

Copyright © 1992, by the author(s).
All rights reserved.

Permission to make digital or hard copies of all or part of this work for personal or

classroom use is granted without fee provided that copies are not made or distributed
for profit or commercial advantage and that copies bear this notice and the full citation

on the first page. To copy otherwise, to republish, to post on servers or to redistribute to
lists, requires prior specific permission.

DONT CARES IN MULTI-LEVEL

NETWORK OPTIMIZATION

by

Hamid Savoj

Memorandum No. UCB/ERL M92/122

30 October 1992

DON'T CARES IN MULTI-LEVEL

NETWORK OPTIMIZATION

by

Hamid Savoj

Memorandum No. UCB/ERL M92/122

30 October 1992

ELECTRONICS RESEARCH LABORATORY

College of Engineering
University of California, Berkeley

94720

Don't Cares in Multi-Level Network Optimization

Hamid Savoj

University of California Department of Electrical Engineering
Berkeley, California and Computer Sciences

Abstract

An important factor in the optimization of a multi-level circuit, modeled as a Boolean

network, is to compute the flexibility for implementing each node of the network and to

exploit this flexibility to get a better functional implementation at that node. A general

form for describing input-output behavior of a Boolean network is a Boolean relation. This

relation or a subset of it, is then used to compute the flexibility for implementing each

node in the network. The nodes in the network can be either single or multiple output.

In the case of a network composed of single-output nodes, this flexibility is captured by

don't cares. Techniques for computing both maximum and compatible don't care sets for

each node are presented. In the case of multi-output nodes, don't cares are not sufficient

to express input-output behavior of the node. Thus, we present techniques to compute

maximal and compatible flexibility at multi-output nodes using Boolean relations.

The current model for representing a Boolean circuit uses single output nodes.

We present efficient techniques for single-output node simplification that use don't cares

in terms of the fanins of node being simplified. The don't care set in terms of fanins of

a node is called the local don't care set for that node; it usually has a small size and can

be used to remove all the redundancies within that node. Practical issues for computing

local don't cares and simplifying nodes are discussed in detail and experimental results

are presented that show the effectiveness of the approach. New scripts are designed for

technology independent optimization of Boolean circuits which use these new techniques.

Finally, a new Boolean matching algorithm is presented that can match two func

tions with given don't care sets. To prove the effectiveness of the approach, this algorithm

is used within a technology mapper where matches are sought between subfunctions in the

network and sets of gates in the library. The symmetries of the gates in the library are used

to speed up the matching process.

Prof. Robert K.'Brayton
Thesis Committee Chairman

Don't Cares in Multi-Level Network Optimization

Copyright © 1992

Hamid Savoj

Acknowledgements

The four and a half years that I have spent at the University of California at

Berkeley have been a very intellectually stimulating stage of my life. Many individuals

contributed to the work presented here.

I am indebted to my research advisor, Professor Robert K. Brayton, who provided

guidence not only with my research but also with my personal growth. He has taught me

how to develop and communicate research ideas. My discussions with him have always been

motivating and enlightening. This work would have not been possible without his vision

and continuous support.

Professor Alberto Sangiovanni-Vincentelli has helped me develop presentation

skills and has taught me structured approaches to research.

Several people assisted me during the writing of my thesis. I am grateful to Adnan

Aziz, Luciano Lavagno, Rajeev Murgai, Massoud Pedram, Narendra Shenoy, Tom Shiple,

and Tiziano Villa for reading the first draft of my thesis and making valuable suggestions.

I would like to thank my colleagues for their interaction and companionship over

the past few years. They are: Pranav Ashar, Adnan Aziz, Wendell Baker, Mark Beardslee,

Andrea Casotto, Abhijit Ghosh, Ramin Hojati, Chuck Kring, Luciano Lavagno, Bill Lin,

Abdul Malik, Sharad Malik, Rick McGeer, Cho Moon, Rajeev Murgai, Massoud Pedram,

Jaijeet Roychowdhury, Rick Rudell, Alex Saldanha, Ellen Sentovich, Narendra Shenoy, Tom

Shiple, Kanwar Jit Singh, Paul Stephan, Herve Touati, Tiziano Villa, Albert Wang, Huey-

Yih Wang, Yosinori Watanabe, and Greg Whitcomb. Many thanks to Flora Oviedo, Kia

Cooper, and Elise Mills for the all administrative assistance provided. Brad Krebs helped

with many hardware and software problems over the years.

My life at Berkeley would not have been as happy and memorable as it has been

without my friends from International House. In particular, I would like to thank Bar

bara Calhoun, Cormac Conroy, Bijan Dastmalchi, Gustavo DeVeciana, Ami Doshi, Orla

Feely, Cynthia Gaertner, Mehryar Gharakani, Peter Kennedy, George Kesidis, Davar Khosh-

nevisan, Carlos Kirjner, Michelle Leversee, Mary McNamara, Dariush Mirfendereski, Liam

Murphy, Saeid Nazari, Kamran M. Nemati, Mehdi Nosrati, Ali Sarhaddi, Anthony Sarkis,

Shahab Sheikholeslam, Ravi Subramanian, Shahram Taheri, and Farhad Zabihi.

Special thanks to my good friends of many years, Afsane Arvand, Massoud Pe

dram, and Khosrow Hasibi.

This thesis is dedicated to my parents, Ferdose and Abbas Savoj. Their love and

support has inspired me throughout my life. Together with my brothers and sisters, they

are constantly in my memory.

Ill

Contents

Acknowledgements i

List of Figures vii

List of Tables ix

1 Introduction 1

1.1 CAD for VLSI 1

1.2 Logic Synthesis 2
1.2.1 Transformations 3

1.2.2 Flexibility in Node Implementation 4
1.3 Overview 5

2 Terminology and Background 7
2.1 Boolean Functions and Boolean Networks 7

2.1.1 Boolean Functions 7

2.1.2 Boolean Network 9

2.2 Set Operations and BDD's 10
2.2.1 Binary Decision Diagrams 10
2.2.2 Consensus Operator 11
2.2.3 Smoothing Operator 11
2.2.4 Boolean Difference 12

2.3 Image and Inverse Image Computations 12
2.3.1 The Generalized Cofactor 13

2.3.2 The Transition Relation Method 17

2.3.3 The Recursive Image Computation Method 18
2.4 Observability Relations 21

3 Don't Care Conditions for Single-Output Nodes 23
3.1 Introduction 23

3.2 Don't Cares in a Boolean Network 25

3.2.1 Satisfiability Don't Cares 25
3.2.2 Observability Don't Cares 26
3.2.3 External Don't Cares 28

CONTENTS iv

3.2.4 Terminology 28
3.3 Observability Network 28
3.4 Computing ODC's 30

3.4.1 A New Approach 32
3.4.2 Deriving Damiani's Formula 35
3.4.3 Using the Observability Relation 36

3.5 Observability Don't Care Subsets 39
3.5.1 Compatible Observability and External Don't Cares 40
3.5.2 CODC's for Trees 41

3.5.3 CODC's for a General Network 47

3.6 ODC's and Equivalence Classes of a Cut 51

4 Observability Relations for Multi-Output Nodes 53
4.1 Previous Work 53

4.2 Two-Way Partitioning of a Boolean Relation 54
4.2.1 Serial Decomposition 55
4.2.2 Parallel Decomposition 62

4.3 Compatible and Maximal Observability Relations 65
4.3.1 Node Optimization Using Maximal Observability Relations 68
4.3.2 Node Optimization Using Compatible Observability Relations 70

4.4 Conclusion 71

5 Node Simplification: Practical Issues 73
5.1 Introduction 73

5.2 Node Simplification 75
5.3 Using Don't Cares 78
5.4 Computing Local Don't Cares 81
5.5 Implementation 82

5.5.1 External Don't Cares 83

5.5.2 Inverse of Boolean Difference 86

5.5.3 Computing Observability and External Don't Cares at Each Node . 86
5.5.4 Filtering 88
5.5.5 Computing the Image 89

5.6 Conclusion 92

6 Scripts for Technology Independent Optimization 95
6.1 Introduction 96

6.2 Scripts Used for Logic Minimization 98
6.2.1 Kernel and Cube Extraction 99

6.2.2 Simplification 100
6.2.3 Elimination 102

6.3 Scripts 104
6.4 Experimental Results 105

6.4.1 Area Optimization 105
6.4.2 Sequential Optimization 110

CONTENTS v

6.4.3 Testability 112
6.5 Conclusion 113

7 Boolean Matching in Logic Synthesis 115
7.1 Introduction 115

7.2 Boolean Matching 117
7.3 Boolean Matching for Technology Mapping 120

7.3.1 Generating all Supports 122
7.3.2 Boolean Matching Algorithm 123
7.3.3 Symmetries 126
7.3.4 Heuristic for Assigning Inputs 127

7.4 Don't Care Computation 128
7.5 Library Organization 131
7.6 Results 132

7.7 Conclusion 134

8 Conclusions 135

Bibliography 137

CONTENTS VI

vn

List of Figures

2.1 Binary Decision Diagram 11
2.2 Generalized Cofactor 16

3.1 Example 27
3.2 Example 32
3.3 A Separating Set of Nodes 33
3.4 Example 34
3.5 Example 38
3.6 A Directed Tree 42

3.7 Example 49
3.8 Example 50

4.1 Decomposition of Observability Relation 55
4.2 Observability Relation for a Cut 56
4.3 Example 61
4.4 Example 64
4.5 Observability Network for a Network of Multi-Output Nodes 65
4.6 Maximal Observability Relation Computation and Node Simplification ... 69
4.7 Compatible Observability Relation Computation and Node Simplification . 70

5.1 Node Simplification 76
5.2 Input to Two-Level Minimizer 77
5.3 Input to Two-Level Minimizer 80
5.4 don't care computation and node simplification 84
5.5 Berkeley Logic Interchange Format 85
5.6 don't care computation and node simplification 87
5.7 An Intermediate Node 88

5.8 Range Computation Algorithm 91
5.9 Partition into Groups with Disjoint Support 93

6.1 Simplification Script Using fast_extract 105
6.2 Simplification Script Using Kernel Extraction 106

7.1 Generating Supports 124

LIST OF FIGURES viii

7.2 Boolean Matching 125
7.3 Cluster Functions 128

IX

List of Tables

6.1 Performance of Scripts Starting from Multi-Level Circuits 108
6.2 Performance of Scripts Starting from PLA's 109
6.3 Comparison of Algebraic Extraction Techniques Ill
6.4 Performance of the Scripts on Sequential Circuits 113
6.5 Measuring Testability 114

7.1 Boolean Matching for Technology Mapping 133

LIST OF TABLES

Chapter 1

Introduction

Computer Aided Design (CAD) tools are used in many fields of science to cope

with complexity in the analysis or synthesis of systems. CAD tools have been developed to

help chemists and biologist to study the structure of molecules, find common sub-structures

among them, and predict their activities. CAD tools have also been used to analyze and

predict the behavior of financial markets based on statistical models. Finally, CAD tools

have been employed to automate the design of VLSI circuits. This dissertation focuses on

new techniques for automated synthesis of logic circuits, which is a major division of CAD

for VLSI circuits.

1.1 CAD for VLSI

The objective of VLSI CAD is to automate the design of VLSI systems. The

starting point is usually a description of a system in a high-level language like ELLA [55]

or VHDL [62]. The result of the design process is a layout description of that system which

can be implemented as a set of integrated circuits in one or more technologies. This process

is usually divided into four steps because the problem is too complex to be handled all at

once. These steps are high-level synthesis, logic synthesis, physical design, and fabrication

and test. A design may have to go through many iterations in one or more of the above steps

before it meets the required specification. In some applications, CAD tools are employed

starting at the logic or physical design level. This is the case when a design in an old

technology is converted into a new technology.

We discuss the steps in VLSI design using the order in which they are applied.

CHAPTER 1. INTRODUCTION 2

High-level synthesis generates a register-transfer level structure from a behavioral descrip

tion which realizes the given behavior. The temporal scheduling of operations and alloca

tion of hardware are among the issues considered at this stage. Behavioral synthesis tools

[37, 60, 80, 82, 84] can be used to reduce the amount hardware while meeting the required

performance constraints. The next step is logic synthesis, where the register transfer struc

ture is transformed into a netlist of gates in a given technology. Optimization techniques

are applied to improve the area, performance, and testability of the circuit at this stage.

Our focus is on new sets of optimization techniques that can be applied during logic syn

thesis. The third step, physical design, provides the physical realization of a net-list on a

chip and includes placement, routing, and geometric artwork [16, 72, 63, 85]. As in logic

synthesis, the objective is to find a layout with the best area and/or performance. The

final step is fabrication and test where mask-making, fabrication, and performance test is

done. Some manufactured circuits are defective because manufacturing processes cannot

guarantee 100% yield. It is important to separate defective circuits from the proper ones.

To detect defective circuits, test patterns are applied to the circuit and the response is

compared with the expected response. Test pattern generation has been investigated for

many years [2, 32, 35, 44, 48, 34, 71].

While synthesizing a given specification at the higher level of the design, one may

estimate some information from the lower levels to produce a better design. For example,

one may use placement and routing information during logic synthesis [61, 1].

Partitioning of a VLSI system and handling hierarchies are hard problems that

need to be dealt with at all levels [28, 29, 8]. Formal verification is another area of interest

where a given high-level specification of a circuit is checked for some desired behavior before

any implementation is done [20,43,76]. This areahas received considerable attention lately.

1.2 Logic Synthesis

Logic synthesis is the process of transforming a set of Boolean functions, obtained

from the register transfer level structure, into a network of gates in a particular technology,

while optimizing the network for performance, area, and/or testability. The best imple

mentation of a functional specification is usually in multi-level logic. The model used for

representing multiple levels of logic is a directed acyclic graph with single-output nodes,

called a Boolean network, where each node of the network is a logic function itself. A set

CHAPTER 1. INTRODUCTION 3

of transformations is applied to the logic network to find the best set of nodes which give

the desired input-output behavior.

1.2.1 Transformations

The synthesis process is usually divided into technology independent and tech

nology dependent phases [10, 7]. The objective of the technology independent phase is to

simplify the logic as much as possible, while the main role of the technology dependent

phase is to implement the logic networkusing a set of well characterized gates.

In [46], it was shown experimentally that the layout area of a Boolean network

implementation in standard cells correlates well with the number of literals used for repre

senting that network in factored form (defined in [10]). This measure is used in the tech

nology independent stage because it helps to reduce the size of the nodes in the network

and therefore, the amount of logic used. After a circuit is optimized for literals in factored

form, additional transformations can be applied to optimize performance, or to tune the

circuit for eventual implementation in a particular technology such as, Field Programmable

Gate Arrays [39, 4]. A network optimized for literals in factored form is a good starting

point for these other manipulations. When the amount of logic used is reduced, there are

less gates to be placed on a chip and fewer nets to be routed. As a result, performance is

also improvedin most cases. In the same way, a circuit can be implemented on an FPGA

chip using fewer blocks, if the amount of logic is reduced.

An important transformation to reduce the number of levels in factored form is to

apply a two-level logic minimizer to each node of the multi-level network to optimize the

two-level function associated with the node. The input supplied to a two-level minimizer is

the onset and the don't care set of the node. The onset gives the function of the node in

terms of its fanins. The don't care set gives the flexibility in implementing the node, and is

a combination of structural don't cares and external don't cares supplied by the user.

In the technology dependent stage, transformations are applied to implement and

optimize logic for a particular technology. For standard cells, the most common approach

decomposes the circuit into a set of trees andthen mapseach tree into a set of library gates

[42, 64]. For the Xilinx FPGA architecture, the Boolean network is decomposed into a set

of nodes whereeachnode has less than 5 inputs; therefore, it can be directly mapped into a

logic block [56,57]. Don't care conditions can be used to improve the quality of the mapped

CJfAPTEJtl. INTRODUCTION 4

circuits.

1.2.2 Flexibility in Node Implementation

This thesis contributes to the understanding and ability to use don't care sets

and Boolean relations to manipulate Boolean networks. Don't cares are used to find the

maximum flexibility for implementing nodes of a network decomposed into single-output

nodes. The don't care set at each node is a combination of external, observability, and

satisfiability don't cares. The external don't care set for a network is a restricted form

for expressing the freedom in input-output behavior of that network. These are input

conditions under which the value of a particular output is not important. The observability

and satisfiability don't cares are related to the structure of the network. The observability

don't cares are conditions under which the value of a node is not observable at any of the

outputs. Satisfiability don't cares are related to the functions at the nodes of the network.

Each intermediate node of a Boolean network gets a value of 1 or 0 for a particular input.

Some combinations are impossible in the Boolean space of intermediate nodes and primary

inputs of the network; satisfiability don't cares capture all such impossible combinations.

A Boolean network can be also decomposed into a set of multi-output nodes. This

is very useful for data path synthesis where the circuit has many multi-output blocks like

multipliers and adders. These blocks must be recognized and mapped into corresponding

multi-output gates in the library. The maximum flexibility for implementing a multi-output

node is captured by a Boolean relation which gives the set of outputs possible for any par

ticular input pattern to the node. A Boolean network is a multi-output node itself, and

external don't cares are not sufficient to express the maximum flexibility for implementing

it. Thus Boolean relations must be used to express the input-output behavior of a Boolean

network. Such a relation is called an observability relation. The use of the observabil

ity relation allows the definition and computation of maximum flexibility in implementing

multi-output nodes in a Boolean network.

An interesting concept which applies to both don't cares and Boolean relations

is the concept of compatibility. In general, the flexibility in implementing a node in the

network affects the flexibility in implementing other nodes in the network; therefore, if the

function at a node is changed, don't care sets or Boolean relations at other nodes in the

network have to be updated. The updating process can be costly. It is possible to order all

CHAPTER 1. INTRODUCTION 5

the nodes in the network and compute compatible flexibilities according to the ordering. In

this manner, all the nodes in the network can be optimized simultaneously. Furthermore,

once the function at a node is changed, the flexibility for implementing other nodes in the

network need not be recomputed.

1.3 Overview

Chapter 2 presents some basic definitions used throughout this thesis. It also

contains the definition of generalized cofactor and its properties. Finally, it discusses dif

ferent methods for image computation and explains shortcomings and advantages of each

approach.

Chapter 3 discusses maximum flexibility for implementing nodes of a Boolean

network decomposed into single-output nodes. The flexibility for a single-output node

can be computed in the form of don't cares. We discuss different kinds of don't cares and

techniques for computing a full don't care set and approximate don't care sets at a particular

node. The input-output behavior of the network itself is expressed by a Boolean relation

because it can be viewed as a multi-output node. This relation is represented by a node

attached to the top of the original network. This new network is called the observability

network. We develop techniques for computing full and compatible don't cares from the

observability network.

Techniques for computing compatible and maximal Boolean relations for a network

decomposed into multi-output nodes are developed in Chapter 4. We first discuss the

parallel and serial decomposition of Boolean relations and then expand this to a general

decomposition into multi-output nodes.

Chapter 5 discusses the practical issues in using local don't cares for the simplifi

cation of single-output nodes in a multi-level network. The algorithms used for local don't

care computation are discussed in detail. The extensions to BLIF for representing external

don't cares are discussed in this chapter.

Chapter 6 discusses scripts used for technology independent optimization. The

algorithms used within these scripts are discussed and improvements are provided which

enable the application of these algorithms to larger circuits. Experiments are run on a large

set of benchmark circuits to show the effectiveness of these improved scripts for reducing

the amount of logic used and removing redundancies in each circuit.

CHAPTER 1. INTRODUCTION 6

Finally, we discuss Boolean matching in Chapter 7 and show how this can be used

for technology mapping. The tree matching algorithm used to match a subfunction in the

network with a gate in the library, is replaced by Boolean matching. The symmetries of

the gates in the library are found and used to speed up the matching process. Gates in the

library are grouped into sets using the same Boolean matching algorithm, where it is enough

to check the existence of a match of a subfunction in the network with a set representative.

Chapter 2

Terminology and Background

The purpose of this chapter is to introduce some basic definitions and concepts

that are essential for describing the work presented in this thesis.

2.1 Boolean Functions and Boolean Networks

2.1.1 Boolean Functions

Definition 2.1.1 A completely specified Boolean function f with n inputs and I outputs is

a mapping

f:Bn—+Bl

where B = {0,1}. In particular, ifl = l the onset and offset of f are

onset = {m 6 Bn \ f(m) = 1}

offset={m€Bn \ f(m) = 0}

Definition 2.1.2 A minterm of a function f is a vertex m € Bn such that f(m) = 1.

Definition 2.1.3 An incompletelyspecified Booleanfunction T withn inputs and I outputs

is a mapping

T:Bn —• Y*

where Y = {0,1, *}. The onset, offset, and donft care set (dcset) of T': Bn —• Y are,

onset = {m € Bn | T(m) = 1}

CHAPTER 2. TERMINOLOGY AND BACKGROUND 8

offset= {m G Bn \ ?(m) = 0}

dcset= {m € Bn \ F(m) = *}.

The symbol * implies that the function can be either 0 or 1.

Definition 2.1.4 A cover for the incompletely specified function T : Bn —• Y is any

completely specified function f such that f{m) = 1 if T(m) = 1, f(m) = 0 if ^(m) = 0,

and f(m) = 0 or 1 if .F(to) = *.

T: Bn —• Y is usually described by two completely specified functions / and d where / is

a cover for T and d{m) = 1 if F(m) = *, and 0 otherwise. Alternately, T can be described

as T —(ffd, r) where /,d,r are respectively the onset, don't care set, and offset.

Let xi, X2,..., xn be the variables of the space Bn. We use x to represent a vertex

or a vector of variables in Bn.

Definition 2.1.5 Let AC Bn. Thecharacteristic function ofA is thefunction f : Bn -*• B

defined by /(x) = 1 »/x € A, /(x) = 0 otherwise.

Characteristic functions are nothing but a functional representation of a subset of a set.

Any completely specified function / : Bn —• B is a characteristic function for its onset.

Definition 2.1.6 A literal is a variable in its true or complement form (e.g.Xi, orxj). A

product term or cube is the conjunction of some set of literals (e.g. xia^a^*

Definition 2.1.7 A cube c is called a prime cube of T if cC fUd and there is no cube cf

such that c C d C / U d.

Definition 2.1.8 The distance between two cubes denoted as dist(c\,C2) is the number of

literals in which C\ contains the complement literal of C2. Two cubes c\ and c2 are called

orthogonal if dist(c\,C2) > 1 (e.g. xia?2*3 w orthogonal to x{x~2 and of distance 1).

The onset, don't care set, and offset of an incompletely specified function T :

Bn —> Y can each be represented by the union of some set of cubes. This representation

is called a sum-of-products form.

Definition 2.1.9 Let f : Bn -*• B be a Boolean function, and Xi an input variable of

f. The cofactor of f with respect to a literal Xi(xj), shown as fXi(fxi)f *5 a new function

obtained by substituting 1(0) for X{(xj) in every cube in f which contains Xi(xj).

CHAPTER 2. TERMINOLOGY AND BACKGROUND 9

Definition 2.1.10 Let f : Bn -> B be a Boolean function, andX{ an input variable of f. f

is monotone increasing in a variable X{ iffy. C fXi. A function f is monotone decreasing in

a variable X{ if fXi C fy.. f is unate in variable Xi if it is monotone increasing or decreasing

in that variable, f is a unatefunction if it is unate in all its input variables. A function is

independent of Xi if fXi = fy..

Definition 2.1.11 Let f : Bn -* B be a Boolean function, and X{ an input variable of f.

The Shannon's expansion of a Booleanfunction f with respect to a variable X{ is

xifxi T Xijxi'

Lemma 2.1.1 / = X{fXi + xjfyr.

The iterated Shannon decomposition of a Boolean function is a Binary tree representing

the function obtained by applying Shannon's expansion with respect to all the variables.

The leaves are either 0 or 1. Each path of the tree represents a minterm of the function.

2.1.2 Boolean Network

Definition 2.1.12 A Boolean network Af, is a directed acyclic graph (DAG) such that for

each node inAf there is an associated representation of a Booleanfunction ft, and a Boolean

variable yi, where yi = fr. There is a directed edge (i,j) from yi to yj if fj depends explicitly

on yi or y{. A node yi is a fanin of a node yj if there is a directed edge (t, j) and a fanout

if there is a directed edge (j, i). A node yi is a transitive fanin of a node yj if there is a

directed path from yi to yj and a transitive fanout if there is a directed path from yj to yi.

Primary inputs x = (a?i,...,xn) are inputs of the Boolean network and primary outputs

z = (zi,...,im) are its outputs. Intermediate nodes of the Boolean network have at least

onefanin andonefanout. The global function ff at yi is the function at the node expressed

in terms of primary inputs.

We sometimes represent the local function at yi by // to make a clear distinction with the

global function ff.

Definition 2.1.13 The cofactor of Af with respect to yi denoted by zVi is a new network

obtainedfrom Af by disconnecting the output edges of yi from yi and forcing each output

edge equal to 1. The cofactor of Af with respect to y,- denoted by Zy. is a new network

CHAPTER 2. TERMINOLOGY AND BACKGROUND 10

obtainedfrom Af by disconnecting the output edges of yi from yi and forcing each output

edge equal to 0.

Examplet

If Af has only one output z, zyiZyi is a new network representing the function obtained by

ANDing outputs of zyi and Zy.. zyiz^i gives conditions under which the value of yi can be

changed from 0 to 1 or vice versa but output z remains equal to 1. This computation is

important while computing observability don't cares discussed in Chapter 3.

Definition 2.1.14 The support of a function f is the set of variables that f explicitly

depends on.

Example;

The support of / = x\X2 + a?2^3 is {x\,X2,Xz}.

Definition 2.1.15 Nodes of a network are topologically ordered from outputs if each node

appears somewhere after all its fanouts in the ordering. They are topologically ordered from

inputs if each node appears somewhere after all its fanins in the ordering.

2.2 Set Operations and BDD's

Set operations are essential for manipulating Boolean functions. In this section,

we discuss some important set operations used in this thesis.

2.2.1 Binary Decision Diagrams

Binary Decision Diagrams [14] are compact representations of recursive Shannon

decompositions. The decomposition is done with the same order along every path from the

root to the leaves as shown in Figure 2.1. BDD's are unique for a given variable ordering

and hence are canonical forms for representing Boolean functions. They can be constructed

from the Shannon's expansion of a Boolean function by 1) deleting a node whose two child

edges point to the same node, and 2) sharing isomorphic subgraphs. Technically the result

is a reduced ordered BDD, (ROBDD), which we shall just call BDD.

Example;

Figure 2.1 shows the Shannon decomposition of / = X\x$ -f- x\Xz with the ordering x\ >•

CHAPTER 2. TERMINOLOGY AND BACKGROUND

0 0 1

f=xxx3 + x1x2

11

Figure 2.1: Binary Decision Diagram

X2 >• xz and the corresponding BDD. The unreduced one is on the left, the reduced one

on the right. An example of reduction is the merging of the two right most nodes which

represent the same function, namely 33. Then the X2 node above them has both of its

children with the same node and thus can be eliminated.

2.2.2 Consensus Operator

Definition 2.2.1 Let f : Bn —• B be a Boolean function, and x = (£<],...,xt*) ° 5e* °f

input variables of f. The consensus of f byx is

Cxf = cxii ...CXikf

Cx,-j / = fxij fyij

This is also the largest Boolean function contained in / which is independent of Xix,...,Xik.

2.2.3 Smoothing Operator

Definition 2.2.2 Let f : Bn —• B be a Boolean function, and x = (xil9.. .,a;»fc) a set of

input variables of f. The smoothing of f by x is

Sxf = SXij...SXiJ

VXijf = fxij+fxij

If / is interpreted as the characteristic function of a set, the smoothing operator computes

the projection of / to the subspace of Bn orthogonal to the domain of the x variables. This

is also the smallest Boolean function independent of a;,-,,..., Xik which contains /.

CHAPTER 2. TERMINOLOGY AND BACKGROUND 12

Lemma 2.2.1 Let f : Bn x Bm -+ B and g : Bm -• B be two Boolean functions. Then:

Sx(/(x,y)<7(y)) = «Sx(/(x,y)My) (2.1)

where /(x,y)</(y) is the Boolean AND o//(x,y) ond^(y).

2.2.4 Boolean Difference

Let / : Bn —• B be a Boolean function, and X{ an input variable of /. The Boolean

difference of a function / with respect to a variable zt- is defined as

a—. — JxiJn • JxiJxi

This function gives all the conditions under which the value of / is influenced by the value

of Xi. Its complement therefore is all the conditions under which / is insensitive to a?,\ The

concept of Boolean difference of a Boolean function with respect to a variable is very similar

to the concept of partial derivative of a real function with respect to a variable.

Example;

Let / = x\Xz + X2X3. Then, •$£. = x\X2 + x\X2. Notice that if x\ = 0 and X2 = 1, which is

a minterm of ^, / = aT3. As a result, the value of / is sensitive to 2:3. In the same way, if
x\ = 1 and X2 = 0, / = X3 and the value of / changes with the value of £3.

2.3 Image and Inverse Image Computations

Definition 2.3.1 Let f : Bn -+ Bm be a Boolean function and A a subset of Bn. The

image of A by f is the set f(A) = {y 6 Bm \ y = /(x), x € A}. If A- Bn, the image of

A by f is also called the range of f.

Definition 2.3.2 Let f : Bn -> Bm be a Boolean function and A a subset of Bm. The

inverse image of A by f is the set f~x{A) = {x € Bn \ /(x) = y, y € A}.

Example;

Let /(x, i) : Bn x Bk —> Bn be the next state function of a finite state machine, where n
is the number of state variables and k the number of input variables. Let Cqo be the set of

states reachable from a set of initial states cq. Cq© can be obtained by repeated computation

CHAPTER 2. TERMINOLOGY AND BACKGROUND 13

of an image as follows

c,-+i = C,'U/(C,'X^)

Coo = Ci if Cj+i = Ci

The sequence is guaranteed to converge after a finite number of iterations because {ct} is

monotone increasing and the number of states is finite.

2.3.1 The Generalized Cofactor

The generalized cofactor is an important operator that can be used to reduce

an image computation to a range computation. This operator was initially proposed by

Coudert et al. in [21] and called the constraint operator. Given a Boolean function: / =

(/i»---»/m) ' Bn —• Bm and a subset of Bn represented by its characteristic function /i,

the generalized cofactor fy = ((/i)/i>. •.,(/m)/i) is one of many functions from Bn to Bm

whose range is equal to the image of h by /. An important property of this function is

that A(x) = /(x) if h(x) = 1. In addition, in most cases, the BDD representation of fy

is smaller than the BDD representation of /. Given a cover / : Bn —• B for the onset and

don't care set d : Bn —• B of an incompletely specified function T, the function fy has the

property that f —dC fyC f + d (f —d\s the same as fd.)\ therefore fy is also a cover of

T = (/d,d,/ d). This is because fy gives the same values as / for any minterm in d. In

practice the size of the BDD for fy is usually smaller than that of / [78]. As a result, this

is an effective way to get a cover with smaller BDD size.

The generalized cofactor fy depends in general on the variable ordering used in

the BDD representation.

Definition 2.3.3 Let h : Bn -+ B be a non-null Boolean function and x\ >• a?2 >-...>- xn

an ordering of its input variables. We define the mapping Th '• Bn —* Bn as follows:

7Tfc(x) = x if h(x) = 1

irfc(x) = axgmmh{y)=1d(x.,y) if h(x) = 0

where d(x,y)= Ei<i<n I*. ~ ViV^'1

Lemma 2.3.1 tt^ is the projection that maps a minterm x to the minterm y in the onset

of h which has the closest distance to x according to the metric d. The particularform of

CHAPTER 2. TERMINOLOGY AND BACKGROUND 14

the distance metric guarantees the uniqueness ofy in this definition, for any given variable

ordering.

Proof Let y and y' be two minterms in the onset of h such that d(x,y) = d(x,y'). Each

of the expressions d(x, y) and rf(x,y7) can be interpreted as the binary representation of

some integer. Since the binary representation is unique, |x,- —yi\ = \xt —y'J for 1 < i < n

and thus y = y'. •

Lemma 2.3.2 Let ft(x,y) : Bn+m -»• B, where n is the number of variables in x and m

is the number of variables in y, be dependent only on the x variables (Syh = h). For

every vertex x there is a vertex x' such that ithfay) = (x',y) for any ordering o/x and y

variables.

Proof Any vertex (x, y) must be mapped to the closest vertex (x', y') to it according to

metric d such that /i(x',y') = 1. y' ^ y is not possible because (x',y) is closer to (x,y)

than (x',y') and /&(x',y) = 1. •

Definition 2.3.4 Let f : Bn -+ B andh: Bn -• B, with h ^ 0. The generalized cofactor

of f with respect to h, denoted by fy, is the function fy = f° Kh> *.c- A(x) = /(^(x)). //

/ : Bn -+ Bm, then fy : Bn -> Bm is the function whose components are the cofactors by h

of the components of f.

If c is a cube the generalized cofactor fc is equal to the usual cofactor of a Boolean

function, and is, in that case, independent of the variable ordering.

Lemma 2.3.3 Ifh is a cube (i.e. c = c\C2...cn where ct- = {0,1, *}), irc is independent of

the variable ordering. More precisely, y = 7rc(x) satisfies

Vi = 0 if ct = 0

yi = 1 if a = 1

yi = Xi if Ci = *

and fc = / o irc is the usual cofactor of a Boolean function by a cube.

CHAPTER 2. TERMINOLOGY AND BACKGROUND 15

Proof Any minterm y' in Bn such that c(y') = 1 is orthogonal to x in at least the same

variables as y. Thus y minimizes d(x,y) over c. •

In addition, the generalized cofactor preserves the following important properties

of cofactors:

Lemma 2.3.4 Let g : Bm -> B and f : Bn -• Bm. Then (g o f)h = g o fy. In particular

the cofactor of a sum offunctions is the sum of the cofactors, and the cofactor of an inverse

is the inverse of the cofactor (e.g. f = [fy^fy] andg = fy + fy, then gn = /u + hh)-

Proof {g o f)h = (gof)oirhzndgofy = go(fo ich). •

Lemma 2.3.5 Let f : Bn x Bm -> B and h : Bn -+ B be two Boolean functions, with

h^O. Then:

Sx(/(x,y).*(x)) = 5x(A(x,y)) (2.2)

Proof For every vertex x 6 Bn if h(x) = 1, then A(x,y) = /(x,y). This is from

the definition of generalized cofactor. If h(x) = 0, then /(x,y)/i(x) = 0. Therefore,

/(x,y)/i(x) C A(x,y) and Sx(/(x,y)/i(x)) C Sx(fy(x,y)). Conversely, if vertex y e Bm

is such that 5x(A(x,y)) = 1, there exists an x for which A(x,y) = 1 and therefore there

exists an x' such that /(x',y) = 1 and h(x') = 1. This is because A(x,y) = /o7r/»(x,y) and

h is dependent only on x variables; therefore for each vertex (x,y), //i(x,y) = /(x',y) and

/i(x') = 1 from Lemma 2.3.2. This gives £x(/fc(x,y)) Q Sx(f(xiy)h{x)) and the statement

of the Lemma follows. •

Lemma 2.3.6 Let f be a Boolean function, andh a non-null Boolean function. Then h is

contained in f if and only if fy is a tautology.

Proof Suppose that h is contained in /. Let x be an arbitrary minterm. y = fffc(x)

implies h(y) = 1. Since h => f, fy(x) = /(y) = 1. Thus fy is a tautology. Conversely,

suppose that fy is a tautology. Let x be such that h(x) = 1. Then irh{x) = x and

/(x) = /(fl7»(x)) = /a(x) = 1, which proves that h is contained in /. •

Lemma 2.3.7 If h is the characteristic function of a set A then fy(Bn) = f(A); that is

the image of A by f is equal to the range of the cofactor fy.

CHAPTER 2. TERMINOLOGY AND BACKGROUND

function gcofactor(f, h) {

assert (h -fc 0) ;

if (h = 1 or isjconstant{f)) return f;

else if (hXl —0) return gcofacto^/a.,,/^,);

else if {hXl = 0) return gcofactorf/^,^);

else return x\ gcofactor(/x

}

i, hXl) + xi gcofactor(/5,, "'xxh

16

Figure 2.2: Generalized Cofactor

Proof Th(Bn) is equal to the onset of h, which is A. Thus fy(Bn) = / o irh(Bn) = /(A).

The generalized cofactor can be computed very efficiently in a single bottom-up

traversal of the BDD representations of / and h by the algorithm given in Figure 2.2.

Theorem 2.3.8 / o Th = gcofactor(f, h).

Proof Let the variable ordering be x\ y ...y xn, and m = x\... xn 6 Bn be a particular

vertex. We compute the value of the function gcofactor(f, h) for the particular m (shown

35 [gcofactor(f,h)](m)) and show that it is equal to / o 7r^(m) irrespective of the choice

of m. Assume h and / are not constants. The proof in such cases is trivial.

If h(m) = 1, it follows from Figure 2.2 that

gcofactor(f,h)(m) = xigcofactor(fXl1hXl)(m)

because hXl ^ 0. We are not interested in x\gcofactor(fyx, ksx) because it gives 0 for the

vertex m. In the ith step, if neither fXx..jn nor h^..^ is a constant,

xi...Xigcofactor{fXx.^i,hXl.^i)(m) = xx.. .xi+igcofactor(fXl.^i+1,hXx^^x)(m)

because /&Xl...X|+, ^ 0. Eventually either fXl..^ becomes constant or hXx.„Xj = 1. In either
case, the returned function has the term x\. ..Xjfyx.„Xj which is equal to x\.. .Xjf. As a
result, [gcofactor(f,h)](m) = x\.. .Xjf{m) = f{m). The same reasoning holds for any m
such that h(m) = 1; therefore, / o^(m) = [gcofactor(f, h)]{m), if h{m) - 1.

CHAPTER 2. TERMINOLOGY AND BACKGROUND 17

If h(m) = 0, the computation is as before as long as &*,...*,._, ^ 0. If hXl...Xi = 0,
it follows from Figure 2.2 that

xi...Xi-1gcofactor(fXx..JCi_x,hXx„j!i_x)(m) = xx ..•Xi-igcofactor(fyx„5iyhXx_Xi){m).

Eventually, either fXx,..Xi..jej becomes constant or hXx.,Si..^j = 1 in the jth iteration. In ei
thercase, thepart ofthe returned function which isofinterest isXi.. .x,_ix,+i. ..XjfXx...Xi..^j.
If c = xi.. .x,-_iXi+i.. .Xj, then the returned expression can be written as cfc. The value

of [gcofactor(f,h)]{m) = [xx...xt_ixt+i.. .a?J7»1..si..JPi]ro which is fXl..si..J!ixi+1..xn. We
prove that the closest vertex m' to m such that h(m!) = 1 is in the cube c = xi.. .x"j.. .Xj.

Because hXx,mj:i_x ^ 0, the closest vertex m' to m (distance is defined by Definition 2.3.3)

such that h(m!) = 1 must have literals xi,...,xt_i. Because hSx.,Ji:i = 0, the closest ver

tex m' to m such that h{w!) —1 must have literals xi,...,xt_i,x,-. This same reasoning

holds for any other literal in c, therefore m' must have all the literals in c. If c = 1,

xi.. .Xi.. .XjXj+i...xn is the closest vertex to m and /ow^m) = [gcofactor(f,h)](m). If

c / 1, /c must be constant to terminate the algorithm in Figure 2.2. fc has the same value

for all the vertices in c and again / o 7r^(m) = [gcofactor(f, h)](m). This same reasoning

holds for any m such that h(m) = 0. •

The next example shows that the BDD size of fy is not always smaller than the

BDD size of /.

Example;

Let / = X2 + X3, h = xi -r X2, and the ordering used for computing the generalized cofactor

be xi >- x2 >- X3. gcofactor(f,h) = Xigcofactor(x~2 + X3,1) -|- x\gcofactor^ + «3»*2)'

This gives fy = gcofactor(f, h) = X1X2 + X3. The BDD for fy with the given ordering has

3 nodes while the BDD for / has 2 nodes.

2.3.2 The Transition Relation Method

Definition 2.3.5 Let f : Bn -*• Bm be a Boolean function. The transition relation associ

ated with f, F:BnxBm -> B, is defined as F{x,y) = {(x,y) € Bn x Bm | y = /(x)}.

Equivalently, in terms of Boolean operations:

f(x,y) = II (j«®/i(x)) (2.3)
l<«<m

We can use F to obtain the image by / of a subset A of 2?n, by computing the

projection on Bm of the set F C\ (A x Bm). In terms of BDD operations, this is achieved

CHAPTER 2. TERMINOLOGY AND BACKGROUND 18

by a Boolean AND and a smooth. The smoothing and the Boolean and can be done in one

pass on the BDD's to further reduce the need for intermediate storage [15]:

f(A)(y) = 5x(F(x,y)-A(x)) (2.4)

The inverse image by / of a subset A of Bm can be computed as easily:

/-V)W = Sy(F(x,yM(y)) (2.5)

The transition relation method allows both image and inverse image computation for a

function /. However, computing the transition relation may require too much memory to

be feasible in some examples. We do not need to compute the transition relation explicitly

to perform an image computation as in equation 2.4. Using propositions 2.3.4 and 2.3.5,

we can rewrite equation 2.4 as follows:

Sx(F(x,y).A(x)) = 5X(Y[y,e/^(x))
l<t<m

One efficient way to compute the product is to decompose the Boolean AND of the m

functions (flf,(x,y) = y,Wu(x)) mto a balanced binary tree of Boolean AND's. Moreover,
after computing every binary AND p of two partial products p\ and />2> we can smooth

the x variables that appear in p and in no other partial product. As for equation 2.4, the

smoothing and the AND computations can be done in one pass on the BDD's to reduce

storage requirements.

2.3.3 The Recursive Image Computation Method

Coudert et al. [21, 22] introduced an alternate procedure to compute the image

of a set by a Boolean function that does not require building the BDD for the transition

relation. This procedure relies on lemma 2.3.7 to reduce the image computation to a range

computation, and proceeds recursively by cofactoring by a variable of the input space or

the output space. We use range(f) to denote the range of a multiple output function

/ = [/i» •••»/»»]• There are two techniques for doing this range computation. The first is

input cofactoring where output functions are cofactored with respect to inputs only.

range(f)(y) = range([fu...Jm]Xl) + range([fu...Jm]^)

CHAPTER 2. TERMINOLOGY AND BACKGROUND 19

The second technique is output cofactoring where output functions are cofactored with

respect to other functions.

range(f){y) = range{[fy, fy,..., fm]fx) + range([fy, fy,..., f^)
= range([l, fy,..., fm]h) +range([0, fy,..., /m]-^)

= y\range([fy,..., fm]jx) +yirange([fy>..., fm]j^)

If a particular component /,- becomes constant, the corresponding yt- in positive or comple

ment form depending on the value of /,- replaces /,- in the range computation. The image

of / for a set j4(x) is obtained by first finding fA^ and then applying one of the input or
output cofactoring techniques.

One can also apply a combination of input and output cofactoring. The ordering

in which cofactoring is done is very important. The procedure can be sped up dramatically

by caching intermediate range computations, and detecting the case where, at any step in

the recursion, the functions [fy,..., fm] can be grouped into two or more sets with disjoint

support. In this case, the range computation can proceed independently on each group with

disjoint support. This reduces the worst case complexity from 2m to 2*1 + ... + 2a*, where

(«i,..., Sk) are the sizes of the groups with disjoint support (s\ + ... + Sk = m).

Example:

We find the range of the function / = [/i,...,/5] using the transition relation method,

input cofactoring method, and output cofactoring method.

fy = X\X2Xz

fy = Xi + X2 + X3

fy = x"ix2x3

fy = x4x5

fy = X4X5

The characteristic function for / is

F(x,y) = (yi©xiX2X3)(y2©(*i + *2 + xz))(y^xix2xz)(y^xAx5){y^®xAxb).

Using the transition relation method the range of / is

/(y) = «Sxf(x,y)

CHAPTER 2. TERMINOLOGY AND BACKGROUND 20

= ^xlx2xz(yi@3:iX2X3)(y2W(xi + x2+ x3))(y3®^i«2^3) «S*4*s (3/40*4*5)(2/5®a4x5)

= (y2?3 + 2?ll/23fe)(y4+lfe)-

We use the fact that the components of / can be separated into groups of disjoint support

and Lemma 2.2.1 to speed up the range computation.

The range can be also computed by cofactoring output functions with respect to

eachinput. The components {fy, fy, fy} aregroupedtogether becausethey aredependent on

{xi,X2,X3} and the components {/4,/s} are grouped together because they are dependent

On {X4,X5}.

range([fy,fy,fy,fyjs]) = range([fy, fy, fy]) range{[fy,fy])

We use the ordering xi >- x2 >- X3 to find

range([fy, fy, fy]) = range([fyXl, fyXx, /3xi]) + range{[fy^x, fyXx, /ssj)

= range([x2xz,1,0])+ range([0,x2+ x3, x2x3])

= y2VzTange([x2x3]) + yx range([x2 + x3, x2x3])

= 2/2I/3 + yi(range([x2+ x3,X2X3]X2) + range([x2 + x3,x2x3]s2))

= 2/2I/3 + Virange([l, 0]) + yxrange([xz, x3])

= V2Vz + Uirange([xz,x3])

= V2Vz + lli(range([xz,x3]X3) + range([x3, x3]X3))

= V2Vz + yirange([l, 0]) + yxrange{$,1])

= 2/22/3 + 2/13/22/3-

The ordering X4 >- X5 is used to find

range([fy, fy]) = ran^€([x4X5,X4X5])

= ranflf€([x4x5, x4x5]X4) + range([x4x~5, x4x5]Xi)

= range([x5,0]) + range([Q, x5])

= ?5 + 2/4

Finally, we show how this can be done using output cofactoring. The ordering

*i y 22 y xz y x4 >- X5 is used for the generalized cofactor. As before

range([fy, fy, fy, fy, fy]) = range([fy, fy,fy]) range([fy, fy])

CHAPTER 2. TERMINOLOGY AND BACKGROUND 21

For output cofactoring, we use fy y fy y fy to find

range([fy,fy,fy]) = range([flfx,fyIx,fyfx]) +rangedfy^, fy^, fzjj)
= range([l, 1,0])+ range([Q, xi + x2 + x3, xix2x3])

= 3/13/22/3 + H\range{[xi + x2 + x3, xix2x3])

= 3/13/203 + y\range{[l, 0])+ yxrange{[i), 1])

= 3/2173+31^3

Here we use gcofactor(x\ + X2 + X3, xi + x*2 + X3) = xi + X2 + X3, gcofactor(x~ix~2Xz,Xi +

*2 + ^3) = *i*2*3> and gcofactor(xix~2X~z,xi + x2 + x3) = 0 to find range[fy, fy, fy]- Also

using fy y fy and gcofactor{xAx^,x4 + X5) = X4X5, we get

range([fy, fy]) = range{[fyh, /5/J)+ range([fy-j^, fyjj)
= range([l, 0])+ ran^e([0, x4x5])

= 3/4 + V5

One can mix all three methods to obtain the most efficient implementation for image com

putation. The choice of one of these techniques over the others depends on particular

application. For FSM traversal, the transition relation method in [78] and the input co-

factoring method in [19] gave comparable results. Improvements to the choice of variable

for input cofactoring were given in [41]. The output cofactoring is preferred for computing

local don't cares as discussed later, because the number of output variables is usually much

less than input variables.

2.4 Observability Relations

Observability relations or characteristic functions were introduced by Cerny [17].

Later the notion of a general Boolean relation [12] was discussed and derived for a hierarchy

of networks.

Definition 2.4.1 A Boolean relation is a one-to-many multi-output Boolean mapping TZ :

Bn —• Bl. In general ft(x) C Bl is a set.

CHAPTER 2. TERMINOLOGY AND BACKGROUND 22

Definition 2.4.1 A Boolean relation is well-defined if there exists at least one minterm

z € Bl for every x € Bn such that z € H(x).

A general way to specify a combinational circuit Af is to use a Boolean relation.

This relation gives all the output combinations possible for a particular input.

Definition 2.4.2 An observability relation [17], O : Bn+l —• B is the characteristic func
tion of the Boolean relation H(x) which describes the input-output behavior of circuit. The

observability relation is defined as 0(x,z) = {(x,z)|x 6 Bn,z € Bl,z € ft(x)}.

Examplet

Let z\ = fy = X1X2 and 22 = fy —x\ + X2 be the output functions of a Boolean network.

If the network is completely specified, its observability relation is

0(x,z) = X\X2Z\Z2 + X1X2Z1Z2 + X\X2~Z\Z2 + X\X2^\^2'

Notice that a particular output combination is generated for each input combination. There

is at least one output combination for each input combination; therefore, Q(x,z) is well

defined. If the outputs can be either z\Z2 or z~\Z2 for ^i«2» the observability relation is

0(x,z) = XiX2(^l^2 + Z1Z2) + X1X2Z1Z2 +XiX2^lZ2+ XiX2^l^2«

If the output z\ can be either 0 or 1 for the input X1X2, the observability relation is

0{X,Z) = X1X2Z2 + X\X2~Z\Z2 + X\X2Z\Z2 + X"iX2^l^2»

The term X1X2Z2 implies that z\ can be either 1 or 0 for input X1X2. We will show later

that X1X2 is actually the external don't set for output z\.

Chapter 3

Don't Care Conditions for

Single-Output Nodes

23

The observability relation 0(x,z) (as defined by Cerny [17]) or Boolean relation

(discussed in [12]) provides a description of all the flexibility one has in implementing a

Boolean network Af. In this chapter, we propose to represent .and use this flexibility in

a logic synthesis system by adding a single output node to the Boolean network Af. The

node function for the new node is 0(x,z). The newly constructed network Af' (called the

observability network) has only one outputand computes 1 for every input x. We show that

the observability don't cares (ODC's) for a node yi in Af' provide the maximum flexibility

for implementing yi and subsume the flexibility obtained for yi in Af even with don't cares

provided at each output. This gives rise to new methods for computing complete ODC's

for Af' and hence for Af.

In practice, it is not always possible to compute full ODC's for all the nodes in

the network. We consider subsets of ODC's which can be computed efficiently. Compatible

ODC subsets have the added advantage that functions at the nodes of the network can be

optimized using their ODC subsets simultaneously. We develop techniques for computing

compatible ODC's for complex nodes of a multi-level network.

3.1 Introduction

An important part of logic synthesis is the node simplification phase where the

local function at each node in a Boolean network is minimized using a two-level minimizer

CHAPTER 3. DON'T CARE CONDITIONS FOR SINGLE-OUTPUT NODES 24

(such as ESPRESSO [11]) and using don't cares derived from the environment of the node.

These don't cares arise from various sources; external don't cares (EDC), satisfiability

don't cares (SDC), and observability don't cares (ODC). It was shown in [6] that if a node

is minimized using all three types of don't cares, then each connection to and inside that

node is irredundant (and hence there exists a test for both stuck-at-1 and stuck-at-0 for

each connection). In this sense the don't cares so defined are complete.

This theory is explicitly for the case where each node in the Boolean network is a

single output node. However, one can view a Boolean network itself as a single node with

multiple-outputs, for which a complete don't care theory is missing. This lack becomes

especially apparent when attempting to specify and use external don't cares for combina

tional logic minimization. In practice,eachseparateoutput of a network is given an external

don't care set rft(x). It has been observed that these must be independent or compatible

[59]. But such external don't cares can neverbe complete since they cannot provide all the

flexibility allowed in simplifying a circuit [12]. To circumvent this, Boolean relations were

defined and techniques for finding minimal sum-of-products representations implementing

a Boolean relation weregiven. Previously, Cerny [17] had defined the observability relation

for a circuit. These ideas form the basis for a complete theory of don't cares for multiple-

output nodes of logic networks. This chapterintegrates these ideas and provides techniques

for computing the full flexibility allowed for minimizing a logic network by expanding on

the work presented in [68].

We define for a given Boolean network Af, an observability networkAf', by adding

a single node whose logic function is the observability relation G(x,z) for Af. We then

show that the regular treatment of ODC's for M' includes all the flexibility allowed by the

Boolean relation.

The idea of having an extra node on top of network Af to represent its Boolean

relation was originally suggested in [33]. The combined network was called the intercon

nection network. An initial network Af compatible with the Boolean relation is derived and

minimized using ATPG redundancy removal techniques. Later, in [31] it was proposed to

put the characteristic function (observability relation) of the Boolean relation as an extra

networkon top of the Boolean network. The MSPF's [59] are then computed from this new

interconnected network for eachintermediate node of AT in terms of primary inputs. These

areused to optimize each node using the techniques of [66]. It was also mentioned that this

gives the maximum flexibility at each node.

CHAPTER 3. DON'T CARE CONDITIONS FOR SINGLE-OUTPUT NODES 25

The approach presented in this chapter generalizes these notions in the sense that

the observability relation is defined for all networks, regardless of whether Boolean relations,

external don't cares, or completely specified functions are considered. Unlike [31] where

MSPF's are considered in terms of primary inputs, we compute ODC's in terms of both

intermediate variables and primary inputs. The fact that this leads to more flexibility was

used in [67] and also commented on in [24]. Here wemakethesenotions moreprecise. Using

this we give an algorithm for incrementally computing complete ODC's in topological order

while visiting each node only once. The algorithm does not require representing ODC's in

vector form nor associating variables to each edge as suggested in [23].

The computation of full ODC's at each node of a multi-level network is expensive

and impractical for large circuits. In practice, subsets of ODC are computed. We present

techniques for computing compatible observability don't care subsets at each node of the

network. These are computed for complex nodes and can be used for the optimization of

each node independent of sets computed for other nodes.

3.2 Don't Cares in a Boolean Network

The don't care conditions in a Boolean network are divided into three groups,

satisfiability don't cares (SDC's) and observability don't cares (ODC's) which are related

to the structure of the network, and external don't cares (EDC's) which are usually supplied

by the user.

3.2.1 Satisfiability Don't Cares

A multi-level network Af with n primary inputs and m intermediate nodes is given.

The n primary inputs result in 2n input combinations or minterms in the space Bn.

Definition 3.2.1 If yi is the variable at an intermediate node and fi its logic function,

then yi = fi; therefore, we don't care if yi -fi fi (i.e. yi © fi is don't care). The expression

SDC = ^2i(yi © fi) is called the satisfiability don't care set.

Simulation of AT with a particular input minterm forces the value of each intermediate node

to either 0 or 1. Some combination of values on the nodes are possible and some are not

possible. The SDC of the network contains all the impossible combinations in Bn+m. The

number of these combinations is exactly 2m+n - 2n.

CHAPTER 3. DON'T CARE CONDITIONS FOR SINGLE-OUTPUT NODES 26

When we simplify an intermediate node yi of a multi-level Boolean network, we

usually use a subset of the SDC derived from a subset of the nodes that can be substituted

with "high probability" into the node being optimized. A two-level minimizer effectively

substitutes some set of variables, corresponding to the nodes of the network, into /;.

Example:

Let the following nodes be the intermediate nodes of a multi-level network where a, b,c, d, e, f

are primary inputs.

t = sk + sabcd + sabcd

k = ab + ab

s =ef + ef

r = cd

If we simplify t using the SDC's,

(k © (ab+ ab))+ {s © (ef + ef)) + (r © (cd))

we obtain t = sk + skr. Thus, in addition to s and k, r has also been substituted into

the function representing t. The Boolean function at t as a function of the primary input

variables (called its global function) has not changed since only the satisfiability don't cares

were used for the simplification [53]; equivalently, t has not changed in Bn.

3.2.2 Observability Don't Cares

Given a Boolean network Af, there are global functions associated with each of

the intermediate nodes of the network which give a specified value for each input minterm.

At times, it is possible to change the global function at a node y0 without observing any

change at any of the outputs of the network. The observability don't cares computed for

y0 give all such conditions.

Definition 3.2.2 The observability don't cares (ODC's) at each intermediate node y0 of a

multi-level network are conditions under which y0 can be either 1 or 0 while the functions

generated at each primary output remain unchanged. Ifz = (zi,...,z{), then the complete

ODC at node y0 is

ODCo = {m € Bn\zyo(m) = zVo(m)}.

Thus odco =n!=i^.

CHAPTER 3. DON'T CARE CONDITIONS FOR SINGLE-OUTPUT NODES 27

s\ 7\ A
i—r

X2 X3
jm n—F
Xj X2 Xj X3

Figure 3.1: Example

The ODC of an intermediate node y0 need not be expressed in terms of primary

inputs. It can also be expressed in terms of intermediate nodes of the network.

Example;

As shown in Figure 3.1, ODC2 = yiyz + yiJfe. This means that whenever both y\ and

t/3 are 1 or both are 0, the value of t/2 has no effect at any of the outputs. ODC2 can

be reexpressed in terms of the inputs a?i,X2> and x$. The ability to express the ODC's

in terms of various sets of variables is important to node simplification. Once we have

ODC2 = ici«2+ a?i*2 + Z3j we can set jfe (initially 3/2 = ^1*2) to 0.

Another interesting fact is that the ODC at a node expressed in terms of interme

diate variables can intersect the SDC of the network. The cube yi^Jte is in ODC2 and also

in SDC of the network in Figure 3.1 because j/i and j/2 cannot be equal to 1 at the same

time under any input combination.

CHAPTER 3. DON'T CARE CONDITIONS FOR SINGLE-OUTPUT NODES 28

3.2.3 External Don't Cares

In general, we don't care about the value of every single output for every single

input combination.

Definition 3.2.3 The external don't care set for each output Z{ of the network M is all the

input combinations for which the value of z\ is not important

Definition 3.2.4 The external don't care setsfor the outputs of the network are compatible

if each output function can be changed as allowed by its external don't care set irrespective

of the changes made to other outputs as allowed by their external don't care sets.

The EDC's and ODC's can be used to find flexibilities in implementing each inter

mediate node of a multi-level network. There can be conditions that are not captured by

EDC's and ODC's alone, but this combination is what is used in practice most often and

is very effective.

3.2.4 Terminology

We represent the observability plus external don't care set at node yi by d,-. If this

is a global function, it is denoted by d\. If d; is a local function in terms of the fanins of

the node, it is denoted by d\. If d{ is a compatible don't care subset (defined later), it is
denoted by d£; if it is a maximal subset, it is denoted by d™. If d{ is computed with respect

to a particular output 27, it is denoted by d,-./. The don't care set for an edge connecting

nodes y,- and yj is denoted by dij l. For example, the global, compatible don't carefor the

edge (i,j) with respect to output k is df$]k. Ifit is clear from the context what kind ofdon't
care we are referring to, some superscripts or subscripts may be deleted.

3.3 Observability Network

The observability relation as defined in 2.4 can express the behavior of networks

that are completely specified, those with external don't cares, and those with a given

Boolean relation describing the input-output behavior of the circuit.

1The function at an edge is the same as the function of its fanin node. The don't care set at an edge is
all the conditions under which the value of that edge can be either 1 or 0.

CHAPTER 3. DON'T CARE CONDITIONS FOR SINGLE-OUTPUT NODES 29

If the network Af is completely specified and </i,..., #/ are the global functions of

Af, expressing each primary output in terms of primary inputs, the observability relation of

./Vis

0(x,z) = (zi@gi)(z2Wg2) ••'(z&gi).

External don't cares are another special case of Boolean relations; they are specified for

each output and are input combinations under which that output can have any value. If

the external don't cares d\,.. .,d/, are given in terms of primary inputs, the observability

relation of Af is

0(x,z) =n)=1(4+ *$<&)•
In the most general case, the user gives an observability relation which expresses the input-

output behavior of the network.

To represent and use the flexibility supplied by the observability relation in a

synthesis system we propose the following.

Definition 3.3.1 The observability network Af' of Af is derived by adding one additional

node O to Af. The logic function for this node is the observability relation (9(x, z) of Af.

Af' has only one output, namely O, and O has n + l inputs, namely all inputs and outputs

of AS.

Af' has many interesting properties that can be used for optimization and verifi

cation of Af. Af with global output functions </i,.. .,<jr/ is compatible with its observability

relation if 0(pcig(x)) = 1 because each input minterm x produces an output minterm g(x)

that is allowed by the observability relation. If Af is compatible, the output value of Af' is

always 1 no matter what the input is. Thus, Af' is the tautology. Logic synthesis techniques

can be used to optimize Af. The optimized network is valid if and only if the output of Af'

is always 1 2.

The observability relation allows defining external don't cares not just in terms of

primary inputs, but also primary outputs. It turns out that external don't cares defined

this way (using output variables) need not be compatible (see section 3.5).

Lemma 3.3.1 Letyi be any node in Af (yi is also in Af') and O the output ofAf'. Then,

f§ =OyiOy..
2Thus one technique for verifying a combinational circuit M is to build the BDD for its observability

network Af' in terms of the primary inputs and check whether it is the tautology.

CHAPTER 3. DON'T CARE CONDITIONS FOR SINGLE-OUTPUT NODES 30

Proof Because Af' is a tautology, and for any input combination either y,- = 1 or yf- = 0,

then Oyi =1or Oy. =1. As aresult, Oyfiyi =0. Jg =<9yi<%. +&yiOy. =Oy,<%.. .

Theorem 3.3.2 Let€?(x,z) be an observability relation andAf implement compatible global

functions g(x), i.e. C(x,g(x)) = 1. Let yt be any node in Af with global function ff and

let ODCi be the complete ODCfor node i in Af'. Then network Af, obtained by replacing

ff by ff, is compatible if and only if ffODCi < ff < ff + ODCi.

Proof If the change in node yi for some particular input x is not observable in Af', then

because of Lemma 3.3.1 the value of the output function O must be 1 before and after the

change. Therefore if any change occurs at the outputs ofAf, it is allowed by the observability

relation meaning the new network is compatible. On the other hand, if the change at node

yi for some particular input x is observable at the output of Af', then the output of the

observability network for x must be 0 which means the new network is not compatible. •

Theorem 3.3.3 If there are no Boolean relations or external don't cares, the complete

ODC computed for yi from Af is equal to that computed from Af'.

Proof If the change in node yi for some particular input x is not observable in Af, it will

not be observable in Af', because the input and the output of Af remain the same after

the change, and the characteristic function O evaluates to 1 before and after the change.

Therefore ODCi in Af C ODCi in Af'. On the other hand, if the change in yi for some

particular input x is not observable in Af', then, since there are no Boolean relations or

external don't cares, for each input minterm x, there is only one output minterm z such

that 0(x,z) = 1. As a result, a change not observable in Af' is also not observable in Af. *

3.4 Computing ODC's

In [23] a method is described for computing complete ODC's at every node of a

multi-level network. The ODC at a node is computed recursively in terms of the ODC's at

all its fanout edges. The described method uses ODC's in vector form, where each element is

the ODC with respect to a single primary output. Each such element is computed separately

at each node. We describe another method for computing complete ODC's, and drive the

result in [23] using this new formulation. We show that the ODC's can be computed without

CHAPTER 3. DON'T CARE CONDITIONS FOR SINGLE-OUTPUT NODES 31

using the vector form and the edge ODC's as proposed in [23] by using the observability

relation.

We express the ODC of an intermediate node in terms of variables of some sepa

rating set of nodes in the network.

Definition 3.4.1 A separating set of nodes is a minimal set of nodes which separates all

primary outputs from primary inputs if all the fanout edges of the nodes in the set are

removed.

Let y = (3/1,3/2>•••»Up) be a separating set of nodes in network Af and y0 an intermediate

node in AT as shown in Figure 3.3. A fundamental result used throughout this section is the

ability to rebuild a function / if the observability don't cares with respect to / are known

for each variable corresponding to a node in the separating set.

Theorem 3.4.1 Given Jj£>^£>«««jJif-> the vertices in Bp can be divided into two sets,
one the offset and the other the onset of f.

To prove this, we give an iterative procedure. Let F° = 1. At the jth step do,

F' =(»f-» +WJ '̂XJ£)w+,..v, +̂ (Jj^*,-*- (3-D
After the pth iteration we have a set F+. This operation is very similar to integration of

continuous functions where a function is built from its partial derivatives.

Lemma 3.4.2 Iffyi...yp = 1 then f = F+, otherwise J=F+.

Proof Assume fyi...Vp = 1. The other case is symmetrical. Then Fc = fyi...Vp. By
induction^assume F'-1 =fyi...Vp. Since (|£)yi+1...yp = (fyjfyj)yj+1...yp +(J^W-*
and Fi-%,^ =T*-1/^ =0, (3.1) gives F* =VjF^J^^^ +yjFj-1fVjyj+1...yp +
F^~1fyjyHl...yp. The first and third terms simplify to yjF*'1 = yjfyj...yp- The second and
third terms simplify to yjfyjyj+1...yp- Therefore

F = VjF /yiyJ+1...yp+yj™ fyjVj+l^yp + F fvjVj+l-Vp

= yjF +yjfvjyj+i...vP + F fyjyj+\...yp

= VjF + VjfvjVi-¥i—vp

— Vjfvj -»p + VjfVjVj+i -yp

= /vj+i—yp*

CHAPTER 3. DON'T CARE CONDITIONS FOR SINGLE-OUTPUT NODES

a b c

o4
abc abc

JSso-

Figure 3.2: Example

Thus F? = F+ = /. •

• Onset

O Offset

32

Corollary 3.4.3 Given (^)y2...yp,(§^)V3...yp,
into two sets, the offset and the onset of f.

,-s~r, the vertices in Bp can be dividedBy

Corollary 3.4.3 implies that less information is needed to rebuild the function /

than !£>•••>!£•
Example:

Figure 3.2 shows the onset and the offset for afunction / =a+6c+6c. || =bc+bc, §{ =a,
and -£ —a. We start with the vertex abc and find all the other vertices that are in the

same set as abc. We know that abc is in the onset of /. Because /0&c = 1, F+ is the onset

of /. The starting point in the iteration is F** = fabc = 1. The iteration is done using the

order y\ =a, 3/2 =b, and 3/3 =cin formula (3.1). abc € §£, thus abc and abc must be in the
same set giving F* = f\,c = 1. The fact that abc £ |£ and abc G|£ gives F2 = fc = a+ b,
and finally F3 = c(a+ b) + c(a + b)a + c(ab)a which results in F+ = / = a + be + be.

3.4.1 A New Approach

We show that by using (3.1) the ODC of a node can be computed if the ODC of

each of its fanout nodes is known. Let node y0 have fanouts 3/1,3/2,..., yr as shown in Figure

CHAPTER 3. DON'T CARE CONDITIONS FOR SINGLE-OUTPUT NODES 33

f
i i

B

f1 y U/-^

•

...•—\\ ... /*\
•a—- \ /

p-r —'

^~M b
A "r /s; ..." *\

TV i *
Yr+1 Vp

Figure 3.3: A Separating Set of Nodes

3.3 3. The conditions under which yi,...yr are not observable at /, i.e., -§^-,•§£-,..., Jjf-,
are given in terms of the separating set variables y\,...yv. Let O0 = 1 and

&=(wO*-» +IfZr-'xJ^W,_* +0,'-1(^)w+1...vr- (3-2)
Theorem 3.4.4 £e* C?+ = C?r witA *Ae fanout variables y\,...,yT of y0 eliminated by

substituting yi = /,-. Then ODC0 =^.

Proof We prove this by introducing a set of two-partitions in Br, one for each minterm

in B?-r as follows. For each m, €Bp~r, compute (J£)m., (^£)m »•••> (J£)m- By using
(3.1), and (^)m., ®m.,..., (|£)m., partition iT into P, =(P/,pt). Find such
partitions for all mj G £p~r.

By Theorem 3.4.1, the onset of fmj is one set of partition Pj and the offset is the

other set. Without loss of generality, assume / is such that / = miFf + ^F} + •••+

m2p-rF2_r. Consequently, / = ™>iF1 +m2F2 +••• + m2P-rPj>-r. Now eliminate the
fanout variables 3/1,..., yr of y0,by replacing yt- = /,-. Thus all dependencies on y0 axegiven

explicitly and

ODCo =|J=CVJ+CyJ=C„, XX"1^) +C„. £(m,F+). (3-3)
3For simplicity, the fanout nodesof y0 ,yi,..., yr, areassumed to be the first r nodes in a separating set

CHAPTER 3. DON'T CARE CONDITIONS FOR SINGLE-OUTPUT NODES

FJ" is computed as follows using (3.1):

-T*K/Vx . r*,OfFj = (yi^+W^)(^)«...yrmi+^(^)S2...yrmi
|0 , ^Trflv &f \ , W)/ 9f= [(VI& +I^)(^)w..,r +^°(^)y2...yJmi =(Ol)mj

Therefore, by induction it follows easily that

if =JfJ =[(^0'-l+F^r-1)^ +cr->^)mi =(o+)m)..
By (3.3)

ODC. = C9„£(mi0+.) +C!,<>£Kc£>)

= cv.o++co+ =yo'

00+

Q

Q Q

a b f

34

Figure 3.4: Example

Example:

In the example shown in Figure 3.4, the ODC at node ecan be computed using §§ = a+b+d
and |f = a+ 6+ c. To find OZ>Ce, let ^ = c and 3/2 = d in (3.2).

0j = l Ol = a + 6+ c (92 = a+S + crf=C}+

CHAPTER 3. DON'T CARE CONDITIONS FOR SINGLE-OUTPUT NODES 35

Substituting for c —ef and d —eg we get

d0+ - — —ODCe =-^- =Ce(a +b+efg) +Ce(ab(e +f +g)) =a+b+f +g,

which can be easily verified to be correct.

3.4.2 Deriving Damiani's Formula

The first practical formulation for computing full ODC's was given by Damiani

in [23]. The complete ODC for a node is computed using the ODC's of its fanout edges

4. Unlike the usual practice where a variable is assigned to each node in the network, a

variable is assigned to each edge of the network. Here we show that Damiani's formula

for computing ODC's can be derived from 3.2 by assigning variables to each edge of the

network. In his computation, it is required to compute ODC's with respect to each output

separately. A vector ODC is defined at each node. The number of elements in this ODC

vector are equal to the number of outputs and ith component is ODC at that node with

respect to ith output. If an output is not in the transitive fanout set of the node, the ODC

of the node with respect to that output is set equal to 1. If the vector ODC of a node is

known, the vector ODC's of all its fanin edges can be easily computed 5. Therefore vector

ODC's of the nodes in the network can be computed in topological order starting from the

primary outputs.

Theorem 3.4.5 (Damiani [23]) If y\,...,yr are the fanout edges of y0 and the vector

Jyf)>-">(Sy7ODC's at these edges, (fe*-),..., (fn*)> &= l,...,l, are known, then the ODC at node y0 is
given by

Af=l
<>«?.= II £• (3-4)

where

f?£* =(<?£*) $/**) © ®(^£*) (35)

4The ODC of a fanout edgeis all the conditions underwhich the valueof the function at that edge,which
equals the function at its fanin node, can be set to either 0 or 1 and this change is not observable at any of
the outputs.

5We add the inverse of Boolean difference of the function at the node with respect to variable of the edge
to each component of vector ODC of the node to get vector ODC for edge.

CHAPTER 3. DON'T CARE CONDITIONS FOR SINGLE-OUTPUT NODES 36

Proof Because 3/1,...,yT are the fanout edges of y0, then y0 = 3ft... = yr. Compute

0+ = Or using (3.2) and (§**),..., (f^), and eliminate variables yu...,yr by substituting
3/i = V2 = ..-3/r = Vo in (?+. By Theorem 3.4.4 (f^) = O+0C?±.. If yi,...,yr had not
been eliminated, this would be equivalent to

(^) =® yi-»yr©^ ya...yr

Note from (3.2) &y. =CP'"1. Thus <9+...yr =1and therefore (|j*) =C?+?1..^r. Cofactoring
both sides of (3.2) with respect to yx.. .yr we get

\y m-Vr —\&)yi».yr®(^7")yi-yi-iyj+i-yr

Substituting for (^J""1)y1...yr we get

(^)yi...yr —(™)yi-yr®(^v.)yi-yV-2yi-yr®(^^)yV"y,-iy;+i".yr

Therefore, by induction

to ^r^i-^r - ®i=i(x^)yi•••?>-!yj+i-yr

3.4.3 Using the Observability Relation

Theorem 3.3.2 shows that the ODC's for the nodes of Af can be computed from

Af'. This gives rise to a new procedure for computing complete ODC's in a network in

topological order. This is summarized below.

Af' has only one primary output; therefore, vector ODC's are not needed 6. The

ODC's at each primary output Zk ofAf is ODCZk = f^. If no output flexibility exists in
implementing the network, the observability relation is

0(x,z) = (zi@gi)(z2@g2).. .(*/©£/)

where gk is the global function at the output z*. The observability don't care at the output

Zk is

ODCZk = (zi © gx) + ... + (zk-i ©gk-i) + {zk+i ©gk+i) + .. •+ (*i ©gi).

6We can also apply Damiani's technique on the observability network Af' directly and since there is only
one output the technique also results in scalar ODC's.

CHAPTER 3. DON'T CARE CONDITIONS FOR SINGLE-OUTPUT NODES 37

New ODC Computation:

• Build the observability network Af'.

• Order the nodes in the network in topological order from outputs. A node y0 is

processed if the ODC's at its fanout nodes (yi, ...,yr) are known.

• For each node y0 with fanout nodes (y\,..., yr):

- Build the partition for node y0 using the ODC's of the fanout nodes and (3.2)

toget<9+.

- Replace variables yi,...,yr with their local functions f\,...fr in 0%.

- Compute ODCo =^f =CyoO+ +CyoOt.

ODCZk is a subset of the SDC for the wholenetwork. Although each term {ziBgi) evaluates

to 0, it contains useful information about the structure of the network; in effect this is the

same information held by the vector ODC's of Damiani for network Af. All the components

of this vector ODC are equal to 1 except for the kth component where it is 0.

Example:

To illustrate this process, we compute ODC's using the observability network for the ex

ample given in [23] using our method (denoted by ODC), Damiani's method applied to

observability network (denoted by SODC), and Damiani's method in vector form (denoted

by VODC). This example is shown in Figure 3.5. A variable is associated with each edge

as in [23].

The output functions and their ODC's are

gi = xix4 + (x2 © 33)

g2 = xi + x4 + (a?2 © s3)

0(X,Z) = ($l©*l)(<72©*2)

ODCZl = SODCZl = z2 © g2

ODCZ2 = SODCZi =z1@g1

VODCZl =0

CHAPTER 3. DON'T CARE CONDITIONS FOR SINGLE-OUTPUT NODES 38

u2 u3
[>- -,J I-—-J

y2 yl

6
x4 x3 x2 xl

Figure 3.5: Example

VODC*2

First we compute ODC's at nodes t*2 and U3:

0(X, U2, W3) = (<7l©(«2«3))(fif2©(W2 + M3))

= u3g2 + u3gi

= u2g2 + «20i

= (y3 + giWy4 + 92)

^(ys + giWye + to)

n

3/3

ODCti2

ODC«3

SODC*, = (SODCnh&SODC*)*

SODCU3 = (SODC^eiSODC^

VODC«a

VODC«3

(
-(

2te

ys

= 3fe02 + 2/401

= 3fe<72+!te0i

We use the fact that g2g\ = 0,3/3 = y4, and 3/5 = ye to obtain the above result.

SODCyi 31 + (X4 + 3fe)02 + Z4y201

CHAPTER 3. DON'T CARE CONDITIONS FOR SINGLE-OUTPUT NODES 39

SODCyt = 34+ (si + 2/i)52 +*iyi0i

VODCyi =
(y2X4 + xi

3/2 + x4 + Xi

VODCm =
yxxi + x4

yi + xi + x4

Substituting for #i and g2, we find

<9(a;,tii) = (gi®(xix4 + tti))(flf2©(«i + x4 + t*i))

ODCUl = 3:12:4

50J9CU1 = (ODCVl fe2 QiODC^)yi = a?!^

VODCUl =(rCl2?4) => OjDCUi =(a?! +x4)xxx4 =a?!^.
x4

(XiX

Notice that in applying the procedure outlined above we did not have to rebuild any of

O functions because these were already available to us after collapsing. While computing

the ODC for a node yj, we need to keep Z{ ©gi for the primary outputs in the network Af

that are transitive fanouts of yj. The term Zi © </,- can be set to zero for any other primary

output. This is equivalent to having 1 in the corresponding row of the VODC.

3.5 Observability Don't Care Subsets

The computation of the complete ODC for optimizing nodes of a large network is

often too expensive to be used during synthesis. This is because once the function at a node

is changed using its computed ODC, the ODC at other nodes in the network may have to

be recomputed. In addition, full ODC's computed for some nodes can be extremely large,

especially for circuits that cannot be collapsed in two-level form. Subsets of the ODC have

been studied by several authors. The first attempt in [36] gives a linear time algorithm

for computing ODC subsets. The ODC's are computed for the nodes of the network in

depth first search from outputs by using an approximation operator called RESTRICT.

This operator removes any cube in the ODC of a node yi which has a literal corresponding

to a node in its transitive fanout. This approximation, although valid for the networks

with reconvergent fanouts, is quite restrictive and loses some useful information. Other

CHAPTER 3. DON'T CARE CONDITIONS FOR SINGLE-OUTPUT NODES 40

techniques for computing ODC subsets are given by [54, 23]. The formulation suggested

in [23] gives the largest subset that can be computed for a node using ODC subsets of its

fanouts. The problem with all these ODC subsets is that once the function at a node is

changed using its ODC subset, then the ODC subsets computed for other nodes in the

network may not be correct any more and must be recomputed.

An interesting ODC subset is introduced by Muroga in [59] where subsets can be

computed for nodes of the network and used for the optimization of each node simultane

ously. These subsets are called compatible sets of permissible functions (CSPF's). CSPF's

are expressed in terms of primary input variables and are only defined for a network decom

posed into NOR gates. We expand the concept of CSPF's to complex nodes of a general

multi-level network and present procedures for computing compatible ODC (CODC) sub

sets. Another contrast with [59] is that CODC's are expressed in terms of both primary

input variables and intermediate variables. We shall see that the ability to use intermediate

variables is important and powerful.

3.5.1 Compatible Observability and External Don't Cares

At each intermediate node y0 we can compute a set of permissible functions [59],

that is if the global function fi for y0 is replaced by any function in this set, the network

is still correct. The care set of y0 is composed of all the vertices in Bn for which fi must

have a fixed value; if the value of fi is changed for such input combinations, the network

computes an incorrect output value. The don't care set of y0 is the remaining vertices of

Bn for which fi is not required to have a fixed value (it can be 0 or 1). A function which

uses the don't cares in a valid way is a permissible function.

A set of permissible functions for node y0 can be represented by two functions;

by a function fi which is usually the current implementation at the node and d90 which

is a combination of observability and external don't cares expressed in terms of primary

inputs. The maximum observability plus external don't care, d^9, (also MSPF) for y0 is the

one having the maximum number of input combinations in d% . Generally, <C5 depends on

the global functions of other nodes of the network. If the global function at any node is

changed, d£9 may have to be recomputed.

Sets ofobservability plus external don't cares (do's) at a set S of nodesof a network

are compatible, if each node yi € S can be represented by any function from its permissible

CHAPTER 3. DON'T CARE CONDITIONS FOR SINGLE-OUTPUT NODES 41

function set independent of how any other node is represented from its set. We denote such

sets by dcg or CODC. A Compatible Set of Permissible Function (CSPF) is all the functions

allowed by dca.

At each primary output *,-, we can also have a set of permissible functions rep

resented by a function ff for the current implementation and a function df for the don't

care set. These don't cares are called external don't cares and must be compatible. Such

external don't cares can be specified by the designer directly. Alternately, if an observability

relation O is given for the network Af, the observability network, the observability network

Af' can be constructed and the external don't cares can be derived as the compatible don't

cares of the fanins of the complex node O using methods to be described in Section 3.5.3.

The computation of CODC's for the complex nodes of a multi-level network de

pends on two key operations. One is the computation of CODC's for the fanin edges of a

node, given the CODC of the node and an ordering of the fanins. The second key operation

is computing CODC's for each node by intersecting the CODC's of its fanout edges. We

first concentrate on a directed tree structure where each node has a single fanout except for

primary inputs. Then we extend the developed techniques to a general multi-level network

where nodes have multiple fanouts.

3.5.2 CODC's for Trees

We discuss CODC computations for the fanin edges of a node by considering

a directed tree structure where each intermediate node has a single fanout and primary

inputs have multi-fanouts (a so-called leaf DAG). All the nodes in this tree are ordered

topologically. The highest order is given to the root node; every other node gets an ordering

less than its fanout. Let y0 represent the root of the directed tree with external don't care

<££"* and with fanins 3/1,3/2,..., yj. This tree structure has the property that the observability

plus external don't cares at each node are equal to that of its fanout edge. Also, assume an

ordering (>-) is given to the fanins of y0 such as 3/1 >- 3/2... >- yj. This orderingimplies that

node 3/1 gets its maximum possible don't care; the don't care set at 3/2 must be compatible

to that of 3/1; the don't care set at 3/3 must be compatible to that of 3/1 and 3/2 and so forth.

Given d™ (in terms of some set of intermediate variables and primary inputs),

the maximum don't care at each fanin node (also fanin edge) is dj£ = & + d™. We let
3/1 have its maximum don't care set df£* = |^ + d™ and show how to find dgj1 which is

CHAPTER 3. DON'T CARE CONDITIONS FOR SINGLE-OUTPUT NODES 42

Figure 3.6: A Directed Tree

compatible with dfJJ1. This is then generalized for the ith fanin of y0. d^J1 C d^ must have

the property that any simultaneous changing of the functional representation at 3/1 and 3/2

to any permissible functions allowed by the corresponding CODC of each node preserves

the correct behavior of the network.

Lemma 3.5.1 Given don't care sets, d^71, for a node with function f0, and df" for y\, the

df1 for 3/2 is

* " x an+ mdn ° "
Proof: The set |^ contains all possible don't cares for df"1 besides dj"1. This can be divided
into those that are independent of the value of y\, Cyi §^7, and the rest which require some
specific value for 3/1, r =§^ —Cyi §^. We seek the maximum set of don't cares which are
compatible with df71. Clearly, Cyi |^J is compatible since this says that f0 is insensitive to 3/2
independent of the value of y%. Further Cyi 3^7 is the maximum such set. The remainder of
2jjJ depends on 3/1. Letm be aninput minterm of r, r(m)= 1. If dfn(m) = 1,we must have

dlf^mo) = 0; otherwise, the value of both /i(m) and /2(m) can change simultaneously and

/0(m) becomes incorrect. This is because the allowed change in /2(m) is only valid when

/i(m) has a specific value; this value is not guaranteed when f\{m) is allowed to change.

CHAPTER 3. DON'T CARE CONDITIONS FOR SINGLE-OUTPUT NODES 43

Removing such input combinations from |^ - Cyi %f* and making it compatible with df71
leads to the term (|^ —Cw f^rjdf". Thus we keep only those terms for which the value of
/i will not change. Adding these terms we obtain df =dpf^ +Cyi%£ +d™. Clearly,
no other input combination contained in |^ can be added to dj71 without destroying the
compatibility of d^171 to df71; therefore, df as obtained above is maximal. •

The don't care set at 3/3 compatible with 3/1 and 3/2 is

dfoaT = (df* df + df»cw + d?7^ + Cyiy2)-^- + d;;cm

o •

#3fe

While computing d^J1, we break |j* into parts that 1) are independent of subsets ofthe
fanins of higher order and 2) are in the intersection of the care sets of the other fanins of

higher order. Thus the term df71^ comes from considering points independent of 3/2 that

are in the care set of 3/1.

The general formula is constructed as follows. Let Sk be the fanins of order greater

than yk, and for some set K,

YK= n *•
iesk-K

Then

The general term

dcm _

k - E(II<rxv*
KCSk i£K

dn+<r. (3.6)

is simply the points of f^2- which 1) are independent of the variables yj in. Sk —K, and 2)
are in the care set of all the fanin edges in K.

Lemma 3.5.2 Given don't care sets, df, for a node with function f0, anddf for each of

its fanins yi, with yi y yk, the maximum don't care set for fanin yk compatible with {df71}

t5 given by equation (3.6).

Proof: The set ^ contains all possible don't cares for df beside df. In addition to
df, df is all the input minterms m for which the value of /*(m) and any fanin of higher

order fi(m) (as allowed by df"*) can change but no change is observed in /o(m). For any

minterm m € df71 —df, the fanins of higher order Sk are divided into two groups, the ones

that do not change at all denoted by {yi\i 6 K} where K = {i\m & df71}, and the ones

CHAPTER 3. DON'T CARE CONDITIONS FOR SINGLE-OUTPUT NODES 44

that can change {y,-|t € (Sk - K)}. It follows that m€ (TlieK^P)!^ an<* because /o(m)
is insensitive to changes in {/<(m)|i€ (6^fc - AT)}, w» € CyK§£ where y# =Yliesk-K 2/«-
Consequently, m€(II*€/f ^P^/cl^- <**" M8iven bv (3-6) contains all such combinations
of fanins of higher order into two groups K and Sk —K and each such combination gives a

correct compatible subset; therefore df as in (3.6) is the maximum compatible don't care

set for yk- •

Examplet

Let /o = 3/1 + 3/2 + 3/3, /i = «i*2> /z = 32^3, fz = «i*3, and df = 0; therefore,

df = (drd^ +df^C^+d^C^+Cj,^)^ = ^3/3 +^3.
#3/3

df = X2X3 + E1Z3 when 3/2 and 3/3 are substituted with their local functions. Notice that

3£T = 3/1 + 3/3, and 3/13/23/3 has been removed from the set to make it compatible with df.
Otherwise, if for some input minterm m, f\(m) = l,/2(m) = 1, and fo(m) —0, the value

of both fi(m) and /2(m) can be set to 0 which gives the incorrect result f0(m) = 0. In this

particular case, no such minterm exists because 3/13/23/3 is an impossible combination for the

given /i,/2, and fz. Consequently, df —x\X2 + x\Xz which is equal to -J* = 3/1+3/3 when
3/1 and 3/3 are substituted with their local functions.

The set 3/13/3 + 3/23/3 has been removed from |jj = 3/1 + 3/2 to get df. After
substituting for 3/1,3/2, and 3/3, df = x\X2X~z+x\X2Xz- fi(xiX2X~z) —1 a,nddf(xiX2Xz) = 0;

therefore f\ always gives 1 for this minterm and fo(xiX2X~z) = 1 irrespective of any change

in fz. In the same way, f2(x~\X2Xz) = 1 and df(x\X2Xz) = 0; therefore /J2 always gives 1

for x 1X2XZ•

Once the CODC for a node is found, we can find CODC for each of its fanins and

therefore for all the nodes in the directed tree in topological order.

Lemma 3.5.3 If the intermediate nodes of a network form a directed tree with one out

put, the computation of (3.6) in topological order leads to {df} which are all maximally

compatible.

CHAPTER 3. DON'T CARE CONDITIONS FOR SINGLE-OUTPUT NODES 45

Proof We first prove that the computed sets are compatible. Let the function at some set

of nodes change as allowed by {df}. Let 3/,- be a node whose fanins areall primary inputs

and whose fanout is yj and m any input minterm. Because of (3.6), a change in /«(m) is

either not observable in yj oris allowed by df (df(m) = 1); therefore fj remains correct.

Now, assume yj is a node whose fanin functions only change as allowed by their

corresponding maximal CODC's. Because of Lemma 3.5.2, any change in fanins of y3 as

allowed by their CODC's results in a change in fj as allowed by df. By induction, it

follows that any changes at a set of nodes in the network results in valid changes at the

fanouts of those nodes and therefore at all the nodes in the network.

Assume the computed {df} are not maximal. Thus a minterm m can be added

to some set df with fanout yj. Because of the maximality of (3.6), df is not maximal and

m must be added to df. This is the case for all the transitive fanouts of yi especially for

the root of the tree y0. df is fixed and cannot be increased; therefore {df} are maximal.

•

The number of terms in equation (3.6) is 2'5*'. Thus if a node has many fanins
(e.g. the O node of Af') the CODC computation becomes too time consuming. We consider

two different ways to speed up this computation.

The first technique is to apply a limited collapsing on the term df* used in the

computation of df. All the variables 3/1,.. .,3/,_i >- 3/; are replaced by their corresponding

local functions. We represent this new function byEi where Ei = dfn|y,=/,t..Myt_1=/._1. The
following Lemma is essential in obtaining the new formulation for computing compatible

don't care sets.

Lemma 3.5.4 Let e\,...,en be Boolean functions independent ofy0, Y\,...Yn be any set

of variables excluding y0, d any Boolean function and

D = Cyo(exCYl d + ... + enCYnd).

D is also equal to

D = ei£yt£yod+ ... + enCynCyod.

Proof D can be written as

D = (e\CYxdyo + ... + CnCy„dyo)(ciCy1d5o +... + enCyndyo).

CHAPTER 3. DON'T CARE CONDITIONS FOR SINGLE-OUTPUT NODES 46

Notice that eiCYidyoejCYid^o C eiCYidyod^o = eiCYiCyod; therefore we only need to intersect

terms with the same indices.

D = e\CYxCy,d + ... + enCYnCyod.

Lemma 3.5.5 Let Ei be equal to df71 where each variable yi y yi is substituted by its local
function // in df". The maximal compatible don't care set at node yk is

dr =(£x+Cn)...(£*-,+Cm_l)g +C- (3-7)
Proof Because of the introduced collapsing, CytEi = Ei for all the variables yi >• yi since

these variables do not appear in Ei. To show that (3.6) and (3.7) are equivalent, we expand

(3.7) using Lemma 3.5.4.

<f = (Ei+Cn)...(Ek-1+CVk_,)^ +<C

= (£i +CSI). ..{Ek-2Ek-X-^ +Ek.^_^) +CVh_,(Ek.x^CVk_l-^-))
+d,cm

= (Ei+Cyi)... (Ek-2Ek-\g-£ +Ek-tCy^ £-j7 +Ek-\Cyk_2 -^- +Cyfc_, Cyk_2^)
H-df1

—-f-d0™

The number of AND and OR operations required to compute df from equation

3.7 is linear in k. The second technique to speedup CODC computation is to compute

smaller compatible subsets that are more computationally efficient.

Lemma 3.5.6 Given don't care sets, d%, for a node withfunction fQ, and fanins y\ >-...>•

yk-i >• yk,

*-(K+w-(&+^)S+< (3-8)
is a valid compatible observability don't care subset for yk- Furthermore, a\ Cdf.

CHAPTER 3. DON'T CARE CONDITIONS FOR SINGLE-OUTPUT NODES 47

Proof: The proof is by induction on k. Since d% enters in all calculations, we can ignore it

for the purposes of this proof. Note then that

and

ic _ jcm _ Vo
"1 = "1 = "a-

#3/1

jc _ jcm _ /{Wo , p n£/o

Thus by Lemma 3.5.2, df71 and df are compatible.

Now assume that any combination Jofup to k—2 operations ofthe form (§^r+Cyi)»
i € J, and t <k—1, operating on |^- gives a set mutually compatible with all df, i € 7.
Since d% is formed by using k - 1 operations, it is a subset of any of the ones formed by

using k —2 or less operations. Hence d\ is mutually compatible with any k-2 sets df for

*<fc-l.

We proceed by contradiction. Assume that there is a minterm m € d% that causes

non-compatibility. Then mmust be in df. ..df^ Now m£Cyi...yjb_,|̂ , since otherwise
it would be in df and would be compatible. Thus, by equation (3.8), m must be in at least

one of the sets jft* for t < k —1. But this contradicts the fact that, using equation (3.6),

is orthogonal to -gjr, i < k —1, cofactored with respect to any set of yt's I < i. Thus no

such m exists and hence df is mutually compatible with df, i < k —1. Since the df are

maximal by Lemma 3.5.2, d\ C df. •

3.5.3 CODC's for a General Network

We discuss a technique for computing compatible don't cares for all the nodes of

a multi-level network. We first consider the primary outputs. If external don't cares are

given in terms of primary inputs, they must be compatible. The dc at each primary output

is set equal to the external don't care at that output. If an observability relation O is given

that has the behavior of the network, compatible external don't cares at the outputs can be

computed using Lemmas 3.5.2,3.5.4, or 3.5.5. An ordering is given to the primary outputs.

5P is computed and made compatible to the outputs of higher order. Notice that this

external don't care may be a function of both the inputs and outputs of the network.

CHAPTER 3. DON'T CARE CONDITIONS FOR SINGLE-OUTPUT NODES 48

We now consider how don't cares can be computed for intermediate nodes. A

topological ordering is first given to all the nodes in the network and nodes are processed

one by one starting from the primary outputs. The fanout edges of 3/* inherit the same

ordering as their source node. The compatible don't cares for each fanout edge can be

computed the same way as done for trees. When yk is being processed, all the nodes of

higher order have been already processed, therefore, their compatible don't care subsets can

be used to find CODC for the edge ejfe0 as before:

4„ =
KCSk i£K S+d»- <«>

The don't care sets at the fanout edges are then intersected to get the don't care set for

the node. The don't care set for each edge has two parts, the one that comes from the fanout

node d%, and the one that comes from the Boolean difference 6f0 = fctfcs* (YlieK WXV*1 ¥3"'
This notation is used in the proof of the following Lemma.

Lemma 3.5.7 If the immediate fanout edges (FOi) of a node yi have compatible observ

ability don't care subsets then the subset

dci= II « (3.10)
y*€FO,

10 a valid observability subsetfor yi which is compatible with CODC's computedfor all higher

order nodes.

Proof: Let m be an input minterm such that dgc(m) = 1. vy* € FOi, we must have

bik(m) = 1 or dfjf(m) = 1. If 6$(m) = 1, then /,(m) can be set to either 0 or 1 and this

change is never observable in fk(m) by Lemma 3.5.2 and the fact that 6?£ is compatible

with the other edge fanins of 3/*. If dgkc(m) = 1, then /,(m) can be set to either 0 or 1

and /jfe(m) might change value. However, the new function is a permissible function for the

node yk 6 FOi. Since the observability don't cares computed for the fanouts of yi are all

compatible, any simultaneous changing of the functions of the fanout nodes as allowed by

their respected CODC's is correct. Therefore df is a valid observability subset.

Any changein /,- for a particular minterm m as allowed by df results in a changein

the function of all the fanout edges as allowed by their respected {df^}. {d§J are compatible

with nodes of higher order; therefore df is also compatible with nodes of higher order. •

CHAPTER 3. DON'T CARE CONDITIONS FOR SINGLE-OUTPUT NODES 49

vi

A"
n

r6
V4

Figure 3.7: Example

The CODC's computed for the nodes of the network as given above are not neces

sarily maximal. In the above computation, we first compute CODC's for the fanout edges

of a node and then intersect them. However, we only require the ODC's for the nodes

of the network to be compatible, not the edges. Making the ODC's at the fanout edges

compatible, enables us to intersect them and find the CODC for the node but this is not

necessarily maximal. We did not notice this fact in our original derivation in [67]. This

was pointed out by Damiani in [24] with the example shown in Figure 3.7. Assume any

topological ordering. The CODC computation finds d\Y = 0 and dj2 = 0. Intersecting these

we find d\ = 0 which is not maximal. It can easily be shown that df = 1. Although the

CODC's computed are not maximally compatible for all the nodes in the network, they are

maximally compatible for the nodes that form a tree structure with respect to each primary

output where each tree is rooted at one of the primary outputs. As before the primary

inputs can have fanout of more than one. As soon as reconvergent fanouts appear with

respect to some output, maximality cannot be claimed anymore.

Lemma 3.5.8 If an intermediate node yi plus its transitive fanouts form a tree with respect

to each primary output, the computation of (S.6) and (3.10) in topological order leads to a

set {df} which are maximally compatible for yi and its transitive fanouts.

Proof Suppose df is not maximal. Then there is a minterm m that can be added to

df. If m can be added to df, then it can be added to any dfj? computed with respect to

Zk. df£ is what is computed by some fanout edge (iJ) of yi (there is a path from y,- to Zk

through this edge); therefore m can be added to d^-. Because of (3.6), m can be also added

CHAPTER 3. DON'T CARE CONDITIONS FOR SINGLE-OUTPUT NODES 50

A

y2

A 0
y» y3 y5

/7AA
i—r

X2 X3 X^ X2 X| Xg

1—r

Figure 3.8: Example

to dj. In the same way, one can find a fanout of yj whose don't care set can be increased

by m. This can be repeated until we reach a primary output; however, the don't care sets

at primary outputs are fixed. Thus the statement of the Lemma follows. •

Example:

We find CODC's for intermediate nodes of the network shown in Figure 3.8. The ordering

is 3/0 >• 3/i--->-3/5.

df

df

d%

df

dyi = 3/2

= (Cyi+df)^ =3/12/2
•dh df2

~ {dy3+(2 K%3+ 2}
= (2/4 + 3feI75)(2/5 + 3/32/42/5) = 2/43/5

= (cv3+4)|̂ +<*r =(2/4+2/5)2/3+2/2
= 2/32/4+^5

dT = (Cy3+d§)|| +dr =(2/4 +2/5)2/3 +^3/2
= 2/32/4 + 2/32/4 + 2/42/5

Notice that d| is not necessarily maximal because it has reconvergent fanouts. As a result,

CHAPTER 3. DON'T CARE CONDITIONS FOR SINGLE-OUTPUT NODES 51

a% can become larger and therefore df and df can become larger. Although the maximality
at 3/3 is not gained, this is compensatedfor by larger CODC sets at other nodes. CODC's

at all other nodes except for 3/3 are maximal.

3.6 ODC's and Equivalence Classes of a Cut

Let y = (3/i,3/2»•••>%>) be a separating set of nodes in network Af and y0 an

intermediate node. Thus Af can be viewed as two networks Af\ and A/2 where y is the input

of the network Af\ and output of network A/2. The outputs of Af\, z = (z\,..., z{), can be

expressed in terms of 3/1,3/2,..., yp.

Definition 3.6.1 We say two minterms TOt-,mj GBp are equivalent (mi ~ mj) t/z(mt) =

z(mj).

This relation divides the space Bp into vertex equivalence classes [toi],[to2],...,[to9] as

introduced in [12]. The observability don't cares at y0 can then be expressed in terms of

this equivalence relation as follows,

ODC0 = {to € Bn\yyo(m) ~ 3%0(to)}.

Furthermore, the ODC of an intermediate node y0 need not be expressed in terms of primary

inputs. It can also be expressed in terms of intermediate nodes of the network. In particular,

the observability don't cares for each of the nodes in the y can be computed in terms of

other variables in the separating set of nodes. In what follows we give some properties

associated with the ODC's of the nodes in y.

Starting from the observability don't cares of the nodes in y we can find the onset

and the offset of each output function; therefore we can find the vertex equivalence classes

of all the nodes in the separating set. The equivalence class to which to,* belongs, denoted

[to,], can be computed as follows. Given |^, i=1,... ,p, k—1,..., /:

• Use (3.1) to find F+k for each output function Zk, k = 1,...,/,

• Let Si = {j\m{ € F+j},

• [m] =(nkesiF+k)mkesiT+k)-

CHAPTER 3. DON'T CARE CONDITIONS FOR SINGLE-OUTPUT NODES 52

The expression [m,] = (Ilfees, ^"^XrUes ~^+) is all the minterms for which each output
function in $,- or 5t- has a fixed value of 1 or 0.

Alternately, let 72(y,z) = T]!i=i(zi®F+t). Then the equivalence classes are given
by

E(y,yt) = Sz[Tl(y,z)ll(y',z)]

Although this is not an efficient way to compute equivalence classes of y, it shows the

relation between the observability don't cares of the nodes in y and equivalence classes of

y. In [23], the authors prove this result using a different approach.

Conversely we can compute the ODC's at each of the nodes in y if the vertex

equivalence classes of y are known.

Theorem 3.6.1 Let[m{\, [m^,•••, [mq] be the functions representing the vertex equivalence

classes of y. The observability don't care set of any node yi in y with respect to all the

output functions is

ODCi =J2Cyi[mj]
i=i

Proof Since ODCi is independent of 3/;, it can be viewed as consisting of pairs of vertices

(TOfc,TOjfe) in the space of the variables corresponding to nodes in the separating set where

(mk)yi = ("*Jfc)y, and (mk)yi = (mJfe)y,- For any such pair (to*,to*), if both vertices belong
to the same equivalence class then both vertices produce the same set of outputs. Otherwise,

at least one of the outputs is different. Therefore to* and rhk belong to ODCi if and only

if they are in the same equivalence class. •

There are only two equivalence classes for any separating set of nodes y in the ob

servability networkAf': one is a newobservability relation which gives the possible minterms

in terms of the variables in y for any input minterm; the other is the inverse of first, i.e.

all the impossible combinations of variables in y for any input minterm. The computation

of these observability relations for a network decomposed into multi-output nodes is the

subject of the next chapter.

Chapter 4

Observability Relations for

Multi-Output Nodes

53

The observability relation as described in Section 2.4 provides a description of all

the flexibility available in implementing a Boolean network Af. In this chapter, we develop

techniques for finding observability relations for each component of a Boolean network

decomposed into a set of multi-output nodes. The multi-output node can be a Boolean

network itself. The original decomposition can be obtained in a variety of ways. For

example, multi-output nodes can be obtained by clustering a set of single-output nodes in

a regular Boolean network. Or, a Boolean network may be partitioned into a hierarchy

of smaller networks such that each network satisfies some specific criteria. We show how

to obtain maximum flexibility for implementing each element of a partition by computing

its observability relation. Compatible observability relations are also computed for a given

topological ordering of the nodes. A Boolean relation minimizer (such as [83]) can then

be used to find a good two-level implementation from the observability relation computed

for the node. Alternately, compatible don't cares can be derived from these observability

relations and then used to optimize the multi-level network at the node using a conventional

two-level minimizer.

4.1 Previous Work

In [17], an approach is developed for a unified synthesis of combinational and

sequential circuits using characteristic functions. Each circuit is composed of a set of multi-

CHAPTER 4. OBSERVABILITY RELATIONS FOR MULTI-OUTPUT NODES 54

output blocks. The input-output behavior of the whole circuit is described by a Boolean

relation called the Output Characteristic Function (OCF). It is assumed that the inputs

to the circuit denoted by x are also inputs to all the multi-output blocks. Techniques are

developed for finding Boolean relations describing input-output behavior of some multi-

output node when the OCF of the circuit and the characteristic functions of all other nodes

are known. It is shown that the developed formulas can be computed in a different way if

all the blocks in the circuit are combinational implementations. The characteristic function

of a combinational implementation of a block allows a unique output for each input. Here

we build on the work in [17] and show how to find the compatible and maximal observabil

ity relations for a multi-output node n in a combinational circuit, given the observability

relation (OCF in [17]) for the circuit and the Boolean relations for all other nodes. We

also show that if the Boolean relations given for all other nodes except for node n are the

characteristic functions of an implementation at those nodes, the compatible and maximal

observability relations obtained for n are equivalent in all cases where a Boolean relation

can be computed. As in [17], we first develop techniques for computing Boolean relations

for two-way partitioned circuits and then generalize these techniques for any circuit decom

posed into multi-output nodes. The techniques used to show the correctness of formulas for

computing observability relations of multi-output nodes are different from that of [17] and

clarify the distinction between maximal and compatible Boolean relations.

4.2 Two-Way Partitioning of a Boolean Relation

First, techniques for serial and parallel decomposition of an observability relation

are discussed. These ideas are then used to find the observability relation for a general

multi-output node in the network. Consider the situation depicted in Figure 4.1. An

external observability relation or Boolean relation O is specified for the network. The

network is decomposed into two parts (serial or parallel). The objective is to find maximal

and compatible Boolean relations for the components of the network.

Definition 4.2.1 A set of nodes has a set of compatible observability relations if each

function at each node can be changed (as allowed by its observability relation) independent
of all allowable changes in the functions at other nodes in the set.

CHAPTER 4. OBSERVABILITY RELATIONS FOR MULTI-OUTPUT NODES

7Xy,z)

1—

L(x,y)

(a)

V

(b)

55

Figure 4.1: Decomposition of Observability Relation

Compatible observability relations computed for the components of the network

have the extra advantage that each node can be optimized irrespective of other nodes.

The term implementation is often used in this chapter and has the following mean

ing.

Definition 4.2.2 An implementation of a circuit is an observability relation which allows

a single output minterm for each input minterm.

Definition 4.2.3 Given the observability relations T (equivalently C) for one of the two

partitions and O for the whole circuit as shown in Figure J^.1,T is said to be consistent

with O if for^any implementation based on T there is at least one implementation for the

other partition in the circuit such that the implementation of the two partitions is allowed

byO.

4.2.1 Serial Decomposition

Let <9(x, z) be the observability relation for the network, and T(y, z) the observ

ability relation for the top part of the network which is consistent with C?(x, z) as shown

in Figure 4.1(a). First, we derive an equation for computing a relation C for the lower part

which is compatible with T and then find an C which is maximal with respect to T. In

CHAPTER 4. OBSERVABILITY RELATIONS FOR MULTI-OUTPUT NODES 56

Figure 4.2: Observability Relation for a Cut

either case C must be consistent with O. The mapping represented by £(x, y) is shown in

Figure 4.2. It gives all the minterms in the separating set y allowed for some particular

minterm x,-. For each x,-, there must be at least one minterm yj such that (x,-,yj) G C.

Equivalently SyC(x,y) = 1 or C must be well-defined. Otherwise, no implementation is

possible for the lower part of the circuit. If no £ can be found such that «Sy£(x,y) = 1,

T(y,z) is not consistent with the Boolean relation 0(x,z).

The set of z's in relation with Xj allowed by O is 0Xi and the set of z's allowed

by T for a particular yj is Tyj. We investigate three different possibilities; Tyj C 0Xi
(represented by xi and yi in Figure 4.2), Tyj g 0Xi but TyjOXi ^ 0 (represented by x2
and y2 in Figure 4.2), and finally TyjOXi = 0.

If lyj Q 0Xi and xt- is set to be in relation with yj ((x,-,yj) € £), no constraint

is imposed on relation 7*. This is because yj can still accept any z& as allowed by T and

(xv, Zk) 6 O. The relation C computed this way is compatible with T and consistent with

O. This means an implementation can be found from C independent of that found from T

(This is the case for xi and yi shownin Figure 4.2).

If Tyi £ 0Xi, TyiOXi ^ 0, and we set (xt-,yj) € C, some constraint is imposed on

relation T. If an implementation based on C gives yj for input x,-, any z* allowed for yj

must be in TyjOXi. The relations T and C are not compatible in this case. C canbe used to

find an implementation for the lower part of the circuit. Then T must be made compatible

to this implementation before it is used. It is shown here that C obtained this way is the

CHAPTER 4. OBSERVABILITY RELATIONS FOR MULTI-OUTPUT NODES 57

maximal observability relation consistent with 0.

Finally, if TyjOXi = 0, x, cannot be in relation with yj without violating O.

Lemma 4.2.1 (compatible,) Given the relation T(y, z) andthe observability relation G(x, z),

the relation £cm(x,y) expressing for each input minterm x all possible output minterms y

maximally compatible with T and consistent with O is

£™(x,y) = Cz(7(y,z) + <9(x,z)).

Proof The relations T and £cm must be compatible with each other and consistent with

0(x,z). We first show that £cm maximally compatible with T implies that (x;,yj) € C™

if and only if 7yy C 0Xi. This means £cm consists only of all the pairs (x,-,yj) which

satisfy Tyj C 0Xi. If Tyj C 0Xi, then any Zk in relation with yj from T is also in relation

with Xj allowed by O, therefore, (x,-,yj) € £cm is consistent with C?(x,z). On the other

hand, if {3z*|z* € Tyj,Zk £ 0Xi}, then (x,-,yj) € £"" puts Zk in relation with xt but

(x,-,zjb) £ (9(x,z). As a result a circuit implemented based on T and C0"1 could violate O.

Tyj C 0Xi ifand only ifTyj0Xi = 0,orTyi+<9X| = 1. The term XiyjCx(Tyj+0Xi)
is equal to xtyj ifCz(Tyj + 0Xi) = 1,and 0 otherwise. £cm can be written as,

^(x,y) = E xiyjCz(Tyj + oXi)
(xi,yj)eB«+m

= E^(x»yiTyi+x«yi^)
= E^XiVjT + XiyjC?)

= Ex»yA(7+o)

= cz(T+o) E x«yi
(xityj)eBn+m

= Cz(T(y,z) + 0(x,z)).

For £"" to be a well-defined Boolean relationit is necessary to have«Sy£cm(x, y) =

1 (There exists at least one y for each x.). £cm obtained as in Lemma 4.2.1 may not be a

well-defined Boolean relation because there can be x's for which no y is allowed.

The concept of compatible observability relation is similar to compatible don't

cares. As we know, one could also compute maximal don't cares. Likewise, the relation £

can be computed in a way which results in a maximal Boolean relation. The restriction that

CHAPTER 4. OBSERVABILITY RELATIONS FOR MULTI-OUTPUT NODES 58

£ must be compatible with T is relaxed. But it is required that for any implementation

based on £ there is at least one possible implementation based on T allowed by O. In this

case, we say that £ satisfies T and is consistent with O.

Lemma 4.2.2 (maximalj Given the relation T(y, z) andthe observability relation 0(x, z),

the maximal relation £m(x,y) satisfyingT and consistent with O is

Cm(x,y) = SzO(x,z)T(y,z).

Proof Wefirst prove that £m satisfies T and is consistent with O if and only if 7y.0Xi ^ 0

for any xtyj G £m. If TyjOXi ^ 0, then there exists at least one Zk such that z* € Tyj

and zjt € 0Xi. As a result, for any implementation based on £m that gives yj for x,-, there

is at least one implementation satisfying T that is allowed by O. On the other hand, if

7yjOXi = 0, then no z is allowed for any implementation that gives yj for xt.

TyjQXi ^ 0 if and only if Sz(TyjOXi) evaluates to 1. The value ofX(yjSz(TYiQXi)
is x,yj if Sz(TyjOXi) = 1 and 0 otherwise. As a result, we can write

£m(x,y) = £ xiyjSz(0XiTyj)
(xi,yi)€Bn+m

= E^^yi^x,7"^)
= £Sz(x,yjC)T)

= (SzOT) J2 xiyj
(x,,yj)efln+m

= Sz(0(x,z)T(y,z)).

•

Note the difference between Lemmas 4.2.1 and 4.2.2; Lemma 4.2.1 requires com

patibility with respect to T and consistency with O while 4.2.2 only requires consistency

with O. Clearly, £cm C £m; hence the latter is called maximal. If SyC(x,y) ^ 1 (£ is not

a well-defined Boolean relation), T is not consistent with O, because no implementation of

£ can be found for any implementation of T that is consistent with O.

Lemma 4.2.3 IfT(y,z) is an implementation (i.e. for each y there existsa unique z such

that T(y,z) = I), then CZ(T + O) = <Sz0(x,z)T(y,z); therefore £cm(x,y) = £m(x,y).

CHAPTER 4. OBSERVABILITY RELATIONS FOR MULTI-OUTPUT NODES 59

Proof Because T is an implementation, it allows a unique z* for each input yj; therefore,

for anyx, and yj, Tyj C 0Xi if andonly if TyjOXi / 0. Tyj C QXi if and only if TyjOXi = 0,

orTy> + QXi = 1. TyjOXi ^ 0ifand only ifSz(TyjOXi) = 1.
The term x,yjCz(7yj+0Xi) is equal tox»yj ifCz(Tyj+0Xi) = 1,and 0otherwise.

The term XiyjSz(TyjOXi) is equal to x,yj if Sz(TyjOXi) = 1 and 0 otherwise. Therefore

£ XiyjCz(Tyj+0Xi) = £ XiyjSz(0XiTyj)
(x,,yj)€Bn+m (x,,yj)6Sn+m

£Cz(xtyjTyi-rX,yjOXi) = ^^(xiyjOx,^.)
£Cz(xtyjT + x;yj0) = £5z(xtyjC?r)

Cz(T+<9) £ Xfyj = (SzOT) £ x^yj
(xi,yj)€Bn+m (xi,yj)€Sn+m

Cz(T(y,z)+ 0(x,z)) = Sz(0(x,z)T(y,z))

£cm(x,y) = £m(x,y)

•

Given a relation £ consistent with O, one can also find compatible and maximal

relations for T.

Lemma 4.2.4 (compatibleJ Given therelation £(x, y) and the observability relation 0(x, z),

the relation Tcm(y,z) expressing for each minterm y all possible output minterms z maxi

mally compatible with £ and consistent with O is

T™(y,z) = Cx((9(x,z) + £(x,y))

Proof Wefirst provethat T0"1 (y, z) is compatiblewith £(x, y) and consistent with 0(x, z)

if and only if £yi C 0Zi for any (yj,z,) € T01". If £yi C 0Zi, then any Xk in relation with
yj from £ is also in relation with z,- allowed by O, therefore, yjZ; € T*™ consistent with

<3(x,z). There is norestriction on £. Onthe otherhand,if {3x*|xfc G£y,,x* &0Zi,yjZi €

T0"1}, then one can choose an implementation producing output Zj for yj from T"71 and

an implementation producing yj for input x* from £. These two implementations are not

allowed by O because they produce output z, for input x* and (x;t,zt) ^ O.

Cyj C 0Zi if and only if Cx(QZi +£yi) = 1. The term yjZiCx(QZi + Cyj) is equal

to yjZf ifCx(0Zi +Xyj) = 1 and 0 otherwise. Therefore, we can write T0"1 as

(y„Si)6Bm+l

CHAPTER 4. OBSERVABILITY RELATIONS FOR MULTI-OUTPUT NODES 60

= ^2yj^iCx(ziOZi+yjCyj)

= Ey;z«cx(zi0+yj£)
= Cx(0 + C) £ YjZi

(yi,z,)€Bm+<

= Cx(0(x,z) + £(x,y)).

If £ is an implementation, Tctn is also maximal (T071 = Tm). It would seem

from the previous lemmas that a relation T which is maximal with respect to a general

observability relation £ and consistent with O is

Tm(y,z) = Sx(0(x,z)C(x,y)).

This formula is obtained from the assumption that Tm is maximal with respect to £ and

consistent with O if and only if CyjOZi ^ 0 for any yjZ,- 6 Tm. However, Tm may not be

well-defined. Suppose £y> = 0 (yj cannot be obtained by any x). Then CyjOZi —0 and
no z is allowed for such y. We can add another term to the above equation to take care of

all the y's that cannot be obtained from £

^(y, z) = Sx(0(x, z)£(x, y)) + SxC(x, y). (4.1)

SxC(x, y) is all the y's not obtained from any x, therefore all z's are allowed for any such

y-

The above formula by itself is not correct. This is because, if an implementation

is obtained from T, there is no guarantee that an implementation can be obtained for the

lower part of the circuit. Assume an implementation based on Tm gives z,- for yj. Then

any implementation for the lower part of the circuit must choose Xk GCyjOZi to give yj,

but there is no guarantee that all the x's can be covered this way. There could be an x that

is in no CyjOZi where zt- is the output for yj in the implementation based on Tm.

Example;

We give a simple example to demonstrate this. Assume £ is an implementation which gives

yi for every possible input x. Also assume O is such that it allows z\ for every input x

and Z2 only for input Xi as shown in Figure 4.3. Clearly, there is an implementation for

the circuit satisfying £ and O. The implementation for the top part of the circuit can give

zi for every y; the implementation for the lower part is £ itself; therefore, £ is consistent

CHAPTER 4. OBSERVABILITY RELATIONS FOR MULTI-OUTPUT NODES 61

m

T (y,z)

Figure 4.3: Example

with O. If T™ is computed as in (4.1), then yiZi,yiZ2 € 7™. All z's are allowed for any

other y. A possible implementation based on Tm can give Z2 for all y, but in such case,

no implementation from £ can be found which satisfies O, therefore, (4.1) is not correct by

itself.

Every valid implementation tm € Tm must allow at least one implementation for

the lower part of the circuit satisfying both £ and O. From Lemma 4.2.2

lm(x,y) = SzO(x,z)tm(y,z)

is all the implementation allowed satisfying tm and consistent with O for the lower part of the

circuit. tm is consistentwith Oif lm is well-defined, i.e. SySzO(x,z)tm(y,z) = 1. It satisfies

£ and is consistent with O if lmC is well-defined, i.e. 5y(£(x,y)5zO(x,z)im(y,z)) = 1. As

a result, the set of all implementations possible for the top part of the circuit is all tm € Tm

(given by (4.1)) such that <Sy(£(x, y)SzO(x, z)tm(y, z)) = 1.

Unfortunately, we do not know how to express this as a Boolean relation. The

above discussion seems to lead to a constrained form of Boolean relation minimization:

mint < Sx(0(x,z)C(x,y)) + SxC(x,y)

s.t. Sy(C(x, y)SzO(x, z)t(y, i))sl.

It is unknown if this can be rewritten in a simpler form.

(4.2)

(4.3)

CHAPTER 4. OBSERVABILITY RELATIONS FOR MULTI-OUTPUT NODES 62

4.2.2 Parallel Decomposition

Given the observability relations T consistent with the relation O as shown in

Figure 4.1(b), we develop formulas for computing maximal and compatible £.

Lemma 4.2.5 (compatible^ Given the observability relations T(x, v) and0(x, u, v), the

relation £cm(x, u) expressing for each input minterm x all possible output minterms u

maximally compatible with T and consistent with O is

£cm(x,u) = Cv(T(x,v) + 0(x, u, v)).

Proof We first prove that £"" is compatible with T and consistent with O if and only

if* 7Xi Q ®XiUj for each (x,-,Uj) € £cm. If TXi C 0XiUj, then any v* in relation with x;

from T also satisfies (x,-,Uj,v*) € O ; therefore, (x»,Uj) € £cm is compatible with T and

consistent with O. On the other hand, if {3vfc|vjb € TXi,Vk $. 0Xinj}, then (x,-,iij) € £cm

and XiVk GT may put (v^, Uj) in relation with x,- but (x,-, Uj,v*) £ C?(x, u, v). As a result

an implementation based on T and £cm could result in a circuit that violates O.

TXi C 0XiUj ifand only ifCv(TXi + 0XiUj) = 1. The term xtUjCv(TXi + 0XiUj) is
equal to x,Uj ifCy(TXi + 0Xini) —1and 0otherwise. As a result, £cm can be written as

Ccm(x,u) = Xl^^A^+^Uj)

= £ CV(XiUjTx, +X, UjC^U;)

=]TCv(xt-UjT +xt-UjC?)

= X)x*uA(T+0)

= Cv(T + 0)Y,XiUj
= Cv(T(x,v)+(9(x,u,v)).

Lemma 4.2.6 (maximal^ Given the observability relations T(x,v) and 0(x, u,v), t/ie

relation £m(x, u) expressing for each input minterm x the maximal possible minterms u

consistent with O is

£m(x,u) = <SvO(x,u,v)T(x,v).

CHAPTER 4. OBSERVABILITY RELATIONS FOR MULTI-OUTPUT NODES 63

Proof We prove first that £m is consistent with O and maximal with respect to T if and

only if TXiOXi\xi t£ 0, for each (x;,Uj) € £m. If TXiOXiXXi ^ 0, then there exists at least one

vjfe such that v* € TXi and v* € 0XiUj« As a result, for any implementation based on £m

that gives Uj for x,*, there is at least one implementation allowed by T that satisfies O. On

the other hand, if TXiOXlUj = 0, then no v& is allowed for any implementation that gives

Uj for x,-.

TxiOXiUj 5* 0 if and only if Sv(TXiOXiUj) = 1. XiUjSv(0XinjTXi) is equal to xtiij

if <Sv(7x,C?x,u>) = * an<* ®otherwise. As a result, we can write

£m(x,u) = I)xtUj<Sv(C?xiujrxi)

= X)<Sv(x1ujC?x,Uirx,.)

= X)^v(x,ujC?r)

= «Sv(0r)5>,uj

= 5v(0(x,u,v)T(x,v)).

Lemma 4.2.7 IfT(x,w) is an implementation (i.e. for each x there exists a unique v

such that T(x,v) = 1), then Cv(T(x, v) +0(x,u,v)) = SvC?(x,u, v)T(x, v) and therefore,

£cm(x,u) = £m(x,u).

Proof Because T is an implementation, it allows a unique v* for each input xt-; therefore,

for any x, and Uj, TXi C 0XiUj if and only if TXiOXiUj ^ 0. TXi C 0X;Uj if and only if

Cv(Tx,+0x,u>) = !• ^^u, ^ Oifandonlyif^v^^uj) = 1. The term x^Cy^+
C?XjUj) isequal to x,Uj if Cv(TXi + 0XiJXj) = 1and 0 otherwise. ThetermxtUj<Sv(Ox,Uj^x,)
is equal to xtUj if Sv(lXiOXiUj) = 1 and 0 otherwise. As a result,

X)x,UjCv(rx,. +C?X|.u>) = Ex»ui5v(Ox,uirXi)

X)^v(xiUjTx<+xlUjC?x<ui) = 2^v(xtUjOx.Ui7x,)
^^(xiUjT +XiUjO) = ^5v(xtUjC?r)

2>ujCv(7+0) = 2x,uj5v(or)

Cv(T+0)J>Uj = 5v(0T)X>Uj

Cv(T(x,v)+0(x,u,v)) = 5v(0(x,u,v)T(x,v)).

CHAPTER 4. OBSERVABILITY RELATIONS FOR MULTI-OUTPUT NODES 64

Figure 4.4: Example

Therefore, £cm(x, u) = £m(x, u). •

Example;

We find maximum and compatible observability relations for nodes u and v using the

observability relation of the separating set u, v shown in Figure 4.4. These nodes have

a single output which allows comparison with compatible observability don't cares obtained

for the nodes. The observability relation for the circuit is 0(z,x) = z{®(xiX2 + X3X4). The

observability relation for the separating set u, v is 0(u, v, x) = (t* + v)©(xiX2 + X3X4). The

current implementation at v is T(v,x) = vl$(xz + X4). Thus,

£m(«,x) = SvO(u,v,x)T(v,x)

= Sv(u + v)JB(x\X2 + xzx4)vB(xz + X4)

= XZX4 + u@(£1X2).

The full ODC at node u from the observability relation at u is

ODCu = CuCm(u,x)

= Cu(xzx4 + u®(xix2))

— XZX4

which is equal to what one gets with a direct computation of ODC's. Having computed

£m(u,x) we know how to find Tc(v,x) which is compatible to it.

Tc(v,x) = Cu(0(u,v,x) +CT(u, x))

= Cu((u + v)©(xiar2 + 3334) + (xzx4(u © (xix2)))

= V©(a?3«4) + XiX2(xz + X4).

CHAPTER 4. OBSERVABILITY RELATIONS FOR MULTI-OUTPUT NODES

The CODC at v is

CODCv = Cv(v®(xzX4) + Xi32(*3+ ^4))

= X\X2(xz + X4)

65

4.3 Compatible and Maximal Observability Relations

Here we address the problem of finding complete don't cares for a multi-output

node n and then simplifying it. This complete don't care set is effectively the observability

relation for the node defined in the same way as the observability relation of a normal

Boolean network. This can be either a local observability relation Ol(y, u) where the y are

the local fanins for the node and the u are the node outputs, or the global observability

relation 09(x,u) giving the relation required between the primary inputs x and the node

outputs u.

7Xu,y,w,z)

ZXx,v,y,w)

Figure 4.5: Observability Network for a Network of Multi-Output Nodes

Each multi-output node n has a set of inputs v which are unique to that node,

a set of inputs y which are shared with other nodes, and a set of outputs u. The rest of

the variables in the two separating sets of variables before and after n which divide the

CHAPTER 4. OBSERVABILITY RELATIONS FOR MULTI-OUTPUT NODES 66

network into two partitions are represented by w (a typical node is shown in Figure 4.5).

The function at n is represented by F(v, y). The variables (u, y, w) and (v, y, w) represent

separating sets of variables in the network just after and just before node n (see Figure 4.5).

Note that the variables y which are fanins of n can be inputs to other nodes in the fanout

network as shown in Figure 4.5. The characteristic function for the top part of the network

T(u,y, w,z) represents the present implementation after n and the characteristic function

for the lower part of the network £(x, v,y,w), the implementation before n. £(x, v,y,w)

is also called the controllability function [18] for the separating set (v,y, w), and gives the

image computation from x to (v, y, w).

Using the lemmas for parallel and serial decomposition of a Boolean relation, the

observability relation for a multi-output node n shownin Figure 4.5 can be computed. Let

£i be the relation between y,w and inputs x, and £2 be the relation between v and inputs

x.

Lemma 4.3.1 (compatible, global,) Given the relations £i(x,y,w) and T(u,y,w,z),

the compatible global observability relation for n is given by

0<*(x,u) = Cy>w(£1(x,y,w) + Cz(T(u,y,w,z) + 0(x,z))).

In particular, if £(x, v, y, w) = £x(x, y, w)£2(x, v),

Ocg(x, u) = Cy,w,v,z(£(x, v, y, w) + 7(u, y, w,z) + 0(x, z)).

Proof C(x,u,y,w) = Cz(T(u,y, w,z) + C(x,z))) is the compatible observability rela

tion for the network at the separating set (u,y,w) (serial decomposition, Lemma 4.2.1).

£y,w(A + O1) is the compatible parallel decomposition for node n (Lemma 4.2.5). If

£ = £i£2, then «Sv£2(x,v) = 1 resulting in Cy/^Xjv) = 0. The global observability
relation of n can be written as

0C9(x,vl) = Cy,w(£i(x,y,w) + Cz(T(u,y,w,z)+C7(x,z)))

= Cy,w(£i(x,y,w) + Cv£2(x,v) + Cz(T(u,y,w,z)+ 0(x,z)))

= Cv,y,w(£i(x, y >w)+ £2(x,v) -fCz(7(u,y, w,z) + 0(x, z)))

= Cv,y,w(£(x,v,y,w)-f-Cz(T(u,y,w,z) + 0(x,z)))

= ^v.y.w.zfflx, v, y, w)+ T(u, y, w,z) + 0(x, z)).

CHAPTER 4. OBSERVABILITY RELATIONS FOR MULTI-OUTPUT NODES 67

•

We can also compute Om9(x,u) which is maximal with respect to C\, T, and

consistent with O.

Lemma 4.3.2 (maximal, globalj Given the relations C\(x,y, w) and T(u,y, w,z), the

maximal global observability relation for n is given by

Om9(x,u) = 5y,w,zA(x,y,w)0(x,z)r(u,y,w,z).

In particular, if £(x,v,y,w) = £i(x,y,w)£2(x,v) (C can be decomposed if it is an imple

mentation), then

Om9(x,u) = ,Sy,w,z£(x,v,y,w)r(u,y,w,z)0(x,z).

Proof C(x, u,y,w) = «SzT(u,y,w,z)0(x,z) is the maximal observability relation for

the networkat the separating set (u, y, w) (serialdecomposition, Lemma4.2.2). Sy^(C\0')

is the maximal parallel decomposition for node n (Lemma 4.2.6). If £ = £i£2, then

5v£2(x, v) = 1 because £2 must be well-defined. The global observability relation of n can

be written as

Om9(x,u) = 5y,w,z£i(x,y,w)T(u,y,w,z)C?(x,z)

= Sy,w,zA(x, y, w)5v(£2(x, v))T(u, y, w, z)0(x, z)

= <Sv,y,w,zA(x, y, w)£2(x, v)T(u, y, w, z)0(x, z)

= £v,y,w,z£(x,v, y, w)T(u, y, w, z)0(x, z).

•

If £(x,v,y,w) and T(u,y,w,z) are implementations, Om9(x,u) = 0C9(x,u) be

cause of Lemmas 4.2.3 and 4.2.7.

Let £s(x, v, y) be the relation between v, y and inputs x and £4(x, w) be the

relation between w and inputs x.

Lemma 4.3.3 (compatible, local,) Given the relations Cz(x,\,y) and T(u,y,w,z), the

compatible local observability relation for n is given by

(^(v,y,u) = Cx(0c'(x,u) + £3(x,v,y))

CHAPTER 4. OBSERVABILITY RELATIONS FOR MULTI-OUTPUT NODES 68

where Ocg(x,u) is given by 4.3.1. In particular, i/£(x,v,y,w) = £3(x, v, y)£4(x, w)

C«Sw£4(x,w)= 1 t/£4(x,w) is well-defined),

Ocl(v,y,u) = Cx,w(0c'(x,u) + £(x,v,y,w)).

Proof (9c/(v, y, u) = Cx(0C9(x, u)+£3(x, v, y)) is simply the compatible parallel decom
position made local by quantifying away x. If £ = £3£4 and Cw£4(x,w) = 0, then the

local compatible observability relation for n is

Od(v,y,u) = Cx(0<*(x,u) + £3(x,v,y))

= Cx(0^(x,u) + £3(x,v,y) + Cw£4(x,w))

= CX|w(^(x,u) + £3(x,v,y) + £4(x,w))

= Cx,w(0C5(x,u)+ £(x,v,y,w)).

•

As is the case in equation 4.2, we do not know ofa way to express Oml(v,y, u) as

a Boolean relation. However, if both T(u,y,w,z) and £(x,v,y,w) are implementations,

Ocl(v,y,u) is also maximal.

0c*(v,y,u) is a Boolean relation and can be minimized as a two-level function

using the program GYOCRO [83]. The result can then be used to replace the present

implementation for n, u = F(y). Alternately, if n is a multi-level network itself, compatible

external don't cares can be derived using (3.6), (3.7), or (3.8) for each output of n and

fulLsimplify [70] can be used to optimize n.

4.3.1 Node Optimization Using Maximal Observability Relations

The algorithm in Figure 4.6 shows the computation of the maximal observabil

ity relation for each multi-output node n,- of a Boolean network and the simplification of

the node using GYOCRO. We first order all the nodes in topological order from outputs.

Oo(x, z) is the given specification of the circuit. The inputs of m are v,- and yt- and its

outputs are u,-. w,- are the rest of variables shared by the separating sets of variables be

fore and after n;. Foreach node n,-, the observability relation <9,(x, u,-,yt-,wt) is computed

from the old relation C?,_i(x,ut_i,yi_1,w1_i) and the new implementation of n,-_i after

its optimization

C\(x,vt_i,y«-i,wt_1) = 5u,._lOt_i(x,ut_i,yi_1,w1_i)(ut_1 = ^^(vf.^y^!))

CHAPTER 4. OBSERVABILITY RELATIONS FOR MULTI-OUTPUT NODES 69

function node_simplify

/* multi-output node simplification using maximal observability relations */

begin

Oo(x,z) = given specification for the circuit

NodeArray = nodes ordered in topological order from the outputs

for each node n,- in NodeArray in topological order begin

Oi(x,Ui,yi,vfi) = 5Ui_10,-i(x,Ui_i,yi_i,wi_i)(ul_i = #_i(vt-_i,y,-_i))

Ci(x,vi,yi,wi) =n^i^ev^n^itey^^nS^©^)
0?9(x,Ui) = SyilWiCi(x,Vi,yi,Wi)Oi(x,Ui,yi,Wi)
Of(vi,yi,Ui) = CXlWi(OTg(x,Ui)-rCi(x,Vi,yi,Wi))
Optimize ni with the relation Of11 using GYOCRO

end

end

Figure 4.6: Maximal Observability Relation Computation and Node Simplification

CHAPTER 4. OBSERVABILITY RELATIONS FOR MULTI-OUTPUT NODES 70

function node_simplify

/* multi-output node simplification using compatible observability relations */
begin

Oo(x, z) = given specification for the circuit

NodeArray = nodes ordered in topological order from the outputs

for each node rat- in NodeArray in topological order begin

Oi(x,Ui,yi, vri) =Cuw(0<_1(x,Uj-i,y*-i,w.--i) + Oj!.1(vt_1,yt_i,ut>i))
Ci(x, Vi, y,-, wt) =Ilk%(9vkWvk) nl=l(l7y*e^) IlEftfl<«,k®Vk)
0?(x,m) = Cyi,Wt(£,(x, v,-,yt-, wt)+ Oi(x,m,yi,w«))

Of(vi,yij m) = Cx,Wi(^(x, u.) +Ci(x, Vi,yi, w,-))
end

Nodes can be optimized using GYOCRO independent of each other

end

Figure 4.7: Compatible Observability Relation Computation and Node Simplification

Oi(x,Ui,yi,Wi) = 6,(x,vt_i,yf_i,wt_i).

The variables vt_i,yt_i,w,_i are regrouped to form Uj,yt-,w,- (the same as v,y,w and

u'» y'» w' inFigure 4.5). £t(x,vt-, yt-, w,) is computed using theglobal functions {gVk, gWk, gyie
at each of the inputs v,y of nt- as well as those corresponding to w,-. Q™9(x,Ui) and

0™l(vi,yi, ut) are tnen computed and used to improve the current implementation at n,\
Lemma 4.3.3 is used to compute Ofl(wi,yi, ut)from 0™a(x, ut). Ofl(\i,yi, ut) is maximal
because £;(x,vt-,yi,Wj) is an implemetation.

4.3.2 Node Optimization Using Compatible Observability Relations

The algorithm in Figure 4.7 shows the computation of compatible observability

relations for multi-output nodes of a Boolean network and the simplification of the nodes

using GYOCRO. Thenodes areordered topological^ from outputs as before. Oo(x, z) is the

given specification ofthe circuit. For each node n,-, the observability relation <9,(x, ut,y;, wt)

iscomputed from theold relation 0,_i(x, u^y,^, w,_i) and Ofi^v^^y,.!, ut_i). This
is then used to find Of(x, ut) and C?t?/(vi,yt-, u,) as shown. Each node nt- can be optimized

CHAPTER 4. OBSERVABILITY RELATIONS FOR MULTI-OUTPUT NODES 71

independent of the others using its observability relation because the observability relations

are compatible.

4.4 Conclusion

In this chapter, we have expanded the theory of don't cares which is for single-

output nodes to a theory that can be applied to multi-output nodes. The flexibility at

each node is represented by a Boolean relation. Techniques are provided for computing

both maximal and compatible observability relations for multi-output nodes of a Boolean

network as is the case with don't cares for single-output nodes. The maximal observability

relation for a multi-output node of a combinational circuit is the maximum flexibility for

manipulating that node. The compatible observability relations for a set of nodes ordered

topologically allows optimization of each such node independent of the optimization done

at other nodes in the set. The practicality of these techniques for optimizing large circuits

depends on how efficiently one can represent and manipulate observability relations in BDD

or any other form. These techniques are currently being investigated.

CHAPTER 4. OBSERVABILITY RELATIONS FOR MULTI-OUTPUT NODES 72

Chapter 5

Node Simplification: Practical

Issues

73

We present an algorithm for computing local don't cares at each intermediate

node of a Boolean network based on image computation techniques. The local don't care

set for each node, expressed in terms of immediate fanins of that node, is a combination

of satisfiability don't cares, compatible or maximal observability don't cares, and external

don't cares. These don't cares can be directly used for the simplification of each node by

a two-level minimizer. The simplification is very fast and the optimized circuits are 100

percent testable in most cases. This is a practical method and much more powerful than

previous methods developed for node simplification because it computes almost the full

local don't care set at each node using the image computation techniques developed by

Coudert et al [21]. The image computation technique allows us to use the external don't

cares very effectively. Furthermore, there is no restriction on how the external don't cares

are represented, because BDD's corresponding to external don't cares are built for local

don't care computation.

5.1 Introduction

The objectives ofmulti-level logic synthesis are to find networks which are optimum

with respect to area, delay, and/or testability of the circuit. The synthesis process is

usually divided into a technology dependent, and a technology independent part [10, 7].

In the technology independent part, one tries to simplify the logic equations representing

CHAPTER 5. NODE SIMPLIFICATION: PRACTICAL ISSUES 74

the Boolean network as much as possible. A common cost function used at this stage is

the literal count of the Boolean network in factored form. Experiments show that this

cost function correlates well with the final area of the mapped circuits when standard cell

libraries are used for the mapping. Thus, transformations are applied on a Boolean network

to find a representation with the least number of literals in factored form. The minimal

area network is also used as the starting point for delay oriented optimization. Additional

transformations are later applied to improve the performance of the circuit.

One important transformation in the technology independent stageis to apply two-

level logic minimizers on nodes of the multi-level network to optimize the two-level function

associated with each single node of the. network. The input to the two-level minimizer is

composed of an onset cover and a don't care set. The onset cover is the function at the node

in terms of its fanin variables. The don't care set at each node may contain information

about the structure of the network and is a combination of external, observability, and

satisfiability don't cares. A don't care set of appropriate size for two-level minimizers must

be computed.

External don't cares are conditions under which the value of the outputs are not

important and are very effective in the simplification of multi-level networks. However,

problems arise when external don't cares are used for node simplification along with two-

level minimizers. The external don't cares must be represented in a way that is suitable for

two-level minimizers.

Originally, external don't cares were not supported in MIS-II. A recent version

represents the external don't cares by a separate multi-level network which has the same

set of primary inputs as the original network. Corresponding to each primary output in

the care network is a primary output in the don't care network representing the external

don't care for that output; whenever a don't care output is turned on by a primary input

minterm x, the x is a don't care input for the corresponding output.

We describe a new algorithm for computing don't cares in the local space (space

of fanin variables) of each intermediate node. This allows the effective use of the external

don't cares in the node minimization process. The local don't cares are represented in

terms of the immediate fanin variables of each intermediate node, and are a combinationof

satisfiability, observability and external don't cares. This new technique is faster than the

one introduced in [67], produces significantly superior results, and can be applied to a wide

range of circuits. The key operations are the computation of compatible observability plus

CHAPTER 5. NODE SIMPLIFICATION: PRACTICAL ISSUES 75

external don't cares in BDD form and the effective use of the image computation techniques

to find the local don't cares at each node.

5.2 Node Simplification

In systems, like MIS [10], which use an algorithmic approach to multi-level logic

synthesis, a two-level minimizer, such as ESPRESSO [11], or a modified version of it [50]

is used to simplify the nodes of a multi-level network. The objective of a general two-level

logic minimizer is to find a logic representation with a minimal number of implicants and

literals while preserving the functionality. There are two general approaches. One is based

on the offset of the logic function and the other uses tautology. Logic minimizers, such

as ESPRESSO or MINI [38], generate the offset to determine whether a given cube is an

implicant and to obtain a global view of the expansion to prime process. The input usually

contains a cover for the onset and a cover for the don't care set. A cover for the offset is

generated from the input using either a complement algorithm based on the Unate Recursive

Paradigm [11] or the Disjoint Sharp Process [38]. The number of cubes in the offset can

grow exponentially with the number of input variables; hence the offset generation could be

quite time consuming. The other approach to this problem is to use tautology. Literals in

a cube are raised individually and tautology is used to determine if the new cube is covered

by the union of the onset and the don't care set. The major disadvantage of this approach is

that there is no global picture for ordering the literals to be raised and hence this approach

can give results that are sub-optimal. This approach is usually slower.

Functions with many cubes in the offset and don't care set happen quite often

at the nodes of a multi-level logic network. ESPRESSO can easily run out of memory

while applying the Unate Recursive Paradigm to generate the offset. Other aspects of this

environment are that the initial cover is usually small, and both the initial cover and the

don't care cover mainly consist of primes.

Example;

If no don't cares are used, the input to a two-level minimizer to simplify node 3/2 shown in

Figure 5.1 is

CHAPTER 5. NODE SIMPLIFICATION: PRACTICAL ISSUES

EDC

*K> =

h *3 *2 - A
?3

t—r

h *2 *3 *4

Figure 5.1: Node Simplification

X5 a?6 3/7 2/8 2/2

2 2 0 1 1

2 2 1 0 1

1 1 2 2 1.

Xj Xg Xj X4

76

Each row with numbers 0,1,2 in Figure 5.1 represents a cube. A 0 in a column shows a

variable in negative form; a 1 shows a variable in positive form; a 2 shows that variable

is missing in the cube. If satisfiability don't cares for nodes 3/i,2/3»2/4>2/7> 2/8»2te are a^so

generated, the input cover with the above order for SDC's is as shown in Figure 5.2.

As it is clear from this example the size of don't care set grows rapidly as SDC's

for more nodes are generated and the offset generation in ESPRESSO becomes impractical.

To avoid such problems, new two-level minimization techniques based on reduced offsets

were proposed [50, 69]. The reduced offset for a cube is never larger than the entire offset

of the function and in practice has been found to be much smaller. The reduced offset can

be used in the same way as the full offset for the expansion of a cube and no quality is lost.

The use of reduced offset speeds up the node simplification for nodes in a multi

level network. However, if the size of don't care set is too large, the computation of reduced

CHAPTER 5. NODE SIMPLIFICATION: PRACTICAL ISSUES 77

Xi X2 Xz X4 2/1 2/3 J/4 *5 *6 2/7 2/8 2/9 2/2

222222222012 1

222222222102 1

222222211222 1

2 2 2 2 0 1 1

2 2 2 2 1 0 2

2 2 2 2 1 2 0

1 1 2 2 2 0 2

0 2 2 2 2 1 2

2 0 2 2 2 1 2

2 2 1 1 2 2 0

2 2 0 2 2 2 1

2 2 2 0 2 2 1

2 2 2 2 2 2

2 2 2 2 2 2

2 2 2 2 2 2

2 2 2 2 2 2

2 2 2 2 2 2

2 2 2 2 2 2

2 2 2 2 2 2

2 2 2 2 2 2

2 2 2 2 2 2

121222222022 2

220222122122 2

022222122122 2

2 1 2 0

2 0 2 1

2 1 2 1

2 1 2
i

22222202 2

22222202 2

22222212 2

22222212 2

222222222210 2

222222222120 2

222 2 22222001 2

Figure 5.2: Input to Two-Level Minimizer

CHAPTER 5. NODE SIMPLIFICATION: PRACTICAL ISSUES 78

offsets is not possible either; therefore, filters must be introduced to keep the don't care size

reasonably small. The filters are chosen heuristicaUy hoping that the quality of the node

simplification is not reduced significantly.

5.3 Using Don't Cares

While doing node simplification, a two-level minimizer is applied on each of the

nodes of a multi-level network. The structure of the Boolean network is captured by don't

cares. In MIS-II [10], a subset of satisfiability don't cares is used for the simplification of

each node. This subset known as the support subset [65] is the satisfiability don't care set

of all the nodes whose local function is dependent on a subset of the variables in the local

function of the node being simplified. By using support subset we can effectively cause

a Boolean substitution of the nodes of the network into the node being simplified, but in

general we do not get maximum simplification of the node. As an example of the subset

filter, while simplifying node 2/2 shown in Figure 5.1 the SDC for node 2/9 is generated

because the support of yg is a subset of the support of 2/2- Thus substitution of node 2/9 in

2/2 will happen if such possibility exists and it results in a simpler function at 2/2*

Observability don't cares are computed in terms of intermediate variables in the

network. The most general technique for expressing external don't cares is to represent them

with another network with the same primary inputs and one output for each output in the

care network. To fully utilize ODC's plus EDC's for the simplification of each intermediate

node one has to find how the current representation of the node is related to these don't

cares. The relation between EDC's plus ODC's and the current representation at each node

is usually only through primary inputs. To get the most simplification possible for each

node, one has to provide this connection, which is the structure of the Boolean network, to

the two-level minimizer.

The most straightforward approach is to establish this connection through SDC's.

SDC's are generated for all the nodes in the transitive fanin cone of the node being simplified

to relate the current representation of the node to the primary inputs. SDC's are also

generated to relate EDC plus ODC to primary inputs. These are all the nodes in the

transitive fanin cone of the support of EDC plus ODC.

Example:

The EDC plus ODC for y2 in Figure 5.1 is d% = 3/1+2/12. SDC's for nodes y7 and y8 relate y2

CHAPTER 5. NODE SIMPLIFICATION: PRACTICAL ISSUES 79

to primary inputs. SDC's for nodes 2/i>2/3,2/4j2/io,2/u> and 2/12 relate d^ to primary inputs.

We also generate SDC of 2/9 because it may be substituted in the representation of 2/2- The

input to the two-level minimizer has 15 input variables and 33 cubes for this very small

example. After node simplification, the representation at 2/2 becomes /2 = 2/9 + x^xq.

It is obvious that this approach is not practical for networks with many levels; the

size of satisfiability don't care set grows very large in such cases and node simplification

becomes impossible.

The command cspfsimplify in the most recent release of MIS-II computes the

external and observability don't cares for each node using the techniques in [67]. The

external don't cares are only allowedin two-level form expressed directly in terms of primary

inputs. CODC's are computed for the simplification of each node. These CODC's are in

terms of intermediate variables in the network. A collapsing and filtering procedure is used

to find a subset of CODC which is in the transitive fanin cone of the node being simplified.

A limited SDC is generated to use CODC plus EDC in two-level form. EDC's cannot be

represented in two-level form in many cases because the number of cubes in the sum-of-

products representation of EDC's grows very large. Also, because of collapsing and filtering

and the limited SDC generated, the quality is reduced considerably compared to what is

possible.

Example:

The EDC plus ODC for 2/2 hi Figure 5.1 in terms of primary inputs is d^9 = aria^s^ +

X1X2XZX4. SDC's for nodes 2/7>2fe and 2/9 must be generated. The SDC's for nodes 2/7

and y& relate the EDC plus ODC of 2/2 to the current representation at that node. The

SDC for 2/9 allows the substitution of 2/9 in 3/2- The input to the two-level minimizer is as

shown in Figure 5.3. After node simplification, the representation at 2/2 becomes as before

/2 = 2/9 + X5X6.

At each intermediate node, there is a local function /, : Br —• B which is the

function of the node in terms of its immediate fanins. Ideally, one would like to express the

external plus observability don't cares of each node in terms of its immediate fanins not

primary inputs. This reduces the number of variables in the input given to the two-level

minimizer considerably. The local don't cares for yi are minterms m/ € Br for which the

value of /, can be either 1 or 0 and this change does not affect the behavior of the Boolean

network. The local don't cares for yt- are related to the EDC, ODC of y, and SDC's of the

network and are as effective in node simplification as the full don't care set. They can be

CHAPTER 5. NODE SIMPLIFICATION: PRACTICAL ISSUES 80

X\ X2 Xz X4 X5 Xq y? 2/8 2/9 2/2

222222012 1

222222102 1

222211222 1

1 1 1 1 2 2 2 2 2 2

1 0 1 0 2 2 2 2 2 2

1 2 1 2 2 2 0 2 2 2

0 2 2 2 2 2 1 2 2 2

2 2 0 2 2 2 1 2 2 2

2 1 2 1 2 2 2 0 2 2

2 0 2 0 2 2 2 0 2 2

2 1 2 0 2 2 2 1 2 2

2 0 2 1 2 2 2 1 2 2

2 2 2 2 2 2 1 2 0 2

2 2 2 2 2 2 2 1 0 2

2 2 2 2 2 2 0 0 1 2

Figure 5.3: Input to Two-Level Minimizer

CHAPTER 5. NODE SIMPLIFICATION: PRACTICAL ISSUES 81

used to remove all the redundancies within a node.

Example:

The local don't care for 2/2 is dl2m = 2/72/8- By examining the subset support, we determine

that the SDC of 2/9 should be included. The input to the two-level minimizer is

a* xB 2/7 2/8 3/9 3/2

2 2 0 12 1

2 2 10 2 1

112 2 2 1

2 2 112 2

2 2 12 0 2

2 2 2 10 2

2 2 0 0 1 2

After node simplification, the representation at 2/2 becomes as before /2 = 2/9 + xsXq.

5.4 Computing Local Don't Cares

We describe a new method for using various kinds of don't cares, i.e. satisfiability

don't cares, observability don't cares, and external don't cares, to optimize a multi-level

network. At each intermediate node, we find local don't cares in terms of fanins of the node

being simplified.

Let y0 be the node being simplified and f0 : BT —> B be the local function at this

node in terms of its fanins 2/1,..., j/r- The local don't care set d[is all the points in Br for

which the value of f0 is not important.

dl0 = n£:i ^o-»> where dl0.i is the don't care with respect to primary output z,- in the
transitive fanout of node y0 *. A minterm ml € dl0.{ if either a) there is no primary input

combination m9 € Bn of the Boolean network that generates ml or b) all such primary

input combinations are in the observability plus external don't care set of the node yQ with

respect to zi (d90.^).

1We include here the product over all outputs even if z% is not in the transitive fanout cone of y0, since
then dl0ii = 1.

CHAPTER 5. NODE SIMPLIFICATION: PRACTICAL ISSUES 82

To find dl0, we first find the observability plus external don't careset, d%, in terms

of primary inputs. Notice that d9 = n^o-r The careset of y0 in terms of primary inputs is

d90. The local care set d[is computed byfinding all combinations in Br reachable from d?0.
Any combination in Br that is not reachable from a% is in the local don't care set dlQ.

Theorem 5.4.1 The procedure outlined above finds all the local don't cares ofy0.

Proof Assume there is a don't care minterm m! € BT such that ml £ d!0. Clearly, there

must be some input minterms m\,mg2,... that generate ml. All such minterms must be
in the observability plus external don't care set computed for node y0; otherwise the local

function at node y0 must have a specific value for ml. Thus ml € d!0 by construction,

contradicting ml £ dl0. •

Theorem 5.4.2 If the two-level function associated with each node y0 in the network is

prime and irredundant (with respect to dlQ), then every connection in the Boolean network
is single stuck-at-fault testable.

Proof Each node has a sum-of-products representation. We consider two kinds of faults

in particular. First assume the input 2/» to some AND term c can be set to 1. This implies

the corresponding cube c, with y; replaced with y,- is a local don't care and by Theorem 5.4.1

is in dl0. Thus c was not a prime. The second kind of fault is the input to some OR term

stuck-at-0. This implies that the associated cube is redundant. But this is not possible,

because the two-level representation at each node is prime and irredundant with dl0 as the

don't care set and dlQ contains all the local don't cares. A stuck-at-0 at an AND gate is

equivalent to a stuck-at-0 of the OR gate and a stuck-at-1 at an OR gate is equivalent to

the node function being 1; thus none of the cubes are prime. •

The above theorem implies that repeated simplification of the nodes in order, until

no change occurs, using local don't cares leads to a network that is 100% testable.

5.5 Implementation

In practice, it is computationally expensive to compute complete observability

don't cares for each of the nodes of the network. Instead, we use compatible observability

don't cares. As discussed in Chapter 3, subsets of observability don't cares are compatible if

CHAPTER 5. NODE SIMPLIFICATION: PRACTICAL ISSUES 83

the function at each node can be changed (as allowed by its observability don't care subset)

independent of allowable changes in the functions at other nodes in the network. These

compatible subsets can be computed for all the nodes by traversing the Boolean network

once. By using compatible observability don't cares we cannot guarantee 100% testability

although experimental results show in most cases the optimized networks are 100% testable.

The computation of observability plus external don't cares and the image compu

tation to find reachable points in the local space of each node are done using BDD's. We

used the BDD package in SIS [74] which is implemented based on the techniques in [9].

First we find BDD's at each of the nodes of the Boolean network in terms of the primary

inputs. The size of the generated BDD's is dependent on the ordering of the input variables

in the network. We applied the ordering given in [51]. BDD's are also built for each of the

primary outputs in the external don't care network using this same ordering.

The algorithm for node simplification using local don't cares is shown in Figure

5.4. The computation starts from the primary outputs and proceeds towards the primary

inputs. First we order all the nodes in the network in topological order from outputs. This

ordering is done in depth first manner. The compatible observability don't care set at each

primary output is initialized to the external don't care set at that output if the external

don't care set exists, otherwise, it is set to 0.

The intermediate nodes are processed one by one in the chosen topological order.

We find the compatible global observability plus external don't care set at each intermediate

node. This computation is based on equations (3.7) and (3.10). Some filtering is added to

speedup the computation. The complement of the global don't careset Iff computed for a

node is used to find the local don't cares. Any vertex in the local space of the node being

simplified (yt) which cannot be generated under any input combination in d^9 is in thelocal
don't care set of y,-. In what follows, we explain the techniques applied in more detail.

5.5.1 External Don't Cares

The external don't care set is represented by a separate multi-output network

•Afexdc' Mtxdc has the same number of inputs and outputs as the care network Af. Primary

inputs are exactly the same as the care network. The function at each primary output

of Afexdc represents the external don't care set for the corresponding output in the care

network.

CHAPTER 5. NODE SIMPLIFICATION: PRACTICAL ISSUES 84

function fulLsimplify

begin

for each primary output z,- begin

d?c = external don't care for zt-

end

NodeArray = nodes ordered in topological order from the outputs

for each node y, in NodeArray in topological order begin

/* find a compatible don't care set for y,* */

d9C —get-Compatiblejdc(yi)

/* find the local don't care set by range computation */

Let (<7,ti, gk2 >•••»9kr) t>e global functions at fanins of yt-

d\ = range([gkx, gk2»• ••>QkA^) /*gives d\ in sum-of-products form*/
SDCi = SDC's of substitutable nodes in yt-

simplify node y,- using (SDCi + dj)
end

end

Figure 5.4: don't care computation and node simplification

CHAPTER 5. NODE SIMPLIFICATION: PRACTICAL ISSUES 85

.model Example

.inputs Xi x2 X3 X4 X5 X6

.outputs z

.names yi V2 z

l 2 1

2 1 1

.names ys V4 yi

l 1 1

.names *5 *6 m y& ys

1 1 2 2 1

2 2 1 0 1

2 2 0 1 1

.names Xi a?2 Vz

1 1 1

.names xz x4 V4

1 1 1

.names Xi a?3 m

1 1 1

.names x2 X4 ys

1 0 1

0 1 1

.names 2/7 ys y&

1 2 1

2 1 1

.exdc

.model Example -DC

.inputs xi x2 X3 X4 X5 Xq

.outputs z

.names yio yu z

1 l 1

.names Xl *3 yio

1 1 1

.names X2 X4 yu

0 0 1

.end

Figure 5.5: Berkeley Logic Interchange Format

CHAPTER 5. NODE SIMPLIFICATION: PRACTICAL ISSUES 86

A new construct called .exdcisadded to Berkeley Logic Interchange Format (BLIF)

to describe external don't cares. The description of Afexdc using exactly the same format as

the care network, comes after .exdc. An example is shown in Figure 5.5 which is the same

network and don't care network of Figure 5.1.

5.5.2 Inverse of Boolean Difference

While computing ODC's or CODC's, the expression ^£ = fyifyi +7yi^~ is com
puted repeatedly. The direct computation of this function in sum-of-products form is in

efficient because one has to compute the complement of fyi and fyi and then perform the

necessary AND and OR operations. Let / = pyi+qlji+r be the function in sum-of-products

form and y,- be the variable with respect to which the Booleandifference is computed. Then

Q f

— = (p + r)(q + r)+pqr

- pq + pq + r.

It is faster to compute the complement of p and q in sum-of-products form because they

contain less cubes than fyi and fyi. The AND operations pq and p q can also be computed

much faster. This formulation was suggested by Adnan Aziz [5].

5.5.3 Computing Observability and External Don't Cares at Each Node

The compatible observability plus external don't care set at node yt- is found by

using the compatibleobservability don't care set for each fanout edge (t, k) of yt- (see Figure

5.7). The compatible observability don't careset for yt- is then obtained by intersecting the

observability don't care subsets computed for its fanout edges.

The algorithm in Figure 5.6 shows howa compatible don't care set is computed for

a node. The compatibility operations for the computation of observabilitydon't care subsets

at each fanout edge are done in sum-of-products form because intermediate variables are

needed for such operations 2. Furthermore, it is much easier to filter out unwanted cubes if

the representation is in sum-of-products form. All other operations are done in BDD form.

To distinguish the operations in sum-of-products form from the rest we added the comment

/* cube */ at the end of each such operation in Figure 5.6. The computation of CODC

It would be possible to do this computation in BDD form, but this would require finding an ordering
for both primary inputs and intermediate variables.

CHAPTER 5. NODE SIMPLIFICATION: PRACTICAL ISSUES

function get_compatible_dc(y,)

/* find Compatible don't care for each node */

begin

/* a topological ordering >- is given for all the nodes in the network*/

FanoutList= A list of fanouts of yi

d? = 1

for each node t/jt with function fk in FanoutList begin

D=filter^) /* cubes */
Let (j/jj,..., yjp) be fanins of yk such that yjt y yi

for each fanin yjt of yk such that y^ >• yi begin

/* replace all the variables yjx,... y^_x y yjt in ^t
with their local functions to get Ejt */

^. =^1*.=/,, *,=/>, /* cubes*/
end

V = (Eh +Cyh)...(Eh+ Cyjp)D /* cubes */
Dcg = transform Dc into BDD form in terms of primary inputs

dg = D" + 45

d? = d?d%

end

return d%9

end

Figure 5.6: don't care computation and node simplification

87

CHAPTER 5.. NODE SIMPLIFICATION: PRACTICAL ISSUES 88

Figure 5.7: An Intermediate Node

for an edge can be done more efficiently as given by Lemma 3.5.5, if a small number of

intermediate variables are replaced with their local functions. When Sjj*- is computed we
replace all the fanins of yk which have higher order than yjt with their local functions in

o^- to get Ejt (as shown in Figure 5.6). These (Ej^s) are then used to compute Dc which
is a part of CODC for the edge (i, k). Once the Dc is computed in sum-of-products form

in terms of intermediate and primary input variables, we substitute each variable with the

global BDD corresponding to that variable to get Dc in BDD form in terms of only primary

inputs. The don't care set computed for node yjt, d£5, which is kept in BDD form is then

added to Dc to get d*}9.. The CODC's of the fanout edges are ANDed together one by one

to get the CODC of the node which is later used for image computation.

5.5.4 Filtering

Let ytx,..., ytp be the fanins of yi and d%9 the global don't care at yt- as shown in

Figure 5.7. The local don't care set for y,- is

<**(»!,...,»,) = Sxd^9(x)(gtx(x)®ytx)...{gtp(x)®ytp)
= Cx(d?(x) + gtl (x) 0 ytl + ... + <jr, (x) ®ytp)

CHAPTER 5. NODE SIMPLIFICATION: PRACTICAL ISSUES 89

In general, dff can depend on primary input variables outside the transitive fanin cone of

yi as well as those in the cone. Let x" be all the primary inputs outside the cone and x'

the rest of primary inputs. No global function gtt is dependent on x", therefore,

Atohn —ttH,) = Cx.(Cx»dZ9(x) + gtx(x)®ytx+... + gtp(x)®ytpy

The dependency on x" can be removed by computing CX"d^9 first and then doing the image

computation.

When wecomputedf as shown in Figure5.6a heuristicfiltering step is introduced

which removes cubes that are dependent on variables x". For each node yt- we generate a list

of nodes, FoutlnList, which is the transitive fanouts of the transitive fanins oft/,-. Notice that

the global function corresponding to a node yr not in FoutlnList is completely dependent

on x"; otherwise, yr is a transitive fanout of some node in x' which is a transitive fanin of yt-

and therefore yr is in FoutlnList. The filter in Figure 5.6 removes cubes which have literals

corresponding to nodes not in FoutlnList. If global functions for these cubes are computed,

they result in new cubes ci,..., cn in terms of primary inputs such that each cube has some

variables from x". Let Cn+i,.. .,cp be all other cubes in d9 dependent only on x', then

Cx»di9 = Cx»(ci + ... + cn) + cn+i + .. .Cp.

£x"(ci + •••+ °n) = 0 in most cases because there is usually some minterm to in terms of

variables in x" for which (ci + ... + c„)m = 0. Our experiments support the effectiveness

of this filtering.

Example:

Let yp = x\ + X2 be a variable which is not in FoutlnList of yt- and c = ypyt{... ytj a cube

in df. The global function for c is (xi + a^Mx'). CXlX2(x\ + a^Mx') = 0.

5.5.5 Computing the Image

After computing the compatible observability plus external don't care set at yi in

terms of primary inputs d%9, we find all the combinations of variables in the local space of

yi which are possible for some input vector in <f?. This is done by cofactoring each global

fanin function of yt- with respect to d^g and then finding all the reachable points using a

range computation algorithm. The cofactor operations are generalized cofactor operations

defined in Section 2.3.1. We also introduced three different techniques, transition relation

CHAPTER 5. NODE SIMPLIFICATION: PRACTICAL ISSUES 90

method, output cofactoring, and input cofactoring for range computation in Section 2.3.

We discuss their relative merits for computing local don't cares.

The number of immediate fanins of a node yi being simplified is usually much less

than the number of the primary inputs in the transitive fanin cone of yt-. As a result the

size of the support of g = [</i,...,gm] (i.e. n where x = [a?i,..., xn] is the support of g and

g is a vector representing the global functions at the fanins of yt) is much greater than the

number of elements of g (i.e. m). Therefore, if output cofactoring is chosen, the number of

cofactoring operations that needs to be done to compute the range of g is considerably less

than the case where input cofactoring is used. The shortcoming of the transition relation

method for this application is that one has to order both the y and the x variables to

build the characteristic function G(x,y) = Yli<i<m(yi®9i{x)) for range computation. The

simplification of all the nodes in the network requires the ordering of all the intermediate

variables in addition to primary input variables. We do not know of a good ordering for all

these variables at the same time. The other disadvantage of the transition relation method is

that the range must be computed in BDD form and then transformed into sum-of-products

form to be fed to a two-level minimizer (two-level minimizers which manipulate BDD's are

not fully developed yet). As a result, we used output cofactoring for range computation.

The range computation algorithm is shown in Figure 5.8. Given a Boolean function

g = [9it • -•»Pm]» we compute the characteristic function of the range of g recursively using

the following equation:

range(g)(y) = yirange([(g2)9x,..., (gm)gx\) + yirange{[(g2)gj,..., (tfmfel)

The terms inside the recursive calls to the range computation are cofactored by g\ or ~g{

to decrease the complexity of the recursive computation. More importantly, at each step

of the recursion, whenever the remaining single output functions can be grouped into sets

of disjoint support, the range computation proceeds on each group independently. This

reduces the worst case complexity from 2m to 2ai +... + 28k where (si,..., Sk) are the sizes

of the independent groups («i + ... + Sk = m). If an element of g has a fixed value of 1

or 0, that element is removed and the corresponding literal is ANDed in sum-of-products

form with the result of the range computation for the rest of the elements in g.

The algorithm for partitioning elements of g into groups of disjoint support is

shown in Figure 5.9. We first find the support of each function. There is a single bit

associated with each variable in the set representing the support of each gi. This bit is set

CHAPTER 5. NODE SIMPLIFICATION: PRACTICAL ISSUES 91

function ranged,.. .,£m])

/* returns the range in sum-of-products form */

begin

if (to == 0) return 1

for (1 < i < to) begin

if (9i == 1) return yt- . range([flf1,...,flft_1,pt+1,...,^m]) /* cubes */

if {<9i == 0) return yi . range([0i,...,#_i,#+i,...,pm]) /* cubes */

end

/* partition [#i,... ,gm] into groups C?i,..., (j* with disjoint supports*/

[<7i,..., Gk] = partition [51,...,gm]

if (A: > 1) return range(C?i) . range(C?2) .. .range(Gjb)

select output i with the smallest support

return ft . range([(flfi)s.,...,(^»1)J.,(flft+1)5i,...,(flfm)i,|.])

+ y~i • range([(^i)?r,..., (ft-i)^, (#+1)57,..., (flfmkl)
end

Figure 5.8: Range Computation Algorithm

CHAPTER 5. NODE SIMPLIFICATION: PRACTICAL ISSUES 92

to 1 if the variable is present in the support and 0 otherwise. We OR any two support sets

with a 1 in the same column, and substitute the two sets with the support set obtained by

ORing. After this is done for all the columns, we get sets s,- that represent each partition

Gjt. Any gk whose support is in s,- belongs to the partition Gj{.

The routine range is called by passing as argument a multiple output Boolean

function. It returns the local care set for a node y,- in sum-of-products form. Once the care

set is known, the don't care set can be computed by finding the inverse of the care set.

One can find the don't care set directly with slight modifications to the algorithm shown in

Figure 5.8.

d\obtained by the range computation routine isin sum-of-products form; therefore,

it can be used directly as input to a two-level minimizer. Before simplifying yj, we add to d\
satisfiability don't cares of the nodes that can be substituted in yt*. These nodes are nodes

with a support that is a subset of support of yt\

5.6 Conclusion

We have introduced an algorithm for computing local don't cares for simplification

of intermediate nodes of a multi-level network. The external don't care network used by the

algorithm can be a general multi-level network, because BDD's are used for representing

external don't cares in terms of primary inputs. The compatible observability don't cares

can be computed more efficiently because set operations are much faster using BDD's. This

technique allows larger circuits to be optimized. The technique is limited to those networks

where the BDD's of the network functions can be built, which depends on the quality of

BDD ordering methods available.

CHAPTER 5. NODE SIMPLIFICATION: PRACTICAL ISSUES

function partition([(/i,...,0m])

/* partition into groups with disjoint support */

begin

/*find the support of each function */

for(l < t < to) begin

Si = support(#)

end

/*0Bl, any two support sets which have common parts */

for(l < j < n) begin

fs = NIL

for (1 < t < m) begin

if si == NIL continue

if Si(j) == 0 continue

if fs == NIL

fs = Si

else begin

fs = OR(fs,Si)

Si = NIL

end

end

end

/* Makea group Gj corresponding to each support set*/

1 = 0

for(l < i < to) begin

if Si == NIL continue

Gj = all gk whose support is contained in s,-

i = i + i

end

end

Figure 5.9: Partition into Groups with Disjoint Support

93

CHAPTER 5. NODE SIMPLIFICATION: PRACTICAL ISSUES 94

Chapter 6

Scripts for Technology

Independent Optimization

95

In this chapter, we investigate the set of operations used for the optimization of

a multi-level Boolean network. These operations are run in a prespecified order, known

as a script, in MIS-II. Scripts embody different kinds of manipulations used for optimizing

multi-level networks. These manipulations can be grouped as

1. extraction which is extracting common expressions among the nodes of a Boolean

network and creating new nodes representing them,

2. node restructuring which is reducing the amount of logic at each node, and

3. elimination which is removing nodes whose value is below some threshold in the

Boolean network.

We examine each category, explain the shortcomings of current approaches and provide

modifications that improve the robustness of the methods and the quality of optimized

networks. We present a new script which uses fulLsimplify and fast-extract, and give results

on a large set of benchmark circuits. The results show that the modifications improve the

robustness of the scripts and the quality of results significantly.

CHAPTER 6. SCRIPTS FOR TECHNOLOGY INDEPENDENT OPTIMIZATION 96

6.1 Introduction

The key to implementing a set of logic functions in a small area with small delay

through the circuit is to find a good Boolean decomposition of those logic functions. The

set of logic functions are represented as a Boolean network. Each logic function can be

implemented using simple gates in many different ways. The decomposition is equivalent to

partitioning logic functions into smaller ones whose interaction generates the desired behav

ior at the primary outputs of the Boolean network. Each partition is a logic function itself

and is represented by an intermediate node in the Boolean network. These intermediate

nodes are later mapped into gates available in the library. The best implementation for a

set of logic equations is usually obtained by a multi-level network where many levels of logic

are used to implement each logic function.

The operation of extracting the right intermediate nodes is computationally ex

pensive because of many different ways in which a Boolean network can be decomposed.

Therefore we use an iterative procedure to improve the quality of the multi-level network

incrementally. The cost function we use to measure the quality of a Boolean network is the

number of literals in factored form. For each intermediate node of the network we find the

best factored form representation and count the number of literals in each representation.

The sum of literal counts for all the nodes is the literal count for the whole network. Exper

iments show that the literal count in factored form correlates well with the final area of the

mapped circuits 1. The three sets of transformations used to reduce the cost areextraction,

node simplification, and elimination.

Extraction is using algebraic techniques to capture common sub-expressions in the

network and creating new intermediate nodes which represent those sub-expressions. Three

different algebraic techniques, kernel extraction algorithms, cube extraction algorithms, and

a polynomial time two-cube extraction algorithm are discussed in this chapter. It is shown

that the two-cube extraction algorithm can give results as good as other approaches while

the time spent for extraction is substantially less.

Once new nodes are extracted we use node restructuring techniques to improve

the quality of each node locally. This is usually done by introducing new fanins to the node

1Of course area minimization is not the only optimization criterion of interest. However, we have found
that a minimal area circuit is a good starting point for optimizations whose goals are performance or
testability. Furthermore, even after performance optimization, area reclamation is necessary to achieve
acceptable results.

CHAPTER 6. SCRIPTS FOR TECHNOLOGY INDEPENDENT OPTIMIZATION 97

and then removing some other fanins while preserving the desired behavior at the primary

outputs. Node restructuring can also be done in different ways such as node simplification,

algebraic resubstitution, and redundancy removal. The most powerful technique of all is

node simplification where a two-level minimizer is applied to each node in the network.

Node simplification is a local operation. Don't care sets which contain information about

the structure of the network are used to make node simplification more effective. These don't

cares are a combination of observability, satisfiability, and external don't cares discussed in

Chapter 3.

We associate a value to each node in the multi-level network that measures how

good it is to keep that node in the network. Once the node restructuring is done, we remove

(or eliminate) all nodes whose value is below some threshold [10]. The process ofextraction,

node restructuring, and elimination is repeated many times in different orders until no more

improvement is possible.

In practice we start from a PLA or a multi-level network and use the extraction,

node restructuring, and elimination algorithms in different order to improve the quality of

the Boolean network incrementally. The extraction, node simplification, and elimination are

all greedy algorithms. While extracting new nodes, we look for the best algebraic divisor

at each step although it can affect other divisors extracted later on. In a simplification

algorithm we first find some ordering of the nodes in the network and then in sequence try

to simplify the local function at each of the nodes as much as possible. The order in which

the intermediate nodes of the network are simplified is important because simplification of

one node can affect simplification of other nodes in the network. The elimination algorithm

is again a greedy algorithm and therefore, the elimination of one node can affect the value

of other nodes in the network. Because most operations are done in a greedy way the

final result is very dependent on the starting point and the order in which the optimizing

operations are done.

Currently, there are two scripts in MIS-II for logic minimization, the algebraic

script and the Boolean script. The main difference is that the algebraic script performs sim

plification without any don't cares while the Boolean script performs simplification using

satisfiability don't cares. Each script contains a sequence of operations that have performed

well on most industrial examples. In the following sections, we evaluate each of the com

mands in these scripts, investigate why they fail on some circuits and show ways to improve

the quality of each command. We then propose new scripts which include these modifica-

CHAPTER 6. SCRIPTS FOR TECHNOLOGY INDEPENDENT OPTIMIZATION 98

tions and show results that prove the effectiveness of our modifications. In Chapter 7, we

map these circuits into a set of given library gates and show the improvement on mapped

circuits.

6.2 Scripts Used for Logic Minimization

Our ultimate goal is to obtain a script which is robust in the sense that it rarely

fails (no timeout or space out problems) on a wide variety of circuits and produces results

as good as any manually directed script. Three sources of non-robustness in MIS-II are

kernel extraction, simplification, and elimination algorithms.

• Kernel Extract: Some functions have many kernels (especially symmetrical func

tions). This either causes a spaceout problem or the time for extraction becomes

enormous. This is exacerbated by the present implementation of kernel extract in

MIS-II which selects only a few kernels among all kernels generated and then reex-

tracts all the kernels again. One possible fix is the use of two-cube kernels as proposed

in [81]. According to our experimental results, the two approaches are comparable in

quality in most cases, but two-cube extraction is much faster.

• Simplify: The problem here is generating and using don't cares. The filters used

for keeping the size of don't cares small are not always effective. As mentioned in

Chapter 5, the input to the two-level minimizer has an onset and a don't care set.

The offset must be generated to find a good representation for the function. The

complementation necessary for generating the offset of a function and using it within

a two-level minimizer becomes infeasible when the don't care set is large. On the

other hand not using the don't cares degrades the quality of the results. An efficient

method for node simplification with don't cares is given in Chapter 5. The timeout

and spaceout problems can still occur but more rarely.

• Eliminate: This can cause creation of a node whose sum-of-products form has too

many cubes. The solution we propose is an intelligent ordering of the nodes in the

network and then a controlled elimination.

We now discuss these problems and their proposed solutions in more detail.

CHAPTER 6. SCRIPTS FOR TECHNOLOGY INDEPENDENT OPTIMIZATION 99

6.2.1 Kernel and Cube Extraction

An important step in network optimization is extracting new nodes representing

logic functions whose interaction gives the desired behavior at the outputs of the multi-level

network. We do not know of any Boolean decomposition technique that performs well and

is not computationally expensive; therefore we use algebraic techniques. The basic idea

is to look for expressions that are observed many times in the nodes of the network and

extract such expressions. Each such expression is implemented only once as a node and

the output of this node replaces the occurrence of the expression in any other node in the

network. This technique is dependent on the sum-of-products representation at each node

in the network and therefore a slight change at a node can cause a large change in the final

result, for better or for worse.

The current algebraic techniques in MIS-II are based on kernels [13]. The kernels

of a logic expression / are defined as

KU) = {9 I9 = fl*, 9 ** cube free }

where c is a cube, g has at least two cubes and is the result of algebraic division of / by

c, and there is no common literal among all the cubes in g (i.e. g is cube free). This set

is smaller than the set of all algebraic divisors of the nodes in the network; therefore it

can be computed much faster and is almost as effective. One problem encountered with

this in practice is that the number of kernels of a logic expression can be exponential in

the number of cubes appearing in that expression. Furthermore, after a kernel is extracted

from a node, its set of kernels changes. There is no easy way of updating other kernels, thus

kernel extraction is usually repeated. Once all kernels are extracted, the largest intersection

that divides most nodes in the network is sought. There is no notion of the complement

of a kernel being used at this stage. After kernels are extracted, one looks for the best

single cube divisors and extracts such cubes. The kernels and cubes are sought only in

uncomplemented form (e.g. if a + b is extracted, we do not substitute its complement

ab at this stage.). Later, Boolean or algebraic resubstitution can perform division by the

complement as well.

A more recent algebraic technique extracts only two-cube divisors and two-literal

single-cube divisorsboth in normal and complemented forms [81]. This approach has several

advantages in terms of computation time while the quality of the final result is as good as

CHAPTER 6. SCRIPTS FOR TECHNOLOGY INDEPENDENT OPTIMIZATION 100

that obtainedby kernel-based approaches. This wasfirst observed in [81] andlater confirmed

by our experimental results. It can be shown that the total number of double-cube divisors

and two-literal single-cube divisors is polynomial in the number of cubes appearing in the

expression. Also, this set is created once, and can be efficiently updated when a divisor is

extracted. Additionally, one looks for both the normal and complemented forms of a divisor

in all the nodes in the network so in choosing the best divisor a better evaluation can be

made based on the usefulness of the divisor as well as its complement. There is also no need

for algebraic resubstitution once divisors are extracted.

The algorithm of [81] works as follows. First all two-cube divisors and two-literal

single-cube divisors are recognized and put in a list. A value is associated with each divisor

which measures how many literals are saved if that expression is extracted. This value

includes the usefulness of the complement in the cases where the complements are single

cubes or two-cube divisors. Common cube divisors are also evaluated at the same time

so that "kernel" extraction and "cube" extraction are nicely interleaved by this process.

The divisor with highest value is extracted greedily. All other divisors and their values are

updated and the whole process is repeated until no more divisors can be extracted. This

technique has been implemented in MIS-II and is called fast-extract or fx.

One shortcoming of this approach is that the size of each divisor is limited to

no more than two cubes. However, large nodes are effectively extracted by the combined

process of fast-extract and elimination. Elimination as explained later, is used to increase

the size of some divisors and remove others that are not effective.

6.2.2 Simplification

To improve the local function at each intermediate node of a multi-level network,

we apply a two-level minimizer to each node. The two-level minimizer finds an optimal

representation of the node. The input to the two-level minimizer is composed of an onset

cover and a don't care set. The onset cover is the function of the node in terms of its

fanins. The don't care set contains information about the structure of the Boolean net

work. Different don't care subsets are used to optimize a node yi. One approach uses only

satisfiability don't cares of the nodes whose support is included in the support of the node

being simplified. This is called the support subset and is used in Boolean script in MIS-II.

The second approach uses no don't care at all. The input given to the two-level minimizer

CHAPTER 6. SCRIPTS FOR TECHNOLOGY INDEPENDENT OPTIMIZATION 101

contains only an onset for yi. Algebraic techniques are used to substitute other nodes of the

network in the functional representation of yt. This technique is used in algebraic script.

The third approach is fulLsimplify where local don't cares and subset support satisfiability

don't cares are used for node simplification.

Boolean script produces much better results in general as compared to algebraic

script but it cannot be applied to some circuits because simplification with support subset

fails (e.g. apexl, apex2, apex3, etc.). This happens because nodes in the original

network are extremely large. There are nodes with more than 100 cubes and 40 fanins.

When a node yi is being simplified, we generate satisfiability don't cares for substitutable

nodes (nodes that can be substituted in y, with high probability). To generate satisfiability

don't cares at a node we have to find the complement of the function at that node. The

operation of finding the complement of the function might not complete if the function

has too many cubes and too many fanins. Even if the satisfiability don't care generation

is successful, the two-level minimizer might fail because of the large number of variables

and large size of the don't care set. Finally, big nodes are not usually substituted into the

other nodes of the network, even if the two-level minimizer completes its job. As a result,

much CPU time is wasted and no optimization is obtained if large nodes are allowed to be

substituted in other nodes. In the cases where big nodes can be substituted in other nodes,

we can postpone this operation until some common expressions of these nodes have been

extracted and nodes are somewhat smaller.

To remedy this problem we introduce the following measures. 1) We do not allow

any node with more than 100 cubes to be substituted in any other node in the network. 2)

We do not allow a node yj which has more than twice the number of cubes of yi (the node

being simplified) to be substituted in yt- even though the support of yj might be included

in the support of yi. 3) We limit the size of the don't care set of the substitutable nodes

to 6000 literals. We order all the nodes that could be substituted in t/,- and generate the

satisfiability don't cares for these nodes until the limit of 6000 was reached. We use the

size of the nodes as the criterion for the ordering, i.e. the smallest node is the first in the

ordering. This is because it is more likely that smaller nodes are substitutable in yi. The

rest of the nodes may be substituted when the two-level minimizer is applied again.

The improved version of simplify discussed in Chapter 5 uses the local don't cares

in terms of immediate fanin variables of each node to simplify it. The advantage of this

approach is that we can remove most redundancies in the network. The size of these local

CHAPTER 6. SCRIPTS FOR TECHNOLOGY INDEPENDENT OPTIMIZATION 102

don't cares is usually very small, therefore they do not cause any problem with two-level

minimizers. To compute the local don't cares, BDD's are built for the nodes in the network,

external plus observability don' cares arecomputed for eachnode in terms of primary inputs

of the network, and image computation techniques are used to map the computed don't

care set to the local space of the node being simplified. There are two problems with this

approach.

First, BDD's cannot built for some circuits either because no good ordering of

primary inputs exists for building such BDD's (e.g. multipliers C6288) or because the

current heuristic used for ordering the primary inputs does not perform well (e.g., the

computation of local don't cares for C432 can be done much faster if a different ordering is

used.) Also, at times we can find localdon't cares for the nodes of the network easily before

it is optimized. But once it is optimized such operations become very expensive. This is

because the used heuristic fails to find a good ordering from the structure of the optimized

network. One could partition large circuits for which BDD's cannot be built into smaller

ones and then apply fulLsimplify to each subcircuit.

The second problem is that the image computation techniques used for extracting

local don't cares for a node might not complete if that node has many fanins. This is

because the technique employed for image computation can be exponential in the number

of the fanins of the node being simplified. We noticed this problem only a few times on

very large nodes in circuits like misex3, apex3, and apex4.

6.2.3 Elimination

To improve the cost of a Boolean network, we eliminate some nodes in the network

and then extract new nodes. The eliminationof a node is equivalent to replacing the variable

associated with that node with the local function at the node everywhere in the Boolean

network. First, we associate a value to each node in the network which measures the quality

of that node. The value of a node y» is defined to be

area-value(yi) =(JZ NUk, Vi) - WiVi) - 1) - 1
heFANOUT(yi)

where L(yi) is the number of literals in factored form for yi and N(fk, yi) is the number

of times either y,- or yt- appears in factored form in fk as shown in [10]. The elimination is

done by removing the nodes whose value is below some threshold. These nodes are found

CHAPTER 6. SCRIPTS FOR TECHNOLOGY INDEPENDENT OPTIMIZATION 103

one by one and then removed from the network.

In the past, we did not take into the consideration the order in which these nodes

were removed. If yt- is eliminated the value of its immediate fanins, immediate fanouts,

and immediate fanins of the immediate fanouts can change. If yk is an immediate fanout,

then in most cases £(y&) increases, thus area-value(yk) increases. If y/ is an immedi

ate fanin, then in most cases Y^fqFANOUT(yA -W(/> V/) increases, thus area-value(y{) in
creases. If yi is an immediate fanin of an immediate fanout yk, then because L(yk) increases,

T^feFANOUTivi) N(fiVi) could increase. Therefore, if a node is removed, the value of its
fanins, fanouts, or fanins of its fanouts may go above the threshold. Such nodes will not

be eliminated any more. As a result, the ordering in which nodes are eliminated from the

network is important.

The most common value used for the threshold is -1. A node is eliminated in that

case either if £(yt) = 1 or 52f£FANOUT(yi) ^(/>V«) = !• The nodes with L(yi) = 1 will be
eliminated no matter what ordering is used. This is not the case when

YlfeFANOUT(yi) -W(/» Vi) = 1- Because the fast-extract algorithm completes onall the bench
marks, we would like to have an ordering which works well when used with fast-extract. All

the divisors extracted by fast-extract have less than or equal to two cubes. We know that to

find an optimized network with low cost, we need larger divisors. Therefore, our heuristics

are designed to make divisors larger in general. For example, let

f = (a + b+ c)(t + v + w)(x + y + z).

After extracting two-cube kernels, we obtain the network

/ = 246

1 = a + b

2 = 1 + c

3 = t + v

4 = Z + w

5 = x + y

6 = b + z

Our experiments show that the best results are obtained if we try to eliminate the nodes

that fanin to a node before that node itself is eliminated. To implement this, we first find

CHAPTER 6. SCRIPTS FOR TECHNOLOGY INDEPENDENT OPTIMIZATION 104

the level of each node in the network starting from the primary inputs which are assigned

level 0. The level of each node yt- is level(yi) = 1+ max(level(yt),Vyt € FANIN(yi)). We

order nodes according to their level and remove the ones with lower levels first if their value

is below the threshold. Applying eliminate -1 with this ordering to the above example

we get,

/ = 24a? + 24y + 24z

2 = a+b+c

4 = t+v+w

which is the desired decomposition.

The other problem with eliminate is that some nodes in the network may become

too large after elimination is done. For example using the current version of eliminate in

MIS-II, if one does eliminate -1 on some circuits (e.g. C432, C2670, and C7552), the

number of cubes in some nodes becomes so large that no other transformation can be

applied on these circuits. To prevent such node explosions, we set a limit on the number of

cubes that each node can have. We set this limit to be equal to twice the number of cubes of

the node with the most cubes in the network. We can still remove as many nodes as desired

from the network by repeated application of eliminate. Furthermore, we prevent sudden

size explosions so that subsequent optimizing operations can be applied to the Boolean

network. Because of this simple modification to eliminate, we can handle most circuits

where we had memory problems before.

6.3 Scripts

We ran two different scripts on a large set of benchmarks repeatedly until no more

improvement was obtained and compared the final results together. The rscript shown in

Figure 6.1 uses the fast-extract command in MIS-II. This script is known as rugged script

and is one of the scripts available within SIS [74]. The bscript, which is the same as Boolean

script in MIS-II with our modifications to eliminate and simplify, and the addition of

f ull_simplify, uses the kernel extraction command gkxand the cube extraction command

gcx. These commands are repeated many times with different threshold values. A kernel

or cube is extracted only if its value is above the threshold, sweep removes internal nodes

with no fanout or no fanin, buffers and inverters, eliminate does the elimination of nodes

CHAPTER 6. SCRIPTS FOR TECHNOLOGY INDEPENDENT OPTIMIZATION 105

rscript

sweep; eliminate -1

simplify -m nocomp

sweep; eliminate 5

simplify -m nocomp

resub -a

fast_extract

sweep; eliminate -1

fulLsimplify

Figure 6.1: Simplification Script Using fastjextract

whose value is below the given threshold, simplify -m nocomp is a simplification algorithm

implemented in the ESPRESSO [11] environment which uses reduced offsets [50]. resub

-a is an algebraic technique for substituting each node of the network into other nodes in

the network. It considers both the normal and complement form of the node, decomp -g

successively extracts the best kernels until no more can be extracted. It is used to break

big nodes into smaller nodes.

6.4 Experimental Results

We run a large set of experiments to measure the effectiveness of our transfor

mations for area optimization, removing combinational and sequential redundancies, and

effective use of external don't cares. These same transformations are also used for perfor

mance optimization as shown in [77, 79].

6.4.1 Area Optimization

The results of the experiments for technology independent optimization of a large

set of ISCAS and MCNC benchmarks are shown in Tables 6.1 and 6.2. The starting circuits

in Table 6.1 are multi-level circuits. The starting circuits in Table 6.2 are PLA's. The

start columns in the two tables show the number of literals in factored form before any

CHAPTER 6. SCRIPTS FOR TECHNOLOGY INDEPENDENT OPTIMIZATION 106

bscript

sweep; eliminate -1

simplify -m nocomp

sweep; eliminate 5

simplify -m nocomp

resub -a

gkx -abt 30

resub -a; sweep

gcx -bt 30

resub -a; sweep

gkx -abt 10

resub -a; sweep

gcx -bt 10

resub -a; sweep

gkx-ab

resub -a; sweep

gcx-b

resub -a; sweep

eliminate 0

decomp -g

sweep; eliminate -1

fulLsimplify

Figure 6.2: Simplification Script Using Kernel Extraction

CHAPTER 6. SCRIPTS FOR TECHNOLOGY INDEPENDENT OPTIMIZATION 107

optimization is done. This number is obtained after sweep; eliminate -1 in SIS.

Columns rscript and bscript are the results of running each script repeatedly

until no more optimization is possible. This usually happens after 2 or 3 iterations of the

scripts. We perform some initial transformations on the circuits before any of the scripts

are applied. These transformations are different for the two sets of circuits. rCPU and

bCPU are the times taken by rscript and bscript respectively.

The column obest is the result obtained by MIS-II presented at the International

Workshop on Logic Synthesis in 1989. These results were obtained by a variety of scripts

and/or human interaction in directing the order of application of MIS-II commands, nbest

is the best result obtained by us using a few variations on these scripts, ratio is the ratio

of the literals in factored form in the nbest column over the one in the obest column. The

average row shows the average improvement in literals in factored form.

First we discuss Table 6.1, where the starting circuits are multi-level circuits. For

multi-level circuits we apply f ull-simplify first and then both scripts repeatedly until no

more improvement is obtained. Both scripts run successfully on most circuits. fulLsimplify

does not perform any optimization on C6288 and C7552 because BDD's cannot be built

for these two circuits. We use both scripts on C6288 and C7552 without fulLsimplify. We

do not get any optimization on C6288, because the number of literals increases after we

run any of the scripts. On the other hand, we obtain considerable optimization for C7552

without using fulLsimplify. The size of the BDD's for C2670 and C3540 is also very large.

Overall, the results shown in columns rscript, bscript, and nbest are considerably better

than the previous results on most of these benchmarks. On the average, we obtain 17%

improvement over the old results as shown in Table 6.1.

Table 6.2 shows the results of the experiments where the starting point is a PLA.

In this case we apply resub -a; simplify -d first and then run the scripts repeatedly

until no more optimization is possible, resub -a allows algebraic substitution of one out

put into the other outputs. The starting literal count for the PLA's is shown in factored

form. It is observed that for circuits where the starting literal count in sum-of-products

form is around 10000 or more, the order in which simplification, algebraic resubstitution,

and algebraic extraction are done is very important. For example, the simplification of a

particular node can make a major difference in the final result. This is because the algebraic

techniques are so dependent on the representation of the nodes and nodes in these circuits

are usually very large. These circuits are apexl, apex2, apex3, apex4, misex3, and

CHAPTER 6. SCRIPTS FOR TECHNOLOGY INDEPENDENT OPTIMIZATION 108

circuit start rscript bscript rCPU bCPU obest nbest ratio

C432 322 203 196 970 752 321 187 0.58

C499 562 554 550 317 501 552 550 1.00

C880 433 417 417 70 105 416 398 0.96

C1355 562 554 550 317 501 552 550 1.00

C1908 769 512 511 1516 1571 541 511 0.94

C2670 1031 724 737 1007 994 1031 716 0.69

C3540 1633 1221 1248 2501 1543 1633 1200 0.73

C5315 2425 1722 1709 1118 1361 1796 1709 0.95

C6288 3313 nop nop

C7552 3022 2159 2209 939 1442 2505 2159 0.86

apex6 835 723 720 163 259 784 720 0.92

apex7 289 239 237 52 44 240 237 0.99

b9 162 125 124 11 21 132 124 0.94

k2 2930 990 996 10628 3119 - 968 -

des 6101 3216 3257 7010 6993 3538 3216 0.91

f51m 169 85 116 20 37 118 85 0.72

rot 764 668 663 333 449 704 663 0.94

z4ml 77 41 36 7 7 43 36 0.84

9symml 237 186 205 271 291 176 161 0.91

average 1349 - - - - - - 0.83

Table 6.1: Performance of Scripts Starting from Multi-Level Circuits

start, rscript, bscript, obest, nbest:
rCPU, bCPU:
nop:

number of literals in factored form

in seconds on a IBM Rise System/6000 530
no optimization was obtained

CHAPTER 6. SCRIPTS FOR TECHNOLOGY INDEPENDENT OPTIMIZATION 109

circuit start rscript bscript rCPU bCPU obest nbest ratio

5xpl 163 100 96 14 23 104 89 0.86

9sym 283 197 178 344 191 216 178 0.82

alu4 2058 100 104 430 387 263 100 0.38

bw 296 163 162 36 43 163 161 1.00

clip 264 123 131 52 88 119 108 0.91

rd53 71 34 36 5 6 33 34 1.03

rd73 247 70 56 15 38 74 56 0.76

rd84 482 116 112 109 180 124 74 0.60

sao2 288 114 114 67 94 118 114 0.97

seq 3707 1706 - timeout timeout 1176 877 0.75

vg2 246 85 84 10 12 86 84 0.98

xor5 28 16 16 2 2 16 16 1.00

apexl 3831 1379 1428 2369 1835 1247 1063 0.85

apex2 663 167 - 983 timeout 246 167 0.68

apex3 3263 1617 1553 2367 573 1401 1426 1.02

apex4 5976 2318 2321 timeout timeout 2592 2163 0.83

apex5 2848 745 777 420 514 890 745 0.84

e64 2144 253 253 109 135 253 253 1.00

o64 130 130 130 3 3 130 130 1.00

misexl 88 52 51 6 7 49 50 1.02

misex2 164 103 103 10 13 103 101 0.98

misex3 1929 703 676 timeout timeout 371 547 1.47

misex3c 850 443 439 5175 4317 452 439 0.97

conl 19 19 19 1 2 19 19 1.00

duke2 938 392 382 413 212 393 360 0.92

average 1239 - - - - - - 0.90

Table 6.2: Performance of Scripts Starting from PLA's

start, rscript, bscript, obset, nbest:
rCPU, bCPU:
timeout:

number of literals in factored form

in seconds on a IBM Rise System/6000 530
set to 15000 sec. of CPU time

CHAPTER 6. SCRIPTS FOR TECHNOLOGY INDEPENDENT OPTIMIZATION 110

seq. For example, in the case of apexl if we run resub -a; fast-extract and then rscript

repeatedly we can decrease the number of literals to 1063 as shown in the column nbest in

Table 6.2. This shows the need for better network decomposition strategies. We are still

able to get considerable improvement over the results shown in column obest.

It is not possible to get any comparison of fast-script and kernel extraction tech

niques from Tables 6.1 and 6.2 because most of the CPU time is spent on node simplification.

To better measure the merits of fast-extract, wefirst run simplify -m nocomp; resub -a on all

the PLA circuits. Then we run fast-extract; eliminate 0 and compare this with the kernel

extraction technique in Figure 6.2 (the series of commands starting from gkx -abt 30 to

eliminate 0). The result is shown in Table 6.4.

The column fie shows the number of literals in factored form when fast-extract is

used. The column gkx shows the number of literals in factored form when gkxand gcx with

different threshold values are used. The number of literals in factored form obtained from

fast-extract is slightly better than the one obtained by using gkx and gcx while the CPU

time is 21 times less. As a result, no quality is lost by using two cube kernels. The total

number of intermediate nodes in the networks optimized by fast-extract and gkx, gcx after

eliminate are comparable which shows divisors obtained by fastjextract are as big as the

ones obtained by the kernel extraction algorithm after elimination.

6.4.2 Sequential Optimization

A set of benchmarks with external don't cares are generated to see how effectively

external don't cares can be used for optimizing these networks. The ISCAS sequential

circuit benchmarks are used for this experiment. For each circuit, an external don't care

set is generated by finding all the states that are unreachable starting from a given initial

state. These operations are done using BDD's [78] and [47]. The external don't care set

for each output function is equal to the set of unreachable states. An external don't care

network is generated from the BDD representing the set of unreachable states. There is an

output in the external don't care network corresponding to each output in the care network.

The outputs of the external don't care network compute the same function. We build an

internal node in the external don't care network which computes the function of BDD

representing unreachable states. This node then fans out to all the outputs in the external

don't care network. To build the internal node corresponding to the BDD representing the

CHAPTER 6. SCRIPTS FOR TECHNOLOGY INDEPENDENT OPTIMIZATION 111

circuit fie gkx ratio CPUfic CPUgkx nodefic nodegkx

5xpl 118 117 1.01 1 2 15 13

9sym 225 234 0.96 11 8 17 28

alu4 399 396 1.01 7 16 46 45

bw 161 161 1.00 0 2 33 33

clip 147 148 0.99 2 4 19 20

rd53 39 41 0.95 0 1 7 5

rd73 73 94 0.78 2 7 14 9

rd84 176 194 0.91 14 129 22 27

sao2 194 181 1.07 2 6 28 16

seq 1613 1687 0.96 105 1745 247 229

vg2 88 87 1.01 0 1 10 11

xor5 16 20 0.80 0 0 4 2

apexl 1535 1521 1.01 44 807 270 252

apex2 313 345 0.91 126 3216 48 53

apex3 1478 1554 0.95 55 280 178 165

apex4 2195 - - 50 timeout 228 inc

apex5 * 780 799 0.98 14 43 157 153

e64 253 253 1.00 5 22 95 95

o64 130 130 1.00 0 0 1 1

misexl 52 52 1.00 0 0 9 9

misex2 108 106 1.02 0 1 25 24

misex3 732 676 1.08 151 4116 111 97

misex3c 461 457 1.01 4 9 40 40

conl 20 19 1.05 0 0 3 2

duke2 452 460 0.98 3 15 80 72

- total total aver total total total total

- 9563 9732 0.98 502 10429 1479 1401

Table 6.3: Comparison of Algebraic Extraction Techniques

fie, gkx:
ratio:

CPUfic, CPUgkx:
nodefic, nodegkx:
timeout:

number of literals in factored form

ratio of numbers of literals in factored form from fx over gkx
in seconds on a IBM Rise System/6000 530
number of intermediate nodes in the network

set to 15000 sec. of CPU time

CHAPTER 6. SCRIPTS FOR TECHNOLOGY INDEPENDENT OPTIMIZATION 112

unreachable states, a two input multiplexor node is built in the external don't care network

corresponding to each node of the BDD. To keep the size of the external don't care network

small a limited optimization is done (sweep; eliminate -1; simplify) on the external don't

care network. The care network and the external don't care network are saved in blif form.

The command extractseq.de in SIS finds unreachable states of a finite state machine and

stores them in an external don't care network as explained above.

We simplify these networks using the rugged script shown in Figure 6.1 which uses

fulLsimplify and compare it with the same script when fulLsimplify is replaced by simplify.

The result when fulLsimplify is used is under the column rscript and when it is not used is

under column sscript shown in Table 6.4. Substantial improvement was obtained by using

external don't cares in the simplification of each of the intermediate nodes. The reason for

such improvement is that the initial encodings of these circuits are not good. fulLsimplify

improves the encoding of the circuit in a restricted way. The size of the external don't

care networks in sum-of-products form varies in the examples shown. We do not have any

problem with the size of these networks as long as we can build BDD's for them.

Our optimization is focused on the combinational part of these circuits. As a

result of this optimization, the input to some latches may become constant. Such latches

can be removed from the circuit if the constant value is the same as the initial value of the

latch. In addition, if as a result of this optimization, a set of latches forms a cycle where

the outputs of these latches do not fan out to any of the outputs of finite state machine,

these latches can be removed from the circuit. Another sequential transformation currently

used within SIS is retiming [45, 25, 52, 73] which can be combined with fulLsimplify. New

transformations for improving the structure of a finite state machine and its encoding are

currently under investigation.

6.4.3 Testability

fulLsimplify can be used to remove both combinational and sequential redundan

cies in a circuit. We do not have the algorithms to measure sequential testability of a circuit

at this point but the testability of combinational circuits can be measured. We ran rugged

script on the multi-level circuits from the ISCAS and MCNC benchmark sets and measured

the testability of these circuits. The results are shown in Table 6.5. The atpg command in

SIS was used to find the total number of redundant plus undetected faults over the total

CHAPTER 6. SCRIPTS FOR TECHNOLOGY INDEPENDENT OPTIMIZATION 113

circuit start exdc net. sscript sCPU rscript rCPU

s344 168 4844 143 12 136 197

s386 205 33 152 11 112 14

s400 186 3914 160 15 124 147

s526 292 8141 197 34 141 302

s641 216 142 200 13 158 30

s420 201 37 159 12 42 8

s713 204 141 193 16 155 32

s820 523 40 332 137 304 312

s838 407 69 329 492 42 24

sand 818 30 693 463 604 2780

Table 6.4: Performance of the Scripts on Sequential Circuits

start: number of literals in factored form

exdc net.: number of literals in don't care network in sum-of-products form
sscript: literals in factored form of optimized circuit using simplify in script
rscript: literals in factored form of optimized circuit using fulLsimplify in script
sCPU, rCPU: in seconds on a IBM Rise System/6000 530

number of faults in each circuit. The testability of each circuit was measured before and

after optimization. The total number of redundant plus undetected faults over the total

number of faults in the circuit is shown in columns denoted by start-test and final-test

in Table 6.5. Most redundancies in the optimized circuits are removed because fulLsimplify

is used. fulLsimplify is more powerful than redundancy removal algorithms [71,40] because

it restructures the network while removing redundancies.

6.5 Conclusion

We have provided improvement in both robustness and quality for the techniques

used for optimizing multi-level networks in SIS and presented a rugged script which em

bodies a set of these operations in a prespecified order. The obtained results in the tables

show the effectiveness of this new script on a large set of benchmarks. The results presented

are much better than the ones obtained by the previous version of MIS-II and also most

other logic synthesis systems. To improve robustness still further, we need to expand our

techniques to handle two classes of circuits; first, circuits for which we cannot build BDD's;

CHAPTER 6. SCRIPTS FOR TECHNOLOGY INDEPENDENT OPTIMIZATION 114

circuit start start-test rscript CPU final-test

C432 322 7/542 196 752 2/553
C880 433 0/850 417 105 0/801
C1355 562 0/878 550 501 0/890
C1908 769 7/1239 511 1571 6/846
C2670 1031 37/2057 737 994 8/1726
C3540 1633 38/2779 1248 1543 11/2361
C5315 2425 5/3954 1709 1361 8/3010
C6288 3313 3/8050 spaceout

C7552 3022 46/5608 spaceout

apex6 835 0/1946 720 259 0/1467
apex7 289 14/646 237 44 1/446
b9 162 1/360 124 21 0/354
k2 2930 97/3383 996 3119 4/2033
des 6101 113/9111 3257 6993 0/5523
f51m 169 0/102 116 37 0/233
rot 764 30/1620 663 449 0/1490

start:

CPU:

Table 6.5: Measuring Testability

number of literals in factored form

in seconds on a IBM Rise System/6000 530

second, circuits where the starting sum-of-products representation has more than 10000

literals. In the latter case, the performance of algebraic techniques is somewhat results.

Because these circuits are large, we cannot use the full power of simplification techniques

to restructure the nodes properly.

Chapter 7

Boolean Matching in Logic

Synthesis

115

In this chapter, we discuss Boolean matching which can be used to map a Boolean

network into a set of library gates in a particular technology. The mapping of a circuit

is a technology dependent transformation which is different from the Chapters 5 and 6

of this thesis where technology independent transformations are discussed. First, a new

formulation for finding the existence of a Boolean match between two functions with don't

cares is presented. An algorithm for Boolean matching is then developed based on this

new formulation and is used within a technology mapper as a substitute for tree matching

algorithms. The new algorithm is fast and uses symmetries of the gates in the library to

speed up the matching process. Local don't cares are computed for each sub-function of

the network being mapped and used for Boolean matching in terms of its inputs. To reduce

the frequency with which Boolean matching is used, the gates in the library are grouped

into classes such that it is sufficient to try to match a function with the class representative.

Experimental results show significant improvement in the final area of the mapped circuits

compared to previous approaches in SIS.

7.1 Introduction

Detection of "equivalence" of Boolean functions, also called matching, is a problem

arising in logic synthesis when a Boolean network is to be implemented in terms of reusable

building blocks. Many solutions have been proposed for this problem almost since the

CHAPTER 7. BOOLEAN MATCHING IN LOGIC SYNTHESIS 116

introduction of packaged logic gates. In [42], a treematching algorithm is usedto implement

a network in terms of the gates in a library. This technique had been applied before in

programming language compilers for generation of optimal code for expression trees [3]. A

pioneering workusing Boolean methods as an alternative for technology mapping was given

in [49]. Unlike tree matching, the Boolean matching techniques allow the use of don't care

information. This can result in better circuits because some matches not detectable by tree

matching techniques can be found. Additionally, there is no need to add inverters to the

circuit, as proposed in [26], because both input phases of a function being matched are

considered at the same time.

In [49], two different algorithms for Boolean matching are proposed, one of which

uses don't cares and the other does not. When matching without don't cares, symmetries

are used to speed up the matching process. Techniques for finding symmetries of a function

are discussed in [27]. For matching with don't cares, an alternative algorithm that does not

use symmetries was proposed [49]. In [27], symmetries were also computed in the presence

of don't cares and it was shown that symmetry is not a transitive property when don't

cares are present. Hence, computation of symmetry sets in this situation is expensive. The

algorithm in [49] uses a matching compatibility graph, built during the setup phase, to find

the existence of a match between two functions in the presence of don't care conditions.

Each node of this graph corresponds to an NPN-equivalent [58] function. The size of this

graph grows exponentially with the size of the variable support of the functions, and has

limited the use of don't cares realistically to the matching of functions with at most 4 inputs.

We present a new Boolean matching algorithm which uses both symmetries and

don't care conditions of the functions being matched at the same time. This Boolean

matching is done using BDD's. Disjoint sets of variables are used to build BDD's for the

two functions. During matching, variables from the two sets are matched with each other

one by one. The number of onset and don't care set minterms of the two functions can be

computed easily because BDD's are used to represent these functions. These numbers are

used to check for some necessary conditions without which a match cannot exist. Similar

techniques, based on the number of onset and don't care set minterms of the two functions,

are used to find the corresponding inputs of the two functions when a match exists.

We use this new Boolean matching technique within a technology mapping envi

ronment which uses the methods developed in [42, 26, 64]. First, a circuit is decomposed

into a set of disjoint trees with two-input nodes. Dynamic programming approaches are

CHAPTER 7. BOOLEAN MATCHING IN LOGIC SYNTHESIS 117

then used to map each tree. Nodes of a tree are visited in depth first order starting from

the leaves. At each node, the best match for the subtree at that node is recorded. This best

match is obtained by looking at all the sub-functions rooted at that node and matching

them with the gates in the library. Don't cares are computed for each sub-function using

techniques discussed in Chapter 5.

The second application of Boolean matching is to group all the gates in the library.

As demonstrated in [64], the inclusion of complex CMOS gates in the library is useful

because it may lead to a significant reduction in the required area for implementing some

combinational functions. However, larger cell libraries require more matchings and imply

the use of functions with more inputs, making technology mapping with very large libraries

computationally expensive. In [49], a technique for speeding-up the matching by grouping

gates in the library was proposed. The groups of gates are composed in such a way that,

after finding a match with a representative gate, the match with all gates in the group

is determined. We use Boolean matching to group gates in the library. The gates in the

library are matched with each other and the ones that match with inverted inputs or output

are stored in the same data structure.

The designed Boolean matching technique is practical and gives good results, on

average about 12% improvement in area over tree matching. Although we have only used

this Boolean matching technique to find the best mapped circuit in terms of area and for

organizing the given library, the algorithm is general and can be used in other contexts such

as delay optimization, or layout driven technology mapping [61].

7.2 Boolean Matching

We address the Boolean matching problem for two functions f(x\,...,xm) and

g(yi,..., ym) with the same number of inputs and with don't care sets df(x\, ...,xm) and

dg(y\,• ..,]/m)> The objective is to find an assignment of variables x to y such that there

exists a function that is a cover of both / and g. If such an assignment exists, the two

functions can be matched.

A particular assignment of variables of g to / (ytl = Xjx, y,-2 = xj2 ,..., y*m = Xjm)

can be represented by a new function

CHAPTER 7. BOOLEAN MATCHING IN LOGIC SYNTHESIS 118

In general, both (y^Wxj^ and (ytl ©Xjx) are possible assignments; the first sets ytl = Xjx;
the second sets ytl = xjx . The function §k under variable assignment Ak is simply gk(x) =

SyAk(x,y)g(y).

Lemma 7.2.1 Letg anddg represent the new function obtainedfrom g anddg by switching

y 's with x 's corresponding to a particular assignment. A matching under this assignment

exists if and only if g - dg C / + df and f - df C g + dg.

Proof Assume a matching exists under the given variable assignment and let h represent

the function forwhich the matching exists. Thusg-dg ChC g-\-dg and f-df C h C f+d/;

therefore, g - dg C / + df and / - dj C g + dg. On the other hand, if g - dg C / + df

and f - df C g + dg, we let h = (/ - df) + (g - dg). Clearly, g-dgChCg + dg and

f-dfChCf + df.*

Lemma 7.2.2 The matching under variable assignment Ak exists if and only if

Mk = Cx(Sy{Ak(df + dg + ffig))) = 1 (7.1)

(The significance of the consensus operation is shown in the next Lemma).

Proof Let g = SyAkg and dg = SyAkdg then

Mk = Cx(Sy{Ak(df + dg + f®g)))

= CX(SyAkdf + SyAkdg + SyAkfg + SyAkJ^)

= Cs(dfSyAk + dg + fSyAkg +1SyAkg)

= cx(df+dg+m)

Cs(df + dg + f®g) = 1 if and only if (df + dg + f®g) = 1. Assume (df + dg + f@g) = 1.

Let m be a minterm in g - dg. Then m € / + df, otherwise df + dg + f(&g ^1. As a result,

9-dgQ f + df. In the same way, (df + d5 + /©£) = 1 implies f-dfCg-\-dg. Therefore,

if Cx(df + dg -r f®g) = 1, a match exists. H f - df C g + dg and g —dg C df + /, then

£/ + d/ + 4 = £+d/ + 4ajld75+ d/ +4=5+d/ + 4- Therefore (d/+ 4+ /®£) = 1-
•

We can organize equation (7.1) in a more computationally efficient way by using

the result of the following lemma.

Lemma 7.2.3 If %± j, CXiSyj(xj@yj)h(x,y) = Syj(xj®yj)CXih(x,y).

CHAPTER 7. BOOLEAN MATCHING IN LOGIC SYNTHESIS 119

Proof

CXiSyj(xj®yj)h = C^Sy^Xjyjhyt+Xjyjhyj)

= CXi(xjhyj + Xjhy.)

= MCXih)yj+Xj(CXih)y.)

= Syj(xjWyj)CXih.

Lemma 7.2.4 Let Ak = (yi©a?i)(y2©a;2) ••-(ym@xm). Then Mk = Cx(Sy(Ak(df + dg +

/©o))) can te expressed as

M* = (CXmSym(xmWym).. .C^^(*i^yi)(d/ + dg + f@g))

Proof The statement of the lemma follows by induction and lemma 7.2.3. •

Not all the possible assignments of variables y to x are required to check whether

a matching exists. First we express necessary conditions for a matching to exist. Let |/|

represent the number of minterms in the function /. Once BDD's are built for functions

/ and g, then |/| and \g\ can be easily found by traversing the corresponding BDD's only

once. Given node n in the BDD of / with children nl and nr, the number of minterms in

the function represented by n in the ordered BDD of / can be found if this number is known

at nl and nr. We represent the difference between the variables n and nl in the variable

ordering by / (if n appears right before nl, I = 1) and the difference between the variable

of n and nr in the variable ordering by r. The number of onset points for the function at

n is |n| = 2/-1|n/| + 2r-1|nr|. Initially, the number of minterms at node 1 is set to 1 and

node 0 is set to 0. Also, if the root of the BDD is not the first variable in the ordering, we

multiply the count at the root node by 2* where k is the difference between the root node

and the first variable in the ordering.

Theorem 7.2.5 A matching between f and g exists under any variable assignment only if

\f-df\ C \g + d,\t |7-<*/| C \g + dg\, \g-dg\ C |/+d/|, and \g - dg\ C \J+ df\. In
particular, if df = 0 anddg = 0, |/| = \g\.

Proof Each onset point of / must be mapped to an onset point or don't care point of g

and each offset point of / must be mapped to an offset point or don't care point of g. If

CHAPTER 7. BOOLEAN MATCHING IN LOGIC SYNTHESIS 120

\f —df\ > \g + dg\ some onset points in / cannot be mapped to any onset or don't care

point of g. The proof is similar for other cases. •

Lemma 7.2.6 A matching under the assignment Xi —yj exists only if \fXi —df \ C

\9yi +dgy.\, \7Xi-dfxi\ C1^+d^.l, \gyj -dgy.\ C\fXi +dfxi\, \gyj-dgy.\ C|7i+rf/J,
\hi ~*fXi\ CJ^- +dg-.\, |/5i - d,_| C|^.+dg-.l, fa. - d,-| C \fXi +df-f|, and
1^ - dg-, | C |/- +d/s. I. Inparrtcu/ar, »/ d/ = 0 and d^ = 0, l/rj = \gyj \ and \fXi| = fa.|.

Proof If Xi = yj, each onset point of(fXi - d/x.) must be mapped toa point in (gyj +dg),
therefore, \fXi —d/^J C |ayj —d5y.|. Other cases can be proved in the same way. •

Corollary 7.2.7 A matching under the assignment Xi = yj exists only if \fXi —df \ C

l0vi +<HI> 17^-^1 Q\9Vj +dgVj\, l^-d^.l c \fXi +dIxi\, 1^-^.1 c \7Xi +dfxi\,
\ki - df^.\ C\gyj + d3y.\} |/s. - df-.| C \gy. + d9y.\, \gyj - d9y.\ C \fXi + dy_ |, and
K-dg^Qtf^+df-J.

From now on, we concentrate on the use of Boolean matching in technology map

ping where we try to match a sub-function with don't cares in the network with a library

function which has no don't cares (dg = 0).

7.3 Boolean Matching for Technology Mapping

The objective of a technology mapper is to map a circuit into a set of gates in the

library. The given circuit is first decomposed into a set of 2-input gates and then into a set

of disjoint trees. As in [42, 26, 64], we use dynamic programming to map each tree into a

set of library gates. The trees are mapped in topological order; each tree is mapped after all

its fanin trees. Mapping is a two step process. In the first step, called matching, we find the

minimum cost matching for the root of the tree. In the second step, called gate assignment,

we implement the logic function of the tree in terms of library gates as determined in the

matching phase.

The first phase of technology mapping is to traverse the target tree bottom-up

from the inputs. At each node, all possible functions up to a given number of inputs having

that node as output are considered. These functions are called cluster functions; their

corresponding subgraphs are called clusters [49]. In our formulation, a cluster is represented

CHAPTER 7. BOOLEAN MATCHING IN LOGIC SYNTHESIS 121

by a root node and a set of leaf nodes (cutset of nodes) separating the root node from the

rest of the network. We use an iterative algorithm for cluster generation. It starts with

a cluster consisting only of the root node, and generates new clusters by expanding every

cluster. Expansion of a cluster is done by removing each node of the cutset one at a time

and adding its fanin nodes to it. If some of the clusters generated in this process have been

generated before, or contain more nodes than the maximum number of inputs in any gate

of the library, they are simply discarded. Each iteration expands the clusters generated in

the previous iteration only. Cluster generation is stopped after an iteration that does not

produce more clusters.

During gate assignment we build a new network that contains the best map at each

tree. At each tree, we need to choose the phase of the root node of the tree. The less costly

phase in terms of area is currently chosen unless the root node is a primary output where

the positive phase is chosen. The penalty for using the phase that is not implemented is the

cost of an inverter. After all the trees in the network are mapped, we traverse these trees

in reverse order, and check what phase of the root is used in each tree. If the implemented

phase in the new network for a particular tree is always inverted before it is used by its

fanout trees, we switch to the other phase of that tree to reduce cost.

The matching problem is to find any library function that can be matched with

a cluster function. The correspondence between the inputs of the cluster function and

the library gate is sought first, then one checks if the functions are equivalent under such

condition. In the presence of local don't cares the matching problem can be formulated as

follows. Let f(x\, «2, •. •, xn) be a cluster function with local don't-care d(x\, xi,..., xn),

and y(yi,y2,.. .,y*n) be a library function where m < n. If m > n, some of the inputs of

the library gate must be set to 0,1, or tied together. Such gates can be added to the library

in a preprocessing step. For architectures composed of particular types of gates where the

case m > n is important, special techniques can be devised to do Boolean matching. If

m < n, a matching exists only if the support / can be reduced using the given don't care

set. This is unlikely in a well-optimized circuit because most redundant connections are

already removed. For each cluster function we generate all the possible supports and try to

match each one with a library gate of the same number of variables.

CHAPTER 7. BOOLEAN MATCHING IN LOGIC SYNTHESIS 122

7.3.1 Generating all Supports

Let / be a cluster function with don't care d. The objective is to generate a new

function / with don't care set d for each possible support of the cluster function /. The

circuits given for mapping are usually well optimized and do not have many redundancies;

therefore, we expect a few possible supports by which / can be represented. After generating

a function / for each possible support, / is compared to all the library gates with the same

number of inputs for a possible match.

Let x = {xi,..., xm} be the set of variables in /. x is called the support of /.

Lemma 7.3.1 A support xt- Cxis a possible support for f if andonly ifSxt(f—d) C (f+d)

where x,- = x —x,- (This means, x,- is the set of all the variables in x that are not in x,\J.

Proof Assume S^.(f - d) C (/ + d) and let fi = S^^f - d). Because / - d C S^tf - d),

it follows that / —d C ft C f + d. Therefore x,- is a possible support for /. On the other

hand if / —d C /,• C / + d and x,- is the support of /,-, it follows that (/ —d)Xk C fi and

(/ —d)xfc C /,- for every variable Xk € x,-. As a result SXk(f —d) C fi and because this is

true for each Xk € x,-

Therefore S^{(f - d) C / + d. •

Lemma 7.3.2 In a similar way, a support xt- C x is a possible support for f if and only if

(f-d)CC^(f-rd).

Proof Assume (/ - d) C C^(f + d) and let fi = C^.(f + d). It follows that

f-dCfiCf + d

and Xi is a possible support for /. On the other hand if/ —d C ft C f + d and Xj is the

support of fi, it follows that /,- C CXk(f + d) for each Xk € x,- and thus

fiQC%(f + d).

Therefore (/ - d) C C^(f + d). m

Lemma 7.3.3 // /,- with support xt- C x satisfies f —d C ft C f + d, it also satisfies

Szi(f-d)CfiCC*i(f + d).

CHAPTER 7. BOOLEAN MATCHING IN LOGIC SYNTHESIS 123

Proof Applying Cx, to /jC(/ + d) and considering the fact that ft is independent of

variables in x,-, it gives

Cxji C C*.(f + d)

fi C Cx,(/ + d).

In the same way, if we apply 5*, to (/ - d) C ft, it gives

Sx.(/-<0 s *>/*

•

The maximum don't care set for any function /, / —dC/C/-fd, with support

Xi is d = Cxi(f+d) —Sxi(f —d). Because we do Boolean matching, it is enough to generate

one function with its maximum don't care set for each possible support.

The algorithm shown in Figure 7.1 is used to generate all the possible supports

for a cluster function /. The original arguments given to generatesupport are // = / —d,

fh = f+d, vars which is all the variables in / and d (this is also saved as a possible support

for /), and start = 0. To check whether the size of support can be reduced by removing

variable Xi, the condition of Lemma 7.3.1 is used. If SXifi C fh, the new support is saved

and also used to generate other supports which exclude x,.

Other techniques have been recently suggested for generating all possible supports

of a function [75, 30]. We are investigating these.

7.3.2 Boolean Matching Algorithm

The algorithm for finding the existence of a match between a library gate g(y\,..., ym)

and a cluster function f(x\,..., xm)with don't care set d(x\,..., xm) is shown in Figure 7.2.

/ and g have the same number of inputs. The argument M is originally set to M = d+f§g.

The argument i shows the variable in / for which a match is sought, t is set to 0 originally.

Before calling boolean-match, we check the necessary condition given by Theorem 7.2.5. If

that condition is not satisfied, / and g cannot be matched. Each input Xi of / must be

matched with an input yj of a.

Xi can be equal to yj if the necessary conditions as given by Lemma 7.2.6 are

satisfied. If they are not satisfied, x,- = yj is tried. If that is not possible either, yj is not a

CHAPTER 7. BOOLEAN MATCHING IN LOGIC SYNTHESIS

function generatesupport(fi, A> vars,start)

begin

for (i = start; i < number(vars); i++) begin

Xi = vars(i)

if (SXifi C fh) begin

newvars(k) = vars(k) for k < i

newvars(k) = vars(k + 1) for fc > i

save newvars as a possible support

new// = SXifi

newfh = Cx</a

generatesupport(newfi,newfh,newvars,i)

end

end

end

Figure 7.1: Generating Supports

124

CHAPTER 7. BOOLEAN MATCHING IN LOGIC SYNTHESIS 125

function booleanjmatch(f,d,g, i, M)

begin

if (M = 0) return match_not_found

if (M = 1) return match-found

Xi = tth variable in /

for each variable yj of g not matched yet begin

if yj is symmetric to a yk already tested

continue

/* check the necessary conditions for x,- ==»*/
if((|/x.-dxJ<KI)and(|7X|.-da,|< |$yi|)and

(IA,-*,l<l*J)and(|7*-*J< 1^I)) begin
newM = CXiSyj(xi®yj)M

(newf,newd,newg) = choose (fXi,dXi,gyj) or (fXi,dXi >0y;)
if (booleanjmatch(newf,newd,newg, i + l,neu»M) ===match-found)

return match-found

end

/* check the necessary conditions for Xi ••=»v
if ((l/x, - <U < InfJ) and (|7Xj - 4.1 < 1^1)and

(l/x.-4.l<KI)and(|7Ij-rfxil< l?wl))hegin
newM = CXiSyj(xi ©yj)M

(newf,newd,newg) = choose (/tj,d!*j,5y.) or (fXi,dXi >9vj)
if (booleanjmatch(newf,newd,newg, *+ 1, newM) ==- match-found)

return match-found

end

end

return match_not_found

end

Figure 7.2: Boolean Matching

CHAPTER 7. BOOLEAN MATCHING IN LOGIC SYNTHESIS 126

possible match for Xi and is skipped. If no input of a can be set equal to £,-, / and g cannot

be matched.

7.3.3 Symmetries

If the switching of two inputs of a gate has no effect on the function of that gate,

those two inputs are symmetric. Most gates in the library have many symmetries. We find

all such symmetries for all the gates in the library in a preprocessing step. This step is made

easier by the fact that we have no don't cares for the gates in a library. For example, gate

g might have two inputs yk and yj which are symmetric. If a:,- = y& is not possible, then

clearly a;,- cannot be set equal to yjeither and is skipped. Twoinputs yj and yj of a function

g aresymmetric ifgyi^. = g^.yi asshown in [27]. Furthermore if yt- is symmetric with yj and

yj is symmetric with y*, yt- is also symmetric with y*, since symmetry is transitive when

there are no don't cares.

There is another kind of symmetry which can be used to speed up Boolean match

ing. Given a library gate g = yiy2 + yzyt + y5y6, y\ is symmetric with y2, y3 is sym

metric with y4, and y5 is symmetric with ye- If we switch the variables y3 and y4 with

y\ and y2, we get exactly the same function. In this example, yiy2 are group symmet

ric with y3y4 and ysye. Therefore if a variable xt- cannot be matched with yi, it cannot

be matched with any other variable in g and no matching exists. On the other hand, if

yi has been matched with some other variable Xj and xt- cannot be matched with y2, we

still need to try a:,- = y3. To find group symmetries for a function g, we first put all the

inputs that are symmetric in one group. Every two groups with the same number of in

puts (greater than 1) are compared. For example, the comparison is done as follows for

the function g = yiy2 -f y3y4 + y5y6. We build a BDD for g with the following ordering

order(yi) = 1, order(y2) = 2, order(y3) = 3, order(y4) = 4, order(y5) = 5, order(y6) = 6.

To check the group symmetry of yi,y2 with y3, y4, we build a new BDD with the ordering

order(yi) = 3, order(y2) = 4, order(y3) = 1, order(y4) = 2, order(y5) = 5, order(y6) = 6

and check if it is equal to the original BDD for g. Group symmetry is a transitive property

like symmetry. Symmetries and group symmetries are found for each gate in the library

and stored in a preprocessing step.

CHAPTER 7. BOOLEAN MATCHING IN LOGIC SYNTHESIS 127

7.3.4 Heuristic for Assigning Inputs

Once we find a variable yj that can be set equal to a;,-, we reduce the size of the

matching problem at hand by one variable and try to match the rest of the variables in /

andg. Using the result oflemma 7.2.4, we compute newM = CXiSyj(xiTByj)M. A necessary

and sufficient condition for the matching to exist is that newM = 1 after all the variables

are matched as in lemma 7.2.2.

The necessary condition given by lemma 7.2.6 to match a?t- and yj requires com

puting both fx. and /j, and comparing themwith gyj and gy. respectively. When we match

a second pair* of variables x\ = yk, we need to compute fXiXnfXiXnfXiXn and fXiXl and

compare it with 9yjyk,9yjyk,gyjyki and gyjyk. This number grows exponentially as we match
more variables.

When we set Xi = yj, the pairs (fxn9yj) and (fXi,9y) must be matched respec

tively. We only choose oneof the pairs (fXii9yj) and (/*,,<7y) to be passed to the next step

of the algorithm to be used for checking necessary conditions as given by lemma 7.2.6.

For example, let / = a?ia:2a;3 and g = yiy2y3. First we try to find a match for

variable x\. xi = yi satisfies the necessary condition (fXx = X2X^,fXx = 0,gyx = y2V3,

and gyx = 0). The pair (fXx = 0,gyx = 0) cannot give us any further information because

the necessary conditions are always satisfied for this pair irrespective of what variables are

matched. On the other hand, the pair (fxn9yi) contains all the information that we need.

Thefollowing heuristic is used to choose one ofthe two pairs. If (fXi —dXi = 0),or (gyj = 1),

the necessary conditions as given in lemma 7.2.6 are always satisfied. Therefore the other

pair (fXi, gyi) is used to guide the matching. This same principle is used to check the other
pair. If the above check is not enough, we choose either of fXi or fsf which has the larger

difference between the number of onset points and offset points. The difference between the

onset and offset points is computed as follows, absolutejoalue(\fXi —dXi\ —\fx. —dXi\) and

absolute.value(\fXi - dXi\ - |/5< - dXi\).

This algorithm runs in linear time in the number of input variables for a library

gate with one minterm in the onset or offset (AND, OR, NAND, NOR).

CHAPTER 7. BOOLEAN MATCHING IN LOGIC SYNTHESIS 128

7.4 Don't Care Computation

The network is first decomposed into a set of trees. We compute compatible

external plus observability don't cares at each of the nodes of the network as explained in

Chapter 5. These trees are sorted in topological order. Each tree is mapped after all its

fanin trees have been already mapped. Image computation techniques are used to find local

don't cares at the leaves of the tree that is being mapped. The leaves of the tree correspond

to primary inputs or roots of other trees that have been already mapped; therefore, the

functions at these roots are fixed. Given the external plus observability don't care set

Df(x) for the root of the tree in terms of primary inputs of the original circuit and global

functions gi(x),.. .gm(x) at each leaf of the tree in terms of the primary inputs, the local

don't care set for the tree in terms of its leaf variables ti, t2,..., tm is

D[(t)= SxpD?(x)(ai(x)e*i).. .(</m(x)e*m)].

root of tree

root of cluster

cluster

leaves of cluster

leaves of tree

Figure 7.3: Cluster Functions

To compute D\, we first build BDD's corresponding to global functions (functions

in terms of primary inputs) at each leaf of a tree and build a BDD representing D\. The

functions g\,...,gm are cofactored (generalized cofactor) with respect to Dgt and the recur

sive image computation method in Figure 5.8 is then used to find all the reachable points

CHAPTER 7. BOOLEAN MATCHING IN LOGIC SYNTHESIS 129

in the space of the leaves of the tree. The complement of the reachable set of points gives

the local don't care set for the tree in terms of its leaf variables.

The tree itself is considered a network where its local don't cares are external don't

cares or input combinations that never occur. A dynamic programming approach is used to

find the best match for the tree. Nodes of the tree are visited in depth first order starting

from the leaves of the tree. At each node q0 we find the best positive and negative matches

and record them. This is done by looking at all possible clusters with less than a fixed

number of inputs (the maximum number of inputs of a gate in the library) rooted at q0

and matching them with the gates in the library. The cost at the node for a cluster is the

cost to implement the cluster itself plus the cost to implement the functions at the leaves of

the cluster. Both positive and negative phase costs at each of the leaves are available. The

clusters which give the best cost for positive and negative phase matches at q0 are recorded.

The best positive and negative phase matches at each node of the network are

sought in topological order from the inputs. Figure7.3 shows an example where we compute

a local don't care set for a cluster with root qQ and leaves q\,...,qr and use the don't care

set to find a match for the cluster. To compute the local don't cares for a cluster function

within a tree as shown in Figure 7.3, we use image computation techniques again. We build

BDD's for each leaf gt- of a cluster in terms of the leaves of the tree t = (t\,..., tm). Before

matching the cluster rooted at q0, the best matches for both positive and negative phases

of each leaf $ of the cluster have been found. Because don't cares are used, the positive

and negative phase functions at the leaves of a cluster are not necessarily complements of

each other. While matching to a particular gate in the library, we could choose either of

the two phases for a particular leaf <fc. We need a local don't care set for the cluster which

is valid irrespective of the phase chosen for a particular <?,-; otherwise separate don't cares

must be computed for each possible phase assignment for the $'s.

Let /f,..., ff be the functions corresponding to positive phase and /f,..., /J1 be

the functions corresponding to negative phase at the leaves of a cluster. We know that ff

is not necessarily equal to /?• The set under which the two phase functions are different is

d% = ffJi +/?/?• We compute alocal don't care set which is valid for any function allowed
by (ff,di).

Lemma 7.4.1 A local don't care set valid for both phases of the functions at the leaves of

CHAPTER 7. BOOLEAN MATCHING IN LOGIC SYNTHESIS 130

a cluster is

Dlq(q) = St(D[(t)(qiWfi(t) +rfi(t)).. .(*$>?(t) +dr(t))). (7.2)

Proof The term (qiBfi(t) + di(t))...(gr©/?(t) + dr(t)) is a Boolean relation which

gives all the q combinations for a particular input tj The given flexibility di at node qi

is captured by this Boolean relation. The term Dt(t) is all t combinations that are care

points. Therefore, the term

^t(^(t)(?ie/iP(t) +di(t)).. .(gr©/?(t) +4-(t)))

gives all the q combinations that are possible under the care points and the complement of

this set is a valid local don't care set. •

Notice that the above computation gives a local don't care set which is valid for

any function allowed by (ff,di) at node g;. However, we only need a local don't care set

which is valid for ff and //*. The condition which gives either function ff or /" but no

other function at qi cannot be represented by a Boolean relation. We do not know of an

efficient way to compute a don't care set which is only valid for the two functions ff and

/", although this don't care set will be larger than that computed from equation 7.2.

Lemma 7.4.2 If only the external don't care set computed for the tree D\ is used, but not
the observability don't care set within the tree,

D'q(q) =St(D{(t)(9lWr(t)) ••.(qrW/m) (7-3)

is valid for both phases offunctions at the leaves of the cluster.

Proof The difference between /? and ff is contained inD\ (ffTT+Tf/f1 Q Dlt). Therefore,
diD\ = 0 and Equation 7.2 reduces to Equation 7.3. •

If no observability don't cares are used within a tree, the local don't cares for a

cluster can be computed as before. The functions f[,..., ff are cofactored (generalized

cofactor) with respect to Dt and the recursive image computation method in Figure 5.8

is then used to find all the reachable points in the space of the leaves of the cluster. The

complement of the reachable set of points gives the local don't care set for the cluster in

terms of its leaf variables.

CHAPTER 7. BOOLEAN MATCHING IN LOGIC SYNTHESIS 131

It must be also mentioned that the choice of the functions at the leaves of a cluster

affects the local don't cares of that cluster. Hence, dynamic programming might not give

the best result for the mapping of a tree when observability don't cares are used within a

tree. The choice of the best function at the leaves of a cluster may shrink the local don't

care set for the cluster and thus the final result may not be the best match for the circuit.

We believe this is not very likely in practice.

In a circuit with large trees, there are usually many clusters. Computing local

don't cares for all such clusters is a costly operation.

7.5 Library Organization

Before technology mapping, a setup phase is used to process gates in the library

and generate particular data structures called NUTS. The term NUT is the abbreviation

for Negative Unate Transform introduced in [49]. All the gates in a NUT are equivalent to a

NUT representative in the sense that the function of each gate can be obtained by inverting

some of the inputs of the NUT representative. The NUT structure reduces the number of

calls to the Boolean matching algorithm. Finding the best match between a cluster function

and the set of gates in the library is therefore reduced to the use of the matching algorithm

on the cluster function and all the NUT representatives with the same number of inputs.

The matching with the remaining gates in a NUT is directly derived from the assignment

information computed during the setup phase.

In the groups we build, we also consider the inversion of the outputs of the gates.

This grouping is possible because our matching algorithm considers the matching with

both phases of the input nodes at the same time. Instead of computing the negative unate

transforms of the input variables as in [49], we use the Boolean matching algorithm to

place each gate in its corresponding NUT structure. The setup phase parses the library,

reading one gate at a time. A gate is added to a NUT if it or its complement matches

the NUT representative. If a gate does not match any of the existing NUT's, then a new

NUT is created with that gate as its representative. Symmetries and group symmetries

are also computed for each representative at this time to speed up matching with class

representative.

Example:

The 2-input functions NOR, NAND, AND and OR are in the same NUT and any of them

CHAPTER 7. BOOLEAN MATCHING IN LOGIC SYNTHESIS 132

can be the representative. Let OR function be the class representative and let / be a cluster

function for which a match is sought. If / matches the OR gate, either an OR gate, or a

NAND gate can be used to implement /. But the inputs to NAND gate have the opposite

phase of the inputs to NOR gate. The cost at the root of the cluster is equal to the cost of the

gate plus the cost of inputs to the gate which can be different for the negative and positive

phase inputs. The gate (OR or NAND) which gives a lower cost is chosen to represent the

positive phase at the root of the cluster. If a match for / exists, we know already that

AND and NOR gates are matches for the complement of /. If a match for / does not exist

we compare the complement of / with the NUT representative. If the complement of /

matches the NUT representative (OR gate here), one of NAND or OR gates is chosen to

represent the complement of / and one of the NOR or AND gates is chosen to represent /.

If the complement of / does not match the class representative either, / cannot ne matched

with this NUT. Therefore, matching both phases of the function at a node with a NUT

structure requires at most two calls to the Boolean matching algorithm.

7.6 Results

We ran the new technology mapping algorithm on a set of benchmarks chosen

from MCNC and ISCAS combinational circuits and compared the results with technology

mapping for area in SIS. Table 7.1 shows the results for combinational circuits without any

external don't cares. These circuits are well optimized before technology mapping, using

the rugged script discussed in Chapter 6. The MCNC library Ub2 is used for the mapping.

The column start shows the literal count in factored form for each unmapped but optimized

circuits. The columns SIS, no_dc, tree.dc, and fulLdc show the area of mapped circuits.

We divide numbers given by the mapper by 464 (half the area of the smallest inverter) to

get round small numbers.

As shown in the table, considerable improvements are obtained for some circuits

by just using Boolean matching without any don't cares (no.dc). For these circuits, we get

on average 8 percent improvement in area compared to technology mapping in SIS while

spending 3.9 times as much time. The best improvement is obtained (25%) for C6288.

The column tree_dc shows the area obtained when don't cares are computed only for the

leaves of each tree. The CPU times and the circuit areas are almost the same as the case

with no don't cares. The column fulLdc shows the result obtained by computing don't

CHAPTER 7. BOOLEAN MATCHING IN LOGIC SYNTHESIS 133

circuit start SIS CPU no.dc CPU tree.dc CPU fuU.dc CPU

C432 218 437 5 398 31 397 157 381 574

C880 414 783 10 734 49 734 59 734 343

C1355 552 914 11 738 8 738 87 724 1184

C1908 535 933 11 810 27 810 118 793 1774

C2670 748 1339 20 1236 103 - - - -

C3540 1283 2269 36 2176 213 - - - -

C5315 1763 3055 45 3025 173 3025 229 3003 2285

C6288 3367 5453 68 4070 111 - - - -

C7552 3022 4076 58 3690 190 - - - -

z4ml 43 86 1 69 3 69 6 68 69

f51m 80 150 2 148 6 148 9 112 53

apex5 768 1473 19 1362 91 1361 127 1355 1180

apex6 732 1390 19 1345 97 1341 120 1336 882

alu4 102 200 2 196 10 196 11 180 103

rot 664 1283 16 1270 62 1267 74 1255 466

des 4214 5947 137 5698 596 5501 789 5498 11926

Table 7.1: Boolean Matching for Technology Mapping

start: number of literals in factored form for the optimized circuits
SIS: mapped using map -s in SIS
no_dc: mapped using boolean matching in SIS without don't cares
tree.dc: mapped using boolean matching in SIS with DC computed at the leaves

of each tree.

fulLdc: mapped using boolean matching in SIS with DC computed for each cluster
CPU: in seconds on a IBM Rise System/6000 530

cares for each cluster in the trees. We do not use observability don't cares within a tree for

this computation. The local don't cares computed for each cluster are based on equation

7.3. The times spent for mapping are an order of magnitude more than SIS but there is on

average 12 percent improvement in the final area of the mapped circuits. Although the time

spent is substantially more than the time for tree matching, it is comparable to the time

spent for circuit optimization. The entries in the table that do not have results correspond

to circuits for which BDD's could not be built or the size of BDD's were too large to be

used for don't care computation.

If the benchmark circuits are not optimized first, the improvement over the tech

nology mapping in SIS is very substantial. This is because using local don't cares and

Boolean matching removes redundancies so a much stronger optimization on each circuit is

CHAPTER 7. BOOLEAN MATCHING IN LOGIC SYNTHESIS 134

obtained. Even though the results on unoptimized circuits are better, they are inferior to

the results obtained after running rugged script on each circuit. When a circuit is optimized

using the rugged script, the structure of the circuit is already well established. In most cases,

each intermediate node of the circuit becomes a separate tree after tree decomposition and

is mapped separately. Because of this, don't cares do not give substantial improvement as

it is clear from the results. However, fulLdc does have an effect. We believe this is due

to the don't cares arising internally in the tree from the partially mapped structure. These

were not available when the rugged script was applied.

7.7 Conclusion

We have presented a new Boolean matching algorithm that can use don't cares

and symmetries efficiently. We have applied this algorithm to technology mapping and

have shown that the results of the mapper can be improved compared to tree matching

techniques. The computation of local don't cares for each cluster function are discussed

and techniques for such computations are presented. We have also organized the library of

gates in an efficient way that reduces the number of times the Boolean matching algorithm

is used. We developed ways to reduce the number of clusters generated in each tree and

also more efficient don't care computation techniques to speed up the Boolean mapper. The

same techniques can be used for delay optimization and layout driven technology mapping.

135

Chapter 8

Conclusions

We have shown that a Boolean relation is a general form for expressing the input-

output behavior of a combinational Boolean network. This relation is called an observability

relation and can be represented by a node attached to the outputs and inputs of the network,

where the function at the node is the characteristic function of the relation. The modified

network is called the observability network. In practice, external don't cares which are a

subset of the observability relation for the circuit, are usually used to express input-output

behavior of a Boolean network because they are computationally less expensive to use for

network optimization.

A Boolean network may be decomposed into both single and multiple output nodes.

We showed that don't care conditions computed from the observability network at each sin

gle output node of a Boolean network give maximum flexibility for implementing that node.

Don't cares are not sufficient for multi-output nodes. The full flexibility for implementing

multi-output nodes is captured by Boolean relations. It was shown that the concept of

compatibility applies to both single and multiple output nodes of a Boolean network, and

that compatible don't cares and compatible Boolean relations can be computed.

We have developed algorithms for computing the flexibility for implementing single

output nodes, called local don't cares. The flexibility at each output of the network is given

by external don't cares. We have given techniques to compute local don't cares at each

node from observability and external don't care sets and to use these local don't cares to

simplify the local function at each node. Our experimental results show the effectiveness of

this approach in terms of reducing logic and removing redundancies in the network.

Techniques are also presented for computing maximal and compatible observability

CHAPTER 8. CONCLUSIONS 136

relations for multi-output nodes of a Boolean network. The practicality of these techniques

depends on how efficiently one can manipulate Boolean relations. More work is needed

for decomposing a circuit into multi-output nodes. In addition, algorithms are required to

map multi-output nodes of a Boolean network into multi-output gates in the library. In the

single output case, one decomposes the circuit into NAND or NOR trees and maps each

tree individually. We do not know of any approach for the multi-output case, and this needs

to be investigated.

One needs to find a way of describing sequential flexibilities. Sequential flexibility

of a circuit must allow any possible encoding of that circuit. It is known that in general,

the maximum flexibility for implementing a sequential network cannot be represented with

a Boolean relation. It might be possible to represent such flexibilities with a set of Boolean

relations. If a circuit is decomposed into a set of sequential multi-output circuits, techniques

must be devised to find maximum and compatible flexibility for implementing such sequen

tial multi-output nodes. In addition, more work is needed to find a set of transformations

that can use sequential flexibilities efficiently.

A new algorithm is presented for Boolean matching, and it is applied to technology

mapping for a network of single output nodes.. This algorithm allows the use of don't cares.

A circuit is first decomposed into a set of trees and each tree is mapped into a set of gates in

the library. Local don't cares are computed for each cluster within a tree and used to find

the best match for that cluster in the library. The Boolean matching algorithm is general

and can be used for delay optimization and mapping to most technologies.

The final result of technology mapping is dependent on the tree decomposition of

the circuit. More work needs to be done to get a good tree decomposition. If external don't

cares, or observability relations are present, any optimization which uses these conditions

may improve the quality of the final circuit considerably.

137

Bibliography

[1] P. Abouzeid, K. Sakouti, G. Saucier, and F. Poirot. Multilevel synthesis minimizing

the routing factor. In 27th ACM/IEEE DesignAutomation Conference, pages 365-368,

Orlando, June 1990.

[2] V. D. Agrawal, K-T. Cheng, and P. Agrawal. CONTEST: A Concurrent Test Generator

for Sequential Circuits. In Proceedings of the 25th Design Automation Conference,

pages 84-89, June 1988.

[3] A. V. Aho, M. Ganapathi, and S. Tjiang. Code generation using tree matching and

dynamic programming. ACM Transactions on Programming Languages and Systems,

11(4):491-516, October 1989.

[4] Act 1 Family Gate Arrays. Design reference manual.

[5] A. Aziz, private communication, 1991.

[6] K. Bartlett, R. K. Brayton, G. D. Hachtel, R. M. Jacoby, C. R. Morrison a nd

R. L. Rudell, A. Sangiovanni-Vincentelli, and A. R. Wang. Multi-level Logic Mini

mization Using Implicit Don't Cares. In IEEE Transactions on CAD, pages 723-740,

June 1988.

[7] K. A. Bartlett, G. D. Bostick, G. D. Hachtel, R. M. Jacoby, P. H. Lightner, P. H.

Moceyunas, C. R. Morrison, and Ravenscroft D. BOLD: A Multiple-Level Logic Op

timization System. In IEEE International Conference on Computer-Aided Design,

November 1987.

[8] M. Beardslee, C. Kring, R. Murgai, H. Savoj, R.K. Brayton, and A. Sangiovanni-

Vinventelli. SLIP: A Software Environment for System Level Interactive Partitioning.

BIBLIOGRAPHY 138

In IEEE International Conference on Computer-Aided Design, pages 280-283, Novem

ber 1989.

[9] K. L. Brace, R. E. Bryant, and R. L. Rudell. Efficient Implementation of a BDD

Package. In 27th ACM/IEEE Design Automation Conference, June 1990.

[10] R. Brayton, R. Rudell, A. Sangiovanni-Vincentelli, and A. Wang. MIS: Multiple-Level

Logic Optimization System. In IEEE Transactions on Computer Aided Design of

Integrated Circuits and Systems, pages 1062-1081, November 1987.

[11] R. K. Brayton, G. D. Hachtel, C.T. McMullen, and A.L. Sangiovanni-Vincentelli. Logic

Minimization Algorithms for VLSI Synthesis. Kluwer Academic Publishers, 1984.

[12] R. K. Brayton and F. Somenzi. Boolean Relations and the Incomplete Specification of

Logic Networks. In VLSI'89, August 1989.

[13] R.K. Brayton and C. McMullen. The decomposition and factorization of Boolean

expressions. In The International Symposium on Circuits and Systems, pages 49-54,

May 1982.

[14] R. E. Bryant. Graph Based Algorithms for Boolean Function Manipulation. IEEE

Transactions on Computers, C-35(8):677-691, August 1986.

[15] J. R. Burch, E. M. Clarke, K. L. McMillan, and D. L. Dill. Sequential Circuit Ver

ification Using Symbolic Model Checking. In 27th ACM/IEEE Design Automation

Conference, Orlando, June 1990.

[16] J. Burns, A. Casotto, M. Igusa, F. Marron, F. Romeo, A. Sangiovanni-Vincentelli,

C. Sechen, H. Shin, G. Srinath, and H. Yaghutiel. MOSAICO: An integrated Macro-

cell Layout System. In Proceedings of the VLSI-87 Conference, Vancouver, Canada,

August 1987.

[17] E. Cerny. An approach to unified methodology of combinational switching circuits.

IEEE Transactions on Computers, 27(8), 1977.

[18] E. Cerny and C. Mauras. Tautology Checking Using Cross-Controllability and Cross-

Observability Relations. In IEEE International Conferenceon Computer-Aided Design,

pages 34-37, November 1990.

BIBLIOGRAPHY 139

[19] H. Cho, G. Hachtel, S. Jeong, B. Plessier, E. Schwarz, and F. Somenzi. ATPG Aspects

of FSM Verification. In IEEE International Conference on Computer-Aided Design,

November 1990.

[20] E. M. Clarke, E. A. Emerson, and P. Sistla. Automatic Verification of Finite-State

Concurrent Systems Using Temporal Logic Specifications. ACM Transactions on Pro

gramming Language Systems, 8(2):244-263, April 1986.

[21] 0. Coudert, C. Berthet, and J. C. Madre. Verification of Sequential Machines Based

on Symbolic Execution. In Proceedings of the Workshop on Automatic Verification

Methods for Finite State Systems, Grenoble, France, 1989.

[22] 0. Coudert, J. C. Madre, and C. Berthet. Verifying Temporal Properties of Sequential

Machines Without Building their State Diagrams. In Worshop on Computer-Aided

Verification, Rutgers, June 1990.

[23] M. Damiani and G. De Micheli. Observability Don't Care Sets and Boolean Rela

tions. In IEEE International Conference on Computer-Aided Design, pages 502-505,

November 1990.

[24] M. Damiani and G. De Micheli. Derivation of Don't Care Conditions by Perturbation

Analysis of Combinational Multiple-Level Logic Circuits. In International Workshop

on Logic Synthesis, May 1991.

[25] G. De Micheli. Logic Transformations for Synchronous Logic Synthesis. In Hawaii

International Conference on System Sciences, pages 407-416, January 1990.

[26] Ewald Detjens, Gary Gannot, Richard Rudell, Alberto Sangiovanni-Vincentelli, and

Albert Wang. Technology Mapping in MIS. In International Conference on Computer

Aided Design, pages 116-119. IEEE, November 1987.

[27] Donald L. Dietmeyer and Peter Schneider. Identification of Symmetry, Redundancy

and Equivalence of Boolean Functions. IEEE Transactions on Electronic Computers,

EC-16(6):804-807, December 1967.

[28] W. E. Donath. Physical Design Automation of VLSI Systems, Chapter Logic Parti

tioning. Benjamin/Cummings Publishing Company Inc., 1988.

BIBLIOGRAPHY 140

[29] CM. Fiduccia and R. Mattheyses. A linear-time heuristic for improving network parti

tions. In 19th ACM/IEEE Design Automation Conference, pages 241-247, July 1982.

[30] M. Fujita and Y Matsunaga. Multi-level Logic Minimization based on Minimal Support

and its Application to the Minimization of Look-up Table Type FPGAs. In IEEE

International Conference on Computer-Aided Design, November 1991.

[31] M. Fujita, Y. Tamiya, Y. Matsunaga, and K.C. Chen. Multi-Level Logic Synthesis for

Boolean Relations. In submitted to VLSI, 1991.

[32] H. Fujiwara and T. Shimono. On the Acceleration of Test Generation Algorithms. In

IEEE Transactions on Computers, pages 1137-1144, December 1983.

[33] A. Ghosh, S. Devadas, and A. R. Newton. Heuristic Minimization of Boolean Relations

Using Testing Techniques. In IEEE international Conference on Computer Design,

Cambridge, September 1990.

[34] A. Ghosh, S. Devadas,and A. R. Newton. Test Generation and Verification for Highly

Sequential Circuits. In IEEE Transactions on Computer-Aided Design, pages 652-667,

May 1991.

[35] P. Goel. An Implicit Enumeration Algorithm to generate tests for combinational logic

circuits. In IEEE Transactions on Computers, volume C30, pages 215-222, March

1981.

[36] G. D. Hachtel, R. M. Jacoby, and P. H. Moceyunas. On Computing and Approximating

the Observability Don't Care Set. In MCNC Workshop in Logic Synthesis, 1989.

[37] L. J. Hafer and A. Parker. Register-Transfer Level Digital Design Automation: The

Allocation Process. In 15th ACM/IEEE Design Automation Conference, pages 213-

219, June 1978.

[38] S. Hong, R. Cain, and D. Ostapko. MINI:A Heuristic Approach for LogicMinimization.

IBM Journal of Research and Development, 18:443-458, September 1974.

[39] Xilinx Inc. The programmable gate array data book.

BIBLIOGRAPHY 141

[40] R. Jacoby, P. Moceyunas, H. Cho, and Hachtel G. New ATPG Techniques for Logic

Optimization. In IEEE International Conference on Computer-Aided Design, pages

548-551, November 1989.

[41] S.-W. Jeong, B. Plessier, G.D. Hachtel, and F. Somenzi. Variable Ordering and Selec

tion for FSM Traversal. In IEEE International Conferenceon Computer-Aided Design,

pages 476-479, November 1991.

[42] K. Keutzer. Dagon: Technology Binding and Local Optimization by DAG Matching.

In 24th ACM/IEEE Design Automation Conference, pages 341-347, June 1987.

[43] R. P. Kurshan. Analysis of Discrete Event Coordination. Springer Verlog, 1990.

[44] T. Larabee. Efficient Generation of Test Patterns Using Boolean Difference. In Pro

ceedings of the International Test Conference, pages 795-801, August 1989.

[45] C. E. Leiserson, F. M. Rose, and J. B. Saxe. Optimizing synchronous circuitry by

retiming. In R. Bryant, editor, 3rd Caltech Conference on Very Large Scale Integration,

pages 87-116,1983.

[46] M. Lightner and W. Wolf. Experiments in Logic Optimization. In IEEE International

Conference on Computer-Aided Design, November 1988.

[47] B. Lin, H. Touati, and R. Newton. Don't Care Minimization of Multi-Level Sequen

tial Logic Networks. In IEEE International Conference on Computer-Aided Design,

November 1990.

[48] H-K. T. Ma, S. Devadas, A. R. Newton, and A. San^ovanni-Vincentelli. Test Genera

tion for Sequential Circuits. In IEEE Transactions on Computer-Aided Design, pages

1081-1093, October 1988.

[49] F. Mailhot and G. D. Micheli. Technology Mapping Using Boolean Matching. In

European Design Automation Conference, pages 180-185, March 1990.

[50] A. Malik, R. K. Brayton, and A. Sangiovanni-Vincentelli. A Modified Approach to

two-level Logic Minimization. In IEEE International Conference on Computer-Aided

Design, pages 106-109, November 1988.

BIBLIOGRAPHY 142

[51] S. Malik, A. R. Wang, R. K. Brayton, and A. Sangiovanni-Vincentelli. Logic Verifi

cation Using Binary Decision Diagrams in a Logic Synthesis Environments. In IEEE

International Conference on Computer-Aided Design, pages 6-9, November 1988.

[52] Sharad Malik. Combinational Logic Optimization Techniques in Sequential Logic Syn

thesis. PhD thesis, U. C. Berkeley, 1990.

[53] P. McGeer and R. K. Brayton. Consistency and Observability Invariance in Multi-Level

Logic Synthesis. In IEEE International Conference on Computer-Aided Design, 1989.

[54] P. McGeer and R. K. Brayton. The Observability Don't Care Set and Its Approxima

tions. In IEEE International Conference on Computer Design, pages 45,48, September

1990.

[55] J. D. Morison, N. E. Peeling, and T. L. Thorp. ELLA: Hardware Description or

Specification? In IEEE International Conference on Computer-Aided Design, pages

54-56, November 1984.

[56] R. Murgai, Y. Nishizaki, N. Shenoy, R. Brayton, and Sangiovanni-Vincentelli A. Logic

Synthesis for Programmable Gate Arrays. In 27th ACM/IEEE Design Automation

Conference, pages 620-625, Orlando, June 1990.

[57] R. Murgai, N. Shenoy, R. Brayton, and Sangiovanni-Vincentelli A. Improved Logic

Synthesis Algorithms for Table Look Up Architectures. In IEEE International Con

ference on Computer-Aided Design, pages 564-567, November 1991.

[58] S. Muroga. Threshold Logic and its Applications. John Wiley, 1971.

[59] S. Muroga, Y. Kambayashi, H. C. Lai, and J. N. Culliney. The Transduction Method

- Design of Logic Networks Based on Permissible Functions. In IEEE Transactions on

Computers, October 1989.

[60] A. Parker, D. Thomas, D. Siewiorek, M. Barbacci, L. Hafer, G. Leive, and J. Kim. The

CMU Design Automation System. In 16th ACM/IEEE Design Automation Conference,

pages 73-79, June 1979.

[61] M. Pedram and N. Bhat. Layout Driven Technology Mapping. In 28th ACM/IEEE

Design Automation Conference, pages 99-105, San Francisco, June 1991.

BIBLIOGRAPHY 143

[62] IEEE Press. Ieee standard vhdl language reference manual.

[63] J. Reed, A. Sangiovanni-Vincentelli, and M. Santamauro. A New Symbolic Channel

Router: YACR2. In IEEE Transactions on Computer-Aided Design, pages 208-219,

July 1985.

[64] Rick Rudell. Logic Synthesisfor VLSIDesign. PhD thesis, U. C. Berkeley, April 1989.

Memorandum UCB/ERL M89/49.

[65] A. Saldanha, A. Wang, R. K. Brayton, and A. Sangiovanni-Vincentelli. Multi-Level

Logic Simplification using Don't Cares and Filters. In Design Automation Conference,

1989.

[66] H. Sato, Y. Yasue, F. Matsunaga, and M. Fujita. Boolean Resubstitution with Permis

sible Functions and Binary Decision Diagrams. In 27th ACM/IEEE Design Automation

Conference, pages 284-289, Orlando, June 1990.

[67] H. Savoj and R. Brayton. The Use of Observability and External Don't Cares for

the Simplification of Multi-Level Networks. In 27th ACM/IEEE Design Automation

Conference, pages 297-301, Orlando, June 1990.

[68] H. Savoj and R. K. Brayton. Observability Relations and Observability Don't Cares. In

IEEE International Conference on Computer-Aided Design, pages 518-521, November

1991.

[69] H. Savoj, A.A. Malik, and R.K. Brayton. Fast Two-Level Logic Minimizers for Two-

Level Logic Synthesis. In IEEE International Conference on Computer-Aided Design,

pages 544-547, November 1989.

[70] H. Savoj, H. Touati, and R. K. Brayton. Extracting Local Don't Cares for Network

Optimization. In IEEE International Conference on Computer-Aided Design, pages

514-517, November 1991.

[71] M. Schulz and E. Auth. Advanced automatic test pattern generation and redundancy

identification techniques. In ftcs, pages 30-35, June 1988.

[72] C. Sechen and A. Sangiovanni-Vincentelli. The TimberWolf Placement and Routing

Package. In Proceedings of the 1984 Custom Integrated Circuit Conference, pages 522-

527, Rochester, NY, May 1984.

BIBLIOGRAPHY 144

[73] E. Sentovich and R. K. Brayton. Preserving Don't Care Conditions During Retiming.

In International Conference on VLSI, August 1991.

[74] E. Sentovich, K.J. Singh, C. Moon, H. Savoj, R. Brayton, and A. Sangiovanni-

Vincentelli. Sequential circuit design using synthesis and optimization, 1992.

[75] H. Touati. private communication, 1990.

[76] H. Touati, R. Brayton, and R. Kurshan. Testing language containment for w-automata

using BDD's. In International Workshop on Formal Methods in VLSI Design, 1991.

[77] H. Touati, H. Savoj, and R.K. Brayton. Delay Optimization of Combinational Circuits

by Clustering and Partial Collapsing. In IEEE International Conference on Computer-

Aided Design, pages 188-191, November 1991.

[78] H. Touati, H. Savoj, B. Lin, R. Brayton,and A. Sangiovanni-Vincentelli. Implicit State

Enumeration of Finite State Machines using BDD's. In IEEE International Conference

on Computer-Aided Design, November 1990.

[79] Herve Touati. Performance Driven Technology Mapping. PhD thesis, U. C. Berkeley,

1990.

[80] C-J.Tseng and D. P.Siewiorek. Automated Synthesis ofDataPaths in Digital Systems.

In IEEE Transactions on Computer-Aided Design, pages 379-395, July 1986.

[81] J. Vasudevamurthy and J. Rajski. A Method forConcurrentDecomposition and Factor

ization of Boolean Expressions. In IEEEInternational Conference on Computer-Aided

Design, pages 510-513, November 1990.

[82] R. A. Walker and D. E. Thomas. Behavioral Transformation for Algorithmic Level

IC Design. IEEE Transactions on Computer-Aided Design, 8(10):1115-1128, October

1989.

[83] Y. Watanabe and R.K. Brayton. Heuristic Minimization of Boolean Relations. In

International Workshop on Logic Synthesis, May 1991.

[84] G. Whitcomb and A. R. Newton. Abstract Data Types and High-Level Synthesis. In

27th ACM/IEEE Design Automation Conference, pages 680-685, Orlando, June 1990.

BIBLIOGRAPHY 145

[85] T. Yoshimura and E. S. Kuh. Efficient algorithms for channel routing. In IEEE

Transactions on Computer-Aided Design, pages 25-35, January 1982.

	Copyright notice1992
	ERL-92-122 (part 1 of 3)
	ERL-92-122 (2 of 3)
	ERL-92-122 (3 of 3)

