Copyright © 1992, by the author(s).
All rights reserved.

Permission to make digital or hard copies of all or part of this work for personal or
classroom use is granted without fee provided that copies are not made or distributed
for profit or commercial advantage and that copies bear this notice and the full citation

on the first page. To copy otherwise, to republish, to post on servers or to redistribute to
lists, requires prior specific permission.

A RETROSPECTIVE ON DATABASE
APPLICATION DEVELOPMENT
FRAMEWORKS

by

Lawrence A. Rowe

Memorandum No. UCB/ERL M92/13

23 January 1992

A RETROSPECTIVE ON DATABASE
APPLICATION DEVELOPMENT
FRAMEWORKS

by

Lawrence A. Rowe

Memorandum No. UCB/ERL M92/13

23 January 1992

ELECTRONICS RESEARCH LABORATORY

College of Engineering
University of California, Berkeley
94720

A RETROSPECTIVE ON DATABASE
APPLICATION DEVELOPMENT
FRAMEWORKS

by

Lawrence A. Rowe

Memorandum No. UCB/ERL M92/13

23 January 1992

ELECTRONICS RESEARCH LABORATORY

College of Engineering
University of California, Berkeley
94720

A Refrospective on Database Application Development Frameworks

Lawrence A. Rowe

Computer Science Division - EECS
University of California at Berkeley
Berkeley, CA 94720
(Rowe@CS Berkeley.EDU)

Abstract

Four application framework models developed by the au-
thor for database application development systems are de-
scribed. The key feature of these systems is to provide a
model for the definition of high level objects that represent
interface abstraction that can be used to build an applica-
tion. Structuring application code around interface objects
reduces the conceptual distance between the executing
program and its specification. At the same time, good pro-
gramming practices must be supported (e.g., code modu-
larity, reusable components, and information hiding).

1. Introduction

This paper presents a retrospective on what I have leamed
during the past 15 years on the design and implementation
of development tools for database applications. During
this time I directed or consulted on five systems for data-
base application development:

(1) The Rigel programming language developed
between 1976 and 1979 at U.C. Berkeley
[Rowe79].

(2) The Forms Application Development Sys-
tem (FADS) developed between 1979 and
1982 at U.C. Berkeley [Rowe82, Shoens82].

(3) Application-By-Forms (ABF) developed be-
tween 1983 and 1986 by Ingres Corporation
[Ingres90, Rowe85].

(4) The PICASSO system developed between
1987 and 1991 at U.C. Betkeley [Rowe91].

(5) Windows/4GL (W4GL) developed between
1988 and 1990 by Ingres Corporation [In-
gres91].

Rigel was a Pascal-like database programming language.
It provided a traditional character stream-oriented input/
output system that made it impossible to develop forms-
based applications. Rigel itself did not have a major im-
pact but many ideas developed in that system were used

PThis research was supported by the National Science Founda-
tion under grant MIP-90-14940.

again in later systems.

FADS and ABF were designed to develop forms-based ap-
plications that would run on an alphanumeric terminal,
and PICASSO and W4GL were designed to developed
graphical applications that would run on a bit-mapped ter-
minal or workstation. These four systems have a higher
level application framework that simplifies application de-
velopment.

This paper describes the evolution of the application
framework model from FADS to W4GL.

2. FADS Application Framework

An application framework model represents an application
by a collection of objects that encapsulate the data abstrac-
tions, user interface, and application bebavior. The major
difference between the models was the type of objects sup-
plied and their behavior. FADS supported the following
object types:

(1) Relations stored in the database.

(2) Datatypes that represented values such as,
integers, strings, and dates.

(3) Procedures that contain application code.

(4) Forms that contained fields through which
data is displayed to and edited by the user.

(5) Frames that contain a form and a menu of
operations the user can execute. An opera-
tion can change the user interface (e.g., dis-
play the next employee) or invoke an
application procedure (e.g., create a new
product number in a bill-of-materials).

Frames are similar to procedures in that they have local
variables and they can be called. Frame variables are
bound to fields in the form so the value displayed to the
user is always the current value of the variable. Frames
also have parameters so that values can be passed to them
when they are called. Formal parameters are local vari-
ables so it is very easy to display data to the user. The ap-
plication calls a frame and passes it the data. The system
displays the form and menu to the user. The data passed to
the frame is displayed in the field to which the formal pa-
rameter is bound.

Figure 1: Two frames from a shop floor control system.

The form and operation menu are displayed to the user in
a standard way, and the system provides built-in com-
mands to enter and edit data. Consequem.ly, the application
developer does not have to write code to display the form
and interact with the user. The developer designs the form
with a direct manipulation editor and specifies the opera-
tions. Figure 1 shows two frames from a shop floor control
system used in semiconductor manufacturing. The frame
on the left lists active runs. When the user selects a run and
executes the Derail operation, the frame on the right re-
places the frame on the left on the user’s screen.

FADS treated forms as a separate object so they could be
reused in different frames or forms. For example, a name
and address block with edit checks and operations can be
defined as a form and reused in other forms to standardize
the way they are displayed to and edited by the user.
Datatype objects included display attributes (e.g., edit
checks, input masks, and default values) so that forms de-
fined by specifying the datatype displayed through a field
would have the default display attributes.

FADS had a direct manipulation interface editor that al-
lowed users to define objects by filling in forms. In addi-
tion, the forms system had table fields which are an
essential interface widget for applications with structured
data (e.g., tables, sets of objects, etc.). A table field dis-
plays a record in each row.

The major problem with FADS was that it was too slow,
and I had wouble getting the fanding agencies to continue
work on a system that seemed indistinguishable from the
screen painters being developed in industry. The major
performance problem was caused by the way applications
were stored in the database. The complete application
specification including forms, types, and 4GL code was

stored in the database. We fully normalized the database.

design 5o that each statement in an operation and each field

in a form was stored in a separate record. As you might ex-
pect, it took a long time to fetch a frame definition from the
database. Nevertheless, the FADS prototype demonstrated
that this approach to building applications made sense.

3. ABF Application Framework

I co-founded Ingres Corporation in 1980 with Michael
Stonebraker and Eugene Wong and by 1982 it was clear
the company needed a 4th Generation Language system. I
was able to convince them that a commercial product with
a FADS-like model would be a good product. The result-
ing product was ABF.

ABF introduced several new concepts to the model: frame
types, popup forms, and global variables. FADS provided
only one type of frame. The developer had to specify the
form and the operation code. ABF supplied report and
Query-By-Forms (QBF) frames so an application devel-
oper did not have to specify as much detail. For example,
report frames are defined by specifying the report. The
system automatically supplies a form with fields to enter
the report parameters and operations to display the report
on the terminal or send it to a printer. QBF frames supply
operations to query and update data through a default form
generated from the database schema or a custom-designed
form specified by the developer. In essence, frames are
created by application generators integrated into the devel-
opment environment.

Because FADS and ABF ran on alphanumeric terminals,
they displayed only one frame at a time. When an applica-
tion called another frame, the current frame was replaced
by the called frame. When that frame retumed, the previ-
ous frame was redisplayed. ABF added the concept of
popup forms which are displayed in a small window on top
of the current frame. Popup forms are typically used to dis-

play acceptable values for a field. They were better than
calling another frame because the rest of the current frame
was still visible. In fact, popup form is really a misnomer.
Since the popups received the keyboard focus and con-
tained operations, they were really frames. However, it
was more convenient to specify the popup as part of the
form in which it would be used rather than define a sepa-
rate frame and call it.

ABF also added global variables and local variables not
bound to form fields. In FADS, all variables were local and
they were all bound to form fields. This change was the
first of many that added a programming language to ABF.
My initial concept for the FADS 4GL was that operations
would be specified in an extended query language, not a
programming language. The goal was to create an end-
user programming environment that did not require signif-
icant programming experience. A conventional 3GL pro-
cedure could be called from the 4GL so the user could
write a complex procedure if required, but he or she was
not forced to do so. Unfortunately, this approach did not
work because the development environment made it diffi-
cult to edit and recompile 3GL procedures and users
wanted the power of a full-function programming lan-
guage. Over time the ABF 4GL has evolved into a reason-
ably complete programming language. In fact, many of the
procedural constructs in the ABF 4GL were modelled on
the language constructs developed in Rigel.

The ABF model was not perfect because nested forms and
type objects were omitted, and developers could not define
new frame types. They were omnedto:ednced;epropct
complexity and development time. Nested forms and type
objects were missed, but they are not as important as user-
defined frame types.

ABF supported three frame types: user, report, and QBF.
The system needed menu frames, that is frames that show
alist of operations and documentation for each one. Many
users developed standard menu frames, but they were dif-
ficult to specify in an application. If the system supported
user-defined frame types, developers could have built
menu frames into the system themselves.

Notwithstanding these limitations, ABF was a very suc-
cessful product. For several years ABF and the other
forms-based interface products from Ingres Corporation
were considered the best database tools in the industry.

A static analysis of 30 ABF applications was performed to
see how people used ABF [Gardner88). The applications
were taken from 3 companies. The largest application con-
tained over 15,000 lines of code. The study showed that
the average application was composed of 30 frames and
that 25% of the forms were used in more than one frame.
The study also found that on the average user frames con-
tained 5 operations and each operation contained 10 lines
of code. Another interesting result was that applications

1 Several third party software companies and consultants devel-

oped flexible menu systems that they sold as products or used to.

improve their own productivity.

were either composed predominately of user frames or
they were composed of QBF and report frames. The appli-
cations composed primarily of user frames were produc-
tion applications that typically included many application-
specific operations (e.g., release purchase order). The
other applications were what I call ad hoc applications de-
veloped by end-users to solve an immediate need. These
applications often bring real value to an organization and
over time they become production applications in the
sense that the organization cannot run without them.

4. PICASSO Application Framework

In Jate 1985, I decided to build a system to develop graph-
ical user interface (GUI) applications. The system, called
PICASSO was begun in early 1986 and released outside
Berkeley in late 1989. The ABF model had to be modified
to allow multiple windows to be displayed at the same
time and to include other common GUI interface abstrac-
tions. Two new interface objects were created: dialog
boxes and panels. A dialog box is a modal interface that is
used to confirm an operation, collect further arguments for
an operation, or report an error. A panel is a non-modal in-
terface that is typically used to present more detailed infor-
mation about an entity (e.g., selecting an employee in a list
might show more details about the employee in a panel) or
the same information in a different representation.

The behavior of dialog boxes and panels is different than
frames. Whereas a frame is like a procedure, a dialog box
is like a function. That is, the dialog box is called, the user
is forced to respond to it, and a result is returned to the
caller. It is positioned at the center of the currently active
frame or panel. A panel is like a co-routine. It is displayed
to the user when the panel is first called, but execution of
the panel is suspended when the user moves the mouse
cursor outside the panel window. The panel execution is
resumed when the mouse is moved back into the window.

Each framework object, called a PICASSO object (PO),
has a different visual appearance. A frame has a menubar
with pulldown menus across the top of its window. A panel
can either have a menubar across the top or buttons listed
down the right side of the window. Frames and panels have
title bars provided by the window manager. Dialog boxes
have buttons down the right side and no title bar since they
are non-modal interfaces.

Figure 2 shows a screen dump of a semiconductor CIM da-
tabase browser [Smith 90]. It has a frame and three panels.
The frame in the upper left corner of the screen shows the
facility floorplan, the panel in the upper right comer shows
equipment in the facility, the panel in the lower right cor-
per shows utility lines running through the facility, and the
panel in the lower left corner shows a picture of a particu-
lar piece of equipment.

PICASSO introduced lexical structure between PO’s to
solve two problems: data sharing and window hiding.
PO’s can share data either implicitly by accessing vari-
ables in a common parent or explicitly by passing param-

Ty

Equpmenl [Junctiens

uuties B Spacer H

Figure 2: CIM database browser.

eters. Both approaches have proven convenient. The
second problem lexical structure solved is when to hide a
PO. When a frame is called or exited, the current frame
and all visible children of that frame are hidden. Suppose
that the lexical parent of the equipment picture panel in
figure 2 is the equipment panel in the upper right corner,
and the parent of the equipment panel is the frame. Conse-
quently, when an operation returns or exits the equipment
panel, the equipment picture panel is removed too. Declar-
ative specification of these relations based on lexical struc-
ture is easier for the programmer to understand than
procedural specifications.

PICASSO was written in Common Lisp using the Com-
mon Lisp Object System (CLOS) and the X Windowing
System. The 4GL is essentially Lisp with extensions to
call PO’s, access variables, and execute database queries.
I'would have preferred to develop a simpler end-user 4GL,
but resources were limited.

The use of Lisp was both positive and negative. On the

positive side, it is a great prototyping environment partic-
ularly for experimenting with language constructs. We
were able to implement a complete constraint system that
allows us to modify variables or interface behaviors as the
result of functions of other variables in less than 3K lines
of code. On the other hand, we have struggled to build
space and time efficient production applications. Another
problem we have had is attracting and training people to
use the system. It takes 4-6 months to train a competent
Lisp programmer and another 6 months for them to learn
the body of the PICASSO system. We have built a proto-
type interface builder, but it still needs considerable work.
And we are running into the same funding problem we had
with FADS because people think that the Next Interface
Builder and Hypercard have solved all problems.

5. W4GL Application Framework

In late 1988, I convinced the folks at Ingres to build a next
generation development environment for GUI applica-

tions to replace ABF. WAGL simplified the PICASSO
model by reducing the number of distinct callable inter-
face objects. It has only one object, called a frame or win-
dow, rather than the three objects in PICASSO (e.g.,
frame, dialog box, and panel). However, there are two
frame types: menu and dialog. A menu frame corresponds
to a PICASSO frame and a dialog frame corresponds to a
dialog box. Panel behavior is specified either in the frame
definition or in the statement that calls the frame.

At the time, I thought this approach was a poor design
choice because the visual appearance of the application in-
terface did not clearly delineate the behavior of the differ-
ent windows. A programmer could create two windows
that looked exactly alike, but behaved differently. The user
could not determine which windows were frames and
which were panels. The eary design did not distinguish di-
alog boxes, although they were eventually separated out.
In retrospect, this approach probably is not a problem
since we were forced to add menubars to panels in PIC-
ASSO which made them indistinguishable from frames.
However, we still use buttons down the right side for most
panels.

WAGL extended the ABF 4GL to include an object sys-
tem. The entire system was written in this object system.
Numerous people have noted that an object system lan-
guage is the best interface toolkit and application imple-
mentation language. The object system in W4GL uses a
single inheritance hierarchy and methods that discriminate
on one argument (i.e., unimethods). The CLOS system we
used for PICASSO uses multiple inheritance, uni- and
multi-methods, and method combinations. Our experience
was that multiple inheritance was useful, multi-methods
were unnecessary, and method combinations were useful,
but difficult to use and slow [Konstan 91]. One of the
WA4GL implementers remarked that multiple inheritance
would have simplified the implementation of the forms
system on which the system runs. Consequently, I believe
multiple inheritance is a good idea.

The biggest improvement in WAGL, aside from the sup-
port for GUI interfaces and the direct manipulation inter-
face builder, was the addition of a version control system
on application objects. From the very beginming in FADS,
it was clear that a version control system was needed so
that multiple programmers could work simuitaneously on
objects in the same application. W4GL is the first system
to provide one, and I believe it is still the only interface
builder in the market today with a built-in version control
system. Real world applications include many objects and
multiple versions, and you need help from your develop-
ment environment to manage this complexity.

The primary problems with W4GL are that it does not al-
low users to add new widgets to the interface library (e.g.,
3D graphics, video, and audio widgets), application gener-
ators were omitted, there is no general constraint system,
the 4GL object system does not allow users to define sub-

classes, and it does not support persistent objects. Presum--

ably, these problems will be fixed in future releases.

6. Thoughts on the Past and Future

An object-oriented application framework with a direct
manipulation interface builder and application editor is the
only way to develop database applications. A high level
framework simplifies the definition of applications be-
cause less code must be written and custom direct manip-
ulation editors can be developed for each object type.

The systems described here show the evolution in my
thinking about the features required in a framework. Each
system had many positive characteristics. However, there
are still many problems to be solved. First, we need more
work on application generators. The basic idea is to build
applications at a higher level by configuring subsets of the
objects that make up the application with a customized di-
rect manipulation editor. We first experimented with this
idea in ABF. The only other system I have seen with inte-
grated application generators is the PACE system from
Wang. One goal for the PICASSO was to develop an open
system so we could experiment with specific application
generators and with “application generator” generators.
For example, a company might want to build a custom-de-
signed report frame generator that used the same report
formats and frame operations.

Application generators offer great hope for significantly
improving programmer productivity because they reduce
the specification required to build an application. They
must be integrated with the development environment so
the custom extensions needed by real world problems can
be made.

Second, we still do not have the right abstractions for the
interface objects and the 4GL. PICASSO and W4GL
made dramatic progress in the GUI application frame-
work, but they still have problems. One good feature of the
PICASSO implementation was that the objects were im-
plemented in the 4GL so new interface objects can be
added to the system by users. For example, another object
type is a windoid which is a non-modal popup that waits
for a mouse event but does not grab the keyboard focus.

The future is end-user programming and none of the 4GL’s
I have seen are easy enough to use. We need to make them

easier to leamn and improve programmer productivity.

Finally, we need more work on interface builders. No hu-
man factors experiments or even pilot studies have been
done to compare different interface builders. Interface
builders are essential components of any modern pro-
gramming environment because the majority of programs
being written will have graphical user interfaces. We need
to understand what features contribute to productivity,
what features are error prone, and what productivity gains
are provided by different programming environment tools
(e.g., structured editors, application generators, etc.).

A lot has been leamned in the past 15 years, but there are

still many exciting challenges ahead. It is time to begin de-
velopment on the next system!

7. Acknowledgments

Many people have worked on the systems described
above. I do not have space to acknowledge all of them, but
I do want to acknowledge the principal contributors. Kurt
Shoens implemented Rigel and designed and implemented
FADS. Joe Cortopassi also worked on Rigel, was the chief
architect and implementer of ABF, and implemented the
WA4GL runtime system and translator. John Newton imple-
meanted QBF. Peter Schmitz worked on ABF and was the
project manager for W4GL. Dave Martin and Scott Lue-
bking worked on an early version of PICASSO. The de-
sign and implementation of the current version of
PICASSO was done by Joe Konstan and Brian Smith.
Steve Langley implemented the forms system in W4GL
and Grant Crossen implemented the interface builder.

8. References

[Gardner88] L.Gardner, “Static Analysis of a Fourth Gen-
eration Language,” MS Report, Computer Science
Division - EECS, U.C. Berkeley, June 1988.

[Konstan91] J.Konstan and L.Rowe, “Developing a
GUIDE Using Object-Oriented Programming,” Pro-
ceedings OOPSLA 1991, Phoenix, AZ, October 1991.

[Rowe79] L.Rowe and K.Shoens, “Data Abstraction,
Views and Updates in Rigel,” Proceedings 1979 SIG-
MOD Conference, Boston, MA, June 1979.

[Rowe82] L.Rowe and K.Shoens, “A Form Application
Development System,” Proceedings 1982 ACM SIG-
MOD Conference, Orlando, FL, June 1982,

[Rowe85] L.Rowe, “Fill-in-the-Form Programming,”
Proceedings 11th International Conference on Very
Large Databases, Stockholm, Sweden, August, 1985.

[Rowe91] L.Rowe, et.al. “The PICASSO Application
Framework,” Proceedings 1991 ACM Symposium on
User Interface Software and Technology, Hilton
Head, SC, November, 1991.

[Shoens82] K.Shoens, “A Form Application Development
System,” Ph.D. Dissertation, Computer Science Divi-
sion - EECS, U.C. Berkeley, November 1982.

[Smith90] B.Smith and L.Rowe, “An Application Specific
Ad Hoc Query Interface,” ERL Report M90/106,
U.C. Berkeley, November 1990.

[Ingres90] INGRES ABF (Application By Forms) User’s
Guide, Ingres Corporation, Alameda, CA, June 1990.

[Ingres91] Application Editor User’s Guide for INGRES/
Windows 4GL, Ingres Corporation, Alameda, CA,.
June 1991.

