Copyright © 1992, by the author(s).
All rights reserved.

Permission to make digital or hard copies of all or part of this work for personal or
classroom use is granted without fee provided that copies are not made or distributed
for profit or commercial advantage and that copies bear this notice and the full citation

on the first page. To copy otherwise, to republish, to post on servers or to redistribute to
lists, requires prior specific permission.

DON'T CARES IN MULTI-LEVEL
NETWORK OPTIMIZATION

by

Hamid Savoj

Memorandum No. UCB/ERL M92/122

30 October 1992

DON’T CARES IN MULTI-LEVEL
NETWORK OPTIMIZATION

by

Hamid Savoj

Memorandum No. UCB/ERL M92/122

30 October 1992

ELECTRONICS RESEARCH LABORATORY

College of Engineering
University of California, Berkeley
94720

Don’t Cares in Multi-Level Network Optimization

Hamid Savoj

University of California Department of Electrical Engineering
Berkeley, California and Computer Sciences

Abstract

An important factor in the optimization of a multi-level circuit, modeled as a Boolean
network, is to compute the flexibility for implementing each node of the network and to
exploit this flexibility to get a better functional implementation at that node. A general
form for describing input-output behavior of a Boolean network is a Boolean relation. This
relation or a subset of it, is then used to compute the flexibility for implementing each
node in the network. The nodes in the network can be either single or multiple output.
In the case of a network composed of single-output nodes, this flexibility is captured by
don’t cares. Techniques for computing both maximum and compatible don’t care sets for
each node are presented. In the case of multi-output nodes, don’t cares are not sufficient
to express input-output behavior of the node. Thus, we present techniques to compute
maximal and compatible flexibility at multi-output nodes using Boolean relations.

The current model for representing a Boolean circuit uses single output nodes.
We present efficient techniques for single-output node simplification that use don’t cares
in terms of the fanins of node being simplified. The don’t care set in terms of fanins of
a node is called the local don’t care set for that node; it usually has a small size and can
be used to remove all the redundancies within that node. Practical issues for computing
local don’t cares and simplifying nodes are discussed in detail and experimental ‘:resu.lts
are presented that show the effectiveness of the approach. New scripts are designed for
technology independent optimization of Boolean circuits which use these new techniques.

Finally, a new Boolean matching algorithm is presented that can match two func-
tions with given don’t care sets. To prove the effectiveness of the approach, this algorithm
~ is used within a technology mapper where matches are sought between subfunctions in the
network and sets of gates in the library. The symmetries of the gates in the library are used
to speed up the matching process.

Thesis Committee Chairman

Don’t Cares in Multi-Level Network Optimization
Copyright © 1992

Hamid Savoj

Acknowledgements

The four and a half years that I have spent at the University of California at
Berkeley have been a very intellectually stimulating stage of my life. Many individuals
contributed to the work presented here.

I am indebted to my research advisor, Professor Robert K. Brayton, who provided
guidence not only with my research but also with my personal growth. He has taught me
how to develop and communicate research ideas. My discussions with him have always been
motivating and enlightening. This work would have not been possible without his vision
and continuous support.

Professor Alberto Sangiovanni-Vincentelli has helped me develop presentation
skills and has taught me structured approaches to research.

Several people assisted me during the writing of my thesis. I am grateful to Adnan
Aziz, Luciano Lavagno, Rajeev Murgai, Massoud Pedram, Narendra Shenoy, Tom Shiple,
and Tiziano Villa for reading the first draft of my thesis and making valuable suggestions.

I would like to thank my colleagues for their interaction and companionship over
the past few years. They are: Pranav Ashar, Adnan Aziz, Wendell Baker, Mark Beardslee,
Andrea Casotto, Abhijit Ghosh, Ramin Hojati, Chuck Kring, Luciano Lavagno, Bill Lin,
Abdul Malik, Sharad Malik, Rick McGeer, Cho Moon, Rajeev Murgai, Massoud Pedram,
Jaijeet Roychowdhury, Rick Rudell, Alex Saldanha, Ellen Sentovich, Narendra Shenoy, Tom
Shiple, Kanwar Jit Singh, Paul Stephan, Hervé Touati, Tiziano Villa, Albert Wang, Huey-
Yih Wang, Yosinori Watanabe, and Greg Whitcomb. Many thanks to Flora Oviedo, Kia
Cooper, and Elise Mills for the all administrative assistance provided. Brad Krebs helped
with many hardware and software problems over the years.

My life at Berkeley would not have been as happy and memorable as it has been
without my friends from International House. In particular, I would like to thank Bar-
bara Calhoun, Cormac Conroy, Bijan Dastmalchi, Gustavo DeVeciana, Ami Doshi, Orla
Feely, Cynthia Gaertner, Mehryar Gharakani, Peter Kennedy, George Kesidis, Davar Khosh-
nevisan, Carlos Kirjner, Michelle Leversee, Mary McNamara, Dariush Mirfendereski, Liam
Murphy, Saeid Nazari, Kamran M. Nemati, Mehdi Nosrati, Ali Sarhaddi, Anthony Sarkis,
Shahab Sheikholeslam, Ravi Subramanian, Shahram Taheri, and Farhad Zabihi.

Special thanks to my good friends of many years, Afsane Arvand, Massoud Pe-

dram, and Khosrow Hasibi.

e s et e n - e e

ii

This thesis is dedicated to my parents, Ferdose and Abbas Savoj. Their love and
support has inspired me throughout my life. Together with my brothers and sisters, they

are constantly in my memory.

Contents

Acknowledgements
List of Figures
List of Tables

1 Introduction
1.1 CADfor VLSI i i ittt i it ittt et et e e et teee e
1.2 LogicSynthesis i ittt ieienneeen.
1.2.1 Transformations ittt eeneennnnnn
1.2.2 Flexibility in Node Implementation
1.3 OveIVieWw . . i v i it i e e e e e e e e e e e e e e e e

2 Terminology and Background

2.1 Boolean Functions and Boolean Networks
2.1.1 Boolean Functions ittt eennnn.
2.1.2 Boolean Network i i it ittt et et et e

2.2 SetOperationsand BDD’s. i vt enneenennnn
2.2.1 Binary Decision Diagrams
222 Consensus Operatoro euuonnnennnnn.
2.2.3 Smoothing Operator ittt vnnnenn..
2.24 Boolean Difference i it

2.3 Image and Inverse Image Computations
2.3.1 The Generalized Cofactort eunn.
2.3.2 The Transition Relation Method
2.3.3 The Recursive Image Computation Method

2.4 Observability Relations 000t eeenenn..

3 Don’t Care Conditions for Single-Output Nodes

3.1 Imtroduction i i i e e e e e e e e e e e e e e

3.2 Don’t Caresin a Boolean Network
3.2.1 Satisfiability Don’t Cares00 rnno..
3.2.2 Observability Dont Cares v v vt v v v v v v v e v ounas
3.23 External Don’t Cares 00t uuuweennenenon

iii

CONTENTS iv

324 Terminology @i ittt 28

3.3 Observability Networkt v it ittt it et e e e nn s 28
34 ComputingODC’sttt einenennnn 30
341 ANewApproach 32
3.4.2 Deriving Damiani’s Formula. 35
3.4.3 Using the Observability Relation 36

3.5 Observability Don’t Care Subsets 39
3.5.1 Compatible Observability and External Don’t Cares 40
352 CODCsforTreeso oviitieeeennnneeens 41
353 CODC’sforaGeneral Networkc.000... 47

3.6 ODC’s and Equivalence ClassesofaCut 51
4 Observability Relations for Multi-Output Nodes 53
4.1 Previous Workttt it it e 53
4.2 Two-Way Partitioning of a Boolean Relation 54
4.2.1 Serial Decomposition i e 55
4.2.2 Parallel Decomposition¢.0iiii.... 62

4.3 Compatible and Maximal Observability Relations 65
4.3.1 Node Optimization Using Maximal Observability Relations 68
4.3.2 Node Optimization Using Compatible Observability Relations 70

44 Conclusionttt e e e 71
5 Node Simplification: Practical Issues 73
51 Imtroduction it it ittt et e 73
52 Node Simplification e e 75
53 UsingDon’tCaresttt iiueeneneenneenns 78
54 Computing Local Don’t Cares00t eenn. 81
5.5 Implementation 82
5.5.1 External Don’tCaresc0uiuiuueeeeenn.. 83
5.5.2 Inverse of Boolean Difference 86
5.5.3 Computing Observability and External Don’t Cares at Each Node . 86
554 Filtering i e e e e 88
5.5.5 ComputingtheImage 89

56 Conclusionttt ittt e 92
6 Scripts for Technology Independent Optimization 95
6.1 Introduction................ @t e e e s et e e e 96
6.2 Scripts Used for Logic Minimization 98
6.2.1 Kernel and Cube Extraction 99
6.2.2 Simplification e e e e 100
6.2.3 Eliminationttt e 102

6.3 SCripts e e e e e e e e e e e e e 104
6.4 Experimental Results.c. 0 iiieeene... 105
6.4.1 Area Optimizationt inee.. 105

6.4.2 Sequential Optimization 110

CONTENTS

643 Testability i e e e

6.5 Conclusion

oooooooooooooooooooooooooooooooooooo

7 Boolean Matching in Logic Synthesis

7.1 Introduction

ooooooooooooooooooooooooooooooooooo

7.2 Boolean Matching,
7.3 Boolean Matching for Technology Mapping
7.3.1 Generatingall Supports
7.3.2 Boolean Matching Algorithm
7.3.3 Symmetries v i v ittt e e e e e e e e e e
7.3.4 Heuristic for Assigning Inputs
74 Don’t Care Computation00,
7.5 Library Organization v i i ittt ittt e e

7.6 Results. . .
7.7 Conclusion

8 Conclusions

Bibliography

oooooooooooooooooooooooooooooooooooo

oooooooooooooooooooooooooooooooooooo

112
113

115
115
117
120
122
123
126
127
128
131
132
134

135

137

CONTENTS

[

vii

List of Figures

2.1
2.2

3.1
3.2
3.3
3.4
3.5
3.6
3.7
3.8

4.1
4.2
4.3
4.4
4.5
4.6
4.7

5.1
5.2
5.3
5.4
5.5
5.6
5.7
5.8
5.9

6.1
6.2

7.1

Binary Decision Diagram 00, 11
Generalized Cofactor it eneenn.. 16
Example i e e e e e 27
Example i i i e e e e e e e e e e e e e 32
A Separating Setof Nodes0t nenen.. 33
Example 0 i e e e e e 34
Example i e e e e e e e e e e 38
ADirected Tree. i i i i i it i et e e e e e e 42
Example i i it e e e e e e e e e e e 49
Example e e e e e 50
Decomposition of Observability Relation 55
Observability Relation foraCut, 56
Example e e e e e e e e e 61
Example i i it e e e e e e e e e e e e e e e e e 64
Observability Network for a Network of Multi-Output Nodes 65

Maximal Observability Relation Computation and Node Simplification . . . 69
Compatible Observability Relation Computation and Node Simplification . 70

Node Simplification e e e e e e e e e e e e 76
Input to Two-Level Minimizer. 77
Input to Two-Level Minimizer, 80
don’t care computation and node simplification 84
Berkeley Logic Interchange Format 85
don’t care computation and node simplification 87
An Intermediate Node, 88
Range Computation Algorithm 91
Partition into Groups with Disjoint Support 93
Simplification Script Using fast.extract 105
Simplification Script Using Kernel Extraction 106
Generating Supports e e 124

LIST OF FIGURES

7.2 Boolean Matching
7.3 Cluster Functions

oooooooooooooooooooooooooooooooo

L I I I T R R R B I I I T R R N L T T S S ST S Y

~ viid

List of Tables

6.1 Performance of Scripts Starting from Multi-Level Circuits 108
6.2 Performance of Scripts Startingfrom PLA’s 109
6.3 Comparison of Algebraic Extraction Techniques 111
6.4 Performance of the Scripts on Sequential Circuits 113
6.5 Measuring Testability 114

7.1 Boolean Matching for Technology Mapping 133

[
<8 P .
vy B
BH)
I3
K
Y .

e

Chapter 1

Introduction

Computer Aided Design (CAD) tools are used in many fields of science to cope
with complexity in the analysis or synthesis of systems. CAD tools have been developed to
help chemists and biologist to study the structure of molecules, find common sub-structures
among them, and predict their activities. CAD tools have also been used to analyze and
predict the behavior of financial markets based on statistical models. Finally, CAD tools
have been employed to automate the design of VLSI circuits. This dissertation focuses on
new techniques for automated synthesis of logic circuits, which is a major division of CAD
for VLSI circuits.

1.1 CAD for VLSI

The objective of VLSI CAD is to automate the design of VLSI systems. The
starting point is usually a description of a system in a high-level language like ELLA [55]
or VHDL [62]). The result of the design process is a layout description of that system which
can be implemented as a set of integrated circuits in one or more technologies. This process
is usually divided into four steps because the problem is too complex to be handled all at
once. These steps are high-level synthesis, logic synthesis, physical design, and fabrication
and test. A design may have to go through many iterations in one or more of the above steps
before it meets the required specification. In some applications, CAD tools are employed
starting at the logic or physical design level. This is the case when a design in an old
technology is converted into a new technology.

We discuss the steps in VLSI design using the order in which they are applied.

CHAPTER 1. INTRODUCTION 2

High-level synthesis generates a register-transfer level structure from a behavioral descrip-
tion which realizes the given behavior. The temporal scheduling of operations and alloca-
tion of hardware are among the issues considered at this stage. Behavioral synthesis tools
[37, 60, 80, 82, 84] can be used to reduce the amount hardware while meeting the required
performance constraints. The next step is logic synthesis, where the register transfer struc-
ture is transformed into a netlist of gates in a given technology. Optimization techniques
are applied to improve the area, performance, and testability of the circuit at this stage.
Our focus is on new sets of optimization techniques that can be applied during logic syn-
thesis. The third step, physical design, provides the physical realization of a net-list on a
chip and includes placement, routing, and geometric artwork [16, 72, 63, 85]. As in logic
synthesis, the objective is to find a layout with the best area and/or performance. The
final step is fabrication and test where mask-making, fabrication, and performance test is
done. Some manufactured circuits are defective because manufacturing processes cannot
guarantee 100% yield. It is important to separate defective circuits from the proper ones.
To detect defective circuits, test patterns are applied to the circuit and the response is
compared with the expected response. Test pattern generation has been investigated for
many years (2, 32, 35, 44, 48, 34, 71].

While synthesizing a given specification at the higher level of the design, one may
estimate some information from the lower levels to produce a better design. For example,
one may use placement and routing information during logic synthesis [61, 1].

Partitioning of a VLSI system and handling hierarchies are hard problems that
need to be dealt with at all levels [28, 29, 8]. Formal verification is another area of interest
where a given high-level specification of a circuit is checked for some desired behavior before

any implementation is done [20, 43, 76]. This area has received considerable attention lately.

1.2 Logic Synthesis

Logic synthesis is the process of transforming a set of Boolean functions, obtained
from the register transfer level structure, into a network of gates in a particular technology,
while optimizing the network for performance, area, and/or testability. The best imple-
mentation of a functional specification is usually in multi-level logic. The model used for
representing multiple levels of logic is a directed acyclic graph with single-output nodes,

called a Boolean network, where each node of the network is a logic function itself. A set

CHAPTER 1. INTRODUCTION 3

of transformations is applied to the logic network to find the best set of nodes which give

the desired input-output behavior.

1.2.1 Transformations

The synthesis process is usually divided into technology independent and tech-
nology dependent phases [10, 7]. The objective of the technology independent phase is to
simplify the logic as much as possible, while the main role of the technology dependent
phase is to implement the logic network using a set of well characterized gates.

In [46], it was shown experimentally that the layout area of a Boolean network
implementation in standard cells correlates well with the number of literals used for repre-
senting that network in factored form (defined in [10]). This measure is used in the tech-
nology independent stage because it helps to reduce the size of the nodes in the network
and therefore, the amount of logic used. After a circuit is optimized for literals in factored
form, additional transformations can be applied to optimize performance, or to tune the
circuit for eventual implementation in a particular technology such as, Field Programmable
Gate Arrays [39, 4]. A network optimized for literals in factored form is a good starting
point for these other manipulations. When the amount of logic used is reduced, there are
less gates to be placed on a chip and fewer nets to be routed. As a result, performance is
also improved in most cases. In the same way, a circuit can be implemented on an FPGA
chip using fewer blocks, if the amount of logic is reduced.

An important transformation to reduce the number of levels in factored form is to
apply a two-level logic minimizer to each node of the multi-level network to optimize the
two-level function associated with the node. The input supplied to a two-level minimizer is
the onset and the don’t care set of the node. The onset gives the function of the node in
terms of its fanins. The don’t care set gives the flexibility in implementing the node, and is
a combination of structural don’t cares and external don’t cares supplied by the user.

In the technology dependent stage, transformations are applied to implement and
optimize logic for a particular technology. For standard cells, the most common approach
decomposes the circuit into a set of trees and then maps each tree into a set of library gates
[42, 64]. For the Xilinx FPGA architecture, the Boolean network is decomposed into a set
of nodes where each node has less than 5 inputs; therefore, it can be directly mapped into a
logic block [56, 57]. Don’t care conditions can be used to improve the quality of the mapped

CHAPTER 1. INTRODUCTION 4
circuits.

1.2.2 Flexibility in Node Implementation

This thesis contributes to the understanding and ability to use don’t care sets
and Boolean relations to manipulate Boolean networks. Don’t cares are used to find the
maximum flexibility for implementing nodes of a network decomposed into single-output
node.s. The don’t care set at each node is a combination of external, observability, and
satisfiability don’t cares. The external don’t care set for a network is a restricted form
for expressing the freedom in input-output behavior of that network. These are input
conditions under which the value of a particular output is not important. The observability
and satisfiability don’t cares are related to the structure of the network. The observability
don’t cares are conditions under which the value of a node is not observable at any of the
outputs. Satisfiability don’t cares are related to the functions at the nodes of the network.
Each intermediate node of a Boolean network gets a value of 1 or 0 for a particular input.
Some combinations are impossible in the Boolean space of intermediate nodes and primary
inputs of the network; satisfiability don’t cares capture all such impossible combinations.

A Boolean network can be also decomposed into a set of multi-output nodes. This
is very useful for data path synthesis where the circuit has many multi-output blocks like
multipliers and adders. These blocks must be recognized and mapped into corresponding
multi-output gates in the library. The maximum flexibility for implementing a multi-output
node is captured by a Boolean relation which gives the set of outputs possible for any par-
ticular input pattern to the node. A Boolean network is a multi-output node itself, and
external don’t cares are not sufficient to express the maximum flexibility for implementing
it. Thus Boolean relations must be used to express the input-output behavior of a Boolean
network. Such a relation is called an observability relation. The use of the observabil-
ity relation allows the definition and computation of maximum flexibility in implementing
multi-output nodes in a Boolean network.

An interesting concept which applies to both don’t cares and Boolean relations
is the concept of compatibility. In general, the flexibility in implementing a node in the
network affects the flexibility in implementing other nodes in the network; therefore, if the
function at a node is changed, don’t care sets or Boolean relations at other nodes in the

network have to be updated. The updating process can be costly. It is possible to order all

CHAPTER 1. INTRODUCTION 5

the nodes in the network and compute compatible flexibilities according to the ordering. In
this manner, all the nodes in the network can be optimized simultaneously. Furthermore,
once the function at a node is changed, the flexibility for implementing other nodes in the

network need not be recomputed.

1.3 Overview

Chapter 2 presents some basic definitions used throughout this thesis. It also
contains the definition of generalized cofactor and its properties. Finally, it discusses dif-
ferent methods for image computation and explains shortcomings and advantages of each
approach.

Chapter 3 discusses maximum flexibility for implementing nodes of a Boolean
network decomposed into single-output nodes. The flexibility for a single-output node
can be computed in the form of don’t cares. We discuss different kinds of don’t cares and
techniques for computing a full don’t care set and approximate don’t care sets at a particular
node. The input-output behavior of the network itself is expressed by a Boolean relation
because it can be viewed as a multi-output node. This relation is represented by a node
attached to the top of the original network. This new network is called the observability
network. We develop techniques for computing full and compatible don’t cares from the
observability network.

Techniques for computing compatible and maximal Boolean relations for a network
decomposed into multi-output nodes are developed in Chapter 4. We first discuss the
parallel and serial decomposition of Boolean relations and then expand this to a general
decomposition into multi-output nodes.

Chapter 5 discusses the practical issues in using local don’t cares for the simplifi-
cation of single-output nodes in a multi-level network. The algorithms used for local don’t
care computation are discussed in detail. The extensions to BLIF for representing external
don’t cares are discussed in this chapter.

Chapter 6 discusses scripts used for technology independent optimization. The
algorithms used within these scripts are discussed and improvements are provided which
enable the application of these algorithms to larger circuits. Experiments are run on a large
set of benchmark circuits to show the effectiveness of these improved scripts for reducing

the amount of logic used and removing redundancies in each circuit.

CHAPTER 1. INTRODUCTION 6

Finally, we discuss Boolean matching in Chapter 7 and show how this can be used
for technology mapping. The tree matching algorithm used to match a subfunction in the
network with a gate in the library, is replaced by Boolean matching. The symmetries of
the gates in the library are found and used to speed up the matching process. Gates in the
library are grouped into sets using the same Boolean matching algorithm, where it is enough

to check the existence of a match of a subfunction in the network with a set representative.

Chapter 2

Terminology and Background

The purpose of this chapter is to introduce some basic definitions and concepts

that are essential for describing the work presented in this thesis.

2.1 Boolean Functions and Boolean Networks

2.1.1 Boolean Functions

Definition 2.1.1 A completely specified Boolean function f with n inputs and | outputs is
a mapping
f:B*— B

where B = {0,1}. In particular, if | = 1 the onset and offset of f are

onset= {m € B" | f(m) =1}
offset = {m € B" | f(m) = 0}

Definition 2.1.2 A minterm of a function f is a vertez m € B" such that f(m) = 1.

Definition 2.1.3 An incompletely specified Boolean function F with n inputs and l outputs
18 a mapping
F:B* —Y!

where Y = {0,1,*}. The onset , offset , and don’t care set (dcset) of F : B — Y are,

onset = {m € B" | F(m) =1}

CHAPTER 2. TERMINOLOGY AND BACKGROUND 8

offset = {m € B™ | F(m) = 0}
dcset = {m € B™ | F(m) = *}.

The symbol * implies that the function can be either 0 or 1.

Definition 2.1.4 A cover for the incompletely specified function F : B — Y is any
completely specified function f such that f(m) = 1 if F(m) =1, f(m) =0 if F(m) = 0,
and f(m) =0 or 1 if F(m) = *.

F : B®™ — Y is usually described by two cdmpletely specified functions f and d where f is
a cover for F and d(m) = 1 if F(m) = *, and 0 otherwise. Alternately, F can be described
as F = (f,d,r) where f,d,r are respectively the onset, don’t care set, and offset.

Let z1,z3,...,Z, be the variables of the space B™. We use x to represent a vertex

or a vector of variables in B™.

Definition 2.1.5 Let A C B™. The characteristic function of A is the function f : B — B
defined by f(x) =1 if x € A, f(x) =0 otherwise.

Characteristic functions are nothing but a functional representation of a subset of a set.

Any completely specified function f: B® — B is a characteristic function for its onset.

Definition 2.1.6 A literal is a variable in its true or complement form (e.g.z;, or 73). A

product term or cube is the conjunction of some set of literals (e.g. z,2:%3).

Definition 2.1.7 A cube ¢ is called a prime cube of F if ¢ C fUd and there is no cube ¢’
such that c C ¢ C fud.

Definition 2.1.8 The distance between two cubes denoted as dist(cy,cz) is the number of
literals in which ¢y contains the complement literal of c;. Two cubes ¢, and ¢z are called

orthogonal if dist(c1,c2) > 1 (e.g. 12223 is orthogonal to z,T2 and of distance 1).

The onset, don’t care set, and offset of an incompletely specified function F :
B™ — Y can each be represented by the union of some set of cubes. This representation

is called a sum-of-products form.

Definition 2.1.9 Let f : B® — B be a Boolean function, and z; an input variable of
f. The cofactor of f with respect to a literal z;(T7), shown as f;,(fz), is a new function

obtained by substituting 1(0) for z;(Z7) in every cube in f which contains z;(z;).

CHAPTER 2. TERMINOLOGY AND BACKGROUND 9

Definition 2.1.10 Let f : B* — B be a Boolean function, and z; an input variable of f. f
is monotone increasing in a variable z; if fz;, C f;;. A function f is monotone decreasing in
a variable z; if f;, C f5,. f is unate in variable z; if it is monotone increasing or decreasing
in that variable. f is a unate function if it is unate in all its input variables. A function is

independent of z; if fz;, = fz,.

Definition 2.1.11 Let f : B® — B be a Boolean function, and z; an input variable of f.

The Shannon’s ezpansion of a Boolean function f with respect to a variable z; is
i fz; + Tifr-
Lemma 2.1.1 f = z;f;, +7;fz.

The iterated Shannon decomposition of a Boolean function is a Binary tree representing
the function obtained by applying Shannon’s expansion with respect to all the variables.

The leaves are either 0 or 1. Each path of the tree represents a minterm of the function.

2.1.2 Boolean Network

Definition 2.1.12 A Boolean network N, is a directed acyclic graph (DAG) such that for
each node in N there is an associated representation of a Boolean function f;, and a Boolean
variable y;, where y; = f;. There is a directed edge (i, 5) from y; to y; if f; depends ezplicitly
on y; or §;. A node y; is a fanin of a node y; if there is a directed edge (i,j) and a fanout
if there is a directed edge (j,i). A node y; is a transitive fanin of a node y; if there is a
directed path from y; to y; and a transitive fanout if there is a directed path from y; to y;.
Primary inputs x = (z1,...,2Z,) are inputs of the Boolean network and primary outputs
z = (21,...,2m) are its outputs. Intermediate nodes of the Boolean network have at least
one fanin and one fanout. The global function f{ at y; is the function at the node ezpressed

in terms of primary inputs.

We sometimes represent the local function at y; by f! to make a clear distinction with the
global function f7.

Definition 2.1.13 The cofactor of N' with respect to y; denoted by z,, is a new network
obtained from N by disconnecting the output edges of y; from y; and forcing each output
edge equal to 1. The cofactor of N with respect to J; denoted by zz, is a new network

CHAPTER 2. TERMINOLOGY AND BACKGROUND 10

obtained from N by disconnecting the output edges of y; from y; and forcing each output
edge equal to 0.

Example:

If M has only one output 2, z,,2y, is 2 new network representing the function obtained by
ANDing outputs of 2y, and zg,. 2,2y, gives conditions under which the value of y; can be
changed from 0 to 1 or vice versa but output z remains equal to 1. This computation is

important while computing observability don’t cares discussed in Chapter 3.

Definition 2.1.14 The support of a function f is the set of variables that f ezplicitly
depends on.

Example:

The support of f = z122 + 2,%3 is {21, 22, Z3}.

Definition 2.1.15 Nodes of a network are topologically ordered from outputs if each node
appears somewhere after all its fanouts in the ordering. They are topologically ordered from

inputs if each node appears somewhere after all its fanins in the ordering.

2.2 Set Operations and BDD’s

Set operations are essential for manipulating Boolean functions. In this section,

we discuss some important set operations used in this thesis.

2.2.1 Binary Decision Diagrams

Binary Decision Diagrams [14] are compact representations of recursive Shannon
decompositions. The decomposition is done with the same order along every path from the
root to the leaves as shown in Figure 2.1. BDD’s are unique for a given variable ordering
and hence are canonical forms for representing Boolean functions. They can be constructed
from the Shannon’s expansion of a Boolean function by 1) deleting a node whose two child
edges point to the same node, and 2) sharing isomorphic subgraphs. Technically the result
is a reduced ordered BDD, (ROBDD), which we shall just call BDD.

Example:

Figure 2.1 shows the Shannon decomposition of f = zy23 + Tyz3 with the ordering z; >

CHAPTER 2. TERMINOLOGY AND BACKGROUND 1

f=x x,+x%

Figure 2.1: Binary Decision Diagram

z2 > z3 and the corresponding BDD. The unreduced one is on the left, the reduced one
on the right. An example of reduction is the merging of the two right most nodes which
represent the same function, namely z3. Then the z; node above them has both of its

children with the same node and thus can be eliminated.

2.2.2 Consensus Operator

Definition 2.2.1 Let f : B® — B be a Boolean function, and x = (z;,,...,%;,) 6 set of

input variables of f. The consensus of f by x is

Cef = CoyorCorf
cz.'-f = fz.'jfi:‘.',-

J

This is also the largest Boolean function contained in f which is independent of z;,,...,z;,.

2.2.3 Smoothing Operator

Definition 2.2.2 Let f : B* — B be a Boolean function, and x = (z;,,...,%;,) & set of
input variables of f. The smoothing of f by x is

Sxf = oS f
Sza~f = fzij +f':Ei_,~

J
If f is interpreted as the characteristic function of a set, the smoothing operator computes

the projection of f to the subspace of B" orthogonal to the domain of the x variables. This

is also the smallest Boolean function independent of z;,,...,z;, which contains f.

CHAPTER 2. TERMINOLOGY AND BACKGROUND : 12

Lemma 2.2.1 Let f: B®" x B™ — B and g : B™ - B be two Boolean functions. Then:

Sx(f(x,¥)9(¥)) = Sx(f(x,¥))g(¥) (2.1)

where f(x,y)g(y) is the Boolean AND of f(x,y) and g(y).

2.2.4 Boolean Difference

Let f : B® — B be a Boolean function, and z; an input variable of f. The Boolean

difference of a function f with respect to a variable z; is defined as

of

az‘ = f:h‘??.-‘ + -fz.'f?ﬂ—i

This function gives all the conditions under which the value of f is influenced by the value
of z;. Its complement therefore is all the conditions under which f is insensitive to z;. The
concept of Boolean difference of a Boolean function with respect to a variable is very similar
to the concept of partial derivative of a real function with respect to a variable.
Example:

Let f = 123 + 22F3. Then, gz% = %122 + £1T2. Notice that if z; = 0 and z; = 1, which is
a minterm of 3@;:%, f = T3. As a result, the value of f is sensitive to z3. In the same way, if

z1 =1and z; =0, f = z3 and the value of f changes with the value of z3.

2.3 Image and Inverse Image Computations

Definition 2.3.1 Let f : B® — B™ be a Boolean function and A a subset of B*. The
image of A by f is the set f(A) = {y € B™ | y = f(x), x € A}. If A = B", the image of
A by f is also called the range of f.

Definition 2.3.2 Let f : B® — B™ be a Boolean function and A a subset of B™. The
inverse image of A by f is the set f~1(A) = {x € B* | f(x) =y, y € A}.

Example:
Let f(x,i) : B® X B* — B™ be the next state function of a finite state machine, where n
is the number of state variables and k the number of input variables. Let c., be the set of

states reachable from a set of initial states cp. ¢, can be obtained by repeated computation

CHAPTER 2. TERMINOLOGY AND BACKGROUND 13

of an image as follows

Ciy1 = € Uf(C,' X Bk)

o = ¢ i cp=g¢

The sequence is guaranteed to converge after a finite number of iterations because {¢;} is

monotone increasing and the number of states is finite.

2.3.1 The Generalized Cofactor

The generalized cofactor is an important operator that can be used to reduce
an image computation to a range computation. This operator was initially proposed by
Coudert et al. in [21] and called the constraint operator. Given a Boolean function: f =
(fis---sfm) : B* = B™ and a subset of B" represented by its characteristic function A,
the generalized cofactor fy = ((fi)ny-..;(fm)r) is one of many functions from B" to B™
whose range is equal to the image of h by f. An important property of this function is
that fr(x) = f(x) if h(x) = 1. In addition, in most cases, the BDD representation of f}
is smaller than the BDD representation of f. Given a cover f : B® — B for the onset and
don’t care set d : B™ — B of an incompletely specified function F, the function f; has the
property that f —d C f3 C f+d (f — d is the same as fd.); therefore f7 is also a cover of
F = (fd,d,f d). This is because f; gives the same values as f for any minterm in d. In
practice the size of the BDD for f; is usually smaller than that of f [78]. As a result, this
is an effective way to get a cover with smaller BDD size.

The generalized cofactor f, depends in general on the variable ordering used in
the BDD representation.

Definition 2.3.8 Let h : B® — B be a non-null Boolean function and zy > 22 > ... > z,
an ordering of its input variables. We define the mapping wj, : B® — B"™ as follows:

7h(x) = x if h(x)=1

ﬂh(x) = a‘Tglni-nh(y)=l d(x7 Y) ’f h(x) =0

where d(x,y)= Ficicnlri— 9 |on-

Lemma 2.8.1 7, is the projection that maps a minterm x to the minterm y in the onset

of h which has the closest distance to x according to the metric d. The particular form of

CHAPTER 2. TERMINOLOGY AND BACKGROUND 14

the distance metric guarantees the uniqueness of y in this definition, for any given variable

ordering.

Proof Lety and y’ be two minterms in the onset of h such that d(x,y) = d(x,y’). Each
of the expressions d(x,y) and d(x,y’) can be interpreted as the binary representation of
some integer. Since the binary representation is unique, |z; — yi| = |z; — ¥/;|for 1 <i<n

andthusy=y’. =

Lemma 2.3.2 Let h(x,y) : B**™ — B, where n is the number of variables in x and m
is the number of variables in y, be dependent only on the x variables (Syh = h). For
every vertez x there is a vertez X’ such that m4(x,y) = (X', y) for any ordering of x and y

variables.

Proof Any vertex (x,y) must be mapped to the closest vertex (x',y’) to it according to
metric d such that h(x',y’) = 1. y' # y is not possible because (x',y) is closer to (x,y)
than (x,y’) and A(x',y)=1. »

Definition 2.3.4 Let f: B® — B and h : B* — B, with h # 0. The generalized cofactor
of f with respect to h, denoted by f4, is the function fr = f omy, i.e. fo(x)= f(mn(x)). If
f:B™ — B™, then f, : B® — B™ is the function whose components are the cofactors by h

of the components of f.

If ¢ is a cube the generalized cofactor f is equal to the usual cofactor of a Boolean

function, and is, in that case, independent of the variable ordering.

Lemma 2.83.3 Ifh is a cube (i.e. c=cyc3...c, where ¢; = {0,1,}), 7. is independent of

the variable ordering. More precisely, y = w.(x) satisfies

=0 if ;=0
=1 if ¢g=1

yi=2i if ci=+

and f. = f o m; is the usual cofactor of a Boolean function by a cube.

CHAPTER 2. TERMINOLOGY AND BACKGROUND 15

Proof Any minterm y’ in B® such that ¢(y’) = 1 is orthogonal to x in at least the same

variables as y. Thus y minimizes d(x,y) over c. »

In addition, the generalized cofactor preserves the following important properties
of cofactors:

Lemma 2.3.4 Letg: B™ — B and f : B* — B™. Then (go f)» = g o fn. In particular
the cofactor of a sum of functions is the sum of the cofactors, and the cofactor of an inverse

is the inverse of the cofactor (e.g. f = [f1,f2] and g = f1 + f2, then gr = fi, + fop)-

Proof (gof)h=(90f)omsand go fy=go(fom,).m

Lemma 2.3.5 Let f : B* x B®™ — B and h : B — B be two Boolean functions, with
h #0. Then:

Sx(f(x,¥)-h(x)) = Sx(fu(x,¥)) (22)

Proof For every vertex x € B™ if h(x) = 1, then fi(x,y) = f(x,y). This is from
the definition of generalized cofactor. If h(x) = 0, then f(x,y)h(x) = 0. Therefore,
f(x,¥)h(x) C fra(x,y) and Sx(f(x,¥)h(x)) C Sx(fu(x,y)). Conversely, if vertex y € B™
is such that Sx(fa(x,y)) = 1, there exists an x for which f,(x,y) =1 and therefore there
exists an x’ such that f(x’,y) =1 and h(x’) = 1. This is because fn(x,y) = fomp(x,y) and
h is dependent only on x variables; therefore for each vertex (x,y), fu(X,¥) = f(x',¥) and
h(x') = 1 from Lemma 2.3.2. This gives Sx(fn(%,¥)) C Sx(f(x,¥)h(x)) and the statement
of the Lemma follows. »

Lemma 2.8.8 Let f be a Boolean function, and h a non-null Boolean function. Then h is

contained in f if and only if fi is a tautology.

Proof Suppose that h is contained in f. Let x be an arbitrary minterm. y = mx(x)
implies h(y) = 1. Since h = f, fa(x) = f(y) = 1. Thus f is a tautology. Conversely,
suppose that f, is a tautology. Let x be such that A(x) = 1. Then m4(x) = x and
f(x) = f(xn(x)) = fu(x) = 1, which proves that h is contained in f. »

Lemma 2.38.7 If h is the characteristic function of a set A then fr(B™) = f(A); that is
the image of A by f is equal to the range of the cofactor fi.

CHAPTER 2. TERMINOLOGY AND BACKGROUND 16

function gcofactor(f, h) {
assert (h #0) ;
if (h = 1 or is_constant(f)) return f;
else if (hz, =0) return geofactor(fy,, ks,);
else if (h;, =0) return geofactor(fz, hz,);

else return z, geofactor(fz,, ks,) + %1 geofactor(fz, , bz,);

Figure 2.2: Generalized Cofactor

Proof =,(B") is equal to the onset of k, which is A. Thus fr(B") = f o mx(B™) = f(A).
a
The generalized cofactor can be computed very efficiently in a single bottom-up

traversal of the BDD representations of f and h by the algorithm given in Figure 2.2.

Theorem 2.3.8 f o m, = gcofactor(f,h).

Proof Let the variable ordering be z; > ... > z,,and m = z1...z, € B" be a particular
vertex. We compute the value of the function gcofactor(f, k) for the particular m (shown
as [geofactor(f,h)](m)) and show that it is equal to f o m4(m) irrespective of the choice
of m. Assume h and f are not constants. The proof in such cases is trivial.

If h(m) = 1, it follows from Figure 2.2 that

geofactor(f,h)(m) = zy1gcofactor(fz,,hz,)(m)

because h;, # 0. We are not interested in Zygcofactor(fz,,hz,) because it gives 0 for the

vertex m. In the ith step, if neither f,. z; nor ks, - is a constant,
1 ...zigcofactor(fz,..oi hay..z;)(M) = T1 - . . Tisr9cofactor(fz,..zip15 Bay.ziyy)(M)

because hyz, .. r;,, # 0. Eventually either Jz,..z; becomes constant or hz,..z; = 1. In either
case, the returned function has the term z;...2;fz,.. .z; Which is equal to z;...z;f. Asa
result, [gcofactor(f, h)|(m) = z;...z;f(m) = f(m). The same reasoning holds for any m
such that A(m) = 1; therefore, f o m,(m) = [geofactor(f, h))(m), if h(m) = 1.

CHAPTER 2. TERMINOLOGY AND BACKGROUND 17

If h(m) = 0, the computation is as before as long as hz,..z;,_, # 0. If by . 5, =0,
it follows from Figure 2.2 that

z1...zi—19cofactor(fr,..z;_yshzy..ziy (M) = 21.. -Ti-19cofactor(fz,..3;, hsy. 3)(Mm).

Eventually, either f,, ..i..z; becomes constant or Ay, .. Z..z; = 1 in the jth iteration. In ei-
ther case, the part of the returned function which is of interest is z; .. .zi_1Zi41 .. .2; Jzy.. iz
fec=z...2i_1%i}1...7;, then the returned expression can be written as cf.. The value
of [gcofactor(f,h)](m) = [21...Zi1Ti41 - - -2 fz,..5;...5;]m Which is Jor.Fizjzigran WE
prove that the closest vertex m’ to m such that A(m’) = 1is in the cube ¢ = 2,;...7;...z;.
Because h;,. r;,_, # 0, the closest vertex m’ to m (distance is defined by Definition 2.3.3)
such that A(m’) = 1 must have literals z,,...,z;_;. Because h;,. -, = 0, the closest ver-
tex m’ to m such that h(m’) = 1 must have literals z,,...,2;-1,%;. This same reasoning
holds for any other literal in ¢, therefore m’ must have all the literals in ¢. If ¢ = 1,
Zy...%i...ZjTj41- ..y is the closest vertex to m and f o mp(m) = [geofactor(f,h)}(m). If
¢ # 1, f. must be constant to terminate the algorithm in Figure 2.2. f, has the same value
for all the vertices in ¢ and again f o mx(m) = [geofactor(f, h)](m). This same reasoning
holds for any m such that hA(m) =0. =

The next example shows that the BDD size of f, is not always smaller than the
BDD size of f.
Example:
Let f = T2 + 23, h = 21 + 22, and the ordering used for computing the generalized cofactor
be 21 > z2 > z3. gcofactor(f,h) = z1gcofactor(T; + z3,1) + Trgcofactor(Zz + z3,22).
This gives fr = gcofactor(f,h) = 21Tz + z3. The BDD for f, with the given ordering has
3 nodes while the BDD for f has 2 nodes.

2.3.2 The Transition Relation Method

Definition 2.3.5 Let f : B* — B™ be a Boolean function. The transition relation associ-
ated with f, F : B® x B™ — B, is defined as F(x,y) = {(x,y) € B x B™ | y = f(x)}.
FEquivalently, in terms of Boolean operations:
Fix,y) =][I w8&fix) (2.3)
1<i<m
We can use F to obtain the image by f of a subset A of B*, by computing the
projection on B™ of the set F N (A x B™). In terms of BDD operations, this is achieved

CHAPTER 2. TERMINOLOGY AND BACKGROUND : 18

by a Boolean AND and a smooth. The smoothing and the Boolean and can be done in one

pass on the BDD’s to further reduce the need for intermediate storage [15}:

f(A)y) = Sx(F(x,y)- A(x)) (24)

The inverse image by f of a subset A of B™ can be computed as easily:

A = Sy(F(x,y)- A(y)) (2.5)

The transition relation method allows both image and inverse image computation for a
function f. However, computing the transition relation may require too much memory to
be feasible in some examples. We do not need to compute the transition relation explicitly
to perform an image computation as in equation 2.4. Using propositions 2.3.4 and 2.3.5,

we can rewrite equation 2.4 as follows:

Sx(F(x,y)- Ax)) = Sx([I 4®fiaxx)
1<i<m

One efficient way to compute the product is to decompose the Boolean AND of the m
functions (gi(x,y) = v:® f; A(x)) into a balanced binary tree of Boolean AND’s. Moreover,
after computing every binary AND p of two partial products p; and p, we can smooth
the x variables that appear in p and in no other partial product. As for equation 2.4, the

smoothing and the AND computations can be done in one pass on the BDD’s to reduce

storage requirements.

2.3.3 The Recursive Image Computation Method

Coudert et al. [21, 22] introduced an alternate procedure to compute the image
of a set by a Boolean function that does not require building the BDD for the transition
relation. This procedure relies on lemma 2.3.7 to reduce the image computation to a range
computation, and proceeds recursively by cofactoring by a variable of the input space or
the output space. We use range(f) to denote the range of a multiple output function
f = [f1,--., fm]. There are two techniques for doing this range computation. The first is

input cofactoring where output functions are cofactored with respect to inputs only.

range(f)(y) = range([f1,..., fmls)+ range([fiy- .., fmlzr)

CHAPTER 2. TERMINOLOGY AND BACKGROUND 19

The second technique is output cofactoring where output functions are cofactored with

respect to other functions.

range(f)(y)

range([fla f27 seey fm]ﬁ) + Tange([fh f2’ ceey fm]Tl')
= range((1, f2,..., fmls,) + range([0, f2, .. ., f"‘]f_;)
= yirange((fa, .., fmls) + Torange((fay - fnl)

If a particular component f; becomes constant, the corresponding y; in positive or comple-
ment form depending on the value of f; replaces f; in the range computation. The image
of f for a set 'A(x) is obtained by first finding f4(x) and then applying one of the input or
output cofactoring techniques.

One can also apply a combination of input and output cofactoring. The ordering
in which cofactoring is done is very important. The procedure can be sped up dramatically
by caching intermediate range computations, and detecting the case where, at any step in
the recursion, the functions [f1,..., fi] can be grouped into two or more sets with disjoint
support. In this case, the range computation can proceed independently on each group with
disjoint support. This reduces the worst case complexity from 2™ to 2% + ...+ 2% where
(s1,...,8k) are the sizes of the groups with disjoint support (s; + ...+ s = m).
Example:

We find the range of the function f = [fi,..., fs] using the transition relation method,

input cofactoring method, and output cofactoring method.

h = zz73

f2 = Ti4z2+23
f3 = T1%:%3

fa = 475

fs = Tazs

The characteristic function for f is
F(x,y) = (11®0z12223)(¥28(21 + 22 + 23))(¥3DT1%2%3)(¥4D24%5)(¥sDZ425)-
Using the transition relation method the range of f is

f(y) = SxF(x,y)

CHAPTER 2. TERMINOLOGY AND BACKGROUND 20

= Sriraes (NB212223)(920(21 + 22 + 23))(¥3DT172T3) Szyzs (Y4DZ4T5)(ysDZ47s)
= (%2¥3 + 117293)(F4 + ¥s)-
We use the fact that the components of f can be separated into groups of disjoint support
and Lemma 2.2.1 to speed up the range computation.
The range can be also computed by cofactoring output functions with respect to
each input. The components {fi, f2, f3} are grouped together because they are dependent on
{z1,%2,z3} and the components {f4, f5} are grouped together because they are dependent

on {z4,s}.

range([f1, f2, f3, fa, f5]) = range([f1, f2, f3]) range([fs, f5])

We use the ordering z; > = > z3 to find

range([f1, f2, f3]) = range([fiz,; faz,» f3z,]) + range([fiz,, foz, f33,])

= range([z2z3,1,0]) + range([0, 22 + z3,%F2T3))

= yParange([z223)) + Fyrange([z2 + 23,F273))

= Y2¥s + Yi(range([z2 + 23, 72%3]s,) + range([z2 + 73,72%3),))

= Y293 + Tirange([1,0]) + Fyrange([z3, Ts])

= Y203 + Yrrange([z3, T3])

= Y293 + Y1(range([z3, Ts]z,) + range([z3, Tslz,)

= Y273 + Fyrange([1,0]) + F,range([0, 1])

= Y2¥3 + V1729s.

The ordering z4 > z5 is used to find
range([fs, f5]) = range([z4Fs,%475))

= range([z4T5,Tazs)s,) + range([24Fs,ZaTs)z,)
= range([Ts,0]) + range([0, z5])
= U5+

Finally, we show how this can be done using output cofactoring. The ordering

Ty > Tz > T3 > T4 > T5 is used for the generalized cofactor. As before

range([f1, f2, f3, fa, f5]) = range([fi, f2, f3]) range({fs, f5])

CHAPTER 2. TERMINOLOGY AND BACKGROUND 21

For output cofactoring, we use f; > fo > f3 to find

range([f1, f2, f3]) range((fis,, f21,, fa]) + range([fiz,, 23, f57,1)
"~ = range([1,1,0]) + range([0, z1 + z2 + 23,Z1T273))

= YU+ Hirange([z1 + 72 + 23, 717:73))

= %Y2¥3 + Virange([1,0]) + Frrange([0, 1])

= ¥2U3+ 71%:¥3

Here we use gcofactor(zy + z2 + z3,%1 + T2 + T3) = 21 + 2 + 23, gcofactor(Z1%2%3, %1 +
T2 + T3) = F1%2%3, and gcofactor(T1Z2T3, 71 + 22 + z3) = 0 to find range[fi, fo, f3]. Also

using f4 > f5 and gcofactor(Z425,T4 + z5) = T4z5, We get

range([fs, f5]) = range((fay,, f51,]) + range((fsz,, f53,])
= range([1,0]) + range([0,Z4z5])
= Fat+Ys

One can mix all three methods to obtain the most efficient implementation for image com-
putation. The choice of one of these techniques over the others depends on particular
application. For FSM traversal, the transition relation method in [78] and the input co-
factoring method in [19] gave comparable results. Improvements to the choice of variable
for input cofactoring were given in [41]. The output cofactoring is preferred for computing
local don’t cares as discussed later, because the number of output variables is usually much

less than input variables.

2.4 Observability Relations

Observability relations or characteristic functions were introduced by Cerny [17].
Later the notion of a general Boolean relation [12] was discussed and derived for a hierarchy

of networks.

Definition 2.4.1 A Boolean relation is a one-to-many multi-output Boolean mapping R :
B* —s B!, In general R(x) C B' is a set.

CHAPTER 2. TERMINOLOGY AND BACKGROUND 22

Definition 2.4.1 A Boolean relation is well-defined if there ezists at least one minterm
z € B' for every x € B® such that z € R(x).

A general way to specify a combinational circuit NV is to use a Boolean relation.

This relation gives all the output combinations possible for a particular input.

Definition 2.4.2 An observability relation [17], O : B**' — B is the characteristic func-
tion of the Boolean relation R(x) which describes the input-output behavior of circuit. The
observability relation is defined as O(x,z) = {(x,z)|x € B*,z € B',z € R(x)}.

Example:
Let 2y = fi = 232 and 23 = f = 27 + 22 be the output functions of a Boolean network.

If the network is completely specified, its observability relation is
O(X, Z) = 21222122 + 21T22122 + T122Z122 + T1T22122.

Notice that a particular output combination is generated for each input combination. There
is at least one output combination for each input combination; therefore, O(x,z) is well

defined. If the outputs can be either 2)2; or Z;Z; for z;z2, the observability relation is
O(x,2) = z122(2122 + Z1%32) + 21F2Z122 + T122Z122 + F1T2%1%2.
If the output z; can be either 0 or 1 for the input z,2,, the observability relation is
O(x,2) = 212222 + 21527122 + F122%122 + T1%221 %2,

The term z,z22; implies that z; can be either 1 or 0 for input z;z,. We will show later

that z1z; is actually the external don’t set for output z;.

23

Chapter 3

Don’t Care Conditions for

Single-Output Nodes

The observability relation O(x,z) (as defined by Cerny [17]) or Boolean relation
(discussed in [12]) provides a description of all the flexibility one has in implementing a
Boolean network A. In this chapter, we propose to represent .and use this flexibility in
a logic synthésis system by adding a single output node to the Boolean network N. The
node function for the new node is O(x,z). The newly constructed network N’ (called the
observability network) has only one output and computes 1 for every input x. We show that
the observability don’t cares (ODC’s) for a node g; in N’ provide the maximum flexibility
for implementing y; and subsume the flexibility obtained for y; in A even with don’t cares
provided at each output. This gives rise to new methods for computing complete ODC’s
for N and hence for V.

In practice, it is not always possible to compute full ODC’s for all the nodes in
the network. We consider subsets of ODC’s which can be computed efficiently. Compatible
ODC subsets have the added advantage that functions at the nodes of the network can be
optimized using their ODC subsets simultaneously. We develop techniques for computing

compatible ODC’s for complex nodes of a multi-level network.

3.1 Introduction

An important part of logic synthesis is the node simplification phase where the

local function at each node in a Boolean network is minimized using a two-level minimizer

CHAPTER 3. DON’T CARE CONDITIONS FOR SINGLE-OUTPUT NODES 24

(such as ESPRESSO [11]) and using don’t cares derived from the environment of the node.
These don’t cares arise from various sources; external don’t cares (EDC), satisfiability
don’t cares (SDC), and observability don’t cares (ODC). It was shown in [6] that if a node
is minimized using all three types of don’t cares, then each connection to and inside that
node is irredundant (and hence there exists a test for both stuck-at-1 and stuck-at-0 for
each connection). In this sense the don’t cares so defined are complete.

This theory is explicitly for the case where each node in the Boolean network is a
single output node. However, one can view a Boolean network itself as a single node with
multiple-outputs, for which a éomplete don’t care theory is missing. This lack becomes
especially apparent when attempting to specify and use external don’t cares for combina-
tional logic minimization. In practice, each separate output of a network is given an external
don’t care set di(x). It has been observed that these must be independent or compatible
[59]. But such external don’t cares can never be complete since they cannot provide all the
flexibility allowed in simplifying a circuit [12). To circumvent this, Boolean relations were
defined and techniques for finding minimal sum-of-products representations implementing
a Boolean relation were given. Previously, Cerny [17] had defined the observability relation
for a circuit. These ideas form the basis for a complete theory of don’t cares for multiple-
output nodes of logic networks. This chapter integrates these ideas and provides techniques
for computing the full flexibility allowed for minimizing a logic network by expanding on
the work presented in [68].

We define for a given Boolean network N, an observability network A, by adding
a single node whose logic function is the observability relation O(x,z) for /. We then
show that the regular treatment of ODC’s for A’ includes all the flexibility allowed by the
Boolean relation.

The idea of having an extra node on top of network A to represent its Boolean
relation was originally suggested in [33]. The combined network was called the intercon-
nection network. An initial network N compatible with the Boolean relation is derived and
minimized using ATPG redundancy removal techniques. Later, in [31] it was proposed to
put the characteristic function (observability relation) of the Boolean relation as an extra
network on top of the Boolean network. The MSPF’s [59] are then computed from this new
interconnected network for each intermediate node of A in terms of primary inputs. These
are used to optimize each node using the techniques of [66]. It was also mentioned that this

gives the maximum flexibility at each node.

CHAPTER 3. DON’T CARE CONDITIONS FOR SINGLE-OUTPUT NODES 25

The approach presented in this chapter generalizes these notions in the sense that
the observability relation is defined for all networks, regardless of whether Boolean relations,
external don’t cares, or completely specified functions are considered. Unlike [31] where
MSPF’s are considered in terms of primary inputs, we compute ODC’s in terms of both
intermediate variables and primary inputs. The fact that this leads to more flexibility was
used in [67] and also commented on in [24]. Here we make these notions more precise. Using
this we give an algorithm for incrementally computing complete ODC’s in topological order
while visiting each node only once. The algorithm does not require representing ODC’s in
vector form nor associating variables to each edge as suggested in [23].

The computation of full ODC’s at each node of a multi-level network is expensive
and impractical for large circuits. In practice, subsets of ODC are computed. We present
techniques for computing compatible observability don’t care subsets at each node of the
network. These are computed for complex nodes and can be used for the optimization of

each node independent of sets computed for other nodes.

3.2 Don’t Cares in a Boolean Network

The don’t care conditions in a Boolean network are divided into three groups,
satisfiability don’t cares (SDC’s) and observability don’t cares (ODC’s) which are related
to the structure of the network, and external don’t cares (EDC’s) which are usually supplied
by the user.

3.2.1 Satisfiability Don’t Cares

A multi-level network A with n primary inputs and m intermediate nodes is given.

The n primary inputs result in 2" input combinations or minterms in the space B™.

Definition 3.2.1 If y; is the variable at an intermediate node and f; its logic function,
then y; = f;; therefore, we don’t care if y; # f; (i.e. yi ® f; is don’t care). The expression
SDC =Y (v ® f;) is called the satisfiability don’t care set.

Simulation of A" with a particular input minterm forces the value of each intermediate node
to either 0 or 1. Some combination of values on the nodes are possible and some are not
possible. The SDC of the network contains all the impossible combinations in B"*™. The

number of these combinations is exactly 2m+" — 2%,

CHAPTER 3. DON’T CARE CONDITIONS FOR SINGLE-OUTPUT NODES 26

When we simplify an intermediate node y; of a multi-level Boolean network, we
usually use a subset of the SDC derived from a subset of the nodes that can be substituted
with “high probability” into the node being optimized. A two-level minimizer effectively
substitutes some set of variables, corresponding to the nodes of the network, into f;.

Example:

Let the following nodes be the intermediate nodes of a multi-level network where a, b, ¢, d, ¢, f

are primary inputs.

t = sk + 3abed + 3abed

k = ab + ab
s =ef+éf
r =cd

If we simplify ¢ using the SDC’s,

(k® (ab+ad))+ (s ® (ef + &) + (v @ (cd))

we obtain ¢ = sk + 3kr. Thus, in addition to s and k, r has also been substituted into
the function representing ¢t. The Boolean function at ¢ as a function of the primary input
variables (called its global function) has not changed since only the satisfiability don’t cares
were used for the simplification [53]; equivalently, ¢ has not changed in B™.

3.2.2 Observability Don’t Cares

Given a Boolean network A, there are global functions associated with each of
the intermediate nodes of the network which give a specified value for each input minterm.
At times, it is possible to change the global function at a node y, without observing any
change at any of the outputs of the network. The observability don’t cares computed for

Yo give all such conditions.

Definition 3.2.2 The observability don’t cares (ODC’s) at each intermediate node y, of a
multi-level network are conditions under which y, can be either 1 or 0 while the functions
generated at each primary output remain unchanged. If z = (z1,...,2), then the complete
ODC at node y, is

O0DC, = {m € B"|zy,(m) = zg,(m)}.

Thus ODCo =T}, §&.

CHAPTER 3. DON’T CARE CONDITIONS FOR SINGLE-OUTPUT NODES 27

Z,

Z,
3’1* Y2 Ya

8

{
X2 Xy Xy Xo Xy Xy

Figure 3.1: Example

The ODC of an intermediate node y, need not be expressed in terms of primary
inputs. It can also be expressed in terms of intermediate nodes of the network.
Example:
As shown in Figure 3.1, ODC; = y¥3 + ¥;¥J3. This means that whenever both y; and
y3 are 1 or both are 0, the value of y; has no effect at any of the outputs. ODC; can
be reexpressed in terms of the inputs z;,z2, and z3. The ability to express the ODC’s
in terms of various sets of variables is important to node simplification. Once we have
ODC; = 1% + 2172 + T3, we can set y; (initially y, = %;7,) to 0.

Another interesting fact is that the ODC at a node expressed in terms of interme-
diate variables can intersect the SDC of the network. The cube y, 923 is in ODC; and also
in SDC of the network in Figure 3.1 because y; and y; cannot be equal to 1 at the same

time under any input combination.

CHAPTER 3. DON’T CARE CONDITIONS FOR SINGLE-OUTPUT NODES 28

3.2.3 External Don’t Cares

In general, we don’t care about the value of every single output for every single

input combination.

Definition 3.2.3 The ezternal don’t care set for each output z; of the network N is all the

input combinations for which the value of z; is not important.

Definition 3.2.4 The ezternal don’t care sets for the outputs of the network are compatible
if each output function can be changed as allowed by its external don’t care set irrespective

of the changes made to other outputs as allowed by their external don’t care sets.

The EDC’s and ODC’s can be used to find flexibilities in implementing each inter-
mediate node of a multi-level network. There can be conditions that are not captured by
EDC’s and ODC’s alone, but this combination is what is used in practice most often and

is very effective.

3.2.4 Terminology

We represent the observability plus external don’t care set at node y; by d;. If this
is a global function, it is denoted by df. If d; is a local function in terms of the fanins of
the node, it is denoted by d}. If d; is a compatible don’t care subset (defined later), it is
denoted by df; if it is a maximal subset, it is denoted by d™. If d; is computed with respect
to a particular output 2, it is denoted by d;y. The don’t care set for an edge connecting
nodes y; and y; is denoted by d;; 1. For example, the global, compatible don’t care for the
edge (3, j) with respect to output k is d;7,,. If it is clear from the context what kind of don’t
care we are referring to, some superscripts or subscripts may be deleted.

3.3 Observability Network

The observability relation as defined in 2.4 can express the behavior of networks
that are completely specified, those with external don’t cares, and those with a given

Boolean relation describing the input-output behavior of the circuit.

1The function at an edge is the same as the function of its fanin node. The don’t care set at an edge is
all the conditions under which the value of that edge can be either 1 or 0.

CHAPTER 3. DON’T CARE CONDITIONS FOR SINGLE-OUTPUT NODES 29

If the network N is completely specified and g,...,g; are the global functions of
N, expressing each primary output in terms of primary inputs, the observability relation of
Nis
O(x,2) = (21091)(22092) - . . (21D g1).

External don’t cares are another special case of Boolean relations; they are specified for
each output and are input combinations under which that output can have any value. If
the external don’t cares d,,...,d;, are given in terms of primary inputs, the observability
relation of AV is
l —
O(x,2) = [[._, (d: + z0g:)-

In the most general case, the user gives an observability relation which expresses the input-
output behavior of the network.
To represent and use the flexibility supplied by the observability relation in a

synthesis system we propose the following.

Definition 3.3.1 The observability network N of N is derived by adding one additional
node O to N. The logic function for this node is the observability relation O(x,z) of N.

N has only one output, namely O, and O has n + | inputs, namely all inputs and outputs

of N.

N’ has many interesting properties that can be used for optimization and verifi-
cation of V. N with global output functions g;,...,g; is compatible with its observability
relation if O(x, g(x)) = 1 because each input minterm x produces an output minterm g(x)
that is allowed by the observability relation. If A is compatible, the output value of A" is
always 1 no matter what the input is. Thus, A is the tautology. Logic synthesis techniques
can be used to optimize N. The optimized network is valid if and only if the output of A"
is always 1 2.

The observability relation allows defining external don’t cares not just in terms of
primary inputs, but also primary outputs. It turns out that external don’t cares defined

this way (using output variables) need not be compatible (see section 3.5).

Lemma 3.3.1 Let y; be any node in N (y; is also in N') and O the output of N'. Then,
g% = 0,,05,.

2Thus one technique for verifying a combinational circuit A is to build the BDD for its observability
network A in terms of the primary inputs and check whether it is the tautology.

CHAPTER 3. DON’T CARE CONDITIONS FOR SINGLE-OUTPUT NODES 30

Proof Because N’ is a tautology, and for any input combination either y; = 1 or y; = 0,
then Oy, =1 or Oy, = 1. As a result, ‘@'y,.ﬁg.. =0. -3—70? = 0y, 0y, +@y,.?)-g_. = 0y,05,.

Theorem 3.3.2 Let O(x,z) be an observability relation and N implement compatible global
functions g(x), i.e. O(x,g(x)) = 1. Let y; be any node in N with global function f} and
let ODC; be the complete ODC for node i in N'. Then network N, obtained by replacing
f? by f2, is compatible if and only if ffODC; < f? < ff + 0DC;.

Proof If the change in node y; for some particular input x is not observable in A, then
because of Lemma 3.3.1 the value of the output function O must be 1 before and after the
change. Therefore if any change occurs at the outputs of NV, it is allowed by the observability
relation meaning the new network is compatible. On the other hand, if the change at node
y; for some particular input x is observable at the output of A, then the output of the

observability network for x must be 0 which means the new network is not compatible. »

Theorem 3.3.3 If there are no Boolean relations or external don’t cares, the complete
ODC computed for y; from N is equal to that computed from N'.

Proof If the change in node y; for some particular input x is not observable in N, it will
not be observable in A, because the input and the output of A remain the same after
the change, and the characteristic function O evaluates to 1 before and after the change.
Therefore ODC; in N C ODC; in N'. On the other hand, if the change in y; for some
particular input x is not observable in A, then, since there are no Boolean relations or
external don’t cares, for each input minterm x, there is only one output minterm z such

that O(x,z) = 1. As a result, a change not observable in A is also not observable in NV. =

3.4 Computing ODC’s

In [23] a method is described for computing complete ODC’s at every node of a
multi-level network. The ODC at a node is computed recursively in terms of the ODC’s at
all its fanout edges. The described method uses ODC’s in vector form, where each element is
the ODC with respect to a single primary output. Each such element is computed separately
at each node. We describe another method for computing complete ODC’s, and drive the

result in [23] using this new formulation. We show that the ODC’s can be computed without

CHAPTER 3. DON’T CARE CONDITIONS FOR SINGLE-OUTPUT NODES 31

using the vector form and the edge ODC’s as proposed in [23] by using the observability
relation.

We express the ODC of an intermediate node in terms of variables of some sepa-

rating set of nodes in the network.

Definition 3.4.1 A separating set of nodes is a minimal set of nodes which separates all

primary outputs from primary inputs if all the fanout edges of the nodes in the set are

removed.

Let Y = (v1,%2,...,p) be a separating set of nodes in network N and y, an intermediate
node in N as shown in Figure 3.3. A fundamental result used throughout this section is the
ability to rebuild a function f if the observability don’t cares with respect to f are known

for each variable corresponding to a node in the separating set.

Theorem 3.4.1 Given g,—gg,.. .,%, the vertices in BP can be divided into two sets,
one the offset and the other the onset of f.

To prove this, we give an iterative procedure. Let F° = 1. At the jth step do,

. . i 0 . 5
F) = (y; F? T4+ ‘ijJ 1)(af.)w+:---yp + P l(af.)w-n---vp' (3.1)
Yj Y;

After the pth iteration we have a set F'+. This operation is very similar to integration of

continuous functions where a function is built from its partial derivatives.

Lemma 3.4.2 If fy,.,, =1 then f = F*, otherwise f = F*.

Proof Assume f,, ., = 1. The other case is symmetrical. Then F® = f,, ,.. By

induction, assume Fi-l = Jy;..yp- Since (3%),,1. s1evp = (Fu; T)vinwp + (Tw'fy_j)yj .
. —=i-1 . : . - -1

and Fi71f Yiedp = ’ Sujoup =0, (3.1) gives F? = y; F3~1 f, Tjvi+1--Yp +3;F Soivinwe+

Fi7 f5 yis1.yp- The first and third terms simplify to y;F9~? = y; f,. .y, The second and

third terms simplify to ¥; fg,.yj 419+ Lherefore

Fo= 4P Y TE Figinrne + 7 i
= y;iF 14 T’jfi,'w-i-x wyp + F i1 V5Y5+1---¥p
= yF 4 Vi fv,vi41-0p

= Yifyjmp +7; f?,'vjn wUp

- fv,'.“ Yp*

CHAPTER 3. DON’T CARE CONDITIONS FOR SINGLE-OUTPUT NODES 32

@® Onset
@) Offset

2@,_.,.

Figure 3.2: Example
Thus FP=Ft = f. a

Corollary 3.4.3 Given (aajm)y,,__yp,(_aa—z)ysmyp,. . .,?—E, the vertices in BP can be divided

into two sets, the offset and the onset of f.

Corollary 3.4.3 implies that less information is needed to rebuild the function f
than g, ceey %.
Example:
Figure 3.2 shows the onset and the offset for a function f = a+ bc+be. ?—3£ = be+be, g = a,
and g = a. We start with the vertex abc and find all the other vertices that are in the
same set as abc. We know that abc is in the onset of f. Because f,3c = 1, F't is the onset
of f. The starting point in the iteration is F® = f,;. = 1. The iteration is done using the
order y; = @,y2 = b, and y3 = ¢ in formula (3.1). abc € gja, thus @bc and abc must be in the
same set giving F! = f,. = 1. The fact that @bc ¢ g and abe € %—{ gives F2 = f,=a+b,
and finally F2 = c(a + b) + ¢(a + b)a + &(a@b)@ which results in F+ = f = a + be + be.

3.4.1 A New Approach

We show that by using (3.1) the ODC of a node can be computed if the ODC of

each of its fanout nodes is known. Let node y, have fanouts y;, ¥2, . . ., ¥ as shown in Figure

CHAPTER 3. DON'T CARE CONDITIONS FOR SINGLE-OUTPUT NODES 33

Figure 3.3: A Separating Set of Nodes

3.3 3. The conditions under which #,,...y, are not observable at f, i.e., —gyfl—, -a%{;, ceey '8%%’

are given in terms of the separating set variables y;,...yp. Let O° =1 and

. 19 BT
O = (y;,¢& 14 ijJ l)(a_f;,)yjn--»yr + & 1(%)%“---%' (3.2)
Yj Y;

Theorem 3.4.4 Let Ot = O with the fanout variables y,,...,y, of yo eliminated by
substituting y; = f;. Then ODC, = %%.

Proof We prove this by introducing a set of two-partitions in B", one for each minterm
in BP~" as follows. For each m; € BP~", compute (?;E)mj, (?%)mj, cen (g)mj. By using
(3.1), and (%e)mj, (gv%)m,’°"’ (gyé)m,-’ partition B" into P; = (FJ'*','F:') Find such
partitions for all m; € BP~".

By Theorem 3.4.1, the onset of fy; is one set of partition P; and the offset is the
other set. Without loss of generality, assume f is such that f = mFf + moFt + ...+
mop—-F3f,_,. Consequently, T = miFy + myFy + ...+ Mop—rFap—r. Now eliminate the
fanout variables yy, ..., ¥y, of yo, by replacing y; = f;. Thus all dependencies on y, are given
explicitly and

of - -+
0DC° = Ty‘, = Cyof + C!lof = cﬂo Z(mJF;+) + cy, E(mJFJ)' (3‘3)
3For simplicity, the fanout nodes of yo ,y1,---,9yr, are assumed to be the first r nodes in a separating set

Y.

CHAPTER 3. DON’T CARE CONDITIONS FOR SINGLE-OUTPUT NODES

F} is computed as follows using (3.1):

F} = (nF TG e + ,(a’ -

= (WO + RO af e + OG5 sl = (O,

Therefore, by induction it follows easily that

r— AT a r— af
B = F=lwo 450 L yor 2, < 04,

By (3.3)
ODCO = Cyo Z(mJO;:J) +cyo Z(mJ-@-:l)
= (XL m)C. 0t + (3 m;)Cc,,0F
00+
= C,0%+(C, 0 = :
Yo + Yo ayo
| |
4
(g
abt g
Figure 3.4: Example
Example:

In the example shown in Figure 3.4, the ODC at node e can be computed using -g% =a+b+

and _‘g% =@+b+¢. To find ODC., let 31 = c and y; = d in (3.2).

N=1 Ol=a+b+c O)=a+b+cd=0}

34

aul

CHAPTER 3. DON’T CARE CONDITIONS FOR SINGLE-OUTPUT NODES 35

Substituting for ¢ = ef and d = eg we get

00C. = 2% _c, @+ efe) +Culable+ T +7) =3 +E4T 47,

which can be easily verified to be correct.

3.4.2 Deriving Damiani’s Formula

The first practical formulation for computing full ODC’s was given by Damiani
in [23]. The complete ODC for a node is computed using the ODC’s of its fanout edges
4. Unlike the usual practice where a variable is assigned to each node in the network, a
variable is assigned to each edge of the network. Here we show that Damiani’s formula
for computing ODC’s can be derived from 3.2 by assigning variables to each edge of the
network. In his computation, it is required to compute ODC’s with respect to each output
separately. A vector ODC is defined at each node. The number of elements in this ODC
vector are equal to the number of outputs and ith component is ODC at that node with
respect to ith output. If an output is not in the transitive fanout set of the node, the ODC
of the node with respect to that output is set equal to 1. If the vector ODC of a node is
known, the vector ODC’s of all its fanin edges can be easily computed °. Therefore vector
ODC’s of the nodes in the network can be computed in topological order starting from the
primary outputs.

Theorem 3.4.56 (Damiani [23]) If y1,...,y, are the fanout edges of y, and the vector
ODC’s at these edges, (g—:,f), ,(gf;f), =1,...,l, are known, then the ODC at node y, is
given by

!
0DC, = H_gz_". (3.4)
k=1 9%
where
-z_ azk % 3zk '
— =(3- (- B(7— (3.5)
0’ .y 83’ s ur Y '3y o

*The ODC of a fanout edge is all the conditions under which the value of the function at that edge, which
equals the function at its fanin node, can be set to either 0 or 1 and this change is not observable at any of
the outputs.

5We add the inverse of Boolean difference of the fanction at the node with respect to variable of the edge
to each component of vector ODC of the node to get vector ODC for edge.

CHAPTER 3. DON’T CARE CONDITIONS FOR SINGLE-OUTPUT NODES 36

Proof Because y,...,y, are the fanout edges of y,, then yo = 91... = y,. Compute
O* = O using (3.2) and (%), ooy (%), and eliminate variables y, ..., y, by substituting
h=¥Y2=...Y = Y in Or. By Theorem 3.4.4 (g%‘:) = 0;@0;'—0. If y1,...,9 had not
been eliminated, this would be equivalent to

() 0+!ll !lr®0 Y1V

Note from (3.2) Oj, = 09-1. Thus O}, , =1 and therefore (g—:—,_f) = Oty,..3,. Cofactoring
both sides of (3.2) w1th respect to 7, ..., we get

_ Oz
(.5, = (05,5, 8(5

)' Yjm1Yit1e-Yr
Substituting for (O7~1), 5. we get

3zk 9z

(OJ)yl Yr —(01—2 Y1 !Ir®()31 !I,-:!IJ yr—(ay)51 Yjm1Vjtl e Yr

Therefore, by induction

Oz Oz

(55.) = (O3, = Bl

)‘ Yj1VitteYre

3.4.3 Using the Observability Relation

Theorem 3.3.2 shows that the ODC’s for the nodes of /' can be computed from
N'. This gives rise to a new procedure for computing complete ODC’s in a network in
topological order. This is summarized below.

N’ has only one primary output; therefore, vector ODC’s are not needed 6. The
ODC’s at each primary output z; of N is ODC,, = az If no output flexibility exists in

implementing the network, the observability relation is

O(x,2) = (21891)(2:092) - . . (21D 91)
where g is the global function at the output z;. The observability don’t care at the output

2k is

ODC,, =(z21®q)+...+ (2k-1 ® gr—1) + (Zk41 B Gr41) + ... + (21 ® @1).

8We can also apply Damiani’s technique on the observability network A directly and since there is only
one output the technique also results in scalar ODC’s.

CHAPTER 3. DON’T CARE CONDITIONS FOR SINGLE-OUTPUT NODES 37

New ODC Computation:

¢ Build the observability network N".

e Order the nodes in the network in topological order from outputs. A node y, is

processed if the ODC’s at its fanout nodes (y,...,¥,) are known.
¢ For each node y, with fanout nodes (y,...,%:):

— Build the partition for node y, using the ODC’s of the fanout nodes and (3.2)
to get OF.

— Replace variables 31, ...,y with their local functions fi,...f, in OF.

— Compute ODC, = %%3— =Cy,0% +Cy, 0, .

ODC,, is a subset of the SDC for the whole network. Although each term (2;®g;) evaluates
to 0, it contains useful information about the structure of the network; in effect this is the
same information held by the vector ODC’s of Damiani for network A. All the components
of this vector ODC are equal to 1 except for the kth component where it is 0.
Example:
To illustrate this process, we compute ODC’s using the observability network for the ex-
ample given in [23] using our method (denoted by ODC), Damiani’s method applied to
observability network (denoted by SODC), and Damiani’s method in vector form (denoted
by VODC). This example is shown in Figure 3.5. A variable is associated with each edge
as in [23].

The output functions and their ODC’s are

91 =124+ (22 © z3)

g2 =21+ 24+ (220 73)
O(z,2) = (91921)(92022)
ODC,, =S50DC,, =2 ® g
ODC,, =SODC, = ®an

VOoDC,, = ((1’)

CHAPTER 3. DON’T CARE CONDITIONS FOR SINGLE-OUTPUT NODES

38
x4 x3 x2 x1
Figure 3.5: Example
1
VODsz = () .
0
First we compute ODC’s at nodes u; and uz:
O(z,u2,u3) = (g1®(uzu3))(g20(u2 + u3))
0oDC,, = u3g, + Usg1
oDC,, = u2§ + U261
SODCy, = (SODCy,)5,&(SODCy)ys = (y3+ 51)®(F4 +72) = y3g2 + Ya91
SODCy, = (SODCy,)5, 8(SODCy,)y, = (y5 + 91)0(F6 + 72) = Y592 + Y1
VODC,, =%
Y3
voDC,, =%
Ys

We use the fact that §,g9; = 0,93 = y4, and y5 = ye to obtain the above result.

S0DC,, = z1 + (24 + ¥2)72 + TaTon

CHAPTER 3. DON’T CARE CONDITIONS FOR SINGLE-OUTPUT NODES 39

SoDC,, = 24+ (21 + 01)72 + T1Ha
vonc,, = U224+ 21

+za+
vopc,, = H1%1 + 24

nt+z+24

Substituting for ¢; and g2, we find

O(z,u1) = (10(z124 + 11))(928(21 + 24 + 1))

ODCu, =T124
SODC,, =(0DC,,);,B(ODCy)y = 7174
V.ODC“1 = 174 = O.DC'ul = (321 + 34)9)13)4 = Z124.
T+ 24

Notice that in applying the procedure outlined above we did not have to rebuild any of
O functions because these were already available to us after collapsing. While computing
the ODC for a node y;, we need to keep 2; @ g; for the primary outputs in the network A
that are transitive fanouts of y;. The term z; @ g; can be set to zero for any other primary

output. This is equivalent to having 1 in the corresponding row of the VODC.

3.5 Observability Don’t Care Subsets

The computation of the complete ODC for optimizing nodes of a large network is
often too expensive to be used during synthesis. This is because once the function at a node
is changed using its computed ODC, the ODC at other nodes in the network may have to
be recomputed. In addition, full ODC’s computed for some nodes can be extremely large,
especially for circuits that cannot be collapsed in two-level form. Subsets of the ODC have
been studied by several authors. The first attempt in [36] gives a linear time algorithm
for computing ODC subsets. The ODC’s are computed for the nodes of the network in
depth first search from outputs by using an approximation operator called RESTRICT.
This operator removes any cube in the ODC of a node y; which has a literal corresponding
to a node in its transitive fanout. This approximation, although valid for the networks

with reconvergent fanouts, is quite restrictive and loses some useful information. Other

CHAPTER 3. DON’T CARE CONDITIONS FOR SINGLE-OUTPUT NODES 40

techniques for computing ODC subsets are given by [54, 23]. The formulation suggested
in [23] gives the largest subset that can be computed for a node using ODC subsets of its
fanouts. The problem with all these ODC subsets is that once the function at a node is
changed using its ODC subset, then the ODC subsets computed for other nodes in the
network may not be correct any more and must be recomputed.

An interesting ODC subset is introduced by Muroga in [59] where subsets can be
computed for nodes of the network and used for the optimization of each node simultane-
ously. These subsets are called compatible sets of permissible functions (CSPF’s). CSPF’s
are expressed in terms of primary input variables and are only defined for a network decom-
posed into NOR gates. We expand the concept of CSPF’s to complex nodes of a general
multi-level network and present procedures for computing compatible ODC (CODC) sub-
sets. Another contrast with [59] is that CODC’s are expressed in terms of both primary
input variables and intermediate variables. We shall see that the ability to use intermediate

variables is important and powerful.

3.5.1 Compatible Observability and External Don’t Cares

At each intermediate node y, we can compute a set of permissible functions [59),
that is if the global function f3 for y, is replaced by any function in this set, the network
is still correct. The care set of y, is composed of all the vertices in B™ for which f§ must
have a fixed value; if the value of f5 is changed for such input combinations, the network
computes an incorrect output value. The don’t care set of y, is the remaining vertices of
B™ for which fJ is not required to have a fixed value (it can be 0 or 1). A function which
uses the don’t cares in a valid way is a permissible function.

A set of permissible functions for node y, can be represented by two functions;
by a function fj which is usually the current implementation at the node and dj which
is a combination of observability and external don’t cares expressed in terms of primary
inputs. The mazimum observability plus ezternal don’t care, dg?, (also MSPF) for y, is the
one having the maximum number of input combinations in dj . Generally, d5*? depends on
the global functions of other nodes of the network. If the global function at any node is
changed, d5*Y may have to be recomputed.

Sets of observability plus external don’t cares (d3’s) at a set S of nodes of a network

are compatible, if each node y; € S can be represented by any function from its permissible

CHAPTER 3. DON’T CARE CONDITIONS FOR SINGLE-OUTPUT NODES 41

function set independent of how any other node is represented from its set. We denote such
sets by d° or CODC. A Compatible Set of Permissible Function (CSPF) is all the functions
allowed by d.

At each primary output z;, we can also have a set of permissible functions rep-
resented by a function f7 for the current implementation and a function df for the don’t
care set. These don’t cares are called external don’t cares and must be compatible. Such
external don’t cares can be specified by the designer directly. Alternately, if an observability
relation O is given for the network A, the observability network, the observability network
N’ can be constructed and the external don’t cares can be derived as the compatible don’t
- cares of the fanins of the complex node O using methods to be described in Section 3.5.3.

The computation of CODC’s for the complex nodes of a multi-level network de-
pends on two key operations. One is the computation of CODC’s for the fanin edges of a
node, given the CODC of the node and an ordering of the fanins. The second key operation
is computing CODC’s for each node by intersecting the CODC’s of its fanout edges. We
first concentrate on a directed tree structure where each node has a single fanout except for
primary inputs. Then we extend the developed techniques to a general multi-level network

where nodes have multiple fanouts.

3.5.2 CODC’s for Trees

We discuss CODC computations for the fanin edges of a node by considering
a directed tree structure where each intermediate node has a single fanout and primary
inputs have multi-fanouts (a so-called leaf DAG). All the nodes in this tree are ordered
topologically. The highest order is given to the root node; every other node gets an ordering
less than its fanout. Let y, represent the root of the directed tree with external don’t care
d3™ and with fanins y;, 2, . . ., y;. This tree structure has the property that the observability
plus external don’t cares at each node are equal to that of its fanout edge. Also, assume an
ordering (>) is given to the fanins of y, such as y; > y2...> y;. This ordering implies that
node y; gets its maximum possible don’t care; the don’t care set at y, must be compatible
to that of g;; the don’t care set at y3 must be compatible to that of y; and y» and so forth.

Given dJ™ (in terms of some set of intermediate variables and primary inputs),
the maximum don’t care at each fanin node (also fanin edge) is d7: = % + d™. We let

% have its maximum don’t care set d§ = 22 + dS™ and show how to find g which is

CHAPTER 3. DON’T CARE CONDITIONS FOR SINGLE-OUTPUT NODES 42

Figure 3.6: A Directed Tree

compatible with d{7'. This is then generalized for the ith fanin of y,. dg C d3, must have
the property that any simultaneous changing of the functional representation at y; and y;
to any permissible functions allowed by the corresponding CODC of each node preserves

the correct behavior of the network.

Lemma 3.5.1 Given don’t care sets, d™, for a node with function f,, and d§™ for y;, the

ds™ for yz is

gr =g e o o yem.

1 9y, oy2

Proof: The set % contains all possible don’t cares for d§™ besides dS™. This can be divided
into those that are independent of the value of ¥, Cy, gﬁ, and the rest which require some

specific value for y;, r = eg; - Cy,-g-g. We seek the maximum set of don’t cares which are

compatible with d{™. Clearly, C,, gﬁi is compatible since this says that f, is insensitive to y;
independent of the value of y,. Further Cy, gﬁ is the maximum such set. The remainder of
g—yL; depends on y;. Let m be an input minterm of r, r(m) = 1. If d{™(m) = 1, we must have
d§™(mo) = 0; otherwise, the value of both fi(m) and fa(m) can change simultaneously and
fo(m) becomes incorrect. This is because the allowed change in fo(m) is only valid when

fi(m) has a specific value; this value is not guaranteed when f;(m) is allowed to change.

CHAPTER 3. DON’T CARE CONDITIONS FOR SINGLE-OUTPUT NODES 43

Removing such input combinations from 31— Cy, 51— and making it compatible with d{™
leads to the term (-31—‘ Cor 5L)d°'" Thus we keep only those terms for which the value of
f will not change. Adding these terms we obtain d§™ = d5™ 2L + C,, 3 + dZ™. Clearly,
no other input combination contained in 5{; can be added to d§™ without destroying the
compatibility of d5™ to di™; therefore, d5™ as obtained above is maximal. =

The don’t care set at y3 compatible with y; and y; is
_— of,
= (@ B+ ECp + Ty + Cpp) e + 457

While computing d$7, we break —h into parts that 1) are independent of subsets of the
fanins of higher order and 2) are in the intersection of the care sets of the other fanins of
higher order. Thus the term ch comes from considering points independent of y, that
are in the care set of y;.

The general formula is constructed as follows. Let Si be the fanins of order greater

than yx, and for some set K,

Ye=] -

€S -K
Then
[> (IT @)ey] + e, (3.6)
KCS; ieK
The general term o
(H dcm)CYK afo

€K
is simply the points of % which 1) are independent of the variables y; in Sk — K, and 2)
are in the care set of all the fanin edges in K.

Lemma 3.5.2 Given don’t care sets, d", for a node with function f,, and di™ for each of
its fanins y;, with y; > yi, the mazimum don’t care set for fanin y; compatible with {d{™}
is given by equation (3.6).

Proof: The set gL contains all possible don’t cares for di™ beside d™. In addition to
di™, di™ is all the input minterms m for which the value of fi(m) and any fanin of higher
order f;(m) (as allowed by d™) can change but no change is observed in fo(m). For any
minterm m € di™ — dJ™, the fanins of higher order Sj are divided into two groups, the ones
that do not change at all denoted by {y;|i € K} where K = {i|m ¢ d{™}, and the ones

CHAPTER 3. DON’T CARE CONDITIONS FOR SINGLE-OUTPUT NODES 44
that can change {y;}i € (Sk — K)}. It follows that m € ([];¢ K?iim)g-y_L: and because f,(m)
is insensitive to changes in {f;(m)|i € (Sx - K)}, m € CYK%:% where Yx = [lies, -k ¥i-
Consequently, m € ([T;ex I?T)ny-g-&. di™ as given by (3.6) contains all such combinations
of fanins of higher order into two groups K and S — K and each such combination gives a

correct compatible subset; therefore d{™ as in (3.6) is the maximum compatible don’t care
setfory;. m

Example:

Let fo = 11 + y2 + y3, /1 = 2122, f2 = T223, f3 = T123, and dJ™ = 0; therefore,

= enn
_ gl o, 0 _
;" = di 6y2+Cy,ay2—y1yz+ya

e A
i = (@ T+ EC, + EC, +cm)5§§ = 01Ts + va¥s.

di™ = z223 + 123 when ¥y, and y3 are substituted with their local functions. Notice that
g—g = % + Y3, and 19273 has been removed from the set to make it compatible with d{™.
Otherwise, if for some input minterm m, fi(m) = 1, f2(m) = 1, and f3(m) = 0, the value
of both fi(m) and fo(m) can be set to 0 which gives the incorrect result fo(m) = 0. In this
particular case, no such minterm exists because ¥, ¥275 is an impossible combination for the
given fi, f2, and f3. Consequently, d5™ = z,23 + 2173 which is equal to %_g = 1 + y3 when
% and y3 are substituted with their local functions.

The set y1y3 + y2ys has been removed from % = 4 + y2 to get d§". After
substituting for y1, y2, and y3, d§™ = 2122F3+F12223. f1(2122F3) = 1 and d{™(z122%3) = 0;
therefore f; always gives 1 for this minterm and f,(z,22%3) = 1 irrespective of any change
in f3. In the same way, fo(Z1z223) = 1 and d§™(Z12223) = 0; therefore f, always gives 1
for F12923.

Once the CODC for a node is found, we can find CODC for each of its fanins and
therefore for all the nodes in the directed tree in topological order.

Lemma 3.5.3 If the intermediate nodes of a network form a directed tree with one out-
put, the computation of (3.6) in topological order leads to {d{™} which are all mazimally
compatible.

CHAPTER 3. DON'T CARE CONDITIONS FOR SINGLE-OUTPUT NODES 45

Proof We first prove that the computed sets are compatible. Let the function at some set
of nodes change as allowed by {d{™}. Let y; be a node whose fanins are all primary inputs
and whose fanout is y; and m any input minterm. Because of (3.6), a change in f;(m) is
either not observable in y; or is allowed by d™ (d§™(m) = 1); therefore f; remains correct.

Now, assume y; is a node whose fanin functions only change as allowed by their
corresponding maximal CODC’s. Because of Lemma 3.5.2, any change in fanins of y; as
allowed by their CODC’s results in a change in f; as allowed by d§™. By induction, it
follows that any changes at a set of nodes in the network results in valid changes at the
fanouts of those nodes and therefore at all the nodes in the network.

Assume the computed {d{™} are not maximal. Thus a minterm m can be added
to some set ™ with fanout y;. Because of the maximality of (3.6), d™ is not maximal and
m must be added to di™. This is the case for all the transitive fanouts of y; especially for
the root of the tree y,. dS™ is fixed and cannot be increased; therefore {d{™} are maximal.
a

The number of terms in equation (3.6) is 2/5*|. Thus if a node has many fanins
(e.g. the O node of A’) the CODC computation becomes too time consuming. We consider
two diﬁerent ways to speéd up this computation.

The first technique is to apply a limited collapsing on the term d; = used in the
computation of df™. All the variables y;,...,yi—1 > ¥; are replaced by their corresponding
local functions. We represent this new function by E; where E; = d; |y, =f,...vici=fi_.- The
following Lemma is essential in obtaining the new formulation for computing compatible

don’t care sets.

Lemma 3.5.4 Lete,,...,e, be Boolean functions independent of y,, Y;,...Y, be any set

of variables ezcluding y,, d any Boolean function and
D =Cy (erCy,d+ ...+ e;Cy,d).

D is also equal to
D = e)Cy,Cyd + ... + €:Cy, Cy d.

Proof D can be written as

D= (el(','y1 dyo +...4+ enCY,.dyo)(eICy, dyo +...4+ enCy"'dgo).

CHAPTER 3. DON’T CARE CONDITIONS FOR SINGLE-OUTPUT NODES 46

Notice that e;Cy;dy,e;Cy;dy, C eiCy,dy,dy, = €Cy,Cy,d; therefore we only need to intersect
terms with the same indices.
D = elcYICyod + e + encync!lodo

Lemma 3.5.5 Let E; be equal to d;~ where each variable y; > y; is substituted by its local
function f; ind; . The mazimal compatible don’t care set at node yy, is

57
P =(E14+Cy)...(Bg-1 + C,,,‘_,)a—;: +d5™. (3.7
Proof Because of the introduced collapsing, C,, E; = E; for all the variables y; > y; since

these variables do not appear in E;. To show that (3.6) and (3.7) are equivalent, we expand
(3.7) using Lemma 3.5.4.

-
G = (Bt) (Bumt 4 Gy Yoo +

of, 3f
= (El + Cy1) (Ek—2 + cyk-z)(Ek-l af + cyk-x 2) + dcm
o7, 1A [I
= (.El + C!lx) .o -(Ek—2Ek—16+£: + Ek—zcyk-l afo) + cy*"z(Ek-l afo +C Yk—1 650))
+d3"
'a— a 8_ m
= (E1 + Cy,) .o .(Ek-zEk—l af + Ek—ZCyk_1 afo + Ek-lcyk-za—g;: + Cyk-lcy""z a+!llc)

+d;m

; [Z (HE)CYK]

KCSy €K

The number of AND and OR operations required to compute di™ from equation
3.7 is linear in k. The second technique to speedup CODC computation is to compute

smaller compatible subsets that are more computationally efficient.

Lemma 3.5.8 Given don’t care sets, dS, for a node with function f,, and faninsy; > ... >

Yk-1 > Yk,
.c _ 6fo
6

is a valid compatible observability don’t care subset for yx. Furthermore, ci‘," C dgm.

3)’

+ Cyl) + !lk—l)a + dc (3'8)

CHAPTER 3. DON’T CARE CONDITIONS FOR SINGLE-OUTPUT NODES 47

Proof: The proof is by induction on k. Since dS enters in all calculations, we can ignore it
for the purposes of this proof. Note then that '

)

ds =d™ = =2
1 1 ayl
and

8fs 3fo
o= G,

Thus by Lemma 3.5.2, Jf"’ and d"" are compa.tible

Now assume that any combination J of up to k—2 operations of the form (-5L+C,,,)
t € J,and ¢ < k — 1, operating on 3-5; gives a set mutually compatible with all di™, i € J.
Since df, is formed by using k — 1 operations, it is a subset of any of the ones formed by
using k — 2 or less operations. Hence Ji is mutually compatible with any & — 2 sets d{™ for
i<k-1.

We proceed by contradiction. Assume that there is a minterm m € d§ that causes
non-compatibility. Then m must be in d{™...d{";. Now m ¢ C,, ,,_,,,‘_,?y:, since otherwise
it would be in d{™ and would be compatible. Thus, by equation (3.8), m must be in at least
one of the sets %5'?- for ¢ < k — 1. But this contradicts the fact that, using equation (3.6),

ofo

0fo
J) "(Cw--om-zm)

cm af o
medy"... iy = o (cm
is orthogonal to %ﬁ, i < k — 1, cofactored with respect to any set of y;’s | < i. Thus no
such m exists and hence d™ is mutually compatible with d§™, i < k — 1. Since the d¢™ are
maximal by Lemma 3.5.2,d; Cd{™. =

3.5.3 CODC’s for a General Network

We discuss a technique for computing compatible don’t cares for all the nodes of
a multi-level network. We first consider the primary outputs. If external don’t cares are
given in terms of primary inputs, they must be compatible. The d° at each primary output .
is set equal to the external don’t care at that output. If an observability relation O is given
that has the behavior of the network, compatible external don’t cares at the outputs can be
computed using Lemmas 3.5.2, 3.5.4, or 3.5.5. An ordering is given to the primary outputs.
37; is computed and made compatible to the outputs of higher order. Notice that this
external don’t care may be a function of both the inputs and outputs of the network.

CHAPTER 3. DON’T CARE CONDITIONS FOR SINGLE-OUTPUT NODES 48

We now consider how don’t cares can be computed for intermediate nodes. A
topological ordering is first given to all the nodes in the network and nodes are processed
one by one starting from the primary outputs. The fanout edges of yx inherit the same
ordering as their source node. The compatible don’t cares for each fanout edge can be
computed the same way as done for trees. When y; is being processed, all the nodes of
higher order have been already processed, therefore, their compa.tiblevdon’t care subsets can
be used to find CODC for the edge exo as before:

Z(HfF)C] f°+d° (3.9)

[KCS), ieK

The don’t care sets at the fanout edges are then intersected to get the don’t care set for
the node. The don’t care set for each edge has two parts, the one that comes from the fanout
node dg, and the one that comes from the Boolean difference b§, = [Z kcs, (Iliex 2§)ny] g—&.

This notation is used in the proof of the following Lemma.

Lemma 3.5.7 If the immediate fanout edges (FO;) of a node y; have compatible observ-

ability don’t care subsets then the subset

d§ = H i (3.10)

yE€EFO;

is a valid observability subset for y; which is compatible with CODC'’s computed for all higher
order nodes.

Proof: Let m be an input minterm such that d{°(m) = 1. Vy, € FO;, we must have
bii(m) = 1 or dy?(m) = 1. If bj(m) = 1, then f;(m) can be set to either 0 or 1 and this
cha,nge is never observable in fy(m) by Lemma 3.5.2 and the fact that b;7 is compatible
with the other edge fanins of yx. If df’(m) = 1, then f;(™m) can be set to either 0 or 1
and fi(m) might change value. However, the new function is a permissible function for the
node yx € FO;. Since the observability don’t cares computed for the fanouts of y; are all
compatible, any simultaneous changing of the functions of the fanout nodes as allowed by
their respected CODC’s is correct. Therefore df is a valid observability subset.
Any change in f; for a particular minterm m as allowed by df results in a change in
the function of all the fanout edges as allowed by their respected {dS,}. {d5.} are compatible

with nodes of higher order; therefore df is also compatible with nodes of higher order. =

CHAPTER 3. DON’T CARE CONDITIONS FOR SINGLE-OUTPUT NODES 49

b1

% %

Figure 3.7: Example

The CODC’s computed for the nodes of the network as given above are not neces-
sarily maximal. In the above computation, we first compute CODC’s for the fanout edges
of a node and then intersect them. However, we only require the ODC’s for the nodes
of the network to be compatible, not the edges. Making the ODC’s at the fanout edges
compatible, enables us to intersect them and find the CODC for the node but this is not
necessarily maximal. We did not notice this fact in our original derivation in [67]. This
was pointed out by Damiani in [24] with the example shown in Figure 3.7. Assume any
topological ordering. The CODC computation finds d; = 0 and dj, = 0. Intersecting these
we find d§ = 0 which is not maximal. It can easily be shown that d§™ = 1. Although the
CODC'’s computed are not maximally compatible for all the nodes in the network, they are
maximally compatible for the nodes that form a tree structure with respect to each primary
output where each tree is rooted at one of the primary outputs. As before the primary
inputs can have fanout of more than one. As soon as reconvergent fanouts appear with

respect to some output, maximality cannot be claimed anymore.

Lemma 3.5.8 If an intermediate node y; plus its transitive fanouts form a tree with respect
to each primary output, the computation of (8.6) and (3.10) in topological order leads to a

set {di™} which are mazimally compatible for y; and its transitive fanouts.

Proof Suppose di™ is not maximal. Then there is a minterm m that can be added to
d™. f m can be added to d{™, then it can be added to any df} computed with respect to
zk. d} is what is computed by some fanout edge (i,j) of y; (there is a path from y; to z
through this edge); therefore m can be added to df;. Because of (3.6), m can be also added

CHAPTER 3. DON’T CARE CONDITIONS FOR SINGLE-OUTPUT NODES 50

Yo

Ys Ya Ys

Xa X5 X X2 X X5

Figure 3.8: Example

to d;. In the same way, one can find a fanout of y; whose don’t care set can be increased
by m. This can be repeated until we reach a primary output; however, the don’t care sets
at primary outputs are fixed. Thus the statement of the Lemma follows. »

Example:

We find CODC'’s for intermediate nodes of the network shown in Figure 3.8. The ordering
iSY > Y1...> ¥Ys.

om _ Ofo _
dl = ayl—yZ

9o
Oy2

oh
&5 = GhramZhiam

dg" = (Cy +d™) =T

= (yat ?3?5_)_(}_/_5 + T3T4Y5) = Ya¥s

B = Cnt BG4 = Gt T+ Ty
= Ya¥s+7Ts L

B = Cot Bl 4 i = (@t T+ T
= Y3Tg+ Y3Ys +TaYs

Notice that dj is not necessarily maximal because it has reconvergent fanouts. As a result,

CHAPTER 3. DON’T CARE CONDITIONS FOR SINGLE-OUTPUT NODES 51

d3 can become larger and therefore d™ and d§™ can become larger. Although the mazimality
at y3 13 not gained, this is compensated for by larger CODC sets at other nodes. CODC’s

at all other nodes except for y3 are maximal.

3.6 ODC’s and Equivalence Classes of a Cut

Let Y = (v1,¥2,...,Yp) be a separating set of nodes in network A" and y, an
intermediate node. Thus A can be viewed as two networks A; and N2 where) is the input
of the network A and output of network A;. The outputs of M, z = (2,...,2), can be
expressed in terms of y1,¥2,...,¥p.

Definition 3.6.1 We say two minterms m;,m; € BP are equivalent (m; ~ m;) if z(m;) =

z(m;).

This relation divides the space BP into vertex equivalence classes [m;],[my2],...,[m,] as
introduced in [12]. The observability don’t cares at y, can then be expressed in terms of

this equivalence relation as follows,
0DC, = {m € B"|y,(m) ~ Jy, (m)}.

Furthermore, the ODC of an intermediate node y, need not be expressed in terms of primary
inputs. It can also be expressed in terms of intermediate nodes of the network. In particular,
the observability don’t cares for each of the nodes in the) can bé computed in terms of
other variables in the separating set of nodes. In what follows we give some properties
associated with the ODC’s of the nodes in).

Starting from the observability don’t cares of the nodes in) we can find the onset
and the offset of each output function; therefore we can find the vertex equivalence classes
of all the nodes in the separating set. The equivalence class to which m; belongs, denoted

922 i=1,...,p,k=1,...,L:

[mi], can be computed as follows. Given

o Use (3.1) to find F** for each output function z, k= 1,...,I,
o Let S; = {j|m; € Fti},

o [m] = ([kes; F**) [z, F)-

CHAPTER 3. DON’T CARE CONDITIONS FOR SINGLE-OUTPUT NODES 52

The expression [m;] = ([Txes, F** ez, _F_"'k) is all the minterms for which each output
function in S; or S; has a fixed value of 1 or 0.
Alternately, let R(y,2z) = [I'=;(z@F**). Then the equivalence classes are given
by
E(y,y) = S:[R(y,2)R(Y',2)]

Although this is not an efficient way to compute equivalence classes of), it shows the
relation between the observability don’t cares of the nodes in) and equivalence classes of
Y. In [23], the authors prove this result using a different approach.

Conversely we can compute the ODC’s at each of the nodes in Y if the vertex

equivalence classes of) are known.

Theorem 3.8.1 Let[m,],[m2),...,[m,] be the functions representing the vertez equivalence
classes of . The observability don’t care set of any node y; in Y with respect to all the
output functions is .
0DC; = Y Cy[m;]
=1
Proof Since ODC; is independent of y;, it can be viewed as consisting of pairs of vertices
(mg,7k) in the space of the variables corresponding to nodes in the separating set where
(rk)y; = (mi)y; and (rik)y; = (my)y,. For any such pair (mg,7hs), if both vertices belong
to the same equivalence class then both vertices produce the same set of outputs. Otherwise,
at least one of the outputs is different. Therefore m; and 7 belong to O.DC; if and only
if they are in the same equivalence class. =
There are only two equivalence classes for any separating set of nodes Y in the ob-
servability network N': one is a new observability relation which gives the possible minterms
in terms of the variables in) for any input minterm; the other is the inverse of first, i.e.
all the impossible combinations of variables in Y for any input minterm. The computation
of these observability relations for a network decomposed into multi-output nodes is the

subject of the next chapter.

53

Chapter 4

Observability Relations for
Multi-Output Nodes

The observability relation as described in Section 2.4 provides a description of all
the flexibility available in implementing a Boolean network A. In this chapter, we develop
techniques for finding observability relations for each component of a Boolean network
decomposed into a set of multi-output nodes. The multi-output node can be a Boolean
network itself. The original decomposition can be obtained in a variety of ways. For
example, multi-output nodes can be obtained by clustering a set of single-output nodes in
a regular Boolean network. Or, a Boolean network may be partitioned into a hierarchy
of smaller networks such that each network satisfies some specific criteria. We show how
to obtain maximum flexibility for implementing each element of a partition by computing
its observability relation. Compatible observability relations are also computed for a given
topological ordering of the nodes. A Boolean relation minimizer (such as [83]) can then
be used to find a good two-level implementation from the observability relation computed
for the node. Alternately, compatible don’t cares can be derived from these observability
relations and then used to optimize the multi-level network at the node using a conventional

two-level minimizer.

4.1 Previous Work

In [17], an approach is developed for a unified synthesis of combinational and

sequential circuits using characteristic functions. Each circuit is composed of a set of multi-

CHAPTER 4. OBSERVABILITY RELATIONS FOR MULTI-OUTPUT NODES 54

outpﬂt blocks. The input-output behavior of the whole circuit is described by a Boolean
relation called the Output Characteristic Function (OCF). It is assumed that the inputs
to the circuit denoted by x are also inputs to all the multi-output blocks. Techniques are
developed for finding Boolean relations describing input-output behavior of some multi-
output node when the OCF of the circuit and the characteristic functions of all other nodes
are known. It is shown that the developed formulas can be computed in a different way if
all the blocks in the circuit are combinational implementations. The characteristic function
of a combinational implementation of a block allows a unique output for each input. Here
we build on the work in [17] and show how to find the compatible and maximal observabil-
ity relations for a multi-output node n in a combinational circuit, given the observability
relation (OCF in [17]) for the circuit and the Boolean relations for all other nodes. We
also show that if the Boolean relations given for all other nodes except for node n are the
characteristic functions of an implementation at those nodes, the compatible and maximal
observability relations obtained for n are equivalent in all cases where a Boolean relation
can be computed. As in [17], we first develop techniques for computing Boolean relations
for two-way partitioned circuits and then generalize these techniques for any circuit decom-
posed into multi-output nodes. The techniques used to show the correctness of formulas for
computing observability relations of multi-output nodes are different from that of [17] and

clarify the distinction between maximal and compatible Boolean relations.

4.2 Two-Way Partitioning of a Boolean Relation

First, techniques for serial and parallel decomposition of an observability relation
are discussed. These ideas are then used to find the observability relation for a general
multi-output node in the network. Consider the situation depicted in Figure 4.1. An
external observability relation or Boolean relation © is specified for the network. The
network is decomposed into two parts (serial or parallel). The objective is to find maximal

and compatible Boolean relations for the components of the network.

Definition 4.2.1 A set of nodes has a set of compatible observability relations if each
function at each node can be changed (as allowed by its observability relation) independent

of all allowable changes in the functions at other nodes in the set.

CHAPTER 4. OBSERVABILITY RELATIONS FOR MULTI-OUTPUT NODES 55

X X

z u \4
T(.2)

y Lx,vw)| |Ttx,v)
Lx,y)

- N

X
(a) ’ (b)

Figure 4.1: Decomposition of Observability Relation

Compatible observability relations computed for the components of the network
have the extra advantage that each node can be optimized irrespective of other nodes.
The term implementation is often used in this chapter and has the following mean-
ing.
Definition 4.2.2 An implementation of a circuit is an observability relation which allows

a single output minterm for each input minterm.

Definition 4.2.3 Given the observability relations T (equivalently L) for one of the two
partitions and O for the whole circuit as shown in Figure 4.1, T is said to be consistent
with O if for any implementation based on T there is at least one implementation for the

other partition in the circuit such that the implementation of the two partitions is allowed
by O.

4.2.1 Serial Decomposition

Let O(x,z) be the observability relation for the network, and 7(y,z) the observ-
ability relation for the top part of the network which is consistent with O(x,z) as shown
in Figure 4.1(a). First, we derive an equation for computing a relation £ for the lower part
which is compatible with 7 and then find an £ which is maximal with respect to 7. In

CHAPTER 4. OBSERVABILITY RELATIONS FOR MULTI-OUTPUT NODES 56

Figure 4.2: Observability Relation for a Cut

either case £ must be consistent with . The mapping represented by £(x,y) is shown in
Figure 4.2. It gives all the minterms in the separating set y allowed for some particular
minterm x;. For each x;, there must be at least one minterm y; such that (x;,y;) € L.
Equivalently SyL(x,y) = 1 or £ must be well-defined. Otherwise, no implementation is
possible for the lower part of the circuit. If no £ can be found such that SyL(x,y) = 1,
T(y,z) is not consistent with the Boolean relation O(x, z).

The set of z’s in relation with x; allowed by O is Oyx; and the set of z’s allowed
by T for a particular y; is 7y;. We investigate three different possibilities; Ty; C Ok,
(represented by x3 and y; in Figure 4.2), Ty, € Ox; but Ty;Ox; # 0 (represented by x;
and y; in Figure 4.2), and finally 7y,0x; = 0.

 If Ty; C Ox; and x; is set to be in relation with y; ((x;,y;) € £), no constraint
is imposed on relation 7. This is because y; can still accept any z; as allowed by 7 and
(xi,2x) € O. The relation £ computed this way is compatible with 7 and consistent with
O. This means an implementation can be found from £ independent of that found from 7
(This is the case for x; and y; shown in Figure 4.2).

I Ty, € Ox;, Ty;Ox; # 0, and we set (x;,y;) € L, some constraint is imposed on
relation 7. If an implementation based on £ gives y; for input x;, any z; allowed for y;
must be in 7y;Ox;. The relations 7 and £ are not compatible in this case. £ can be used to
find an implementation for the lower part of the circuit. Then 7 must be made compatible

to this implementation before it is used. It is shown here that £ obtained this way is the

CHAPTER 4. OBSERVABILITY RELATIONS FOR MULTI-OUTPUT NODES 57

maximal observability relation consistent with O.

Finally, if 7y,Ox, = 0, x; cannot be in relation with y; without violating O.

Lemma 4.2.1 (compatible) Given the relation T(y, z) and the observability relation O(x, z),
the relation L™ (x,y) ezpressing for each input minterm x all possible output minterms y

mazimally compatible with T and consistent with O is
L™(x,y) = C2(T(y,2) + O(x,2)).

Proof The relations 7 and £°™ must be compatible with each other and consistent with
O(x,z). We first show that £ maximally compatible with 7 implies that (x;,y;) € L™
if and only if 7y; C Ox;. This means L consists only of all the pairs (x;,y;) which
satisfy 7y; C Ox,. H Ty; C Ox;, then any z; in relation with y; from 7 is also in relation
with x; allowed by O, therefore, (x;,y;) € L™ is consistent with O(x,z). On the other
hand, if {3zk|zx € Ty;,2r ¢ Ox,}, then (x;,y;) € L™ puts z; in relation with x; but
(x:,2x) & O(x,2). As a result a circuit implemented based on 7 and £°™ could violate O.

Ty; € Ox; if and only if Ty Oy, = 0, or Ty, +0Ox; = 1. The term x;y;Cz(Ty,+Ox;)
is equal to x;y; if Cz(Ty, + Ox;) = 1, and 0 otherwise. L™ can be written as,

L™(x,y) = E x;yiCz(Ty; + Ox;)
(xi ’y"-)eB""'m

=) Ca(xiy;Ty; + xiy;iOx;)
= Y Ca(xiy;T +xiy;0)

2 x:yiCz(T + O)
G(T+0) 3 xiy;

(xi,y;)eBnt™
= C(T(y,z)+ O(x,2)).

I

For L™ to be a well-defined Boolean relation it is necessary to have Sy L™ (x,y) =
1 (There exists at least one y for each x.). L™ obtained as in Lemma 4.2.1 may not be a
well-defined Boolean relation because there can be x’s for which no y is allowed.

The concept of compatible observability relation is similar to compatible don’t
cares. As we know, one could also compute maximal don’t cares. Likewise, the relation £

can be computed in a way which results in a maximal Boolean relation. The restriction that

CHAPTER 4. OBSERVABILITY RELATIONS FOR MULTI-OUTPUT NODES 58

L must be compatible with 7 is relaxed. But it is required that for any implementation
based on L there is at least one possible implementation based on 7 allowed by O. In this

case, we say that £ satisfies 7 and is consistent with O.

Lemma 4.2.2 (maximal) Given the relation T(y,z) and the observability relation O(x, z),

the mazimal relation L™(x,y) satisfying T and consistent with O is
L™(x,y) = $z0(x,2)T(y, 2).

Proof We first prove that L™ satisfies 7 and is consistent with O if and only if 7y, Oy, # 0
for any x;y; € L™. If Ty;Ox; # 0, then there exists at least one z; such that z, € Ty,
and z; € Ox;. As a result, for any implementation based on £™ that gives y; for x;, there
is at least one implementation satisfying 7 that is allowed by @. On the other hand, if
Ty;0Ox; = 0, then no z is allowed for any implementation that gives y; for x;.

Ty;Ox; # 0if and only if Sz(Ty;Ox;) evaluates to 1. The value of x;y;Sz(7y,Ox;)
is x;y; if Sz(Ty;Ox;) = 1 and 0 otherwise. As a result, we can write

L™(x,y) = Z xiy;5z(OxTy;)
(xl' 'yj)EB'H'm

= Z Sz(x;y;Ox; 73!,‘)
= Z Sz(x;y;0T)

= (8§07) Z X:yj
(xi,y;)eBntm

= 8z(0(x,2)T(y,z)).

Note the difference between Lemmas 4.2.1 and 4.2.2; Lemma 4.2.1 requires com-
patibility with respect to 7 and consistency with O while 4.2.2 only requires consistency
with O. Clearly, L™ C L™,; hence the latter is called maximal. If Sy£(x,y) # 1 (£ is not
a well-defined Boolean relation), 7 is not consistent with O, because no implementation of

L can be found for any implementation of 7 that is consistent with O.

Lemma 4.2.3 If T(y,z) is an implementation (i.e. for eachy there ezists a unique z such
that T(y,z) = 1), then Co(T + O) = S;O(x,2)T(y, z); therefore L™ (x,y) = L™(x,y).

CHAPTER 4. OBSERVABILITY RELATIONS FOR MULTI-OUTPUT NODES 59

Proof Because 7 is an implementation, it allows a unique z; for each input y;; therefore,
for any x; and y;, Ty; C Ox; if and only if Ty Ox; # 0. Ty; C O, if and only if 7y, Ox, = 0,

or Ty, + Oy, = 1. Ty,Ox; # 0 if and only if Sz(7y,0x;) = 1.
The term x;y;Cz(Ty;+Ox;) is equal to x;y; if Cz(Ty, +Ox;) = 1, and 0 otherwise.
The term x;y;Sz(Ty;Ox;) is equal to x;y; if Sz(7y,Ox;) = 1 and 0 otherwise. Therefore

E x;yiCz(Ty; + Ox;)
(xi,y;)eBn+m

ECZ(xl'ijy,‘ + x:y;Ox;)
> Ca(xiy;T + xiy;0)
CT+0) Y. xy;

(xi,y;)eBntm
C2(T(y,2) + O(x,2))

L™(x,y) =

Z %y Sz(Ox; 75’,-)
(x:,y;)eBnim

Z Sz(xiy;Ox; Ty;)
Y Sz(xiy;O0T)

(8:07) E Xiy;
(xi.yj)eBntm

Sz(O(x,2)T(y, z))
L™(x,y)

Given a relation £ consistent with O, one can also find compatible and maximal

relations for 7.

Lemma 4.2.4 (compatible) Given the relation L(x,y) and the observability relation O(x,z),
the relation T°™(y,z) exzpressing for each minterm y all possible output minterms z mazi-

mally compatible with L and consistent with O is

™ (ya z) = cx(o(xs z) + Z(x, Y))

Proof We first prove that 7°"(y, z) is compatible with £(x,y) and consistent with O(x, z)
if and only if Ly; C Oy, for any (y;,2i) € T". i Ly; C Oy, then any x; in relation with
y; from L is also in relation with z; allowed by O, therefore, y;z; € T consistent with
O(x,z). There is no restriction on £. On the other hand, if {3xi|xx € Ly;,xx € O;,¥;2i €
T°™}, then one can choose an implementation producing output z; for y; from 7°" and
an implementation producing y; for input xx from £. These two implementations are not
allowed by O because they produce output z; for input x; and (xx,2;) ¢ O.

Ly, C Og, if and only if Cx(Oy; + Ly;) = 1. The term y;z:Cx(Oz; + Ly;) is equal
to y;z; if Cx(Og, + Zyj) =1 and 0 otherwise. Therefore, we can write 7°™ as

T™(y,2) = E

(y’ Zi) eBmti

szicx(oz.- + zyj)

CHAPTER 4. OBSERVABILITY RELATIONS FOR MULTI-OUTPUT NODES 60

= E ij,’Cx(zioz.' + szyj)
=) yizCx(z:0 + y;L)

Cx(0 + Z) z Yizi
(vj,zi)eBm+t

Cx(O(x,2) + f(x, ¥))-

If £ is an implementation, 7°™ is also maximal (7°™ = 7™). It would seem
from the previous lemmas that a relation 7 which is maximal with respect to a general

observability relation £ and consistent with O is
T™(y,2z) = Sx(O(x, Z)E(x’ Y))'

This formula is obtained from the assumption that 7™ is maximal with respect to £ and
consistent with O if and only if Ly;0z; # 0 for any y;z; € T™. However, 7™ may not be
well-defined. Suppose Ly, = 0 (y; cannot be obtained by any x). Then Ly;0z, =0 and
no z is allowed for such y. We can add another term to the above equation to take care of
all the y’s that cannot be obtained from £

T™(y,z) = Sx(0O(x,2z)L(x,y)) + SxL(x,¥). (4.1)

SxL(X,y) is all the y’s not obtained from any x, therefore all z’s are allowed for any such
y-

The above formula by itself is not correct. This is because, if an implementation
is obtained from 7, there is no guarantee that an implementation can be obtained for the
lower part of the circuit. Assume an implementation based on 7™ gives z; for y;. Then
any implementation for the lower part of the circuit must choose xx € Ly, Oz, to give y;,
but there is no guarantee that all the x’s can be covered this way. There could be an x that
is in no Ly, 0Oy, where z; is the output for y; in the implementation based on 7™.
Example:

We give a simple example to demonstrate this. Assume £ is an implementation which gives
¥1 for every possible input x. Also assume O is such that it allows z; for every input x
and z; only for input x; as shown in Figure 4.3. Clearly, there is an implementation for
the circuit satisfying £ and O. The implementation for the top part of the circuit can give

z, for every y; the implementation for the lower part is £ itself; therefore, £ is consistent

CHAPTER 4. OBSERVABILITY RELATIONS FOR MULTI-OUTPUT NODES 61

B" O(x,z) B

Figure 4.3: Example

with O. If 7™ is computed as in (4.1), then y;12;,y122 € T™. All 2’s are allowed for any
other y. A possible implementation based on 7™ can give z; for all y, but in such case,
no implementation from £ can be found which satisfies O, therefore, (4.1) is not correct by
itself.

Every valid implementation ™ € 7™ must allow at least one implementation for

the lower part of the circuit satisfying both £ and . From Lemma 4.2.2
I"(x,y) = 8;0(x,2)t™(y, z)

is all the implementation allowed satisfying ™ and consistent with O for the lower part of the
circuit. ™ is consistent with O if I™ is well-defined, i.e. SySzO(x,2)t™(y,z) = 1. It satisfies
L and is consistent with O if I™ L is well-defined, i.e. Sy(L(x,y)Sz0(x,2)t™(y,z)) = 1. As
a result, the set of all implementations possible for the top part of the circuit is all t™ € T™
(given by (4.1)) such that Sy(L(x,y)S:0(x,2z)t™(y,2)) = 1.

Unfortunately, we do not know how to express this as a Boolean relation. The

above discussion seems to lead to a constrained form of Boolean relation minimization:

min t < Sx(O(x,2)L(x,))+SxL(5) (42)
s.t. Sy(L(x,y)Sz0(x,2)t(y,z)) = 1. (4.3)

It is unknown if this can be rewritten in a simpler form.

CHAPTER 4. OBSERVABILITY RELATIONS FOR MULTI-OUTPUT NODES 62

4.2.2 Parallel Decomposition

Given the observability relations 7 consistent with the relation O as shown in

Figure 4.1(b), we develop formulas for computing maximal and compatible L.

Lemma 4.2.5 (compatible) Given the observability relations T(x,v) and O(x, u,v), the
relation L°™(x,u) ezpressing for each input minterm x all possible output minterms u

mazimally compatible with T and consistent with O is

L™(x,u) = Cy(T(x,v) + O(x, u, v)).

Proof We first prove that £ is compatible with 7 and consistent with O if and only
if Tx; C Ox;u; for each (x;,u;) € L. If Tx; C Ox,u;, then any v in relation with x;
from 7T also satisfies (x;, uj,vx) € O ; therefore, (x;,u;) € L™ is compatible with 7 and
consistent with O. On the other hand, if {Ivi|vi € Tx;, vk & Ox;u,}, then (x;,u;) € L™
and x;v; € T may put (v, u;) in relation with x; but (x;, uj, vi) € O(x, u,v). As a result
an implementation based on 7 and £™ could result in a circuit that violates O.

Tx; € Ox;u, if and only if Cv(Tx; +0x.vu,~) = 1. The term x;uij(Tx.. + Ox;u;) is
equal to x;u; if Cy(Tx; + Ox;u;) = 1 and 0 otherwise. As a result, L™ can be written as

L™(x,u) = Y xuCo(Tx; + Ox;u;)
= Y Cy(xin;Tx; + xiujOx;u;)
=) Cu(x:uT + x4u;0)
> xiuiCu(T + 0)
Co(T + 0) Y x;u;
Cv(T(x,v) + O(x, u, Vv)).

Lemma 4.2.6 (maximal) Given the observability relations T(x,v) and O(x,u,v), the
relation L™(x,u) ezpressing for each input minterm x the mazimal possible minterms u

consistent with O i3
L™(x,u) = SvO(x,u,v)T(x,v).

CHAPTER 4. OBSERVABILITY RELATIONS FOR MULTI-OUTPUT NODES 63

Proof We prove first that L™ is consistent with O and maximal with respect to 7 if and
only if Ix;Ox;u; # 0, for each (x;,u;) € L™. If Ty, Oxu; # 0, then there exists at least one
vi such that v € 7x; and vi € Oxu;. As a result, for any implementation based on L™
that gives u; for x;, there is at least one implementation allowed by 7 that satisfies O. On
the other hand, if 7x;Ox;u; = 0, then no vy is allowed for any implementation that gives
u; for x;.

Tx;Ox;u; # 0 if and only if Sv(Zx;Oxn;) = 1. Xiu;Sv(Ox;u,%x;) is equal to x;u;

if Sv(7x;Ox;u,) = 1 and 0 otherwise. As a result, we can write

L™x,u) = Y xu;Sv(Oxiu,; Tx;)
= Y Sv(xiu;jOxm,Tx;)
= 3 Sv(xu;0T)
= Sv(0T) E Xiu;
= Sy(O(x,u,v)T(x,v)).

Lemma 4.2.7 If T(x,V) is an implementation (i.e. for each x there ezists a unique v
such that T(x,v) = 1), then Cy(T(x,v) + O(x,u,v)) = SyO(x, u, v)T(x, v) and therefore,
L™(x,u) = L™(x,u).

Proof Because 7 is an implementation, it allows a unique v, for each input x;; therefore,
for any x; and uj, Tx; C Oxu, if and only if 7x,Ox;u; #0. Ty; C Ox;u; if and only if

0v(—7——x.-+0x‘-u’-) =1. T;g.-OX'-uj # 0ifand Only iva(.]-x' OXin) = 1. The term x.‘llj0v(-7—-x‘~ +
Ox;u;) is equal to x;u; if Cv(Tx; 4+ Ox;u;) = 1 and 0 otherwise. The term x;u;Sv(Ox;u,7x;)

is equal to x;u; if Sv(7x;Ox;u,;) = 1 and 0 otherwise. As a result,

YoxiuiCv(Tx + Oxiu;) = Y %iu;Sv(Oxin; i)
Y Cv(xiu;Tx; + xiujOxu;) = D Sv(xiu;Ox;u; Tx;)
d_Cv(xiniT +xu;0) = Y Sv(xin;OT)
Y xiuiC(T+0) =) xu;Sv(0T)
Cv(T+0)) xu; = Sv(OT)) xiu;
Cv(T(x,v)+ O(x,u,v)) = Sy(O(x,u,v)T(x,V)).

CHAPTER 4. OBSERVABILITY RELATIONS FOR MULTI-OUTPUT NODES 64

X X X3 X4
Figure 4.4: Example

Therefore, £L™(x,u) = L™(x,u). =
Example:
We find maximum and compatible observability relations for nodes u and v using the
observability relation of the separating set u,v shown in Figure 4.4. These nodes have
a single output which allows comparison with compatible observability don’t cares obtained
for the nodes. The observability relation for the circuit is O(z,x) = 21®(2122 + z324). The
observability relation for the separating set u, v is O(u,v,x) = (u + v)&(z122 + 324). The
current implementation at v is 7(v,x) = v®(z3 + z4). Thus,
L™(u,x) = 8,0(u,v,x)T(v,x)
= Sy(u+ v)B(z122 + 2324)vB(23 + 4)
= 2324 + ub(z122).
The full ODC at node u from the observability relation at u is
ODCy = CuL™(u,x)
= Cy(z3z4 + ud(2122))
= T3%4
which is equal to what one gets with a direct computation of ODC’s. Having computed
L™(u,x) we know how to find 7°(v,x) which is compatible to it.

T(v,x) = Cy(O(u,v,x)+ L (u,x))
= Cu((u+ v)®(7172 + 2374) + (T3Ta(u @ (2122)))

= v®(z3z4) + T122(T3 + T4).

CHAPTER 4. OBSERVABILITY RELATIONS FOR MULTI-OUTPUT NODES 65

The CODC at v is

CODC, = Cy,(v®(z3z4)+ T122(T3 + T4))

= 2122(F3 + Z4)

4.3 Compatible and Maximal Observability Relations

Here we address the problem of finding complete don’t cares for a multi-output
node n and then simplifying it. This complete don’t care set is effectively the observability
relation for the node defined in the same way as the observability relation of a normal
Boolean netwqu. This can be either a local observability relation O!(y,u) where the y are
the local fanins for the node and the u are the node outputs, or the global observability
relation O9(x,u) giving the relation required between the primary inputs x and the node

outputs u.

T, y,w,2)

Lx,v,y, w)

Figure 4.5: Observability Network for a Network of Multi-Output Nodes

Each multi-output node n has a set of inputs » which are unique to that node,
a set of inputs y which are shared with other nodes, and a set of outputs u. The rest of

the variables in the two separating sets of variables before and after n which divide the

CHAPTER 4. OBSERVABILITY RELATIONS FOR MULTI-OUTPUT NODES 66

network into two partitions are represented by w (a typical node is shown in Figure 4.5).
The function at n is represented by F(v,y). The variables (u,y,w) and (v,y, w) represent
separating sets of variables in the network just after and just before node n (see Figure 4.5).
Note that the variables y which are fanins of n can be inputs to other nodes in the fanout
network as shown in Figure 4.5. The characteristic function for the top part of the network .
T(u,y,w,z) represents the present implementation after n and the characteristic function
for the lower part of the network £(x,v,y,w), the implementation before n. £L(x,v,y,w)
is also called the controllability function [18] for the separating set (v,y,w), and gives the
image computation from x to (v,y,w).

Using the lemmas for parallel and serial decomposition of a Boolean relation, the
observability relation for a multi-output node n shown in Figure 4.5 can be computed. Let

L, be the relation between y, w and inputs x, and £ be the relation between v and inputs

X.

Lemma 4.3.1 (compatible, global) Given the relations £1(x,y,w) and T(u,y,w, z),
the compatible global observability relation for n is given by

ocg(x’ u) = Cy,w(zl (xa Y, W) + cz(-'f(“v Y, W,Z) + O(xa z)))‘
In particular, if L(x,v,y,w) = Li(x,y, w)La(x,v),
09(x,u) = Cy,wvz(L(x,v,y, W)+ T(u,y,w,z) + O(x,2)).

Proof O'(x,u,y,w) = C3(T(u,y,w,z)+ O(x,z))) is the compatible observability rela-
tion for the network at the separating set (u,y,w) (serial decomposition, Lemma 4.2.1).
Cyw(L1 + O') is the compatible parallel decomposition for node n (Lemma 4.2.5). If
L = L1L;, then SyLy(x,v) = 1 resulting in CyL2(x,v) = 0. The global observability
relation of n can be written as

O%(x,u) = Cyw(Li(x,y,w)+Ca(T(u,y,w,z)+ O(x,2)))
= Cyw(Li(x,y, W)+ CyLa(x,V) + Cz(T(u,y, w,z) + O(x,2)))
= Cvyw(Li(x,y, W)+ La(x,V) + C2(T(u,y, w,2) + O(x,2)))
= Cvyw(Z(x,v,y,w)+Co(T(u,y,w,2) + O(x,2)))
= Cvywz(L(x,v,y,w)+T(u,y,w,z)+ O(x,2)).

CHAPTER 4. OBSERVABILITY RELATIONS FOR MULTI-OUTPUT NODES 67

We can also compute O™9(x,u) which is maximal with respect to £;, 7, and

consistent with O.

Lemma 4.3.2 (maximal, global) Given the relations £1(x,y,w) and T(u,y,w,z), the

mazimal global observability relation for n is given by
omg(x’ u) = Sy.W,zﬁl(X, Y w)O(x, Z)T(u7 y,w, z)'

In particular, if L(x,v,y,w) = L1(x,¥,W)La(x,V) (L can be decomposed if it is an imple-

mentation), then
O™ (x,u) = Sy, wzL(x,V,y,W)T(u,y,w,2z)0(x,2).

Proof O'(x,u,y,w) = §;7(u,y,w,z)0(x,2z) is the maximal observability relation for
the network at the separating set (u, y, w) (serial decomposition, Lemma 4.2.2). Sy w(£10')
is the maximal parallel decomposition for node n (Lemma 4.2.6). If £L = L£;L;, then
SvL2(x,v) = 1 because L2 must be well-defined. The global observability relation of n can

be written as

O™ (x,u) = Sywzli(x,y,w)T(u,y,w,z)0(x,2)
= SywzLl1(x,y, W)Sv(L2(x,v))T(u,y,w,z)O0(x,2)
= Svywzli(x,y,w)Lxx,v)T(u,y,w,z)0(x,2)
= Svywzl(x,v,y,w)T(u,y,w,2z)0(x,z).

If £(x,v,y,w)and T(u,y,w,z) are implementations, O™9(x, u) = O%(x, u) be-
cause of Lemmas 4.2.3 and 4.2.7.

Let L3(x,v,y) be the relation between v,y and inputs x and L4(x,w) be the
relation between w and inputs x.

Lemma 4.3.3 (compatible, local) Given the relations L3(x,v,y) and T(u,y,w,z), the

compatible local observability relation for n is given by

0% v,y,u) = Cx(O%x,u)+ La(x,v,y))

CHAPTER 4. OBSERVABILITY RELATIONS FOR MULTI-OQUTPUT NODES 68

where O%9(x,u) is given by 4.3.1. In particular, if L(x,v,y,w) = L3(X,V,y)Ls(x, W)
(SwLla(x,w) =1 if L4(x, W) is well-defined),

0% (v,y,u) = Cxw(O%(x,u)+L(x,v,y,W)).

Proof O%(v,y,u)= Cx(0%9(x, u) + L3(x, v,y)) is simply the compatible parallel decom-
position made local by quantifying away x. If £ = £3£4 and CwZC4(x,w) = 0, then the

local compatible observability relation for n is

O%(v,y,u) = Cx(O%F(x,u)+La(x,v,y))
= Cx(0%(x,u)+ La(x,v,y) + CwLla(x,w))
= Cx,w(0%x,u) + L3(x,v,y) + La(x,w))
= Cxw(0%x,u)+L(x,v,y,w)).

As is the case in equation 4.2, we do not know of a way to express O™ (v, y, u) as
a Boolean relation. Hdwever, if both T(u,y,w,2z) and C(x,v,y,v}) are implementations,
O%(v,y,u) is also maximal.

O%(v,y,u) is a Boolean relation and can be minimized as a two-level function
using the program GYOCRO [83]. The result can then be used to replace the present
implementation for n, u = F(y). Alternately, if n is a multi-level network itself, compatible
external don’t cares can be derived using (3.6), (3.7), or (3.8) for each output of n and

Jull_simplify [70] can be used to optimize n.

4.3.1 Node Optimization Using Maximal Observability Relations

The algorithm in Figure 4.6 shows the computation of the maximal observabil-
ity relation for each multi-output node n; of a Boolean network and the simplification of
the node using GYOCRO. We first order all the nodes in topological order from outputs.
Oo(x,2) is the given specification of the circuit. The inputs of »; are v; and y; and its
outputs are u;. w; are the rest of variables shared by the separating sets of variables be-
fore and after n;. For each node n;, the observability relation O;(x, u;,y;, w;) is computed

from the old relation O;_;(x,u;_1,yi-1,W;—1) and the new implementation of n;_; after

its optimization

@i(xv Vi-1,¥Yi-1, wi—l) = Su;.., 0{—1()[, Ui-1,¥i-1, wi-l)(ui—l = -Ft'—l(vi—l ’ yi—-l))

CHAPTER 4. OBSERVABILITY RELATIONS FOR MULTI-OUTPUT NODES

function node_simplify
/* multi-output node simplification using maximal observability relations */
begin
Oo(x,2z) = given specification for the circuit
NodeArray = nodes ordered in topological order from the outputs
for each node n; in NodeArray in topological order begin
0;(x, v, yi, W;) = Su;_, Oi—1(%, Uic1, ¥i-1, Wic1)(Wic1 = Fi1(vic1,¥i-1))
L%, 3 Yir i) = Tt (90 Bk) T4 (90 B i) T (900, k)
O (x,u;) = Sy, ,wi Li(X, Vi, ¥i, Wi) Oi(x, Wi, ¥i, Wi)
Or(vi, ¥is) = Co,w: (O (%, w3) + Li(x, Vi, ¥i, Wi))
Optimize n; with the relation O™ using GYOCRO
end

end

69

Figure 4.6: Maximal Observability Relation Computation and Node Simplification

CHAPTER 4. OBSERVABILITY RELATIONS FOR MULTI-OUTPUT NODES 70

function node_simplify
/* multi-output node simplification using compatible observability relations */
begin
Oo(x, z) = given specification for the circuit
NodeArray = nodes ordered in topological order from the outputs
for each node n; in NodeArray in topological order begin
Oi(x, u;, yi, W) = Cy;_y (Oi-1(x%, Wi—1, ¥i-1, Wi—1) + -(7).:':’_1(":'—1, Yi-1,8i-1))
Li(%, Vi, ¥y Wi) = TT (90sBon) [T (90, Buk) Tt (90 D)
O (x, W) = Cy, w,(Li(X, Vi, ¥i, Wi) + Oi(x, wi, yi, W)
O (vi, ¥ir i) = C,w; (O (%, w)) + Ti(x, Vi, yi, W)
end
Nodes can be optimized using GYOCRO independent of each other

end

Figure 4.7: Compatible Observability Relation Computation and Node Simplification
Oi(x,w;,yi,wi) = Oi(x,Vie1,¥ic1, Wi-1)-

The variables v;_1,yi_1,W;_1 are regrouped to form u;,y;, w; (the same as v,y,w and
u',y’,w'in Figure 4.5). £i(x, v;,y:, w;) is computed using the global functions {Gvis G s un
at each of the inputs v,y of n; as well as those corresponding to w;. OY(x,u;) and
O™ (v;,yi, w;) are then computed and used to improve the current implementation at n;.
Lemma 4.3.3 is used to compute O™ (v, y;, w;) from O™(x, w;). OM(v;,y;, u;) is maximal

because £;(x, v;,¥i, w;) is an implemetation.

4.3.2 Node Optimization Using Compatible Observability Relations

The algorithm in Figure 4.7 shows the computation of compatible observability
relations for multi-output nodes of a Boolean network and the simplification of the nodes
using GYOCRO. The nodes are ordered topologically from outputs as before. Op(x,2)is the
given specification of the circuit. For each node n;, the observability relation O;(x, u;, y;, w;)
is computed from the old relation 0;_;(x, w;—1,yi—1,W;-1) and Off_l(v.-_l, Yi-1, Wi—1). This

is then used to find O{%(x, u;) and O§!(v;,y;, u;) as shown. Each node n; can be optimized

CHAPTER 4. OBSERVABILITY RELATIONS FOR MULTI-OUTPUT NODES 71

independent of the others using its observability relation because the observability relations

are compatible.

4.4 Conclusion

In this chapter, we have expanded the theory of don’t cares which is for single-
output nodes to a theory that can be applied to multi-output nodes. The flexibility at
each node is represented by a Boolean relation. Techniques are provided for computing
both maximal and compatible observability relations for multi-output nodes of a Boolean
network as is the case with don’t cares for single-output nodes. The maximal observability
relation for a multi-output node of a combinational circuit is the maximum flexibility for
manipulating that node. The compatible observability relations for a set of nodes ordered
topologically allows optimization of each such node independent of the optimization done
at other nodes in the set. The practicality of these techniques for optimizing large circuits
depends on how efficiently one can represent and manipulate observability relations in BDD

or any other form. These techniques are currently being investigated.

CHAPTER 4. OBSERVABILITY RELATIONS FOR MULTI-OUTPUT NODES 72

73

Chapter 5

Node Simplification: Practical

Issues

We present an algorithm for computing local don’t cares at each intermediate
node of a Boolean network based on image computation techniques. The local don’t care
set for each node, expressed in terms of immediate fanins of that node, is a combination
of satisfiability don’t cares, compatible or maximal observability don’t cares, and external
don’t cares. These don’t cares can be directly used for the simplification of each node by
a two-level minimizer. The simplification is very fast and the optimized circuits are 100
percent testable in most cases. This is a practical method and much more powerful than
previous methods developed for node simplification because it computes ia,lmost the full
local don’t care set at each node using the image computation techniques developed by
Coudert et al [21]. The image computation technique allows us to use the external don’t
cares very effectively. Furthermore, there is no restriction on how the external don’t cares
are represented, because BDD’s corresponding to external don’t cares are built for local

don’t care computation.

5.1 Introduction

The objectives of multi-level logic synthesis are to find networks which are optimum
with respect to area, delay, and/or testability of the circuit. The synthesis process is
usually divided into a technology dependent, and a technology independent part [10, 7).
In the technology independent part, one tries to simplify the logic equations representing

CHAPTER 5. NODE SIMPLIFICATION: PRACTICAL ISSUES 74

the Boolean network as much as possible. A common cost function used at this stage is
the literal count of the Boolean network in factored form. Experiments show that this
cost function correlates well with the final area of the mapped circuits when standard cell
libraries are used for the mapping. Thus, transformations are applied on a Boolean network
to find a representation with the least number of literals in factored form. The minimal
area network is also used as the starting point for delay oriented optimization. Additional
transformations are later applied to improve the performance of the circuit.

One important transformation in the technology independent stage is to apply two-
level logic minimizers on nodes of the multi-level network to optimize the two-level function
associated with each single node of the network. The input to the two-level minimizer is
composed of an onset cover and a don’t care set. The onset cover is the function at the node
in terms of its fanin variables. The don’t care set at each node may contain information
about the structure of the network and is a combination of external, observability, and
satisfiability don’t cares. A don’t care set of appropriate size for two-level minimizers must
be computed.

External don’t cares are conditions under which the value of the outputs are not
important and are very effective in the simplification of multi-level networks. However,
problems arise when external don’t cares are used for node simplification along with two-
level minimizers. The external don’t cares must be represented in a way that is suitable for
two-level minimizers.

Originally, external don’t cares were not supported in MIS-II. A recent version
represents the external don’t cares by a separate multi-level network which has the same
set of primary inputs as the original network. Corresponding to each primary output in
the care network is a primary output in the don’t care network representing the external
don’t care for that output; whenever a don’t care output is turned on by a primary input
minterm x, the x is a don’t care input for the corresponding output.

We describe a new algorithm for computing don’t cares in the local space (space
of fanin variables) of each intermediate node. This allows the effective use of the external
don’t cares in the node minimization process. The local don’t cares are represented in
terms of the immediate fanin variables of each intermediate node, and are a combination of
satisfiability, observability and external don’t cares. This new technique is faster than the
one introduced in [67], produces significantly superior results, and can be applied to a wide

range of circuits. The key operations are the computation of compatible observability plus

CHAPTER 5. NODE SIMPLIFICATION: PRACTICAL ISSUES 75

external don’t cares in BDD form and the effective use of the image computation techniques
to find the local don’t cares at each node.

5.2 Node Simplification

In systems, like MIS [10], which use an algorithmic approach to multi-level logic
synthesis, a two-level minimizer, such as ESPRESSO [11}, or a modified version of it [50]
is used to simplify the nodes of a multi-level network. The objective of a general two-level
logic minimizer is to find a logic representation with a minimal number of implicants and
literals while preserving the functionality. There are two general approaches. One is based
on the offset of the logic function and the other uses tautology. Logic minimizers, such
as ESPRESSO or MINI [38], generate the offset to determine whether a given cube is an
implicant and to obtain a global view of the expansion to prime process. The input usually
contains a cover for the onset and a cover for the don’t care set. A cover for the offset is
generated from the input using either a complement algorithm based on the Unate Recursive
Paradigm [11] or the Disjoint Sharp Process [38]. The number of cubes in the offset can
grow exponentially with the number of input variables; hence the offset generation could be
quite time consuming. The other approach to this problem is to use tautology. Literals in
a cube are raised individually and tautology is used to determine if the new cube is covered
by the union of the onset and the don’t care set. The major disadvantage of this approach is
that there is no global picture for ordering the literals to be raised and hence this approach
can give results that are sub-optimal. This approach is usually slower.

Functions with many cubes in the offset and don’t care set happen quite often
at the nodes of a multi-level logic network. ESPRESSO can easily run out of memory
while applying the Unate Recursive Paradigm to generate the offset. Other aspects of this
environment are that the initial cover is usually small, and both the initial cover and the
don’t care cover mainly consist of primes.

Example:
If no don’t cares are used, the input to a two-level minimizer to simplify node y, shown in

Figure 5.1 is

CHAPTER 5. NODE SIMPLIFICATION: PRACTICAL ISSUES 76

EDC
VA
f12 = Y10 Y1
flo = %% fi =%_";
X X X X%

N X% 5% X5 XX

Figure 5.1: Node Simplification

s Te Y7 Ys Y2
2 2 01 1
2 2 1 0 1
1 1 2 2 1.

Each row with numbers 0,1,2 in Figure 5.1 represents a cube. A 0 in a column shows a
variable in negative form; a 1 shows a variable in positive form; a 2 shows that variable
is missing in the cube. If satisfiability don’t cares for nodes 1, ys,¥s, Y7, ¥s, Yo are also
generated, the input cover with the above order for SDC’s is as shown in Figure 5.2.

As it is clear from this example the size of don’t care set grows rapidly as SDC’s
for more nodes are generated and the offset generation in ESPRESSO bécomes impractical.
To avoid such problems, new two-level minimization techniques based on reduced offsets
were proposed [50, 69]. The reduced offset for a cube is never larger than the entire offset
of the function and in practice has been found to be much smaller. The reduced offset can
be used in the same way as the full offset for the expansion of a cube and no quality is lost.

The use of reduced offset speeds up the node simplification for nodes in a multi-

level network. However, if the size of don’t care set is too large, the computation of reduced

77

CHAPTER 5. NODE SIMPLIFICATION: PRACTICAL ISSUES

Y2

Ys Ya Ts Te Y7 Ys Yo

1 Z2 T3 T4 N

2
2

1
0

2 2 2 2 2 2 2 2 2 0

2 2 2

1

2 2 2 2 2 2

2 2 2 1

1

1

2 2 2 2 2 2 2

2
2
2

2 2 2 0 11 2 2 2 2 2
2 2 2 0o 2 2 2 2 2 2
2 0 2 2 2 2 2

2 2 2 2

1
1

2

2
2
2

2 2 2 0 2 2 2 2 2 2

1
0 2 2 2 2

1

2 2 2 2 2 2
2 2 2 2 2 2

1
1

0 2 2 2

2

2 2 0 2 2 2 2 2 2

1

1

2
2 2 0 2 2 2

2
2

2 2 2 2 2

2 2 2 2 2

1
1

2 2 0 2 2

2

2 2 2 2 2 2 0 2 2 2

1

2
2 2 0 2 2 2

1

2
2

2
2

1 2 2 1
1 2 2 1

2 2 2

0 2 2

2
2

1 2 0 2 2 2 2 2 2 0 2

2 0 2

2

2 2 2 2 2 2 0 2

1
1

2
2

1
1

2 2 2 2 2 2
2 2 2 2 2 2

2
2

“
Es

0
0
1

1

2 2 2 2 2 2 2 2 2 2
2 2 2 2 2 2 2 2 2

2

1
2 2 2 2 2 2 2 2 2 0 0

Figure 5.2: Input to Two-Level Minimizer

CHAPTER 5. NODE SIMPLIFICATION: PRACTICAL ISSUES 78

offsets is not possible either; therefore, filters must be introduced to keep the don’t care size
reasonably small. The filters are chosen heuristically hoping that the quality of the node

simplification is not reduced significantly.

5.3 Using Don’t Cares

While doing node simplification, a two-level minimizer is applied on each of the
nodes of a multi-level network. The structure of the Boolean network is captured by don’t
cares. In MIS-II [10], a subset of satisfiability don’t cares is used for the simplification of
each node. This subset known as the support subset [65] is the satisfiability don’t care set
of all the nodes whose local function is dependent on a subset of the variables in the local
function of the node being simplified. By using support subset we can effectively cause
a Boolean substitution of the nodes of the network into the node being simplified, but in
general we do not get maximum simplification of the node. As an example of the subset
filter, while simplifying node y2 shown in Figure 5.1 the SDC for node yo is generated
because the support of yg is a subset of the support of y;. Thus substitution of node yg in
y2 will happen if such possibility exists and it results in a simpler function at y,.

Observability don’t cares are computed in terms of intermediate variables in the
network. The most general technique for expressing external don’t cares is to represent them
with another network with the same primary inputs and one output for each output in the
care network. To fully utilize ODC’s plus EDC’s for the simplification of each intermediate
node one has to find how the current representation of the node is related to these don’t
cares. The relation between EDC’s plus ODC’s and the current representation at each node
is usually only through primary inputs. To get the most simplification possible for each
node, one has to provide this connection, which is the structure of the Boolean network, to
the two-level minimizer.

The most straightforward approach is to establish this connection through SDC’s.
SDC'’s are generated for all the nodes in the transitive fanin cone of the node being simplified
to relate the current representation of the node to the primary inputs. SDC’s are also
generated to relate EDC plus ODC to primary inputs. These are all the nodes in the
transitive fanin cone of the support of EDC plus ODC.

Example:

The EDC plus ODC for y; in Figure 5.1is dJ* = y; +12. SDC’s for nodes y7 and ys relate

CHAPTER 5. NODE SIMPLIFICATION: PRACTICAL ISSUES 79

to primary inputs. SDC’s for nodes y;, ys, ¥4, %10, ¥11, and y12 relate dF to primary inputs.
We also generate SDC of yg because it may be substituted in the representation of y. The
input to the two-level minimizer has 15 input variables and 33 cubes for this very small
example. After node simplification, the representation at y, becomes f; = yg9 + z5%6.

It is obvious that this approach is not practical for networks with many levels; the
size of satisfiability don’t care set grows very large in such cases and node simplification
becomes impossible.

The command cspf_simplify in the most recent release of MIS-II computes the
external and observability don’t cares for each node using the techniques in [67]. The
external don’t cares are only allowed in two-level form expressed directly in terms of primary
inputs. CODC’s are computed for the simplification of each node. These CODC’s are in
terms of intermediate variables in the network. A collapsing and filtering procedure is used
to find a subset of CODC which is in the transitive fanin cone of the node being simplified.
A limited SDC is generated to use CODC plus EDC in two-level form. EDC’s cannot be
represented in two-level form in many cases because the number of cubes in the sum-of-
products representation of EDC’s grows very large. Also, because of collapsing and filtering
and the limited SDC generated, the quality is reduced considerably compared to what is
possible.

Example:

The EDC plus ODC for y; in Figure 5.1 in terms of primary inputs is &3¢ = z;z22324 +
21T223%4. SDC’s for nodes y;,ys and yp must be generated. The SDC’s for nodes y;
and yg relate the EDC plus ODC of y; to the current representation at that node. The
SDC for yg allows the substitution of yg in y;. The input to the two-level minimizer is as
shown in Figure 5.3. After node simplification, the representation at y, becomes as before
J2 = yo + z5T6.

At each intermediate node, there is a local function f; : B — B which is the
function of the node in terms of its immediate fanins. Ideally, one would like to express the
external plus observability don’t cares of each node in terms of its immediate fanins not
primary inputs. This reduces the number of variables in the input given to the two-level
minimizer considerably. The local don’t cares for y; are minterms m; € B" for which the
value of f; can be either 1 or 0 and this change does not affect the behavior of the Boolean
network. The local don’t cares for y; are related to the EDC, ODC of y; and SDC’s of the

network and are as effective in node simplification as the full don’t care set. They can be

80

CHAPTER 5. NODE SIMPLIFICATION: PRACTICAL ISSUES

Y2

Ty T2 T3 T4 Ts Te Y7 Ys Yo

2
2

1
0
2 2 2

2 2 2 2 2 0

2

2 2 2 2 1

2

1

1

1

2

2
2

2 2 2 2 2
0 2 2 2 2 2

1

1

0

2

2 2 2 0 2 2
2 2 2 2
2

2 0

2

0
2

2

2
2

2 2 2 2 0 2
2 2 2 0 2
2 2 2

2 0 2 0

2
2

1
1

2 0

2 0 2

1

2 2 2

2 2 2 2 2 2
2
2 2 2 2

2 2 21 0
2 0 0

2

Figure 5.3: Input to Two-Level Minimizer

CHAPTER 5. NODE SIMPLIFICATION: PRACTICAL ISSUES 81

used to remove all the redundancies within a node.

Example:

The local don’t care for y; is di” = y7ys. By examining the subset support, we determine
that the SDC of yg should be included. The input to the two-level minimizer is

Ts Te Y7 Ys Yo Y2
2 2 0 1 2 1
2 2 1 0 2 1
1 1 2 2 2 1

0

After node simplification, the representation at y, becomes as before fo = yo + z5zs.

5.4 Computing Local Don’t Cares

We describe a new method for using various kinds of don’t cares, i.e. satisfiability
don’t cares, observability don’t cares, and external don’t cares, to optimize a multi-level
network. At each intermediate node, we find local don’t cares in terms of fanins of the node
being simplified.

Let y, be the node being simplified and f, : B" — B be the local function at this
node in terms of its fanins y;,...,y,. The local don’t care set d', is all the points in B for
which the value of f, is not important.

d, = [1%%, di;, where d,; is the don’t care with respect to primary output z; in the
transitive fanout of node y, !. A minterm m' € d,; if either a) there is no primary input
combination m9 € B" of the Boolean network that generates m! or b) all such primary
input combinations are in the observability plus external don’t care set of the node y, with

respect to z; (dJ;).

!We include here the product over all outputs even if z; is not in the transitive fanout cone of y,, since
then d!; =1.

CHAPTER 5. NODE SIMPLIFICATION: PRACTICAL ISSUES 82

To find d!, we first find the observability plus external don’t care set, dJ, in terms
of primary inputs. Notice that d§ = []dj,;. The care set of y, in terms of primary inputs is
d?. The local care set Ef,' is computed by finding all combinations in B" reachable from d..

Any combination in B" that is not reachable from d? is in the local don’t care set d!.

Theorem 5.4.1 The procedure outlined above finds all the local don’t cares of y,.

Proof Assume there is a don’t care minterm m' € B" such that m! ¢ d!. Clearly, there
must be some input minterms m{, m3,... that generate m!. All such minterms must be
in the observability plus external don’t care set computed for node y,; otherwise the local
function at node y, must have a specific value for m!. Thus m! € d! by construction,

contradicting m' ¢ d!. =

Theorem 5.4.2 If the two-level function associated with each node y, in the network is

prime and irredundant (with respect to d'), then every connection in the Boolean network

is single stuck-at-fault testable.

Proof Each node has a sum-of-products representation. We consider two kinds of faults
in particular. First assume the input y; to some AND term ¢ can be set to 1. This implies
the corresponding cube &, with y; replaced with ; is a local don’t care and by Theorem 5.4.1
is in d!. Thus ¢ was not a prime. The second kind of fault is the input to some OR term
stuck-at-0. This implies that the associated cube is redundant. But this is not possible,
because the two-level representation at each node is prime and irredundant with d, as the
don’t care set and d! contains all the local don’t cares. A stuck-at-0 at an AND gate is
equivalent to a stuck-at-0 of the OR gate and a stuck-at-1 at an OR gate is equivalent to
the node function being 1; thus none of the cubes are prime. =

The above theorem implies that repeated simplification of the nodes in order, until

no change occurs, using local don’t cares leads to a network that is 100% testable.

5.5 Implementation

In practice, it is computationally expensive to compute complete observability
don’t cares for each of the nodes of the network. Instead, we use compatible observability

don’t cares. As discussed in Chapter 3, subsets of observability don’t cares are compatible if

CHAPTER 5. NODE SIMPLIFICATION: PRACTICAL ISSUES 83

the function at each node can be changed (as allowed by its observability don’t care subset)
independent of allowable changes in the functions at other nodes in the network. These
compatible subsets can be computed for all the nodes by traversing the Boolean network
once. By using eompatible observability don’t cares we cannot guarantee 100% testability
although experimental results show in most cases the optimized networks are 100% testable.

The computation of observability plus external don’t cares and the image compu-
tation to find reachable points in the local space of each node are done using BDD’s. We
used the BDD package in SIS [74] which is implemented based on the techniques in [9].
First we find.BDD’s at each of the nodes of the Boolean network in terms of the primary
inputs. The size of the generated BDD’s is dependent on the ordering of the input variables
in the network. We applied the ordering given in [51]. BDD’s are also built for each of the
primary outputs in the external don’t care network using this same ordering.

The algorithm for node simplification using local don’t cares is shown in Figure
5.4. The computation starts from the primary outputs and proceeds towards the primary
inputs. First we order all the nodes in the network in topological order from outputs. This
ordering is done in depth first manner. The compatible observability don’t care set at each
primary output is initialized to the external don’t care set at that output if the external
don’t care set exists, otherwise, it is set to 0.

The intermediate nodes are processed one by one in the chosen topological order.
We find the compatible global observability plus external don’t care set at each intermediate
node. This computation is based on equations (3.7) and (3.10). Some filtering is added to
speedup the computation. The complement of the global don’t care set d;° computed for a
node is used to find the local don’t cares. Any vertex in the local space of the node being
simplified (y;) which cannot be generated under any input combination in d;’ is in the local

don’t care set of y;. In what follows, we explain the techniques applied in more detail.

5.5.1 External Don’t Cares

The external don’t care set is represented by a separate multi-output network '
Negdc. Nezae has the same number of inputs and outputs as the care network A. Primary
inputs are exactly the same as the care network. The function at each primary output
of N.zd. represents the external don’t care set for the corresponding output in the care

network.

CHAPTER 5. NODE SIMPLIFICATION: PRACTICAL ISSUES

function full_simplify
begin
for each primary output z; begin
di° = external don’t care for z
end
NodeArray = nodes ordered in topological order from the outputs
for each node y; in NodeArray in topological order begin
/* find a compatible don’t care set for y; */
di° = get_compatible_dc(y;)
/* find the local don’t care set by range computation */
Let (gk,,9kys - - -» gk,) be global functions at fanins of y;
d_f- = range([gr,» Gky» - - -1 Gk Jge) [*gives Ef in sum-of-products form*/
SDC; = SDC’s of substitutal;le nodes in y;
simplify node y; using ($DC; + d})
end

end

Figure 5.4: don’t care computation and node simplification

84

CHAPTER 5. NODE SIMPLIFICATION: PRACTICAL ISSUES

.model Ezample

Jdnpuls zy 29 T3 T4 2Ty Ze
oulputs =z
.names Yy Y2 z

1 2 1

2 1 1
.names ys Ys n

1 1 1
.names Tz Te Yr Ys ys

1 1 2 2 1

2 2 1 0 1

2 2 0 1 1
.names z; 23 ys

1 1 1
.names T3 T4 Vs

1 1 1
.names z; 3 y7

1 1 1
.names Tz T4 ys

1 0 1

0 1 1
.names Y7 Ys Ys

1 2 1

2 1 1
.exde

.model Ezample — DC

dnputs z1 zo T3 T4 Iz Ze

outpuis =2

.names Y0 Y11 z
1 1 1

.names z; o3 Y10
1 1 1

names Tz T4 Y11
0 0 1

.end

Figure 5.5: Berkeley Logic Interchange Format

85

CHAPTER 5. NODE SIMPLIFICATION: PRACTICAL ISSUES 86

A new construct called .ezdcis added to Berkeley Logic Interchange Format (BLIF)
to describe external don’t cares. The description of N, using exactly the same format as
the care network, comes after .ezdc. An example is shown in Figure 5.5 which is the same

network and don’t care network of Figure 5.1.

5.5.2 Inverse of Boolean Difference

While computing ODC’s or CODC'’s, the expression g = fuls, + Ty f5, is com-
puted repeatedly. The direct computation of this function in sum-of-products form is in-
efficient because one has to compute the complement of f,, and fj, and then perform the
necessary AND and OR operations. Let f = py;+¢7; +r be the function in sum-of-products
form and y; be the variable with respect to which the Boolean difference is computed. Then

[2i
Ay

il

(P+r)g+7)+PTT
Pg+PI+r.

It is faster to compute the complement of p and ¢ in sum-of-products form because they
contain less cubes than f,, and fj,. The AND operations pq and 7 g can also be computed

much faster. This formulation was suggested by Adnan Aziz [5].

5.5.3 Computing Observability and External Don’t Cares at Each Node

The compatible observability plus external don’t care set at node y; is found by
using the compatible observability don’t care set for each fanout edge (%, k) of y; (see Figure
5.7). The compatible observability don’t care set for y; is then obtained by intersecting the
observability don’t care subsets computed for its fanout edges.

The algorithm in Figure 5.6 shows how a compatible don’t care set is computed for
anode. The compatibility operations for the computation of observability don’t care subsets
at each fanout edge are done in sum-of-products form because intermediate variables are
needed for such operations 2. Furthermore, it is much easier to filter out unwanted cubes if
the representation is in sum-of-products form. All other operations are done in BDD form.
To distinguish the operations in sum-of-products form from the rest we added the comment

/* cube */ at the end of each such operation in Figure 5.6. The computation of CODC

%It would be possible to do this compatation in BDD form, but this would require finding an ordering
for both primary inputs and intermediate variables.

CHAPTER 5. NODE SIMPLIFICATION: PRACTICAL ISSUES

function get_compatible_dc(y;)
/* find Compatible don’t care for each node */
begin
/* a topological ordering > is given for all the nodes in the network*/
FanoutList= A list of fanouts of y;
& =1 f
for each node y; with function fi in FanoutList begin
D= filter(%zyg) /* cubes */
Let (9j,,---,¥;,) be fanins of y such that y; > y;
for each fanin y;, of yx such that y; > y; begin
/* replace all the variables yj,,...y;_, > y; in g&
with their local functions to get E; */
E; = 'a%flyj, =51 V5 =5 [* cubes */
end
D¢ = (Ej, +Cy;,)...(Ej, +Cy;,)D [* cubes */
D9 = transform D¢ into BDD form in terms of primary inputs
&3 =D +dy
& = &P

end
return d;°
end

Figure 5.6: don’t care computation and node simplification

88

Figure 5.7: An Intermediate Node

for an edge can be done more efficiently as given by Lemma 3.5.5, if a small number of
intermediate variables are replaced with their local functions. When 38'&[}‘,' is computed we
replace all the fanins of y; which have higher order than y; with their local functions in
g;’% to get E;, (as shown in Figure 5.6). These (Ej,’s) are then used to compute D¢ which
is a part of CODC for the edge (i,k). Once the D¢ is computed in sum-of-products form
in terms of intermediate and primary input variables, we substitute each variable with the
global BDD corresponding to that variable to get D¢ in BDD form in terms of only primary
inputs. The don’t care set computed for node yi, d;°, which is kept in BDD form is then
added to D to get dj. The CODC’s of the fanout edges are ANDed together one by one
to get the CODC of the node which is later used for image computation.

5.5.4 Filtering

Let ¥¢;,..., ¥, be the fanins of y; and d;? the global don’t care at y; as shown in
Figure 5.7. The local don’t care set for y; is

s t) = SndZ(X) (g0 (X)) - (00, (X))
= Cx(dP(x)+ ge,(X) D ve, + ...+ 96, (%) © 92,)

CHAPTER 5. NODE SIMPLIFICATION: PRACTICAL ISSUES 89

In general, d;’ can depend on primary input variables outside the transitive fanin cone of
y: as well as those in the cone. Let x” be all the primary inputs outside the cone and x’

the rest of primary inputs. No global function g, is dependent on z”, therefore,

dﬁ'(!lt, yeenr¥ty) = Cx'(Cxnd®(x) + g, (X) D ye, + ...+ .‘]t,(x) @ 3/:,).

The dependency on x” can be removed by computing Cxnd;? first and then doing the image
computation.

When we compute d;? as shown in Figure 5.6 a heuristic filtering step is introduced
which removes cubes that are dependent on variables z”. For each node y; we generate a list
of nodes, FoutInList, which is the transitive fanouts of the transitive fanins of y;. Notice that
the global function corresponding to a node y, not in FoutInList is completely dependent
on x"; otherwise, y, is a transitive fanout of some node in x’ which is a transitive fanin of y;
and therefore y, is in FoutInList. The filter in Figure 5.6 removes cubes which have literals
corresponding to nodes not in FoutInList. If global functions for these cubes are computed,
they result in new cubes ¢;,...,c, in terms of primary inputs such that each cube has some

"

variables from x”. Let ¢q41,...,¢p be all other cubes in df dependent only on x’, then

and:-:g =Cxr(c1+...+¢n)+ ey + .. .Cp.

Cxn(cy+ ...+ ¢;) = 0 in most cases because there is usually some minterm m in terms of
variables in x” for which (¢; +...4 ¢3)m = 0. Our experiments support the effectiveness
of this filtering.

Example:

Let y, = 21 + 22 be a variable which is not in FoutInList of y; and ¢ = ypy, .. -Y1; a cube
in df. The global function for ¢ is (z; + z2)g(x'). Cz,z,(z1 + z2)g9(x’) = 0.

5.5.5 Computing the Image

After computing the compatible observability plus external don’t care set at y; in
terms of primary inputs d;?, we find all the combinations of variables in the local space of
y; which are possible for some input vector in d;°. This is done by cofactoring each global
fanin function of y; with respect to d;° and then finding all the reachable points using a
range computation algorithm. The cofactor operations are generalized cofactor operations
defined in Section 2.3.1. We also introduced three different techniques, transition relation

CHAPTER 5. NODE SIMPLIFICATION: PRACTICAL ISSUES 90

method, output cofactoring, and input cofactoring for range computation in Section 2.3.
We discuss their relative merits for computing local don’t cares.

The number of immediate fanins of a node y; being simplified is usually much less
than the number of the primary inputs in the transitive fanin cone of y;. As a result the
size of the support of g = [91,...,9m] (i.e. n where x = [z;,...,%y,] is the support of g and
g is a vector representing the global functions at the fanins of y;) is much greater than the
number of elements of g (i.e. m). Therefore, if output cofactoring is chosen, the number of
cofactoring operations that needs to be done to compute the range of g is considerably less
than the case where input cofactoring is used. The shortcoming of the transition relation
method for this application is that one has to order both the y and the x variables to
build the characteristic function G(x,y) = [T;<i<m(%®gi(x)) for range computation. The
simplification of all the nodes in the network requires the ordering of all the intermediate
variables in addition to primary input variables. We do not know of a good ordering for all
these variables at the same time. The other disadvantage of the transition relation method is
that the range must be computed in BDD form and then transformed into sum-of-products
form to be fed to a two-level minimizer (two-level minimizers which manipulate BDD’s are
not fully developed yet). As a result, we used output cofactoring for range computation.

The range computation algorithm is shown in Figure 5.8. Given a Boolean function
g =[91,-.-,9m], we compute the characteristic function of the range of g recursively using

the following equation:

range(g)(y) = wirange([(92)g,---1(9m)a]) + Firange([(92)zm; - - - » (9m)z])

The terms inside the recursive calls to the range computation are cofactored by g; or Gy
to decrease the complexity of the recursive computation. More importantly, at each step
of the recursion, whenever the remaining single output functions can be grouped into sets
of disjoint support, the range computation proceeds on each group independently. This
reduces the worst case complexity from 2™ to 2% 4. ..+ 2% where (s,,...,3;) are the sizes
of the independent groups (8; + ...+ s = m). If an element of g has a fixed value of 1
or 0, that element is removed and the corresponding literal is ANDed in sum-of-products
form with the result of the range computation for the rest of the elements in g.

The algorithm for partitioning elements of g into groups of disjoint support is
shown in Figure 5.9. We first find the support of each function. There is a single bit

associated with each variable in the set representing the support of each g;. This bit is set

CHAPTER 5. NODE SIMPLIFICATION: PRACTICAL ISSUES

function range([g1,...,9m])
/* returns the range in sum-of-products form */
beéin
if (m == 0) return 1
for (1 < i < m) begin
if (g == 1) return y; . range([g1,...,9i-1,9i+15---,9m]) /* cubes */
if (g; == 0) return %; . range([g1, .-, 0i-1,8i+1,+-,9m]) /* cubes */
end
/* pa..rtition [g1,...,9m) into groups Gy, ..., G} with disjoint supports*/
[G1, ..., Gk] = partition [g1,...,9m]
if (k > 1) return range(G,) . range(G?2) ...range(Gy)
select output ¢ with the smallest support
return y; . ra.nge([(gl)g,-, ooy (Gi=1)gi (Gi1)gi - - s (9m)g:])

+%. l;a'nge([(gl [REEEE) (gt'—l (R (gi-{-l [REREE) (gm)y—-])
end

Figure 5.8: Range Computation Algorithm

91

CHAPTER 5. NODE SIMPLIFICATION: PRACTICAL ISSUES 92

to 1 if the variable is present in the support and 0 otherwise. We OR any two support sets
with a 1 in the same column, and substitute the two sets with the support set obtained by
ORing. After this is done for all the columns, we get sets s; that represent each partition
Gj;. Any g, whose support is in s; belongs to the partition Gj;.

The routine range is called by passing as argument a multiple output Boolean
function. It returns the local care set for a node y; in sum-of-products form. Once the care
set is known, the don’t care set can be computed by finding the inverse of the care set.
One can find the don’t care set directly with slight modifications to the algorithm shown in
Figure 5.8.

d£ obtained by the range computation routine is in sum-of-products form; therefore,
it can be used directly as input to a two-level minimizer. Before simplifying y;, we add to d!
satisfiability don’t cares of the nodes that can be substituted in y;. These nodes are nodes

with a support that is a subset of support of y;.

5.6 Conclusion

We have introduced an algorithm for computing local don’t cares for simplification
of intermediate nodes of a multi-level network. The external don’t care network used by the
algorithm can be a general multi-level network, because BDD’s are used for representing
external don’t cares in terms of primary inputs. The compatible observability don’t cares
can be computed more efficiently because set operations are much faster using BDD’s. This
technique allows larger circuits to be optimized. The technique is limited to those networks
where the BDD’s of the network functions can be built, which depends on the quality of
BDD ordering methods available.

CHAPTER 5. NODE SIMPLIFICATION: PRACTICAL ISSUES

function partition([g;,...,gm))
/* partition into groups with disjoint support */
begin
/*find the support of each function */
for (1 < i < m) begin
8; = support(g;)
end
/* OR any two support sets which have common parts */
for (1 < j < n) begin

fs=NIL
for (1 < i < m) begin
if s; == NIL continue

if 3;(j) == 0 continue

if fs==NIL
fs=s;

else begin
fs=OR(fs,s;)
si=NIL

end

end
end

/* Make a group G; corresponding to each support set*/

j=0
for (1 < i < m) begin
if s; == NIL continue

G; = all gx whose support is contained in s;
J=j+1
end

end

Figure 5.9: Partition into Groups with Disjoint Support

CHAPTER 5. NODE SLMPLIFICATION: PRACTICAL ISSUES

94

95

Chapter 6

Scripts for Technology

Independent Optimization

In this chapter, we investigate the set of operations used for the optimization of
a multi-level Boolean network. These operations are run in a prespecified order, known
as a script, in MIS-IIL. Scripts embody different kinds of manipulations used for optimizing

multi-level networks. These manipulations can be grouped as

1. extraction which is extracting common expressions among the nodes of a Boolean

network and creating new nodes representing them,
2. node restructuring which is reducing the amount of logic at each node, and

3. elimination which is removing nodes whose value is below some threshold in the

Boolean network.

We examine each category, explain the shortcomings of current approaches and provide
modifications that improve the robustness of the methods and the quality of optimized
networks. We present a new script which uses full_simplify and fast_eziract, and give results
on a large set of benchmark circuits. The results show that the modifications improve the

robustness of the scripts and the quality of results significantly.

CHAPTER 6. SCRIPTS FOR TECHNOLOGY INDEPENDENT OPTIMIZATION 96

6.1 Introduction

The key to implementing a set of logic functions in a small area with small delay
through the circuit is to find a good Boolean decomposition of those logic functions. The
set of logic functions are represented as a Boolean network. Each logic function can be
implemented using simple gates in many different ways. The decomposition is equivalent to
partitioning logic functions into smaller ones whose interaction generates the desired behav-
ior at the primary outputs of the Boolean network. Each partition is a logic function itself
and is represented by an intermediate node iﬁ the Boolean network. These intermediate
nodes are later mapped into gates available in the library. The best implementation for a
set of logic equations is usually obtained by a multi-level network where many levels of logic
are used to implement each logic function.

The operation of extracting the right intermediate nodes is computationally ex-
pensive because of many different ways in which a Boolean network can be decomposed.
Therefore we use an iterative procedure to improve the quality of the multi-level network
incrementally. The cost function we use to measure the quality of a Boolean network is the
number of literals in factored form. For each intermediate node of the network we find the
best factored form representation and count the number of literals in each representation.
The sum of literal counts for all the nodes is the literal count for the whole network. Exper-
iments show that the literal count in factored form correlates well with the final area of the
mapped circuits !. The three sets of transformations used to reduce the cost are extraction,
node simplification, and elimination.

Extraction is using algebraic techniques to capture common sub-expressions in the
network and creating new intermediate nodes which represent those sub-expressions. Three
different algebraic techniques, kernel extraction algorithms, cube extraction algorithms, and
a polynomial time two-cube extraction algorithm are discussed in this chapter. It is shown
that the two-cube extraction algorithm can give results as good as other approaches while
the time spent for extraction is substantially less.

Once new nodes are extracted we use node restructuring techniques to improve

the quality of each node locally. This is usually done by introduéing new fanins to the node

1Of course area minimization is not the only optimization criterion of interest. However, we have found
that a minimal area circuit is a good starting point for optimizations whose goals are performance or
testability. Furthermore, even after performance optimization, area reclamation is necessary to achieve
acceptable results.

CHAPTER 6. SCRIPTS FOR TECHNOLOGY INDEPENDENT OPTIMIZATION 97

and then removing some other fanins while preserving the desired behavior at the primary
outputs. Node restructuring can also be done in different ways such as node simplification,
algebraic resubstitution, and redunda.ﬁcy removal. The most powerful technique of all is
node simplification where a two-level minimizer is applied to each node in the network.
Node simplification is a local operation. Don’t care sets which contain information about
the structure of the netwbrk are used to make node simplification more effective. These don’t
cares are a combination of observability, satisfiability, and external don’t cares discussed in
Chapter 3.

We associate a value to each node in the multi-level network that measures how
good it is to keep that node in the network. Once the node restructuring is done, we remove
(or eliminate) all nodes whose value is below some threshold [10]. The process of extraction,
node restructuring, and elimination is repeated many times in different orders until no more
improvement is possible.

In practice we start from a PLA or a multi-level network and use the extraction,
node restructuring, and elimination algorithms in different order to improve the quality of
the Boolean network incrementally. The extraction, node simplification, and elimination are
all greedy algorithms. While extracting new nodes, we look for the best algebraic divisor
at each step although it can affect other divisors extracted later on. In a simplification
algorithm we first find some ordering of the nodes in the network and then in sequence try
to simplify the local function at each of the nodes as much as possible. The order in which
the intermediate nodes of the network are simplified is important because simplification of
one node can affect simplification of other nodes in the network. The elimination algorithm
is again a greedy algorithm and therefore, the elimination of one node can affect the value
of other nodes in the network. Because most operations are done in a greedy way the
final result is very dependent on the starting point and the order in which the optimizing
operations are done.

Currently, there are two scripts in MIS-II for logic minimization, the algebraic
script and the Boolean script. The main difference is that the algebraic script performs sim-
plification without any don’t cares while the Boolean script performs simplification using
satisfiability don’t cares. Each script contains a sequence of operations that have performed
well on most industrial examples. In the following sections, we evaluate each of the com-
mands in these scripts, investigate why they fail on some circuits and show ways to improve

the quality of each command. We then propose new scripts which include these modifica-

CHAPTER 6. SCRIPTS FOR TECHNOLOGY INDEPENbEN T OPTIMIZATION 98

tions and show results that prove the effectiveness of our modifications. In Chapter 7, we
map these circuits into a set of given library gates and show the improvement on mapped

circuits.

6.2 Scripts Used for Logic Minimization

Our ultimate goal is to obtain a script which is robust in the sense that it rarely
fails (no timeout or space out problems) on a wide variety of circuits and produces results
as good as any manually directed script. Three sources of non-robustness in MIS-II are

kernel extraction, simplification, and elimination algorithms.

¢ Kernel Extract: Some functions have many kernels (especially symmetrical func-
tions). This either causes a spaceout problem or the time for extraction becomes
enormous. This is exacerbated by the present implementation of kernel extract in
MIS-II which selects only a few kernels among all kernels generated and then reex-
tracts all the kernels again. One possible fix is the use of two-cube kernels as proposed
in [81]. According to our experimental results, the two approaches are comparable in

quality in most cases, but two-cube extraction is much faster.

e Simplify: The problem here is generating and using don’t cares. The filters used
for keeping the size of don’t cares small are not always effective. As mentioned in
Chapter 5, the input to the two-level minimizer has an onset and a don’t care set.
The offset must be generated to find a good representation for the function. The
complementation necessary for generating the offset of a function and using it within
a two-level minimizer becomes infeasible when the don’t care set is large. On the
other hand not using the don’t cares degrades the quality of the results. An efficient
method for node simplification with don’t cares is given in Chapter 5. The timeout

and spaceout problems can still occur but more rarely.

¢ Eliminate: This can cause creation of a node whose sum-of-products form has too
many cubes. The solution we propose is an intelligent ordering of the nodes in the

network and then a controlled elimination.

We now discuss these problems and their proposed solutions in more detail.

CHAPTER 6. SCRIPTS FOR TECHNOLOGY INDEPENDENT OPTIMIZATION 99

6.2.1 Kernel and Cube Extraction

An important step in network optimization is extracting new nodes representing
logic functions whose interaction gives the desired behavior at the outputs of the multi-level
network. We do not know of any Boolean decomposition technique that performs well and
is not computationally expensive; therefore we use algebraic techniques. The basic idea
is to look for expressions that are observed many times in the nodes of the network and
extract such expressions. Each such expression is implemented only once as a node and
the output of this node replaces the occurrence of the expression in any other node in the
network. This technique is dependent on the sum-of-products representation at each node
in the network and therefore a slight change at a node can canse a large change in the final
result, for better or for worse.

The current algebraic techniques in MIS-II are based on kernels [13]. The kernels

of a logic expression f are defined as

K(f)={gl9=f/c,gis cube free }

where c is a cube, g has at least two cubes and is the result of algebraic division of f by
¢, and there is no common literal among all the cubes in g (i.e. g is cube free). This set
is smaller than the set of all algebraic divisors of the nodes in the network; therefore it
can be computed much faster and is almost as effective. One problem encountered with
this in practice is that the number of kernels of a logic expression can be exponential in
the number of cubes appearing in that expression. Furthermore, after a kernel is extracted
from a node, its set of kernels changes. There is no easy way of updating other kernels, thus
kernel extraction is usually repeated. Once all kernels are extracted, the largest intersection
that divides most nodes in the network is sought. There is no notion of the complement
of a kernel being used at this stage. After kernels are extracted, one looks for the best
single cube divisors and extracts such cubes. The kernels and cubes are sought only in
uncomplemented form (e.g. if @ + b is extracted, we do not substitute its complement
@b at this stage.). Later, Boolean or algebraic resubstitution can perform division by the
complement as well.

A more recent algebraic technique extracts only two-cube divisors and two-literal
single-cube divisors both in normal and complemented forms [81]. This approach has several

advantages in terms of computation time while the quality of the final result is as good as

CHAPTER 6. SCRIPTS FOR TECHNOLOGY INDEPENDENT OPTIMIZATION 100

that obtained by kernel-based approaches. This was first observed in [81] and later confirmed
by our experimental results. It can be shown that the total number of double-cube divisors
and two-literal single-cube divisors is polynomial in the number of cubes appearing in the
expression. Also, this set is created once, and can be efficiently updated when a divisor is
extracted. Additionally, one looks for both the normal and complemented forms of a divisor
in all the nodes in the network so in choosing the best divisor a better evaluation can be
made based on the usefulness of the divisor as well as its complement. There is also no need
for algebraic resubstitution once divisors are extracted.

The algorithm of [81] works as follows. First all two-cube divisors and two-literal
single-cube divisors are recognized and put in a list. A value is associated with each divisor
which measures how many literals are saved if that expression is extracted. This value
includes the usefulness of the complement in the cases where the complements are single
cubes or two-cube divisors. Common cube divisors are also evaluated at the same time
so that "kernel” extraction and ”"cube” extraction are nicely interleaved by this process.
The divisor with highest value is extracted greedily. All other divisors and their values are
updated and the whole process is repeated until no more divisors can be extracted. This
technique has been implemented in MIS-II and is called fast_extract or fr.

One shortcoming of this approach is that the size of each divisor is limited to
no more than two cubes. However, large nodes are effectively extracted by the combined
process of fast_eztract and elimination. Elimination as explained later, is used to increase

the size of some divisors and remove others that are not effective.

6.2.2 Simplification

To improve the local function at each intermediate node of a multi-level network,
we apply a two-level minimizer to each node. The two-level minimizer finds an optimal
representation of the node. The input to the two-level minimizer is composed of an onset
cover and a don’t care set. The onset cover is the function of the node in terms of its
fanins. The don’t care set contains information about the structure of the Boolean net-
work. Different don’t care subsets are used to optimize a node y;. One approach uses only
satisfiability don’t cares of the nodes whose support is included in the support of the node
being simplified. This is called the support subset and is used in Boolean script in MIS-II.

The second approach uses no don’t care at all. The input given to the two-level minimizer

CHAPTER 6. SCRIPTS FOR TECHNOLOGY INDEPENDENT OPTIMIZATION 101

contains only an onset for y;. Algebraic techniques are used to substitute other nodes of the
network in the functional representation of y;. This technique is used in algebraic script.

The third approach is full_simplify where local don’t cares and subset support satisfiability
* don’t cares are used for node simplification.

Boolean script produces much better results in general as compared to algebraic
script but it cannot be applied to some circuits because simplification with support subset
fails (e.g. apexi, apex2, apex3, etc.). This happens because nodes in the original
network are extremely large. There are nodes with more than 100 cubes and 40 fanins.
When a node y; is being simplified, we generate satisfiability don’t cares for substitutable
nodes (nodes that can be substituted in y; with high probability). To generate satisfiability
don’t cares at a node we have to find the complement of the function at that node. The
operation of finding the complement of the function might not complete if the function
has too many cubes and too many fanins. Even if the satisfiability don’t care generation
is successful, the two-level minimizer might fail because of the large number of variables
and large size of the don’t care set. Finally, big nodes are not usually substituted into the
other nodes of the network, even if the two-level minimizer completes its job. As a result,
much CPU time is wasted and no optimization is obtained if large nodes are allowed to be
substituted in other nodes. In the cases where big nodes can be substituted in other nodes,
we can postpone this operation until some common expressions of these nodes have been
extracted and nodes are somewhat smaller.

To remedy this problem we introduce the following measures. 1) We do not allow
any node with more than 100 cubes to be substituted in any other node in the network. 2)
We do not allow a node y; which has more than twice the number of cubes of y; (the node
being simplified) to be substituted in y; even though the support of y; might be included
in the support of ;. 3) We limit the size of the don’t care set of the substitutable nodes
to 6000 literals. We order all the nodes that could be substituted in y; and generate the
satisfiability don’t cares for these nodes until the limit of 6000 was reached. We use the
size of the nodes as the criterion for the ordering, i.e. the smallest node is the first in the
ordering. This is because it is more likely that smaller nodes are substitutable in y;. The
rest of the nodes may be substituted when the two-level minimizer is applied again.

The improved version of simplify discussed in Chapter 5 uses the local don’t cares
in terms of immediate fanin variables of each node to simplify it. The advantage of this

approach is that we can remove most redundancies in the network. The size of these local

CHAPTER 6. SCRIPTS FOR TECHNOLOGY INDEPENDENT OPTIMIZATION 102

don’t cares is usually very small, therefore they do not cause any problem with two-level
minimizers. To compute the local don’t cares, BDD’s are built for the nodes in the network,
external plus observability don’ cares are computed for each node in terms of primary inputs
of the network, and image computation techniques are used to map the computed don’t
care set to the local space of the node being simplified. There are two problems with this
approach.

First, BDD’s cannot built for some circuits either because no good ordering of
primary inputs exists for building such BDD’s (e.g. multipliers C6288) or because the
current heuristic used for ordering the primary inputs does not perform well (e.g., the
computation of local don’t cares for C432 can be done much faster if a different ordering is
used.) Also, at times we can find local don’t cares for the nodes of the network easily before
it is optimized. But once it is optimized such operations become very expensive. This is
because the used heuristic fails to find a good ordering from the structure of the optimized
network. One could partition large circuits for which BDD’s cannot be built into smaller
ones and then apply full_simplify to each subcircuit.

The second problem is that the image computation techniques used for extracting
local don’t cares for a node might not complete if that node has many fanins. This is
because the technique employed for image computation can be exponential in the number
of the fanins of the node being simplified. We noticed this problem only a few times on

very large nodes in circuits like misex3, apex3, and apex4.

6.2.3 Elimination

To improve the cost of a Boolean network, we eliminate some nodes in the network
and then extract new nodes. The elimination of a node is equivalent to replacing the variable
associated with that node with the local function at the node everywhere in the Boolean
network. First, we associate a value to each node in the network which measures the quality
of that node. The value of a node y; is defined to be

area_value(y;) = (Z N(fe,9:) —1).(L(m:) - 1) -1
Jx€FANOUT(y;)
where L(y;) is the number of literals in factored form for y; and N(fx, ;) is the number
of times either y; or J; appears in factored form in fi as shown in [10]. The elimination is

done by removing the nodes whose value is below some threshold. These nodes are found

CHAPTER 6. SCRIPTS FOR TECHNOLOGY INDEPENDENT OPTIMIZATION 103

one by one and then removed from the network.

In the past, we did not take into the consideration the order in which these nodes
were removed. If y; is eliminated the value of its immediate fanins, immediate fanouts,
and immediate fanins of the immediate fanouts can change. If y; is an immediate fanout,
then in most cases L(yx) increases, thus area_value(yy) increases. If gy is an immedi-
ate fanin, then in most cases 3_scranouT(y) N(f, %) increases, thus area_value(y;) in-
creases. If y; is an immediate fanin of an immediate fanout yx, then because L(y;) increases,
2 feFANOUT(y) N (f,y1) could increase. Therefore, if a node is removed, the value of its
fanins, fanouts, or fanins of its fanouts may go above the threshold. Such nodes will not
be eliminated any more. As a result, the ordering in which nodes are eliminated from the
network is important.

The most common value used for the threshold is -1. A node is eliminated in that
case either if L(y;) = 1 or 3 seranour(y) N(fs %) = 1. The nodes with L(y;) = 1 will be
eliminated no matter what ordering is used. This is not the case when
2 feFANOUT(y) N (f, %) = 1. Because the fast_eztract algorithm completes on all the bench-
marks, we would like to have an ordering which works well when used with fast_exztract. All
the divisors extracted by fast_eztract have less than or equal to two cubes. We know that to
find an optimized network with low cost, we need larger divisors. Therefore, our heuristics

are designed to make divisors larger in general. For example, let

f=(e+b+e)t+v+w)z+y+2).
After extracting two-cube kernels, we obtain the network

f = 246
1 = a+b
2 = 1+4e¢
3 = t+v
4 = 34w
S5 = z+y
6 = 5+=2

Our experiments show that the best results are obtained if we try to eliminate the nodes
that fanin to a node before that node itself is eliminated. To implement this, we first find

CHAPTER 6. SCRIPTS FOR TECHNOLOGY INDEPENDENT OPTIMIZATION 104

the level of each node in the network starting from the primary inputs which are assigned
level 0. The level of each node y; is level(y;) = 1 + maz(level(y),Yyi € FANIN(y;)). We
order nodes according to their level and remove the ones with lower levels first if their value

is below the threshold. Applying eliminate -1 with this ordering to the above example

we get,

f = 24z24+24y+24:z
2 = a+b+c
4 = t+v4+w

which is the desired decomposition.

The other problem with eliminate is that some nodes in the network may become
too large after elimination is done. For example using the current version of eliminate in
MIS-II, if one does eliminate -1 on some circuits (e.g. C432, C2670, and C7552), the
number of cubes in some nodes becomes so large that no other transformation can be
applied on these circuits. To prevent such node explosions, we set a limit on the number of
cubes that each node can have. We set this limit to be equal to twice the number of cubes of
the node with the most cubes in the network. We can still remove as many nodes as desired
from the network by repeated application of eliminate. Furthermore, we prevent sudden
size explosions so that subsequent optimizing operations can be applied to the Boolean
network. Because of this simple modification to eliminate, we can handle most circuits

where we had memory problems before.

6.3 Scripts

We ran two different scripts on a large set of benchmarks repeatedly until no more
improvement was obtained and compared the final results together. The rscript shown in
Figure 6.1 uses the fast_eztract command in MIS-II. This script is known as rugged script
and is one of the scripts available within SIS [74]. The bscript, which is the same as Boolean
script in MIS-II with our modifications to eliminate and simplify, and the addition of
full simplify, uses the kernel extraction command gkz and the cube extraction command
gcz. These commands are repeated many times with different threshold values. A kernel
or cube is extracted only if its value is above the threshold. sweep removes internal nodes

with no fanout or no fanin, buffers and inverters. eliminate does the elimination of nodes

CHAPTER 6. SCRIPTS FOR TECHNOLOGY INDEPENDENT OPTIMIZATION 105

rscript
sweep; eliminate -1
simplify -m nocomp
sweep; eliminate 5
simplify -m nocomp
resub -a
fast_extract
sweep; eliminate -1
full simplify

Figure 6.1: Simplification Script Using fast_extract

whose value is below the given threshold. simplify -m nocomp is a simplification algorithm
implemented in the ESPRESSO [11] environment which uses reduced offsets [50]. resub
-a is an algebraic technique for substituting each node of the network into other nodes in
the network. It considers both the normal and complement form of the node. decomp -g
successively extracts the best kernels until no more can be extracted. It is used to break

big nodes into smaller nodes.

6.4 Experimental Results

We run a large set of experiments to measure the effectiveness of our transfor-
mations for area optimization, removing combinational and sequential redundancies, and
effective use of external don’t cares. These same transformations are also used for perfor-

mance optimization as shown in [77, 79).

6.4.1 Area Optimization

The results of the experiments for technology independent optimization of a large
set of ISCAS and MCNC benchmarks are shown in Tables 6.1 and 6.2. The starting circuits
in Table 6.1 are multi-level circuits. The starting circuits in Table 6.2 are PLA’s. The

start columns in the two tables show the number of literals in factored form before any

CHAPTER 6. SCRIPTS FOR TECHNOLOGY INDEPENDENT OPTIMIZATION 106

bscript
sweep; eliminate -1
simplify -m nocomp
sweep; eliminate 5
simplify -m nocomp

resub -a

gkx -abt 30
resub -a; sweep
gex -bt 30

resub -a; sweep

gkx -abt 10
resub -a; sweep
gex -bt 10

resub -a; sweep

gkx -ab
resub -a; sweep
gex -b

resub -a; sweep

eliminate 0
decomp -g
sweep; eliminate -1

full_simplify

Figure 6.2: Simplification Script Using Kernel Extraction

CHAPTER 6. SCRIPTS FOR TECHNOLOGY INDEPENDENT OPTIMIZATION 107

optimization is done. This number is obtained after sweep; eliminate -1 in SIS.

Columns rscript and bscript are the results of running each script repeatedly
until no more optimization is possible. This usually happens after 2 or 3 iterations of the
scripts. We perform some initial transformations on the circuits before any of the scripts
are applied. These transformations are different for the two sets of circuits. rCPU and
bCPU are the times taken by rscript and bscript respectively.

The column obest is the result obtained by MIS-II presented at the International
Workshop on Logic Synthesis in 1989. These results were obtained by a variety of scripts
and/or human interaction in directing the order of application of MIS-II commands. nbest
is the best result obtained by us using a few variations on these scripts. ratio is the ratio
of the literals in factored form in the nbest column over the one in the obest column. The
average row shows the average improvement in literals in factored form.

First we discuss Table 6.1, where the starting circuits are multi-level circuits. For
multi-level circuits we apply full_simplify first and then both scripts repeatedly until no
more improvement is obtained. Both scripts run successfully on most circuits. full_simplify
does not perform any optimization on €6288 and C7552 because BDD’s cannot be built
for these two circuits. We use both scripts on C6288 and C7552 without full_simplify. We
do not get any optimization on C6288, because the number of literals increases after we
run any of the scripts. On the other hand, we obtain considerable optimization for C7552
without using full_simplify. The size of the BDD’s for C2670 and C3540 is also very large.
Overall, the results shown in columns rscript, bscript, and nbest are considerably better
than the previous results on most of these benchmarks. On the average, we obtain 17%
improvement over the old results as shown in Table 6.1.

Table 6.2 shows the results of the experiments where the starting point is a PLA.
In this case we apply resub -a; simplify -d first and then run the scripts repeatedly
until no more optimization is possible. resub -a allows algebraic substitution of one out-
put into the other outputs. The starting literal count for the PLA’s is shown in factored
form. It is observed that for circuits where the starting literal count in sum-of-products
form is around 10000 or more, the order in which simplification, algebraic resubstitution,
and algebraic extraction are done is very important. For example, the simplification of a
particular node can make a major difference in the final result. This is because the algebraic
techniques are so dependent on the representation of the nodes and nodes in these circuits

are usually very large. These circuits are apex1i, apex2, apex3, apex4, misex3, and

CHAPTER 6. SCRIPTS FOR TECHNOLOGY INDEPENDENT OPTIMIZATION 108

| circuit | start [I rscript | bscript | rCPU

'bCPU || obest | nbest | ratio |

C432 322 H 203 196 970 752 321 187 0.58
C499 562 554 550 317 501 552 550 1.00
C880 433 417 417 70 105 416 398 0.96
C1355 562 554 550 317 501 552 550 1.00
C1908 769 512 511 1516 1571 541 511 0.94
C2670 1031 724 737 1007 994 1031 716 0.69
C3540 1633 1221 1248 2501 1543 1633 | 1200 | 0.73
C5315 | 2425 1722 1709 1118 1361 1796 | 1709 | 0.95
C6288 | 3313 nop nop

C7552 | 3022 2159 2209 939 1442 2505 | 2159 | 0.86
apex6 | 835 723 720 163 259 784 720 0.92
apex7 289 239 237 52 44 240 237 0.99
b9 162 125 124 11 21 132 124 0.94

k2 2930 || 990 996 10628 3119 - 968 -
des 6101 " 3216 3257 7010 6993 3538 | 3216 | 0.91
f51m 169 85 116 20 37 118 85 0.72
rot 764 668 663 333 449 704 663 0.94
z4ml 77 41 36 7 7 43 36 0.84
[Osymml | 237 || 186 | 205 | 271 | 991 | 176 | 161 | 091
[average | 1349 JL - - [- - [- T - Joss

Table 6.1: Performance of Scripts Starting from Multi-Level Circuits

start, rscript, bscript, obest, nbest:
rCPU, bCPU:

nop:

number of literals in factored form

in seconds on a IBM Risc System/6000 530

no optimization was obtained

CHAPTER 6. SCRIPTS FOR TECHNOLOGY INDEPENDENT OPTIMIZATION 109

[circuit [start || rscript [bscript | rCPU | bCPU [obest | nbest [ratio |

5xpl | 163 || 100 96 14 23 104 | 89 | 0.86
9sym | 283 || 197 178 344 191 || 216 | 178 | 0.82
alud | 2058 || 100 104 430 387 || 263 | 100 | 0.38
bw | 296 | 163 162 36 43 163 | 161 | 1.00
cdip | 264 || 123 131 52 88 119 | 108 | 0.91
rds3 | 71 34 36 | 5 6 33 | 34 | 1.03
173 | 247 | 70 56 15 38 | 74 | 56 | 0.76
rdsd | 482 || 116 112 109 180 || 124 | 74 | 0.60
5202 28841 114 114 67 94 118 | 114 | 0.97
seq | 3707 || 1706 — | timeout | timeout || 1176 | 877 | 0.75
ve2 | 246 | 85 84 10 12 | 8 | 84 | 0.98
xor5 | 28 16 16 2 2 || 16 | 16 | 1.00
apexl | 3831 || 1379 | 1428 || 2369 | 1835 || 1247 | 1063 | 0.85
apex2 | 663 || 167 = 983 | timeout | 246 | 167 | 0.68
apex3 | 3263 | 1617 | 1558 || 2367 | 573 || 1401 | 1426 | 1.02
apexd | 5976 | 2318 | 2321 || timeout | timeout || 2592 | 2163 | 0.83
apexb | 2848 || 745 | 777 420 | 514 || 890 | 745 | 0.84
64 | 2144 | 253 | 253 109 135 || 253 | 253 | 1.00
o064 | 130 || 130 130 3 3 130 | 130 | 1.00
misexl | 88 52 51 6 7 49 | 50 | 1.02
misex2 | 164 || 103 103 10 13 103 | 101 | 0.98
misex3 | 1929 703 676 timeout | timeout 371 547 1.47
misexdc | 850 | 443 | 439 || 5175 | 4317 || 452 | 439 | 0.97
conl | 19 19 19 1 2 19 | 19 | 1.00
dukez | 038 || 392 | 382 a3 | 212 " 393 | 360 | 0.92

(average [89 - | - [- | - [- [- [090]

Table 6.2: Performance of Scripts Starting from PLA’s

number of literals in factored form
in seconds on a IBM Risc System/6000 530
set to 15000 sec. of CPU time

start, rscript, bscript, obset, nbest:
rCPU, bCPU:
timeout:

CHAPTER 6. SCRIPTS FOR TECHNOLOGY INDEPENDENT OPTIMIZATION 110

seq. For example, in the case of apex1 if we run resud -a; fast_eztract and then rseript
repeatedly we can decrease the number of literals to 1063 as shown in the column nbest in
Table 6.2. This shows the need for better network decomposition strategies. We are still
able to get considerable improvement over the results shown in column obest.

It is not possible to get any comparison of fast_script and kernel extraction tech-
niques from Tables 6.1 and 6.2 because most of the CPU time is spent on node simplification.
To better measure the merits of fast_eztract, we first run simplify -m nocomp; resub -a on all
the PLA circuits. Then we run fast_eztract; eliminate 0 and compare this with the kernel
extraction technique in Figure 6.2 (the series of commands starting from gkz -abt 30 to
eliminate 0). The result is shown in Table 6.4.

The column fx shows the number of literals in factored form when fast.eztract is
used. The column gkx shows the number of literals in factored form when gkz and gez with
different threshold values are used. The number of literals in factored form obtained from
Jast_eztract is slightly better than the one obtained by using gkz and gcr while the CPU
time is 21 times less. As a result, no quality is lost by using two cube kernels. The total
number of intermediate nodes in the networks optimized by fast.eztract and gkz, gcz after
eliminate are comparable which shows divisors obtained by fast_extract are as big as the

ones obtained by the kernel extraction algorithm after elimination.

6.4.2 Sequential Optimization

A set of benchmarks with external don’t cares are generated to see how effectively
external don’t cares can be used for optimizing these networks. The ISCAS sequential
circuit benchmarks are used for this experiment. For each circuit, an external don’t care
set is generated by finding all the states that are unreachable starting from a given initial
state. These operations are done using BDD’s [78] and [47]. The external don’t care set
for each output function is equal to the set of unreachable states. An external don’t care
network is generated from the BDD representing the set of unreachable states. There is an
output in the external don’t care network corresponding to each output in the care network.
The outputs of the external don’t care network compute the same function. We build an
internal node in the external don’t care network which computes the function of BDD
representing unreachable states. This node then fans out to all the outputs in the external

don’t care network. To build the internal node corresponding to the BDD representing the

CHAPTER 6. SCRIPTS FOR TECHNOLOGY INDEPENDENT OPTIMIZATION 111

[circuit [£ | gkx [ratio | CPfo | CPngx | nodeﬁc | nodegkx |
5xpl " 118 | 117 || 1.01 |
9sym 225 | 234 tL).% 11 8 | 17 28
alu4 399 | 396 | 1.01 7 16 46 45
bw 161 | 161 1.00 0 2 " 33 33
clip 147 | 148 [0.99 2 4 19 20
rd53 39 41 0.95 0 1 7 5
rd73 73 94 0.78 2 7 14 9
rd84 176 | 194 || 0.91 14 129 22 27
sa02 194 | 181 1.07 2 6 28 16
seq 1613 | 1687 105 1745 247 229
vg2 || 88 87 0 1 10 11
xord 16 20 0 0 4 2
apexl | 1535 | 1521 44 807 270 252
apex2 313 | 345 126 3216 48 53
apex3 || 1478 280 [178 165
apex4 || 2195 timeout u 228 inc
“apex5- || 780 43 157 153
e64 253 22 95 95
064 130 0 1 1
misex1 52 0 9 9
misex2 || 108 1 25 . 24
misex3 || 732 4116 111 97
misex3c || 461 9 40 40
conl 20 0 3 2
duke2 452 . 15 | 80 72
— [[total [total || aver [total WH: total total
- || 9563 | 9732 || 0.98 502 10429 1479 1401
Table 6.3: Comparison of Algebraic Extraction Techniques
fx, gkx: number of literals in factored form
ratio: ratio of numbers of literals in factored form from fx over gkx

CPUfx, CPUgkx:
nodefx, nodegkx:

timeout:

in seconds on a IBM Risc System/6000 530

number of intermediate nodes in the network

set to 15000 sec. of CPU time

CHAPTER 6. SCRIPTS FOR TECHNOLOGY INDEPENDENT OPTIMIZATION 112

unreachable states, a two input multiplexor node is built in the external don’t care network
corresponding to each node of the BDD. To keep the size of the external don’t care network
small a limited opti.miza.tion is done (sweep; eliminate -1; simplify) on the external don’t
care network. The care network and the external don’t care network are saved in blif form.
The command eztract_seq-dc in SIS finds unreachable states of a finite state machine and
stores them in an external don’t care network as explained above.

We simplify these networks using the rugged script shown in Figure 6.1 which uses
full_simplify and compare it with the same script when full_simplify is replaced by simplify.
The result when full_simplify is used is under the column rscript and when it is not used is
under column sscript shown in Table 6.4. Substantial improvement was obtained by using
external don’t cares in the simplification of each of the intermediate nodes. The reason for
such improvement is that the initial encodings of these circuits are not good. full_simplify
improves the encoding of the circuit in a restricted way. The size of the external don’t
care networks in sum-of-products form varies in the examples shown. We do not have any
problem with the size of these networks as long as we can build BDD’s for them.

Our optimization is focused on the combinational part of these circuits. As a
result of this optimization, the input to some latches may become constant. Such latches
can be removed from the circuit if the constant value is the same as the initial value of the
latch. In addition, if as a result of this optimization, a set of latches forms 5. cycle where
the outputs of these latches do not fan out to any of the outputs of finite state machine,
these latches can be removed from the circuit. Another sequential transformation currently
used within SIS is retiming [45, 25, 52, 73] which can be combined with full_simplify. New
transformations for improving the structure of a finite state machine and its encoding are

currently under investigation.

6.4.3 Testability

full_simplify can be used to remove both combinational and sequential redundan-
cies in a circuit. We do not have the algorithms to measure sequential testability of a circuit
at this point but the testability of combinational circuits can be measured. We ran rugged
script on the multi-level circuits from the ISCAS and MCNC benchmark sets and measured
the testability of these circuits. The results are shown in Table 6.5. The alpg command in
SIS was used to find the total number of redundant plus undetected faults over the total

CHAPTER 6. SCRIPTS FOR TECHNOLOGY INDEPENDENT OPTIMIZATION 113

[circuit | start | exdc net. || sscript | sSCPU || rscript | rCPU
8344 | 168 4844 143 [12 [136 197
8386 | 205 33 152 11 || 112 14
5400 | 186 3914 160 15 || 124 147
8526 | 292 8141 197 34 141 302
§641 | 216 142 200 13 158 30
5420 | 201 37 H 159 12 42 8
s713 | 204 141 193 16 155 32
5820 | 523 40 332 137 304 312
5838 | 407 69 329 492 42 24
sand | 818 30 693 463 || 604 2780

Table 6.4: Performance of the Scripts on Sequential Circuits

start: number of literals in factored form

exdc net.: number of literals in don’t care network in sum-of-products form
sscript: literals in factored form of optimized circuit using simplify in script
rscript: literals in factored form of optimized circuit using full simplify in script

sCPU, rCPU: in seconds on a IBM Risc System/6000 530

number of faults in each circuit. The testability of each circuit was measured before and
after optimization. The total number of redundant plus undetected faults over the total
number of faults in the circuit is shown in columns denoted by start-test and final-test
in Table 6.5. Most redundancies in the optimized circuits are removed because full_simplify
is used. full_simplify is more powerful than redundancy removal algorithms [71, 40] because

it restructures the network while removing redundancies.

6.5 Conclusion

We have provided improvement in both robustness and quality for the techniques
used for optimizing multi-level networks in SIS and presented a rugged script which em-
bodies a set of these operations in a prespecified order. The obtained results in the tables
show the effectiveness of this new script on a large set of benchmarks. The results presented
are much better than the ones obtained by the previous version of MIS-II and also most
other logic synthesis systems. To improve robustness still further, we need to expand our

techniques to handle two classes of circuits; first, circuits for which we cannot build BDD’s;

CHAPTER 6. SCRIPTS FOR TECHNOLOGY INDEPENDENT OPTIMIZATION 114

| circuit | start | start-test || rscript | CPU | final-test
C432 | 322 7/542 196 | 752 2/553 |
C880 433 0/850 417 105 0/801
C1355 | 562 0/878 550 501 0/890
C1908 | 769 7/1239 511 1571 6/846
C2670 | 1031 | 37/2057 737 994 8/1726
C3540 | 1633 | 38/2779 1248 1543 | 11/2361
C5315 | 2425 5/3954 1709 1361 8/3010
C6288 | 3313 | 3/8050 | spaceout
C7552 | 3022 | 46/5608 || spaceout
apex6 | 835 0/1946 720 259 0/1467
apex7 | 289 | 14/646 237 44 1/446
b9 162 1/360 124 21 0/354
k2 2930 | 97/3383 996 3119 4/2033
des 6101 | 113/9111 3257 6993 0/5523
f51m 169 0/102 116 37 0/233
Tot | 764 | 30/1620 663 | 449 | 0/1490
Table 6.5: Measuring Testability
start: number of literals in factored form
CPU: in seconds on a IBM Risc System/6000 530

second, circuits where the starting sum-of-products representation has more than 10000
literals. In the latter case, the performance of algebraic techniques is somewhat results.
Because these circuits are large, we cannot use the full power of simplification techniques

to restructure the nodes properly.

115

Chapter 7

Boolean Matching in Logic
Synthesis

In this chapter, we discuss Boolean matching which can be used to map a Boolean
network into a set of library gates in a particular technology. The mapping of a circuit
is a technology dependent transformation which is different from the Chapters 5 and 6
of this thesis where technology independent transformations are discussed. First, a new
formulation for finding the existence of a Boolean match between two functions with don’t
cares is presented. An algorithm for Boolean matching is then devefoped based on this
new formulation and is used within a technology mapper as a substitute for tree matching
algorithms. The new algorithm is fast and uses symmetries of the gates in the library to
speed up the matching process. Local don’t cares are computed for each sub-function of
the network being mapped and used for Boolean matching in terms of its inputs. To reduce
the frequency with which Boolean matching is used, the gates in the library are grouped
into classes such that it is sufficient to try to match a function with the class representative.
Experimental results show significant improvement in the final area of the mapped circuits

compared to previous approaches in SIS.

7.1 Introduction

Detection of ”equiva.lénce” of Boolean functions, also called matching, is a problem
arising in logic synthesis when a Boolean network is to be implemented in terms of reusable
building blocks. Many solutions have been proposed for this problem almost since the

CHAPTER 7. BOOLEAN MATCHING IN LOGIC SYNTHESIS 116

introduction of packaged logic gates. In [42], a tree matching a.lgofithm is used to implement
a network in terms of the gates in a library. This technique had been applied before in
programming language compilers for generation of optimal code for expression trees [3]. A
pioneering work using Boolean methods as an alternative for technology mapping was given
in [49]. Unlike tree matching, the Boolean matching techniques allow the use of don’t care
information. This can result in better circuits because some matches not detectable by tree
matching techniques can be found. Additionally, there is no need to add inverters to the
circuit, as proposed in [26], because both input phases of a function being matched are
considered at the same time.

In [49], two different algorithms for Boolean matching are proposed, one of which
uses don’t cares and the other does not. When matching without don’t cares, symmetries
are used to speed up the matching process. Techniques for finding symmetries of a function
are discussed in [27]. For matching with don’t cares, an alternative algorithm that does not
use symmetries was proposed [49]. In [27], symmetries were also computed in the presence
of don’t cares and it was shown that symmetry is not a transitive property when don’t
cares are present. Hence, computation of symmetry sets in this situation is expensive. The
algorithm in [49] uses a matching compatibility graph, built during the setup phase, to find
the existence of a match between two functions in the presence of don’t care conditions.
Each node of this graph corresponds to an NPN-equivalent [58] function. The size of this
graph grows exponentially with the size of the variable support of the functions, and has
limited the use of don't cares realistically to the matching of functions with at most 4 inputs.

We present a new Boolean matching algorithm which uses both symmetries and
don’t care conditions of the functions being matched at the same time. This Boolean
matching is done using BDD’s. Disjoint sets of variables are used to build BDD’s for the
two functions. During matching, variables from the two sets are matched with each other
one by one. The number of onset and don’t care set minterms of the two functions can be
computed easily because BDD’s are used to represent these functions. These numbers are
used to check for some necessary conditions without which a match cannot exist. Similar
techniques, based on the number of onset and don’t care set minterms of the two functions,
are used to find the corresponding inputs of the two functions when a match exists.

We use this new Boolean matching technique within a technology mapping envi-
ronment which uses the methods developed in [42, 26, 64]. First, a circuit is decomposed

into a set of disjoint trees with two-input nodes. Dynamic programming approaches are

CHAPTER 7. BOOLEAN MATCHING IN LOGIC SYNTHESIS 117

then used to map each tree. Nodes of a tree are visited in depth first order starting from
the leaves. At each node, the best match for the subtree at that node is recorded. This best
match is obtained by looking at all the sub-functions rooted at that node and matching
them with the gates in the library. Don’t cares are computed for each sub-function using
techniques discussed in Chapter 5.
The second application of Boolean matching is to group all the gates in the library.
As demonstrated in [64], the inclusion of complex CMOS gates in the library is useful
because it may lead to a significant reduction in the required area for implementing some
combinational functions. However, larger cell libraries require more matchings and imply
the use of functions with more inputs, making technology mapping with very large libraries
computationally expensive. In [49], a technique for speeding-up the matching by grouping
gates in the library was proposed. The groups of gates are composed in such a way that,
after finding a match with a representative gate, the match with all gates in the group
is determined. We use Boolean matching to group gates in the library. The gates in the
library are matched with each other and the ones that match with inverted inputs or output
are stored in the same data structure.
| The designed Boolean matching technique is practical and gives good results, on
average about 12% improvement in area over tree matching. Although we have only used
this Boolean matching technique to find the best mapped circuit in terms of area and for
organizing the given library, the algorithm is general and can be used in other contexts such

as delay optimization, or layout driven technology mapping [61].

7.2 Boolean Matching

We address the Boolean matching problem for two functions f(z,,...,2,) and
g(v1,-..,Ym) with the same number of inputs and with don’t care sets ds(z1,...,2m) and
dg(¥1,-.-,Ym). The objective is to find an assignment of variables z to y such that there
exists a function that is a cover of both f and ¢g. If such an assignment exists, the two
functions can be matched.

A particular assignment of variables of g to f (i, = 2,,%i, = Fjpe -y Yipn = Tjn)

can be represented by a new function

Ak(z,y) = (4,02,)(%:,925,) - - - (Yirn O jpn)-

CHAPTER 7. BOOLEAN MATCHING IN LOGIC SYNTHESIS 118

In general, both (y;,®2;,) and (i, @ z;,) are possible assignments; the first sets y;, = z,;
the second sets y;, = F;,. The function §; under variable assignment Ay is simply gi(z) =
SyAr(z,y)9(v)-

Lemma 7.2.1 Let§ and Jg represent the new function obtained from g and dy by switching
y’s with z’s corresponding to a particular assignment. A matching under this assignment
ezists if and only if §—dy C f+dy; and f—d; C § + d,.

Proof Assume a matching exists under the given variable assignment and let k represent
the function for which the matching exists. Thus Q—Jg ChC §+¢fy and f—dy C h C f+dy;
therefore, § — Jg Cf+dsand f-dy C g+ Jg. On the other hand, if § — tig C f+df
and f—ds; C §+dg, welet h = (f —dy)+ (§ — dg). Clearly, §—d; Ch C §+d, and
f—-ds ChC f+ds m

Lemma 7.2.2 The matching under variable assignment A erists if and only if

My = Co(Sy(Ar(dy +dy + [B9))) =1 (7.1)

(The significance of the consensus operation is shown in the nezt Lemma).

Proof Let §j = S,Akg and d; = S, Axd, then

M = Co(Sy(Ax(ds + dg + fB9)))
= Co(SyArdys + SyArdy + SyAifg + Sy Acf9)
= Co(dsSyAk + dg + fSyArg + TS, AL9)
= Cy(ds +d, + fBF)

Co(ds + dy + f@§) = 1 if and only if (df + d, + f@B§) = 1. Assume (d; + d, + f@3) = 1.
Let m be a minterm in § — dy. Then m € f + dy, otherwise dy + d, + f@§ # 1. As a result,
g- d; C f+d;. In the same way, (d; + d; + f®§) = 1 implies f—ds C §+ dt,,. Therefore,
if Co(ds + dy + f®§) = 1, a match exists. If f —d; C §+d, and § — d, C ds + f, then
af+ds+dy=g+ds+dy and F §+dy+dy = §+dy + dy. Therefore (dy +dy + f@§) = 1.
. _

We can organize equation (7.1) in a more computationally efficient way by using

the result of the following lemma.

Lemma 7.2.3 Ifi # j, C;;Sy;(z;®y;)h(x,y) = Sy, (z;8Y;)Cz; h(2,y).

CHAPTER 7. BOOLEAN MATCHING IN LOGIC SYNTHESIS 119

Proof

Cz;Sy;(zi®yj)h = Cz:8y;(zjyshy; +FiT;hy;)
= Cz(2;hy; + Tjhy;)
= (2i(Cz;h)y; +Zi(Cay h)i,-)
= 8y,(z;®9;)Cz:h.

Lemma 7.2.4 Let Ay = (1021)(12022) .. .(ymD2zm). Then My = Co(Sy(Ax(ds + dy +
f®9))) can be ezpressed as

M = (C,,mSym(zm@ym) e+ :Cz, Sy, (21O)(ds + dy + fBg))

Proof The statement of the lemma follows by induction and lemma 7.2.3. »

Not all the possible assignments of variables y to = are required to check whether
a matching exists. First we express necessary conditions for a matching to exist. Let |f]
represent the number of minterms in the function f. Once BDD’s are built for functions
f and g, then |f| and |g| can be easily found by traversing the corresponding BDD’s only
once. Given node n in the BDD of f with children ! and nr, the number of minterms in
the function represented by n in the ordered BDD of f can be found if this number is known
at nl and nr. We represent the difference between the variables » and n! in the variable
ordering by ! (if » appears right before nl, | = 1) and the difference between the variable
of n and nr in the variable ordering by r. The number of onset points for the function at
n is |n| = 2'~1nl| + 27}|nr|. Initially, the number of minterms at node ! is set to 1 and
node 0 is set to 0. Also, if the root of the BDD is not the first variable in the ordering, we
multiply the count at the root node by 2% where k is the difference between the root node

and the first variable in the ordering.

Theorem 7.2.5 A matching between f and g ezists under any variable assignment only if .
|f —dsl Clg+dgl, [f—dsl C [T+ dyl, |lg—dg| C |f+dyl, and [§—dy| C |F+dsl. In
particular, ifdy =0 and d; = 0, If] = lgl-

Proof Each onset point of f must be mapped to an onset point or don’t care point of g

and each offset point of f must be mapped to an offset point or don’t care point of g. If

CHAPTER 7. BOOLEAN MATCHING IN LOGIC SYNTHESIS 120

|f — ds| > |g + dg| some onset points in f cannot be mapped to any onset or don’t care

point of g. The proof is similar for other cases. =

Lemma 7.2.8 A matching under the assignment z; = y; exists only if |fy, — d jz'_l -

|fz - di;;',-l c L‘Ej + dggjlx |fz — dfg:,-l c I?y,- + dggj|; lgz'l,- - dg§j| Cl|fa + dl;;'; and
'?5,- "dygjl - |f§.- +df5,-|- In particular, ifdy = 0 and dy = 0, | fz;| = lg!ljl and | fz,| = lg‘ijl-

Proof If z; = y;, each onset point of (f;; —d; ;',) must be mapped to a point in (g,, +dg,,)s

therefore, | fz; — df z.,l C lgy; - dgyjl. Other cases can be proved in the same way. »

Corollary 7.2.7 A matching under the assignment T; = y; exzists only if | fz; — dj :c.-l c

Igij +dy§j|: ITz.’ —dfz‘-| - |§§'j +dg§’.|} Igfi, "dg-g’.l c If.’l:.' +dfz‘.|7 Igﬁj -dgg,'jl c |Tz.~ +dfz‘-|)
|fe: - dfa:‘; < |9yj + dgyjl: |f5. - dfz-.-l C |§y,- + dgyj': lgyj - dgyjl C lfa + dfi‘»ll and
‘?yj - dgw' g If':i.' +df5'|’

From now on, we concentrate on the use of Boolean matching in technology map-
ping where we try to match a sub-function with don’t cares in the network with a library

function which has no don’t cares (d, = 0).

7.3 Boolean Matching for Technology Mapping

The objective of a technology mapper is to map a circuit into a set of gates in the
library. The given circuit is first decomposed into a set of 2-input gates and then into a set
of disjoint trees. As in 42, 26, 64], we use dynamic programming to map each tree into a
set of library gates. The trees are mapped in topological order; each tree is mapped after all
its fanin trees. Mapping is a two step process. In the first step, called matching, we find the
minimum cost matching for the root of the tree. In the second step, called gate assignment,
we implement the logic function of the tree in terms of library gates as determined in the
matching phase.

The first phase of technology mapping is to traverse the target tree bottom-up
from the inputs. At each node, all possible functions up to a given number of inputs having
that node as output are considered. These functions are called cluster functions; their

corresponding subgraphs are called clusters [49]. In our formulation, a cluster is represented

CHAPTER 7. BOOLEAN MATCHING IN LOGIC SYNTHESIS 121

by a root node and a set of leaf nodes (cutset of nodes) separating the root node from the
rest of the network. We use an iterative algorithm for cluster generation. It starts with
a cluster consisting only of the root node, and generates new clusters by expanding every
cluster. Expansion of a cluster is done by removing each node of the cutset one at a time
and adding its fanin nodes to it. If some of the clusters generated in this process have been
generated before, or contain more nodes than the maximum number of inputs in any gate
of the library, they are simply discarded. Each iteration expands the clusters generated in
the previous iteration only. Cluster generation is stopped after an iteration that does not
produce more clusters.

During gate assignment we build a new network that contains the best map at each
tree. At each tree, we need to choose the phase of the root node of the tree. The less costly
phase in terms of area is currently chosen unless the root node is a primary output where
the positive phase is chosen. The penalty for using the phase that is not implemented is the
cost of an inverter. After all the trees in the network are mapped, we traverse these trees
in reverse order, and check what phase of the root is used in each tree. If the implemented
phase in the new network for a particular tree is always inverted before it is used by its
fanout trees, we switch to the other phase of that tree to reduce cost.

The matching problem is to find any library function that can be matched with
a cluster function. The correspondence between the inputs of the cluster function and
the library gate is sought first, then one checks if the functions are equivalent under such
condition. In the presence of local don’t cares the matching problem can be formulated as
follows. Let f(z1,%2,...,2,) be a cluster function with local don’t-care d(z,,z2,...,2y),
and g(y1,92,...,¥m) be a library function where m < n. If m > n, some of the inputs of
the library gate must be set to 0, 1, or tied together. Such gates can be added to the library
in a preprocessing step. For architectures composed of particular types of gates where the
case m > n is important, special techniques can be devised to do Boolean matching. If
m < n, a matching exists only if the support f can be reduced using the given don’t care
set. This is unlikely in a well-optimized circuit because most redundant connections are
already removed. For each cluster function we generate all the possible supports and try to

match each one with a library gate of the same number of variables.

CHAPTER 7. BOOLEAN MATCHING IN LOGIC SYNTHESIS 122

7.3.1 Generating all Supports

Let f be a cluster function with don’t care d. The objective is to generate a new
function f with don’t care set d for each possible support of the cluster function f. The
circuits given for mapping are usually well optimized and do not have many redundancies;
therefore, we expect a few possible supports by which f can be represented. After generating
a function f for each possible support, f is compared to all the library gates with the same
number of inputs for a possible match.

Let x = {z1,...,Zm} be the set of variables in f. x is called the support of f.

Lemma 7.3.1 A supportx; C x is a possible support for f if and only if Sx,(f—d) C (f+d)

where X; = x — x; (This means, X; is the set of all the variables in x that are not in x;.).

Proof Assume Sx;(f —d) C (f+d) and let fi= Sx;(f — d). Because f —d C Sx,(f - d),
it follows that f —d C f; C f + d. Therefore x; is a possible support for f. On the other
hand if f —d C f; C f+ d and x; is the support of f;, it follows that (f—d)g, C f; and
(f — d)z, C f; for every variable z; € X;. As a result Sz.(f — d) C fi and because this is

true for each z; € X;
Sf.(f - d) - fi
Therefore Sx,(f—d)C f+d. =

Lemma 7.3.2 In a similar way, a support xX; C X is a possible support for f if and only if
Proof Assume (f —d) C Cg,(f +d) and let f; = Cx,(f + d). It follows that
f-dCfiCf+d

and x; is a possible support for f. On the other hand if f — d C f; C f + d and x; is the
support of f;, it follows that f; C Cz,.(f + d) for each zx € X; and thus

fi S Cx(f +d).
Therefore (f —d) C Cx,(f +d). »

Lemma 7.3.3 If f; with support x; C x satisfies f—dC f;i C f+d, it also satisfies

CHAPTER 7. BOOLEAN MATCHING IN LOGIC SYNTHESIS 123

Proof Applying Cx; to fi c (f + d) and considering the fact that f; is independent of
variables in X;, it gives

In the same way, if we apply Sx; to (f —d) C fi, it gives

Sf.-(f"d) Q Si'..fz
Sl_ta(f_d) g fi~

The maximum don’t care set for any function f, f —d C f C f + d, with support
x;isd = Cx,(f+d)—Sx,(f — d). Because we do Boolean matching, it is enough to generate
one function with its maximum don’t care set for each possible support.

The algorithm shown in Figure 7.1 is used to generate all the possible supports
for a cluster function f. The original arguments given to generate_support are f; = f — d,
fn = f+d, vars which is all the variables in f and d (this is also saved as a possible support
for f), and start = 0. To check whether the size of support can be reduced by removing
variable z;, the condition of Lemma 7.3.1 is used. If Sz, fi C fi, the new support is saved
and also used to generate other supports which exclude z;.

Other techniques have been recently suggested for generating all possible supports
of a function [75, 30]. We are investigating these.

7.3.2 Boolean Matching Algorithm

The algorithm for finding the existence of a match between alibrary gate g(¥1,...,¥m)
and a cluster function f(2,...,%m,) with don’t care set d(z,...,Zn) is shown in Figure 7.2.
f and g have the same number of inputs. The argument M is originally set to M = d+ f@g.
The argument ¢ shows the variable in f for which a match is sought. ¢ is set to 0 originally.
Before calling boolean_match, we check the necessary condition given by Theorem 7.2.5. If
that condition is not satisfied, f and g cannot be matched. Each input z; of f must be
matched with an input y; of g;

z; can be equal to y; if the necessary conditions as given by Lemma 7.2.6 are

satisfied. If they are not satisfied, Z; = y; is tried. If that is not possible either, y; is not a

CHAPTER 7. BOOLEAN MATCHING IN LOGIC SYNTHESIS 124

function generate_support(fi, fn,vars, start)
begin
for (¢ = start; i < number(vars);i++) begin
z; = vars(i)
if (Sz, fi C fn) begin
newvars(k) = vars(k) for k < ¢
newvars(k) = vars(k + 1) for k > i
save newvars as a possible support
newfi = S fi
new fp = Cz,; fn
generate_support(new fi, new fy, newvars, i)
end
end

end

Figure 7.1: Generating Supports

CHAPTER 7. BOOLEAN MATCHING IN LOGIC SYNTHESIS

function boolean_match(f,d,g,i, M)
begin
if (M = 0) return match not_found
if (M = 1) return match_found

z; = tth variable in f
for each variable y; of g not matched yet begin
if >yj is symmetric to a y; already tested
continue
/* check the necessary conditions for z; = y; */
i ((1fos — el < lgy,1) 20d ([Fo; — ds] < [7,,]) and
(15 - dz,] < lgy,) and (1T, — d=l < 175,])) begin
newM = C;;S,;(z:0y;)M
(newf, newd, newg) = choose (fz;,dz;, 9y;) or (fz;,dz;, 93;)
if (boolean_match(new f, newd, newg, i + 1,newM) == match_found)
return match_found
end
/* check the necessary conditions for Z; = y; */
if ((Ifz. - dz.'l < Igﬁ,l) and (sz.' - dzil < l?ﬁjl) and
(Ifs: = dzi| < lgy,]) 2nd [Tz, - dsi| < [3,,])) begin
newM = Cz;Sy;(z; ® y;)M
(rewf, newd, newg) = choose (fz;,dz;, 95;) or (fz;, d=;, 9y;)
.. if (boolean_match(new f, newd, newg, i + 1,newM) == match_found)
return match_found
end
end
return match_not_found

end

Figure 7.2: Boolean Matching

125

CHAPTER 7. BOOLEAN MATCHING IN LOGIC SYNTHESIS 126

possible match for z; and is skipped. If no input of g can be set equal to z;, f and g cannot
be matched.

7.3.3 Symmetries

If the switching of two inputs of a gate has no effect on the function of that gate,
those two inputs are symmetric. Most gates in the library have many symmetries. We find
all such symmetries for all the gates in the library in a preprocessing step. This step is made
easier by the fact that we have no don’t cares for the gates in a library. For example, gate
g might have two inputs y; and y; which are symmetric. If 2; = y is not possible, then
clearly z; cannot be set equal to y; either and is skipped. Two inputs y; and y; of a function
g are symmetric if gy;5; = gy,y; as shown in [27]. Furthermore if y; is symmetric with y; and
y; is symmetric with y, y; is also symmetric with y, since symmetry is transitive when
there are no don’t cares.

There is another kind of symmetry which can be used to speed up Boolean match-
ing. Given a library gate g = y192 + ¥3ys + ¥s¥s, ¥1 is symmetric with yo, y3 is sym-
metric with y4, and ys is symmetric with yg. If we switch the variables y3 and y4 with
1 and y, we get exactly the same function. In this example, y1y, are group symmet-
ric with y3y4 and ysye. Therefore if a variable z; cannot be matched with y;, it cannot
be matched with any other variable in g and no matching exists. On the other hand, if
%1 has been matched with some other variable z; and z; cannot be matched with y,, we
still need to try z; = ys. To find group symmetries for a function g, we first put all the
inputs that are symmetric in one group. Every two groups with the same number of in-
puts (greater than 1) are compared. For example, the comparison is done as follows for
the function'"b = %NY2 + Yay¥s + Ysys. We build a BDD for g with the following ordering
order(y;) = 1, order(yz) = 2, order(ys) = 3, order(ys) = 4, order(ys) = 5, order(ys) = 6.
To check the group symmetry of 4, y2 with ys,y4, we build a new BDD with the ordering
order(y;) = 3, order(y:) = 4, order(ys) = 1, order(ys) = 2, order(ys) = 5, order(yg) = 6
and check if it is equal to the original BDD for g. Group symmetry is a transitive property
like symmetry. Symmetries and group symmetries are found for each gate in the library

and stored in a preprocessing step.

CHAPTER 7. BOOLEAN MATCHING IN LOGIC SYNTHESIS 127

7.3.4 Heuristic for Assigning Inputs

Once we find a variable y; that can be set equal to z;, we reduce the size of the
matching problem at hand by oneb variable and try to match the rest of the variables in f
and g. Using the result of lemma 7.2.4, we compute newM = C;;Sy,;(z:®y;)M. A necessary
and sufficient condition for the matching to exist is that newM = 1 after all the variables
are matched as in lemma 7.2.2.

-The necessary condition given by lemma 7.2.6 to match z; and y; requires com-
puting both f;, and fz, and comparing them with g,; and gy; respectively. When we match
a second pair of variables z; = yi, we need to compute fy;z,, fzz, f5iz;, 2a0d S5z, and
compare it with gy, , 97, 95 and 95,5, This number grows exponentially as we match
more variables.

When we set z; = y;, the pairs (fz;,gy;) and (fgi,ggj) must be matched respec-
tively. We only choose one of the pairs (fz;, 9y;) and (fz;, g5,) to be passed to the next step
of the algorithm to be used for checking necessary conditions as given by lemma 7.2.6.

For example, let f = zyz3z3 and g = y1¥2y3. First we try to find a match for
variable z1. z; = y; satisfies the necessary condition (fr, = 2223, f5, = 0,9y, = %293,
and g5, = 0). The pair (fz, = 0,95, = 0) cannot give us any further information because
the necessary conditions are always satisfied for this pair irrespective of what variables are
matched. On the other hand, the pair (fz,,gy,) contains all the information that we need.
The following heuristic is used to choose one of the two pairs. If (fei—dz; = 0), 0r (gy; = 1),
the necessary conditions as given in lemma 7.2.6 are always satisfied. Therefore the other
pair (f5;,9y;) is used to guide the matching. This same principle is used to check the other
pair. If the above check is not enough, we choose either of f,, or fz; which has the larger
difference between the number of onset pbints and offset points. The difference between the
onset and offset points is computed as follows, absolute_value(|fz; — dz;| — |f,, — dz;|) and
absolute_value(| fz; — dz;| — [fz, — d=;|).

This algorithm runs in linear time in the number of input variables for a library
gate with one minterm in the onset or offset (AND, OR, NAND, NOR).

CHAPTER 7. BOOLEAN MATCHING IN LOGIC SYNTHESIS 128

7.4 Don’t Care Computation

The network is first decomposed into a set of trees. We compute compatible
external plus observability don’t cares at each of the nodes of the network as explained in
Chapter 5. These trees are sorted in topological order. Each tree is mapped after all its
fanin trees have been already mapped. Image computation techniques are used to find local
don’t cares at the leaves of the tree that is being mapped. The leaves of the tree correspond
to primary inputs or roots of other trees that have been already mapped; therefore, the
functions at these roots are fixed. Given the external plus observability don’t care set
Dj(x) for the root of the tree in terms of primary inputs of the original circuit and global
functions g;(x),...gm(x) at each leaf of the tree in terms of the primary inputs, the local

don’t care set for the tree in terms of its leaf variables #y,12,...,ty, is

Di(t) = Sx[D{(x)(g1(x)Bt1) - - - (g (%)tm).

leaves of tree

Figure 7.3: Cluster Functions

To compute D!, we first build BDD’s corresponding to global functions (functions
in terms of primary inputs) at each leaf of a tree and build a BDD representing D{. The
functions gy,...,gm are cofactored (generalized cofactor) with respect to 'ﬁf and the recur-

sive image computation method in Figure 5.8 is then used to find all the reachable points

CHAPTER 7. BOOLEAN MATCHING IN LOGIC SYNTHESIS 129

in the space of the leaves of the tree. The complement of the reachable set of points gives
the local don’t care set for the tree in terms of its leaf variables.

The tree itself is considered a network where its local don’t cares are external don’t
cares or input combinations that never occur. A dynamic programming approach is used to
find the best match for the tree. Nodes of the tree are visited in depth first order starting
from the leaves of the tree. At each node g, we find the best positive and negative matches
and record them. This is done by looking at all possible clusters with less than a fixed
number of inputs (the maximum number of inputs of a gate in the library) rooted at g,
and matching them with the gates in the library. The cost at the node for a cluster is the
cost to implement the cluster itself plus the cost to implement the functions at the leaves of
the cluster. Both positive and negative phase costs at each of the leaves are available. The
clusters which give the best cost for positive and negative phase matches at ¢, are recorded.

The best positive and negative phase matches at each node of the network are
sought in topological order from the inputs. Figure 7.3 shows an example where we compute
a local don’t care set for a cluster with root ¢, and leaves qi,...,¢, and use the don’t care
set to find a match for the cluster. To compute the local don’t cares for a cluster function
within a tree as shown in Figure 7.3, we use image computation techniques again. We build
BDD’s for each leaf g; of a cluster in terms of the leaves of the tree t = (,,...,t,). Before
matching the cluster rooted at g,, the best matches for both positive and negative phases
of each leaf ¢; of the cluster have been found. Because don’t cares are used, the positive
and negative phase functions at the leaves of a cluster are not necessarily complements of
each other. While matching to a particular gate in the library, we could choose either of
the two phases for a particular leaf ¢;. We need a local don’t care set for the cluster which
is valid irrespective of the phase chosen for a particular ¢;; otherwise separate don’t cares
must be computed for each possible phase assignment for the ¢;’s.

Let f7,..., f? be the functions corresponding to positive phase and f},..., f be
the functions corresponding to negative phase at the leaves of a cluster. We know that f?
is not necessarily equal to f;. The set under which the two phase functions are different is
d; = fFf; + % f*. We compute a local don’t care set which is valid for any function allowed
by (f7,d:).

Lemma 7.4.1 A local don’t care set valid for both phases of the functions at the leaves of

CHAPTER 7. BOOLEAN MATCHING IN LOGIC SYNTHESIS 130

a cluster is

D}(q) = Su(Dyt)(@BFI(L) + da(t)). .. (6 BF2(L) + di(t))). (7.2)

Proof The term (¢:®f7(t) + di(t))...(¢-BfP(t) + dr(t)) is a Boolean relation which
gives all the q combinations for a particular input t; The given flexibility d; at node ¢;
is captured by this Boolean relation. The term .D—i(t) is all t combinations that are care

points. Therefore, the term

Se(Dit) @B () + dr(8))...(a-BP(8) + d: (1))

gives all the q combinations that are possible under the care points and the complement of
this set is a valid local don’t care set. »

Notice that the above computation gives a local don’t care set which is valid for
any function allowed by (f7,d;) at node ¢;. However, we only need a local don’t care set
which is valid for ff and fP. The condition which gives either function fP or f* but no
other function at ¢; cannot be represented by a Boolean relation. We do not know of an
efficient way to compute a don’t care set which is only valid for the two functions ff and

*, although this don’t care set will be larger than that computed from equation 7.2.

Lemma 7.4.2 If only the external don’t care set computed for the tree D} is used, but not

the observability don’t care set within the tree,

D(q) = Sy Dt aBFY)) . .. (6B () (7.3)

is valid for both phases of functions at the leaves of the cluster.

Proof The difference between f; and f? is contained in D} (fFf; + 17 f* C D}). Therefore,
dgﬁz = 0 and Equation 7.2 reduces to Equation 7.3. =

If no observability don’t cares are used within a tree, the local don’t cares for a
cluster can be computed as before. The functions f7,..., fP are cofactored (generalized
cofactor) with respect to 'D': and the recursive image computation method in Figure 5.8
is then used to find all the reachable points in the space of the leaves of the cluster. The
complement of the reachable set of points gives the local don’t care set for the cluster in

terms of its leaf variables.

CHAPTER 7. BOOLEAN MATCHING IN LOGIC SYNTHESIS 131

It must be also mentioned that the choice of the functions at the leaves of a cluster
affects the local don’t cares of that cluster. Hence, dynamic programming might not give
the best result for the mapping of a tree when observability don’t cares are used within a
tree. The choice of the best function at the leaves of a cluster may shrink the local don’t
care set for the cluster and thus the final result may not be the best match for the circuit.
We believe this is not very likely in practice.

In a circuit with large trees, there are usually many clusters. Computing local

don’t cares for all such clusters is a costly operation.

7.5 Library Organization

Before technology mapping, a setup phase is used to process gates in the library
and generate particular data structures called NUTS. The term NUT is the abbreviation
for Negative Unate Transform introduced in [49]. All the gates in a NUT are equivalent to a
NUT representative in the sense that the function of each gate can be obtained by inverting
some of the inputs of the NUT representative. The NUT structure reduces the number of
calls to the Boolean matching algorithm. Finding the best match between a cluster function
and the set of gates in the library is therefore reduced to the use of the matching algorithm
on the cluster function and all the NUT representatives with the same number of inputs.
The matching with the remaining gates in a NUT is directly derived from the assignment
information computed during the setup phase.

In the groups we build, we also consider the inversion of the outputs of the gates.
This grouping is possible because our matching algorithm considers the matching with
both phases of the input nodes at the same time. Instead of computing the negative unate
transforms of the input variables as in [49], we use the Boolean matching algorithm to
place each gate in its corresponding NUT structure. The setup phase parses the library,
reading one gate at a time. A gate is added to a NUT if it or its complement matches
the NUT representative. If a gate does not match any of the existing NUT’s, then a new -
NUT is created with that gate as its representative. Symmetries and group symmetries
are also computed for each representative at this time to speed up matching with class
representative.

Example:
The 2-input functions NOR, NAND, AND and OR are in the same NUT and any of them

CHAPTER 7. BOOLEAN MATCHING IN LOGIC SYNTHESIS 132

can be the representative. Let OR function be the class representative and let f be a cluster
function for which a match is sought. If f matches the OR gate, either an OR gate, or a
NAND gate can be used to implement f. But the inputs to NAND gate have the opposite
phase of the inputs to NOR gate. The cost at the root of the cluster is equal to the cost of the
gate plus the cost of inputs to the gate which can be different for the negative and positive
phase inputs. The gate (OR or NAND) which gives a lower cost is chosen to represent the
positive phase at the root of the cluster. If a match for f exists, we know already that
AND and NOR gates are matches for the complement of f. If a match for f does not exist
we compare the complement of f with the NUT representative. If the complement of f
matches the NUT representative (OR gate here), one of NAND or OR gates is chosen to
represent the complement of f and one of the NOR or AND gates is chosen to represent f.
If the complement of f does not match the class representative either, f cannot ne matched
with this NUT. Therefore, matching both phases of the function at a node with a NUT

structure requires at most two calls to the Boolean matching algorithm.

7.6 Results

We ran the new technology mapping algorithm on a set of benchmarks chosen
from MCNC and ISCAS combinational circuits and compared the results with technology
mapping for area in SIS. Table 7.1 shows the results for combinational circuits without any
external don’t cares. These circuits are well optimized before technology mapping, using
the rugged script discussed in Chapter 6. The MCNC library /ib2 is used for the mapping.
The column start shows the literal count in factored form for each unmapped but optimized
circuits. The columns SIS, no_dc, tree_dc, and full_dc show the area of mapped circuits.
We divide numbers given by the mapper by 464 (half the area of the smallest inverter) to
get round small numbers.

As shown in the table, considerable improvements are obtained for some circuits
by just using Boolean matching without any don’t cares (no_dc). For these circuits, we get
on average 8 percent improvement in area compared to technology mapping in SIS while
spending 3.9 times as much time. The best improvement is obtained (25%) for C6288.
The column tree_de shows the area obtained when don’t cares are computed only for the
leaves of each tree. The CPU times and the circuit areas are almost the same as the case

with no don’t cares. The column full dec shows the result obtained by computing don’t

CHAPTER 7. BOOLEAN MATCHING IN LOGIC SYNTHESIS 133

circuit | start [SIS [CPU [no_dc [CPU [tree.dc [CPU [fulLdc [CPU |

Ca32 [218 [437 [5 398 | 31 [397 [157 [381 | 574
C880 | 414 || 783 | 10 734 49 734 59 “ 734 | 343
C1355 | 552 | 914 | 11 8 738 87 724 | 1184

C1908 | 535 | 933 11 H 810 27 810 118 793 1774
C2670 | 748 | 1339 | 20 H 1236 103 - - - -

C3540 | 1283 || 2269 | 36 2176 | 213 - - - -
C5315 | 1763 || 3055 | 45 3025 | 173 3025 229 3003 | 2285
C6288 | 3367 || 5453 | 68 4070 | 111 - - - -
C7552 | 3022 || 4076 | 58 3690 190 - - - -
z4ml 43 86 1 69 3 69 6 68 69
f51m 80 150 2 148 6 148 9 112 53

apex5 | 768 | 1473 | 19 1362 91 1361 127 1355 1180

apex6 | 732 | 1390 | 19 1345 97 1341 120 1336 882
alu4 102 || 200 2 196 10 196 11 180 103
rot 664 | 1283 | 16 1270 62 1267 74 1255 466
des 4214 || 5947 | 137 5698 | 596 5501 789 5498 | 11926

Table 7.1: Boolean Matching for Technology Mapping

start: number of literals in factored form for the optimized circuits

SIS: mapped using map -s in SIS

no.dc: mapped using boolean matching in SIS without don’t cares

tree_.dc: mapped using boolean matching in SIS with DC computed at the leaves
of each tree.

full. dc: mapped using boolean matching in SIS with DC computed for each cluster

CPU: in seconds on a IBM Risc System/6000 530

cares for each cluster in the trees. We do not use observability don’t cares within a tree for
this computation. The local don’t cares computed for each cluster are based on equation
7.3. The times spent for mapping are an order of magnitude more than SIS but there is on
average 12 percent improvement in the final area of the mapped circuits. Although the time
spent is substantially more than the time for tree matching, it is comparable to the time
spent for circuit optimization. The entries in the table that do not have results correspond
to circuits for which BDD’s could not be built or the size of BDD’s were too large to be
used for don’t care computation.

If the benchmark circuits are not optimized first, the improvement over the tech-
nology mapping in SIS is very substantial. This is because using local don’t cares and

Boolean matching removes redundancies so a much stronger optimization on each circuit is

CHAPTER 7. BOOLEAN MATCHING IN LOGIC SYNTHESIS 134

obtained. Even though the results on unoptimized circuits are better, they are inferior to
the results obtained after running rugged script on each circuit. When a circuit is optimized
using the rugged script, the structure of the circuit is already well established. In most cases,
each intermediate node of the circuit becomes a separate tree after tree decomposition and
is mapped separately. Because of this, don’t cares do not give substantial improvement as
it is clear from the results. However, full_dc does have an effect. We believe this is due
to the don’t cares arising internally in the tree from the partially mapped structure. These

were not available when the rugged script was applied.

7.7 Conclusion

We have presented a new Boolean matching algorithm that can use don’t cares
and symmetries efficiently. We have applied this algorithm to technology mapping and
have shown that the results of the mapper can be improved compared to tree matching
techniques. The computation of local don’t cares for each cluster function are discussed
and techniques for such computations are presented. We have also organized the library of
gates in an efficient way that reduces the number of times the Boolean matching algorithm
is used. We developed ways to reduce the number of clusters generated in each tree and
also more efficient don’t care computation techniques to speed up the Boolean mapper. The

same techniques can be used for delay optimization and layout driven technology mapping.

135

Chapter 8

Conclusions

- We have shown that a Boolean relation is a general form for expressing the input-
output behavior of a combinational Boolean network. This relation is called an observability
relation and can be represented by a node attached to the outputs and inputs of the network,
where the function at the node is the characteristic function of the relation. The modified
network is called the observability network. In practice, external don’t cares which are a
subset of the observability relation for the circuit, are usually used to express input-output
behavior of a Boolean network because they are computationally less expensive to use for
network optimization.

A Boolean network may be decomposed into both single and multiple output nodes.
We showed that don’t care conditions computed from the observability network at each sin-
gle output node of a Boolean network give maximum flexibility for implementing that node.
Don’t cares are not sufficient for multi-output nodes. The full flexibility for implementing
multi-output nodes is captured by Boolean relations. It was shown that the concept of
compatibility applies to both single and multiple output nodes of a Boolean network, and
that compatible don’t cares and compatible Boolean relations can be computed.

We have developed algorithms for computing the flexibility for implementing single
output nodes, called local don’t cares. The flexibility at each output of the network is given
by external don’t cares. We have given techniques to compute local don’t cares at each
node from observability and external don’t care sets and to use these local don’t cares to
simplify the local function at each node. Our experimental results show the effectiveness of
this approach in terms of reducing logic and removing redundancies in the network.

Techniques are also presented for computing maximal and compatible observability

CHAPTER 8. CONCLUSIONS 136

relations for multi-output nodes of a Boolean network. The practicality of these techniques
depends on how efficiently one can manipulate Boolean relations. More work is needed
for decomposing a circuit into multi-output nodes. In addition, algorithms are required to
map multi-output nodes of a Boolean network into multi-output gates in the library. In the
single output case, one decomposes the circuit into NAND or NOR trees and maps each
tree individually. We do not know of any approach for the multi-output case, and this needs
to be investigated.

One needs to find a way of describing sequential flexibilities. Sequential flexibility
of a circuit must allow any possible encoding of that circuit. It is known that in general,
the maximum flexibility for implementing a sequential network cannot be represented with
a Boolean relation. It might be possible to represent such flexibilities with a set of Boolean
relations. If a circuit is decomposed into a set of sequential multi-output circuits, techniques
must be devised to find maximum and compatible flexibility for implementing such sequen-
tial multi-output nodes. In addition, more work is needed to find a set of transformations
that can use sequential flexibilities efficiently.

A new algorithm is presented for Boolean matching, and it is applied to technology
mapping for a network of single output nodes.. This algorithm allows the use of don’t cares.
A circuit is first decomposed into a set of trees and each tree is mapped into a set of gates in
the library. Local don’t cares are computed for each cluster within a tree and used to find
the best match for that cluster in the library. The Boolean matching algorithm is general
and can be used for delay optimization and mapping to most technologies.

The final result of technology mapping is dependent on the tree decomposition of
the circuit. More work needs to be done to get a good tree decomposition. If external don’t
cares, or observability relations are present, any optimization which uses these conditions

may improve the quality of the final circuit considerably.

137

Bibliography

[1] P. Abouzeid, K. Sakouti, G. Saucier, and F. Poirot. Multilevel synthesis minimizing
the routing factor. In 27th ACM/IEEE Design Automation Conference, pages 365368,
Orlando, June 1990.

[2] V.D. Agrawal, K-T. Cheng, and P. Agrawal. CONTEST: A Concurrent Test Generator
for Sequential Circuits. In Proceedings of the 25th Design Automation Conference,
pages 84-89, June 1988.

" [3] A. V. Aho, M. Ganapathi, and S. Tjiang. Code generation using tree matching and
dynamic programming. ACM Transactions on Programming Languages and Systems,
11(4):491-516, October 1989.

[4] Act 1 Family Gate Arrays. Design reference manual.
[5] A. Aziz. private communication, 1991.

[6] K. Bartlett, R. K. Brayton, G. D. Hachtel, R. M. Jacoby, C. R. Morrison a nd
R. L. Rudell, A. Sangiovanni-Vincentelli, and A. R. Wang. Multi-level Logic Mini-
mization Using Implicit Don’t Cares. In IEEE Transactions on CAD, pages 723-740,
June 1988.

[7] K. A. Bartlett, G. D. Bostick, G. D. Hachtel, R. M. Jacoby, P. H. Lightner, P. H.
Moceyunas, C. R. Morrison, and Ravenscroft D. BOLD: A Multiple-Level Logic Op-
timization System. In IEFE International Conference on Computer-Aided Design,
November 1987.

[8] M. Beardslee, C. Kring, R. Murgai, H. Savoj, R.K. Brayton, and A. Sangiovanni-
Vinventelli. SLIP: A Software Environment for System Level Interactive Partitioning.

BIBLIOGRAPHY 138

In IEEFE International Conference on Computer-Aided Design, pages 280-283, Novem-
ber 1989.

[9] K. L. Brace, R. E. Bryant, and R. L. Rudell. Efficient Implementation of a BDD
Package. In 27th ACM/IEEE Design Automation Conference, June 1990.

[10] R. Brayton, R. Rudell, A. Sangiovanni-Vincentelli, and A. Wang. MIS: Multiple-Level
Logic Optimization System. In IEEE Transactions on Computer Aided Design of
Integrated Circuits and Systems, pages 1062-1081, November 1987.

[11] R. K. Brayton, G. D. Hachtel, C.T. McMullen, and A.L. Sangiovanni-Vincentelli. Logic
Minimization Algorithms for VLSI Synthesis. Kluwer Academic Publishers, 1984.

[12] R. K. Brayton and F. Somenzi. Boolean Relations and the Incomplete Specification of
Logic Networks. In VLSI’89, August 1989.

[13] R.K. Brayton and C. McMullen. The decomposition and factorization of Boolean

expressions. In The International Symposium on Circuits and Systems, pages 49-54,
May 1982.

[14] R. E. Bryant. Graph Based Algorithms for Boolean Function Manipulation. IEEE
Transactions on Computers, C-35(8):677-691, August 1986.

[15] J. R. Burch, E. M. Clarke, K. L. McMillan, and D. L. Dill. Sequential Circuit Ver-
ification Using Symbolic Model Checking. In 27th ACM/IEEE Design Automation
Conference, Orlando, June 1990.

(16] J. Burns, A. Casotto, M. Igusa, F. Marron, F. Romeo, A. Sangiovanni- Vincentelli,
C. Sechen, H. Shin, G. Srinath, and H. Yaghutiel. MOSAICO: An integrated Macro-
cell Layout System. In Proceedings of the VLSI-87 Conference, Vancouver, Canada,
August 1987.

[17] E. Cerny. An approach to unified methodology of combinational switching circuits.
IEEE Transactions on Computers, 27(8), 1977.

(18] E. Cerny and C. Mauras. Tautology Checking Using Cross-Controllability and Cross-
Observability Relations. In IEEFE International Conference on Computer-Aided Design,
pages 34-37, November 1990.

BIBLIOGRAPHY 139

[19] H. Cho, G. Hachtel, S. Jeong, B. Plessier, E. Schwarz, and F. Somenzi. ATPG Aspects
of FSM Verification. In IEEFE International Conference on Computer-Aided Design,
November 1990.

[20] E. M. Clarke, E. A. Emerson, and P. Sistla. Automatic Verification of Finite-State
Concurrent Systems Using Temporal Logic Specifications. ACM Transactions on Pro-
gramming Language Systems, 8(2):244-263, April 1986.

[21] O. Coudert, C. Berthet, and J. C. Madre. Verification of Sequential Machines Based
on Symbolic Execution. In Proceedings of the Workshop on Automatic Verification
Methods for Finite State Systems, Grenoble, France, 1989.

[22] O. Coudert, J. C. Madre, and C. Berthet. Verifying Temporal Properties of Sequential
Machines Without Building their State Diagrams. In Worshop on Computer-Aided
Verification, Rutgers, June 1990.

[23] M. Damiani and G. De Micheli. Observability Don’t Care Sets and Boolean Rela-
tions. In IEEE International Conference on Computer-Aided Design, pages 502-505,
November 1990.

[24] M. Damiani and G. De Micheli. Derivation of Don’t Care Conditions by Perturbation
Analysis of Combinational Multiple-Level Logic Circuits. In International Workshop
on Logic Synthesis, May 1991.

[25] G. De Micheli. Logic Transformations for Synchronous Logic Synthesis. In Hawaii

International Conference on System Sciences, pages 407-416, January 1990.

[26] Ewald Detjens, Gary Gannot, Richard Rudell, Alberto Sangiovanni-Vincentelli, and
Albert Wang. Technology Mapping in MIS. In International Conference on Computer
Atded Design, pages 116-119. IEEE, November 1987.

[27] Donald L. Dietmeyer and Peter Schneider. Identification of Symmetry, Redundancy
and Equivalence of Boolean Functions. IEEE Transactions on Electronic Computers,
EC-16(6):804-807, December 1967.

[28] W. E. Donath. Physical Design Automation of VLSI Systems, Chapter Logic Parti-
tioning. Benjamin/Cummings Publishing Company Inc., 1988.

BIBLIOGRAPHY 140

[29] C.M. Fiduccia and R. Mattheyses. A linear-time heuristic for improving network parti-
tions. In 19th ACM/IEEFE Design Automation Conference, pages 241-247, July 1982.

[30) M. Fujita and Y Matsunaga. Multi-level Logic Minimization based on Minimal Support
and its Application to the Minimization of Look-up Table Type FPGAs. In IFEFE

International Conference on Computer-Aided Design, November 1991.

[31] M. Fujita, Y. Tamiya, Y. Matsunaga, and K.C. Chen. Multi-Level Logic Synthesis for
Boolean Relations. In submitted to VLSI, 1991.

[32] H. Fujiwara and T. Shimono. On the Acceleration of Test Generation Algorithms. In
IEEFE Transactions on Computers, pages 1137-1144, December 1983.

[33] A. Ghosh, S. Devadas, and A. R. Newton. Heuristic Minimization of Boolean Relations
Using Testing Techniques. In IEEE international Conference on Computer Design,
Cambridge, September 1990.

[34] A. Ghosh, S. Devadas, and A. R. Newton. Test Generation and Verification for Highly
Sequential Circuits. In IEEE Transactions on Computer-Aided Design, pages 652-667,
May 1991.

[35] P. Goel. An Implicit Enumeration Algorithm to generate tests for combinational logic
circuits. In IEEE Transactions on Computers, volume C30, pages 215-222, March
1981.

[36] G.D. Hachtel, R. M. Jacoby, and P. H. Moceyunas. On Computing and Approximating
the Observability Don’t Care Set. In MCNC Workshop in Logic Synthesis, 1989.

[37] L. J. Hafer and A. Parker. Register-Transfer Level Digital Design Automation: The
Allocation Process. In 15th ACM/IEEE Design Automation Conference, pages 213—
219, June 1978.

(38] S. Hong, R. Cain, and D. Ostapko. MINI: A Heuristic Approach for Logic Minimization.
IBM Journal of Research and Development, 18:443-458, September 1974.

[39] Xilinx Inc. The programmable gate array data book.

BIBLIOGRAPHY 141

[40] R. Jacoby, P. Moceyunas, H. Cho, and Hachtel G. New ATPG Techniques for Logic
Optimization. In IEEE International Conference on Computer-Aided Design, pages
548-551, November 1989.

[41] S.-W. Jeong, B. Plessier, G.D. Hachtel, and F. Somenzi. Variable Ordering and Selec-
tion for FSM Traversal. In IEEFE International Conference on Computer-Aided Design,
pages 476-479, November 1991.

[42] K. Keutzer. Dagon: Technology Binding and Local Optimization by DAG Matching.
In 24th ACM/IEEE Design Automation Conference, pages 341-347, June 1987.

[43] R. P. Kurshan. Analysis of Discrete Event Coordination. Springer Verlog, 1990.

[44]) T. Larabee. Efficient Generation of Test Patterns Using Boolean Difference. In Pro-
ceedings of the International Test Conference, pages 795-801, August 1989.

[45] C. E. Leiserson, F. M. Rose, and J. B. Saxe. Optimizing synchronous circuitry by
retiming. In R. Bryant, editor, 3rd Caltech Conference on Very Large Scale Integration,
pages 87-116, 1983.

[46] M. Lightner and W. Wolf. Experiments in Logic Optimization. In IEEE International
Conference on Computer-Aided Design, November 1988.

[47] B. Lin, H. Touati, and R. Newton. Don’t Care Minimization of Multi-Level Sequen-
tial Logic Networks. In IEEE International Conference on Computer-Aided Design,
November 1990.

[48] H-K. T. Ma, S. Devadas, A. R. Newton, and A. Sangiovanni-Vincentelli. Test Genera-
tion for Sequential Circuits. In JEEE Transactions on Computer-Aided Design, pages
1081-1093, October 1988.

[49] F. Mailhot and G. D. Micheli. Technology Mapping Using Boolean Matching. In
European Design Automation Conference, pages 180-185, March 1990.

[50] A. Malik, R. K. Brayton, and A. Sangiovanni-Vincentelli. A Modified Approach to
two-level Logic Minimization. In IEEE International Conference on Computer-Aided
Design, pages 106-109, November 1988.

BIBLIOGRAPHY 142

[51] S. Malik, A. R. Wang, R. K. Brayton, and A. Sangiovanni-Vincentelli. Logic Verifi-
cation Using Binary Decision Diagrams in a Logic Synthesis Environments. In IEEE

International Conference on Computer-Aided Design, pages 6-9, November 1988.

[52] Sharad Malik. Combinational Logic Optimization Techniques in Sequential Logic Syn-
thesis. PhD thesis, U. C. Berkeley, 1990.

[53] P. McGeer and R. K. Brayton. Consistency and Observability Invariance in Multi-Level
Logic Synthesis. In IEEE International Conference on Computer-Aided Design, 1989.

[54] P. McGeer and R. K. Brayton. The Observability Don’t Care Set and Its Approxima-

tions. In IEEFE International Conference on Computer Design, pages 45,48, September
1990.

[55] J. D. Morison, N. E. Peeling, and T. L. Thorp. ELLA: Hardware Description or
Specification? In IEEE International Conference on Computer-Aided Design, pages
54-56, November 1984.

[56] R. Murgai, Y. Nishizaki, N. Shenoy, R. Brayton, and Sangiovanni-Vincentelli A. Logic
Synthesis for Programmable Gate Arrays. In 27th ACM/IEEE Design Automation
Conference, pages 620-625, Orlando, June 1990.

[57] R. Murgai, N. Shenoy, R. Brayton, and Sangiovanni-Vincentelli A. Improved Logic
Synthesis Algorithms for Table Look Up Architectures. In IEEE International Con-
ference on Computer-Aided Design, pages 564-567, November 1991.

(58] S. Muroga. Threshold Logic and its Applications. John Wiley, 1971.

(59] S. Muroga, Y. Kambayashi, H. C. Lai, and J. N. Culliney. The Transduction Method
- Design of Logic Networks Based on Permissible Functions. In IEEE Transactions on
Computers, October 1989.

[60] A. Parker, D. Thomas, D. Siewiorek, M. Barbacci, L. Hafer, G. Leive, and J. Kim. The

CMU Design Automation System. In 16th ACM/IEEE Design Automation Conference,
pages 73-79, June 1979.

[61] M. Pedram and N. Bhat. Layout Driven Technology Mapping. In 28th ACM/IEEE
Design Automation Conference, pages 99-105, San Francisco, June 1991.

BIBLIOGRAPHY 143

[62] IEEE Press. Ieee standard vhdl language reference manual.

[63] J. Reed, A. Sangiovanni-Vincentelli, and M. Santamauro. A New Symbolic Channel
Router: YACR2. In IEEE Transactions on Computer-Aided Design, pages 208-219,
July 1985.

[64] Rick Rudell. Logic Synthesis for VLSI Design. PhD thesis, U. C. Berkeley, April 1989.
Memorandum UCB/ERL M89/49.

[65] A. Saldanha, A. Wang, R. K. Brayton, and A. Sangiovanni-Vincentelli. Multi-Level
Logic Simplification using Don’t Cares and Filters. In Design Automation Conference,
1989.

[66] H. Sato, Y. Yasue, F. Matsunaga, and M. Fujita. Boolean Resubstitution with Permis-
sible Functions and Binary Decision Diagrams. In 27th ACM/IEEE Design Automation
Conference, pages 284-289, Orlando, June 1990.

[67] H. Savoj and R. Brayton. The Use of Observability and External Don’t Cares for
the Simplification of Multi-Level Networks. In 27th ACM/IEEFE Design Automation
Conference, pages 297-301, Orlando, June 1990.

[68] H. Savojand R. K. Brayton. Observability Relations and Observability Don’t Cares. In
IEEE International Conference on Computer-Aided Design, pages 518-521, November
1991.

[69] H. Savoj, A.A. Malik, and R.K. Brayton. Fast Two-Level Logic Minimizers for Two-
Level Logic Synthesis. In IEEE International Conference on Computer-Aided Design,
pages 544-547, November 1989.

[70] H. Savoj, H. Touati, and R. K. Brayton. Extracting Local Don’t Cares for Network
Optimization. In IEEE International Conference on Computer-Aided Design, pages
514-517, November 1991.

[71] M. Schulz and E. Auth. Advanced automatic test pattern generation and redundancy
identification techniques. In fics, pages 30-35, June 1988.

[72] C. Sechen and A. Sangiovanni—Viﬁcente]]i. The TimberWolf Placement and Routing
Package. In Proceedings of the 1984 Custom Integrated Circuit Corifemnce, pages 522-
527, Rochester, NY, May 1984.

BIBLIOGRAPHY 144

[73] E. Sentovich and R. K. Brayton. Preserving Don’t Care Conditions During Retiming.
In International Conference on VLSI, August 1991.

[74] E. Sentovich, K.J. Singh, C. Moon, H. Savoj, R. Brayton, and A. Sangiovanni-

Vincentelli. Sequential circuit design using synthesis and optimization, 1992.
[75] H. Touati. private communication, 1990.

[76] H. Touati, R. Brayton, and R. Kurshan. Testing language containment for w-automata
using BDD’s. In International Workshop on Formal Methods in VLSI Design, 1991.

[77] H. Touati, H. Savoj, and R.K. Brayton. Delay Optimization of Combinational Circuits
by Clustering and Partial Collapsing. In IEEE International Conference on Computer-
Aided Design, pages 188-191, November 1991.

[78] H. Touati, H. Savoj, B. Lin, R. Brayton, and A. Sangiovanni-Vincentelli. Implicit State
Enumeration of Finite State Machines using BDD’s. In IEEE International Conference

on Computer-Aided Design, November 1990.

[79] Herve Touati. Performance Driven Technology Mapping. PhD thesis, U. C. Berkeley,
1990.

[80] C-J. Tseng and D. P. Siewiorek. Automated Synthesis of Data Paths in Digital Systems.
In IEEE Transactions on Computer-Aided Design, pages 379-395, July 1986.

[81] J. Vasudevamurthy and J. Rajski. A Method for Concurrent Decomposition and Factor-
ization of Boolean Expressions. In IEEFE International Conference on Computer-Aided

Design, pages 510-513, November 1990.

[82] R. A. Walker and D. E. Thomas. Behavioral Transformation for Algorithmic Level

IC Design. IEEE Transactions on Computer-Aided Design, 8(10):1115-1128, October
1989.

[83] Y. Watanabe and R.K. Brayton. Heuristic Minimization of Boolean Relations. In
International Workshop on Logic Synthesis, May 1991.

[84] G. Whitcomb and A. R. Newton. Abstract Data Types and High-Level Synthesis. In
27th ACM/IEEE Design Automation Conference, pages 680-685, Orlando, June 1990.

 BIBLIOGRAPHY | 145

[85] T. Yoshimura and E. S. Kuh. Efficient algorithms for channel routing. In IEEFE
Transactions on Computer-Aided Design, pages 25-35, January 1982.

	Copyright notice1992
	ERL-92-122 (part 1 of 3)
	ERL-92-122 (2 of 3)
	ERL-92-122 (3 of 3)

