- /. By the assumptions, x* is a fixed point of the contraction T,

therefore x* is the unique equilibrium of the system and it exists. We use the change of variables

u = x —x*y and define the following Liapunov function:

V{u)= i <u,u> (13)



Taking the derivative along solutions, we get

V{u) = <n(t),u(t)> = <i(t),u(t)>

= < -«(t) - X* + Ani{fi(u{t) + X*)) + A'^(f2(u(t- r) + X*)) + g, u{t) >

= < -«(t) + Ani{fiiu(t) + X*)) - i4„/(/i(x*)) + A^{f2{u(t - r) + x") - f2(x*)), u(t) >
(14)

By the choice of the nonlinearity /

|/i(tt(0 + O-/i(OI< W<)l (15)

\A^f2{u(t - r) + X-) - A^f2{x*)\ < \A^\\ut\ (16)

So we have

V(«) <-|ti(t)|2+ L < u(t),u(f) > -I- |i^||n(t)||ii<| < {-I + L+ p\A^\)\u(t)\'̂ < 0 (17)

for all |n<| < p\u(t)\, where p > 1 is a real number such that —1 + L + plA^] < 0.

Then by Theorem 4.2 in [12, page 127] the equilibrium point u = 0 is a global attractor.

Therefore x = x* is a global attractor of equation (2). •

In other words, if the elements of the templates A and A'̂ are small enough, then the CNN

will always converge to the unique equilibrium point. Note that because of the cellular and space-

invariant structure of the template, |A|, L and lA^l do not depend on the size of the cell array.

The second type of dominant templates we consider are positive templates. In [4] it was shown

that if A is off-diagonally non-negative and irreducible, then the linear CNN is stable almost

everywhere. In [13] it was shown that if A is off-diagonally non-negative and -A is row sum

dominant, i.e., the sum of the absolute values of the off-diagonal elements in each row of —A is

smaller than the corresponding diagonal element, then the linear CNN hasa globally asymptotically

stable equilibrium point. Such A-templates have the following sign structure:



+ + + + +

+ + + + +

+ + — + +

+ + + + +

+ + + + +

This can be nseful in analyzing templates which have a oiF-center on-surround character [5, 14].

This result can also be extended to linear delay-type templates:

Theorem 3.2 If a linear delay-type CNN is such that (i) A has nonnegative off-diagonal elements,

(ii) has nonnegative elements and (Hi) —{A -H A^) is row sum dominant, then the CNN has a

globally asymptotically stable equilibrium point.

Proof: we prove this by applying the results in [15]. Let k he &strict bound for the a;-limit

points [8], i.e. for each solution x{t) of the FDE, there exist a T such that \x{t)\ < A; for all t > T.

In fact we wiU choose A; > 1 such that

k = 1 + €+\I\

-1-max

for some € > 0. Let « 6 IR" be defined as k, = A; for all t 6 {1,...,n}. Define the following change

of variables:

w{t) = x(t) + K (19)

Then w satisfies

w = F(ty wt —k) = G(t, wt) = G{wt) (20)

We show that the FDE in equation (20) satisfy assumptions H —1,1? —2, —3 and J? —5 in

[15]. It is easy to verify that G{2k) < $ and G{0) > 9. Therefore assumption J? - 3 is satisfied.

Assumption ^ —1 is satisfied because G is globally Lipschltzian [15, Remark 4]. H —2is satisfied

because A has nonnegative off-diagonal elements and A^ has nonnegative elements. To show that

F —5 is satisfied, let € IRJ ^ ^ 1 a-nd ^ ^ rj. Let i be an index such that



f{r}i —«) —/(^i —«) has the largest value. It is clear that we can choose i such that rn — > 0.

Then

. Gi(0-Giiv) = +

> Vi-(i + (hm- «) - /(& - «))EU "(^ + (21)
> m - 6- > 0

Where we have used the assumption that —(ii + A'̂ )ij > 0 for all i. Therefore F —5 is

satisfied.

By [15, Lemma 3], for all initial conditions in the trajectory of equation (20) will converge

to one equilibrium point. This means that for all initial conditions in Cf ' ^ all trajectory of

equation (2) will converge to an unique equilibrium point. By definition of A;, all trajectories

will eventually enter [—«,«]. Therefore for any trajectory x(t), there exists T > 0 such that

xt{') € and the unique equilibrium point is globally asymptotically stable. •

The property of having a globally asymptotically stable equilibrium point allows such a CNN

to be used as a pattern classifier or encoder [11] in the sense that there is a nonlinear map which

relates the steady state output to the input independent of the initial conditions. One could also

view these CNN's as solving nonlinear equations in the sense that given any initial condition, the

CNN will converge to the unique solution of a set of nonlinear algebraic equations with the set of

equations being solved depending on the input.

4 Conclusions

Simple and useful stability conditions have been presented in this paper for the case when the

templates are dominant nonlinear and delay-type.
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