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Abstract

We study a simple flow control method for ATM networks called periodic averaging of rate
(PARing). This method attempts to reduce the burstiness of traffic by buffering. We present
asymptotic results, obtained via the theory of large deviations, on memory requirements, the
multiplexing gain of PARed sources, and tradeoffs between buffering inside and outside of the
network. We discuss some results on the analysis of networks (beyond single queues) when
this method is used. These results exhibit the potential for network level interaction between
streams. We then propose an improved version of PARing which is akin to using a moving
average filter. We present preliminary simulations for video sources.

1 Introduction

Overflows in ATM networks are caused by fluctuations that occasionally make the input rate to
a buffer larger than its output capacity. Such fluctuations can be reduced by shaping the traffic
to make it more regular. In order to shape the traffic flow, sources temporarily buffer their traffic
before releasing it smoothly into the network.

In effect, traffic shaping moves some ofthe queueing outside or to the edge ofthe network. By
smoothing out its traffic, asource reduces the burstiness of traffic within the network and thereby
reduces the need for queueing. The rationale for moving the queueing outside of the network is
that source buffers need only accommodate the fluctuations of the traffic ofsingle sources whereas
the network buffers must accommodate the fluctuations of the superposition ofthe traffic streams
flowing through them. While the superposition of many traffic streams is statistically more regular
than individual streams, it remains nevertheless true that distributing the buffers to the different
sources simplifies the network design and allocates more cost to bursty users rather than imposing
that cost on the network itself, and therefore, on all the users. Moreover, by individually smoothing
out traffic sources, one can avoid situations in which bursty sources penalize other traffic sharing
the same resources.

A number oftraffic shaping methods have been proposed and studied[14, 1, 7, 12]. We propose
periodic averaging of rate (PARing) as an alternative to methods such as leaky bucket. PARing
has the distinct advantage that its performance can be reasonably estimated and its impact on the
network performance and design can be studied.
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Figure 1: PARing a variable rate source.

Before proceeding, consider the manner in which a traffic source is PARed, see Fig. 1. The figure
showsa source producing a time-varying rate r(t). PARing operates as follows :

1) Store output of source during time interval [0,T), n := 1;

2) Compute average rate, a„, of source during [(n- 1)T,nT)]

3) Release datastored during [(n-l)T, nT) at a ratea„ during [nX, (n+l)T) while simultaneously
storing data produced during the epoch, n := n + 1;

4) Repeat steps 2 and 3.

The output of the PARer has a time-varying rate rp(t). During each time interval [nT, (n+ 1)T),
the output rate is constant rp(t) —On, the average rateofthesource during [(n - l)T,nT).

PARing makes the source as regular as possible within the given interval, while introducing a
known delay. This regularity is achieved by averaging the source rate over time. When a buffer is
used by a large number ofindependent sources, they will typically average each other out, e.g. 1000
voice calls sharing a common buffer. In this case PARing will be oflittle use. However, ifeachsource
uses a substantial fraction of the buffer bandwidth, then PARing the traffic will have a significant
effect. Forinstance, if the sources are variable bit rate codecs with a peak rate of40 Mbps, sharing
a transmitter at 622 Mbps, then PARing should greatly reduce the amount of memory required in
the switch.

The value of the averaging duration T is a design parameter. As T increases, the traffic becomes
smoother, but the delay and the required memory increase. Thus for traffic that is delay-critical,
such as video and interactive services, a small value for T should be selected. A sensible choice,
would be to take T of the order of the propagation time through the network (i.e. ~ 25 msec).
Such a small delay corresponds to a reasonable memory requirement which could be inexpensively
accommodated at the networkinterface. Whenthe traffic isnot delay-critical, such as non-interactive
file transfers, the value ofT could be much larger. In this case memory storage would in principle not
be required, as the files are typically stored on disk. Thus the hardware and software requirements
for PARing will depend on the nature of the service. We believe that with decreasing memory costs
an implementation of PARingwouldbe quite inexpensive, in most cases.

In our PARing framework, a user can select the parameter T of the PARer and the memory
size to meet a desired quality of service. The network designer can scale buffers and design call



acceptance and routing strategies with known performance criteria. This paper will explore some
aspects of performance analysis for networks with PARed sources.

The paper is organized as follows. In §2 we investigate the size of the memory buffers required
at the edge of the networkto PAR different types of sources. In §3 we discuss the capacityof single
links, supporting PARed traffic. In §4, we introduce the notion of effective bandwidth for PARed
sources, and discuss its properties. We also define the notion of multiplexing gain as a means to
quantify the benefits of ATM, with PARed sources. In §5 we discuss the basic dilemma of whether
to buffer sources inside or outside ofa network. We investigate the capacity ofnetworks supporting
PARed traffic in §6. In §7 we analyze an improved version of our PARing scheme which is akin to
using a moving average filter. In §8 we present some preliminary simulations exhibiting the benefits
of PARing. In particular we investigate how successful this traffic shaping technique is for a given
video source. Finally, §9 summarizes the main ideas that have been presented and the tradeoffs
underlying the PARing idea.

2 Memory Requirements

We first estimate the amount ofmemory required at the edge of the network where PARing is to
take place. An equivalent problem is to evaluate the probability that an unexpectedly large traffic
rate isobtained during agiven averaging period T. The calculation ofsuch probabilities corresponds
to thebasic large deviation asymptotic[2]. We use the theory oflarge deviations to obtain estimates
for relativelylarge averaging periods.

Below we denote the mean arrival rate of a source by m and compute the probability that
the empirical average rate exceeds this mean by a margin ct-m. Under weak assumptions, this
probability is approximated by,

(*sH-PI jil^Xi >a1» exp[-Th(a)]

where X{ is interpreted as the arrivals during the **fc time interval and h(a) is the large deviation
rate function associated with the source. If the arrivals are i.i.d., the rate function is given by,
h(a) = supA[Aa - A(A)], the Fenchel-Legendre transform of the log-moment generating function of
a typical increment A(A) = logEexp(AX0). When the traffic does not have independent arrivals the
log-moment generating function is taken to be A(A) = lim,^*, }logEexp(A£|=i;r<) tfit exists,
and subject to some technical conditions the same result holds, see the Gartner-Ellis theorem[6].

In order to find the memory needed for PARing we fix Tand determine the memory size Bpar
required to guarantee that the probability that agiven cell is lost, P(cell loss), in a PARing interval
is less than exp(-T6), i.e., we guarantee that P(cell loss) < exp(-T5). Statistical constraints of
this nature are useful when some loss can be tolerated. Typically the constraints are quite stringent
though, e.g., smaller than 10~6.

Note that £por/T is the maximum traffic rate that can be absorbed by the PARing buffer without
loss. Thus the simple calculation that follows gives the required constraint:

P(loss) = P(mean rate > Bpar/T) « exp[-!Z7i(£par/r)] < exp[-T5]

where P(loss) is the probability that there is any loss in a given PARing interval. This is to be
contrasted with the probability that any given cell is lost P(cell loss). However, one can argue that
on an exponential scale P(loss) « P(cell loss). Indeed, the number of arrivals during a PARing



Type of Source Exponent h(a)
Discrete Time

Normal:

N(m,a2) i.i.d.

General Gaussian Process:

Mean m, Dispersion d

(a-m)»
2ff3

Co-m)2
2d'

Continuous Time

Poisson: Rate m

Markov Modulated Fluid:

<*log(£) + m-a

[y/(tt-ro)n-y/(ri -a)\
ri-r0

Table 1: Rate functions for some sources of interest.

interval is 0(T) and when loss occurs, the numberof lost cells, L, will be small and independent of
T. So the asymptotic probability of cell loss, is ^jP(loss) which is dominated by the exponential
term.

This large deviation bound suggests that we should select Bpar andT such that,

h(Bpar/T) > 6.

Table 1 summarizes some results for sources of interest in modeling ATM traffic where explicit
expressions can be obtained. The interested reader is referred to Bucklew[2] for an explanation of
the generic large deviation bound for i.i.d. sources such as Gaussian and Poisson. Similar results
can be obtained for arrival processes that satisfy strong mixing conditions or the Gartner-Ellis
theorem[6]. An interesting treatment of general Gaussian processes can be found in Courcoubetis
and Walrand[3]. In order to analyze the case of Markov fluids, the large deviations of the empirical
distribution for the underlying Markov chainmay be considered. In our simple example, the source
turns off (on) with intensity fi (A), and generates traffic rate r& (ri) when off (on). More general
results for Markov fluids and Markov modulated Poisson processes have been found by Kesidis[ll]
and deVeciana et al[5].

It is possible to obtain analytical expressions for many other types of sources. The generality
of this principle leads us to suspect that any sufficiently well behaved (mixing) stationary ergodic
source will probably have an associated rate function h(a), although it may be hard to compute,
e.g., video sources. Some analytic models for video sources have been proposed [13, 10, 15], but it
is difficult to evaluate if they are appropriate. This depends to a great extent on the phenomena
one wishes to study. In particular we are interested in the queueing properties of these sources. An
alternative approach is to use a veritablesimulation ofcompressed video, to obtain the rate function
directly. Such a study will be discussed in §8.



3 Buffer Asymptotics

Next we determine the effect of PARing within the network. Consider a single buffer,B, shared
by N virtual circuits, each having PARed traffic streams A^, with averaging periods T which are
synchronized. The evolution of the queue length is given by

Xn+i = (Xn + AnT-cT)+

where An = J2i=i ^ii> c is tne service rate of the buffer and Xn is the buffer occupancy at time
nT. Below we consider two regimes. On one hand, for large B and relatively small T, overflows are
due to long term accumulation. On the other hand, for large T and small B, overflows occur as T
time-scale fluctuations. The latter is the regime in which we expect PARing to be effective, whence
it is important to make precise what are the relevant overflow time-scales, and what is a large T
relative to B.

3.1 Overflow Time-scale

First consider large B asymptotics. In this case the queue evolution corresponds to a reflected
random walk, whose large deviations have been studied in some detail[16, 11, 6]. We give a brief
heuristic derivation ofthe probability that the free buffer occupancy exceeds a high level B during
a busy cycle. As seen in §2 nice sources will have an associated large deviation rate function h(a),
characterizing the probability that the empirical mean ofthe source is a for a relatively long period
of time. Because the rate function is convex, one finds that typically paths leading to overflows
follow a straight line. Thus, in order to induce an overflow, a source will fire at an approximately
constant rate, a, for B/(a - c) seconds. The probability ofoverflow is then exp[-Bh(a)/(a - c)],
where a > c. The most likely slope for this path is that minimizing the cost (ratextime) subject to
an overflow :

P(overflow in a busy cycle) a* exp -Binf
h(a)

a>e a — C

Let or* denote the slope oftypical overflowing paths, i.e., the minimizer ofh(a)/(a - c), the time
to overflow is then B/(a* - c). Thus when T < B/(a* - c), averaging the input rate will not
significantly affect overflowing paths since accumulation occurs over a period of time significantly
larger than T, and overflowing paths are straight lines. We conclude that PARing will not effect
the overflow probabilities in this regime. This result can be extended tothe case ofmultiple sources
and will be used in §5 to compare PARing with buffering in the network.

Now consider averaging intervals T which are large relative to the time constant of a typical
buffer overflow (without PARing) i.e., T > B/(a* - c). In this case, overflows in switch buffers
occur on the time-scale ofT rather than as slow accumulations in the evolution equation proposed
above. For example, often one finds that ot* m(c- m) + c where m is the mean traffic rate.1 The
overflow time-scale is then B/(c{l - />)). Thus PARing will be effective when the network buffers
B are relatively small, the utilization p issmall and/or the bandwidth c is large. For other sources
similar qualitative results should hold.

Consider for example an M/D/l queue, with bandwidth c= 622Mbps, utilization p= 0.8, and
buffer size B = 30 cells. This corresponds to a probability of cell loss of approximately 10-6.
The time-scale of overflows in this system will be approximately 0.1 msec. Indicating that PARing
intervals on the order of1 msec, should have a significant impact on the queue dynamics.

1Intuitively c- m isthe mean rate atwhich one would expect alarge queue buildup tosettle down. This indicates
that traffic builds up as ifrelaxations were reversed in time, and holds in particular for M/M/l and M/D/l queues[8].



3.2 Loss asymptotics for PARed sources

In computing the loss asymptotics for PARed sources, we will assume that there is no carry-over
from one PARing interval to the next. The probability ofloss is then simply the probability that
the aggregate input traffic rate exceeds the service rate, c, at the given node. The motivation for
neglecting carry over is not solely one of convenience. In practice packets of real time sources that
are held overone or two PARing intervals will suffer excessive delays. The network should be scaled
so that such delays are very unlikely or provide a packet dropping mechanism to relieve congestion.

We compute the probability that the aggregate traffic of N PARed sources, An, exceeds the
service rate of the buffer over the nth PARing interval,

(N , (n+l)T \
E£ E xj>c •
.=1 j=nT J

Once again we use large deviations toobtain asuitable estimate. When thesources have independent
increments one can argue,

( (n+l)T N \ ( (n+l)T

? E E*J>c =P \\ E yi
i=oT .=1 / \ j=nT

> C

where we have interchanged summations to consider the empirical mean ofT random variables, Yj,
each being thesum ofthe arrivals for the N sources over thefh time interval. Let h(a) denote the
rate function associated with the random variables Yj. The large deviation approximation is,

P(cell loss) « exp -Tgf &(«)]= exp [-T&(c)].
However, using the independence of the sources we have that,

N N N

A(A) =logEexp(A^Aj) =5>gEexp(AXJ) =£ A|(A).
»=i »=i »=i

Finallyweobtain a useful form for the exponent,

P(cell loss) w exp
N

The intuition is hopefully clear: N sources make a joint effort to supply the buffer a traffic load
c, such that the total cost (rate) is minimized. Such heuristic arguments are transparent and can
typically be substantiated by detailed calculations; in the sequel we will use this type ofreasoning
when possible with the understanding that they can be proven. In the case where the sources
do not have independent increments the log-moment generating function is taken to be A,-(A) =
lim<_00 j logEexp(A J2j=i X}) ifit exists, and subject to some technical conditions the same results
will hold, see the Gartner-Ellis theorem [6].

We require that P(cell loss) < exp[-T6], and obtain the following constraint :

N

inf 5>(«0>*. (1)
2^=i a'sc »=i
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Thus in order to check that a buffer is not overloaded we should solve this optimization problem
and check that this constraint is satisfied. Simple ways of dealing with this problem are explored in
the next section. We have tacitly assumed throughout that the PARing intervals are synchronized,
and we have ignored the effect of PARing losses on network losses. This is in fact the worst case
scenario, since averaging across PARing intervals can only help.

4 "Effective Randwidths" for PARed sources

Given the service rate of a buffer, and the types ofsources currently loadingit, we need a reasonable
scheme for call acceptance. We wish to guarantee that within a given PARing interval, P(cell loss) <
exp[—T6]. Forclarity, wepresent a sequence ofproblems leading to a conservative notion ofeffective
bandwidth which we use in the sequel.

4.1 Single source

Consider a single source oftype i, with rate function hi(>). Define the effective bandwidth ai(6) as
the minimum service rate required to maintain ourstatistical guarantee, i.e., by Eq.l,

ai(6) = h-^S) i inf{a :a > m, A<(a) > 6}.
Note that,

ati(6) < c -«• P(cell loss) < exp[-T6],

since /»(•) is nondecreasing. Loosely speaking we could define the effective bandwidth in a more
intuitive fashion as a,(£) > m such that hi(aci(6)) = 6, however for sources with bounded traffic
rates, e.g., the on/off Markov fluids discussed in §4.4, not all values of 6 are attained. When this is
the case weassign an effective bandwidth equal to the maximum source rate.

4.2 Multiple sources of the same type

Now suppose Ni sources oftype », are loading the buffer. Our previous notion ofeffective bandwidth
leads to the following conservative bound :

Ni0ci(6) < c => P(cell loss) < exp[-T6].

One can verify this fact by considering the exponent and using the convexity of/»,(•) :

inf Nihi(mi) = NMc/Ni).
Nitni=e '

Now since Ni(*i{&) < c, we must have a{{6) < c/N{ so 6= /»(<*<($)) < h(c/Ni) and the exponent of
sources satisfying this constraint will actually be larger than N6, which is clearly conservative.

Alternatively we can define the joint effective bandwidth ofNi sources by,

oc(Nif 8) = Nh-^S/N)= inf{a :a > Nm, Nh(a/N) > 6}.

Note this isnot significantly harder to compute, as we are assuming we know hi(•) or an approxima
tion ofit. This choice makes the notion ofeffective bandwidth tight, i.e., it is indeed the minimum
service rate we can tolerate while maintaining the loss requirement.



4.3 Multiple sources and multiple types

In general a buffer may service N types of sources, Ni of each type i. In order to deal with the
multiplicity ofsources in a simple fashion we must resort to a conservative strategy.

We associate with the collection ofsources ofeach type their effective bandwidth a(Ni, 6), in the
sense of the previous section. The acceptance condition becomes,

N

5^ <*i{Ni,6) <c=> P(cell loss) <exp[-T6].
»=i

This condition can easily beverified by anargument similar to those above, but this strategy isonce
again somewhat conservative. Indeed the condition is sufficient but not necessary. The proposed
call acceptance strategy corresponds to checking if the cumulative effective bandwidth, in the sense
above, does not exceed the service rate.

Ofcourse, an alternate strategy would be to compute andgenerate tables ofthe acceptable loads
for a buffer, by solving the optimization problem associated with the exponent.

One may interpret this scheme as one in which averaging over time and over calls of the same
type is permitted, ignoring averaging across types. We observed, in §4.2 that the joint effective
bandwidth ofNi sources ofthe same type, isnot TV* times that ofa single source. This phenomenon
is exactly the idea behind statistical multiplexing which motivated the asynchronous transfer mode.

4.4 Statistical multiplexing of PARed sources

If the sources are all of the same type, we can define the multiplexing gain G(N, 6) as the ratio of
N times the effective bandwidth ofa single source over thejoint effective bandwidth ofN sources,

C(N6)±Na{1>6)- h~lW
a(N,6) (6/NY

Were h'1^) isthe inverse of/»(•) defined in §4.1. One can easily convince oneself that the multiplexing
gain increases with the number sources N.

m h1(5/N) h1(6)

Figure 2: Rate function and statistical multiplexing for Gaussians.

Example 1: Consider the case ofGaussian random variables where h(a) = (a- m)2/2a2. In this

8
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Multiplexing Gain for N
Gaussian Sources
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case we have,

G{N,6) = m+<rf6 .
m+ <ry/26/N

Fig.2 shows a plot of this function. On one hand when 6 = 0, the gain is one, since the ef
fective bandwidth for both cases will equal the mean arrival rate. On the other hand, we have
lim^oo G(N,6) = VN, which one might expect since this is scaling of the standard deviation for
N Gaussian random variables. Forfixed 6 the plotofG(N, 6) has a similar qualitative behavior; for
N = 1, G(N, 6) = 1 and there is once again an asymptote,

lim<W) =l+̂ I.
n—oo m

Thus once we decide on a loss constraint, there is a bound on the multiplexing gains that can be
obtained.

Example 2: Consider the case ofon/off Markov fluids introduced in §2. Their behavior is qualita
tively quite different from the Gaussian case. The "rate" isconcentrated in the interval [r0,ri], i.e.,
the rate function is infinite outside this interval. A typical example is shown in Fig.3. Note that
h(ri) = p. as one would expect since in order toobtain an empirical mean ofri we need to stay on
for a prolonged period oftime. Thus the exponent should correspond to the tail ofan exponential
waiting time with rate p. The inverse function is,

h-1(6) = r I (ri "" ro^6^ " A) ~^ + A) + V*A/*(A +/«-*)
KJ (A +/i)2

when 6 < fi and is n for 6 > p. Since the traffic rate associated with this source is bounded by
ri, when c> n no loss occurs. This fact leads to the surprising behavior of the multiplexing gain
shown in Fig.3. Unlike the case of Gaussian sources, G(N, 6) will decrease once 6becomes too large.
Thisoccurs when the loss constraint 6 is approximately p, beyond this level the effective bandwidth
for a single source saturates at r1} while that of the N sources continues to increase. As shown in
the figure, G(N,p) can be bounded by,

Um G(N,p) =ri£±]±.

We can interpret this expression as follows : increases in the peak firing rate t\ or decreases in
the average burst size pr1 will improve the maximum multiplexing gain, i.e., "bursty" sources are
the candidates ofchoice for PARing. Further increases in the loss constraint reduce the benefits of
multiplexing, in fact for 6 > Npt, G(N,6) = 1 . For fixed 6 the gain is concave and increases with
N to an asymptotic value.

To summarize, we find somewhat surprisingly that for some types ofsources stringent statistical
constraints can lead to decreases in the multiplexing gain. Sharing of resources can lead to gains in
bandwidth as well as buffering requirements. The latter is discussed in the context of traffic shaping
in the next section.

5 Comparison: Where to buffer?

We wish to address the following question: Can one characterize the tradeoff between buffering
within the network and buffering at the sources (PARing) subject to a statistical loss guarantee?
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Figure 3: Rate function and statistical multiplexing for Markovfluids.

SOURCE

Figure 4: Comparing buffering strategies.

The tradeoff that we propose to explore is shown in Fig.4. On one hand we consider N sources
flowing through a network buffer B with service rate c, where B is quite large in order to guarantee
that losses are small. On theother hand, we PAR N sources using separate buffers ofsize Bpar, and
an averaging interval T, which is large to ensure that the losses in the network are small for every
PARing interval even when carryover is neglected. We assume that all the sources are the same,
and have the required properties for the existence ofa large deviations principle with rate function
h(-). We impose a loss constraint, P(loss) < exp[-£], where the exponent is not scaled by B or T,
to facilitate comparisons.

Network Buffering In §3 we briefly introduced large deviation asymptotics that can be obtained
for the buffer occupancy ofdeterministic queues. In the above setup we have that,

where

P(networkoverflow) « exp[—BKn]

KN= inf fc(a)
a>e/N a —c/N'

One can then argue that the loss probabiUty has the same asymptotics asthe probability ofoverflow
for busy cycles, modulo a small correction term[ll]. Inorder to satisfy our loss constraint we require
that, BKN > 6, so we take B = 6/Kn.

Source Buffering Inorder toguarantee few losses with PARing we must select both Bpar, and the

10



averaging interval T. The appropriate choice of T follows from §3 and §4 :

P(network loss)« exp[—TKs]

where,
Ks = Nh(c/N).

We need TKs > 6 so it suffices to take T = 6/Ks- In order to control losses at the PARing buffer
we further require Th(Bpar/T) > 8, for details see §2 and recall our new convention in specifying
the loss constraint. Thus the smallest permissible PARing buffer is :

by substituting the value of Ks we obtain,

_ 6h-1(Nh(c/N))
•Ooar —'par Nh(c/N)

To answer our question we must compare B with NBpar. We can define the network buffering
advantage by

B(N c) i NBpar = [ inf *<") 1h'^Nhje/N))
K ' ' B [a>c/Na-c/Nl h(c/N)

Thus depending on N,c and the type of source, B(N,c) will determine the savings obtained by
buffering within the network. Below we consider the case of Gaussian arrivals, as well as on/off
Markov fluids.

Example 1: For Gaussian arrivals, we can easily solve the optimization problem leading to the
network overflow asymptotics :

inf *M ^2(c/iV-m)
a>e/JV a - c/N <r2 '

where we continue with the notation in §4.4, and assume that the queue is stable i.e., Nm < c. The
buffering gain is given by :

**«>-«Grfc+^)-
As shown in Fig. 5, B(N, c) > 4. It is always more economical to buffer within the network. This
benefit increases sharply as Nm approaches c,i.e., we push thesystem to service a maximum number
ofsources. This result might have been expected, it corresponds to the idea behind multiplexing
thousands of voice calls in common buffers.

Example 2: The case of Markov fluids is somewhat more complex. Recall that in §2 we introduced
the rate function for twostate Markov fluids, and in §4.4 we defined the equivalent bandwidth or
inverse of this function. The optimization problem associated with network buffer asymptotics has
been solved, see for example deVeciana et al.[5], it gives the following result :

inf *(«) =N (* +f)(c-Nm)
a>e/N a - c/N (c - Nr0)(Nri - c)'

where m corresponds to the mean traffic rate offered by one such source, and we require stability,
Nm < c as well as the possibility of overflows Nri > c.

11



c+m)
(c-m)

B(N,c) B(N,c)

1

Gaussian
Sources

N

On/Off Markov
Fluids

N

c/m c/r1 c/m

Figure 5: Buffering advantage for Gaussian sources and on/off Markov fluid.

Using these results the buffering gain can be written as

B(N,c) = N (A + p)(c - Nm) h-ijNhjc/N))
(c-Nro^Nn-c) h{c/N)

A typical graph of B(N, c) versus N is shownin Fig. 5, it exhibits the trends of interest. Note that
for large N network buffering is very advantageous. Unlike the Gaussian case, as N becomes small,
i.e.,oforder c/ri, B(N,c), increases, albeit not much. Intuitively, when there are very few sources,
network overflows become very unlikely, and PARingis inefficient. However when a moderate number
ofsources are involved the advantage ofbuffering within the network is not as great, in this regime
PARing becomes a viable option. This corresponds to a regime in which the peak rate of the sources
may take a substantial amount of the total bandwidth, and there is a potential for much loss.

Our asymptotic analysis partially demonstrates some of the buffering tradeoffs in a network
design. Indeed, within the network, traffic streams share several buffers before reaching their des
tinations. Thus, in order to make a fair comparison, we should include the resources consumed at
each node for each path. Moreover, buffers within the network feed intofast output lines, hence the
memory required within the network will be expensive relative to single source PARing buffers.

Network design involves many other criteria and tradeoffs. The most important in the setup
we have proposed is delay. The PARing scheme has a worst case delay of 2T, and an average of
about T. A precise comparison of delays incurred is difficult to carry out. The sharing ofresources
within the network will most probably reduce average delays relative to the PARed setup. However,
PARing distributes delays among the various sources. Moreover, PARing will guard bursty sources
from interfering with other traffic in the network, whence one can conceive of simplified network
buffering policies, and improved fairness inaccess toresources. The smoothing out oftraffic entering
the network, should in turn reduce packet jitter,which can in turn reduce buffering requirements at
the destination. A balanced design needs to envisage many criteria, to this end this framework is
only a beginning[4].

The two cases we have considered represent extremes in a spectrum ofmore realistic configura
tions where buffering in the network aswell astraffic shaping areused. Having studied theinteraction
ofsources within buffers, we move to problems at the network level, with multiple buffers and routing
paths.
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6 Networks and PARing

In this section we extend the ideas used for single buffers to obtaininteresting results characterizing
the behavior of interacting streams in a network of deterministic buffers. Sources are assumed to be
PARed over relatively large intervalsT, thus over an interval [nT, (n + 1)T) the aggregate arrival
rate to the network, A^, for each virtual path v, will be constant, and have the deviations studied
in the previous section. The rate on the output link ofa buffer can be computed by a max(min(), 0)
operation. Indeed the output rate will be max(min(j4n,c),0) where c is the service rate and hence
the largest rate one can observe at the output and An is the aggregate arrival to that node. The
purpose of the max(*,0) function, is to guarantee that the output rate is non-negative, thus keeping
our model honest. Using this setup we can determine the rate along every link in the network for a
given PARing interval, which enables us to calculate the large deviations of the entire network. We
propose this simple model as a first approximation, to one that should include carry-over as well as
propagation delays. To our knowledge this is the first such model.

6.1 Asymptotics of a PARed network

We will consider the network shown in Fig. 6. There are three virtual paths, v = 1,2,3 along
each path will flow Nv, v = 1,2,3, PARed sources. The service rates for the switching nodes are

Figure 6: Network Model.

ci and c2. For simplicity we assume that all the sources are of the same type. This setup should
exhibit representative behavior of interacting homogeneous streams. We assume the network is
stable. Thus the net traffic into each node isless than orequal to the service rate; (Na + Nb)m < c\
and {Nb + Nc)m < c2, where m denotes the mean arrival rate ofone ofthe PARed sources. Finally
we will denote the output traffic ofnode 1 by On, 0\. When no overflow occurs these will simply
correspond to the arrivals on the respective paths. However when anoverflow does occur at node 1,
we will set on+o2 = csuch that their proportion ofthe bandwidth corresponds to their contribution
to the aggregate arrival rate. We analyze the network, by computing the overflow asymptotics at
the two nodes.

Node 1:

P(loss at node 1) = P(An + A2 > a)
w exp[-TKQ]

13



where

*° =W+"*«_T^>-

The reader may wish to refer back to §4 where this case was considered.

Node 2:

P(loss at node 2) = P{Ol+ A^>c2)
= P(On + A*>c2\A}i + A2>c1)P(An + A2>c1) +

Ul

+P(On + A*>c2,A1n + A2l<c1)
s v /

U2

Before estimating Ul note that ifanoverflow occurs at node 1we expect that theoutput 0£ will be
Nx+n9 Cl'smce tn^ corresponds tothe most likely way for an overflow tooccur. Let c2 = c2-jr+frc^
Our estimate for Ul should be by now familiar. * 2

Ul » P(A*>c2)exi>[-T(N1+N2)h(—%—)]
N\ + iV2

« exp[-77ifi]

where

*> =<* +*««if%>+**ft>
We can estimate U2 as follows. The goal is to find the large deviation exponent of the event that
node 2 overflows but not necessarily as a consequence ofan overflow in node 1. Clearly this event
is a continuous function of the empirical means ofthe arrival rates along each ofthe virtual paths.
Each of these empirical means has an associated large deviation principle. One can compute the
large deviations ofa continuous function ofthe latter by way ofthe contraction principle[2]. This
gives the following characterization of the exponent.

U2 « exp[-TJi:]

K = min Nxh{x) + N2h(y) + N3h{z)
s.t. N\x + N2y< c\

N2y + N3z > c2

This constrained minimization problem can be solved viaLagrange multipliers. One finds that
only two cases are possible corresponding to different sets of active constraints. Each case has a
relatively nice interpretation.

Case 1 Node 2 overflows without overflowing node 1. This occurs when,

N2

N2 + N3
x c2 < ci - Nim. (2)

Thus, the traffic rate required from the calls on path #2 inorder to overflow node 2, does notexceed
the average capacity available at node 1for those sources. The asymptotics correspond to a network
without node 1.

c2
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Case 2 Overflows at node 2 induce an overflow at node 1. This corresponds to the case in which
both constraints are active. Somewhat surprisingly this case corresponds to a situation in which the
traffic alongpath 1, transmits below its expected mean rate. The interpretation is that in order to
overflow node 2 we require so much excess flow from path #2, that the traffic along path #1 must
be decreased so that it mayget through. We find that when constraint Eq. 2 does not hold i.e.

N2
—- x c2>c1^N1m,

then

where y, the deviant traffic rate for path #2, satisfies

and in fact c»ffiy < m.
One can show that K\ >K3>Kq. Indeed, Kq is the exponent for the probability that node 1

overflows, while Ki,K3 correspond to overflows in both nodes 1 and 2, thus K0 < K\,K3. Next,
K2,K3< K\, since K2 or K3, whichever holds, represents the most likely wayto get an overflow in
node 2, while K\ corresponds to a specific setup in which we consider first an overflow at node 1,
and then conditioning on this event, an overflow at node 2. These relationships can be established
directly by considering the respective optimizationproblems.

We can summarize our results for this network bytaking the dominant exponents, i.e. dropping
K\ and hence Ul,

P(loss at node 1) « exp[-TK0]
P(loss at node 2) « exp[-TK2] if Eq. 2 holds

« exp[—TK3] otherwise

6.2 Capacity of a network

In this subsection we will consider the capacity of the network. This will be the natural extension
of effective bandwidth, and corresponds to the practical application we had in mind. We wish to
determine the number ofcalls that may be routed through the network while guaranteeing a given
probability of loss, i.e.

P(loss at node 1) < exp[-T$i]
P(loss at node 2) < exp[-TS2].

Referring to the summary above, we require,

Node 1 K0 > 6x

Node 2 K2 > 62 if Eq. 2 holds

K3 > 62 otherwise.

Finally, ifSi = 62 = 6 we have KQ > 6 =*> K3 > 6. Thus using our notion ofeffective bandwidth, in
§4 we obtain two independent constraints,

Nodel a(Ni + N2,8)<Cl
Node 2 a(N2-\-N3,S)<c2
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A satisfactory call acceptance scheme need only check that each buffer along a given virtual path
can tolerate another call.

Aword ofcaution however, iffor some reason thenetwork designer decides that it is appropriate
to require $1 < 62 then the above decoupling will not hold, and thefollowing situation may arise: in
order to route a new call along path #3, we must check the number ofsources flowing through path
#1, see Fig. 6. Tobe specific suppose the above situation arises, i.e. Eq. 2 does not hold, then we
must check whether K3 > 62, and in order to do so we need to know N\,N2,N3,ci,c2 which may
not be readily available. On a larger scale, when such a situation occurs, it will be very difficult to
allocate resources appropriately.

These results should extend to more complex situations, with multitype sources, and networks,
though the calculations will no doubt be cumbersome.

7 Sliding Window PAR (SPAR)

Herein, wepropose a modified version ofour PARingscheme, which overcomes some ofits drawbacks.
Theidea is to consider a traffic shaping scheme inwhich the the source isbuffered in a queue with a

t-T t

Rate of Source Traffic Rate of Filtered Traffic

Figure 7: SPARing a variable rate source.

time-varying service rate corresponding to the average traffic rate within the current time window,
i.e., [t-T,t), see Fig. 7. Thus asource with time-varying traffic rate r(t) is released into the network
as,

rp(t) =?/Tr(T)rfr'
which is simply the moving average of the original process. This will not only reduce delays, but
also the size ofthe PARing and network buffers. We still allow a design parameter, namely the size
ofthe averaging window T, representing the extent ofsmoothing which is desired. The asymptotic
behavior ofthis scheme can be analyzed in a similar fashion to PARing.
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7.1 Memory Requirements

The evolution of the queue, Xt in a SPARing buffer is given by the following equation,

1 *_1Xt = Xt-\ +At - —^2 At
i=t-T

where wehavediscretized timeand consider an averaging window oflengthT timeunits. Ai denotes
the the arrivals for the given source during the »** time interval. A simple manipulation gives,

1 T
Xt =t S ti4*-T+» =X

t=i

Thus the maximum delay for this scheme is T, since no arrival will be in queue T time units after it
enters. SPAR buffers should be scaled such that P(X > Bpar) < exp[-T8] where we have adopted
a notation for the constraint which is consistent with §2.

A large deviation bound can be obtained in the case where the arrivals are i.i.d.:

P(t-!^ ^B*A =P[^T,^ - fl^/T) **M-Thp{Bpar/T)}.
The rate function hp(-) follows from the the Gartner-Ellis Theorem[6], it is the Fenchel-Legendre
transform of following limit if and when it exists :

i T T .

AP(A) = Tfa yk,gEex!KA^li4<)=TfaitognEe^(^i4,)
*=1 i—l

where A(a?) = logEexp[xv40]. This is the average ofthe log-moment generating function over [0, A).
The rate function is given by,

1 fxhp(a) = sup[Aa - y / A(x)dx]
A A J0

AP(A) < A(a:) by Jensen's inequaUty on the convex function A(-)[6] so clearly hp(ct) > h(a). For
Gaussian and Poisson sources we compute hj,(-) explicitly :

hp\CL) = 3 2 Gaussian

hp(a) = otlog 1- m/2 - a Poisson
m

These results should be compared with their counterparts in Table 1. SPARing reduces the mean
(by a half) aswell as the variance ofpotential accumulation in the averaging buffer.

The behavior of sources with dependencies is somewhat harder to determine. For example,
suppose {^4,}^! is a stationary Gaussian process. The distribution ofX can be obtained explicitly
in terms the mean m, and covariance terms up to T*h order (cj, 0< i < T) ofthe source :

X = N{p,*2)
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m(T + l)
^ 2

*=1 »=1 ;<»

The tail of this Gaussian gives an idea of the probabiUty of having a queue length exceeding Bpar-
Sources with positively correlated arrivals are more likely to overflow as the latter lead to larger
fluctuations. Note however, that only correlations on the T time-scale are relevant.

7.2 Network Buffers

Loss will occur if themoving average rate rp(t) during a given time interval exceeds theservice rate c.
Thus assuming T islarge the asymptotics should be roughly those obtained in§3. However, a more
detailed calculation ofthe network overflow asymptotics for sources with independent increments,
shows that there may even be some improvements. Loss will occur during an interval [0, T) if the
traffic released into the network exceeds the capacity during that period :

P(cell loss) MPfgI g* >cTJ =P(I £ (1 -|i|)A,- >e) =«p[-TM«)J.
where £,»(•) can be obtained by calculationssimilar to those above :

/*„(a) =sup[Ae*-An(A)] where A„(A) =f / A(x)dx.
X A J0

Note that in fact A„(A) = 2AP(A) < A(A) this follows from the convexity of the log-moment gen
erating function, and the fact that A(0) = 0. Thus hn(a) > h{a), so the sliding window scheme
wiU decrease losses in the network beyond PARing. Similar improvements are expected for general
sources.

In order to obtain this improvement in performance some overhead is required. To compute
the target rate of packet release a simple FIR filter is needed. The scheduhng of departures ofthe
packets could be done viaa reasonable clocking method. Thesimulations in the next section exhibit
the effectiveness of traffic shaping.

8 Simulations

In this section we present preliminary simulations of PAR traffic shaping for somewhat bursty traffic.
The traffic corresponds to the variable bit rate at the output ofa simulated video coder. The data
set used for this purpose was generated by asimulated coder including DCT and Huffman coding but
no motion compensation which isavailable from Bellcore. The data represents the bitrate trace on a
1.4 msec scale (slice) for 2hours ofthemovie "Star Wars"; this time-scale was deemed reasonable for
studies of ATM traffic. 53 byte packets with 48 bytes of data were used as the standard unit (cell) of
traffic. The average arrival rate for the source is then approximately 13,000 cells/sec corresponding
to 6 Mbps. The source traffic was modeled by a piecewise linear or fluid model. We note at the
outset that the trace appears to be highly nonstationary. The characteristics of such sources will
depend on the chosen compression schemes. The performance of PARing will in turn depend on the
dynamics of the source. For more information on this data set we refer the reader to the work of
Garrett and VetterU[9].
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Since video traffic is delay-critical, we take a relatively small PARing interval T ofapproximately
25 msec (approximate propagation time in a network).

Rata

CEOS/SEC
x*ii

CELLS/SEC

Figure 8: Histogram and rate function for a T-PARed video source(T=25ms).

Rate Function h(a): We collected an empirical distribution for the average rate (in cells/sec) over
typical T sections ofthis source, Fig 8. This data was then transformed to obtain a rough idea of
rate function for a video source by the transformation /»(•) = -io^1jP()> which is shown in Fig. 8.
In the region were events become rare the rate function is not smooth because estimates have large
variance, however it appears to be approximately convex. We have tacitly assumed that the source
has a typical behavior over a T time-scale, this may however not be the case.

SOURCE ! NETWORK

Figure 9: Simulation of PARed Video.

Averaging Interval versus Network Loss: Here, our primary goal was to gauge the reduction
in loss within the network when sources are PARed, so we take Bpar = oo. The PARing setup is
shown in Fig. 9where N = 5,10. The graphs in Fig. 10 show the loss rate of PARed versus regular
sources, for various averaging intervals, T = 25,50,125 msec, and relatively small network buffer
sizes B in cells, where this method is expected to be effective. The service rate c was selected such
that the utilization ofthe network buffer was approximately 80% or 90%.

These results exhibit some ofthe properties one would expect. The loss rate decreases when we
enlarge the averaging interval, but the effective gain one can obtain tapers off. Recall, that ideally
one should average on the typical time-scale of accumulation in the network buffers. Beyond this
point we expect long term accumulation to dominate the overflow asymptotics and thus the loss rate,

19



see §3. These two regimes are exhibited quite dramaticaUy in the plot ofthe log ofthe probabiUty
of overflow for busy cycles versus the buffer size. Fig. 11 exhibits the transition between the two
asymptotic regimes. Forsmall buffers, PARing is advantageous; performance is sensitive to the the
size ofT and B. While for large buffers, long term buildup and carry-over cause overflows. In this
case, ourasymptotics predict that thelog oftheprobabiUty ofoverflow should become approximately
linear in B, see Fig. 11. As the utilization decreases, the advantage ofPARing improves since losses
are Ukely to correspond to short term buildups rather than extended periods ofhigh traffic rates.

LOU>d

LOSS RATE: tizO, UTlUZATIONrfO* LOSS RATE: N»10, UTIUZATIONa90%

RaguUr

y

Ta25n»M

TbSOirsm
To125m»ao

BUFFER BUFFER

USSxftf

L088RATE: N»10, UTOJZATIONaSOX

BUFFER
BUFFER

Figure 10: Loss rate for PARed versus regular sources.

PARing and Loss Rates: Amore realistic simulation requires taking finite PARing buffers, Bpar,
in addition to finite network buffers B. For fixed T = 25msec, we explore the tradeoff ofthe loss
rates as a function of these twoparameters, see Fig. 12. One can consider three loss rates : in the
PARing buffers, in the network buffer, and the total loss incurred. As Bpar increases loss in the
PARing buffers decreases dramatically while losses in the network increase by a moderate amount.
For large enough Bpar the total loss rate is very close to that we obtained for infinite PARing buffer,
see Fig. 10. Consider for example the case N = 5, p= .8; in order to maintain the a total loss rate
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Figure 11: Overflow probabiUty for busy cycles.

of2. 10-4 without traffic shaping we require B = 60 however when PARing the network buffer can
be reduced to B = 10, but for each source a PARing buffer of size Bpar = 750 is required. So the
simulated buffering advantage is 65. Clearly the PARing buffer Bpar is the main cause oflosses, the
sliding window scheme improves performance significantly.

SPARing and Total Loss Rate: We simulated the scheme described in §7. Fig. 13 shows the
total loss rate, with a sUding window T = 25msec, and a variety of Bpar,B,N and utihzations.
The loss rates corresponding toa setup with no traffic shaping have been superimposed. The traffic
shaping buffers are approximately halved. Consider for case N = b,p = .8 again, in order maintain a
loss rate of 2.10"4 the network buffer B= 60 required can be reduced to 10 while using Bpar = 350.
The simulated buffering advantage in this case is 30. The sliding window idea halves the required
averaging buffers.

We beUeve that the performance ofthis traffic shaping scheme wiU improve as sources become
more "bursty", on aT time-scale. More detailed simulations were not carried out since ultimately one
should investigate the performance tradeoffs for a standard such as MPEG but designed explicitly
for ATM networks where interand intra-frame coding would result in efficient but variable bit rates
which in turn could be smoothened by PARing on the correct time-scale. The development ofthese
standards though, will depend on ATM network design, this is where coding and network design
meet, and tradeoffs such as subjective quality, priority schemes and other network design and control
schemes need to be considered.

The objective of these simulations was to exhibit the quaUtative behavior of rate averaging. A
more detailed comparative mvestigation oftraffic shaping is required to study the effectiveness of
this idea.

9 Conclusion

We proposed a simple flow control method corresponding to periodically averaging the rate ofa
source (PARing). Our primary goal was toconsider alternatives for limiting ceU loss inthe presence of
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Figure 12: Loss rates vs B and Bpar (T= 25msec).

bursty traffic. In the context of traffic shaping, we investigated the benefits ofsharing resources using
large deviation asymptotics. The sharing of bandwidth was explored via the concept of muHiplexing
gatn, while the sharing ofnetwork buffers was characterized by the buffering advantage. In particular
we used statistical ceU loss constraints to identify bandwidth requirements, and found, somewhat
remarkably, that in the case of on/off Markov fluid sources very stringent constraints may decrease
the multiplexing gain of sharing bandwidth. Our asymptotic results confirmed the notion that
sharing buffers in the network is advantageous. However, in order to fuUy understand the tradeoffs
of traffic shaping many other performance criteria need to be investigated, such as delay and jitter
PARed sources are delayed by T, but this may in turn be compensated by subsequent reductions
mnetwork delays due to the reduced burstiness (and jitter) of traffic. Reductions in jitter, wiU also
decrease the bufferingrequired at the destination.

The cost of PARing lies mainly in increased memory requirements at the sources but this may
not be consequential given the current reduction in price and the relatively fast memory required
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Figure 13: SPARing Loss rates vs B and Bpar (T= 25msec).

within the network. Moreover costs will be distributed in an equitable fashion, i.e. bursty users wiU
pay more to shape their traffic at the network interface. Another compeUing reason to buffer at the
network edge is that buffering within the network wiU make the network service dependent, thus
future services may require the redesign and instaUation of newswitches.

An important advantage of PARing over other shaping techniques is the potential for analyzing
performance. In this paper we have considered the asymptotic memory, bandwidth, and shaping
requirements as well as callacceptance for a simple network model. Ournetwork model demonstrates
the alarming possibiUty ofinteraction among streams which are not be directly sharing same resource.

A modified version ofPARing which improves overall performance was also considered; it cor
responds to using a moving average filter to smooth the traffic rate. Preliminary simulations for
a particular compressed video source exhibit the type ofimprovement one might expect. In a real
network, performance wiU depend on a variety ofunknowns, the most important being the switches
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and their service discipUnes, and the characteristics of the traffic. We hope in this study to have
emphasized the need to focus on time-scales in the design and analysis of networks. Source fluctu
ations should be considered relative to the size ofbuffers and/or the delays that can be tolerated.
Traffic shaping may be inconsequential ifoverflows occur as long term accumulations. The typical
time-scale ofnetwork overflows determines the usefulness oftraffic shaping as weU as other control
strategies.

References

[1] K. Bala, I. Cidon, and K. Sohraby. Congestion control for high speed packet switched networks.
In INFOCOM, 1990.

[2] J.A. Bucklew. Large Deviation Techniques in Decision, Simulation and Estimation. John Wiley
and Sons, New York, NY, 1990.

[3] C. Courcoubetis and J. Walrand. Note on effective bandwidth of atm traffic, preprint.
[4] G. de Veciana. Design Issues in ATM Networks: Traffic Shaping and Congestion Control. PhD

thesis, Dept. ofEECS, University ofCalifornia, Berkeley, in preparation, 1993.

[5] G. de Veciana, C. Olivier, and J. Walrand. Large deviations ofbirth death Markov fluids, to
appear, Probability in the Engineering and Informational Sciences, 1992.

[6] A. Dembo and O. Zeitouni. Large Deviations Techniques and Applications. Jones &Bartlett,
Boston, 1992.

[7] A. I. Elwalid and D. Mitra. Analysis and design of rate-based congestion control of high speed
networks, i: stochastic fluid models, access regulation. Queueing Systems, 9:29-64,1991.

[8] M. R. Frater. Estimation of the Statistics of Rare Events in Data Communications Systems.
PhD thesis, Dept. ofSystems Engineering Research School ofPhysical Sciences, The Australian
National University, 1990.

[9] M.W. Garrett and M. VetterU. Congestion control strategies for packet video. In Fourth
International Workshop on Packet Video, Kyoto, Japan, August 1991.

[10] S. Huang. Source modelUng for packet video. In ICC Proceedings, 1988.

[11] G. Kesidis. Cell Loss Estimation in High-Speed Digital Networks. PhD thesis, Dept. of EECS,
University of California, Berkeley, 1992.

[12] S. Low. Traffic Management of ATM Networks: Service Provisioning, Routing, and Traffic
Shaping. PhD thesis, Dept. ofEECS, University ofCalifornia, Berkeley, 1992.

[13] B. Maglaris, D. Anastassiou, P. Sen, G. Karlsson, and J.D. Robbins. Performance models of
statistical multiplexing in packet video communications. IEEE Trans, on Comm., 36-834-844
1988. '

[14] H. Ohnishi, T. Okada, and K. Noguchi. Flow control schemes and delay/loss tradeoff in atm
networks. IEEE Journal on Selected Areas in Communications, 6, 1988.

[15] P. Sen, B. Maglaris, N.E. RikU, and D. Anastassiou. Models for packet switching of variable-
bit-rate video sources. IEEE JSAC, 7:865-869,1989.

[16] J. Walrand. An Introduction to Queueing Networks. Prentice-Hall, 1988.

24


	Copyright notice1992
	ERL-92-135

