

Copyright © 1992, by the author(s).
All rights reserved.

Permission to make digital or hard copies of all or part of this work for personal or

classroom use is granted without fee provided that copies are not made or distributed
for profit or commercial advantage and that copies bear this notice and the full citation

on the first page. To copy otherwise, to republish, to post on servers or to redistribute to
lists, requires prior specific permission.

APPLICATION SPECIFIC PROCESSORS FOR

NUMERICAL ALGORITHMS

by

Lars Erik Thon

Memorandum No. UCB/ERL M92/139

11 December 1992

APPLICATION SPECIFIC PROCESSORS FOR

NUMERICAL ALGORITHMS

by

Lars Erik Thon

Memorandum No. UCB/ERL M92/139

11 December 1992

ELECTRONICS RESEARCH LABORATORY

College of Engineering
University of California, Berkeley

94720

APPLICATION SPECIFIC PROCESSORS FOR

NUMERICAL ALGORITHMS

by

Lars Erik Thon

Memorandum No. UCB/ERL M92/139

11 December 1992

ELECTRONICS RESEARCH LABORATORY

Collegeof Engineering
University of California, Berkeley

94720

Application Specific Processors
for Numerical Algorithms

by

PnD- Lars Erik Thon Department of EECS

Abstract

The development of Application Specific Integrated Circuits (ASICs) has historically

been driven to a large extent by applications within the areas of Digital Signal

Processing (DSP) and Communication Networks. An open question is whether the gains

and advantages that have been observed by applying ASIC technology in these areas

can be duplicated in the Numerical Processing application domain. The standard DSP-

inspired approaches are not always applicable to design tools, architectures, simulation

and circuit design for Numerical Processing (NP), because NP is different from DSP in

terms of data types, data organization, data access and pipelining margins. This work

builds on the advances made in the traditional application areas and expands the

technology into the NP application domain. Two applications are used as test cases for

evaluating the ASIC/NP combination. The first case is a geometric computation

problem, and the other involves solving nonlinear equations, ultimately leading to a

core problem of matrix computations that are common to a variety of NP applications.

An automated silicon compilation approach as well as manual designs and

methodologies have been developed and applied to the test cases.

Robert W. Brodersen

Chairman of Committee

Application Specific Processors for Numerical Algorithms

Copyright ©1992

Lars Erik Thon

Acknowledgments

This page is for the people who made my life enjoyable while I struggled my way through

Graduate School in Berkeley. There are many people to thank, and I hope I have remembered at

least everyone I collaborated withon adaily basis and the many others thatmade a difference in

my private life.

Let me start outby thanking Bob Brodersen for supporting me during the long years here at

Berkeley. It has been quite a trip. I would also like to thank:

Brian Richards for being the all around wizard and author of numerous CAD tools, and for

coaching me on all aspects ofchip design. Without Brian I would never have gotten even one chip

out the door. Kirk Thege and Kevin Zimmerman for helping out with the computers and making

me a trusted member of the root community. Mani Srivastava for answering all my beginners

questions about UNIX and many other topics just too numerous to mention, and helping out with

Dpp maintenance and hacking. Rajeev Jain for getting LageriV offthe ground. Erik Lettang for

getting all my pads routed. Sam Sheng for being such ahelpful guy and always answering

questions and especially for making MakeThorSim work. Andy Burstein and Monte Mar for being

great cubicle-mates, and (Andy) for fixing bugs in (or is it adding features to?) ext2spice. Bill

Baringer for being very inspiring and helpful when I was learning to draw my first transistors.

Susan for completely changing my life. Nancy for being such agood friend, even afterwards. Judy

for being an inspiration during mylast 2 years in Berkeley. Arlene for being the most fun to flirt

with. Jan Rabaey and Seungjeun Lee for helping out with Flint Sigvor for providing ahome away

from home for all the Norwegian students. Bertrand Irissou and John Wawrzynek for introducing

me to high-speed circuit design and helping out with the cell library, and Bertrand for being agreat

pal. Ken Rimey for teaching me LISP and writing the first ever bug-free compiler. Edward Wang

for helping out when Ken was not available. Lars "Johnny" Svensson for exploring all the

architectures that I had notime todeal with, and writing the first version of MakeThorSim. Markus

Thaler and his wife for writing the longest useful CSH script ever (DMpost).

111

Clara Chang and Jean Souza for taking care ofme when I first came to Berkeley. Mark Davis and

JeffBradt for being best friends and partners in crime. Jennifer, Herb, Robert, Stuart and Janet for

lots of fun during my first two years in Berkeley and later. AnnIrschick and Duncan Irschick for

being the best landpersons one could wish for. Michael Coleman for being agreat roommate

during my stressful dissertation-writing months. Nils and Steve for pitching inwith help on my

project. All the fun people at UCBD for providing R&R when I needed it badly. Susan, Beth and

Rebecca for being themost fun dance partners, and Jerry and Jeff for notalways stealing them

away. Sunny, Sue and Al for teaching the most fun PE classes. Greg for keeping me company at

the RSF. Richard Stallman, Larry Wall and the Free Software Foundation for providing the

software I used the most. I'm pretty sure I could never have finished without it. Richard Muller,

Richard White, Shankar Sastry, Ted van Duzer, Martin Graham and Paul Gray for being a very

friendly and helpful bunch of professors. Prof. Desoer for teaching themusteducational class I had

at Berkeley.

I would like to thankthe members of my dissertation and qualifying examcommittee, Professors

Brayton, Hald andFearing. Yourhelp is appreciated. The administrative support from Tbm Boot,

Carole Frank and Peggye Brown has been excellent, and I thank you for your speedy response to

all "emergencies".

Last, I would like to thank my mother andmy late father, who never pressured me aboutschool at

all, with the resultthat I pressured myself all the more. It workedwell! Thanks for everything.

IV

Table of Contents

INTRODUCTION 1

1.1 What is Numerical Processing? 3

1.2 Examples of Numerical Processing 4
1.2.1 Inverse Position-Orientation problem for the PUMA robot 5

1.2.2 Inverse Position-Orientation algorithm for general 6R robots 6
Other applications involving polynomial systems 7

1.2.3 Sensor inversion problems 8

1.2.4 Other numerical applications 9

1.3 Implementation alternatives for NP systems 9
1.3.1 DSP building blocks 10

1.3.2General purposecomputers 11

1.3.3 ASIC DSP design systems 12

1.3.4 DSP board-level design tools 15
Siera 16

1.4Problems in Numerical Processor design 16
1.5 Summary 18

INVERSE POSITION-ORIENTATION (IPO) COMPUTATION. 21

2.1 Kinematics of mechanisms 22
Transformation matrices 23

Homogenous transform for a general link 25

2.2 IPO computation 26

2.3 Special case IPO computation: The PUMA robot 27

2.4 IPO for general 6R robots 30

2.5Systems of polynomial equations 32
Example 32

2.6Finding all solutions of a polynomial system 33
2.6.1 Homotopy continuation 34

2.6.2 Problems with the continuation method 37

2.6.3 Non-problems with the continuation method 39
2.6.4 Homogenization 39

2.6.5 The projective transform 40

2.6.6 m-Homogenous systems 42

2.7 Summary 45

C-TO-SBLICON COMPILATION 47

3.1 Why C-to-Silicon compilation? 48

3.2 Goals of the C-to-Silicon system 50

3.3 The C-to-Silicon system 51

3.4 Retargetable compilation 51
The machine description file 52

The microoperation file 53

Parameterized structure description 55

3.5 High-level simulation 56

3.6 Architecture exploration 59

3.7 Architecture examples 60

3.8 Execution model 62

3.9 Controller structure 67

Cathedral-II controller 67

Kappa controller 68

Comparison 70

3.10 Silicon Assembly with LAGER 71
Overview of LAGER 72

The OCT database 74

Use of OCT in LAGER 75

3.11 Design styles in LAGER 76
Standard cell (Stdcell) 76
Tiled macrocells (TimLager) 78
Macrocell place-and-route (Flint) 82
Datapath compiler (dpp) 83
Pad-to-core routing (Padroute) 86

3.12 Logic-level simulation 87

3.13 Switch-level simulation 90

IRSIM input data 92
Using IRSIM 93

VI

3.14 The RL language 93
Limitations 94

Typemodifiers 95

Pragmas 95

Register declarations and register type modifiers 95
The boolean type 96

Fixedpointnumbers 96

Predefined functions 97

User-defined operations 97

Preprocessor commands 98

Program structure 98

3.15 Summary 98

THE PUMA PROCESSOR 101

4.1 Characteristics of the computation 102

4.2 Algorithm selection 103
4.2.1 CORDIC algorithm for atan2 103

4.2.2 RL program for atan2 105

4.3 Fixed point computation 107

4.4 High-level simulation 109

4.5 Architecture design andexploration 110
Architectural variations 110

Evaluation of alternatives 112

Discussion 114

Conclusion 115

4.6 Chip verification and layout design 117
4.6.1 Logic-level simulation 117
4.6.2 Switch-level simulation 118
4.6.3 Electrical rule checking 121
4.6.4Chip testing 121

4.6.5 Physical design results 124

4.7 Summary 125

SOLVING nxn POLYNOMIAL SYSTEMS 127

5.1 Software architecture of Console 128

5.2 Console variants 131

vii

5.2.1 General polynomial solvers 132

5.2.2 Robot polynomial solvers 135
256-path versions 136

96 path version 137

64 pathversion 138

Further path numberreductions 139

5.3 ConsoleandtheIPO problem: Numerical properties 139
Continuation path plots 139

Path lengths 140

Pathmaximum statistics 143

5.4 Profiling 149

5.5 Pipeline interleaving 150

5.6 Arithmetic experiments 151
Single precision floating point computation 151
Fixed point computation 153

5.7 The Fix.cc fixed point arithmetic package 155

5.8 Theoretical Bounds on variable and function values 157

5.9 Summary 158

ALGORITHMS FOR LINEAR EQUATIONS 163

6.1 "Realification" of complex equations 164

6.2 Algorithms for solving linear equations 164

6.3 The Gauss/LU algorithm 165
6.3.1 Architectural implications 168

Memory bandwidth 169
Pipelining and pipelining margins 171
Pipeline interleaving 173
Pivoting 174

Summary of Gauss/LU characteristics 175

6.4 The Crout algorithm 175
Summary of Crout characteristics 177

6.5 The Doolittle algorithm 180
Properties of Doolittle's algorithm 180

6.6 Summary 181

vm

ConsoIC IMPLEMENTATION ALTERNATIVES 183

7.1 Commercial DSP chips 184
7.1.1 The AT&T DSP32C digital signal processor 184

7.1.2 Solving linear equations on the DSP32C 186
Gauss/LUon the DSP32C 188

Potential speedup 189

CroutorDoolittleon theDSP32C 190

7.1.3 The Motorola MC96002 digital signal processor 191

7.1.4 Solving linearequations on the MC96k 195
CroutorDoolittleontheMC96k 198

Potential speedup 198

7.1.5 Texas Instruments TMS320C30 digital signal processor 199
7.1.6 Solving linearequations on the C30 204

Speedup potential 204

7.2 Vector processors 204
Supercomputers 205

Vector processing chips 205

Massively Parallel Architectures 207

7.3 Systolic Arrays 207

7.4 Standard microprocessors 210
7.4.1 The SPARC family 210

7.4.2 The Motorola 88k family 211

7.4.3 The MIPS R-series 212

7.4.4 The DEC Alpha 21064 212

7.4.5 The Intel i860 XP 212

7.4.6 OtherRISC jiP families 213

7.5 Summary 214

THE SMAC (SMall Matrix Computer) ARCHITECTURE 215

8.1 SMAC requirements 216

8.2 Datapath and memory architecture 217
Forward elimination 217

Backsubstitution 217

Pivot search 217

Parallel pivotsearch 219

ix

Consolidated data path 220

8.3 Pivot row permutations 222

8.4 Addressing and address generation 223
Address composition 225

Address computation 227

8.5 Loop control andinstruction sequencing 227
Controllerstructure 229

8.6 Building blocksfor implementing SMAC 230

8.7 TSPC latch design 231

8.8 Pipelinedhigh-speedmultiplier (pmult) 234
Pipelining and compressors 235

Operand and result pipelining (input and output delays) 237
Vectormerger 240

Tiling and circuit implementation 241

Simulation results 241

Testchip 243

Test results 246

8.9 Floating point datapath building blocks 247
Pipelining 252

Test chips 252

8.10 High speed 3-port SRAM (regfilew) 252
Floorplan and tiling 255

Testchip and results 255

8.11 High speed PLA (hpla) 257
Floorplan and tiling 259

Simulation 260

Test and fabrication results 261

8.12 Pads and clock distribution 261
Test results 262

8.13 Summary 263

SUMMARY AND CONCLUSION 265

9.1 The C-to-Silicon system and the PUMA chip 266

9.2 Matrix computations 267

9.3 Conclusion and directions for further investigation 269

BIBLIOGRAPHY 271

APPENDIX A: puma.k CODE 277

XI

List of Figures

Figure 1-1 DSP versus Numerical Processing (a) Digital filter
(b) Solving nonlinear equations 3

Figure 1-2 A fully articulatedrobotic arm 5

Figure 1-3 Cylindrical objectmakingcontact with elastic layer with stress
sensors 8

Figure 2-1 Denavit-Hartenberg link parameters 22
Figure 2-2 Transformation of coordinates between systems 24
Figure 2-3 Stick diagram of the PUMA 560 industrial robot 27
Figure 2-4 Closed form solution to IPO equations for the PUMA 560robot 28
Figure 2-5 Example of multiple solutions to the IPO problem 29
Figure 3-1 Design process for programmable Application Specific Processor 48
Figure 3-2 Retargetable C-to-Silicon compilation 52
Figure 3-3 Machine description file for a simple address computation unit 53
Figure 3-4 Microoperation file for address computation unit 54
Figure 3-5 Examples of layoutparameters 55
Figure 3-7 High-level simulation of algorithm and architecture 56
Figure 3-6 SDL file (main parts) for address datapath with variable number

of registers 57

Figure 3-8 Implementation of floating- and fixed point simulation 58
Figure 3-9 Implementation of profiling tool 59
Figure 3-10 The architecture exploration process 60
Figure 3-11 Example of an architecture suitable for the C-to-Silicon system 61
Figure 3-12 Datapath for Decision Feedback Equalizer [svensson90] 63
Figure 3-13 Address unit for Decision Feedback Equalizer [svensson90] 64
Figure 3-14 The execution model is based onstraight-line blocks of code

separated by arbitrary multiway branches 65
Figure 3-15 Code fragment corresponding to Figure 3-14 66
Figure 3-16 Branch instruction generated bythe compiler atthe end of Block 32 67
Figure 3-17 Controller architecture used inthe Cathedral II system 68
Figure 3-18 Kappa controller architecture 69
Figure 3-19 The chipdesign process in LAGER 72
Figure 3-20 More detailed view of LAGER and OCT interaction during the

design process 73

Figure 3-21 Example of OCT facet containing design specification or information76
Figure 3-22 Example of a Stdcell design specification 77
Figure 3-23 Example of 4-row Stdcell layout 78
Figure 3-24 1-dimensional tiling example 79
Figure 3-25 User perspective and Library Designer perspective of a

Tiled Macrocell (TlmLager cell) 80

xiii

Figure 3-26 A simple 2-dimensional tiling example 81
Figure 3-27 Example of Flint floorplan and global routing 82
Figure 3-28 A simpledatapath 84
Figure 3-29 Generic floorplan for adatapath 85
Figure 3-30 User's and Library Designer's perspective of the datapath compiler 85
Figure 3-31 Packing generation and pad-to-core routing 86
Figure 3-32 Padroute uses a special channel router for ring-shaped channels 87
Figure 3-33 Generating aTHOR simulator from SDL 89
Figure 3-34 CHDL templates are stored inside the OCT views and instantiated

and interconnected using MakeThorSim 89
Figure 3-35 Switch level NMOS transistor device model used in IRSIM 91

Figure 3-36 LAGER support for IRSIM simulation from layout 91
Figure 4-1 The CORDICalgorithms use vectorrotations to compute

elementary functions 104

Figure 4-2 RL code for the atan2 function computedusing the
CORDIC method 106

Figure 4-3 Small architecture variations had significant impact on the
PUMA chip performance and cost (area) Ill

Figure4-4 The PUMA datapaths 115
Figure4-5 Datapath with array multiplier 116
Figure 4-6 THOR simulation of PUMA 119

Figure 4-7 IRSIM simulation of PUMA 120

Figure 4-8 CIF plot of the PUMA chip 124
Figure 5-1 Generic flowchart for Console programs 129
Figure 5-2 Example of continuation pathsin the complex plane 133
Figure5-3 Example of continuation paths from the robot64p2gp program 141
Figure 5-4 Individual histograms showing the frequency of various arc (path)

lengths among the 64 paths generated by each one of 3 different runs... 142
Figure 5-5 Histograms of max absolute values of variable and function

components on a per-path basis over 500x64 paths. Df(x)
has the largest values in this sample 144

Figure 5-6 Left: Max absolutevalue histogram for Example 3 (500x64 paths).
Right: Max absolute value of components of x (3x500x64 paths) 145

Figure 5-7 gmax and fmax histograms for f=(pana, puma, Example 3) goal
systems and 500 random goal points.There are 3x500x64 paths 146

Figure 5-8 hmax and Dgmax histograms for f=(pana, puma, Example 3) goal
systems and 500 random goal points. There are 3x500x64 paths 147

Figure 5-9 hmax and Dgmax histograms for f=(pana, puma, Example 3) goal
systems and 500 random goal points 148

Figure 5-10 Pipelineinterleaving with 2 processors, and 2 paths being computed
concurrently 151

Figure 5-11 The declaration of the Fix class used for fixed point computation 156

XIV

Figure 6-1 Gauss/LU step number k 165

Figure 6-2 Gauss/LU algorithm without pivoting 166
Figure 6-3 Gauss/LU algorithm with partial (row) pivoting 167
Figure 6-4 Repetition count for selected lines of Gauss/LU algorithm 170
Figure 6-5 Pipeliningmargin(PM) 172
Figure6-6 Regular versus Interleaved back substitution 174
Figure 6-7 The memory access patterns for the Crout algorithm 175
Figure 6-8 Croutalgorithm without pivoting (lincrsolnr.l.c) 178
Figure 6-9 Crout algorithm with pivoting (lincrsolpr.l.c) 179
Figure 7-1 Block diagram of the AT&TDSP32C signal processor 185
Figure 7-2 Simplified block diagram of theMC96002 chip 192
Figure 7-3 The MC96k datapath 193
Figure 7-4 The Address Generation Unit (AGU) of the MC96k 194
Figure 7-5 Assembly code for Gauss/LU inner loop a[]=a[]-m*bD on

the Motorola MC96k processor 196
Figure 7-6 Assembly code for Gauss/LU inner loop on Motorola MC96k

(continued) 197

Figure 7-7 Assembly code for Crout algorithm inner loop onthe MC96k 199
Figure 7-8 Block diagram of the TMS320C30 chip 200
Figure 7-9 Main datapath of the TMS320C30 201
Figure 7-10 TMS320C30 auxiliary register file and address arithmetic unit 202
Figure 7-11 Assembly code for Gauss/LU and Crout on the TMS320C30 203
Figure 7-12 Thecentral parts of the NEC Vector Pipelined Processor (VPP) 206
Figure 7-13 Simplified block diagram of the WARP systolic processor 208
Figure 8-1 Elimination datapath 218
Figure 8-2 Back substitution datapath 218
Figure 8-3 Pivot search datapath 218
Figure 8-4 Parallel pivot search based on comparing just the exponent

part of the candidates 219

Figure 8-5 Consolidated datapath which can perform all three basic tasks 220
Figure 8-6 (a) Datapath in elimination and parallel pivoting mode

(b) Datapath in back-substitution mode 221
Figure 8-7 Datapath inreciprocal computation mode 222
Figure 8-8 Using a permutation table to translate row addresses

instead of swappingrows 223
Figure 8-9 Rearranging theaddress bits to allow right-hand sides to be

stored as additional columns in the matrix a[]Q 224
Figure 8-10 Address composition from row and column components 225
Figure 8-11 Version of the Gauss/LU algorithm which works on augmented

multiple right-hand sides 226

xv

Figure 8-12 (a) Address generation unit of SMAC (b) Contents of register files
and (c) Possiblecircuit implementation 228

Figure 8-13 (a) TSPC p2-latch (b) TSPC n2-latch (c) 2-phase latch 232
Figure 8-14 Circular shiftregister for testing sensitivity of TSPC latch

operation to clock slope 233
Figure 8-15 Pipelined multiplier using per-phase latch stages 233
Figure 8-16 Multiplication: The parallelogram of partial products 234
Figure 8-17 4:2 compressormade from 2 full adders 235
Figure 8-18 Basic cell of pipelinedmultiplierarray 236
Figure 8-19 Organization of pipelined multiplier array based on4:2 compressors237
Figure 8-20 A possible floorplan for the pipelined multiplier 238
Figure 8-21 Final floorplan for pmult 239
Figure 8-22 Logic diagram of pipelined Right-Hand Side (RHS) vector merger 239
Figure 8-23 The RHS merger and the I/O latches must start with latches of the

appropriate polarity, so as to fit with the timing of the main array 240
Figure 8-24 Logic function of the bottom-sidevector merger 241
Figure 8-25 Tiling example for 8x8 pmult multiplier 242
Figure 8-26 pmult test chip architecture 243
Figure 8-27 Input side test circuits for pmult 244
Figure 8-28 Output side test circuits for pmult 244
Figure 8-29 Timing of the input-side test circuits245
Figure 8-30 Timing of the output-side test circuits 245
Figure 8-31 CIF plot of pmult multiplier testchip (pmvt24c) 246
Figure 8-32 Mantissa datapath for floating point adder 248
Figure 8-33 Exponent datapath for floating point adder 249
Figure 8-34 Mantissa alignment in 3.3ns using a logarithmic shifter 250
Figure 8-35 Mantissa normalizer built around logarithmic NOR-based

1-detectors 251

Figure 8-36 Block diagram of regfilew 253
Figure 8-37 Circuit diagrams of regfilew 254
Figure 8-38 Floorplan for the top level of 256x32 regfilew layout 255
Figure 8-39 CIF plot of the 256x32 regfilew test chip (regw256c) 256
Figure 8-40 Block diagram of hpla 257
Figure 8-41 hpla circuit schematic 258

Figure 8-42 Timing and latency of hpla 258
Figure 8-43 Floorplan and tiling of hpla. Each square denotes a leafcell 259
Figure 8-44 IRSIM simulation of a hpla design at f=250MHz 260

XVI

Table 1-1

Table 1-2

Table 1-3

Table 1-4

Table 1-5

Table 3-1

Table 3-2

Table 3-3

Table 3-4

Table 3-5

Table 4-1

Table 4-2

Table 4-3

Table 4-4

Table 4-5

Table 4-6

Table 4-7

Table 4-8

Table 4-9

Table 4-10

Table 4-11

Table 5-1

Table 5-2

Table 5-3

Table 5-4

Table 5-4

Table 5-5

Table 5-6

Table 5-7

Table 5-8

List of Tables

Use of application specific integrated circuits and systems 2

Typical characteristics of DSP and NP algorithms 4

Some standard programmable DSP building blocks 10
Performance of DSP chips for LU-decomposition
(no pivoting) 10

SIERA uses a layeredapproach to system implementation 17
Main programs anddesign styles of the LAGER system 71
Fixed contents of an octObject 75

Variablecontents of an octObject 75
Example of parameters for some tiled macrocells 79

The primary IRSIM model parameters for a MOSIS
1.2(Lim CMOS process 92
The IPO algorithm is intensive in multiplication and
trigonometric functions 102

Cordic functions consist mostly of shift/add operations 103
The set of angles used in the CORDIC iterations 105

(a) Fixed point representation (b) Rules for fixed point
computation (c) Scaling classes for the variables
of the IPO computation 107
Design tradeoffs affect layout area, static instruction count
and dynamic instruction count 113

Effect of design decisions on code size (static instruction
count)and codeexecution time (dynamic instruction count) 113
Special THOR utility models for PUMA debugging 118
The electrical design rule checked by the ere program 121
Simulation and test chip measurementresults 122
Physical design characteristics of thePUMA chip 123
Measurements on the PUMA chip 123
Software modules of theConsole family 130
Different homotopies used to formulate and solve
IPO equations 130

Programs in the Console package 131
Coefficients used for the random starting system in consol6r 133
Coefficients used in thesystem solved in Figure 5-2 134
Starting points an end points for the 4 continuation paths
of Figure 5-2 134
Hints for solving (5-13) by hand 138
Options for therobot64p2gp program 140
Profiling results for robot64p2gp 149

XVll

Table 5-9

Table 5-10

Table 5-11

Df(x)

Table 5-12

Table 6-1

Table 6-2

Table 6-3

Table 6-4

Table 7-1

Table 7-2

Table 7-3

Table 7-4

Table 7-5

Table 7-6

Table 7-7

Table 7-8

Table 7-9

Table 7-10

Table 8-1

Table 8-2

Table 8-3

Table 8-4

Table 8-5

Table 8-6

Impact of parallelization on relative runtime of function
evaluations versus linear system solving 150
Convergence of ConsolC/robot64p2gp in single-precision
arithmetic 152
Scaling of the fixed point variables used in computing f(x) and
154

The coefficients of (5-12), in terms of the goal point position,
orientations and therobot Denavit-Hartenberg parameters.

la[i]=Xi, mu=m 159
The key arithmetic instructions of the Gauss/LU algorithm 168
Statement profile for Gauss/LU algorithm without pivoting 169
The key arithmetic instructions of the Crout algorithm 177
Simplified view of some key properties of linear
equation algorithms 181

Reservationtable for data bus during one machine cycle 185
Generic form of MAC and MADD instructions 187

Reservation table for relevant hardware units during
multiply-accumulate or multiply-add 187
Delays of DSP32C hardware blocks (number of states) 187
Optimized hand-coded versions of matinv.lib.s routine 189
Instruction pipeline of the MC96k 192

Memory and bus allocation during MC96k instructioncycles.... 193
Instruction pipeline of the TMS320C30 200

Memory and bus allocationduring C30 instruction cycles 201
Some commercial RISC families and chips 209
Relative merits of commercial hardware platforms 216
Instruction set for address computation unit 227
Branching logic for triple-nested loops 230

New datapath cells for floating point 247
New TimLager tiling primitives used in hpla 260
The pads of the padsl2 family 262

xvm

CHAPTER 1

INTRODUCTION

Thelate 1980s produced atremendous development inthearea of Application Specific Integrated

Circuits (ASICs) and systems. Consumer electronic products such as Compact Disc (CD), Digital

Audio Tape (DAT) players and video camcorders typically contain several ASIC parts.

Telecommunication products such as mobile radios and telephones contain ASICsbecause of the

requirements of compactness, low weight and low power consumption. A list of common

applications is shown in Table 1-1.

What should benoted from this table is that the computationally intensive portions of these

applications fall within the domain of Digital Signal Processing (DSP). There has been little

development of ASICs that can be classified as belonging to the general area of Numerical

Processing (NP). We conclude that the development of computationally intensive ASICs in the

1980s has largely beendriven by DSPapplications.

Common to most application specific systems is that they are embedded systems, meaning that

they are intended to be self-sufficient and self-contained. This means, in particular, that they

Application area Product Acronyms

Consumer Digital Audio (CD, DAT, DCC)
Video products (camcorders, editing)
High Definition Television (HDTV)

Compact Disk
Digital Audio Tape
Digital Comp. Cass

Telecom Mobile radio and telephony
Cellular radio

Wireless computer networks
Video telephone
Voice-band data modems

Switching systems (SDH, ATM)
Encryption (DES, RSA public key)
Speech recognition
Speech synthesis

SDH=Standard

Digital Hierarchy,
ATM=Asynchrono
us transmission

mode, DES=Data
Encryption Stan
dard, RSA=Rivest-
Shamir-Adelman.

Workstations and

computer products
Graphics processors
Video compression (JPEG, MPEG)
Multimedia support (audio, image)
Vector processing units
Disk drive read/write channel

JPEG=Joint Pho

tography Expert
Group, MPEG=-
Motion Picture

Expert Group.

Imaging Medical imaging
Image analysis and reconstruction

Table 1-1 Use of application specific integrated circuits and systems

cannot and do not rely on outside computational power from a general-purpose computer,

typically because of size, power, economical and communication constraints. For systems

requiring numerical processing, the solutionshas traditionally been to build specialpurposeboards

based on off-the-shelf microprocessor or DSP chips [chen86][gagli861[nara86][nara88]. The

reliance on ASIC solutions has been much lower than in embedded DSP systems, partly because

the design of numerical ASICs is often a more complex problem than the design of DSP ASICs

and partly because the benefits were unclear. However, the demands on size, power and

performance pertain to all embedded systems, and it will be shown that ASIC solutions for

Numerical Processing will also result in considerableadvantages.

•*-1 •• t

• xl

Figure 1-1 DSP versus Numerical Processing (a) Digital filter (b) Solving nonlinear
equations

1.1What is Numerical Processing?

The differentiation of Numerical Processing from DSP is not obvious. After all, both areas

necessarily involve digital computation in some form. A typical example of DSPversus NP is

illustrated in Figure 1-1. The digital filtering example has many of the characteristics of a DSP

problem, such as an indeterminate data stream and real-time flow-through processing. The

numerical example, on the other hand, consists of finding the solution(s) of two 2nd degree

polynomial equations in two unknowns, corresponding totheintersection of two ellipses.

Digital Signal Processing Numerical Processing

Indeterminate length data stream Finite data set

Data originates as an analog real-world
signal

Data is an equation that needs to be solved

Modifying data stream Computing solution to equation

Closed form algorithm Iterative algorithm

Scalar and vector operations:
Add, Multiply, Delay, Accumulate

Matrix operations:
Gaussian elimination, LU decomposition

Flow-through processing (data streams
through pipelined datapath)

Data is shuffled back and forth between

memory and datapath multiple times

Circular buffers, FIFO buffers Matrix indexing, pivoting, permutations

Table 1-2 Typical characteristics of DSP and NP algorithms

Table 1-2 is an attempt to contrast DSP and NP by making a more complete list of some their

opposing characteristics. The table itself is just a list of differences, and it does not attempt to

explain the ramifications of these differences, but these will become clearer in later chapters as

examples are considered in detail. The next section presentsexamples that will help establish the

distinctive features of NumericalProcessing.

1.2 Examples of Numerical Processing

In this section we will introduce two applications of numerical processing that will be used as

design examples later on. Both examples are taken from the field of robotics, but this is mostly a

coincidence. Under the surface, the examples contain elements that are common to many NP

problems, and this means that they can serve as interestingdesign examples in this dissertation.

WMMMMA

(Px>Py>Pz)

C(= cosfy
Si = sinQ\
rik - components of3x3 orientation matrix

Figure 1-2 A fully articulated robotic arm

1.2.1 Inverse Position-Orientation problem for the PUMA
robot

This application comes from the field of robot control and path planning, and is known as the

inverse position-orientation (IPO) problem1. The background is as follows: The most advanced

industrial robots have 6 revolute joints (6R) driven by independent actuators. A typical such robot

is shown in Figure 1-2.

The robot is controlled by executinga particular position/speed/acceleration profile (overtime) for

eachseparate joint, andemploying feedback to correct deviations from the given profile. However,

the robottask is more naturally described in cartesian space thanin joint space. Hence, we need to

be able to compute a set of joint angles that correspond to a given position and orientation of the

robot hand in the cartesian workspace. Our task is to compute the solutions of the IPO for the

1. Also known as the Inverse Kinematics problem

6

Puma 560 robot.

The input to the IPO algorithm for the PUMA 560 [craig86] is a data set that specifies a goal

position and orientation for the robot end-effector. The algorithm itself is a closed form, but

repetitive, calculation that executes 4 times to find all the solutions to the problem (there are 8

solutions total and the algorithm computes 2 of them ata time). The nature of the computation is

geometrical, andthe algorithm depends heavilyon trigonometrical function evaluations.

1.2.2 Inverse Position-Orientation algorithm for general 6R
robots

A closed form solution to the IPO problem for 6R robots is knownonly forthe case when the last

three joint axes intersect in a point [pieper68]. If the robot has a more general form, the solution

cannot be found in closed form and the problem has to be attacked using an iterative numerical

procedure. A goal position and orientation is commonly described in terms of a 4x4 matrix T

which contains a 3x3 submatrix R that specifies the orientation and a 3x1 vector p that specifies

the position. The equations thatmust be solved come about in the following way:

The functional relation betweenthe angles 9=(81,92,93,94,05,96) and the resulting position and

orientation T=(R,p) canbe derived easily, so thatT=f(9). Ourproblem is to solve the equation

f(9)=T, withT given, with respect to 9. If we consider q=cos(9i) and Si=sin(9j) to be our basic

unknowns, thenthe equation canbe arranged so that it has the form of a system of n polynomial

equations in n variables (unknowns), with terms up to 2nddegree present [tsai84]. The number of

equations and variables to be included can also vary (with the extraneous variables being

computable from the ones contained in the equations). One particular system with 8 complex-

valued variables (4 sines and 4 cosines) will be used in this work. This means that we have a

system of 8 complex equations in 8 variables. When the system is "realified", that is, the real and

imaginary parts of the variables are treated separately, we can turn it into a system with n=16

variables and equations.

The preceding paragraph implies that the IPO problem has been refined into a problem of

computing all solutions of a nxn system of 2nd degree polynomial equations. This has long been

considered a difficult problem in numerical mathematics, and only in the last 10-15 years have

robust methods been developed. The biggest problem is the requirement that all solutions to the

system must be found. It is often possible to find at least one solution using a simple numerical

method, but finding al the solutions is much more difficult. Two different approaches

[tsai84][morgan86] [manocha92] have been successfully developedduring the 1980s,and we will

be concentrating on the method developed by Morgan and others.

Morgan's method is called homotopy continuation, and is based upon finding and solving an

"easy" set of equationsthat is "close" to the "difficult" systemthat we really want to solve. Theory

has been established which proves that there exists, under mild restrictions, a path from the

solutions of the easy system to the solutions of the difficult system, and that one can track these

paths using an iterativescheme, typically involving Newton's method [dahlquist74].

Applying Newtons method to solving a nonlinear nxn systemh(x)=0 involves three majorparts,

namelycomputing h(x), the jacobian matrix Dh(x), and solvinga linear system of nxn equations.

Of these threesteps, the first two can easilybe parallelized and computed on one or more general

purposeDSP chips.Solvingthe systems of linearequations is the bottleneckin the process, and is

what we will concentrate on as our corenumerical problem for this particularapplication. In fact,

most (if not all) multivariable iterative numerical problems will, if examined in detail, boil down to

solving linearsystems or performing othermatrix operations. In otherwords, linear algebra is the

key, and will be the focus of the second design case considered in this dissertation (Chapter 5 -

Chapter 8).

Other applications involving polynomial systems

The IPO computation for the general 6R robot is just one example of an application where the

problem essentially is computing all solutions of a system of polynomial equations. This

t
X

miiii
lillll' v< *. ; - •AAr' •""• \ V X'"

MMMK ' 1

*,%>*k* W,'„%*
' '

$11111 s ^ ' '

4J ^«^HSA; ^ *Jtf^'' y * \^"v ws
i •: *\ ''

•

Figure 1-3 Cylindricalobject making contactwith elastic layer with stress sensors
(from [pati88])

numerical problem arises in a number of other applications, including 3D graphics, kinetics of

chemical reactions, and solid modelling [morgan87a].

1.2.3 Sensor inversion problems

Sensor inversion problems are common in systems that use arrays of sensor to measure some

physical quantity and then need to translate the measuredquantity into useful information. One

example is from the area of tactile perception, where a mechanical hand is equipped with pressure

(stress) sensors on its fingers, and one wants to computethe force and/or the shapeof the contact

area between the hand and the object that the hand is gripping. Such shape and force information is

needed to be able to perform dextrous manipulation of the object by the hand. This problem has

been studied in [pati88][fearing91], among others. Figure 1-3 shows the model used in [pati88].

The equations governing this system is the integral equation

exO0 =jt(x,y-y0)fx(y0)dyc (1-1)

where e() is the resultant strain, t() is the "impulse response" of the elastic material and f 0 is the

applied force (or line pressure). The problem now is to compute the line force f from the measured

e(). This can be achieved by discretizing the equation over the region of interest, resulting in a

system of linear equations

e = Tf or Tf=e (1-2)

where we can solve for the force vector f. Depending on the sensorand hand configuration, the

size if the linear system will vary but should remain fairly small (n<16) for most applications. A

multi fingered hand may have many sensor arrays and will need considerableamount of numerical

processing power to compute all the forces on all the fingers in real time (100Hz sampling rate).

The force (and possibly shape) information could then be fed to the control system to achieve

dextrous manipulation of the object It should be mentioned that inversion problems of this type

are often somewhat ill-conditioned and may require Least Squares solution methods, which

nevertheless will amountto linear equation solving in the end.

1.2.4 Other numerical applications
• Control systems: (recursive) state estimation, (recursive) parameter estimation, system identifi

cation, Newton-Euler equations for robot dynamics.

• Radar, antenna array processing, multivariable signal processing.

• Real-time optimization, flexible structure control.

1.3 Implementation alternatives for NP systems

Because of differences between DSP and NP, such as the ones shown in Table 1-2, the

architectures and design methods used for DSP systems are not always directly applicable to NP

design problems. We will now discuss some of the building blocks, design tools and methods used

for DSP ASIC design, and indicate some of their shortcomings with respect to Numerical

Processing problems.

10

1.3.1 DSP building blocks

The first distinction we need to make isbetween systems based (partly) on off-the-shelf building

blocks and systems based on ASIC (full custom) solutions. Table 1-3 shows some of the most

common DSP building blocks. The question iswhether these processors can beefficiently applied

to numerical problems. The answer is thatin manycases they are in fact veryattractive candidates:

Allof them support floating-point arithmetic and they work atquite decent clock speeds by today's

standards. However, for certain numerical problems, such asmatrix computations, the processors

are not ideally suited. As will be explained in detail later (Chapter 7), none of the processors are

capable of executing the inner loop of a Gaussian elimination (or LU-decomposition) at full

pipeline speed.Table 1-4shows the performance of some common DSP chips on the inner loop of

LU decomposition. It turns out thatallthe standard DSPchipshavebeen designed with one goal in

mind, namely single-cycle execution of the inner loopof FIR and HR filter programs. In essence,

the problem is that FIR/IIR filters needs multiply-accumulate (MAC) instructions whereas LU

decomposition needs multiply-add(-store) (MADD) instructions. The MADD instructions involve

Building block Manufacturer Clock frequency Instruction latency

DSP32C ATT 50.0 MHz 80ns

TMS320C30 Texas Instruments 33.4 MHz 60ns

MC96002 Motorola 40.0MHz 50ns

Table 1-3 Some standard programmable DSP building blocks

Processor Icycles/iteration Time/iteration Ideal time

DSP32C 1.5 120ns 20ns

TMS320C30 2.0 120ns 60ns

MC96002 2.0 100ns 50ns

Table 1-4 Performance of DSP chips for LU-decomposition (no pivoting)

11

3 memory references (2 read, 1 write) instead of 2, and none of the commercial DSP architectures

are designed with this requirement in mind.

In addition, there is the problem of pivoting [dahlquist74]. For allbut trivial-sized LU problems, it

is necessary to rearrange the rows of the matrix aftereach majorelimination step,so asto preserve

the numerical stabilityof the procedure. This rearrangement can be done by outrightswapping of

rows in the memory or by using a level of indirection in the addressing so that the row address is

passed through a permutation table which holds the information abouthow the rows arecurrently

rearranged. The DSP chips areeven less able to deal with this type of situation. An extra level of

indirection will lead to additional stall of the floating-point pipeline, and decrease the performance

of the inner loop by another factor of 2 or3. Thismeans that thechips mayrun atonly 1/5 of their

peak rate, which is clearly notverygood utilization of their high-speed floating-point units.

A third problem with programmable DSP chips is that they are not generally available as chip

cores, that is, adesigner cannot take one of theDSP chips and useit asa core around which to put

other functional blocks, all on one chip: It is often the case in e.g. telecom applications that a

designer would like to have thebasic functionality of a programmable DSP chip, butwill also need

to integrate it withother more specialized functions on asingle chip.

Finally, even if the DSP is available as achip core, one will often see that only certain parts of the

core are really useful, meaning that there is alotof wasted area onthechip. If thedesigner needs a

programmable chip solution, it would be better tohave architectural flexibility so that the designer

can include exactly those features and functional blocks that are needed. This theme will be

explored in Chapter 3 on C-to-Silicon compilation.

1.3.2 General purpose computers

The scope of this dissertation is embedded, real-time, application specific systems. As indicated

earlier, such systems are typically constrained in size, weight, power consumption and

communication capability. This means that general purpose computers (workstations,

12

supercomputers, etc.) are generally notaviable option. One could consider building systems based

on commercial microprocessors (uP) and floating point coprocessors, but this alternative involves

complications such as the need for external memories, caching schemes, memory management

overhead and system busses. These complications are even more aconcern for general purpose uP

chips than for DSP chips, since DSP chips always have a fair amount of on-board memory and do

not support virtual memory. The conclusion is that most uP chips are not a good alternative for

embedded NP systems. However, to be fair, Chapter 7 contains an extensive and often detailed

evaluation of anumber of alternative implementation vehicles, including several DSP chips, RISC

Microprocessors, Vector processors and other morespecialized architectures.

1.3.3 ASIC DSP design systems

There has been considerable work done in the area of ASIC DSP automatic design tools.

Currently, the most popular form of these toolkits is the integrated CAD environment, meaning a

"complete" system which supports all aspects of the design process. Many suchtoolkits are now

available either from academia or from commercial vendors. The toolkits are typically

distinguished by application area (specialization), and whatlevel of detail the inputdescription is

at. Forexample, there are systems that use structure descriptions, RTL descriptions and behavior

descriptions as their main input form. Some of the systems will be discussed below, mainly

HYPER [rabaey91], Cathedral-II [rabaey88], McDAS [hoang92], PADDI [chen92], LAGER,

FIRGEN [jain91], BLIS [whitcomb92], Olympus [micheli90] and C-to-Silicon [thon92][rb92].

Most of the work in this dissertation is based on the LAGER [rabaey85] [shung89]

[shung91][rb92] design tools, either by direct application of the tools or building on top of them.

The core of LAGER is a silicon assembler that allows a high-level structure specification of an

ASIC in terms of parameterized functional blocks. A limited behavior specification capability is

also supported in terms of boolean equations. LAGER comes with a fairly extensive collection of

predesignedlibraryblocks which the user can call up, parameterize (personalize) and interconnect

at will. The purely structural approach is most often used when performance is critical so that

13

manual design of thestructure of thedatapaths, memory and control is necessary.

LAGER is the common denominator of several higher-level synthesis systems and architecture

exploration tools. HYPER [rabaey91] is a synthesis system which converts a dataflow algorithm

specification into a hardwired ASIC implementation. The algorithm is specified as a data

flowgraph using the Silage language, and HYPER goes through several steps such as resource

allocation, datapath synthesis, operation scheduling and control synthesis to produce the structure

description that is passed on to LAGER. HYPER also can target other implementation forms than

ASICchips. McDAS [hoang92] and PADDI [chen92] are two subparts of HYPER that target

multiprocessor DSP implementations and field-programmable DSP architectures, respectively.

However, common to all HYPER tools is that theytarget medium data-rate applications and that

they generate hardware implementations with flow-through pipelined processing, low levels of

resource sharing and fairly simple hardwired control. This of course reflects upon the basic design

decision which was to base the tools on dataflow-type algorithm descriptions. Many DSP

applications fit well into this pattern, butthis is unfortunately notthecase for atypical Numerical

Processing problem.

C-to-Silicon [thon92] [rb92] is an architecture exploration and design system for programmable

ASIC DSP chips. It allows a procedural description of the users' algorithm in the RL language

(which is a subset of C extended with a fixed-point datatype [rimey89]), and generates a

microprogrammed ASIC, using aprogressive refinement of architecture descriptions provided by

the user. The strength ofthe C-to-Silicon system isthat the user only needs to provide avery high-

level description of the architecture inorder tocompile the algorithm and get accurate information

on program sizeand execution speed. Only after theappropriate architecture has been determined

is itnecessary to develop the more detailed structure description. The RLcompiler is retargetable

by the architecture description and can thus cover a wide variety of possible architectures and

performances. C-to-Silicon is typically better suited for Numerical Processing than is dataflow

synthesis programs, since numerical algorithms tend to contain more control (conditional

14

execution) and amuch higher degree of resource sharing and iterative reuse of data. Chapter 3 and

Chapter 4 of this dissertation describes the C-to-Silicon system and how it was applied todesign

the PUMA chip. However, C-to-Silicon is certainly not suited for all kinds of numerical

algorithms: Matrix operations, matrix addressing, and pipelined vector processing are not easily

expressed in C, resulting in a considerable performance penalty. For such purposes it will be

necessary to apply more direct, specialized and less automated methods.

Another tool built ontopof LAGER is FIRGEN [jain91]. FIRGEN generates FIR filter layout

from a frequency domain specification, by first generating a structure description from the

behavior description, and then let the LAGER tools and cell libraries create the layout. In fact,

[sriva92] points out that this appears to be a common theme for the higher-level design tools:

There are two phases of the design; one that generates an architecture (structure description) from

abehavior specification, and theother that generates thephysical layout from thearchitecture. The

two phases communicate via a well-defined structure description interface.

Other ASICDSP design systems include Cathedral-II [rabaey88], Bit Serial Silicon Compiler

(BSSC) [jassica85], BLIS [whitcomb92] and Olympus [micheli90]. Cathedral-II is somewhat

similar to HYPER and is also geared towards medium rate DSP applications rather than Numerical

Processing. Bit serial arithmetic, as in BSSC, is not practical for numerical applications, which

most often require floating point hardware.

BLIS(Behavior-to-Logic Interactive Synthesis System) is ahigh-level synthesis system suited for

control-dominated designs, such ascache controllers, microprocessors, communication chips, etc.

BLIS supports functional-level synthesis from the ELLA language. Olympus is asynthesis system

based on the Hardware-C language. It supports multilevel synthesis, technology mapping and

simulation. BLIS and Olympus assume that there exists hardware primitives, typically atthe gate

level, that can be used to assemble the layout. While these are indeed impressive design systems,

assembling thehardware from primitives (Standard cell, Sea-Of-Gates, gate array) mostoftenwill

not sufficewhen targeting high-performance Numerical Processor design. BLIS/Olympus are

15

reasonable alternatives for less performance-oriented designs such as the PUMA chip (which was

based on the C-to-Siliconsystem, Chapter4). However, the C-to-Silicon system is by no means

restricted to low sample rates or clock rates, as the user can obtain high levels of performance by

providing the necessary high-speed building blocks. One could argue that BLIS/Olympus can

solve this problem as well by supplying them with the same building blocks, but that would in a

sense defeat the purpose of the systems, considering that their main goal is exactly to synthesize

the blocks that are needed in the design. Finally, the synthesis systems, by nature, offer less control

over the resulting architecture, and it is not as easy to perform architecture explorations as in the

C-to-Silicon system. The lack of direct support for fixed-point (or other non-bitvector-like

datatypes) should also be noted.

1.3.4 DSP board-level design tools

Although the scope of this dissertation is Application Specific Integrated Circuits (ASICs), as

opposed to Application Specific Integrated Systems (ASISs), it seems relevant also to consider

some tools that are used for board-level design, since board-level systems certainly can be built for

the purpose of Numerical Processing as well as DSP.

Ptolemy [ptolemy91] is a DSP block-diagram simulator and to lesser extent a system

implementation tool. It supports multiple computation models such as synchronous dataflow,

dynamic dataflow and event-driven simulation. The computation models are called domains. The

synchronous dataflow domain has a code-generation capability which allows generation of code

fragments that can be tied together and executedon commercial DSP chips such as the Motorola

MC56000. This approachcombinessome of the dataflowconcepts as seen in HYPER with the use

of commercial DSP building blocks. The drawbacks with respect to Numerical Processing are the

same as mentioned earlier. Being mostly a simulation environment, Ptolemy does not have any

support for the actual board design or assembly of the hardware. The code fragments can be

plugged into the processors) but the designer must add on the code and hardware necessary to

allow data communication and other interaction between the processors) and the outside world.

16

Vulcan-II [gupta92a][gupta92b] is a board-level design system which is under developmentat

Stanford University. It provides the ability to map an algorithm described in Hardware-C

[micheli90] to multiple ASICs and one software-controlled microprocessor, suchthat part of the

functionality is implemented in software. Vulcan itselfperforms thepartitioning subtask, withthe

chipdesigns beingcarried out in the Olympus framework and the software beingdeveloped on a

workstation or a uP/DSPdevelopment system The noveltyof Vulcan is that the partitioning is

taking place at the algorithm description level, as opposed to the more common hardware module

partitioning. Vulcan is helpful in determining a reasonable partitioning of the algorithm onto

different hardware blocks. Othersystems typically relyon theexpertise of the designer to perform

this task. Sometimes a designer can also do a goodjob at algorithm-level partitioning, given the

expert knowledge about the purpose and nature of the computation. Manual partitions often are

done along natural functional boundaries. An example of functional partitioning is presented in

Chapter 5, whereit is shownthat onepartof a problem is suitedfor a chip implementation, and the

remaindercan be implemented on a genericprogrammable processor.

Siera

Siera is a board-level system design tool under development at UC Berkeley [sriva92]. The

systemuses a layered approach to systemdesign(Table 1-5),wherethe layersrepresentincreasing

specialization, communication bandwidth and ability to meet real-time constraints. The board-

layout generation facilities of Siera were modelled after LAGER, using the SDL language and

parameterizable modules as the main features.

Siera is a flexible and powerful system that can be used for a variety of applications, including

board-level design of Numerical Processing systems.

1.4 Problems in Numerical Processor design

Examining the above examples has revealed that many of the architectures, design tools and

design techniques used in the DSPworld are not necessarily well suited for NP chipdesigns. The

17

requirements of NP applications vary widely, as will be demonstrated by the relatively large

differences between the PUMA chip and the SMAC (Chapter 8) architecture. Still, there are

certain common features that need to be supported, even if they are not present in all NP tasks.

They are:

• Architecture. Emphasize architectures that support iterative processing as opposedto flow-

through processing. Support multiport memory access and efficient addressing and address gen

eration techniques, especially for 2-dimensional addressing (matrices). Support pivoting for

efficient row operations in linear algebra problems. Use deep pipelining to achieve high-speed

vector processing.

• Tools. Emphasize the ability to explorea variety of architectures so that it becomes easy to

selecta cost-effective implementation. Support high-level algorithmic input and the proper

arithmetic datatypes for numerical tasks.

• Circuit techniques. Pipelining and the resulting high clock rates make the latches and the

clocking schemescritical. Consider using newerclocking schemes such as TSPC (true single

phase clocking) [yuan87][yuan89][afghahi90]to cut down on the number of clock wires and to

reduce clock skew problems.

Layer Implementation level
Example Hardware/Software

implementation

1 Workstation Sparc 2
SUN OS 4.1

2 Single-Board Computer Heurikon HKV-30 (MC68020) on LAN
Vx Works kernel

3 Processor Module TMS320C30 on VME bus

SPOX kernel

4 ASIC Slave Processors Pulse Width Modulator (Motor Control)
Slave Bus

Table 1-5 SIERA uses a layered approach to system implementation

18

1.5 Summary

The purpose of this chapteris to establish that current designtools andmethods for DSP ASICs

and systems are not always sufficient whentransplanted into the domain of Numerical Processing.

The remainder of this dissertation describes two cases of Numerical Processor tool and chip

development, starting out with a concrete numerical problem, some algorithmic alternatives and

previous designs of ASICs for DSPs as the background setting. The algorithms have been

analyzed in detail to establish their architectural andimplementation requirements, and tools as

well as chips have been developed.

The first case is the development of the C-to-Silicon design system (Chapter 3) and its use to

designthe PUMA chip (Chapter 4). C-to-Silicon is a high level design system that supports the

design path from a C program algorithm description down to silicon implementation, while

providing powerful tools for architecture experimentation, performance estimation andnumerical

verification. The PUMA chip is the prototype design forthe C-to-Silicon system.

The secondcaseis the designof the SmallMAtrix Computer (SMAC) architecture, andthe design

of a set of hardware building blocksthatcan be used to implement SMAC. The SMAC chapters

also presents details of high-speed circuit design, addressing architecture and pipelined floating

point design.

Both PUMA and SMAC have their background in the robot IPO problem introduced in this

chapter. PUMA implements the simplercase, whereas as SMAC is aimed at the general case as

well as othernumerical problems involving matrixcomputations.

The remainder of this dissertation is organized as follows:

• Chapter 2 is a survey of the robot IPOcomputation problem.

• Chapter 3 presents the C-to-Silicon system.

• Chapter 4 describes the architecture exploration and hardware development of thePUMA chip.

19

• Chapter 5 surveys background material on the homotopy continuation method used for solving

nxn polynomial systems, in particular as applied to the general 6R robot IPO problem. A pro

gram package (ConsolC) is developed to experiment withdifferent algorithms and to establish

some numerical properties of the algorithms. It is found that the computational bottleneck is to

solve small systems of linear algebraic equations.

• Chapter 6 discusses available algorithms for solving linear equations. An investigation of the

properties and computational requirements of the algorithms are presented.

• Chapter 7 is an evaluation and comparative study of commercial computing architectures with

respect to their efficiency in solving linear equations. The basic architectural requirements for

an Application Specific Processorare identified.

• Chapter 8 describes the SMAC architecture, and the design, simulation and testing of acollec

tion of high-speedbuilding blocks for SMAC.

• Chapter 9 is the conclusion.

CHAPTER 2

INVERSE POSITION-

ORIENTATION (IPO)

COMPUTATION

The Inverse Position-Orientation (IPO) computation is a classical numerical problem that will be

used as an example in this work. It is ideally suited for an investigation of Numerical Processing,

because there exists a variety of algorithms for the IPO problem, ranging from fairly simple to

quitecomplex.This meansthatwe candraw uponseveral different approaches to IPO to illustrate

various aspects of Numerical Processing while at the sametime staying within the same general

application domain. This chapter will introduce IPO problems at several levels of complexity and

generality and explain how they can be solved using Numerical Processing techniques. The

algorithms will to some extent be explained in detail, based on the work of Morgan

[morgan87a][morgan87b]. Though much of this chapter is mathematical in nature, the conclusions

are simple and have immediate implications with respect to Application Specific Processors,

whichis ourprimary focus. We will start outby describing the general IPO problem.

21

22

2.1 Kinematics of mechanisms

A general mechanism (robotic orotherwise) consists of rigid members (links) connected by joints

allowing relative motion of the links. Joints can be either prismatic (sliding, translational) or

rotational. Figure 2-1 shows a general geometrical model (theDenavit-Hartenberg model) of a

link-joint mechanism. A general link (Linlq+1) and the one joint (Jointj+i) rigidly attached to it can

beuniquely described for kinematic purposes by a4-tuple of parameters (aj, di? a,, 0^) known as

the (length, offset, twist,jointangle) of the link. The parameters are derived from the geometry of

the link as seen relative to the plane which is uniquely determined by the lines through the joint

axis of the previous link (zj) andthe joint axisof the current link (zi+1). Translational links have

Zi+l

*i+l

Jointi+i

• X;

Figure 2-1 Denavit-Hartenberg link parameters (adapted from [morgan87a])

23

variable values for theoffsetdj and rotational links have variable values for the jointangle fy.

One of the basic problems in mechanism theory is to compute the position and orientation of the

joint atthe end of the last link in a series of links, given the constant and/or variable values for the

Denavit-Hartenberg parameters. This problem is known as (forward) kinematics. It is assumed that

eachjoint has a coordinate system rigidlyattached to it, with the originof the system defining the

joint positionandthe directions of the unit coordinate vectorsdefiningthe orientation of the joint.

The position and orientation areusually expressed in the form

P =

rll r12 r13

R = r21 r22 r23

J31 r32 r33

(2-1)

where p is the position vector and R is a 3x3 orientation matrix. The 3 column vectors of R give

the coordinatesof the unit vectors as seen from the coordinate system on the previous joint (or

some arbitrary base system in case the link in question is the first one in the chain).

Transformation matrices

The mathematical construct for handling this type of geometrical problem is known as the

homogenous transform. Suppose that we have three coordinate systems (0,1,2) placed arbitrarily

in space, with 0 considered the basecoordinate system. Also supposethat we know the orientation

R12 ofsystem 2(in 1-coordinates) and the orientation R01 ofsystem 1(in O-coordinates). Suppose

further that we know the vector p01 (in O-coordinates) and the vector p12 (in 1-coordinates). We

would like to compute the position vector p02 and the orientation R02 (in O-coordinates). Now, a

given vector p may be expressed in several differentcoordinate systems. Forexample, if we know

the coordinates 1p=(px»Py»Pz) of pin system 1then we can find the coordinates °p ifwe know the

coordinates of the unit vectors of system 1 as seen from system 0. The transformation consists

simply of replacing the unit vectors (e^e^e^ bytheir coordinates as seen from system 0. In other

words,

24

System 0 System 2

Figure 2-2 Transformation of coordinates between systems

P = [Px Py Pz] = P=Pxe* +Py*y +Pz*z => °P =P,
exl eyi «zl

ex2 + Py ey2 + Px ez2

5*3 Ley3j 5*3

(2-2)

This means that the coordinates of p in system 0 are given by a simple matrix multiplication with

the rotation matrix R, that is,

P =

exl eyl ezl

ex2 ey2 ez2

ex3 ey3 ez3

= R01 lp (2-3)

By applying this relation both to the vectors p01 and p12 and to the vectors making up the

orientation matrices R01 andR02 we candeduce that

p02 = p01 +R01p12 and R02 = R01 • R12 (2-4)

It is customary just to use the simplified symbols (p, px, p2, R,Ri, R2) instead of (p02, p01, p12,

R02, R01, R12). The equations can then be written

p = p, +RiP2 and R = Rx • R2 (2-5)

Since generally we are interested in both R and p, a notationhas been devised where R and p are

made into components of a 4x4 matrix T, as follows:

T =

rll r12 r13 Px

Rp

0 1.
—

r21 r22 r23 Py

r31 r32 r33 Pz

0 0 0 1

Using this notation, the coordinate transformation task can be expressed compactly as

T =
Rp
0 1

R,R1pI + R,p1
o 1

= RiPi
0 1

•

R2p2

0 1
= T T

25

(2-6)

(2-7)

This notation is known as the 4x4 homogenous transform notation.

Homogenous transform for a general link

A general link with given Denavit-Hartenberg parameters (£4, dv av 8j) has the following

transformation matrix relating the position/orientation of the joint at the end of the link to the

position/orientationof the joint at the beginning of the link:

Cj -SjX, Sih ajCi

Tj =
Rp

0 1.
=

0 ii.

0 0

"Cih ajSj

0 1

(2-8)

where

c{ = cosOj Sj = sin6j X. = cosoCj \i{ = since; (2-9)

This relation can be derived by breaking down the action of the link into 2 translations and 2

rotations, corresponding to the 4 parameters, andmultiplying the corresponding matrices together

([craig86] contains one derivation but uses somewhat different parameter definitions than

[morgan87a]). For a 6 link robot arm, the implication is that the position and orientation of the

endpoint of the arm is given by the product of 6 matrices, that is,

T = T.T.T.T.T.T, = f (6,, 9a> 93,e4,e5,e6) = f(6) (2-10)

26

By nature of the matrixmultiplication, EachelementofT is a complicated polynomial expression

over some subset of the variables q and Sj (i=l:6). The matrix equation (2-10) is known as the

forward kinematic equation for the robot, meaning that given the angles one can plug in the

numbers and compute the position and orientation of the endpoint. We could also call it the

Forward Position-Orientation (FPO) equation.

2.2 IPO computation

The Inverse Position-Orientation problem is the opposite of the task described in the preceding

paragraph. This time, we are given the desired goal T and want to compute all values of 6 that

producethe desiredT. This means, in general, that we have to solve a complicated set of nonlinear

equations and findall possible solution points.The equations do not in general have a closed form

solution, meaning that some iterativenumerical method hasto be employed.

This causes a multitudeof problems. A common approach such as Newton's method [dahlquist74]

does not always converge to a solution, and even if it does, it will only find one solution. The

process can be repeated from different starting points and possibly leading to other solutions.

However, there is no way to know beforehand exactly how many solutions there are (the answer

may range from none to infinitely many for any given case), so that another problem is to know

how many solutions to look for.

There are several ways to get around these problems. One is to design the robot so that the last

threejoint axes intersect. In this case, a closed form solutioncan be derived for the IPO equations

exists. This result was derived by Pieper and is described in [craig86] p.112-119. This type of

solution is described in the next section (2.3) and is the basis for the PUMA chip design. For the

generalcase, the problem has remained largelyunsolved until the 1980s, when Morgan and others

developed new numerical methods based on the homotopy continuation principle. This method

and some of the theory behind it will be explained in section 2.4. Recently, other methods have

also been developed [manocha92], but we will concentrate on using Morgan's results as the main

V/M/M/AMM

• (Px'PyPz)

Ci = C0S§i
Si = sM\
rfc = componentsof3x3 orientation matrix

27

Figure 2-3 Stick diagram of the PUMA 560 industrial robot

source of Numerical Processing algorithms in this work.

2.3 Special case IPO computation: The PUMA robot

The PUMA is a standard industrial robot with 6 revolute joints, as shown in Figure 2-3. The joints

are driven by independent actuators (motors). The robot is controlled by executing a particular

position/speed/acceleration profile (over time) for each separate joint, and employing feedback to

correct deviations from the given profile. However, the robot task is more naturally described in

cartesian space than in joint space. Hence, we need to be able to compute a set of joint angles that

correspond to a given position and orientation of the robot hand in the cartesian workspace.

The closed form IPO solution derived by Pieper [craig86] is shown in Figure 2-4. The equations

are listed in the order they should be evaluated when computing the solutions. Because the

formulas contain two binary alternatives in the form of alternative signs ±sqrt(), most of the

computation has to be repeated 4 times to produce 4 different solutions.

28

6j = ataitffo^) -atan2(d3,±sqrt(px2+py2-d32)) (2-11)

K = (p^V^SV-^/^V <2-12>
93 = atan2(a3,d4)-atan2(K,±sqrt(a32+d42-K2)) (2-13)

923 = atai^a-^^c^p^CCjP^+SjP^d^s^, (2-14)

(32 V^ Pz+ (a3+ "2 C3) (C1 Px+ *lty <2'15)

C4S5 = -ri3ClC23-r23SlC23+r33S23 <2"16>

S4S5 = "ri3Sl+r23Cl <2"17>

64 = (^^WsVs^ ? 64°ld: atail2(S4S5'C4S5); (2*18)

55 = -ri3(ClC23C4+SlS4>-r23(SlC23C4-ClS4> +r33S23C4 <2'19>

C5 = -ri3ClS23-r23SlS23-r33C23 <2'20>

95 = atan2(s5,c5) (2-21)

56 = •ril<ClC2384-8lC4>-I21(S1^3S44ClC4> +f31S23S4 <***>

C6 = Fll «CI C^S C4 ""l S4> ^"^l «23 S5> (2"23)

+r21«SlC23C4"ClS4>C5-SlS23S5> <2"24>

efi = atan2(s6,c6) (2-26)

The numberof solutionsis doubled(from4 to 8) by applying the modifications:

e4=e4+7t e5 =-e5 e6=e6+* (2-27)

Figure 2-4 Closed form solution to IPO equations for the PUMA 560 robot

The input to the IPO algorithm for the PUMA 560 [craig86] is a data set that specifies a goal

position andorientation for the robot end-effector. The nature of the computation is geometrical,

and the algorithm depends heavily on trigonometrical function evaluations. Otherwise the

computation is straightforward andcan easily be programmed into a general purpose or special

purpose computer.

87

TrackO

Trackl

TrackN

Figure 3-32 Padroute uses a special channel routerfor ring-shaped channels

The pad-to-core routing problem is somewhat unusual in that a circular routing area is involved.

Padroute treats all of the routing area as one channel (Figure 3-32), using a special radial channel

router [Iettang89][rb92].

3.12 Logic-level simulation

While not an integral part of the C-to-Silicon system, logic and switch level simulation tools play

an important role in the C-to-Silicon design process. This and the following section is anoverview

of the simulations tools andstrategies that areemployed in the system.

Logic simulation is used to verify the basic topology (interconnectivity) and logic-level

implementation of an architecture, and hence is an important part of the verification process fora

88

C-to-Silicon design. The logic simulator used in LAGERisTHOR [thor88], which wasdeveloped

at theUniversity of Colorado (Boulder) and Stanford University. The simulator is based on logic

models written in the CHDL (C Hardware Description Language), whichis essentially C but with

special macros for defining module terminals, and library support for bit and bitvector operations.

THOR also comes withastandard library of logic gate models. THOR models oftenare atahigher

abstraction level thansimplelogic gates (AND, OR,...), since the entire logic-level behavior of a

complex block (say, a RAM) can easily be modelled without any need to considerthe individual

gates or transistors inside the block. In fact, THOR is spans the behavior level, register-transfer

level and logic level of simulation models.

The interconnection of logic units to form a simulation model is specified in a special netlist

language called CSL (actually, CSL usesapinlist format for specifying nets). Block delays canbe

specified as output delays of the individual blocks. Sinceaccurate delay information may not be

available, it is common to use zero delay or unit delay in all models. THOR is a compiled

simulator, meaning that foreach design, a unique binary program is created to model the design.

Both CHDL files and CSL files are preprocessed and converted into standard C files that are

compiled using any standard UNIX C compiler. THOR is equipped with ananalyzer program,

which is a graphical presentation interface which canshow selected logic-level waveforms from

inside the circuit.

The LAGER cell library contains THOR models for all cells. The problem of logic simulation

hence becomes a question of generating the netlist for thedesign (in CSL format), and to compile

the simulator. Since CSL uses a completely different syntax and a pinlist format, there may be

considerable difference between the original SDL files and the corresponding CSL files. SDL

supports both pinlist and netlist format concurrently, so it is necessary to parse the SDL files

completely(by hand or with a program) in order to generate the corresponding CSL files.

The obvious solution for an automated approach is to use the already parsed information as it

appears in the OCT database. A translator named MakeThorSim was created by Svensson and

fSDL structure description)

WDMoct

C OCT netlist J

C

c

I MakeThorSim

chip.csl

i gertsim

chip.exe

THOR

Inaccurate or no timing
Verifies the netlist and the

basic logic design
Quick results even for
large designs

Figure 3-33 Generating a THOR simulator from SDL

C CHDL templates)

C Parameters j

(Netlist)

OCT
gtructurejnstance view/

MakeThorSim

Figure 3-34 CHDL templates are stored inside the OCT views and instantiated and
interconnected using MakeThorSim

89

90

Sheng [rb92] for this purpose. MakeThorSim generates the CSL netlist directly from the OCT

database, so that consistency between the original SDL files and the THOR netlist is ensured.

Figure 3-33 shows the process of generating a simulation model of the design chip.sdl.

MakeThorSim flattens the OCT netlist down to the level where each "leaf' has a THOR model.

The CSL is thencreated. If anethas different names atdifferent levels of the SDL/OCT hierarchy,

the netname at the top level is used. Since SDL files have parameters, the THOR models stored in

the cell library are in fact parameterized templates that are instantiated by MakeThorSim (the

actual parameter values are inserted). The C compilation of theTHOR simulator is performed by

the gensim program (Figure 3-34). MakeThorSim does not provide netdelay estimation.

The advantage of theTHOR simulator is thatit is veryquick, and provides verification of thebasic

logic design. However, it does not provide accurate timing information when used as described

here. It is possible to generate timing information, but this would require parameterized delay

models for each CHDL block model, and a procedure for back-annotating the CSL file with

additional delay values estimated from actual wiring capacitances in the layout. This also requires

that the layout is generated before the THOR simulation takes place, which is not always

convenient.

3.13 Switch-level simulation

Switch level simulation is used to verify the functionality and timing of finished layout. The

switch level (N)MOS transistor devicemodel [terman83][horowitz84][chu88][salz90] is shownin

Figure 3-35. A switch level model of a circuit is made from the original transistor network by

replacing the transistors by their switch level models and adding in all the wire and diffusion

capacitances as lumped capacitors at the appropriate nodes. IRSIM [salz90] is a circuit simulator

based on this model. It uses 4 possible states for each node: low(O), high(l), unknown(x) and

forced undefined(u). Waveforms are modelled as step functions. The transistor parameters Cgate

and Rgq are known orcan bederived from the device sizes and the fabrication process parameters.

Gate

n

T
-gate

I Drai

[jReq
Source

C^GS^^^low ?open : unknown)

(^GS > Vhjgh ? closed : unknown)

Figure 3-35 Switch level NMOS transistor device model used in IRSIM

C Layout (MAGIC)

\
)

QExtracted circuit (EXXSIM)
\ I _i 1 i— !

it(EXT,SIM)I g ™J ' ' £

' I—I I— !
IRSIM SsssssssssssssssssssssssssssssssssssssssA

C
I

Waveform display

Fairly accurate timing information
iVerifies connectivity and functionality of actual layout
•Can be calibrated to match SPICE for small circuits

Figure 3-36 LAGER support for IRSIM simulation from layout

91

92

Parameter name Value Comment

capga .00153 gate capacitance pF/^im2

lambda 0.60 microns/lambda

lowthresh 0.4 logic low threshold (normalized)

highthresh 0.6 logic high threshold (normalized)

Channel resistances width(\xm) length(vm) resistance (Q.)

n-chan dynamic-high 10.0 1.2 1771.0

n-chan dynamic-low 10.0 1.2 908.0

n-chan static 10.0 1.2 944.0

p-chan dynamic-high 20.0 1.2 1182.0

p-chan dynamic-low 20.0 1.2 2435.0

p-chan static 20.0 1.2 1122.0

Table 3-5 The primary IRSIM model parameters for aMOSIS 1.2|nm SCMOS process.
Equivalent resistance valueshave beencomputed from SPICE simulations

An IRSIM simulation is most oftenbased directly on extracted layout to makethe circuit model

reflectthe layout as accurately as possible.

IRSIM input data

IRSIM requires two input files:

• The parameter file contains electrical parameters for the circuit technology, mainly properties

of the transistors, such as threshold voltages, gate area capacitances and dynamic channel resis

tances (for the piecewise linear model). There are also area capacitances for various layers, but

this information isnot used by IRSIM presently. IRSIM provides acalibration facility where a

SPICE model (e.g. as provided by MOSIS) can beused totune the parameter file sothat there is

close correspondence between IRSIM and SPICE delay values. The difference between SPICE

and IRSIM isoften less than 10% when using tuned models on amoderately sized circuit (say,

a full adder with50 transistors). An example of a parameter file is shown inTable 3-5.

93

♦ The circuit file is a flat circuit description in the MAGIC sim file format. This file is typically

generated directly from the circuit layout byusing the MAGIC extract facility and then running

the ext2s im program to flatten thehierarchical ext description intoa flat sim file.

• Additional command files and/or interactive entry can beused to specify input patterns, timing

and simulation commands. The simulation results are displayed through a graphical interface

called the analyzer.

Using IRSIM

IRSIM is the basic tool to check a layout for connectivity, functionality and timing. Any missing

connections or shorts in the layout will be revealed if properly exercised by the test patterns.

Functionality can likewise be established by applying appropriate input sequences. The timing

accuracy is also quite reasonable as long as the wiring resistance in the circuit can be ignored.

Since IRSIM does not model interconnection resistance, it will not produce accurate results if, for

example, a layout contains long polysilicon lines. LAGER provides an a post-processing tool

(DMpost) which takes care of circuit extraction and generating the sim file (Figure 3-36). An

example of IRSIM simulation is shown in Chapter 4.

3.14 The RL language

The RL language [rimey89] is an approximate subsetof C. RL includes only those features of C

that correspond closely to the capabilities of DSP architectures—recursion, for example, is not

supported. RL includes two major extensions: fixed pointtypes and register type modifiers. It is

therefore not strictly compatible with C.

Fixed point types are a convenience for the programmer. The underlying integer arithmetic is

inconvenient to write by hand, partly because simple fixed point constants correspond to huge

integers, and partlybecausethe natural multiplication for fixed point numbers is not the same as

integermultiplication. In adding a new numerical type to a programming language, finding an

elegant notation for the new constants can be difficult. In RL, all constants are typeless real

94

numbersthat take on appropriate types from context In declarations and type casts,the fixed point

type of range -2"<x < 2n is denoted by f ix: n;or if n=0 thenjust by f ix.

Register type modifiers, which are generalized C registerdeclarations, let the programmer suggest

storage locations for critical variables. For example,

register "r" fix y;

declares the variable y to be a fixed point number to be stored in the register bank r. A reasonable

default is chosen if the name of the register bank is omitted. Register type modifiers are also

helpful with multiple memories, and they can be appliedto pointers. For example,

"mem" fix * "mem2u p;

declares p to reside in mem2 and point into mem.

Limitations

Many parts of C have been left out of RL forthe sakeof simplicity:

• There is no separate compilation.

• There are no explicitor implicit function declarations; functions must be defined before they

are used.

• Initial values mayonly bespecified indeclarations of variables that are tobestored inread-only

memory.

• There are no struct, union, orenum types; no char, float, ordouble types; and no

short, long, orunsigned modifiers. This leaves onlyvoid, int, pointer types, array

types, and the RL-specific types, bool and fix.

• There are no goto, switch, continue, or break statements.

• There is no typedef, no si zeof, and there are no octal or hexadecimal constants.

Because the target processors do notprovide a stack for local variables, it is also necessary to

prohibit recursive function calls. For the same reason, the programmer has tobeaware that doing a

function call within the scope of aregister declaration will force the compiler to produce rather

95

poor code.

Type modifiers

InRL, the const typemodifier isused mainly indeclaring variables that are to bestored in read

onlymemory. The volatile type modifier is used mainly to identify boolean variables that

represent signals onexternal pins. A volatile bool variable represents an output pin which is

set by the processor. A const volatile bool variable represents an input pin which is

sensed by the processor.

Pragmas

In RL, pragmas have the same form as the #def ine preprocessor command, but start with

#pragma instead. Pragmas define flags and parameters that control the RL compiler and other

software, as in these examples:

♦ arch_file gives the name of the machine description file to use

♦ word_length determines the number of bits in a processor word

♦ *_capacity sets a limit on the number of registers that the compiler may assume for the reg
ister bank jc.

Register declarations and register type modifiers

The RL compiler assigns a variable to a specific memory or register bank depending on

♦ whether or not it is a register variable,

♦ its base type, and

♦ if the base type is a pointer type, the bank that it points into.

The defaults for a given architecture are specified by pragmas in the machine description, but can

be overridden by pragmas in the RL program. For example, to override the usual defaults for

Kappa and store non-register integer variables, and pointers into bank mem, in bank x instead

of in bank mem, the programmer would put the following pragmas into the RL program:

#pragma int_memory "x"

#pragma mem_pointer_memory "x"

96

Assigning all variables to default memory and register banks is sometimestoo crude. Forsuch

cases,RL has register type modifiers. A register type modifieris writtenas the name of a memory

or register bank in double quotes. It is a type modifier, like const and volatile, that can

appear wherever const andvolatile can appear. Forexample, an integervariable x stored in

the bank f oo would be declared like this:

"foo" int x;

A more complex example is a pointer to int, residing in the bank bar and pointing into the bank

foo:

"foo" int * "bar" p;

The boolean type

In C, boolean values (true and false) arerepresented by integers, which is convenient for typical

general-purpose computers. In contrast, our application specifictarget processors performboolean

operations on (and store) individual bits. This is the reason for having a distinct boolean type,

bool, in RL.

In RL, there are no implicit conversions to or from bool, except in certain cases involving literal

numbers. True can be written as (bool) 1; false, as (bool) 0; and in most cases, the casts can

be omitted.

The operations that return booleans asresults are the relationals (<, >, <=, >=, ==, !=)

and the boolean operations (&& ,11,!). The operations that require boolean operators are the

three boolean operations, and the conditional expression {condition ? then-part : else-part). The

tests in if, while, do-while, and for statements are also required to be boolean.

Fixed point numbers

RL has asetof fixed point types. Arithmetic on fixed point numbers is saturating, except in shift

operations. This is in contrast to integer arithmetic, which is always non-saturating.

97

The fixed pointtypes have names of the form f ix: n, where n is a possibly negative integer. The

form fix is a shorthand for fix: 0. Values of type f ix: nhave amachine-dependent precision

(controlled by the pragma word_length) and lie in therange -2" < x < 2". Casts maybe used to

convert betweenthe different fixed pointtypes, but conversions between fixed pointand integer

types are not allowed. A cast of a fixed point datum to another fixed point type is typically

implemented with an arithmetic shift operation.

All of C's floating-point arithmetic operators are available in RL for fixed point arithmetic. With

the exception of multiplication and division, the arguments of a binary fixed pointoperator must

have the sametype, as must the second and third arguments in a conditional expression. Casts are

commonly used to accomplish this. Fixed point values may be explicitly shifted with the

arithmetic shift operators « and ».

Predefined functions

RL has three predefined functions: abs (), in (), and out (). These functions areoverloaded to

take arguments of type int as well as type f ix: n. The value returned by in () may be

considered to be of type number, thatis, the resulting type (after implicitconversion) depends on

a limited amount of context. In ambiguouscases,casts must be used.

User-defined operations

Hardware-supported operations that are not predefined in RL can be specified in the machine

description file. An operation is defined and given a name, andone or several implementations of

the operation are specified in the sameway as for the predefined operations. An operation defined

in this way is available in RL in the form of a "function call", where the function has the same

name as the operation. This is useful for hardware lookup tables and in general for handwritten,

idiomatic instruction sequences. For example, a multiplication step with some particular behavior

on overflow might be implemented as a user-defined operation because it would not be compiled

into efficient code if written in pure RL.

98

Preprocessor commands

There are four new preprocessor commands in addition to those of standardC. They areuseful for

unrolling and partiallyunrolling loops:#repeat, #endrepeat, #rrepeat, and#endrrepeat The form

#repeat id N

...text...

#endrepeat

is roughly equivalent to

#define id 0

...text...

#undef id

#define id 1

...text...

#undef id

#define id N-l

...text...

#undef id

#rrepeat and #endrrepeat are similar, except that they count backwards.

Program structure

The last difference between RL and C is that the RL programmer may (and often will) leave

main () undefined. In its place, the code should define loop () and optionally init (). The

compiler then supplies an implicit main (), where init () is called once (if it has been

defined), andthen loop () is calledindefinitely. This is an appropriate form for a program which

reads a indefinite input stream.

3A5 Summary

The C-to-Silicon system is a powerful design tool for Application Specific Processors for

Numerical Processing and DSP. The system supports easy architecture exploration and

performance evaluation at a the architecture level, without having to perform detailed logic and

99

layout level design. High-level algorithm simulation is also supported. C-to-Silicon uses the

LAGER Silicon Assembly System to perform layout and simulation tasks, resulting in a very

powerful and general system. It has been shown that C-to-Silicon is flexible with respect to the

rangeof architectures and algorithms that can be implemented.

CHAPTER 4

THE PUMA PROCESSOR

The PUMA processor has served as a first test case for the C-to-Silicon system. The design of the

PUMA chip demonstrates and exercises all the central features of the system, including

architecture exploration and system simulation.One of the important results that will be presented

is that small and inexpensive changesto a genericarchitecture can have a dramatic impact on cost

and performance.

This chapter is arranged as follows: The first section presents the computational task to be

implemented on the chip. The task is examined in detail to identify its primary computational

characteristics. In the second section, this knowledge is applied to select and develop algorithms

that will allow to an efficient integrated circuit implementation. Following the program code

development, the computation is simulated both in floating point and fixed point to verify the

numerical soundness of the formulation. The next section describes the architecture exploration

process and discusses the merits of the various architectural alternatives. The final sections

describe the finished chip developed in this process and its physical characteristics, including the

chip layout design and the chip-level verification results.

101

102

4.1 Characteristics of the computation

The PUMA chip performs the Inverse Position-Orientation computation for the PUMA 560

industrial robot (Figure 2-3). The background for this problem, as well as the specifics of the

computation were described earlier in section 2.3 (p27). At this point we are concerned with

translating the expressions (2-11) to (2-27) into RL code and at the same time assess the

computational needs in evaluating the expressions.

The RL code started out as a C program that was used for an initial investigation of the PUMA

IPO problem. The C code had been debugged andverified before the ideaof a chip design was

conceived,andit consistedof a prettystraightforward translation of the IPO equations, using the C

math library to evaluatethe necessaryelementary functions. Some important facts about the EPO

computation were found by studying the C program, in particular it was found that the

computation is intensive in multiplications and trigonometric function evaluations.

Table 4-1 contains a summaryof the operations involved(forcomputing alleight solutions). The

table shows clearly that there is strongneed for efficient algorithms for the sin/cos/atan2/sqrt

operations. The standard method used in general purpose computer systems is rational

approximation. That is, using an approximation which is the ratio of two polynomials [cody80].

Rational approximations usually involve polynomials of degree 3-4 each.This adds up to 4-6

multiplications and 1division [which wouldcost about 8 multiplications usingNewton-Rhapson's

Operation Count Operation Count

Mult(var) 208 atan2 22

Mult(const) 24 cos 14

Add 108 sin 14

Sub 104 sort 2

Divide (var) 1 Divide (const) 1

Table 4-1 The IPO algorithmis intensive in multiplication and trigonometric functions

function shift and add add mult

atan2 34 17 0

cos and sin 36 19 0

sqrt 32 18 1

103

Table 4-2 Cordic functions consist mostly of shift/add operations

method], resulting in 12-14 multiplications for each atan2 evaluation.

To minimize area requirements it is always desirable to employ an architecture without an array

multiplier. Not having an array multiplier makes the rational approximation approachvery time

consuming. In fact, just evaluating atan2 22 times would involve more multiplications and

additions than all the remaining parts of the algorithm. This fact provided a strong motivation to

investigatethe use alternative algorithms for sin/cos/atan2/sqrt, based on CORDIC operations.

4.2 Algorithm selection

CORDIC [blahut85][walther71][volder59] is a family of algorithms that meets our requirements:

It can compute all the functions needed, and in the absenceof an array multiplier, it is also much

faster (fewer cycles) than rational approximation. Fora 20 bit wordlength (and full accuracy), the

operation count is shown in Table 4-2.

Note thatcos andsin are computedat the sametime atno extraexpense.This is quitehandy in our

case, because both sin and cos of each angle are always needed. As will be seen later, CORDIC

canbe efficiently implementedon a datapath which has an adder with a variable preshifter for one

of the adderinputs. A description of a typical CORDIC algorithm follows.

4,2.1 CORDIC algorithm for atan2

The function atan2 (y,x) is defined as the anglebetween the x-axis and the vector (x,y). It is an

extension of the regularatan(y/x) to cover all 4 quadrants. The atan2 CORDIC algorithm is based

104

Figure 4-1 The CORDIC algorithms use vectorrotations to compute elementary functions

on rotating the vector (x,y) through a sequence of rotation angles until it becomes (r,0), as

indicated in Figure 4-1. The arctangent can then be found by adding up all the angles that (x,y)

were rotatedby. The key to the efficiency of the CORDIC method is that there are certain angles

by which rotation is very simple, and that any angle can be approximated by a (signed) sum of

such angles. CORDIC uses the angles <Pk =atan (2"k), meaning that we have

*-k

cos<pk =

J1+2
-2k

sin<pk =
J1 + 2

-2k

(4-1)

Rotating (x,y) by the angle <pk results in a new vector(x',y') that is related to (x,y) by the equation

x

IXJ

cos<pk sin<pk
-sin<pk coscpk J1+2

-2k

"l 1*
X

X
= K

"l 2T*
X

X
= K

x+2_ky
L-2-k lj bd L-2"k lj ixl _-2'kx +y_

(4-2)

Ignoring the factor K, note that the rotation only involves addition andmultiplication by negative

powers of 2. The latter can be performed by a downshifter, so that no actual multiplications are

necessary. Ignoring K(which is <1) means that x' and y'will both be too large by the same factor.

k 9k k <Pk k <Pk

0 45.000000 7 0.447614 14 0.003497

1 26.565051 8 0.223810 15 0.001748

2 14.036243 9 0.111905 16 0.000874

3 7.125016 10 0.055952 17 0.000437

4 3.576334 11 0.027976 18 0.000218

5 1.789910 12 0.013988 19 0.000109

6 0.895173 13 0.006994 20 0.000054

105

Table 4-3 The set of angles used in the CORDIC iterations

However, to get the correct arctangent, only the ratio y /x is relevant, and it remains correct when

both the numerator and the denominator are off by the same factor. In other words, we simply

ignore the K-factor, and atan2 can therefore be computed solely with shifts and adds. The actual

algorithm consists of a loop where at each iteration we examine the sign of y and apply a rotation

by either -(pk or +q>k, whichever angle rotates the vector towards the origin.

There remains the question of whether this process converges, and whether there is a bound on the

approximation error. Indeed, it can be shown that

V9g (-^,-) 3(\j/k) e {-1,1} suchthat &=XxM)ic (4-3)

k = 0

This means that for all angles 9 in quadrants 1 and 4, there exists a sequence of rotation directions

\|/k=+/-lthat will make the accumulated rotation angles converge to 0. The actual values of the

angles (& are shown in Table 4-3. The error in the approximation at step k is always less than the

next angle (p^.

4.2.2 RL program for atan2

Figure 4-2 shows the complete program text of the CORDIC atan2 function (catan2), as

programmed in the RL language, using the fixed point data type.

106

/*•**•******************* catan2.k ************************/!

/* Copyright (c) Lars E. Thon 1988 */2
fix catan2 (sin, cos) 3

4

5

6

7

8

9

/* Start Cordic. The first step takes care of quadrantslO
2 and 3 */ 11

if (cos < 0) { 12

if (sin >= 0) { 13

theta = FIXPIHALF; x = sin; y = -cos; 14

} else { 15

theta = -FIXPIHALF; x = -sin; y = cos; 16

} 17

} else { 18

theta = 0; x = cos; y = sin; 19

} 20

21

/* Scale x,y so they don't overflow when amplified */ 22
x= (x»l); y= (y»l); 23

24

/* The Cordic iterations work in quadrants 1 and 4 */ 25
for (k = 0; k <= NUMIT; k++) { 26

fix xnew, ynew; 27

if (y > 0) { 28
theta += ctable[k]

fix sin, cos;

{

register int k;

register fix x, y;

fix theta;

xnew = x + (y » k

x = xnew; y = ynew

} else {

theta -= ctable[k]

xnew = x - (y » k)

x = xnew; y = ynew

29

; ynew = y - (x » k); 30

31

32

33

; ynew = y + (x » k); 34

35

} 36

} 37

38

/* The accumulated angle is returned as result */ 39
return theta; 40

41

Figure 4-2 RL code for the atan2 function computed using the CORDIC method

Variable Requirement Representation (wordlength w)

X abs(x) < 2s rep(x,w) =integer(x*2w"1/2s)
Operation Scales Requirements Result scale

Xj+Xj SVS2 sx=s2 $=^=$2

xl**2 SVS2 none s=s*+S2

x{/x2 SVS2 none 15=5Vs2

Class Range Actual scale Binary point pos.

lengths (pra.,d-) ±2048 2048 12.8

lengths ±20482 20482 23.(-3)

angles (Op ±K K 3.17(approx.)

units (svcvr.k) ±1 2 2.18

107

Table4-4 (a) Fixed point representation (b) Rules for fixed point computation (c) Scaling classes
for the variables of the IPO computation

One of the reasons for this fairly detailed expositionon atan2 CORDIC algorithm is to highlight a

small detail of the algorithm which turns out to be of special significance to the architecture

design. The detail in question is the occurrence of the operations of the type (x»k) inside the for-

loop, where k is the loop index. This will be referred to later as the variable shiftoperation.

The RL program for the PUMA IPO algorithm consists of 5 functions and a main program. Tbtal

code size is 658 lines of text, out of which 263 lines contain one or more actual RL statements

(after removing comments, blank lines, etc.). It is clear that the IPO algorithm is nontrivial both in

size and complexity, and therefore constitutes a good test case for the C-to-Silicon system. The

complete RL code (puma.k, etc.) can be found in Appendix A.

4.3 Fixed point computation

Since our target processor does not support the floating point data type, it is important to perform

a careful analysis of how to implement the algorithm efficiently in fixed point arithmetic. The goal

108

is to minimize the wordlength w (sometimes denoted N). The parameters determining the

wordlength are the precision and range requirements of the variables in the program.

The basic concepts of fixed point computation are reviewed in Table 4-4. The first sub-table

explains how fixed point numbers are represented, that is, how to compute an integer which will

contain the appropriate bit pattern when converted to 2C (two's complement) binary form. For a

givenvariable x, if abs(x)<21 then a scaleS=2S canbe used. The basictradeoffis to choose2? large

enough to give sufficient range and small enough to give sufficient accuracy. Scaling by powers of

2 is convenient, because the processor can easily convert between numbers of different scale by

performing shift operations. Converting scales will, however, lead to loss of significant bits as the

bits are shifted out on the right-hand side. It is sometimes handy to use other scale values than

powers of two, for example n as the scale value for angles, as will be explained below.

Since RL only allows power-of-two scales, other scales must be simulated by doing the

appropriate scaling operations outside the chip and declare the variables to be of typefix:0. In fact,

it was easier in the program puma.k to declare ALL variables to be of the typefix:0. Note that

constants and input data must be prescaled according to the third section of Table 4-4.

The second sectionof Table4-4 lists the rulesfor computing the resulting scale when applying an

arithmetic operatorto a pairof fixed pointnumbers, andthe requirements for theoperands. Adding

two numbers only makes sense if they have the same scale, and multiplying to numbers yields a

third number with a different scale.

The thirdsection of the table liststhe scales used for thevariables in the puma.k RL program. The

scale 2048 for lengths is chosen because the maximum reach of the robot is about 900mm. We

cover this with a safety factor of two. Products oflengths get the scale 20482 for consistency. The

reason for scaling angles to tc is the following: The formulas for Q{ and 63 both involve the

subtraction of two angles. Since each of the two angles may be in [-tc,+tc], the result can in

principle be anywhere in the range [-2k,+2k]. Hence there will be a need to reduce the value

109

modulo k so that it falls inside [-rc,+7c]. If we use k asthe scaleof the angles, the modulo reduction

comes for free during the subtraction (due to the modulo arithmetic of the processor when

operating in non-saturating mode).

It would also seem reasonable to use scale 1 for the c. and the s.: We know that a sine/cosine will

always be between -1 and 1, so a scaleof 1 shouldbe sufficient.This is tempting, but considerthe

effect of inaccuracy: If cos=0.999 becomes cos=1.001, the value will wrap around and become

cos=-0.999. These two values are not at all "close", because they correspond to very different

angles. (This is not analogous to the situation with angle values, where +179.99° and -179.99°

describes essentially the same angle.) Hence we decided to use a scale of 2.

The wordlength chosen was w=20. It was derived as follows: The target is to compute 0j,...,96

with an errorof less than 0.05°, or 4.5 decimal digits. To achieve this, about 5.5 decimal digits of

precision is needed in the intermediate calculations.This corresponds to about 19 bits. Adding one

bit to account for the negative numbers we end up with w=20.

4.4 High-level simulation

Using the above scaling scheme, the IPO computationwas programmed in RL, using CORDIC

subroutines for the elementary functions. To make sure that the program and the scaling were

sound, we used the KT tools to perform first floating point and then fixed point simulation.The

simulations showed that the program works well unless the specified goal frame is close to a

singularity ([craig86] pl46). It should be noted that a floating point program will also produce

inaccurate results in this case. Moreover, the loss of accuracy is often accompanied by the property

that the position/orientation is only weakly dependent on the value of the particular inaccurate

angle. It is also possible to detect during the computation that we are close to a singularity, and

issue an error signal. The typical case had an angle error of lessthan 0.02° for each one of the48

angles when simulated using target positions/orientations generated with a random number

generatorSome results of the high-level simulation are shown in Table 4-9.

110

4.5 Architecture design and exploration

The Kappa architecture was used as the starting point for the architecture exploration. Kappa

originated in audio (speech processing) applications [pope84], and was developed further for use

in a PID robot joint controller [azim88]. See Figure 3-11 for a block diagram of the Kappa

datapath. Starting with this datapath, I went through several changes to the architecture, each time

trying to make inexpensive modifications that would improve the efficiency in executing the

algorithm. It should be stressed that most of these changes only had to be done on paperor in the

machine description file, as explained in Chapter 3. Hence it was possible quickly to evaluate a

number of alternatives without expensive investment in logic or layout design.

Foreach variation of the architecture, the C-to-Siliconsystem was used to collect several cost and

performance metrics: Numberof basicblocks,Total code size (static instruction count)andTotal

execution time in cycles (dynamic instruction count). From these results were also derived area

measures. Area costs of any additional hardware blocks were also considered.

Architectural variations

The design alternatives that were considered are illustrated graphically in Figure 4-3 and also

listed inTable 4-5. Each variation was created by making aset of choices between the pairs of

alternative architectural features shown in the figure. The details of the alternatives will be

explained below. Note that some ofthe alternatives are not independent For example, the question

ofwhether or not to use asubroutine for multiplication is relevant only if the array multiplier isnot

used.

The first pair ofalternatives from Figure 4-3 is the use ofashift-add multiplication strategy versus

afull array hardware multiplier. The second pair ofalternatives is relevant if the shift-add strategy

is used. The alternatives are between expanding (in-place) all multiplications into N (the

wordlength) shift-add operations, or to provide the architecture with a subroutine call/return

capability sothat one block of code can beused for all the multiplications.

(1) Shift-add vs. Array multiplier

a b

f I i_t

I

shift

J

array

p=a*bp=(p»1)+a*bk

(2) Inline multiplication vs. Subroutine

i- \

T

call

return

\

sub

yJ

(3) Limited-range barrel-shifter vs. Full-range log shifter

(4) Constant shifter (x»const) vs. Variable shifter (x»k)

const

Ill

Figure 4-3 Small architecture variationshad significantimpact on the PUMA chip
performance and cost (area)

112

The third pair of alternatives is concerned with shifter types. The notation R<n>L<m> is used to

denote a shifter that can shift (up to) n places to the right or m places to the right in one cycle. The

alternatives are an R6L1 limited range barrel shifter and a R15L1 full range logarithmic (1-2-4-8)

shifter.

Finally, the tradeoff between having a constant shifter and a variable shifter was considered. A

constant shifter is a shifter which can only shift by an amount which is fixed in the instruction at

compile time (also known as an immediate constant). In contrast, the variable shifter also can shift

by an amount which comes from a register, in this case any one of the index registers of the

address unit.

Evaluation of alternatives

Table 4-6 shows the results of evaluating the architectural alternatives. The first 4 entries (0-3)

assume that the architecture has no array multiplier, i.e. that shift-add multiplication is used.

Entries 0-1 in the table contrast the useof inline code versus a subroutine call for multiplication.

Using the subroutine means an increase in the numberof basic program blocks, but a large

decrease (34%) in code size, since one piece of code is shared by all the multiplication operations.

Since the architecture has a low-overhead subroutine call, there was essentially no difference in

execution time. Additional hardware cost(a small stack circuit) is minimal.

Now consider entry 2. Compared to entry 0, the difference is that the constant shifter has been

replaced by a variable shifter. This has an even more dramatic effect than introducing subroutine

capability. The code sizeis down by 41% compared to case 0.The explanation is simple: The

catan2 RL program (Figure 4-2) contains a for-loop where the variable k is the loop index. The

variable k is also used inside the loop to specify the amount of shift, as in the expression (x»k).

What happens if the architecture does not support variable shifts? Then the loop cannot be

compiled as written. The loop has tobeunrolled, meaning that its contents must beduplicated 17

times (NUMTT=16), each time with adifferent value of k inserted as aconstant. Similar unrolling

is necessary in the other CORDIC routines. This becomes very expensive in terms of static

Alternative 1 Alternative 2

array multiplier (possibly pipelined) iterative shift/add multiplier

inline multiplication code subroutine call

R6L1 shifter R15L1 logarithmic shifter

constant shifter (r»I) variable shifter (r»x[I])

113

Table 4-5 Design tradeoffs affect layout area, static instruction count and dynamic
instruction count

Case Shifter Mult type Num blocks Code size
AA

(mm2)
Cycles

0 constant inline code 201 2924 0.00 18156

1 constant subroutine 255 1920 -13.63 18156

2 variable inline code 66 1720 -18.17 18156

3 variable subroutine 120 717 -31.78 18156

4 variable array (delay 1) 66 683 -27.78 9192

5 variable array (delay 1*) 66 642 -28.37 9028

6 variable array (delay 3*) 66 723 -27.20 9352

Table 4-6 Effect of design decisions on code size (static instruction count) and code
execution time (dynamic instruction count)

instruction count, as evident from Table 4-6. A solution is to introduce an extra instruction bit

which selects between the immediate constant and the lower 4 bits of an index registers X0-X2 as

source for the shift amount. This was a very inexpensive addition to the hardware, but it paid off

greatly by reducing program (and hence ROM) size, without changing the execution speed.

Entry 3 shows the combined effect of a subroutine stack and a variable shifter. The code size is

down by 75%. Note that the cycle count remains the same, as we are still executing the same

sequence of datapath operations.

Entries 4-6 show the results of introducing an array multiplier unit as part of the datapath (see

114

Figure 4-5). First of all, the numberof blocks is reduced because the multiplication subroutine

calls goaway. More impressive is that theexecution timeis cutinhalf. A reduction was expected,

considered thatthe program hasa large amount of multiplications. The codesize, however, shows

little improvement. The small reduction consists mostly of the space takenup by the former

multiplication subroutine.

The three different cases 4-6 were done as an experiment to see whether the introduction of

pipeline delay and/or extra input multiplexers would makea large difference in the performance.

Case 4 assumes thateach multiplier input can onlycome from one particular source (e.g. the left

input from mbus and the right input from the ram). Cases 5-6 assumes that either input can come

from either source (marked with a* in the table), which could be important for example when

squaring anumber. Weobserve that neither thepipeline delay northeinput routing had muchof an

impact oneither static ordynamic instruction count. This is positive evidence that the compiler is

doing a goodjob atboth scheduling andof data routing.

Discussion

The table shows that alternative 3 is a clear winner area-wise, and with the same speed as

alternatives 0-2. The alternatives 4-6 provide higher speed at the cost of additional area.

Considering the cost and design effort for a20x20 array multiplier, we decided against using one.

Previous layout indicated that a20x20 array would be at least 2.54x2.60mm in 2|*m technology,

plus asubstantial overhead inhooking upthe busses between the multiplier and the datapath. The

original R6L1 shifter was also rejected. The R6L1 shifter does notprovide adequate shifts for the

CORDIC operations atthe given wordlength (N=20), because shifts upto (NUMIT-1)=15 are

required. Repeated shifts would then be necessary. More serious is thatvariable shifts would not

be possible, as there would be no easy way tobreak avariable shift into 3repeated shift operations.

Finally, the logarithmic shifter does not require any decoding of the shift amount, making the

datapath implementation easier.

115

addr to memQ

Figure 4-4 The PUMA datapaths

116

1
mor

•*.

UI^FU

An•MnmmmM-T7—T7 0

lC
0f1,x,-x,|x|,-|xr| \mux/
abus I I bbus

I
ace

mbus

Figure 4-5 Datapath with array multiplier (only relevant part of datapath is shown)

Conclusion

In summary, wedecided touse the architecture with the R15L1 logarithmic shifter, variable shift

capability, asubroutine stack and no array multiplier. The final PUMA datapath isshown inFigure

4-4. Assuming that the chip can run at 10MHz clock rate, the IPO equations can be solved at arate

of 10 /l 8156=551 times per second. This is sufficient for most purposes (most robots have a

control loop that runs atless than 100Hz, and the IPO loop typically is run ataslower rate than the

control loop).

117

4.6 Chip verification and layout design

The logicand layoutdesign of PUMAwascarried out in the LAGER environment, following the

methodology described in section 3.10 (p71). The PUMA chip core consists of 221 macrocells,

with 6 macrocellsat the top level and7 levels of hierarchy.

Most of the design was created by translating or redesigning old Kappa SDL files, which were

used in the previous LAGER-III system [shung89][shung91]. LAGER-III was based on Franz

Lisp and the Flavors database and the current LAGER is a thorough modernization based on the C

language and the OCT database. Creating PUMA from Kappa was a complicated task, as the old

design had never been simulated and there were numerous bugs that had to be discovered and fixed

both in the logic design and in the various library modules and leafcells. The architectural

modifications turned out to be fairly easy to accomplish.

Because of the size of the microcode (670 lines) it became necessary to make the microcode ROM

double-wide and insert an output multiplexer to select the appropriate half of the bits. This made

the chip floorplanning manageable at the cost of some delay and extra design time.

4.6*1 Logic-level simulation

The logic-level simulation was carried out using THOR and MakeThorSim (Chapter 3). Models

for the library cells had to be developed and installed in some cases. MakeThorSim turned out to

be a great help as soon as the program reached a stable condition. The main problem with THOR

was the lackof delaymodelling, which meant thatthere would often be multiple transitions of the

samesignal at the sametime.This madeit crucial thatthe modelskeep trackof the time the signals

last changed, to avoid infinite evaluation loops.

Debugging the logic design with THOR was a somewhat complex task, but was aided by some

special THOR utility models that were especially developed for the PUMA simulation. For

example, a breakpoint model was developed especially to watch the value of the (blocknumber,

118

Model name Model function

breakpoint stop simulation when (block, line) reaches certain value

filejnnmon print binary value to file every time input changes

filejiexmon print hex value to file every time input changes

rename dummy block to rename a signal to something more meaningful

watchdog_strobe watch a strobe signal and print bus value when strobe is high

watchdog_break watch a bus an stop simulation whenever a certain value appears

CPU type Simulation time

SUN 4/60 (Sparc 1) 31:07 min (12:04 for the graphic analyzer) (100ms per clock cycle)

SUN 4/75 (Sparc 2) 17:04 min (6:13 for the graphic analyzer) (57ms perclock cycle)

Table 4-7 Special THOR utility models for PUMA debugging. Simulation execution
times.

linenumber) pair and stopthe simulation temporarily atany given location so that theusercould

check thestate of the simulation and decide what todo next. Similarly, ttiefilejbinmon model was

developed to watch buses and print the time and value of every change into a file for further

analysis. A complete list of the utilities are shown in Table 4-7.

THOR is a fairly speedy simulator, allowing acomplete simulation (-18000 cycles) of the RL

program onthe PUMA chip in less than 1hour. Combined with MakeThorSim and the breakpoint

and watchdog utilities, it formed areasonably powerful environment where it was possible to

diagnose and fix several bugs per day, as long as the symptoms were nottoo obscure. This is notto

say that the debugging environment would work well for the casual designer, but it was sufficient

for an experienced designer. Examples of the execution speed ofTHOR are shown inTable 4-7.

4.6.2 Switch-level simulation

The PUMA chip layout was simulated extensively using the IRSIM switch-level simulator

(section 3.13 on page 90). Circuit descriptions extracted from the PUMA layout were used as

input for IRSIM, leading to more accurate delay and timing results than what is possible in the

m

g

I

c

g

DC

I

0) 111 £ UIJ2 —
Tj o c 13 »

co o> o 55= ° •=
6 V d.2<2d>3
•5* a LIOM II E
O) T3 Q 3D C I

o

•car
o
Q
<
tr
i-
w
z

;•§*2."°
m

•a! o
j 2
? s

E u_
~ to

£ QE °1
ffl w O £

o

— ii in

d> d)

8

«W

£

x a a> «

C

tfl

3

OH

DH

OH

«

OH

Iwtu s 2
o ccto «u cm

25 2

2

S

8

[

C

L

t

IS 2

*£
o
a.

o

I

• com
occr
t-i-

.(0C0
CO
•£dc

119

"Si

Figure 4-6THOR simulation of PUMA. The analyzer shows the output phase of the RL
program (starting at OUTPORT=dc5e8[hex])

31 § i

C
T

C
/5

3 O
S

Q
.

3 O «
-
♦
•

B
.

o

s.
3 O

1
*

-h

O
^
o

C
c

3
P

Q
r

3
S

B
"

& «

6

£
25

o p
o

>
C

/3
o

R
c

£
3

s.
o

o
^

3
H »

-
•
.

c
/»

«
-• 3
*

C
D

C
A

P 3 a & C
/5

r
*

3
"

O

L
T

ii
n

n
_

C
L

0
C

K
IN

ph
il

ph
i2

b
lo

c
k
a

d
d

re
ss

In
st

rn
u

m

cl
sm

ln
_

eo
b

of
fc

hi
p2

cf
sm

ra
m

_
a

d
d

re
ss

ra
m

jn

ra
m

_
o

u
t

ra
m

_r
ea

d

ra
m

_w
ri

te

D
A

T
A

O
U

T
P

O
R

T

D
A

T
A

IN
P

O
R

T

_
W

R
IT

E
S

T
R

B

_
R

E
A

D
S

T
R

B

lm
*

(n
s)

03
04

05

1
0 3
C

ff
ff

?
ff

ff
d

00
00

1

B
fl

f
m

ff
fl

f

B
0

0
0

1
0

0
0

0
2

ff
lf

e

u
in

j
n

r_
n

0
1

0
0

O
c

0
1

tf
fi

d
2

3
a

1
-7

23
al

7
fl

ll
l

0
0

0
0

2
d

c
5

e
B

fc
>

u
ir

L
n

ju

03
04

i
00

01
02

03
04

•
00

O
d

0
2

0
8

0
3

6
8

8
0

-7
2

c
5

(3

38
30

7
ff

ff
f

:
2c

5B
ff

lf
l

1
7

7
1

8
d

3
a

0
c

1
1

0
0

0
.0

1
1

3
2

2
.4

121

logic level simulation. The execution of the microcode, including data input and output, was

simulated in its entirety, and the results havebeenverified againstthosecomputed in the high-level

and logic-level simulations.

4.6.3 Electrical rule checking

Electrical design rules are design rules that apply to the electrical interconnection of layout

geometries, as opposed to topological properties of the geometries. Examples of electrical design

rule violations are listed in Table 4-8. The MAGIC design rule checker is only a topological

checker and does not know about electrical design rules, partly because such rules tend to vary

(especially between analog and digital designs).

Because of the complexity of PUMA and the many levels of hierarchy, it became difficult to check

electrical design rules manually. A program named ere (electrical rule checker) was developed

which automated this task, ere checks for all the errors listed in Table 4-8.

4.6.4 Chip testing

The PUMA chip was testedusing a Tektronix DAS 9100 patterngenerator/data acquisition unit.

There wascomplete functional agreement between the measurements of the chipand theTHOR/

IRSIM simulations. Table 4-9 shows all the simulation and chip measurement results for a random

test case. Notethat the biggesterror between the floating point and fixed point simulation is 0.01

Geometries Electrical rule violation

pwell/nwell floating (not connected to anything)

pwell/nwell tied to Vdd/GND instead of GND/Vdd

pwell/nwell tied to something other than GND/Vdd (e.g. a signal)

Vdd/GND unconnected

Vdd/GND shorted together

Table 4-8 The electrical design rule checked by the ere program

122

degrees, indicating that the fixed point formulation is sound. Also note that THOR, IRSIM and the

chip itself were 100% in agreement, and that the difference between the high-level fixed point

simulation and the chip is at most 0.01 degrees.

IRSIM is usually a conservative predictor of chip speed. For the PUMA chip, the simulation

worked up to 6.5 MHz (using untuned, conservative transistor parameters for a 2u,m process).

Measurements on the actual chipshowed that it was fully functional onlyup to 4.6MHz. The first

blockto fail was the RAM. The datapaths, the program ROM and theblock sequencer were all

functional up to 8.2MHz at5V.The discrepancy between IRSIM and the measurements is dueto

the fact that the circuit extraction does not include wire resistances (IRSIM does not handle wire

resistance). Resistance extraction is important when there are long polysilicon lines in the layout.

This was the case inthe RAM and PLA modules. These modules had been optimized with respect

to area by using polysilicon lines instead of metal lines in certain key circuits.

Source of results 91 62 93 84 65 66

Floating point
(kt -float)

-50.11 33.05 -62.40 -61.46 150.40 -167.04

153.67 122.03 -62.40 39.41 167.04 92.74

Fixed point
(kt-fix)

-50.11 33.05 -62.40 -61.47 150.40 -167.05

153.67 122.03 -62.40 39.40 167.04 92.74

Error

(Fix - Float)

0.00 0.00 0.00 0.01 0.00 0.01

0.00 0.00 0.00 0.01 0.00 0.00

THOR, IRSIM,
and measured

on the chip (hex)

dc5e8 177f8 (BaOc d44b0 6af3a 89368

6d460 56c6e d3a0c lc05c 76c84 41f34

Converted to

degrees

-50.11 33.04 -62.40 -61.46 150.40 -167.04

153.67 122.03 -62.40 39.41 167.04 92.74

Table 4-9 Simulation and test

shown

chipmeasurement results. Two outof eightsolutions are
for a randomly generated test case

123

It is clear that by spending more area and using metal lines, the speed can be increased

substantially. In fact, a subsequent C-to-Silicon chip design [mmar92] simulates at 80MHz. The

chip has not returned from fabrication at the time of this writing. The main reasons for the speed

improvement is that the RAM has been reworked to avoid the polysilicon lines, theoverall smaller

RAM size (26 words), the use of newer technology (1.2 um versus 2.0urn) and that the program

running on the machine is about 1/7 the size of PUMA's program. Nevertheless, the results

indicate thatthe C-to-Silicon systemcanalso be used forhigh-performance designs.

Characteristic Value Comment

wordlength 20 size of all the datapaths

cstore PLA 13x649x77 49973 bits (microcode ROM)

IguPLA 16x32x8 inputsx mintermsx outputs

cfsm PLA 21x171x26 inputsx mintermsx outputs

data RAM 172x20 3440 bits

technology 2|i scalable CMOS (nwell)

width x height 9864 x 9608 X*

transistors 99384

pads 126

package 208 pin PGA

Table 4-10 Physical design characteristics of the PUMA chip

Block Speed Comment

chip (IRSIM) 6.2 MHz without resistance modelling

chip 4.6 MHz limited by RAM speed

RAM 4.6 MHz long poly lines (area optimized)

datapath 8.2 MHz

control store 8.4 MHz

control fsm 8.4 MHz

program counter >10MHz

Table 4-11 Measurements on the PUMA chip

124

Figure 4-8 CIF plot of the PUMA chip

4.6.5 Physical design results

The IPO algorithm is quite complex compared to the algorithms employed in many DSP

applications. Therefore, the resulting microprogram is large (about 670 lines after compression),

yielding achip of 9.8 x9.6 mm2 in 2u. technology. Table 4-10 sums up the key results of the

physical chip design. The completed chip is shown in Figure 4-8. Itwas fabricated through the

MOSIS service.

125

4.7 Summary

The design of the PUMA chip demonstrated the feasibility of the C-to-Silicon system, and served

as a driving force during the development of the system. All the main features of the system were

exercised and tested during the design of PUMA. Easy architecture exploration proved to be an

indispensable feature for performance and tradeoff evaluation. High-level simulation (floating and

fixed point) were used to develop a numerically sound algorithmic formulation of the IPO

computation. Automatic layout generation was successfully employed to create the complete chip.

Logic and switch level simulation support tools were used to debug the design and verify the

layout and timing of the processor. PUMA has been successfully fabricated and tested, and C-to-

Silicon is now currently being applied to other design projects.

CHAPTER 5

SOLVING nxn POLYNOMIAL

SYSTEMS

The general IPO problem for 6R robots will now be considered. It is markedly more complex

than the PUMA case, and constitutes a suitable test case for investigating architectures and

implementations of Numerical Processing systems. Since the general IPO problem can be cast as

solving a system of n polynomial equations in n unknowns, I will start out by describing the

development of a family ofC software programs (named ConsolC) for solving such systems, using

the homotopy continuation method described in Chapter 2. There were several reasons for

developing the ConsolC software:

♦ Portability. Existing software was only available in the Fortran 77 language, which is not

widely used in the UNIX workstation environment. We also wanted to take advantage of the

UNIX programming environment, since frequent software modifications were expected.

• DSP chip compilers. We wanted to investigate how the IPO computation would fare on com

mercial DSP chips. C compilers are available for most current DSP architectures, whereas For

tran is much less common. By developing a C package, the migration to DSP chips is much

simpler.

127

128

• Algorithm insight. It was assumed thatdeveloping and running the C codewould provide addi

tional knowledge about the algorithms, bothstructurally and numerically. Suchknowledge can

be applied to identify the time-critical parts of the computation and to determine how these

could benefit from an application specific architecture.

The original Fortran Consol software was developed by Morgan [morgan87a]. This chapter

describes the development of the C version, starting with a description of the algorithm andhow

various software modules weredesigned to implement the computation. In particular, the software

features especially required for the IPO computation are described. An important task was to test

the software on some realistic inputs, so as to assess the robustness of both the method and the

implementation.

Following the development of ConsolC, the package was used to investigate the general IPO

computation. The purpose of the investigation wasto learn about the numerical properties and the

complexity of the algorithm, sincethis knowledge is important when considering Application

Specific Processor implementations. In particular, convergence, path lengths, variable ranges (max

values) and execution profiles were scrutinized. Some experiments with fixed point arithmetic for

selected parts of the algorithm is also included. The fixed-point version of the ConsolC package

wascreated by translating all the C codeintoC++ and developing a special Fix package in C++ to

perform the fixed-point arithmetic. This wasmuch simpler in C++ thanit would have been in C

due to the operator overloading mechanism availablein C++.

5.1 Software architecture of ConsolC

The purpose of ConsolC is to track the paths of the homotopy continuation

h(x,t) = (1-t) -g(x)+t-f(x) te [0,1] (5-1)

where h(x,0)=g(x) is the starting system and h(x,l)=f(x) is the goal system. ConsolC uses

Newton's method to move along each path as explained on page 36. At each step, the program

solves the equation

129

0 « h (x0, At) + Dhx (x0, At) Ax (5-2)

and uses the value of Ax to move to the next point. A generic flowchart for the programs in the

ConsolC family is shown in Figure 5-1, and a listing of the main subroutines or modules are given

in Table 5-1. The steps of the algorithm should be familiar from Chapter 2: The first task is to read

C Start)

Read coefficients of f(x)

Read run parameters

I
Preprocessing

I
Initialize run parameters

I
Select a solution xu to g(x)=0

Set start of path to (x,t)=(x°, 0)

I
Track the path

fromt=0tot=l

(Finish)

Flag

failed path

Figure 5-1 Generic flowchart for ConsolC programs

130

Function Software module Function Software module

Start consol8.c
Set start of path to
(x,t)=(x°,0) consol8.c

Read coefficients of f(x) inputa.c Track the path from
t=0 to t=l

consol8.c, predicts,
conectx

Read run parameters inputb.c Check convergence stepcheck.c

Initializerun parameters consol8.c Print solution postprocc

Select solution to g(x)=0 startpoim.c Print path statistics postproc.c

Table 5-1 Software modules of the ConsolC family

Homotopy Formulation Source System size

256 path 0- or 1-homogenous [morganS4] 8x8 complex, 16x16 real

96 paths 2-homogenous [morgan86] 8x8 complex, 16x16 real

64 path 2-homogenous [morgan87b] 8x8 complex, 16x16 real

16 path 2-homogenous [wamplei89] 11x11 complex, 22x22 real

Table 5-2 Different homotopies used to formulate and solve IPO equations

thecoefficients of the equation we want to solve, and to setruntime parameters such as desired

path tolerances and the number of steps that should be allowed before a path is considered

divergent. Preprocessing can mean anumber of tasks. In the case of the IPO equations it isused to

convert a goal point and asetof Denavit-Hartenberg parameters into the coefficients of the goal

system. The main loop of the program consists of selecting anewstarting point, tracking the path

from t=0 to t=l and recording thesolution (endpoint) and the path statistics.

131

5.2 ConsolC variants

As mentioned in Chapter 2, there are a variety of formulations of the IPO polynomial system,

with a varying number of paths to track. Table 5-2 shows the most useful systems currently known

The first 3 systems (256,96,64) were known at the time ConsolC was developed, whereas the 16-

path method is a more recent development.

The ConsolC package contains programs suitable for each of the 256/96/64 formulations, as well

as generic variants that can handle any type of polynomial system.Table 5-3 contains a listing of

the various programs in the ConsolC package. A description of the different versions follows in

Program name Properties of program

consol6r f,g are both 2 quadratic equations in 2 unknowns

consol8qp f,g=generic quadratic, 1-h projective transform

consol8tp f,g=tableau, 1-h projective transform

robot8tp f=tableau[robot input], 1-h projective transform, 256 paths

robot8pl f=hard-coded robot, g=generic quadratic, 1-h projective transform, 256 paths

robot8p2 f=hard-coded robot, g=generic quadratic, 2-h projective transform, 256 paths

start96p2
f=hard-coded robot 2-h, g=Sommese 96 path start system with 2-h projective
transform, h=gamma factor

robot96p2 f=hard-coded robot, g=generic robot, h=gamma factor, 2-h transform, 96 paths

robot64p2 f=hard-coded robot, g=generic robot, h=gamma factor, 2-h transform, 64 paths

robot64p2g
f=hard-coded robot, g=generic robot, h=gamma factor, 2-h transform, 64paths,
LU=gauss with full pivot

robot64p2gp
f=hard-coded robot, g=generic robot, h=gamma factor, 2-h transform, 64 paths,
LU=gauss with row pivot

pi tran Transform solutions from Euclidian space to 1-h projective space

p2tran Transform solutions from Euclidian space to 2-h projective space

Table 5-3 Programs in the ConsolC package

132

the next few sections.

5.2.1 General polynomial solvers

Themost general form of ConsolC isknown asconsol8t2p. This version allows both f and g tobe

specified in "tableau" (or tabular) form. This means that each equation canhave the completely

general polynomial form

f{(X) = XaitX?UX^...Xnm- (5-3)
t=l

For eachequation, the program reads first how many terms tin the equation contains. Then for

each term, it reads the coefficient a^ andthenthe exponent mitk (possibly 0) for eachof thek=l :n

variables in thesystem (orn+pvariables in thecase of a p-homogenous transformed system). The

tableau form is practical for general investigations but the evaluation of the functions f,g,h and

theirJacobians areslow. Since theIPO problem involves quadratic equations, consol8tlp was

instead designed to solve only such systems but in a faster manner by hardcoding the quadratic

form into the function evaluation code. Thegeneral polynomial solvers typically uses a starting

system of the form

gi (x) = Pixf' +q{ dj =deg (f;) i=l:n (5*)

butas weshall seelater, it is sometimes beneficial tousemore specialized starting systems.

A simpleversion of ConsolC that can only do systems of 2 equations in 2 unknowns and of 2nd

degree is known as consol6r. This program was initially used to explore the continuation

method and to generate examples of continuation paths. Anexample of the4 continuation paths

(each with 2 complex variables) generated byconsol6r is shown in Figure 5-2. Theparticular

system used in thisexample was f:C2 -> C2 given by

fj(x) = a11x2 + a12X1x2 + a13x^ +a14x1 + a15x2 + a16 (5-5)

f2 (x) = a2ix? + a22x1x2 +a23x^ +a^ +a^Xj +a^ (5-6)

As startingsystem,consol6r alwaysuses the system

3.50

3.00

2.50

2.00

1.00

0.50

0.00

-0.50

133

pathO.Z[0]

pathOl'iiT
pathf.Z[6i
pathTZ[f]
pathiizTof
path25[lT
path3.Z[0]

path37Z[TT

X

Figure 5-2 Example of continuation paths in the complex plane. These particularpaths are
for 2 equations of 2nd degree in 2 unknowns. The complex variables are xl= Z[0] and

x2=Z[l] in the figure. There a 4 paths (8 trajectories) corresponding to the 4 solutions of
the system

Coef Real part Imaginary part Coef Real part Imaginary part

pl 0.12324754231 0.76253746298 ql 0.58720452864 0.01321964722

P2 0.93857838950 -0.99375892810 q2 0.97884134700 -0.14433009712

Table 5-4 Coefficients used for the random starting system in consol6r

134

Coefficient Value Coefficient Value

all 0.706286 a21 0.655203

al2 0.977589 a22 0.668641

al3 0.150897 a23 0.823866

al4 0.400489 a24 0.209538

al5 0.312564 a25 0.230056

al6 0.679323 a26 0.879568

Table 5-5 Coefficients used in the systemsolved in Figure 5-2. All coefficients are
real, so that solutions generally exist in complex-conjugate pairs

Startpoint Real Imag Endpoint Real Imag

xl 0.138191 -0.747731 xl -0.461010 -1.075700

x2 0.568454 0.448099 x2 0.392620 -0.203800

xl -0.138191 0.747731 xl 0.234650 -0.516840

x2 0.568454 0.448099 x2 -0.407340 -0.772730

xl 0.138191 -0.747731 xl 0.234650 0.516840

x2 -0.568454 -0.448099 x2 -0.407340 0.772730

xl -0.138191 0.747731 xl -0.461010 1.075700

x2 -0.568454 -0.448099 x2 0.392620 0.203800

Table 5-6 Starting points an end points for the 4 continuation paths of Figure 5-2. Note
that there is considerable symmetry in the starting points due to the simple form of the
starting system (5-7). This fact isreflected inthe figure as some trajectories starting at
the same point (By trajectory is meant the traceof one variableof the N=2 variables

that make up a continuation path)

gi(x) =PiX2+ q! — « v2g2(x) =p2x| + q2 (5-7)

where p.,q. are "random" complex numbers. In consol6r, the actual numbers used for g and the

coefficients of the system f solved inFigure 5-2 are shown inTable 5-4. One notable property of

135

the paths in Figure 5-2 is the widely varying spacing between the points along the path. This is

partly due to the fact that consol6r is a simple program which does not use stepsize control but

rather a fixed increase of the continuation parameter t at each step.

5.2.2 Robot polynomial solvers

The remaining programs of ConsolC are all specialized IPO solver programs that were

independently developed and do not have any direct counterparts in the Fortran Consol package.

Robot8tlp is a tableau-type program,but in this case the tableau is generated from robot parameter

inputs (goal point, Denavit-Hartenberg) instead of outside the program (by the user). Hence it is

easier to use for the IPO application but still slow.

The remaining IPO solver programs are specialized versions that have been optimized for speed at

the cost of lesser generality. The goal system for all the IPO programs is

fj(z) = a{^ZjZg + a{ 2ZjZ4 + a; 3z2z3 + ^ 4z2z4 + ai5z5z7 + a; 6z5z8 + a{ 7z6z7 + as 8z6z8

+ \ 9z{ + \ 10z2 + aj uz3 + aj 12z4 + a^ 13z5 + \ 14z6 + aj i5z7+ \ 16z8

+ aiil7 i = 1->4

W =4-9 +4-8-1 i =5-• 8 (Wl)

These equations are the expansion of the shorthand equations (2-34). The expressions for the

coefficients a{ kare generally very complicated functions of the goal point and the Denavit-

Hartenberg parameters. The equations for f-(z) are availablein Morgan's book [morgan87a] but in

such a complicated form that it is unlikely one could copy them without making errors. I therefore

decided to use the symbolic algebra program Macsyma [mac83] to derive the necessary equations

from scratch, and then compare the result to Morgan's book. The results are shown in Table 5-12

(at the end of the chapter). They agree with Morgan's derivations. The parameters involved in the

coefficient expressions in the table are the Denavit-Hartenberg parameters

a{, dj, \{ = coscij, u,j = sinoij and the position/orientation parameters (Chapter 2), reproduced

here as (5-9).

136

T; =

c, -s^ SjU.. ajCj

Rp _ Si Ci^j -C;^ OiSj

0 i 0 ji. A, d,
0 0 0 1

T = Rp
0 1

ril ri2 ri3 Px

1*21 r22 r23 Py —

F31 r32 r33 Pz

0 0 0 1

!x mx nx Px
ly my ny py
lz mz n2 pz

0 0 0 1

(5-9)

256-path versions

The programs robot8pl and robot8p2 both are 256-path homotopy trackers for the IPO system.

Theironly difference is thatthey use a 1-homogenous and 2-homogenous formulation (Definition

2.3 on page 42) of the problem, respectively. The 1-homogenous form of (5-12) is

fj(z) = ajt iZjZa +ait2z1z4 +a^Zj +^ 4z2z4 +ai>5z5z7 +ai>6z5z8 +aj,7z6z7 +a;i8z6z8

+ aj 9ZjZ9 + aj 10z2z9 + ai> nZ3z9+ aj i2z4z9

+ h 13Z5Z9 + h 14Z6Z9 + \ 15Z7Z9 + ai, 16Z8Z9 + \ 17Z9 i= 1-»4

fi(z) = 4-9 +4-8-Z9 i = 5 -> 8

A polynomial system does notnecessarily have a2-homogenous form, butthe IPO system has a2-

homogenous form based on the variable groupings (1,2,5,6) and (3,4,7,8). This results in the

following 2-homogenous formulation:

fj(z) = %jZjZg +\2z,z4+ait3z2z3 +ait4z2z4 +ai>5z5z7 +ai6z5z8 +ait7z6z7 +aji8z6z8

+ &19ZjZ9 + % ioZ2z9 + &jt iiZ3z10 + aj i2Z4z10

+ ai. 13Z5Z9 + ai. 14Z6Z9 +h 15Z7Z10 +ai, 16Z8Z10 + ai, 17Z9Z10 1=1 —> 4

fi(*) = 4 - 9+4 - 8-Z9Z10 i = 5 -> 8
(5-11)

The purpose of the n-homogenous forms is to avoid the problems with solutions atinfinity. The

system described by (5-12) has degree 256, so it has at most 256 solutions unless it has an infinite

number of solutions (in thecase of a singularity). Morgan proved [morgan87b] that (5-12) has at

most 64 finite solutions. This means that there will be at least 192 paths leading to solutions at

infinity. In the same paper, Morgan proved that inthe special case when (5-12) represents an IPO

system, there are atmost64 finite solutions. Hence there will be atleast 224 divergent paths to

137

track, whereas only 64 paths may lead to finite solutions. Tracking divergent paths is always a

problem because the program must use arule to decide when to abandon apath and declare it tobe

divergent There is no universal rule that always works. The n-homogenous formulation plus the

use of the projective transform generates a system with no solutions at infinity. This shortens the

computation time because there are no diverging paths that need tobe followed for any length of

time. Also, the solutions of then-homogenous system can be transformed backto solutions of the

original system and it isnow easy to separate the finite solutions from the solutions at infinity.

96 path version

The main problem with the 256 path version isthat there are many paths to track that will notlead

toan interesting solution. We would rather not compute all the solutions at infinity since there isno

real use for them. Morgan and Sommese [morgan86] also made headway with this problem,

showing that the number of paths could be reduced to96 byusing astarting system gof the same

form as f, butwith different ("random") parameters. That is,g has the form

gi(z) = buz1z3 +bit2z1z4 +bit3z2z3 +bi>4z2z4 +bit5Z5Z7 +bit6z5z8 +bi,7z6z7 +bit8z6z8

+bi.9zi +bj, ioz2 +bit „z3 +bi# 12z4 +bj, 13zs +bit 14z6 +bif 15z7 +bip 16z8

+bU7 i = l-»4

gi(z) = 4-9 +4-8-1 i = 5 -> 8

Both f and g are cast in their 2-homogenous form before the computation is performed. The 2-

homogenous Bezout number of f and g are 96, meaning that there are atmost96distinct solutions.

Hence there are only 96 paths to track. However, there isone problem with the method: We do not

know the solutions to g(z)=0, so wehave no points to start the tracking process from. Sommese

solved this problem byinventing asimple system G(z) which can be solved byhand, and which

can be used (once) as a starting system for finding the solutions of g(z). Once we have the

solutions of g(z), the system can be used over and over again. The artificial system G(z) has the

following form:

138

G,(z) = z1(z3-3z7+ll)

G2(z) = z5(z4-7z8 + 5)

G3(z) = z3(z,-3z5+ll)

G4(z) = z7(z2-7z6 + 5)

Gi(z) = gi(z) i = 5-»8
(5-13)

The solutions of this system has to be computed by hand and in one case by a reduction that

produces a system that can in turn be solved in aConsole run. Because of the complexity of these

hand calculations, they are not included here, but Table 5-6 contains some hints about how to

computethem. There is definitely some work involved, but the hintsare a good start.

Afterthe hand calculations, theConsolC program was used to compute all 96solutions of g(z)=0.

The solutions were then successfully used as starting points inthe program robot96p2.

64 path version

As an additional result, Morgan and Sommese discovered and proved that(5-10) always has an

identical set of 8 multiplicity 4 solutions at infinity. Moreover, when using the generic starting

system (5-12), the same set of starting points will always lead to these 32 uninteresting solutions,

no matter the particular robot coefficients in the goal system. This naturally leads to a 64 path

Case Assumptions Useful implications

zl=z3=z5=z7=0 z2,z4,z6,z8=+-l

zl=z3=0 z2,z4=+-l

zl=z7=0 z2,z8=-i-l

z5=z7=0 z6,z8=+-l

z3=z5=0 z4,z6=+-1

zl,z3,z5,z7!=0 Create 2 eqnsin 2 unknownsand solve numerically

Table 5-7 Hints for solving (5-13) by hand

139

version (robot64p2) were we simply skip the paths that lead to the 8x4 solutions. The programs

robot64p2, robot64p2g and robot64p2gp are all variants of the 64-path version.

Further path number reductions

Since the time of this work, some further reductions in the number of paths have been made. It

has been known since 1980 [duffy80] that there could be at most 32 solutions to the general IPO

problem, meaning that the 64-path version does at least twice as much work as should be

necessary. Moreover, Primrose [primrose86] proved that there are in fact 16 or less different

solutions to the IPO problem. Since systems existthat do in fact have 16solutions, thismeans that

no further reduction is possible in the general case.

Wampler and Morgan [wampler89] developed a1lxl1polynomial system for which only 16 paths

have to be tracked. Again, they used the method of the generic case to skip 304 of the 320 paths

that would otherwise have to be tracked for this system, ending up with only 16 paths to track. The

formulation isgeneral, but has to be broken down intwo cases depending on whether the robot has

any joints with zero twist angles.

5,3 ConsolC and the IPO problem: Numerical properties

This section contains information about the numerical behavior of ConsolC (actually

robot64p2gp) when applied to various instances ofthe general 6R IPO problem. Robot64p2gp was

first run on the 3 examples used by Morgan in his book [morgan87a]. A large collection of

software programs was developed along with ConsolC to postprocess the ConsolC outputs into

various useful formats. For example, one postprocessor searches the output file for the joint angles

and sort them so that theycan becompared to Morgan's results. This verified that Console was in

working order.

Continuation path plots

Another interesting use of the output data is to plot the continuation paths inthe complex plane.

140

robot64p2gp [-dhpsS] [-x xgraphfile] <infile>outfile

Option Function

-d DivtesL Print when dividend>divisor

-h Printvaluesof f,Df,gJ)g,hJ)h at every evaluation

-P Printrunningmaximum of pivots

-s Collect maximum statistics on x,f,gji,df,dg,dh (per run)

-S Collectmaximum statistics on x,f,g,h,df,dg,dh (perpath)

-x Output xgraph plot datato named file

Table 5-8 Options for the robot64p2gp program

The ConsolC programs have an option(-x) whichallows logging (to a file) the value of x at each

step alongthe continuation path. The file can then be postprocessed into a format suitable for the

xgraph program and displayed on the workstation. Figure 5-3 shows two continuation paths

produced by robot64p2gp. The paths are from the same family of 64 paths generated by one

execution of robot64p2gp. The starting system is g=Example3 (as always in robot64p2gp) and the

goal system is f=Examplel. Path 6 is a"nice" path where all variables stay close to theorigin. Path

81 is the worst path from this run and has 4 variables straying quite far from the origin whereas the

other 4 variables stay close, in fact so close that their paths are not discernible on this plot. This

path takes longer to track and is more of a challenge to theaccuracy of thecomputer arithmetic.

Path lengths

The length of a continuation path is defined as the sum of the Euclidean distances between the

points along the path. The distance is measured inC8, since the path is in an 8-dimensional

complex space. ConsolC provides path length information on demand. For example, path 81 has

length 714.7 and path 6 haslength 17.8, approximately. By sorting and examining all the path

lengths foreach run it became clear that there is a widevariation in the path lengths both inside a

Q-
y

3.00

2.50

2.00

1.50

1.00

0.50

0.00

-0.50

-1.00

-1.50

-2.00

-2.50-

-3.00-

-3.50 •

4.00-

\

-2.00

outlx.p6.z

±^r*•-#-»•

^*
v.. -A

s

a

»»^

-1.00 0.00 1.00

-X-

s

^

/

2.00

path6.Z[0] 40oo

;.,...,,' 30.oo
path6.Z[2]

paffiZP]" 2000
paA6TzT4r ~ 10.00
^.z[_5T_" 000.
path6.Z[6]

path62[7T " -1000
-20.00

-30.00

-40.00-

-50.00 •

-60.00

-70.00 •

-80.00 •

-90.00-

-100.00 -

-110.00 -

-120.00 -

-130.00 -

-140.00 -

-150.00 -

-150.00 -100.00 -50.00

outlx.p81.z

• \

0.00 50.00 100.00

Figure 5-3 Example of continuation paths fromthe robot64p2gp program. Path 6 is a"nice" path
which does not stray far from the origin. Path 81 is the worst of all tiie 64 paths in this run, which
used g=Example3 asthe startsystem and f=Examplel as the goal system. Eachcurverepresents 1

out of 8 complex variables that make up a continuation path.

path81.Z[0J

pafli8l2[bT
path8T.Z[l]'
pa"th81.Z["ir
pa&8l.Z[2]"

,path8f!Z[2]'
path81.Z[3r
path8l.Z[3]

142

arc length histogram
count

50.00 -

45.00 -

40.00 -

35.00 -

30.00 -

25.00 -

20.00 -

15.00 -

10.00 -

5.00 -

0.00 -

0.00 1.00 2.00 3.00

loglO(arclen)

Figure 5-4 Individual histograms showing the frequency of various arc (path) lengths
among the 64 paths generated by each one of 3 different runs

given run and between different runs. For example, the shortest path was path 29 which had length

1.79. Figure 5-4 shows the frequency of path lengths among the64 paths of 3 different runs (note

that the x-axis is logarithmic). The 3 runs are using f=Examplel, f=Example2 and f=Example4.

Example 4 is similar to the starting system (Example 3) butwith a different goal point. Not

surprisingly, Example 4 generates the most short paths and the lowest maximum path length as

well. This is because the system is fairly close to g=Example3 (the starting system). The main

143

observation to make from the histograms isthat most paths are fairly short (10P <path length < 10

), but that inmost of the test cases there are a few paths that are unusually long. Note that having

a long path does notimply that the variables take onlarge values, even though it may look asif this

is the case from path 81. The counter-example is a path which crisscrosses the area around the

origin without any variable straying veryfar. The opposite implication is, however, true: Short

paths imply small values of the variables.

Path maximum statistics

One of the most important implementation issues for Numerical Processing is the range and

precisionneeded for the data types representing the real numbers, as well as the format (fixed

point, floating point). While path length statistics can give some ideaof what range and precision

is needed, we need more complete information on the range of the variable and function values

that can be expected during a continuation run.

ConsolC programs can provide themaximum absolute values of all components of x, g(x), f(x),

h(x), Dg(x), Df(x), Dh(x), eitheron a per-run or per-path basis. This feature was used to collect a

large number of statistics from different runs using robot64p2g. 500 runs eachweremadewith the

goal robot being thePanasonic NM-5740, thePUMA 560and Morgan's Example 3, using random

goal position/orientation points. Each of these 3 cases generated500x64=32000 max values for

each of the variables/functions mentioned. This large data collection was then histogrammed in

twodifferent ways. The first 3 histograms (Figure 5-5 andFigure 5-6) are for the 3 different robots

(Pana, Puma, Example 3) and contain max values forall the components individually. The main

observations to make is thatit is typically Dh which takes onthe largest values andwhose peak in

the distribution is the farthest to the right. Values as high as 109 have been observed forsome

paths.

I also have made 7 plots (one for each of x, g(x), f(x), h(x), Dg(x), Df(x), Dh(x)) that each contain

3 histograms (one foreachof Pana, Puma, Example). These plots (Figure 5-6 - Figure 5-9)make it

easier to compare between the different target robots. The observation to make here is that

pana max histogram
countx 10-3

30.00 _ 1 1 1

28.00 -

26.00

24.00

22.00 Ji

20.00

18.00

16.00

14.00

12.00 -

10.00

8.00

6.00
1

4.00 J j

2.00

0.00

1

41

J.

y

?

1

Ji ill .
i

1

Ml .

0.00 2.00 4.00 6.00

j;i
if hi

j

8.00 10.00

xmax

finax"

gmax"
Emax~

d*finax

dgmax

dhmax

logl0(max)

countx 10^

30.00

28.00

26.00

24.00

22.00

20.00

18.00

16.00

14.00

12.00

10.00

8.00

6.00

4.00

2.00

0.00

puma max histogram

- 1 1 i i i 1 xmax

fmax

-

gmax

Emax"

dfinax

—

•
dgmax

dhmax

-

? •

_

-

!
!
s

I
i
i.

h
11

h

-

-

|i ||i ,

-

1

•1 2i
i

l!i s1
£1..

1

hi Jl Ul si. ...

1 1 1

0.00 2.00 4.00 6.00 8.00 10.00

Figure 5-5 Histograms of max absolute values of variable and function components on a per-path basis
over 500x64 paths. Df(x) has the largest values in this sample

fc

countx 103

0.00

ex3 max histogram
count x 10*

xmax

2.00 4.00 6.00 8.00

logl0(max)

0.00 2.00 4.00 6.00 8.00 10.00

Figure 5-6Left: Max absolute value histogram for Example 3 (500x64 paths). Right: Max absolute value
of components of x (3x500x64 paths)

logl0(max)

fc

gmax
countx 103

1 1 1 1 1 1 gmax.ex3

30.00

3a
aa —

gmajcpana

28.00
gmax.puma

9m
Urn

26.00 aa
3a —
aa

24.00 3a _
aa
aa
aa

22.00 —

3a
aa —

aa
aa

20.00

18.00

aa

16.00 -

aa
aa —

aa
am

14.00 aa _

aa

12.00 aa _

a.
aa

10.00
aa
aa —

8.00

6.00 ai —

4.00 5 -

2.00
aa =5
aa aa —

0.00

1 1 1 1 1 1 logl0(max)
0.00 2.00 4.00 6.00 8.00 10.00

countx 103

30.00

28.00

26.00

24.00

22.00

20.00

18.00

16.00

14.00

12.00

10.00

8.00

6.00

4.00

2.00 -

0.00 -

0.00

I _
2.00

fmax

a

rai
aa
aa

3

5a 3a
S aa
aa aa

Oa aa
Oa aa
aa aa

_aa £ki

l_

4.00 6.00 8.00 10.00

Figure 5-7 gmax andfmax histograms for f=(pana, puma, Example 3) goalsystems and500random goal
points.There are 3x500x64 paths

fmax.ex3

finax.pana

fmax"puma

Iogl0(max)

£

ountx 103

20.00

19.00

18.00

17.00

16.00

15.00

14.00

13.00

12.00

11.00

10.00

9.00

8.00

7.00

6.00

5.00

4.00

3.00

2.00

1.00

0.00 -

0.00

s

Is

a
3

2.00

a.
aa
aa
aa
aa

a
aa

aa

Oa
aa

3

3
a!

3
Oa

I

4.00

hmax

6.00 8.00 10.00

hmax.ex3

hmax.pana

hmax.puma'

loglO(max)

count x 103

28.00

26.00

24.00

22.00

20.00

18.00

16.00

14.00

12.00

10.00

8.00

6.00

4.00 -

2.00 -

0.00

0.00

dgmax

£ -

2.00 4.00 6.00 8.00 10.00

Figure 5-8 hmax and Dgmaxhistograms for f=(pana, puma, Example3) goal systemsand 500 random
goal points. There are 3x500x64 paths

dgmax.ex3

dgmax.pana ~
dgmax.puma

logl0(max)

-4

count x

26.00

103

"

24.00 -

22.00 -

20.00 -

18.00 -

16.00

14.00

12.00

10.00

8.00

6.00

4.00

2.00

0.00

0.00

L -

2.00 4.00

dfmax

a

i

a
aa

a? :
a? 3

a 3
aa aa
Oa Oa
aa aa

1 iaa Oa
aa aa
aa aa
S a>
5a Oa

S a
aa aa
Oa aa
aa aa
aa aa

S Oa

a a

6.00 8.00 10.00

dfmax.ex3

'dmTax*.pan"a"
dfm~ax.puma~

logl0(max)

countxlO3

28.00

26.00

24.00

22.00

20.00

18.00

16.00

14.00

12.00

10.00

8.00

6.00

4.00 -

2.00 -

0.00

0.00 2.00

dhmax

3
a
a
aa

a
aa
Oa
aa

3

3
»a
aa
aa

3
aa
aa
aa
aa
aa
«*a

3

a a a
aa aa aa

-~_ _a a a

4.00 6.00 8.00 10.00

Figure 5-9 hmax and Dgmax histograms for f=(pana, puma, Example 3) goal systems and 500 random
goal points. There are 3x500x64 paths

dnmax.ex3

dhmax.pana

dhmuc.puma"

logl0(max)

&

149

Example 3 predictably has the lowest maximums, whereas Pana and Puma are much higher but

about the same (Puma generally slightly higher than Pana).

5.4 Profiling

Execution profiling refers to the practise ofdetermining how much time agiven program spends

executing the various subroutines of the code. For ConsolC, the purpose of profiling is to find out

what parts of the code are themost time intensive, so as to identify where an ASP can have the

most impact on the execution speed. The UNIX profiling tool (gprof) was used for this purpose,

and the main results are shown inTable 5-8. The main work being performed by the program is to

evaluate functions and to solve the linear equations for the Newton iterations. The profile shows

that the function evaluations, that is, g(x), f(x), h(x), Dg(x), Df(x) and Dh(x), take 57.2% of the

total running time (which was 62.01 seconds), whereas solving the linear equations takes 36.6%.

One shouldnot jump to the conclusion that this means that function evaluation is the bottleneck.

In fact it is not. The reason is that the function evaluation can easily be parallelized: Each

component of g(x), f(x), Dg(x) and Df(x) can be computed independently and in parallel.

Combining the results into h(x) and Dh(x) isasmall matter. Indeed, if all the components of the

functions were equally complex to compute, we could get aspeedup of 8x8+8x8+8+8=144 by

computing all thecomponents in parallel on different processors. An additional factor of 2 can be

Function Percent time Subfunction Percent time

hfunt 57.2% gfunt 21.2%

mint 19.0%

linnr 36.6% lnfhgap 26.8%

lnsngap 9.6%

Table 5-9 Profiling results for robot64p2gp. The hfunt function evaluates h(x) and Dh(x).
The linnr function is the linearequation solver

150

Program part
Before parallelization After parallelization (estimated)

seconds percent seconds percent

h(x),Dh(x) 35.47 57.2% 025 0.9%

Linear equations 22.70 36.6% 22.70 84.7%

Other 3.84 62% 3.84 24.4%

Table 5-10 Impact of parallelization on relativeruntime of function evaluations versus
linear system solving

realized by computing the real and imaginary parts in parallel. The assumption thatall function

components are equally complex does not hold exactly for the IPO system, but it is accurate

enough to make our point, which is that the function evaluation part of ConsolC is easily

parallelizable and hence not the true barrier to highperformance. Table 5-9 shows the impact of

parallelizing the function evaluations 144 times. The result is that the linear system solvingnow

takes up 84.7% of the time and the function evaluations only0.9%. (Therestof the time is various

i/o and pre/postprocessing overhead that mayormaynotbe present if the computation is done in

an Application Specific Processor.)

5.5 Pipeline interleaving

In addition to the concurrency available in the function evaluation, there is also the possibility of

having several continuation paths being computed atthe same time. This is notnecessarily a good

ideaif one has to spend more hardware. On the other hand, it is likely that there are two main

processors in the system: One forthe function evaluation and one for solving the linear equations.

Once Processor 1hascomputed h and Dh, Processor 2 takes overand solves the linear system.

This means that both processors will be idle half the time.

Since there are multiple paths to be tracked, the solution to this efficiency problem is to use

pipeline interleaving [lee86], meaning that we process 2 paths at the same time, with one path

Processor 1
h,Dh

151

Schedule time
•

PI ha hb ha hb ha hb

Bill LUa LUb LUa LUb LUa LUb

Figure 5-10 Pipeline interleaving with 2 processors, and 2 paths being computed
concurrently

being in the function evaluation stage while the other one is in the linear equation stage. The

method is illustrated in Figure 5-10.

5.6 Arithmetic experiments

One of the most important considerations for an ASP implementation of IPO/ConsolC (or parts

thereof) is the arithmetic requirement ofthe computation. This section describes how this aspect of

the design was explored using the ConsolC environment. The first subsection presents the results

floating point experiments whereas the other subsection presents the results ofapartial fixed point

computation.

Single precision floating point computation

This experiment was performed simply by using the Cdatatype float throughout all the programs

and apply the appropriate compiler options to turn off the common practice that double is used in

intermediate results. The results were promising, but using float required that some of the ConsolC

152

convergence parameters be adjusted to less strict values before convergence was possible. This is

to be expected, as float has 6.9 decimal digits of precision whereas double has 16.9 or more. The

epsbig epssmall t=l 0=0.99999 K0.99999 t<0.99

MIPS cc-f-Dfptype float

0.01 epsbig/1000 28 24 12 1

0.01 epsbig/100 32 31 1 1

0.01 epsbig/10 38 25 1 1

0.01 epsbig 45 18 1 1

STJN4 /usr/bin/cc -fsiugle-Dfptype=float

0.01 epsbig/1000 28 24 12 1

0.01 epsbig/100 32 31 1 1

0.01 epsbig/10 38 25 1 1

0.01 epsbig 45 18 1 1

SUN4 /usr/lang/cc -fsiugle-Dfptype=float -O

0.01 epsbig/1000 28 24 12 1

0.01 epsbig/100 32 31 1 1

0.01 epsbig/10 38 25 1 1

0.01 epsbig 45 18 1 1

SUN4 gcc -ffloat-store-Dfptype=float-O

0.01 epsbig/1000 28 26 10 5

0.01 epsbig/100 32 31 1 1

0.01 epsbig/10 38 25 1 1

0.01 epsbig 44 19 1 1

Table 5-11 Convergence of ConsolC/robot64p2gp in single-precision arithmetic.
Variations over different machine architectures and compilers

153

main convergence results are shown inTable 5-10, which shows for each test how many of the

paths reached t=l orgot reasonably close tot=l before ConsolC gave up. The table refers tosome

of the convergence parameters of Console, known as epsbig and epssmall. These variables are

used to settheconvergence criterion for the Newton steps as follows:

• eps = (t<0.95 ? epsbig : epssmall);

• converged = (norm2(Ax)<eps);

In other words, the epsbig isused for the crude stepping during the path tracking and the epssmall

is used while zeroing in onthe final solution towards the end of each path. The convergence

criterion isthat the euclidean norm of the last Ax should be less than eps. The value typically used

inConsolC (double-precision) is epsbig=0.01 and epssmall=epsbig/1000. As can be seen from the

table, convergence improves if epssmall is reduced. The paths that do notconverge well even at

epssmall=epsbig are ones leading to the singular solutions atinfinity, so they are not really a

practical problem. One path (number 16) never gets closer than t=0.97 in any of the tests, and it

was found (by checking the corresponding double-precision path) that this is due to a somewhat

nasty path shape towards theend. The conclusion is that ConsolC is viable in single precision

floating-point arithmetic, but it isunlikely that much less precision than this is practical.

The table shows some small variations between various compilers and architectures, but the

variations are small.

Fixed point computation

Considering the above results, there is little hope that all of ConsolC can beimplemented in fixed

point arithmetic and produce accurate solutions at any reasonable wordlength. However, it islikely

that certain sub-parts of Console can implemented in fixed point. As explained in the previous

section, the main tasks of ConsolC are function evaluation and solving linear systems. The

arithmetic requirements for these two processes are quite different. It iswell known [dahlquist74],

[golub83][golub89] that one can easily construct examples of linear systems that are quite

154

impractical to solve in fixed-point arithmetic. In fact, any system which is even close to singular

will cause great problems. Since we know that 32 of the 64IPO paths always lead to singular

solutions, it is clear that fixedpoint Gaussian elimination is not viable.

Theothermaincomputational partof ConsolC is function evaluation. As shown in section 5.3, the

values ofthe variable x and the function values g(x), f(x), h(x), Dg(x), Df(x), Dh(x) can span over

a wide range ofvalues, from 0 to about 109. This means that fixed point implementation is

difficult, but not impossible. One favorable property of the functions is that they all are

polynomials, and hence have a simple sum-of-products form. This makes them easier tocompute

since, forexample, one never has to worry about dividing one number with a potentially very

small other number.

It was decided to investigate fixed point implementation further by trying to perform the

computation of f(x), Df(x) in fixed point, convert the results to floating point and then perform all

other computations in (double-precision) floating point. This approach was taken partly because it

enables us to isolate the inaccuracies. The actual implementation of thefixed point arithmetic is

presented in the next section.

Wordlengths and scaling iseven more critical inConsolC/robot64p2gp than inPUMA (Chapter4).

The range and precision required is also much larger. Values ofxj up to 104 have been observed

(cf. earlier histograms), meaning that about 14 bits are required for the integer portion of the

variable. Another 14bits are required to get a resolution of 0.0001, and with some extra bits as a

variable

x,Df

x2,f

Fcoef

range, precision
(no paths converged)

9,-21

18, -12

1,-29

range, precision
(nicepaths converged)

5,-25

10, -20

1,-29

Table 5-12 Scaling ofthe fixed point variables used incomputing f(x) and Df(x)

155

safeguard we get close to 32 bits as a minimum for x. 31 bits were used (see next section) in the

fixed point computation because ofhardware/software limitations. The experiments revealed that

the precision was not at all sufficient, and that all the paths diverged in the middle (0<t<l). Since

there was no easy way to extend the wordlengtii, I tried to increase the precision atthe expense of

the range just to see ifI could get convergence atleast for those paths that were nice enough not to

cause any overflows. The two variations are shown in Table 5-11. The parameters range and

precision refer tohow many of the 31 bits were allocated before and after the binary point It was

found that by reducing the range for xto 5itwas possible to get most ofthe paths to converge. The

results were accurate to4-5 decimal digits in the case ofnonsingular solutions.

The conclusion is that fixed point computation ofthe function parts of ConsolC is viable incertain

application, but it isquestionable whether it iseconomical atthe wordlengths (64 bits?) that would

be required to ensure both accuracy andmargin against overflow.

5,7 The Fix. cc fixed point arithmetic package

The fixed point version ofConsolC/robot64p2gp was implemented inthe C++ programming

language. C++ was chosen because itisasuperset ofANSI Cand provides user-defined data types

(Classes) and operator overloading. Operator overloading allows the programmer to provide

special functions to extend the standard arithmetic operators (such as +,-,*,/) to apply to an

arbitrary datatype. This is very practical since it is cumbersome to use functions and write e.g.

sum(a, sum (b, c)) when the natural form of theexpression is (a+b+c) .

ForConsolC, a new datatype (Class Fix) was developed. This meant thattheCcode could be used

almost unaltered except forchanging thedatatype of theaffected variables from doubleto Fix and

specifying the appropriate scale factors. Some available fixed point packages forC++ that are

publicly available were evaluated [gnu90], but found to be inappropriate for the purpose since they

did not support variable (or mixed) scale factors. The declaration of the Fix class is shown in

Figure 5-11. All the standard arithmetic operations have been implemented.

v
©

C
O

C
O

C
O

«
-l

C
J
-
-

—
a
)

C
O

r
-l

4
J

co
•
h

o
X

l
CO

.
.
.
~

d>
•
—

•
O

r
H

a
s

ii
X

!
X

x
J

3
•H

G
O

&
,

-
h

t
i

<
JJ

0)
«

-)

x
i3o3

-
^

«
—

-
H

X
C

l,
•H

X
J

C
l,

CD
I

C
O

•
H

-
H

-
H

C
l.C

l.C
l,

O
II

X
J

•
c•
H

-
—

O
-

—
II

C
D
~

X
J

<
-t

—
G

X
I

d
>

-H
D

M
O

X
I

-
T

J
3

i«
—

o
x

X
T

D
-H

•H
U

l,
C

l,
1-4

—
C

M
O

d>
(
U

t
l
H

h
n)

(0
X

I
u

o
3

CD
CO

o
a

<
d

T
»

O
^

—
X

J
X

J
G

d>
-H

X
C

O
-H

C
J

C
l,

M
C

N
X

J
J
J

CD
G

C
O

-H

...
...

...
.^

...
...

i^j
t»

a
s

ia
v
a

ta
<

u
<

u
<

d
d>

d>
<

d
_

^
_

_
_

_
X

X
X

X
X

X
<

-
H

,H
r
H

r
-
1

r
H

,H
ta

ta
ca

ta
«a

^a
-
h

-
h

-
h

-
h

-
h

-
h

x
j

x
i

x
i

x
i

x
i

x
i

X
X

X
X

X
X

C
l
.
C

l
.
C

l
,
C

l
.
C

l
,
C

i
,
3

3
3

3
3

3
.H

.
^

.H
.H

.H
.H

O
O

O
O

O
O

c
l,c

l,c
l.c

l<
c
l,c

l,
»

»
-

«.
«.

^
'O

'O
'O

'O
'O

'O
$

di
m

iu
d

i
in

tl
^

X
J

O
G

II
•H

d
)

i
-
l

-
(0

C
M

U
iH

C
O

II
X

J
4

-)

G
G

a
s

ia
x

x
•
H

-
H

C
l,

C
l,

ta
»4J

ia
a

s
^
^

^
a

^
^

*—
-

*~
~

X
X

X
X

x
j
X

x
j
x
j
x
j

.„
.H

.H
.H

.H
c

-H
c

c
c

~
C

l.
C

l,
C

l,
C

l.
-H

C
l,

-H
-H

-H
Xm

a
t

m
a

t
iH

m
a

s
a

s
a

s
X

X
X

X
X

X
u

X
X

X
•H

-H
-H

-H
-H

-H
C

-H
-H

-H
C

l,C
l,C

l,C
l,C

l,C
l,'H

C
l,C

l.C
l,

t
a

^
a

i
a

i
^
k
a

c
a

x
i
x
i
X

)
X

)
X

)
X

i
t
a

i
a

i
a

i
a

c
a

i
a

k
a

x
t
t
J
i
c
a

c
a

i
a

c
a

^
~

^
-
'-

~
'^

X
X

X
X

X
X

3
3

3
3

3
3

X
X

X
X

X
X

X
3

x
j
X

X
X

X
x
j
x
j
x
J
x
j

•
h

-
h

-
h

-
h

-
h

-
h

o
o

o
o

o
o

-
h

-
h

-
h

-
h

-
h

-
h

-
h

o
g

-h
-
h

-
h

-
h

g
g

c
c

C
i<

C
i,C

L
,C

i.C
L

,C
L

.^^T
3

T
3

T
3

T
3

li>
C

L
.C

L
,C

L
,C

L
,C

^C
i<

^-H
lx

,C
i4

liiC
L

,-H
-H

-H
-H

II
1-4

4->
f0

c
x

:
•h

o

•
a

«jj
e

e
CO

C
O

0)
C

J)
^

u
X

J
X

J

CO
CO

D
>

-
*

*
•
h

o
co

ia
u

u
•
—

e
X

CO
CO

•
H

X
!
X

!
A

V
*

C
l,

O
O

A
V

U
-
-

—
•—

(0
u

u
s
:

s
i-i

u
O

O
U

O
M

1^
X

J
x
j

^
-
i-

h
0)

d)
CO

(0
>-(

*W
<1)

0»

oi
<

d
u

o>
<a

a
a
a
j
-
4

>
u

co
o

o
a>

o
co

^

o
o

i
J

J
J
U

U
U

II
II

II
—

1-1
1-1

o
o

II
II

II
—

l-i
u

o
o

X
J
X

J
X

J
X

J
X

J
X

J
X

J
X

J
X

J
x
J

r
o

c
o

c
o

c
o

c
o

c
o

c
o

c
o

c
o

c
o

c
o

c
o

c
o

c
o

r
o

c
o

c
o

c
o

c
o

c
o

c
o

c
o

c
o

c
o

c
o

c
o

c
o

c
o

c
o

<
D
<
D
d
)
d
>
d
)
<
D
d
)
<
D
<
D
d
)
d
)
d
)
<
D
d
)
0
)
<
u
(
D
d
>
<
D
d
>
d
)
d
)
d
)
d
)
d
>
d
>
d
>
d
)
d
>

f
t
a
a
a
a
a
Q
a
a
f
t
f
l
Q
Q
a
a
f
t
a
a
a
a
a
a
f
l
a
a
Q
a
f
l
f
l

o
o
o
o
o
o
o
o
o
o
o
o
o
o
o
o
o
o
o
o
o
o
o
o
o
o
o
o
o

tl
II

I
*

^1
1-1

o
o

u
u

o
o

X
J
X

J
X

J
X

J
X

J
X

J
X

J
X

J
X

J
X

J
X

J
X

J
X

J
X

J

I
+

I
*

\
*

*
•**.

O
O

O
O

O
O

O
O

c
O

c
O

c
o

c
O

c
O

c
O

c
O

c
o

c
O

c
o

(
D

0
)
(
D

(
l)

(
D

(
D

(
D

(
D

(
D

a
)
O

O

o
o

o
o

o
o

o
o

o
o

c
l
,
c
o x

j

A
u

j
co

A
X

G
U

-H
O

O
C

l,
U

II
c
n

C
O

eC
O

x
:

•
-

c
j

•>
a)

C
O

r
-(

X
J

C
O

X
I

co

,,
.
.
.
.

a
s
m

a
t
s
j
i
i
i
i
a

s
a

i
i
i
i
a

i
a

t
i
i
t

c
*

x
^

^
^

•£
-y-y

ti
ti

titi
-y

-H
-y

-y
-y

-y
y
y

^
x

x
x
x

x
x
x
x
x
x

X
X

X
X

X
E

.H
.H

-H
C

C
C

C
C

C
C

C
C

C
G

C
C

C
C

C
C

C
-H

-H
-H

-H
-H

-H
-H

-H
-H

-H
-H

-H
-H

-H
-H

•^
C

l.C
l.C

l.-H
-H

-H
-H

-H
-H

-H
-H

-H
-H

-H
-H

-H
-H

-H
-H

-H
-H

C
l,C

l,C
l,C

l.C
l,C

l,C
l,C

l.C
l.C

l.C
l,C

l,C
l,C

l,C
l,

M
^
U

>
-
»

l4
M

^
T

3
T

)
S

-
i^

T
J
T

J
^
^
T

3
T

5
T

)
^
T

3
T

J
T

5
^
T

3
T

J
T

3
T

}
T

3
T

3
S

-
i^

^
l-

jM
J
^
^
i^

^
M

M
<

L
»

a
)
<

u
a
)
<

P
O

)
(
i
)
c
c
c
u

c
c
c
c
c
c
c
c
c
c
c
c
c
c
c
c
c
c
c
Q

)
(
i
)
0

^
x

ix
ix

ix
ix

ix
ix

ia
)
c
i)

X
!
c
u

a
>

c
tf

a
>

a
>

<
D

c
»

a
)
c
u

c
B

<
u

c
tf

a
>

a
)
a
>

^
E

E
E

g
6

E
E

-h
-h

e
-^

-^
-^

-^
-^

-^
-h

-h
-h

-h
-h

-h
-h

-h
-h

-h
-h

-h
-h

g
g

g
g

g
g

g
g

g
g

E

E
E

g
E

E
g

E
'H

W
g

iH
W

W
w

w
w

iH
W

w
iw

iH
iH

iH
iH

W
W

iw
iM

iH
E

E
E

E
g

E
E

E
E

E
E

J-l

CO
X

X
I
-
H

C
J

C
l,

T
I
T

)
C

G
Q

)
d)

?S
?S

rS
rS

?S
rS

•
H

-
H

-
H

-
H

-
H

-
H

C
l,

C
l,

C
l,

C
x,

C
l,

C
l,

'O
'O

"O
"T

3
T

3
T

3
G

C
G

C
C

G
(D

Q
)

C
D

0)
<

D
CD

-
H

-
H

-
H

-
H

-
H

-
H

}-|
S-|

1-4
1-4

U
U

M
—

I
M

-l
M

-l
>

M
M

-l
M

-l

d)
d)

M
S-iT

J
T

3
*D

T
J

X
J

X
J

-
H

-
H

-
H

-
H

co
co

o
o

o
o

•H
O

>
>

>
>

T
f

T
l

"O*
'O

t3
"O

"
G

G
G

G
C

G
d)

d)
<

p
ai

d)
co

•
H

-
H

-
H

-
H

-
H

-
H

U
J
j

U
i
j

U
W

X
J

X
J

Ua>
..X

I
cj

e

X
I3a

*D
*

0
"
C

O
G

G
C

C
ai

a)
0

a>
•
H

-
H

-
H

-
H

^
^

>
-l

1-t
M

-l
M

-l
M

-<
M

-4

co1Iooo

•sX

•
a3«
>

C
O

bCo

157

5.8 Theoretical Bounds on variable and function values

The problem of finding atight bound on the continuation variables is difficult. To see why, recall

that the continuation variables are

x = (c^c^s^c^s^Cj.Sj) e C8 c: = cos6. Sj = sinOj (5-14)

The key observation isthat for the complex variables Cj and s^,

C1? +S?=l^||ci||2+||si||2=l (5-15)

For example, if

a2 =- 1+lOi, b2 =2+lOi then a2 +b2 = 1 but || a||2 +1| b||2 =205 (5-16)

Hence, the sine/cosine constraint does not in reality provide auseful bound. For the 16-path

continuation, the intermediate systems (0<t<l) actually correspond to physical robots. If one could

guarantee that all the robots corresponding to (kt<l have 16 solutions, it could be aigued that the

variables will be pure real and hence the paths will be bounded by the sine/cosine constraint.

However, no condition has been proven under which such aguarantee would hold, and itis easy to

find a case where some 0<t<l corresponds to a robot with fewer than 16 solutions.The same

problem occurs (atleast for the system used here) for thebounds on function values.

Some bounds on the solutions ofpolynomial systems can be found in the literature, but they are

generally so slack that they are not useful here. For example, [canny88] refers to the "Gap

Theorem", which states that

f(x)=0=»Vi = Mn ||xi||<w(R(f))<(3dc)ndn (5-17)

where w(R(f)) is the sum of the absolute values of the coefficients of R(f), the resultant of f. The

coefficients ofR(f) are afunction ofthe coefficients off, leading to the explicit bound shown in the

equation, where

• n is the number of equations

• d is the degree of each equation

158

• c is a bound on the coefficient size

For the IPO equations, we haven=8, d=2 and (say) c=l. This results in the bound

M <(3-2. I)8*2' = 62048=101594 (5-18)

Thisbound does not provide any useful information for our purposes.

5.9 Summary

This chapter has presented the development and use of the ConsolC software package. ConsolC

wasused as the basis of a 64-path homotopy continuation solver (robot64p2gp) for the Inverse

Position-Orientation computation for ageneral 6Rrobot. The qualitative behavior of the algorithm

was examined by creating plots of the continuation paths. The program has beentested on more

than 1500 different sets of input data and anumber of statistics have been collected. The path

length statistics show that most paths are "nice", but that almost every run will have some "nasty"

paths that take a long time to track. The maximum value statistics show that most paths have low

maximum values for x (say, <102) whereas h,Dh and the other function values can be as high as

106 for the nice path and as high as 109 in the worst cases.

Experiments have shown that robot64p2gp isviable also in single precision floating point, and that

the function evaluation part of the algorithm can even becomputed in fixed point in some cases.

However, it looks like using floating point ismore economical because of the wordlengtii required

in fixed point. A special fixed point computation package was developed inthe C++ language to

performthe fixed point experiments.

Profiling of the algorithm shows that in the straightforward implementation, the function

evaluation part of the algorithm is more time-consuming than solving the linear equations.

However, parallelization of the function evaluation is straightforward and leaves solving linear

systems as the foremost computational bottleneck.

Coef

a[l,l]

a[l,2]

a[l,3]

a[l,4]

a[l,5]

a[l,8]

a[l,9]

a[l,10]

a[l,ll]

a[l,13]

a[l,15]

a[l,17]

a[2,l]

a[2,2]

a[2,3]

a[2,4]

a[2,6]

a[2,7]

a[2,9]

a[2,10]

a[2,ll]

Value

la[l]*mu[2]*la[6]*ny+la[l]*mu[2]*mu[6]*my

-mu[2]*la[6]*nx-mu[2]*mu[6]*mx

-la[l]*mu[2]*la[6]*nx-la[l]*mu[2]*mu[6]*mx

-mu[2]*la[6]*ny-mu[2]*mu[6]*my

-mu[3]*la[4]*mu[5]

mu[3]*mu[5]

mu[l]*la[2]*la[6]*ny+mu[l]*la[2]*mu[6]*my

-mu[l]*la[2]*la[6]*nx-mu[l]*la[2]*mu[6]*mx

mu[l]*mu[2]*la[6]*nz+mu[l]*mu[2]*mu[6]*mz

-mu[3]*mu[4]*la[5]

-la[3]*mu[4]*mu[5]

-la[l]*la[2]*la[6]*nz-la[l]*la[2]*mu[6]*mz+la[3]*la[4]*la[5]

la[l]*mu[2]*py-la[l]*mu[2]*d[6]*la[6]*ny-la[l]*mu[2]*d[6]*mu[6]*my-
la[l]*mu[2]*a[6]*ly

-mu[2]*px+mu[2]*d[6]*ia[6]*nx+mu[2]*d[6]*mu[6]*mx+mu[2]*a[6]*lx

-la[l]*mu[2]*px+la[l]*mu[2]*d[6]*la[6]*nx+la[l]*mu[2]*d[6]*mu[6]*mx
+la[l]*mu[2]*a[6]*lx

-mu[2]*py+mu[2]*d[6]*la[6]*ny+mu[2]*d[6]*mu[6]*my+mu[2]*a[6]*ly

mu[3]*la[4]*a[5]

mu[3]*a[5]

mu[l]*la[2]*py-mu[l]*la[2]*d[6]*la[6]*ny-mu[l]*la[2]*d[6]*mu[6]*my
-mu[l]*la[2]*a[6]*ly

-mu[l]*la[2]*px+mu[l]*la[2]*d[6]*la[6]*nx+mu[l]*la[2]*d[6]*mu[6]*mx
+mu[l]*la[2]*a[6]*lx

mu[l]*mu[2]*pz-mu[l]*mu[2]*d[6]*la[6]*nz-mu[l]*mu[2]*d[6]*mu[6]*mz
-mu[l]*mu[2]*a[6]*lz-d[l]*mu[l]*mu[2]

159

Table 5-13 The coefficientsof (5-12), in terms of the goal point position, orientations and
the robot Denavit-Hartenberg parameters. la[i]=X^, mu=|ii

160

Coef Value

a[2,12] a[l]*mu[2]

a[2,13] -mu[3]*mu[4]*d[5]

a[2,14] mu[3]*a[4]

a[2,16] la[3]*mu[4]*a[5]

a[2,17] -la[l]*la[2]*pz+la[l]*la[2]*d[6]*la[6]*nz+la[l]*la[2]*d[6]*mu[6]*mz
+la[l]*la[2]*a[6]*lz+la[3]*la[4]*d[5]+la[3]*d[4]+d[3]+d[2]*la[2]+d[l]*la[l]*la[2]

a[3,l] a[2]*la[6]*nx+a[2]*mu[6]*mx

a[3,2] la[l]*a[2]*la[6]*ny+la[l]*a[2]*mu[6]*my

a[3,3] a[2]*la[6]*ny+a[2]*mu[6]*my

a[3,4] -la[l]*a[2]*la[6]*nx-la[l]*a[2]*mu[6]*mx

a[3,5] -d[3]*mu[3]*la[4]*mu[5]

a[3,6] a[3]*mu[5]

a[3,7] a[3]*la[4]*mu[5]

a[3,8] d[3]*mu[3]*mu[5]

a[3,9] -mu[l]*d[2]*la[6]*ny+a[l]*la[6]*nx-mu[l]*d[2]*mu[6]*my+a[l]*mu[6]*mx

a[3,10] a[l]*la[6]*ny+mu[l]*d[2]*la[6]*nx+a[l]*mu[6]*my+mu[l]*d[2]*mu[6]*mx

a[3,12] mu[l]*a[2]*la[6]*nz+mu[l]*a[2]*mu[6]*mz

a[3,13] -d[3]*mu[3]*mu[4]*la[5]

a[3,14] a[3]*mu[4]*la[5]

a[3,15] -d[4]*mu[4]*mu[5]-d[3]*la[3]*mu[4]*mu[5]

a[3,16] a[4]*mu[5]

a[3,17]
-la[6]*nz*pz-mu[6]*mz*pz-la[6]*ny*py-mu[6]*my*py-la[6]*nx*px-mu[6]*mx*px
+la[l]*d[2]*la[6]*nz+d[l]*la[6]*nz+la[l]*d[2]*mu[6]*mz+d[l]*mu[6]*mz+d[6]
+d[5]*la[5]+d[4]*la[4]*la[5]+d[3]*la[3]*la[4]*la[5]

a[4,l] 2*a[2]*px-2*a[2]*d[6]*la[6]*nx-2*a[2]*d[6]*mu[6]*mx-2*a[2]*a[6]*lx

Table 5-13 The coefficients of (5-12), in terms of thegoal point position, orientations and
therobot Denavit-Hartenberg parameters. la[i]=^, mu=m

Coef

a[4,2]

a[4,3]

a[4,4]

a[4,5]

a[4,6]

a[4,7]

a[4,8]

a[4,9]

a[4,10]

a[4,ll]

a[4,12]

a[4,13]

a[4,14]

a[4,15]

a[4,16]

a[4,17]

Value

2*la[l]*a[2]*py-2*la[l]*a[2]*d[6]*la[6]*ny-2*la[l]*a[2]*d[6]*mu[6]*my
-2*la[l]*a[2]*a[6]*ly

2*a[2]*py-2*a[2]*d[6]*la[6]*ny-2*a[2]*d[6]*mu[6]*my-2*a[2]*a[6]*ly

-2*la[l]*a[2]*px+2*la[l]*a[2]*d[6]*la[6]*nx
+2*la[l]*a[2]*d[6]*mu[6]*mx+2*la[l]*a[2]*a[6]*lx

2*a[3]*a[5]

2*d[3]*mu[3]*la[4]*a[5]

2*d[3]*mu[3]*a[5]

-2*a[3]*la[4]*a[5]

-2*mu[l]*d[2]*py+2*a[l]*px+2*mu[l]*d[2]*d[6]*la[6]*ny-2*a[l]*d[6]*la[6]*nx
+2*mu[l]*d[2]*d[6]*mu[6]*my-2*a[l]*d[6]*mu[6]*mx+2*mu[l]*d[2]*a[6]*ly
-2*a[l]*a[6]*lx

2*a[l]*py+2*mu[l]*d[2]*px-2*a[l]*d[6]*la[6]*ny-2*mu[l]*d[2]*d[6]*la[6]*nx
-2*a[l]*d[6]*mu[6]*my-2*mu[l]*d[2]*d[6]*mu[6]*mx-2*a[l]*a[6]*ly
-2*mu[l]*d[2]*a[6]*lx

-2*a[l]*a[2]

2*mu[l]*a[2]*pz-2*mu[l]*a[2]*d[6]*la[6]*nz-2*mu[l]*a[2]*d[6]*mu[6]*mz
-2*mu[l]*a[2]*a[6]*lz-2*d[l]*mu[l]*a[2]

2*a[3]*a[4]-2*d[3]*mu[3]*mu[4]*d[5]

2*a[3]*mu[4]*d[5]+2*d[3]*mu[3]*a[4]

2*a[4]*a[5]

2*d[4]*mu[4]*a[5]+2*d[3]*la[3]*mu[4]*a[5]

-pz*pz+2*d[6]*la[6]*nz*pz+2*d[6]*mu[6]*mz*pz+2*a[6]*lz*pz+2*la[l]*d[2]*pz
+2*d[l]*pz-py*py+2*d[6]*la[6]*ny*py+2*d[6]*mu[6]*my*py+2*a[6]*ly*py
-px*px+2*d[6]*la[6]*nx*px+2*d[6]*mu[6]*mx*px+2*a[6]*lx*px
-2*la[l]*d[2]*d[6]*la[6]*nz-2*d[l]*d[6]*la[6]*nz-2*la[l]*d[2]*d[6]*mu[6]*mz
-2*d[l]*d[6]*mu[6]*mz-2*la[l]*d[2]*a[6]*lz-2*d[l]*a[6]*lz-d[6]*d[6]
-a[6]*a[6]+d[5]*d[5]+2*d[4]*la[4]*d[5]+2*d[3]*la[3]*la[4]*d[5]+a[5]*a[5]
+d[4]*d[4]+2*d[3]*la[3]*d[4]+a[4]*a[4]+d[3]*d[3]+a[3]*a[3]-d[2]*d[2]
-2*d[l]*la[l]*d[2]-a[2]*a[2]-d[l]*d[l]-a[l]*a[l]

161

Table 5-13 The coefficients of(5-12), in terms ofthe goal point position, orientations and
the robot Denavit-Hartenberg parameters. la[i]=Xj, mu=m

CHAPTER 6

ALGORITHMS FOR LINEAR

EQUATIONS

In Chapter 5 it was shown that solving linear equations is the bottleneck tohigh-speed execution

of programs inthe ConsolC family, inparticular the IPO solver known as robot64p2gp. As linear

equations is atask common tomany Numerical Processing applications, an in depth study will be

made. The purpose is to identify the critical parts of the most widely used algorithms (e.g. Gauss,

LU, Crout, Doolittie), and study the properties that are critical to the speed performance of the

algorithms. This knowledge isused as basis for Chapter 7, whose purpose is to evaluate howwell

the algorithms can be implemented onarchitectures that are either commercially available orthat

havebeenproposed in the research literature. The platforms thatwill be considered are

• Commercial DSPchips and RISC processors

• Systolic Arrays

• VectorProcessors andMassively Parallel Architectures

Suitable custom architectures for an Application Specific Processor will then be considered in

Chapter 8.

163

164

6.1 "Realification" of complex equations

Before starting to look at algorithms, there is one small detail that needs to be discussed. The

equations we would like to solve have the form of a system with variables andcoefficients that are

complex numbers:

«NxNAx = b Ae CmN xe CN b e CN (6-1)

This poses additional problems for computers that do notcompute directly withcomplex numbers

(mostdonot),so in therestof thisdissertation we shall assume that thesystemhas been"realified"

asdescribed next.By splitting up thematrix and thevectors intotheir real and imaginary parts, the

system can be rearranged in the following way:

(A! + iA2) • (x! + ix2) = b! + ib2

A,xr-A2X2 = b,

A2Xi + AiX2 = D2

Al —A2 *1 "bi
_A2 A^ H \H

(6-2)

(*3)

(6-4)

This means that the original NxN complex system has become a2Nx2N real system. From now

on, when referring to an nxn system of equations, we typically mean the realified system with

n=2N.

6.2 Algorithms for solving linear equations

There exists anumber of different algorithms for solving nxnsystems of linear equations. Some

of the most common ones are plain Gaussian elimination (Gauss), LU decomposition (LU),

Crout's method and Doolittie's method [dahlquist74]. These methods have many properties in

common, but still are sufficiently dissimilar that their efficiency can be markedly different on

different architectures, or even on one and the same architecture.

165

6.3 The Gauss/LU algorithm

The Gauss algorithm and the LU decomposition are so closely related that they will be treated

together. Figure 6-2 contains the program text for a function which solves Ax=b using the Gauss/

LU method. The basic purpose of the Gauss/LU algorithm is to factor Ainto a product LU where

L is an nxn lower triangular matrix and Uis an nxn upper triangular matrix. The only difference

between plain Gauss and LU is that in Gauss, theL matrix is discarded whereas in LU, both L and

U are stored, typically replacing thecontents of theoriginal A matrix. We assume thatthe reader is

familiar with the basic idea of the Gauss/LU algorithms, which can be found in [dahlquist74],

[strang80] or almost any other textbook on linear algebra or matrix computations. What we want

to concentrate on here is the data storage, data addressing and computational aspects of the

algorithm. For simplicity, we first consider Gauss/LU without pivoting. Pivoting means to

rearrange (either literally or via an extra level of indirect addressing) the remaining rows of A

(which now contains L,U under construction) so that the row with the largest (absolute value) first

all O's

ak current pivot element (a^)

column being zeroed out

a<. rows involved in row operation

rows already finished

Figure 6-1 Gauss/LU step number k. All the numbers underneath the pivot element are
about to be zeroed out by primitive row operations of the form

a.ik
ai- = ai- -(r^K- i = k+ 1 -»n (6-5)

lkk

166

#include "linreal.h" 1

#define fptype double 2

3

int linsol (n, a, b) 4

int n; 5

fptype a[N][N], b[N]; 6

{ 7

fptype temp, test, m, prod; 8
int i, j, k; 9

fptype epsO= 1.0e-22; 10

11

/* Forward elimination */ /* k is the diagonal index */ 12
for (k=0; k<n-l; k++) { 13

/* Check for singularity */ 14
temp= a[k][k]; 15

if (temp<0.0) temp= -temp; 16
if (temp<=eps0) { 17

printf("linsol: singular matrix encountered (k=%d)\n",k); 18
printf("temp= %le\n", temp); 19
return(-1); 20

) 21

22

/* Perform elimination step */ 23
for (i=k+l; i<n; i++) { /* Note k+1 NOT k */ 24

/* Store m-factor where the 0's in U would go */ 25
m= (a[i][k]*=(l/a[k][k])); 26

for (j=k+l; j<n; j++) (/* Note k+1 NOT k */ 27
a[i][j]-= m*a[k][j]; 28

) 29
b[i]-= m*b[k]; 30

) 31

> 32
33

/* Back substitution. There is no fwd substitution since we 34
worked on the rhs along with the lhs */ 35

for (i=n-l; i>=0; i—) { /* Row in a and b */ 36
prod= b[i]; 37

/* This loop is *intentionally* not executed when i==n-l */ 38
for (k=i+l; k<n; k++) { /* Col in a, Row in b */ 39

prod-= a[i][k]*b[k]; 40

> 41
b[i]= prod/a[i][i]; 42

> 43
44

return; 45

> 46

Figure 6-2Gauss/LU algorithm without pivoting. A common refinement is to store
(l/a[k][k]) on top of a[k][k], since it is needed 2*(n-k) times

167

int linsol (n, a, b) 1
int n; 2
fptype a[N][N], b[N]; 3

< 4
fptype temp, test, m, prod, epsO= 1.0e-22, y[N]; 5
int i/ j/ k, imax, itemp, ir, kr, row[N]; 6
/* Start with the identity permutation */ 7
for (i=0; i<n; i++) row[i]= i; 8
/* Forward elimination, k is the diagonal index */ 9
for (k=0; k<n-l; k++) (10

/* Find largest row leader in remaining (n-k)x(n-k)matrix.*/ 11
temp=0; imax=k; 12
for (i=k; i<n; i++) { 13

ir= row[i];test= a[ir][k]; 14
if (test<0) test= -test; 15
if (test>temp) {imax=i; temp= test;} 16

> 17
if (temp<=eps0) { 18

printf("linsol: singular matrix encountered (k=%d)\n",k); 19
printf("temp= %le\n", temp); exit(-l); 20

) 21
/* Change permutation arrays to make a[imax][k] the pivot */ 22
itemp=row[k]; row[k]=row[imax]; row[imax]=itemp; 23
/* Perform elimination step */ 24
kr= row[k]; /* Location of pivot */ 25
for (i=k+l; i<n; i++) { /* Note k+1 NOT k */ 26

ir= row[i]; 27

m= (a[ir][k]*=(l/a[kr][k])); 28

for (j=k+l; j<n; j++) { /* Note k+1 NOT k */ 29
a[ir][j]-= m*a[kr][j] ; 30

) 31
b[ir]-= m*b[kr]; /* Right hand side */ 32

} 33

} 34
/* Back substitution */ 35

for (i=n-l; i>=0; i—) (36

ir = row[i]; /* Row in a and b */ 37
prod= b[ir]; 38

for (k=i+l; k<n; k++) (/* Col in a, Row in b */ 39
kr= row[k]; 40

prod-= a[ir][k]*b[kr]; 41

} 42
b[ir]= prod/a[ir][i]; 43

} 44
/* Unscramble b into y and then copy back into b */ 45
for (i=0; i<n; i++) { ir =row[i]; y[i]= b[ir]; } 46
for (i=0; i<n; i++) (b[i]=y[i]; } 47
return; 48

> 49

Figure 6-3 Gauss/LU algorithm with partial (row) pivoting

168

element becomes the pivot row. This is done because it improves the numerical stability of the

algorithm by avoiding divisions by small numbers.

6.3.1 Architectural implications

Without pivoting, the C code forLU/Gauss hasthe form shown in Figure 6-2. Figure 6-1 showsin

pictorial form what happens atstep k of the algorithm. Think of k as the counter that picks thenext

element on the diagonal as the pivotelement. The critical statements from Figure 6-2 have been

extracted and analyzed in Table 6-1. This table is a key to understanding the architectural

Line Operation Mult Div Add Read Write

Without pivoting

26 m=(a[i][k]/=a[k][k]); 0 1 0 2 1

28 a[i][j]-= m*a[k][j]; 1 0 1 2 1

30 b[i]-= m*b[k]; 1 0 1 2 1

40 prod-= a[i][k]*b[k]; 1 0 1 2 0

42 b[i]= prod/a[i][i]; 0 1 1 1 1

Withpartial (row) pivoting

25 kr= row[k]; 0 0 1 1 0

27 ir= row[i]; 0 0 1 1 0

28 m=(a[ir][k]/=a[kr][k]) ; 0 1 0 2 1

30 a[ir][j]-= m*a[kr][j]; 0 1 0 2 1

32 b[ir]-= m*b[kr]; 0 1 0 2 1

37 ir = row[i]; 0 0 1 1 0

41 prod-= a[ir][k]*b[kr] ; 1 0 1 2 0

43 b[ir]= prod/a[ir][i] ; 0 1 1 1 1

Table 6-1 The key arithmetic instructions of theGauss/LU algorithm

169

requirements ofthe Gauss/LU algorithm. The main result to notice is that most of the important

operations (lines 26,28,30) in Gauss/LU require 3memory accesses (2 reads and 1write) each

time they are executed. Any architecture which aims to execute the inner loop (line 28) of the

algorithm at the rate of one statement per cycle must support at least this amount of memory

traffic. If the datapath can finish line 28 at the rate ofone result per cycle, itwill do no good unless

the memory is a3-port which can provide 2 reads and 1write to supply the operands and store the

results. Note here that we assume that items such as the variable m is stored in a local register

while thecomputation is taking place to avoid further demands onthememory bandwidth.

Memory bandwidth

The main consequence of the previous paragraph is that amemory system that onlysupports 1(or

2) operations per cycle will slow down theexecution of the algorithm at least by a factor of 3 (or

2), even if the datapath itself is able to keepup withthe computation.

In addition to analyzing memory accesses, it is also useful to counthow many times the various

Line Operation Repetition count For n=16

Without pivoting

13 for (k=0; k<n-l; k++) (n 16

24 for (i=k+l; i<n; i++) { (l/2)n(n-l)-l 119

26 m=(a[i][k]/=a[k][k]); (l/2)n(n-l)-l 119

28 a[i][j]-= m*a[k][j]; (l/6)(n-l)n(2n-l) 1240

30 b[i]-= m*b[k]; (l/2)n(n-l)-l 119

37 prod= b[i]; n 16

40 prod-= a[i][k]*b[k]; (l/2)n(n-l)-l 119

42 b[i]= prod/a[i][i]; n 16

Table 6-2 Statement profile forGauss/LU algorithm without pivoting

170

f(n) x103
Gauss/LU operation count

•
1

1

1
1

1

*
/

1

1
1

r
1

1
1

1

/

1
1

1
1

•

/

/

/
/

1

0
1

1

1

*

•
*

*

•'

,--*

10.50

10.00

9.50

9.00

8.50

8.00

7.50

7.00

6.50

6.00

5.50

5.00

4.50

4.00

3.50

3.00

2.50

2.00

1.50

1.00

0.50

0.00

-0.50

5.00 10.00 15.00 20.00 25.00 30.00

fl(n)

°f2(*nT
"f3('nT

Figure 6-4Repetition count for selected lines of Gauss/LU algorithm, as function of n

statements of the algorithm are executed. Table 6-1 shows how many times each of the important

statements of Gauss/LU is executed. The numbers are found by looking atthe loops and applying

the formulas

n 1£k=-n(n-l)
k = l

and

to derive the repetition count functions

" 1£k2=-n(n+l)(2n+l)
k = l

(*-6)

171

fj(n) =n f2(n) =-n(n - 1) - 1 f3(n) =i (n - 1) n(2n - 1) (6-7)

Pipelining and pipelining margins

The datapath operations ofthe Gauss/LU algorithm are multiplications, divisions (or reciprocals),

additions, subtractions, orcombinations thereof, such as multiply-accumulate (MAC) and

multiply-add (MADD). For example, the innermost loop of Gauss/LU (line 28) is a MADD

instruction.

By pipelining we mean (in this context) to partition adatapath operation and its corresponding

hardware on asub-functional level so that e.g an add isbroken down into several clocked stages,

each ofwhich can be clocked at ahigher speed than would be possible if the entire add operation

was to be performed in one stage.The main property of an algorithm which allows us to use

pipelining is that the operands being fed into the pipeline must notdepend onthe results that are

currently being computed inside the pipeline. If adependency exists, the pipeline must idle until

the results are available to be used as input operands again. The MAC operation is the simplest

example of an operation that isnot easily pipelineable: For example, the MAC sequence

n-l

k = i + l

which would typicallybe implementedas

p= b[i]; for (k=i+l; k<n; k++) p-= a[i][k]*b[k];

cannot have a pipelined subtraction because we need the result (the running sum)to feed back as

one of the arguments to the next addition.

During the elimination process, the Gauss/LU algorithm has the very favorable property that

whenever amatrix element is read outto beupdated (line 28), it will notbeneeded again until (n-

k)2 operations later, where nis the size of the matrix and k is the step number (k=0:n-2) as in

Figure 6-2. Of course, as k becomes larger, this pipelining margin becomes smaller and smaller

(but never smaller than 4, for k=n-2). Even for the next-to-last step (k=n-3), the margin is 9

172

n n

Without right-hand sides(margin 4) With 2 right-hand sides (margin 8)

g rows already finished

current pivot element akk

Right hand side(s) of Ax=b

#

pivot row

elements being modified by
row operations

Figure 6-5 Pipelining margin (PM)

PM at step k
= the numberofsteps before an update target is needed as input again
= the number of update steps in step k
= the size of the (n-k)x(n-k) submatrix that is beingupdated
=(n-k)2 steps, k=l:n-2, ifthere are no right-hand sides
= (n+r-k)(n-k) steps, k=l:n-2, if thereare r right-hand sides

The minimum pipelining margin over all k=l:n-2
= 2*2 = 4; if there are no right-hand sides
= (r+2)*2; if there are r right-hand sides

General formula

PM(n,k,r) = (n + r-k) • (n-k) (6-9)

173

operations, meaning that we could potentially have a datapath with 9 pipeline stages (for a

MADD), and beable tokeep it 100% occupied all up until the very last iteration of Gauss/LU.

This isan important observation that can be used during architecture design. Ifthe system that we

are solving has one ormore right-hand sides (Ax=b, Ax=b\....), the pipelining margin increases to

(n+r-k)(n-k), with a minimum value of(2+r)*2 for k=n-2. See Figure 6-5.

The concept ofpipelining margins appears to have general applicability. The following is an

attemptat defining the term more precisely.

Definition 7.1 [pipelining margin] The pipelining margin of anexpression, in thecontext of the

remaining algorithm, is the minimum number of operations which take place between the

initiation ofthe evaluation of the expression and the time at which the result isneeded as an input

to another expression of the algorithm.

Pipeline interleaving

Theback-substitution partof the algorithm (line 40) is a problem spotbecause it contains the

dreaded MAC operation, andhence cannot easily bepipelined. However, there is another trick that

can be applied here. The computation of the loop can be rearranged (Figure 6-6) so that the we

compute each running sum b[i] one piece at a time, instead of finishing each one of them

completely before moving ontothe next one. Each time b[i] isupdated, it will notbeneeded again

until n-k operations later. This isnot quite as favorable as the (n-k)2 pipelining margin seen in the

elimination loop, but it helps, especially for large matrices. The term pipeline interleaving [lee86]

was coined todescribe the general concept of interleaving independent operations ona pipelined

datapath.

Using pipeline interleaving, thebiggest source of pipeline bubbles in the overall algorithm is the

computation of l/a[k][k] in line 12. A common refinement is to store a[k][k]-l on top of a[k][k],

since a[k][k] is no longer needed and the inverse will be needed 2»(n-k) additional times. Thiswill

minimize the problem.

174

Pivoting

Pivoting is a numerical safeguard madenecessary by the limitedrange andprecision of computer

arithmetic, and is sometimes also afundamental requirement reflecting a need to rearrange the

equations of a linear system. [dahlquist74] (section 5.3.3 pl50) contains examplesthat show the

importance of pivoting. In the program of Figure 6-3, pivoting is implemented (lines 11-17) by a

search among the remaining rows (i=k:n) for the row with the largest leading element, and then

swapping this row (called the pivot row) with row k. The swapping of the rows is not literally

performed. Instead, we usea permutation table (the array row []) which translates anygiven row

index into the physical index for where that row is stored. This saves thetime otherwise spent on

copying rows from one location to another.

Pivotingslows down the Gauss/LU algorithm, both because of the search andbecauseof the extra

level of indirection caused by thetable lookup. The lookup overhead can be reduced somewhat by

precomputing variables such as ir=row [i] (line 27) whenever multipleelements in the same

row willbe accessed (line 30). The search overhead is noteasily reducible on a general purpose

computer.

/* Regular back substitution */ 1
for (i=n-l; i>=0; i—) { /* Row in a, Row in b */ 2

prod= b[i]; 3

for (k=i+l; k<n; k++) { /* Col in a, Row in b */ 4
prod-= a[i][k]*b[k]; 5

) 6
b[i]= prod/a[i][i]; 7

) 8
9

/* Interleaved back substitution */ 10
for (k=n-l; k>=0; k--) { /* Row in a, Row in b */ 11

b[k]= b[k]/a[k][k]; 12

for (i=k-l; i>=0; i--) { /* Col in a, Row in b */ 13
b[i]-= a[i][k]*b[k]; 14

) 15

> 16

Figure 6-6 Regular versus Interleaved back substitution

175

Summary of Gauss/LU characteristics

This section has presented several important characteristics of the Gauss/LU algorithm, including

memory bandwidth requirements, the MADD (not MAC) characterof the algorithm, the concept

of pipelining margin and how a positive margin can be created by interleaving, and finally pivot

searching and permutation lookups.

6.4 The Crout algorithm

The Crout algorithm [dahlquist74] is an alternative formulation of the LU decomposition

computation. It is different from the Gauss/LU method in that it does not involve repetitive

updates of the same matrix element. Instead, the elements of L,U (also called M,U in Dahlquist's

terminology) are computedcompletelyone at a time using a an accumulation(MAC)sequence. As

in Gaussian elimination, in step k the kth column of L and the kth row of U are determined, but in

Crout the elements ay with i,j>k are not touched until later steps. Crout's algorithm can bederived

Figure 6-7 The memory access patterns for the Crout algorithm. Left side shows the
computation ofm^ and right side shows the computation ofu^j

k-l k-1

mik = aik-^mipupk i = k->n ukj = akj-^mkpupj j = k+l-»n
P=i P=i

176

from the matrix equation A=LU as follows: The element form of A=LU is

r

aij = XmipUPi r=min0J) t6"10)
p=l

where the use of r=min(i,j) is a convenient way to exclude the O-elements of the triangular

matrices from the sum. Equation (6-10) with i=l:n and j=l:n produces n2 equations for the

unknowns of L,U. Note that L,U each contains (l/2)n(n+l) unknown elements, for a total of

n(n+l) unknowns. This is a reflection of the fact that the LU decomposition of a matrix is not

unique. In Crout's method, one chooses u^l (k=l:n) to get n2 equations inn2 unknowns out of

(6-10). Now consider two cases of(6-10). Ifwe look at the upper triangle ofthe matrix A=(ajj),

that is, afcj with k=l:n and j=k+l:n, the equation reads

k

akj = Xmkpupj k=l-+n j =k+1 ->n (6-rn
P = i

Note that r=min(k,j)=k inthis case. Similarly, if welook at the lower triangle and the diagonal, that

is, a^ with k=l:n andi=k:n, the equation reads

k

a* = Xmipupk k=l-»n i =k->n (6-12)
P = i

By virtue of thechoice u^l (k=l:n) we can nowrearrange (6-12) and (6-11) as

k-l

mik =aik-XnVIpk k=l->n i =k->n
P=i

k-l

ukj =akj"Xmkpupj k=l->n j =k+l->n
p=l (6-13)

Starting with k=l and progressing towards k=n, these equations can thenbe evaluated in order so

that ateach k we find mkk,...,mnk (one column of L) and then uk+lk,..., ukn (one row of U) at a

time. Figure 6-7 is a picture of the way Crout's method progresses through the matrix, and how

L,U can be stored on top of A.Ccode for Crout's algorithm with and without pivoting isincluded

177

Line Operation Mult Div Add Read Write

Without pivoting

26 prod-= a[k][p]*a[p][j]; 1 0 1 2 0

33 prod-= a[k][p]*b[p]; 1 0 1 2 0

44 prod-= a[i][k]*b[k]; 1 0 1 2 0

Table 6-3The key arithmetic instructions of the Crout algorithm

in Figure 6-8 andFigure 6-9, respectively.

Crout's method has different properties than the Gauss/LU algorithm. The most important property

of Crout is thatthe inner loops (lines 26,33,44 of Figure 6-8) are of the multiply-accumulate

(MAC) variety as opposed to the multiply-add (MADD) type found in theGauss/LU algorithm.

The consequence is that Crout's method is not as amenable to pipelining as the Gauss/LU

algorithm. The advantage of Crout is that none of the inner loops have more than 2 memory

operations (both are readoperations), whereasGauss/LU has 3. This fact is of course related to the

MACorMADD character of thealgorithms: If thealgorithm performs accumulations, therunning

sum is keptin adatapath accumulator register. If the algorithm is of themultiply-add-update type,

the resultmust be writtento memory every cycle.

Summary of Crout characteristics

The Crout algorithm is more attractive than Gauss/LU whenit comes to memory bandwidth, but

less attractive when it comes to pipelining margin (there is none). As for pivoting (see Figure 6-9),

Crout is worse than Gauss/LU, because the algorithm strides through rows in its inner loop (line

25), meaning that arow address must bepermuted (translated) atevery step of the inner loop. This

was not the case in the Gauss/LU algorithm.

178

#include "linreal.h" 1
tdefine fptype double 2

3

int linsol (n, a, b) 4
int n; 5

fptype a[N][N] , b[N]; 6

(7
fptype prod, bprod, epsO= 1.0e-22; 8
int i, j, k, p; 9

10

/* k is the step index */ 11

for (k=0; k<n; k++) { 12

/* Compute Dahlquist's m[i,k] and store in a[ifk] */ 13
for (i=k; i<n; i++) { 14

prod= a[i][k]; 15

for (p=0; p<k; p++) { 16

prod-= a[i][p]*a[p][k]; 17

} 18
a[i][k]=prod; 19

) 20
21

/* Compute Dahlquist u[k,j] and store in a[k,j] */: 22
for (j=k+l; j<n; j++) { 23

prod= a[k][j]; 24

for (p=0; p<k; p++) { 25

prod-= a[k][p]*a[p][j]; 26
) 27
a[k][j]= prod/a[k][k]; 28

) 29
/* Forward elimination of L*y = b */ 30
prod= b[k]; 31

for (p=0; p<k; p++) { 32

prod-= a[k][p]*b[p]; 33

> 34
b[k]= prod/a[k][k]; 35

} 36
37

/* Back substitution. There is no fwd substitution since we 38
worked on the rhs along with the lhs. Assume u(i,i)=l (Crout) */39

for (i=n-l; i>=0; i—) { 40
prod= b[i]; 41

/* This loop is *intentionally* not executed when i==n-l */ 42
for (k=i+l; k<n; k++) { /* Col in a, Row in b */ 43

prod-= a[i][k]*b[k]; 44

) 45
b[i]= prod; 46

) 47
> 48

Figure 6-8 Crout algorithm without pivoting (lincrsolnr.l.c)

179

int linsol (n, a, b) 2.
int n; fptype a[N][N], b[N]; 2

< 3
fptype temp, test, prod, epsO= 1.0e-22, y[N]; 4
int i/ J> k, p, imax, itemp, ir, kr, pr, row[N]; 5

6

for (i=0; i<n; i++) row[i]=i; /* Identity permutation */ 7
/* k is the step index */ 8
for (k=0; k<n; k++) { 9

/* Find next pivot row: imax= argmax{i=k:n) la[irow[i],k]I*/ 10
temp=0; imax=k; 11
for (i=k; i<n; i++) { 12

ir= row[i]; test= a[ir][k]; if (test<0) test= -test; 13
if (test>temp) {imax=i; temp= test;} 14

> 15
if (temp<=eps0) { 16

printf("linsol: singular matrix encountered (k=%d)\n", k);17
printf("temp= %le\n", temp); exit(-l); 18

) 19
/* Change permutation arrays to make a[imax][k] the pivot */ 20
itemp=row[k]; row[k]=row[imax]; row[imax]=itemp; 21
/* Compute Dahlquist's m[i,k] and store in a[i,k] */ 22
for (i=k; i<n; i++) (23

ir=row[i]; prod= a[ir][k]; 24

for (p=0; p<k; p++) {pr=row[p]; prod-= a[ir][p]*a[pr][k];}25
a[ir][k]=prod; 26

) 27
/* Compute Dahlquist's u[k,j] and store in a[k,j] */ 28
kr=row[k]; 29

for (j=k+l; j<n; j++) (30
prod= a[kr][j]; 31

for (p=0; p<k; p++) (pr=row[p]; prod-= a[kr][p]*a[pr][j];}32
a[kr][j]= prod/a[kr][k]; 33

) 34
/* Forward elimination of L*y = b */ 35
kr= row[k]; prod= b[kr]; 36

for (p=0; p<k; p++) (pr= row[p]; prod-= a[kr][p]*b[pr];} 37
b[kr]= prod/a[kr][k]; 38

> 39
/* Back substitution */ 40
for (i=n-l; i>=0; i—) (41

ir = row[i]; prod= b[ir]; 42

for (k=i+l; k<n; k++) {kr= row[k]; prod-= a[ir][k]*b[kr];} 43
b[ir]= prod; 44

) 45
/* Unscramble b into y and then copy back into b */ 46
for (i=0; i<n; i++) {ir =row[i]; y[i]= b[ir];} 47
for (i=0; i<n; i++) {b[i]= y[i];} 48

) 49

Figure 6-9 Crout algorithm with pivoting (lincrsolpr.l.c)

180

6.5 The Doolittle algorithm

The Doolittle algorithm is similar to the Croutalgorithm in that it can be derived from (6-10). The

basic idea is the same, but now mkk=l (k=l:n) is chosen instead uy^l (k=l:n). The derivation

again starts by splitting Equation (6-10) into two cases, this time first for the lower triangle and

then for the uppertriangle aM the diagonal. Forthe lowertriangle we have

k

akJ = £ mkpupj k =1-»n j =k+1 -> n (6-14)
P = i

and for the upper triangle/diagonal we have

k

a^ = £ mipupk k = 1<- n i =k+1-> n (6-15)
P = i

By virtue of thechoice m^l (k=l:n) we can nowrearrange (6-14) and (6-15) as

k-l

ukj =akj" Sm"pupj k = 1->n j =k->n
P = i

k-l

mik =aik-Xmipupk k=l-»n i =k+l->n
p=1 (6-16)

Starting with k=l and progressing towards k=n, these equations can then be solved for ukk,..., ukn

(one rowofU) and then mk+, k,..., mnk (one column of L) ata time.

Properties of Doolittle's algorithm

The difference between Crout and Doolittle from an implementation point of view is marginal.

They have exactly the same properties when it comes to memory bandwidth, pipelining margin

and permutation lookups.

181

6.6 Summary

The preceding material is an attempt to provide some insight into the nature of the various

algorithms that can be used to solve dense systems of linear equations. Which algorithm is best

depends greatly on what hardware architecture is available, so it isuseful to summarize the key

properties for future reference. Table 6-4 contains a relative ranking of Gauss/LU, Crout and

Doolittle with respect the properties memory bandwidth, pipelining margin and permutation

lookupfrequency.

Property Gauss/LU Crout Doolittle

memory bandwidth
- + +

pipelining margin + - -

permutation lookup frequency 0 - -

Table 6-4Simplified view of some key properties of linear equation algorithms

CHAPTER 7

Console IMPLEMENTATION

ALTERNATIVES

The algorithms described in Chapter 6 canbe implemented, with varying degrees of efficiency

and difficulty, on a wide range of commercially available processors and also on a number of

experimental architectures that have been described in the research literature. Examples of

relevant processors and architectures are

♦ Commercial DSP chips

♦ Systolic arrays and Massively Parallel Architectures

♦ Standard microprocessors (RISC chips)

♦ Vector Processors and Supercomputers

Thischapter is an investigation of theefficiency of a selection of architectures and processors. The

purpose is to identify the main bottlenecks to efficient execution. For the memory subsystem,

efficiency is measured as the memory's ability to retrieve operands and store results without idling

the datapath. For the datapath, efficiency is generally measured in term of latency and throughput.

The control unit (program sequencer and address generation unit) is judged on its ability to

generate the addresses and control signals necessary to keep both the memory and the datapath

183

184

fully occupied with useful operations. Oneconcrete metric forefficiency is the utilization rate of

the datapaths, where utilization is defined as

Utilization = ActiveCycles A
TotalCycles T l '

The active cycles are the cycles where newdatapath instructions are issued, as opposed to the idle

cycles,wherethe datapath is waiting foroperands to arrive ora status valueto become available.

Note that the utilization rate can depend both on the datapath itself (if amissing operand is

currently being computed but not yet finished) and the memory (if the operand is coming from

memory). This serves to illustrate that the overall performance of the system will depend both on

individual properties of the major units (memory, datapath, control) and on how they work

together.

7.1 Commercial DSP chips

Thecommercial DSP chips that will beconsidered inthis study are the AT&T DSP32C, theTexas

instruments TMS 320C30 and the Motorola MC96002. It turns out that many of the relevant

architectural features of these processors are the same. For this reason, only the DSP32C will be

studied in great detail. Afterwards, the analogies between the DSP32C and the other processors

can be drawn fairly easily and many of the conclusions will be the same. All the processors

mentioned are high-end units that have built-in floating point hardware. This means that they are

(atleast arithmetically) suited for numerical processing tasks.

7.1.1 The AT&T DSP32C digital signal processor

A simplified block diagram of the DSP32C is shown inFigure 7-1 [att88]. Themain architectural

features of this processor isahighly multiplexed program/data bus (for simplicity referred to as

just the data bus hereafter) which operates at 4 times the instruction rate, amultiplexed set of

RAM/ROM banks, and amodestly pipelined (2 stages) floating point datapath, while at the same

time having ahighly pipelined approach to the fetching ofoperands, instructions and the writing of

n 1

mult

aO-a3

Figure 7-1 Blockdiagram of the AT&T DSP32C signal processor

State

Clock cycle

Clock time 20ns 20ns 20ns 20ns

Instruction number k

Data bus
-k-4 Mc-3 k-3

Function Write result Read X operand Read Y operand Read Instruction

185

Table 7-1 Reservation table for data bus during one machine cycle. The clock frequency is
50MHz

186

results, where a giveninstruction may span as many as4 instruction cycles.

The most general DSP32C instructions involve4 memoryaccesses (denoted Z,X,Y,I) as shownin

Table7-1. An instruction cycle consists of 4 clock cycles or states. In each state, the databus is

occupied by a different data item, as shown in the table. The index k is a running count of the

machine cycles. What thetable says is that the memory write (Z) corresponding to the instruction

issued 4 cyclesago occurs in the same cycleas theoperand reads (X,Y) for instruction k-3 and the

reading of the opcode (I) for instruction k itself. This means that a complete accumulate with a

memory store takes 4 cycles (actually 17states) to complete.

To seehow the architectural features manifest themselves during execution, we need to look at

some instruction examples. The mostinteresting instructions from ourpoint of view are the MAC

and MADD type instructions, which are shown inTable 7-2. A reservation table which applies

both for the MAC instructions and the MADD instructions is shown inTable 7-3. One important

restriction is thatX and Y mustcome from different memory banks. Otherwise there will be 1wait

state between the accesses, and a corresponding delay of the pipeline. In other words, each RAM

needs 2 states per read operation. Fortunately, anew MAC/MADD instruction can bestarted every

cycle as long as the accumulated value stored toZ isnot needed as an operand until 4 cycles later

at the earliest. Otherwise, one would have to wait the full 17 states. If X,Y are from the same

memory bank, there will be 6 states per MAC/MADD instead of 4. As mentionedearlier, the

floating point datapath isnot pipelined except one stage between the multiplier and the adder The

delays of the most important hardware blocks are shown inTable 7-4. Interleaving isthe term used

to describe the practise of accessing X and Y from different memories. RAM[0-2] refer to the on-

chip RAM banks whereas RAM[A-B] refer to additional off-chip memory banks. The number n

denotes extra wait states.

7.1.2 Solving linear equations on the DSP32C

The purpose of this section is twofold. First it aims toestablish how efficiently the DPS32C can

187

Instruction type Generic format Example

MAC [Z=]aN=[-]aM{ + ,-}Y*X rr2++rl8= al= a0+ *r2 * *r2++rl9

MADD [Z=]aN=[-]Y{ + ,-}aM*X rr2++rl8= al= *r2 + aO* *r2++rl9

Table 7-2 Generic form of MAC and MADD instructions. Q=optional {}=alternative. aN,
aM denote accumulator registers and X,Y,Z are memory locations. rN=address register

State 3 0 1 2 3 0 1 2 3 0 1 2 3 0 1 2 3

RAMO X rd Zwr

RAMI Yrd

Databus X Y 1Z|

Multiplier

Adder

Table 7-3 Reservation table for relevant hardware units during multiply-accumulate or
multiply-add

Block Delay Interleave with Block Delay

RAM[0-2] Any other RAM adder

RAM[A-B] 2+n OnlyRAM[0-2] multiplier

Table 7-4 Delays of DSP32C hardware blocks (number of states)

be programmed to solve linear equations. Secondly, we want to see how the architecture can be

improved to increase the speed of execution.

Asmentioned in the introduction to this chapter, one efficiency measure for a given processor is

the utilization rate of its datapaths. This makes sense situations inwhich the datapath is agiven

and unchangeable entity.

188

Gauss/LU on the DSP32C

To get anexact, provably minimal cycle count for analgorithm on a given architecture is usually

not feasible. However, one can usually getbounds ontheperformance by studying the inner loops

of the algorithm and seehow fast they can be executed. The inner loop of theGauss/LU algorithm

is the elementary row operation

m= (a[ir][k]*=(l/a[k][k])) ;
for (j=k+l; j<n; j++) a[ir][j]-= m*a[kr][j];

The basic elimination operation is a[]= a[] - m*b[]. It canbe performed as

do 0, rl2

*rl++ = al = *rl + aO * *r2++

whererl is a pointer to row a[], r2is a pointer to b[] and m is stored in aO. If a[] andb[] come from

the same memory bank (which is natural, since they are rows of the same matrix), it is possible to

execute this loop at a rate of 6 (not 4) states/iteration. The 2 additional states are wait states

incurred by having to access thesame memory bank in succession, as opposed to interleaving two

different banks. This means that there is a basic inefficiency factor of 1.5 between what the

processor can actually do and what the datapath wouldbe able to produce if the operands were

delivered on time and the result could be written on time.

Additional slowdowns will occur in the outer loops of the algorithm due to such tasks as pivot

searching, permutation lookups and loop administration. As noted above, deriving the exact

numbers is difficult. One alternative is to use sample code written by an expert programmer and

compare the execution time (cycles) to the theoretical minimum which can be found by simple

counting of operations in the algorithm. The DSP32C comes with a number of hand-coded

subroutines forvarious purposes, andone of them (matinv.lib.s) is a routine that finds the inverse

of an nxn matrix A.The inverse of A is the matrix X which satisfies AX=I. This equation can be

viewed as n systems of linear equations with the same coefficient matrix A but n different right-

hand sides, namely the n columns of I. These systems can all be solved together by treating the

different right-hand sides at the same time during elimination. The work (MADD operations)

189

involved is

work(AX=I)= 2*forward_elim(Ax=b) + N*back_subst(Ax=b) (7-2)

which in turn is

work(AX=I) =2*(1/3)(N3-N) +N*(1/2)NZ =(7/6)N3 - (2/3)N (7-3)

This amounts to4768 operations for N=16, or4*4768=19072 DSP32C states if the processor

datapaths works at 100% efficiency. This number was compared to the state execution count for

the hand-coded routine matinv.lib.s, including additional loop optimizations performed by myself

inorderto make thecode as efficient as at allpossible. Themost efficient hand-coded version was

a factor of3.4less efficient than a fully exploited datapath would be (Table 7-5). It should benoted

thatmatinv.lib.s uses pointer arithmetic for all array addressing, so that all the overhead which is

seen here essentially comes from pivot searching, permutation (which is performed by swapping

lines), loop administration and memory conflicts.

Potential speedup

What aretheweaknesses of theDSP32C chip with respect to theGauss/LU algorithm? Afactor of

3.4 datapath inefficiency is actually not bad for a general purpose chip, but it could probably be

reduced to almost 1 by a special purpose memory architecture and controller. Assuming the

datapath (inits current incarnation) could bekept 100% busy, thenext step to achieve additional

name states (factor) wait states loops optimized

matinv.lib.s 83957(4.4) 7865 none

matinv.libl.s 71701(3.7) - 2 (D,E)

matinv.lib2a.s 65107(3.4) - 3 (D,E,J)

mat inv.1ib2b.s 64687(3.4) - 4 (D,E,J,P)

matinv.lib2c.s 63847(3.4) 7419 5 (D,E,J,P,Q)

Table 7-5 Optimized hand-coded versions of matinv.lib.s routine

190

performance must be to improve the speed of the datapath itself.

In the DSP32C, there is no pipelining inside the functional blocks. What if the datapath was

pipelined at the clock cycle level instead of at the instruction cycle level? That is, if the adder had

4 pipeline stages and the multiplier 5 stages, both would be able to accept new operands every

clock cycle. As noted on page 171, the forward elimination processhas a pipelining margin of at

least 9 (which happens to equal 4+5) except in the very last iterationof the main loop. Assuming

that we can make full use of this pipeliningmargin, it would enablean increase in performance by

a factorof 4 (the datapath throughput increases by a factor of 4 because the clock is 4 times faster

than the original instruction cycle).

Of course, such a scheme would in turn increase the burdenon the memory system and the data

busby a factor of 4. The original system of atime-multiplexed data bus wouldhaveto be replaced

by a multiport/multibusmemory system that works at the same speed as the clock and is able to

support 3 reads and 1 write every clock cycle. As an alternative, one could change the Von-

Neumann architecture of the DSP32C (common data and instruction storage) to a Harvard

architecture (separate data and instruction storage) and usea2-read/l-write data memory system.

The total effect of these changes would be about an order of magnitude performance improvement

for the total system.

Crout or Doolittle on the DSP32C

As mentioned in Chapter 6, thedistinguishing feature of theCrout (or Doolittle) algorithm is that

it relies on MAC (multiply-accumulate) operations in the inner loop. These can be executed atthe

rate of 5 states periteration, 1 state of which is a wait state foraccessing X and Y from the same

memory. This is slightly better than Gauss/LU. However, evenwithout waitstates the inefficiency

of Gauss/LU is 2.96 (versus 3.4), so the expected gain is less than 15%. This is not to say that

Crout does notmake sense onthe DPS32C as is (it certainly does), but if we try to pipeline the

datapath as suggested for Gauss/LU in the previous section, there will be no gain available due to

191

the lackof a pipelining margin in the Crout algorithm.

7.1.3 The Motorola MC96002 digital signal processor

A simplified but realistic block diagram of the Motorola MC96002 (MC96k hereafter) is shown

in Figure 7-2 [mot89]. The MC96k architecture is a quite different from the DSP32C. Most

noticeable is the large number of independent data andaddress bussesthatconnect the internal and

external RAM banks to the maindatapaths. The internal RAM consists of 3 independently

operated banks known as P, X and Y. The P(rogram) bankis dedicated to storing instructions, and

the X,Y banks are dedicated to storing data. This is different from the DSP32C, where data and

program can be mixed freely in the RAM banks. There are twoexternal memorybusses (portA,

portB) which can connect to physically separate external RAM banks orother MC96k chips. The

instruction setof the MC96k is register oriented, butwithparallel data moves.

An instruction cycle on the MC96k consists of 2 clock cycles. Table 7-7 shows how the various

RAM banks and buses are allocated during instruction cycles. The most striking feature of the

MC96k architecture is that 50% of all the memory cycles for blocks P,X,Y are statically allocated

for DMA access. This means that even though P,X,Y are capable of 2 accesses per instruction,

only 1 such access is available to the executing program.There is of course a good reason for this

scheme. First of all, the processor is intended for DSP multiprocessing applications, and the DMA

channels are intended for transferring data between multiple processors and/or between each

processor and ashared memory. Thestatic allocation scheme makes theDMAcontrol simpler, and

also ensures predictable performance during interprocess communication. The actual DMA

instructions are programmed by storing control codes, starting addresses and transfer counts into

special DMAregisters (which are in fact mapped into the X memory address space).

The datapath (called DataUnit in Figure 7-2) is also quite different from the one found in

DSP32C. The programming model of the MC96k is that all datapath operations are register-to-

register operations, but with the possibility of specifying 0-2parallel moves whichtransfer values

192

Address switch A Address switch B

PORTA Address
Gen

PRAM XRAM YRAM PORTB

Data switch A Data switch B

Program Control Data Unit

Figure 7-2 Simplified block diagram of the MC96002 chip. Thedata and address switches
are the main connections between the chip and the outside world

Icycle 0 1 2 3 4

Fetch FO Fl P2 F3 F4

Decode - DO m D2 D3

Execute
-

- EO El

|

Table 7-6 Instruction pipeline of the MC96k

193

Clock cycle 0 1 2 3 4 5

Clock time 25ns 25ns 25ns 25ns 25ns 25ns

Clock phase tO, tl t2,t3 tO, tl t2,t3 tO,tl t2,t3

Instruction 0 1 2

XRAM read/write *»' -j read/write '4m read/write sl^liwwl^^li

YRAM read/write read/write v dnia * read/write IBi^Bii

PRAM read/write dm read/write 4m\ read/write iijiUpi

PortA and B read or write read or write read or write

Table 7-7 Memory and bus allocation during MC96k instruction cycles. Assumes
fc=40Mhz (the fastest part available)

Xbus

Ybus

Floating point adder

rfll dU ,t
Format converter

D0-D9 high

Registers

D0-D9 med D0-D9 low

n n n
Reciprocal/sqrt seed ROM

Logic operations

Roaring point multiplier

Figure 7-3 The MC96k datapath. The register file is 3x32=96bits wide and accommodates
IEEE extended precision operands, but the unit itself computes only single-extended

(44 bit) results

194

PAB

GDB

PDB

HWL:

I * *
XAB YAB PAB

PAB

GDB

PDB

Figure 7-4 The Address Generation Unit (AGU) of the MC96k. Only 1/2of the unit is
shown. Other independenthalf contains the registers m4-7, n4-7, r4-7

between the registers and the RAM banks (ineither direction). The main datapath (Figure 7-3)

contains 10registers named D0-D9. The registers are 96 bits wide and always store the operands

using the 96-bit IEEE double-extended precision format. This is mostly for the convenience of

communicating with the outside world, as all the arithmetic instructions of the MC96k are carried

out in 44-bit IEEE single-extended precision. Higherprecision IEEE standard arithmetic can be

performedin software at the cost of lower speed.

The datapath contains an adder/subtracter unit and a multiplier unit for floating point operations.

Both units have a latency of 1instruction cycle (there isno datapath pipelining) and can operate in

parallel. The results ofone unit can be used as operands of either unit in the next instruction cycle.

195

7.1.4 Solving linear equations on the MC96k

As mentioned earlier, the X and Y banks are allowed 1access each per instruction. This means

that even with its multitude of busses and address generators, MC96k is still not capable of

executing a2-read, 1-write instruction that can efficiently perform the inner loop of the Gauss/LU

algorithm. In fact, the MC96k iseven less capable than the DSP32C in this respect, because it can

only perform 2 data accesses (from different banks!) per instruction, whereas DSP32C can

perform 3 (but withpenalty when X,Y,Z come from the same RAM bank).

Because the MC96k isaregister-register machine with parallel moves (the DSP32C is amemory-

memorymachine), there are more alternative code sequences forcomputing the Gauss/LU inner

loop than onthe DSP32C. Figure 7-5 and Figure 7-6 show 4 different assembly code fragments for

theGauss/LU innerloop. As before, the basic elimination operation is a[]= a[] - m*b[].

Case 1is the "natural" formulation with a[] and b[] residing in the same memory bank. While the

assemblycode is somewhatcomplicated, the conclusion is easy: Becausethe X bank has to be

accessed 3 times periteration, and the architecture allows only 1 access perinstruction, the inner

loop is 3 instruction cycles long, which is notvery good. The datapath is capable of doing 6 flops

in this period, but only 2 useful operations are performed, meaning the efficiency is 33%.

Case 2 wasdesigned to alleviate thememory bottleneck by assuming a[] is in the X bankand b[] is

in the Y bank (the cost of copying b[] from X toY will most likely negate any savings, butwe

would like to check anyway). Surprisingly enough, the loop still takes 3 instruction cycles. This

time, the problem is that MC96k only has 2-operand subtraction (and addition). "2-operand"

means that the result of a subtraction mustbe written back on top of oneof the operands, as in

dest=dest-src. This causes a problem on line 9 of the code, where we would have liked to say

something like d2.s=d0-dl instead of being forced to sayd0.s=dO-dl. If this were possible, the

code could be arranged as shown in Case 4, with2 instructions in the inner loop.

Case 3 unrolls the loop by a factor of 2 to avoid the problem caused by the 2-operand subtract

196

#define a[k] (rO)

#define a[k++] (r0) +

#define b[k] (r4)

#define b[k++] (r4) +

#define m (rl)

Common definitions for Case 1-3

Case 1 : Both a[] and b[] in the x:ram

;label

init

loop

endloop

;falu operation
move

move

move

move

move

do #n, endloop
dl.s = d4*d5

dO.s = dO-dl

move

;x-move

r0= #aaddr

r4= #baddr

rl= #maddr

d4.s= x:m

d5.s= x:b[k++]

d0.s= x:a[k]

d5.s= x:b[k++]
x:a[k++]= dO.s

;y-move

Case 2 : a[] in x:ram and b[] in y:ram.
No improvement due to lack of 3-operand subtraction

/cycles 1

1 2

1 3

1 4

1 5

1 6

3 7

N 8

N 9

N 10

/Total 11

3N+8 12

;label

init

;falu operation
move

;x-move

r0= #aaddr

;y-move ;eyeles

1

1

2
move r4= #baddr 1 3

move rl= #maddr 1 4

loop

endloop

move

do #n, endloop
dl.s = d4*d5

dO.s = dO-dl

move

i

d4.s= x:m

d0.s= x:a[k]

x:a[k++]= dO.s

d5.s= y:b[k++]l

3

N

d5.s= y:b[k++]N

N

;Total

3N+7

5

6

7

8

9

10

11

Figure 7-5 Assembly code for Gauss/LU inner loop a[]=a[]-m*b[] onthe Motorola
MC96k processor. Some liberties have been taken with the assembly language syntax to
make the code more readable: (1) The #def ine statements define textual substitutions
that allow ustouse the mnemonic names such as a[k] in the program textinstead of the
actual register names such as(rO). (2) Arithmetic operations have been written in the
natural form (dl. s=d4*d5) instead of the standard syntax (fmpy. s d4, d4, dl). (3)
The parallel moves have been written as assignments (x: a [k++]= dO . s) instead of the
src,dest syntax (dO . s, x: a [k++])

;label

init

loop

Case 3 : a[] in x:ram and b[] in y:ram
Workaround that involves unrolling the loop by a factor of two

;y-move

1

1

1

d5.s= y:b[k++] 1

1

3

d5.s= y:b[k++] N/2

N/2

d5.s= y:b[k++] N/2

N/2

197

/cycles 1

2

3

4

5

6

7

8

9

;falu operation
move

move

move

move

dl.s= d4*d5

do #n/2, endloop
dO.s = dO-dl

dl.s = d4*d5

d2.s = d2-dl

dl.s = d4*d5

endloop

;x-move

r0= #aaddr

r4= #baddr

rl= #maddr

d4.s= x:m

d0.s= x:a[k]

d2.s= x:a[k+l]
x:a[k++]= dO.s

d0.s= x:a[k+l]

x:a[k++]= d2.s
10

11

;Total 12

2N+8 13

Case 4 : a[] in x:ram andb[] in y:ram
If MC96k actually had a 3-operand subtraction

Definitions

#define a[k] (rO) 1
#define a[k+l] (rO+nO) 2
#define a[k++] (r0) + 3

#define b[k++] (r5) + 4
#define m (rl) 5

;label ;falu operation ;x-move ;y-move

b

;cycles 7
init move r0= #aaddr 1 8

move r4= #baddr 1 9

move rl= #maddr 1 10

move n0= 1 1 11

move d4.s= x:m d5.s= y:b[k++] 1 12

dl.s= d4*d5 d0.s= x:a[k] 1 13
loop do #n, endloop 3 14

d2.s= dO-dl d0.s= x:a[k+l] d5.s= y:b[k++] N 15

endloop

dl.s= d4*d5 x:a[k++]= d2 N

;Total

2N+9

16

17

18

Figure 7-6 Assembly code for Gauss/LU inner loop on Motorola MC96k (continued)

198

limitation. In this version, dO and d2 are used as alternating destinations for the result of the

subtraction. The inside of the loop is now 4 instructions long,but is executedonly N/2 times. This

means that in effect we have 2 instructions per iteration. The key instructions in Case 3 are the

onesnumbered 8 and 10. These linescontain the codewhere dO (d2) is computed at the sametime

asd2 (dO) is filled with a new a[]-value from the X memory. Case 4 shows the more elegant code

which would result if the MC96k had a 3-operand subtraction.

Theabove programming exercise allows ustodraw some conclusions about the basic efficiency of

the MC96k with respect to the Gauss/LU algorithm. If b[] is not copied to the Y bank, the

efficiency is 1/3 in the datapath. If b[] could be copied to Y at no cost(which is not actually

possible, even using DMA), theefficiency could bemade 1/2 by unrolling the loop by a factor of

2.

Crout or Doolittle on the MC96k

Crout and Doolittle require 2 accesses to the same bank, which means 2 instructions in the inner

loop and a50% datapath utilization. Another possibility isto copy pieces of thematrix to theother

bank, which will allow the use of a 1-instruction multiply-accumulate (MAC) loop. This is the

same basic loop that is used in an FIR filter, which isone of the traditional uses of achip such as

the MC96k. Figure 7-7 shows an assembly code fragment for the inner loop under the assumption

that one of the vectors has been copied to bank Y. The copying overhead will to some extent

negate the savings, even though one can get away with copying only on piece of data and use it

several times before having to copy again.

Potential speedup

The MC96k chip isless well-suited for Gauss/LU than the DSP32C. For Crout, they are about the

same, as the DSP32C needs wait states whereas the MC96k needs copying between memory

banks. I have no complete, handwritten and optimized code for the MC96k corresponding to the

mat inv. 1ib. s code for the DSP32C, but it can beexpected that they will fare about the same,

Case 5 :Crout algorithm inner loop (dot product) s=sum(i=l:n, a[i]*b[i]),

assuming that a[] is in bank X and b[] has been copied to bank Y

199

#define

#define

#define

#define

#define

#define

a[k] (r4)

a[k++] (r4)+

b[k] (rO)

b[k++] (r0)+

B[k] (r5)

B[k++] (r5)+

1

2

3

4

5

6

;Label

init

;falu operation

move

;x-move

r0= #aaddr

;y-move

7

;cycles 8

1 9

move r4= #baddr 1 10

loop

move

move

do #N, endcopy

r5= #btmp

d0.s=b[k++]
1 11

1 12

1 13

endcopy

move d0.s=x:b[k++] y:B[k++]=d0.s N 14

15

loop

endloop

move

do #N, endloop
dl.s=d4*d5, d2.s=d2+dl

d4.s=x:a[k++]

d4.s=x:a[k++]

d5.s=y:B[k++]

d5.s=y:B[k++]

1 16

1 17

N 18

;Total 19

2N+7 20

Figure 7-7 Assemblycode for Crout algorithm inner loop on the MC96k

meaning thatthe MC96k will have autilization rate of about 1/3. Again,another factor of4 canbe

gained by pipelining the datapath. As before, this also requires a memory system update to

accommodate the increasedbandwidth requirement

7.1.5 Texas Instruments TMS320C30 digital signal processor

The TMS320C30 (C30 for short) is somewhat similar to the MC96k in that it has numerous

internal buses and two external businterfaces. Figure 7-8 shows a simplified blockdiagram of the

chip [ti88]. The C30 is somewhat more complex than the MC96k in thatalmost all memories (the

exception is the cache) are connected to all possible buses. Surprisingly, there is only one bus

connection between the memory system andthe ALU. This bus is time-multiplexed so that two

memory accesses can take placein one instruction cycle. The instructionpipeline timing is shown

in Table 7-8. Each instruction spans 4 instruction cycles (Fetch, Decode, Read, Execute). The

200

C/j

Si

03

s

£

P,

Program counter

Instruction register

Controller

P, Dl, D2, DMA address buses

RAMO

AnM

n

DATA,

Data and address
ALU

\< \'

RAMI ROM

iua\ Hiili

DMA data buses

DMA
Controller

Figure 7-8 Block diagram of the TMS320C30 chip

Icycle

Fetch F0 F!

Decode DO

Read

Execute

Table 7-8 Instruction pipeline of the TMS320C30

o
-1—<

w

201

Clock cycle

Clock time 30ns 30ns

Instruction

RAM0-1 read/write read/write

ROM, Cache read/write read/write

Primary bus read read

Expand bus read or write

Table 7-9 Memory and bus allocation during C30 instruction cycles. Assumes
fc=33.4MHz. The latency of the Primary Bus is variable, depending on the order of

operations (read, write) and the speed of the external RAM. Example shown is for 0-wait
RAM. The expansion bus always takes 2clock cycles per read or write

To AR0-AR7

Figure 7-9 Main datapath of the TMS320C30

202

1-" CN
OX) DO

M i \

Auxiliary registers

AR0-AR7

DISPO, IRO, IR1

NARAUO/ \araui/

I

•a -a 6

Figure7-10 TMS320C30 auxiliaryregister file and address arithmetic unit

memoryandbusallocation during aninstruction cycleis shown inTable 7-7.The instruction cycle

consistof two clock cycles. Figure 7-9 showsthemaindatapath of the C30,andFigure 7-10 shows

the auxiliary registers (AR0-AR7) and the address arithmetic unit. The AR registers are mainly

used for address computations.

The main datapath is fairly standard, witha floating point multiplier and a floating point adder that

canoperate in parallel. The programming model is a mix of the register-register and the memory-

memory model: Up to two of the operands can be read from memory whereas the remaining ones

must be registers. If there are no reads, one store can be performed perinstruction. For parallel

multiply/add operations, the destinations mustbe registers. The address unit has two independent

adders which canbe used to increment, offsetordisplace a base address coming from a register

AR0-AR7. This corresponds to the ability of having twomemory accesses percycle.

The main difference between the C30 and the DSP32C/MC96k is that C30 is the only processor

Case 1: Gauss/LU inner loop a[]= a[]-m*b[]

a[] and b[] in same RAM

/Label

loop

I I

elim:

/Operations and moves

ldi @a,ar0

ldi @b,arl
ldi @m,ar2

ldf *ar2,r0
ldi N,re

mpyf3 r0/*arl++,rl
subi 1,re

7

rptb elim

mpyf3 rl,*arl++,r0
subf3 *ar0,rl,r2

stf r2,*ar0++

; Comment

; points to a[]

; points to b[]

? m->r0

? N->rc (number of elements)

; m*b[]->r0

? rc=N-l

r setup the repeat block
: m*b[k+l]->r0

'• a[k]-m*b[k]->r2
a[k]-m*b[k]->a[k]

Case 2 : Crout inner loops=sum(a[],b[],i=l:n)

a[] and b[] in same RAM

#define a[k++] *ar0++

#define b[k++] *arl++(irO)

;Label ;Operations and moves ;
ldi @a,ar0 ;
ldi @b,arl

ldi N, re

ldi N, irO

subi 1/re ;
mpyf3 a[k++],b[k++],r0;

eloop rptb elim ;
mpyf3 a[k++],b[k++],r0;

1 1 addf3 r2,r2,r0 ;
elim:

stf r2,*ar0++ ;

Comment

points to a[]
points to b[]

N->rc (number of elements)
N->rc (number of elements)

rc=N-l

r0= a[]*b[]

set up the repeat block

r0= a[]*b[]

r2= r2+a[]*b[]

a[k]-m*b[k]->a[k]

N

203

;Cycles2

1 3

1 4

1 5

1 6

1 7

8

1 9

1 10

11

4 12

N 13

- 14

15

;Totall6

2N+11 17

1

2

3

;Cycles4

1 5

1 6

1 7

1 8

9

1 10

1 11

4 12

N 13

- 14

15

16

;Total17

N+ll 18

Figure 7-11 Assembly code for Gauss/LU and Crout on the TMS320C30

204

capableof 2 reads from the same RAM bank in one clock cycle.

7.1.6 Solving linear equations on the C30

The C30is not ideally suited for theGauss/LU algorithm, since it canperform atmost 2 memory

accesses per instruction. Figure 7-11 contains assembly code for the inner loop of Gauss/LU. The

needto insert anstf (store float) instruction in line 15 is the reason why there will be 2 cycles per

iteration.

The C30 fares much better with the Crout algorithm than with Gauss/LU. As mentioned earlier,

C30 is the only processor (so far) which can read two operands out of the same memory without

anyspeed penalty. This makes C30thebestcandidate for theCrout algorithm: The inner loop only

needs to contain one instruction (see Figure 7-11). There is 100% datapath utilization when

running the Crout algorithm on the C30.

Speedup potential

Asit stands, the C30 is avery good processor for the Crout algorithm. The overhead in looping,

addressing, pivoting and row swapping has not been accurately estimated, but it can be expected

that for the complete algorithm one can get about 50% datapath utilization (a factor of2 overhead).

Asis the case for the other processors, pipelining the datapath will not help unless the memory

system isupgraded so that one can use aGauss/LU algorithm with sufficient pipelining margin.

7.2 Vector processors

Vector Processors (VP) are computer architectures that are especially designed to process arrays

(vectors) of floating-point numbers at high speed by using heavily pipelined functional units that

rely on the programmer and/or the program compiler to exploit the pipelining margins that can be

found in scientific numerical computation algorithms.

205

Supercomputers

The most well-known vector processors belong to the class of"Supercomputers", meaning the

highest speed, multi-million dollar machines such as the Cray-1, Cray-2, Cray X-MP, Cray Y-MP,

Fujitsu VP100/200, Hitachi S810/820, IBM3090/VF, NEC SX/2 and the Convex C-l [hepa90].

There are also smaller, board level array processors such as the ones formerly made byFloating

Point Systems corporation.

Common to all these systems is that they are aimed at medium-to-large scale scientific

computation problems, and not small real-time problems such as repeatedly solving 16x16

systems of linear equations. Hennessy and Patterson [hepa90] make it clear intheir exposition that

due tothe heavy startup penalty of the vector operations onacommercial supercomputer, they are

not very efficient for small systems. In fact, of the machines mentioned, all but one have vector

registers of size64 or larger, implying that smaller vector lengths are not efficient

Supercomputers are impractical in embedded applications due to their prohibitive size and cost.

For the purpose of this dissertation, the main utility of Supercomputers is that they use some

implementation techniques and architectural techniques that can also be applied on asmaller scale.

This fact will be explored further in Chapter 8.

Vector processing chips

The NEC corporation Vector Pipelined Processor (VPP) is a single-chip implementation of some

of the central functions of a supercomputer [okamoto91]. Figure 7-12 shows themain datapath of

the VPP. VPP has 2 functional units (adder and multiplier), both containing 5 pipeline stages. The

processor contains 8 separate 2-port SRAM blocks which are used as vector registers to feed the

functional units, store results and as buffers between the vectorregisters and main memory

(offchip). VPP is made in BiCMOS 0.8 um technology and runs at f=100MHz, which means that

the peak throughput is 200 Mflops.

The paper [okamoto91] shows clearly that the chip is not intended for stand-alone use. It appears

206

64 w 64 w 64 w 64 w

i i i i
add/sft .mpy/div/lu,

External memory interface

i ±_
Pipelined load Pipelined store

——H t— (> (1 (I

' \r

k i i i L J L

1 1 1 r 1 1 1 r

96 w 96 w 96 w 96 w

1 1 1

busl(mpy)
bus2(add)
bus3(load)
bus4(xfer)

bus5(store)

vector registers

busl(mpy)
bus2(add.)
bus3(load)
bus4(xfer)

bus5(store)

temp/buffer
registers

Figure 7-12The central parts of the NECVector Pipelined Processor (VPP). The various
vector registers haveeither64 word or 96 wordcapacities

that the main function of the chip is to implement some of the most central and time-critical

operations of a Supercomputer on one chip, which is vastly more efficient than traditional

approaches such as using ECL (Emitter Coupled Logic) gate arrays. ECL implementations

typically require many chips and fluid cooling, making the system larger and more expensive. The

207

speed ofVPP is not high enough to rival that ofECL-based Supercomputers, though.

As for applicability to small-scale linear systems, the VPP uses 64-word vectors, which is too

long for our purposes, and requires asophisticated interleaved-bank external memory system. It

appears that the VPP can be avery good solution for medium-scale computational problems where

arelatively inexpensive and compact solution is required.

Massively Parallel Architectures

Massively Parallel (MP) architectures such as the Connection Machine CM-5 [hwang92] are

similar to the Vector Processors (Supercomputers) mentioned above in that they are large and

expensive systems intended for large-scale scientific problems. MP architectures involve many

(from 16 to 65636 ormore) processors that communicate over a special interconnection networks,

(the hypercube type network is one popular example). The most pronounced problem in MP

architectures is exactly the communication between the processing nodes, and how to exchange

data efficiently. As a result, the hardware utilization is lower and the cost of communication

circuits is much higher in MP architectures than inVP architectures [spectrum92].

7.3 Systolic Arrays

There is amultitude of architectures and design techniques that can be grouped under thegeneral

heading Systolic Arrays (SAs for short). The term was originally coined [htkung78] to describe a

1- 2- or n-dimensional structure of (relatively) simple processing elements with only nearest-

neighbor communication and one central memory which is connected to the array only at (some

of) the boundaries of the array.

Example of a 1-d systolic array (the WARP processor [anna86]) is shown in Figure 7-13. It is

commonly agreed upon (but not universally so) that Systolic Arrays belong to the classof SIMD

(Single Instruction, Multiple Data) architectures, meaning that all theprocessing elements perform

the same task at the same time, but on different pieces of data.

208

addr

Host

Memory/Interface
Unit

Figure 7-13 Simplified block diagram of theWARP systolic processor

A strict definition [roy88] of a Systolic Array demands regularity (mostly identical processors),

spatial locality (only local interconnections), temporal locality (all combinational elements are

latched, no zero delay operations) and pipelined operation (throughput independent of the order/

size of the system). Many of the early systolic architectures were special purpose and could only

perform one task efficiently. After the initial plethora of architectures and implementations,

researchers discovered that one of the most difficult problems with systolic architectures is to

program them to execute avariety of algorithms in an efficient manner. In fact, [roy89] has shown

that based on the strict definition, it can be formally proven that matrix algorithms that use

pivoting, including Gauss/LU, are not systolic. That is, they cannot be executed on such an

architecture withoutbreaking one of the requirements of the definition.

These experiences and the observed limitations have led to developments in the field of Regular

Iterative Arrays (RIA) [jag85][jag87][rao85][rao88], Regular Processor Arrays [roy88][roy89]

and Mesh Array Computational Graphs [Ie92][moreno90], which are less restricted relatives of

209

systolic architectures. For example, it is allowed to insert FIFO and LIFO buffers in between the

processors. Most ofthe reported work has concentrated on synthesizing an architecture for agiven

algorithm and/or mapping an algorithm onto agiven array. Some interesting results have been

achieved, but all the methods appear to have in common that they do not (so far) address what is

the main concern in this work, which is efficient resource usage and high datapath utilization. For

example, [roy89] shows that Gauss/LU can be performed in 0(N2) time with Nprocessors, but no

efficiency measures are provided. [Ie92] demonstrates atechnique that can map the Gauss/LU

algorithm (without pivoting) into the Mesh Array Computational Graph format, which can then be

mapped onto a regular array. Again, thedatapath efficiency is notknown.

Regular Array architectures are in-between Vector Processors and Massively Parallel architectures

in complexity. Programming a Regular Array is a difficult taskeven if it is not critical to havethe

highest possible resource utilization. SA architectures also have in common with Vector

Processors and Massively Parallel architectures that the implementations are typically too large

and tooexpensive for embedded applications. SA architectures are usually implemented as board-

level orwafer-scale designs, meaning that they are large and costly. For small linear systems it

appears that a single-chip implementationis necessary for economical reasons.

Architecture Implementations Architectures Implementations

SUN Sparc CY700, Viking, Tsunami HP PA-RISC PA 7100 series

Motorola 88k MC88100 IBM POWER RS6000/500 series

MIPS R-series 2000,3000,4000,6000 Intel RISC i860, i960

DEC Alpha 21064

Table 7-10 Some commercial RISC families and chips

210

7.4 Standard microprocessors

Standard microprocessors such as the families and implementations listed in Table 7-10 are

commonly used to execute numerical algorithms in a Unix workstation environment. For example,

CAD programs such as SPICE and CAZM [erdman90] involve large (and sparse) linear systems

which are solved by C subroutines that are compiled and run on one of the RISC (Reduced

Instruction Set Computer) chips listed in the table.

Most users never know how efficiently their workstations solve this (or any other) problem, and

are satisfied with the speedup that comes along with the periodical technological advances. This

makes perfect sense since a workstationis a general purpose computing environment and number-

crunching typically makes up a small partof the overall workload.

It is therefore not very surprising to find thatmanyof the RISC chips are not particularly efficient

for solving systems of linear equations, be they the large and sparse variety or smallerdense

systems of the sort we are interested in.

7.4.1 The SPARC family

The most advanced member of Sparc architecture family to date is the Viking (a.k.a. SuperSparc)

chip [sparc92]. It is called a"superscalar" implementation of the Sparc architecture because it can

issue and execute up to 3 different instructions every clock cycle. (Recall that many DSP and

RISC chips have a pipelined execution with perhaps as many as 4-5 instructions being indifferent

stages of execution at the same time. However, only one new instruction is issued (started up) each

clock cycle. Ina superscalar machine there are multiple instruction pipelines as well.)

TheViking chip has certain restrictions that apply to any group of 3instructions that are candidates

for being issued in parallel:

• Maximum 2 integer results

♦ Maximum of one datamemory reference

211

• Maximum of one floating point arithmetic instruction

• Agroup cannot include a control transfer (branch)

These restriction tells us right away that the Viking cannot be very efficient at executing either the

Gauss/LU or the Crout algorithm, as the memory bandwidth simply is not available. For the

Gauss/LU algorithm, there will be at least 3 instruction cycles, corresponding to the three

necessary memory accesses. Forthe Crout algorithm there will beat least 2 instruction cycles. The

restriction ofone floating-point operation per cycle also means that even without the memory

access restriction, one could still notgetbelow 2 instructions periteration.

One important feature of the Sparc family (and other RISC chips) is that they do not have any

explicitly parallel instructions, suchas the fmult||fsub instruction found in the MC96k. One reason

behindthis fact is that the RISCfamilies are designed to be scalable architectures that can have

both low-end and high-end implementations. In the low end, it is necessary that the architecture

does notspecify parallel instructions that may be costly to implement, and in the high end, there

may be so much parallelism that it is unreasonable to try to specify all of it explicitly in

instructions. Instead, theRISC families use the above mentioned Superscalar approach, where

extra hardware is expended to search the instruction stream of groups of instructions that can be

issued in parallel. This search becomes exponentially expensive with the number of parallel

instructions. In fact some of the new RISC chips could humorously be called "Complex

Instruction Sequencing Computers", as a pun on the old "Complex Instruction Set Computer"

acronym (CISC).

7.4.2 The Motorola 88k family

The MC88100 (MC88k for short) is a heavily pipelined load/store register-register machine with

a Harvard architecture (separate external program and data busses), and a built-in floating point

unit [mot90]. One instruction is issued every clock cycle (machine cycle=clock cycle) and the

instruction pipeline is 3 cycles long. Offchip memory access latency is 3 cycles plus waitstates (if

212

any) but the loads/stores are pipelined so that up to 3 loads/stores can be in progress at the same

time with an effective access time of 1 cycle each.

Since each cycle can have only one data access, Gauss/LU takes at least 3 cycles and Crout at least

2 cycles per iteration. Because of the heavy pipeline delay (fadd=5, fmult=6 cycles), Crout will in

reality take at least 11 cycles per iteration. There is no provision in the instruction set for doing

parallel load/stores or multiple floating point instructions (say, multiply-accumulate) in the same

cycle.

7.4.3 The MIPS R-series

The fastest member of the MIPS family is the R4000 chip [kane92], which is also the only

implementation that includes the floating-point unit on-chip. R4000 is heavily pipelinedwith an 8-

stage instruction execution unit and 1 instruction issue per clock cycle. The latencies are fadd=4

and fmult=7 cycles, which precludes efficient execution of Crout's algorithm. The Gauss/LU

algorithmis hampered by the restriction of 1 load/store per instruction.

7.4.4 The DEC Alpha 21064

The 21064 is the first implementation of the Alpha architecture [dobber92][dec92]. It has the

highest clock speed of any microprocessorto date (f=150MHz) and a true 64-bit architecture, as

well as 2-issue superscalar operation. From the documentation that is currentiy available it is not

possible to determine whatkinds of instructions are allowed to be executed in parallel, but it is

clear that since the Alphais a register-register and load/store architecture, it cannot provide more

than 2 memory accesses per instruction cycle. This implies that Gauss/LU will take at least 2

cycles per iteration, and mostlikelymore. The pipeline delay of the floating point unitis 10 cycles,

meaning that Crout will not be very efficient

7.4.5 The Intel i860 XP

The i860 XP is the most advanced member of the Intel RISC family [inte!92]. It has a load/store

213

register-register architecture which can execute one integer operation and one floating point

operation per cycle by explicitly programming the parallel instructions. The floating point

instruction set include some dual-operation instructions that execute but amultiply and an add/

subtract at the same time. This means that amaximum of3instructions can be issued each cycle.

However, there can be at most 1load/store (counts as an integer operation even if it load is to a

floating point register) per machine cycle. Hence Gauss/LU will take at least 3cycles per iteration

and Crout will take at least 2. Also, the pipeline delay of 2 for the floating point add will have a

negative effect on Crout.

7.4.6 Other RISC ^P families

A clear pattern can be established from the above 5 examples of current RISC architectures. All

the common architectures are lacking one or more of the features required for Gauss/LU and

Crout, such as

• Insufficient memory bandwidth per instruction cycle (Gauss/LU, Crout)

• Insufficient parallel load/store/fp instructions (Gauss/LU, Crout)

• Too large pipeline latencies (Crout)

The other 2 architectures listed in Table 7-10 (HP, IBM) are difficult to evaluate because the

companies generally are not willing to provide architecture information beyond the instruction set

level. The detailed timing of the instructions are not available. It can still be expected that they

have one or several of the limitations listed above.

In general, it is clear that the RISC chips are less suited to solving linear equations than are the

current crop of DSP chips. This is quite reasonable taking into account that the RISC architectures

are intended for general purpose computing.

214

7.5 Summary

This chapter quantifies and compares the efficiency of a variety of architectures and chip/processor

implementations with respect to the Gauss/LU and Crout algorithm, as applied to small-scale

linear systems.

The main conclusions are that the commercial DSP chips are probably the most efficient means

commercially available for solving linearequations. The DSPs are small, quite fast and relatively

inexpensive,but it is alsoclearthat their DSP-tailored architectures are not exactly what is needed

for the given problem. The overhead (and corresponding speed reduction) is usually a factor of 2-

4, and it appears that a completely tailored pipelined architecture can increase the speed by an

order of magnitude.

Commercial RISCchips are slower than the DSP chips because their main application areas do not

warrant the more specialized architectural techniques used in DSP chips. Other architectures such

as Vector Processors and Massively Parallel Architectures have features that can be applied in

custom architectures for matrix operations, but the commercial solutions are too large and too

costly for embedded applications.

The next chapter describes how application specific architectures and circuits can be applied to

create Numerical Processors that are more efficient than the commercially available solutions.

CHAPTER 8

THE SMAC (SMall Matrix
Computer) ARCHITECTURE

Allthe commercial hardware platforms considered in the previous chapter have some less-than-

optimal properties when applied to solving small systems of linear equations (Table 8-1). Some of

the platforms are very fast but too large and costly. Others are fairly inexpensive but not as

computationallyefficient as they could be.

This chapter describes anew architecture called SMAC (SMall Matrix Computer) which is aimed

specifically at solving small systems of linear equations in an efficient manner. SMAC was

designed partly using features borrowed from known computer architectures, and partly by

developing new methods specifically aimed at efficient execution of the Gauss/LU algorithm. It

will beshown how the various architectural features support the Gauss/LU algorithm.

The architecture is based on a collection of building blocks (memory, control functions and

datapaths), the most critical of which have been designed as CMOS circuits all the way through

layout, fabrication and testing. Design details, test results and performance evaluations of the

building blocks are presented.

215

216

8.1 SMAC requirements

The requirements thathavebeenidentified in the preceding chapters are the following:

• Memory architecture:

The memory must be ableto sustain 2 reads and 1writepercycle.

• Datapatharchitectureand pipelining:

The hardware should exploit the available pipelining margin (PM) as muchas possible by hav

ing an appropriately pipelinedMADD (multiply-add) unit

• Pivoting:

The pivot search must be fast, preferably in parallel with otherusefulotheroperations.

• Permutation:

The permutation operation (address translation orrowswapping) should be transparent

• Address generation:

SMAC must have anefficient set of address generators and a control sequencer that will make

efficient use of the datapath.

The hardware should be programmable to some extent (especially matrix sizes), and it should be

possible to exploit pipeline interleaving during the back substitution phase.

Processor Cost Size Raw speed
Actual

speed
Efficiency

DSP + + 0 0 0

RISC 0 0 0 - -

Supercomputer -- -- ++ 0 -

VPP - - ++ + 0

MPA -- -- ++ 0 --

Systolic Arrays -- -- ++ 0 --

Table 8-1 Relativemerits of commercial hardware platforms

217

8.2 Datapath and memory architecture

There are 3 main tasks tobe performed by the datapath and the memory:

♦ Forward elimination.

♦ Pivoting.

♦ Back substitution.

These tasks create different demands for the datapath and memory. The challenge is to create a

datapath/memory architecture that can handle all 3 tasks without either one of them requiring a

large hardware overhead that is notuseful for the other 2 tasks. To develop the architecture, one

possible approach is to create 3 different datapath architectures and then tryto consolidate them

into one efficient datapath for all 3 tasks.

Forward elimination

A datapath suitable for the elimination operations is shown in Figure 8-1. The main features are

the 3-port memory, which provides 2 operands and stores 1result each cycle, and a pipelined

multiply-add datapath. The register m is used to hold the scale factor a[i][k]»(l/a[k][k]).

Back substitution

The back substitution datapath (Figure 8-2) is quite similar to the elimination datapath but

requires an accumulator for themultiply-accumulate operations.

Pivot search

Pivot searching can bedone in anumber of ways. The datapath shown inFigure 8-3 takes anaive

approach were the pivot candidates are searched serially after all of them have been computed.

The accumulator is used to hold the currently largest pivot, and its value is compared to thenext

candidate by using the adder circuitry. The adder outputs a status signal which is used to select

which if the two values to store back into the accumulator.

218

3-port SRAM

i
FP mult

rL_S >

FP add /

FPacc

m= (a[i][k]*= (l/a[k][k])); 1

for (j=k+l; j<n; j++) { 2

a[i][j]-= m*a[k][j]; 3

} 4

b[i]-= m*b[k]; 5

Figure 8-1 Elimination datapath

prod= b[i];

for (k=i+l; k<n; k++) {

prod-= a[i][k]*b[k];

}

b[i]= prod*(l/a[i][i]);

Figure 8-2 Back substitution datapath

temp=0; imax=k; 1

for (i=k; i<n; i++) { 2

ir= row[i]; test= a[ir][k];3

if (test<0) test= -test; 4
if (test>temp) {

imax=i; temp= test;

}

}

Figure 8-3 Pivot search datapath

Parallel pivot search

Another approach to pivot searching is to look at the values of the row leaders a[i][k+l] as they

arecomputed (instead of waiting until all of them are finished). Parallel searching requires some

extra hardware since the regular adderwill be busy computing the updated values. Because of its

size, it would be prohibitive and wasteful to replicate the entire adder just to use it for pivot

searching, as it would be idle at all othertimes. One low-cost alternative solution is to compare

only theexponents of the candidates with each other. This means that only the mantissa partof the

floating point adder needs to be replicated, and that we need only store the (8-bit) exponent in-

betweencomparisons. This is a very attractive option.

219

Comparing only the exponents does notguarantee finding the true maximum value among the

pivot element candidates, butthis is not really a problem since two floating point numbers with the

same exponent can at most be a factor of two different from each other. Such a small factor will

not adversely affect the numerical accuracy of the Gauss/LU algorithm. Figure 8-4shows howthe

current MaxExp and MaxRow can be stored and fed into an additional exponent comparator in the

adder.

> •

Only search/compare among
the row leaders

Update MaxExp each time it
is surpassed

Update MaxRow accordingly

Before starting next round
(k++) of elimination,
perform the row permutation
(several methods possible)

Figure 8-4 Parallel pivot search based on comparing just the exponent part of the
candidates

220

Consolidated data path

The datapaths in Figure 8-1 to Figure 8-4are reasonably similar, and consolidating them all into

onedatapath (Figure 8-5) is mostly an exercise in multiplexing the inputs and outputs so that the

final datapath can take oneither oneof therequired personalities by applying theappropriate setof

control signals. Figure 8-6 shows how thedatapath is used for elimination, parallel pivotsearching

Figure 8-5 Consolidated datapath whichcanperform allthreebasic tasks

b = b-m•a p = b a p = bj-p p = p.(_) b; = p

Figure 8-6 (a) Datapath in elimination and parallel pivoting mode (b) Datapath in back-substitution mode
8

222

3-port
w &ffi

B

MaxExp

MaxRow

FPacc Yn

I

Figure 8-7 Datapath in reciprocal computation mode

2 - x • yn(acc) -»ace ace •yn(tmp) -» yn+1(acc)

and backsubstitution. The signal flow for each case is drawn in boldtype. Figure 8-7 shows how

thedatapath can be usedto compute reciprocals (fordivision) according to Newton's method. One

possibility not shown in the figure is to use a seed ROM lookup table to speed up the reciprocal

computation.

83 Pivot row permutations

The row exchange that follows a pivot search can either be performed literally by swapping rows

(via a temporary storage space) orby leaving the rows in place and instead apply a permutation

223

function to every row index before using it to address the memory. Figure 8-8 shows the basic

principle ofusing apermutation table. Instead of swapping the entire rows, the table allows us just

to swap the indices ofthe table. SMAC therefore uses atable instead of row swapping. The lookup

in the permutation table (PTAB from now on) can be pipelined so that it does notslow down the

memory access.

8.4 Addressing and address generation

The loop structure of the Gauss/LU algorithm produces a complicated butat the same time

regular memory access pattern for each of the 3 memory ports. SMAC mustcontain an address

unit which can generate these patterns with the appropriate timing. In particular, the address unit

must pass the addresses through the permutation table to effect the row index translation.

To develop the proper structure of the address unit, it is easiest to start out with the memory

structure itself and see what the requirements are. The address variables can generally be called

ij,k since these are the names customarily used in the C program code. The main idea of the

addressing scheme is that the RAM address for a certain matrix element are created by

permutation table matrix (rows)

Figure 8-8 Using apermutation table to translate row addresses instead of swapping rows

224

concatenation of the row address and the column address. Using a pseudo-C notation, this means

that the address of a[i][j] (known i C notation as &a[i][j]) is

&a[i][j]=i.j

where • is used to denote concatenation of thebit patterns. As long as thenumber of rows and the

number of columns are powers of 2,this method will notcreate any holes intheaddress space. For

example, we canuse 4 bits for i and4 bits forj to form a complete 8 bit i«j address.

It is preferable to store the right-hand side(s) b along with A in the same RAM and access them as

a[][n], a[][n+l],..., a[][n-l+r]. Now, the RAM size must usuallybe doubled when one needs a

bigger size, say from 256 to 512 elements, but sometimes it is possible to simply cut out from the

layout the unused partsand add on exactly the number of extra words (elements) needed.

However, it is stillnecessary to increase the address sizeby 1bit,and this increase must happen in

the most significant bit (MSB) of the address.

To address the extracolumn(s), we would like to tackon additional address bits toj. However, this

does notcorrespond to increasing thetotal address attheMSB side. The solution is to rearrange the

bitsasshownin Figure 8-9before applying themto thememory. For simplicity, onecan assume

that the numberof right-hand sides (RHSs) are also a powerof 2 (1,2,4,....).

§| Logical address

Physical address

Figure 8-9Rearranging the address bits to allow right-hand sides to be stored asadditional
columns in the matrix a[][]

' (from dp) k

imax k

U
aW a

W Pi

*
R

*

to RAM address port(s)

225

Figure 8-10 Address composition from row and column components. The PTAB row
address translation table is included. The circuitry shown is replicated 2 or 3 times in the

SMAC architecture, except that the translation table can be shared

Address composition

From studying the Gauss/LU algorithm one can see that only certain combinations of the indices

i,j,k occur as row and column indices. Figure 8-11 shows the version of Gauss/LU which is

intended for the SMAC algorithm. Specifically, the combinations [ik][ijk] are the ones that are

used. This is reflected in the block diagram in Figure 8-10, which shows the hardware for

composing a complete memory address from the row/column components and the multiple

variables that are required. The special registers imax and R are used for the pivot update

operation:

R = ptab[k] ptab[k] =ptab[imax] ptab[imax] =R (8-1)

226

int linsol (n, r, a) 1

int n, r; /* r= #right-hand sides */ 2
fptype a[N][NPR]; /* augmented with right-hand sides */ 3

{ 4
fptype m, prod; 5

int i, j, k, ir, kr, npr= n+r, row[N]; 6

7

/* Assume pre-pivoted matrix */ 8
for (i=0; i<n; i++) row[i]= i; 9

10

/* Forward elimination, k is the diagonal index */ 11
for (k=0; k<n-l; k++) { 12

/* Replace pivot with reciprocal */ 13

a[kr][k]= 1.0/a[kr][k]; 14

15

/* Compute all the m-factors and store in a[ir][k] */ 16
for (i=k+l; i<n; i++) { 17

a[ir][k]= a[ir][k]*a[kr][k]; 18

} 19

/* Eliminate */ 20

for (i=k+l; i<n; i++) { 21

m= a[ir][k]; 22

for (j=k+l; j<npr; j++) (/* Note k+1 NOT k */ 23

a[ir][j]= a[ir][j] -m*a[kr][j], update_max_pivot(); 24

} 25

} 26

} 27

28

/* Compute the last reciprocal l/a[n-l][n-1] */ 29
a[kr][n-l]= 1.0/a[kr][n-1]; 30

31

/* Back substitution on augmented matrix. 32

Note u(i,i)==already reciprocal */ 33
for (i=n-l; i>=0; i—) { /* Row in a and b */ 34

for (j=n; j<npr; j++) { 35

prod= a[ir][j]; /* a[ir][n+j]==b[ir][j] (rhs) */36
/* 0 iterations when i=n-l, that is k=n */ 37

for (k=i+l; k<n; k++) { /* Col in a, Row in b */ 38

prod-= a[ir][k]*a[kr][j]; 39

} 40

a[ir][j]= prod*a[ir][i]; /* Pivot already reciprocal */41
} 42

} 43

} 44

Figure 8-11 Version of the Gauss/LU algorithm which works on augmented multiple right-
hand sides. This is the form of the algorithm which SMAC is based on. Row index
translation and pivot searching and updating are not shown explicitly in the code, as it is
assumed these are taken care of behind the scenes by special hardware. The back
substitution part of the algorithm is not interleaved in the above formulation

227

Operationtype Operations

Constants ar=0,ar=n-l

Tests ar<n-1,ar<n,ar<npr,ar>0

Arithmetic arl=ar2,arl=ar2+l,ar++,ar--

Table 8-2 Instruction set for address computation unit

The Read/Write ports are called A/W and the corresponding addresses are aA/aW.

Address computation

From studying the algorithm inFigure 8-11 one can determine which operations are needed inthe

address computation unit. The necessary instruction set is shown inTable 8-2, using the name ar

to denote one of the registers ij,k. The block diagram for the address unit is shown inFigure 8-12.

One possible circuit implementation of an individual register is also shown.

8.5 Loop control and instruction sequencing

The sequencing of the loops in the Gauss/LU algorithm is one of the more complex task of the

SMAC architecture. Asan illustration, let us first look at how the loops might beadministered ona

commercial uP or DSP architecture.

If one compiles the code of Figure 8-11 using astandard Ccompiler, each for-loop of the generic

typewill betransformed into more convenient (from ahardware viewpoint) formulations

1. for (k=0; k<n-l; k++) {BLOCK}
2. k=0; while (k<n-l) {BLOCK; k++}
3. k=0; A: if (!(k<n-l)) goto AEND; BLOCK; k++; goto A; AEND:/**/;

and thenconverted to machine instructions. The loop test seenin (3) is serial in nature andmeans

that several cycles (likely 4 cycles in this case) is used after each loop iteration to determine

whether there is another iteration. In asuperscalar architecture, it may be possible toexecute, say,

228

Li
Address
registers

(ar)

0,1,-1 RM

offchip 1
Limit

registers
(lr)

Figure 8-12 (a) Addressgeneration unit of SMAC (b) Contents of register files and (c)
Possible circuit implementation

229

the instructions

k++; goto A;

in the same cycle. One could even imagine precomputing k+1, compare it to n, seta flag, and

know beforehand whether to jump backward or go forward at the end of the loop. These are

techniques that to some extent are used incompilers, orcan be forced by the user by writing the

loop increments and tests using moreexplicit,machine-near constructs.

The above comments apply to a single loop. If there are nested loops, the problem becomes

considerably more complex. A superscalar (say, 2-3 instruction issue) machine will not be

powerful enough to produce a0-overhead loop branch. The problem isespecially apparent when 2

ormore loops end at the same location, as seen in lines 25-26 and 42-43 of Figure 8-11. In such

cases, there is in essence amultiway branch to be taken depending on thevalue of several flags.

None of thesuperscalar architectures are capable of such ajob, specifically because the instruction

set is intended also for scalarimplementations.

What is necessary in SMACis amultiway branch controller, analogous to theoneused in theC-to-

Silicon system (section 3.8 on page 62). At the same time, it is most likely notuseful actually to

program SMAC using a compiler suchas the RL compiler. The compiler would not be able to

understand our address composition scheme (page 225), which is akey to performance.

Controller structure

The controller structure for SMAC can follow the general picture outlined in section 3.9 (p. 67).

Since the actual number of instructions inSMAC israther small, itmay make sense touse just one

finite state machine (FSM) and not also an additional "control store". The details will not be

worked out here, but Table 8-3 contains a small part of the state table to indicate.how the

branching atthe end of each loop ishandled, inthe case of (up to) 3nested loops, which iswhat is

needed for the Gauss/LU algorithm. The variables (bits) isJast(ABC) are status bits from the

address unit, which pre-computes whether thecurrent iteration of each loop will be the last one.

230

isjast (ABC) action isjast (ABC) action

000 gotoC 100 gotoC

001 gotoB 101 gotoB

010 gotoC 110 gotoC

Oil goto A 111 quit loops

Table 8-3 Branching logic for triple-nested loops, assuming the program hasalready
entered the loop. Can be minimized before implementing it in an FSM

The only difficulty with this scheme is that it assumes that all loops will be executed at least once.

The loop in line 38 of Figure 8-11 is sometimes executed only once.This case will require some

additional attention.

8.6 Building blocks for implementing SMAC

In the following sections, the focus is changed from SMAC architecture to SMAC

implementation issues. To create an implementation of SMAC requires a large amount of circuit

design. Many of the critical parts of SMAC are not readily available in the LAGER library, andin

other cases it is necessary to design new blocks for higher speed. The goal is to create a set of

building blocks that will allow implementations with clock speed in the 100MHz(+) range, using

standard 1.2um SCMOS design rules from MOSIS.

The LAGER Silicon Assembly System is employed throughoutthis design effort, and all blocks

are designed as parameterized automatic module generators, so that they canbe created in variable

sizes on demand. This ensures that the blocks canbe used also in otherapplications. The blocks

have generally been implemented using the TSPC (True Single Phase Clocking) design style,

[yuan87][yuan89][afghahi90], which will be described below.

The next few sections describe the implementation of several critical circuit blocks (and

corresponding automatic module generators) for SMAC. These include

231

• A heavily pipelined multiplier (pmult) with parameterized size.

• Circuits for floating point adder and multiplier datapaths, including operand normalization and

renormalization, with parameterized sizes, in the dpp design style.

• Datapath pipeline latches.

• A3-port SRAM (regfile, regfilew) with parameterized size and decoding.

• Ahigh-speed PLA (hpla) with fully parameterized contents and FSM capability.

Several ofthe blocks have been fabricated and tested, and the test results will be presented.

8.7 TSPC latch design

Some ofthe most common latch and clocking technologies use either a 2-phase non-overlapping

clock, ora single phase clock butwith some form of local inversion. TSPC [yuan89] isa latch and

clocking technology which uses a single clock phase that is never inverted. This technology has

the advantage that only 1clock signal needs to bedistributed around thechip, which saves area

and reduces the clockload. TSPCalsosaves transistors because thereare fewerclockdrivers, and

no local inversion is necessary.

The basic TSPC latches are shown in Figure 8-13. There are two main types: The p2-latch and the

n -latch. The pz-latch is transparent when clk=0 and latched when clk=l. The n2-latch is

transparent whenclk=l and latchedwhenclk=0. Tounderstand how the latcheswork, considerthe

n -latch as an example. When clk=l, the clocked transistors are conducting and the latch is

essentially two inverters inseries (transparent). When clk=0, the first stage of the latch will block a

1input because theclocked transistor is notconducting, and thelatch as a whole is blocked. If the

input isa0,the first stage will invert it into a 1, but this 1will in turn be blocked by the (identical)

second stage.

The p -latch works in an analogous fashion: When clk=0, the clocked transistors are conducting

and the latch is two inverters in series (transparent). When clk=l, the first stage of the latch will

232

in-

H

A

m elk-I

—4

elk—c|

A

elk

out

out

out

Figure 8-13 (a) TSPC p2-latch (b) TSPC n2-latch (c) 2-phase latch

blocka 0 input If the input is a 1,the first stage will invert it intoa0, but this 0 is blocked by the

second stage.

Note that the TSPC latches have 6 transistors, which is the same amount as the standard 2-phase

non-overlap latches if we count the extra inverter that is needed for local inversion of the

appropriate phase.

r

, inl

2

in2

5

in3

p2

in4

n2P nz

233

Figure 8-14 Circular shift register for testing sensitivity of TSPC latch operation toclock
slope

TSPC-based systems are less sensitive to skew problems than 2-phase systems, and special

techniques such as distributing the clock against the data flow direction can be used to minimize

the problem. On the other hand, TSPC systems depend on having a small edge rise/fall time,

because a clock with an intermediate value will set both a p2-latch and a n2-latch in a

semitransparent state. If twosuch latches are connected directiy inseries with nodelay inbetween,

thesignal may race through both latches during oneedge if theedge rate is not sufficient.

The specific rise/fall times needed are best determined by simulation of atest circuit, for example

the circular shift register shown in Figure 8-14. The minimum slopes depend onthe node loading

as well as the transistor sizing. A typical simulation result for a 1.2 urn CMOS process (HP

CMOS34) was 3.0 ns for minimum-sized devices.

<t> <t> <t> §

a[n]

•• p[n]=a[n-2]*b[n-2]

b[n]

Figure 8-15 Pipelined multiplier using per-phase latch stages

234

8.8 Pipelined high-speed multiplier (pmult)

The design goals of pmult were determined by the fact that the module is intended as a building

block for custom floating point units:

♦ Pipelined design for high throughput

• Minimal pipe latch overhead

♦ Sufficient regularity to allow automatic modulegeneration

• Parameterized size

Figure 8-15 shows the basicprinciple of pipelined multiplication, whichin this case means that a

new set of operands can be applied each clock cycle, and that a new result will become available

each clock cycle.

Multiplication a»b of two numbers consists of adding the appropriate multiples of a to itself, as

illustrated in the familiar multiplication parallelogram in Figure 8-16. Each row in the

multiplication array is typically a carry-save adder which passes on the carries generated to the

next stage below, to avoid having a carry propagating up alongeach stage. At the bottom of the

array, there will be a Carry Vector and a Sum Vector which must be summed using a carry-

propagate adder. This is operation is oftenreferred to as vector merging.

a7 as as a4 a3 a2 a-| a0 a7 a6 a5 a4 a3 a2 a-| an

•• ,Jbo

• •L-
6

Ui
Q.

n P

O)

£2
h3
h4b5

&7

Figure 8-16 Multiplication: The parallelogram ofpartial products. The parallelogram is
typically rectified (reshaped into a rectangle) to save area. Grouping ofmultiple partial

products is optional

235

If amultiplier is implemented on achip, the parallelogram is normally pushed into arectangular

form, and the alignment mismatch between the stages is taken care of by special inter-stage

routing.

Pipelining and compressors

Carry-save multiplier arrays can be pipelined between each stage if desired. However, theheavier

the pipelining the larger the latency of the unit. For a 24x24 multiplier, the latency would be

roughly 12 clock cycles of there is one pipe stage for each partial product, withone corresponding

clock phase. Since many algorithms, such as Gauss/LU, have a limited pipelining margin, it makes

sense to try to addup more than 1 partial product in between each pipe stage.

One possible design is that each pipe stage combines the previous Sum/Carry vectors with 2

additional partial products to generate thenextSum/Carry vectors. Thismethod implied that there

will be4 bits (ofequal binary weight) to add at each position, requiring at least 3 bits of output to

encode theresult. The 4:2 compressor (also known as a4:2 adder or5:3 counter) is a logic circuit

inl in2 in3 in4

c s

Signal Weight

inl-4 1

NPC(in) 1

NPC(out),C 2

S 1

Figure 8-17 4:2 compressor made from 2 full adders

236

which performs the desired task. The 4:2compressor takes 4 inputs (and a carry) of weight 1,and

outputs a Sum of weight 1 and two carries of weight 2. The second carry (named NPC for Non-

Propagating Carry) is fed into the neighboring compressor, but will not propagate any further, as

can be deduced from the logic diagram.

The basic cell for the multiplier array contains thecompressor, 3-bits of pipeline latches and the

"and" functions necessary to form the partial products a-ty and a«bi+1, as shown in Figure 8-18.

The inputs inl/in2 are used forthe Sum/Carry bits from the previous stage, and the in3/in4 inputs

are used for the multiplicand (a;. The wires pplbar and pp2bar carry the bits bi,bi+1, of the

multiplier b.

Using a pipelined array of4:2adders requires that the stages must bewired upasshown inFigure

NPC (out)

inl in2 in3bar in4bar

I
NOR NOR

T~f

4:2 adder

S

r^

T

TSPC latch

~i— j

pplbar

pp2bar

NPC (in)

Figure 8-18 Basic cell ofpipelined multiplier array. The cell exists in ap2-latch version
and an n2-latch version. The S,C and aj bits are pipelined through the latch

a4 a3 a2 al aO

a4 a3 a2 al aO

d rWr1
a4 a3 a2 al aO

a4 a3 a2 al aO

drWP

— b4

— b5

•• S4

•+- C5

•• S5

•+* S2

•+* C2

•• S2

237

bO

bl

SO

C1=0

SI

Figure 8-19 Organization of pipelined multiplier array based on4:2 compressors. Each
stage produces 2 sum bits and 1 carry bit which are routed out on the right-hand side

8-19. Each stage produces 2 sum bits and one carry bit(S^, S^+i, C2k) that are routed outto the

right-hand side of the array. These vectors of carries and sums must be added using a carry

propagate adder, analogous to the vector merging that is going to take placeon the bottom of the

array.

Operand and result pipelining (input and output delays)

Since there is a pipedelay between each of the stages in Figure 8-19, it is necessary to delay the

inputs (D2k, b^+i) correspondingly. Also, theresults (S^, S2k+i, C^) arrive in a staggered fashion

and need to be delayed. The inputs must be delayed more at the bottom of the array, and the

outputs more at the top. This is a convenient property, because it means that the I/O delays can be

238

arranged intoa square pieceof layout, asindicated in the preliminary floorplan shownin Figure 8-

20.This floorplan gives a regular and rectangular structure to the layout. However, the vector-

merge addition spans 2N-1 bits for an NxN multiplier, and is thecritical delay path. The length of

the carry-propagate can be reduced to length N by adding upthe Sum and Carry bits on the Right

Hand Side (RHS) as the bits become available, before passing them into the output delays. This

approach is shownin Figure 8-21. Sincethe RHS bits arrive in a staggered fashion, the RHS adder

can be pipelined as shownin Figure 8-22. Each stage of the pipeline consists of adding together

(s2k» s2k+i> c2k) with thecarry-in from the previous stage. Thisoperation requires 2 Full Adders,

much like the 4:2 compressor circuit, and the 4:2 compressors and the RHS adder cells will

therefore be matched in their speed, which is convenient.

Because the stages in the mainarray operate on alternate clockphases (low orhighelk), the RHS

merger as well as the input/output delays must be carefullyassembled from latches of the correct

polarity (n-type or p-type).

Figure 8-20A possible floorplan for the pipelined multiplier

239

Figure 8-21 Final floorplan for pmult. The RHS vector merge can bedone bya simple
pipelined ripple-carry, leaving only an NxN bit vector merge at the bottom

Q-3 Sn-3 Sn_4 C3 S3 S2 CI SI SO

1 v° .. ('*°- 1

4»WA-.H©^H©-4^

t
Pn-3 Pn-4

n/2-3 n/2-1

P3 P2 PI PO

C_wrap (to bottom side vector merger)

0

Figure 8-22 Logic diagram of pipelined Right-Hand Side (RHS) vector merger. The
outputdelay latches are also shown, with numbers indicating the number of stagesfor an

NxN multiplier

240

Cn.3Sn.3 Sn4 C3 S3 S2 CI SI SO

p n p

0 0I w d J * W * ml I 1

##MM
p n

1

™ *T3 •" ^3

f W H W \

n

P5 P4 P3 P2 PI PO

T3

T3

0

Figure 8-23The RHS merger andthe I/O latches must start with latches of the appropriate
polarity, so as to fit with the timing of the main array

Vector merger

The bottom-side vector merger must be a fast adder that can add two 32-bit numbers within the

course of 1clock phase, which is 5ns or shorter for clock frequencies of 100MHz or higherThe

functionality required is shown in the logic diagram of Figure 8-24.

Fortunately, such an adderexists in the LAGER library (cs3.sdl). It is a carry-select adder with

pass-gate logic for high speed operation. The cs3 adder canbe hooked up to the main array using

the Flint Place-and-Route tool.

If thecs3 adder were not fast enough, it is also possible to pipeline the final carry-propagate stage

of the multiplication.

241

C2n-1 S2n-2 C2n-2 S2n-3

fflu
C_wrap

P2n-1 P2n-2 P2n-3

Figure 8-24Logic function of thebottom-side vector merger

Tiling and circuit implementation

Thedesign of pmult is strongly influenced bytherequirement thatthe layout should be amenable

to automatic module generation. The layout design of pmult involved creating the necessary

leafcells, as well as making them fit together (partly with the help of routing cells) so that the

resulting layout could be tiled bytheTimLager layout generator (cf. section 3.11).

The tiling procedure for pmult is fairly complex, consisting of 255 lines of C code. The details of

the code will not bepresented here. However, Figure 8-25 shows a tiling example fora small (8x8)

multiplier. This example is large enough to show the tiling in itsfull generality. There is a total of

23 different leafcells that are used toform the multiplier, not counting the cells inthe cs3.sdl carry-

select adder.

Simulation results

A 24x24 test layout of the multiplier was automatically generated, including thecs3.sdl VMA

(vector-merge adder). The layout was extracted and simulated with IRSIM, yielding a clock speed

of 108 MHz using parameters derived from theHPCMOS34 process.

compRT compRT compRT compRT compRT compRT compRT compRT ra&JKT 1 2 3 3 3

pmult pmult pmult pmult pmult pmult pmult pmult r&ddrt t
4-i

o

1

a,

4-i

o

4->

o

a.

o

compR compR compR compR compR compR compR compR raddR 4 5 6 7 7

nmult nmult nmult nmult nmult nmult nmult nmult
/ ' j s

t&ddp t .s

4_*

o

.1 o

2
o

compR compR compR compR compR compR compR compR ttgttftL; 4 8 5 6 7

pmult pmult pmult pmult pmult pmult pmult pmult
> a,

.5
o

a
2
o

6

o
CM

.s

compR compR compR compR compR compR compR compR xaddR 4 8 8 5

nmult nmult nmult nmult nmult nmult nmult nmult
ncpmp >

.s .s

Figure 8-25Tiling example for 8x8 pmult multiplier. The main array contains 9 different leafcells, and the RHS/
input/output section contains 14different cells.The numbered cells havethe following names:

l=invRT, 2=in2outT, 3=outdRT, 4=yinvR, 5=in2outL, 6=in2outR, 7=outdR, 8=indR.
Semantics: R=route or right, L=left, T=top

fc

243

Test chip

A testchip with the 24x24 multiplier has been designed, fabricated and tested. Because of the

high-speed operation ofthe chip, it is not practical to apply inputs and observe outputs at full

speed. Instead, atest architecture was developed that allows altemating sets ofinputs to be applied

from internal registers at full speed, while the altemating outputs are latched into two different

result registers. The result registersare static and will hold the results for later external observation

at low clock speed. Figure 8-26 shows the test chip architecture. For high speed testing, the PLA is

used as a sequencer to control the alternate application oftwo pairs if inputs tothe multiplier array,

and thelatching of the results as they emerge at theendof thepipeline.

The input-side test circuits areshown inFigure 8-27. The registers store two operands which can

be alternated asinputs to the pipeline by toggling the multiplexer control signal (this isdone by the

PLA). Theinputs can also be fed straight to the array bycontrolling the2ndmultiplexer. On the

pin_x

1
pm_y

1
tx

I
ty

pmult (multiplier)
cs3 (vector merge adder)

I
tph

T
pin_p

£<

I
pla

Test support circuits:

tx = x-input circuit
ty = y-input circuit
tpl = p-output (lower) circuit
tph= p-output (upper) circuit
pla = test sequencing PLA

pmv = pipelined mult and
vector merge circuit.

Figure 8-26 pmult test chip architecture

244

pin_x H>

ldreg
load

m

16x2

mux

—
ldreg ^

mux

1

ldreg
sel direct/

** ^

I

ldxl/x2

6x8,4x8

12x2,8x2

selxl/x2

16x2,8x2

-• outin\

out

Figure 8-27 Input sidetest circuits for pmult

n2 p2

inlatchl/2

ldreg

ldreg

T
ldpl/p2

GND

mux->

T

mu4"^ pin_p

T
pad on/off

direct/latched

T
selpl/p2

Figure 8-28 Output sidetest circuits for pmult

245

elk

plain stable stable

pla out stable stable

*>y stable stable

Figure 8-29 Timing of the input-side test circuits. The alternation of two sets of inputs
(xl,yl) and (x2,y2) can becontrolled by aPLA which selects the appropriate source

register. The PLA output must change during clk=l

elk

p_h (vma in)

p_h (vma out) stable

inlatchl[n2]

inlatch2[p2] stable

ldp{l,2}inv.pla

ldp{l,2}

stable

stable

stable

stable stable

stable

stable stable

J (This is the PLA output)

ldp{l,2}=nor(ldplinv.pla,clk)

ldp{l,2} =nor (Idplinv.pla, elk)=and (Idpl.pla, clkbar)

Figure 8-30 Timing of the output-side test circuits

246

•q q b a q b a q,a a gg g a a b a a a a q q p a q q ma • • • a n a q • a • a a • a • • o • • • • a a q q p"

Figure 8-31 CIF plot ofpmult multiplier testchip (pmvt24c). The chip is severely pad-
limited. The size is 16702xl2932A,2, or 10021x7759|im2

output side (Figure 8-28), the results caneither bepassed straight to thepins under manual control,

or they can be latched into the registers under PLA control.

Test results

The chip (pmvt24c) was tested using an HP 16500 pattern generator and logic analyzer. I found

that the chip had one serious problem, namely that the clock drivers were not strong enough to

create the necessary slope to avoid races in the TSPC latches (cf. section 8.7). However, by turning

the supply voltage down to 3V, it was possible to make the chip work (probably because the

latches slowed down more than the clock drivers), and the functionality was verified at f=30MHz.

This test was done straight through the pads, as the PLA did not work at this voltage (the PLA will

bediscussed ina later section). As a result, the speed isnot as high aswhat could be achieved with

the internal test generation/acquisition and at full supply voltage. I believe that the 108 MHz speed

predicted by simulation can be achieved with better clock drivers.

247

8,9 Floating point datapath building blocks

The pmult block described in the previous section is the cornerstone ofthe floating point unit

design, and isintended for multiplying the mantissas oftwo floating point numbers. In addition, an

exponent datapath, plus circuits for mantissa normalization, are needed. The building blocks

needed are mostly a subset of the functions needed to create a floating point adder, so in this

section we will concentrate on blocks needed to create high-speed, pipelined, parameterized

floating point adders.

All the blocks described in this section are created inthe dpp design style (cf. section 3.11), which

is a key to easy parameterization. The strategy is that one can use dpp to create two separate

datapaths: one for the mantissa and another one forthe exponents. The mantissa datapath isshown

in Figure 8-32, and theexponent datapath in Figure 8-32. Thenotation x.{s,m,e} is used to denote

thesign, mantissa andexponent partof thenumber x, respectively.

Table 8-4contains a listof thenewdatapath blocks designed for the floating pointlibrary. Some of

Name Function

bufS Buffer with selectable size

fmux Fast mux21

fnorM Fast NOR of M-out-of-N datapath bits (0-detect, floating pointnormalize)

fshift Fast logarithmic up/down shifter stages(1,2,4,8,16)

fxor Fast controlled inverter (XOR withN data inputs, 1 control input)

invS Inverter with selectable size

ldreg Static (weak feedback) registerwith load

n2 n-squared tspc latch

p2 p-squared tspc latch

shift_tc shifLc from Lager/cellib/dpp but with tc=top control slice

Table 8-4 New datapath cells for floating point

248

x.m

sign(x.e-y.e)

abs(x.e-y.e)

xor(x.s,opl) xor(y.s,op2)

ie=; i

(select positive)

delta(s.e) (upN/downl)

s.m

Figure 8-32 Mantissa datapath for floating point adder.
The adder computes the function s=f(x,y)=opi(x)op2(y) where oph op2=+A.

Delays are estimates based on new library cellsand N=24 bitsmantissa

x.e

s.e

sign(x.e-y.e)

^. abs(x.e-y.e)

delta(s.e)

sgn delta(s.e)

Figure 8-33 Exponent datapath for floating point adder.
The adder computes the function s=f(x,y)=opi(x)op2(y) where opj, op2=+/-

Delays are estimates based on the new library cells

249

250

the blocks are really a family of blocks with the same function, such as the fshift block, which

contains logarithmic shifter stages for up or down shifting and 1,2,4,8,16 bits of shift.

It appears that alignment andnormalization operations are in general the most time-consuming and

complex part of floating point hardware design. Mantissa alignment refers to the operation of

shifting down the mantissa and correspondingly increase the exponent of the operand with the

smallest exponent so that the exponent becomes the same as for the larger operand. This is a

necessary precursor to adding the two mantissas, and corresponds to the concept infixed point

arithmeticthat it only makes sense to addnumbers thathave the same scale.Figure 8-34 shows the

approach used in this work, which is to use a logarithmic shifter. The log shifter has the advantage

that no decoding of the shift amount is necessary.

The normalization operation at the end of an addition means to shift the mantissaup so that there

are no leading zeros, and adjust the exponent down correspondingly. When the width of the

mantissa is fixed (not a parameter), handmade custom layout such as the one used in

normalized 1

shift8a »»
(inv)

down8a
0.6ns

shift8b —»»
(inv)

down8b
0.6ns

shift4 ».
(inv) down4

0.6ns

shift2 ».
(inv)

down2
0.6ns

shift! », , . vdownl
(non-rnv) 0.9ns

7aligned

Figure 8-34 Mantissa alignment in 3.3nsusinga logarithmic shifter

251

[hu871[bose88] is advantageous. The approach taken here (Figure 8-35) is not the fastest method,

but it is much easier to parameterize. The idea is first to look for a 1among the first 16 bits, and

shift up if there is none, then look for a1among the first 8bits ofthe (possibly shifted) result, and

so on. However, since a 16-bit NOR isvery slow, I have instead used two stages of 8-bit NOR,

since 8-8-4-2-1 shifts are sufficient to normalize a24 bit mantissa. Moreover, in the figure is

shown that the two 8-bit NOR operations are done in parallel (on the uppermost 16 bits of the

CO

ai

C
0>

o

X
CD

CD

CO

T5

unnormalized

Jwp

*sor8ab

up8a

up8b

no:r4

up4

XUH&

up2

upl

normalized \

2n

1.0ns

&

1.0ns

QStoS

1.0ns

Q$T&

1.0ns

1.0ns

Figure 8-35 Mantissa normalizer builtaround logarithmic NOR-based 1-detectors and
logarithmic shifter stages. Total delay is 10.3ns (estimated)

252

input), and the 2nd shift of 8 is performed only if both of the NOR operations did not detect a 0.

The delay of the extra AND gate is inconsequential since it takes place while waiting for the delay

through the first shifter stage.

Pipelining

Pipelining the datapaths (notshownin the figures) is easilyaccomplished by inserting TSPClatch

datapath stages. The optimal number and placementof the stages depends on the mantissa and

exponent size, but it can be expected that about 4 stages (2 clock cycles) will be sufficientfor 24+8

bits mantissa+exponent formats when targeting f=100MHz.

Test chips

No test chips containing the new floating point library havebeen fabricated. However, an earlier

chip(tcr24) was designed andfabricated thatcontained a normalizer using the same logarithmic

normalizer idea as shown here. This circuit did not use the trick with the parallel 8-bit NOR

evaluations, and thecircuit design was also considerably less aggressive. The chip was fabricated

in VTI 2pmCMOS and had a delay of 27ns from pad to pad. It is expected thata 1.2pm version

based on the above method will perform at 10ns.

8.10 High speed 3-port SRAM (regfilew)

The regfilew high-speed 3-port SRAM is based on a fixed-size (32 words x 64 bits) handmade

layoutdescribed in [iris92], with the following additions:

• The hand-tiled leafcells have been modified for automatic tiling (alignment, overlap boxes,

labelling).

• The design has been made parameterizable.

• Additional cells for tileable Vdd, GND and elk routing tothe edges of the layout.

• Construction of parameterized tilingprocedure.

• Optional 2-1 column decoding.

253

A block diagram of regfilew is shown inFigure 8-36. Theaddress lines areprecharged high while

clk=l, and the outputs A,B are valid during clk=0. The write input must be precharged high during

clk=l and then conditionally pull down before the end of clk=0. Circuit-wise, regfilew is identical

to the circuits of [iris92], with the exception of the addition of column decoding. Figure 8-37

shows the storage cell and the read/write circuits, including the modification for 2-1 column

decoding.

a decoder a addr drv

b decoder b addr drv

platch
nlatch

arow drv brow drv

arowsel browsel

rbttb
b sense

bitcell array jybit/wbitb write drv

rbit
a sense

wrowsel

w row drv

platch
nlatch

w decoder w addr drv

rA

rB

nlatch

- B

platch

- W

nlatch

- A

rW

Figure 8-36 Block diagram ofregfilew. A,B are read ports and Wis the write port. The
terminalsrA,rB,rWare the address signals

•1—1 }2n

Urlt. Lool

Figure 8-37 Circuitdiagrams of regfilew (a) Storagecell and read port (b) Storage cell and write port.
The transistors marked with an arrow are additions for 2-1 column decoding

N
£

255

Floorplan and tiling

Regfilew is constructed from 24 leafcells and 9 additional hierarchical subcells. TheTimLager

module generator wasused for the automatic tiling. The tilingprocedure consists of 558 linesof C

codeand uses 3 levels of tiling hierarchy. The block arrangement at the top level of a 256x32 bit

version is shown in Figure 8-38.

Test chip and results

A CIF plot of the RW256C test chip is shown inFigure 8-39. In addition to the 256x32 regfilew

instance, it contains various precharge circuits for the inputs and some additional registers and

multiplexers to keep the I/O pin count down. The pads saved in this manner were allocated for

dec2toarr sam.pwr

ar 128x64

dec2toarr sam.pwr

Figure 8-38 Floorplan for the top level of 256x32 regfilew layout, based on a 128x64
array and 2-1 column decoding

256

IE m D2 HI0]IEE:HB BD11 3D BiffliffllEI IB

.DDmnBinBsiDBiBnaBoUiB ami

B3H DE|E'B 0 H ffl E W MM
gr H•!.'!;;!ll!;:tl':if".;*:; I . 11 f ':{'">£,'

n in ii en m

Figure 8-39 CIF plot of the 256x32regfilew test chip (regw256c).The size is
10032x11482X2, or 6019x6889|im2

additional Vdd/GND/clk connections. Unfortunately, the number of pads were still not sufficient

to provide a clean Vdd/GND/clk supply, and the chip was not functional. The first chip (64x32

version) described in [iris92] had the same problem. That chip has been fabricated in a 2nd

version, using the same SRAM core but with a large amount of decoupling capacitance (made

using gate oxide) on the chip itself. This 2nd chipwas functional at 180MHz, indicating that

regfilew can indeed be expected to perform at high speeds. The IRSIM simulation of the 256x32

regfilew predicts at maximum clock speed of 170MHz.

257

8.11 High speed PLA (hpla)

The hpla high-speed PLA (Programmable Logic Array) is based onthe handmade design in

[iris92]. Irissou also wrote aspecial-purpose layout generator that generates MAGIC layout ofthe

PLA, but in this work the TimLager generator and the OCT framework was used. The

modifications made were

• Leafcells modified for automatic tiling.

• Parameterized size and contents of the PLA.

• Additional cells creates Vdd, GND and elk buses with terminals atthe border ofthe layout.

• Construction ofa parameterized TimLager tiling procedure.

The circuit schematic for hpla is shown in Figure 8-41. The inputs do not need to be precharged,

but must be stable during clk=0. Outputs change during clk=l and are stable during clk=0, just like

the inputs (Figure 8-42). The latency through the PLA is 1clock cycle, which means that the

andjDlane

and driver

r~?

or__sense

Jback) nj
atch

out

1'

Figure 8-40Blockdiagram of hpla

258

KOw:*iii-l_li KOWSKLl

Figure 8-41 hplacircuit schematic. The marked transistors correspond to the minterm
patterns in the inplane and the outplane

elk

plain stable stable

pla out stable stable

Figure 8-42 Timing and latency of hpla

&&t$f»jtt Til
Hiiiiiiiimtttrwttwf

Figure 8-43 Floorplan and tiling ofhpla. Each square denotes a leafcell

259

outputs can be fed straight back as inputs to create a state machine. This is very convenient for

controller applications.

Floorplan and tiling

The general tiling pattern ofhpla isshown inFigure 8-43. The design contains 33 leafcells, 16 of

which are different variations ofthe basic 2x2 bitcell used inthe in/outplanes. Because some ofthe

cells in the right halfofthe layout do not align with cell boundaries in the left half (the precharge2

cell), the halves were originally tiled separately and then put together at a2nd level of hierarchy.

This inconvenience (and others like it) led to the development ofa new and more general set of

tiling primitives for TimLager [richards92]. The new tiling primitives (Table 8-5) makes it

possible to place any comer ofanew cell relative to any comer ofa previously placed cell. These

primitives are very useful for tiling structures that do not follow the customary left-to-right,

bottom-to-top scheme that TimLager was originally designed for. They also makes itpossible to

260

mmmmz

xxxxxxx 0020*02 • mm

Figure 8-44 IRSIM simulation of a hpla design at f=250MHz.
inputs*niinterms*outputs=10*50*28

tile mostdesigns in a straightforward and intuitive manner, whereas earlierit was oftennecessary

to rotate some subblocks to make them fit into the tiling paradigm.The tiling procedure hplax

consists of 319 lines of C code.

Simulation

Figure 8-44 shows an IRSIM simulationof an hpla instanceof size 10-50*28 at f=250MHz. There

appears to be still a good margin on the clock speed.

Function name Function semantics

AddceUO Generalizes AddupO/AddrightO- Place new cell at any comer of current bbox.

NewBound() Push a new,0-sized boundingbox on top of a bbox stack.

MergeBounds Merge the two boundingboxes at the top of the bbox stack.

Table 8-5 New TimLager tiling primitives used in hpla

261

Test and fabrication results

The pmult testchip (pmvt24c) was intended to serve as the testchip also for the hpla design. As

mentioned earlier, the clock drivers onpmvt24c were notsufficient, and hence the chip did not

provide any data onthe speed. Again, the 2nd generation of thetestchip from [iris92] showed that

thespeed is at least 180MHz for thegiven 10*50*28 example.

8.12 Pads and clock distribution

Special care must be taken in designing (and using) pads for high-speed chips. The pad ring for a

high-speed chipmustprovide adequate

• Driving ability (delay, slope) for signals arriving onchip.

• Driving ability for signal going offchip.

♦ Vdd and GND connections, with special emphasis in handling high peak currents without

excessive Vdd and GND bounce (due to pin and bonding wire inductance, mostly).

♦ Clock driving ability, and especially sufficient clock slope for TSPC circuits.

The pads used in the aforementioned test chips were procured from Prof. Wawrzynek's group. The

output pad was designed for 100MHz signal operation, with 2ns rise/fall time into 8nH/30pF and a

ground bounce ofless than 0.5V. Each output pad requires a pair ofVdd/GND pads to supply it.

The pads were reworked into LAGER format so that they could be used with TimLager and

Padroute (section 3.11 on page 76). The members ofthe padsl2 library are listed in Table 8-6.

There are separate Vdd/GND pads for the padring itself and the chip core, the idea being to keep

the core power clean even if the pad power lines are bouncing.

The clock drivers are also based on pads, with large pullup (pulldown) transistors residing in

special clock driver pads that are bonded to Vdd (GND) and then tied together onchip to form a

gigantic inverter that drives all clock lines.

262

Name Description Name Description

analog_12 Plainanalog pad, no driver gndpad_12 GND pad for padringsupply

clkn_12
2nd stageclock driver pulldown
(n) transistor

in2_12
Input pad with true/inverted
outputs

clkndrv_12
1st stage clock driver pulldown (n)
transistor

in_12 Input pad

clkp_12
2nd stage clock driver pullup (p)
transistor

out_12 Output pad

clkpdrv_12
1st stage clock driver pullup (n)
transistor

thru_12
Space pad for enlarging pad
ring

corner_12 Comer piece of pad ring vddcore_12 Vdd pad for chip code

gndcore_12 GND pad for chip core vddpad_12 Vdd pad for padring supply

Table 8-6 The pads of the padsl2 family

Test results

It was found that the above pad scheme was not sufficientfor the speed and current requirements

in the test chips, nor the test chip described in [iris92]. Part of the reason is that the bonding wire

inductance was higher than anticipated (15nH versus 8 nH), and another part was that it was

prohibitively expensive to spend the number of Vdd/GND pads necessary to get reasonably high

clock slopes and reasonably low power supply bounce.

For the 2nd design, [iris92] successfully used a different approach based on placing large

decoupling capacitors onchip. The capacitors were made by creating large transistors with the gate

tied to Vdd and the source/drain tied to GND, and fitting them underneath the power supply lines.

With local decoupling, it did not make sense to use pads as clock drivers. Instead, the clock drivers

were placed on the chip, still using the approach that all clock lines are driven from one central

point. This method was pioneered by [dobber92].

263

8,13 Summary

The design of the SMAC Small MAtrix Computer architecture has been presented. The

architecture contains a number of innovations aimed specifically at matrix computations, in

particular

• An address generator with split row/column addresses that are combined into a physical mem

ory address, while atthe same time allowing the address components tobe used directly as loop

counters.

• Row pivoting based ona hardware permutation table (as opposed toswapping of row contents)

eliminates pivoting overhead.

• Parallel pivot searching during theelimination steps obliterates thesearch time overhead.

• "Soft" pivot searching based on comparing exponents results in considerable hardware savings.

In addition to these innovations, SMAC uses amultiport memory structure especially tailored to

the Gauss/LU algorithm, and it targets pipelined floating point units so that the Pipelining Margin

of the algorithm can be fully applied towards increasing the throughput of the processor

implementation.

On the hardware side, the most critical modules needed to implement SMAC have been designed:

• A heavily pipelined multiplier (pmult) with parameterized size.

• Circuits for floating point adder and multiplier datapaths, including operand normalization and

renormalization, with parameterized sizes. All are in the dpp library design style.

• High speed datapath pipeline latches (TSPC) and multiplexers.

• A3-port SRAM (regfile, regfilew) with parameterized size and decoding.

• Ahigh-speed PLA (hpla) with fully parameterized contents and direct FSM capability.

All the blocks have been simulated for speeds in the 110 MHz to 170 MHz range. Test chip results

reported in [iris92] confirm speeds of 180MHzfor some of the blocks.

CHAPTER 9

SUMMARY AND CONCLUSION

The basic premise of this dissertation is that

• It is likely that the benefits ofASIC implementation for DSP computations can be duplicated in
the area of Numerical Processing.

• The knowledge base, CAD tools, design methods and architectures developed for Application

Specific Digital Signal Processor design are to some extent applicable also inthe Numerical

Processing domain.

• Because Numerical Processing pose different computational demands, additional innovations

and developments need to be made in all the aforementioned areas in order to realize the gains
of ASIC implementation.

The dissertation contains two main parts (Chapters 3-4 on C-to-Silicon/PUMA and Chapters 5-8

on ConsolC/SMAC) that present different approaches to Numerical Processor design. The next

few sections summarize the work described in these chapters and then present the conclusions

along with some directions for future investigation in the area of Application Specific Processors

for Numerical Algorithms.

265

266

Both the PUMA chip and the SMAC architecture are based on a study of algorithms for the

Inverse Position-Orientation (IPO) computation for robots with 6 revolute joints. IPO isused as

the common thread, while at the same time providing two radically different examples of

numerical computation tasks. Taking the designer's perspective, Chapter 2 presents asurvey of

IPO computational methods and mathematical background with special emphasis on the facts that

areimportant to the system andchip designer.

9.1 The C-to-Silicon system and the PUMA chip

The C-to-Silicon system is a powerful design tool for Applications Specific Processors for

Numerical Processing and DSP. The system supports easy architecture exploration and

performance evaluation at a the architecture level, without having to perform detailed logic and

layout level design. High-level algorithm simulation is also supported. C-to-Silicon uses the

LAGER Silicon Assembly System to perform layout and simulation tasks, resulting in a very

powerful andgeneral system. It hasbeen demonstrated thatC-to-Silicon is flexible with respect to

the range of architectures andalgorithms thatcanbe implemented.

C-to-Silicon is the result of anintegration effortthatpulls together anassortment of toolsto form a

complete design system that spans the range from the algorithm description down to mask layout

and fabrication. The design goals for C-to-Silicon system were to

Use a high-level "C" language for algorithm specification

Allow architecture explorationwithout detailed hardware design

Separate the hardware implementation from algorithm and hardware design

Simplify concurrent design of hardware/architecture/software

Eliminate machine languagecoding altogether

Support simulation at all abstraction levels

Provide accurate performance data withoutdetailed hardware design

267

The successful design of the PUMA chip, as described in Chapter 4, demonstrates that the design

goals have been met. PUMA is a 100,000 transistor CMOS chip that executes an algorithm

described by 260 lines of "C statements, computing all IPO solutions to the PUMA560 industrial

robot in real time.

C-to-Silicon has subsequently been applied to other chip designs, notably as part of work on

analog-to-digital (A/D) converters [mmar92]. This is a DSP application where the C-to-Silicon

processor performs filtering tasks related to oversampled A/D converters.

9.2 Matrix computations

Many (most, some would say) numerical algorithms can be reduced to a core of matrix

computations when viewed at a detailed level. One of the reasons behind this fact is that matrix

computations are both reliable and computationally tractable as long as they are properly

formulated. Hence, it is a popular and powerful approach to try to reduce more general numerical

problems into matrix problems, using the theoretical background of multivariable functions and

linear algebra. It is therefore important to investigate matrix computations when considering

application specific architectures for numerical algorithms.

Thehomotopy continuation method for solving systems of n polynomial equations inn unknowns

is agood example. It boils down to Newton's method applied toasetof continuation paths, which

in essence means that the computation consists of evaluating functions and derivatives, and

solving linear systems of equations. The general Inverse-Position Orientation (IPO) computation

for 6R robots can be cast in this form.

Console was developed as a tool for experimenting with homotopy continuation algorithms,

especially as they apply to solving the general IPO equations. Experimentation was in turn

motivated by the need to obtain detailed knowledge about the numerical and structural properties

of the algorithms, for the purpose of determining efficient computing architectures. It is clear that

268

the matrix operations are infact the key to rapid execution ofcontinuation algorithms, and that the

numerical precision can be maintained using reasonable wordlengths. The remaining parts of the

computation can easily beparallelized and executed onstandard processors.

The SMAC architecture was developed in response to the need for high-speed, efficient

computation of solutions to linear equations. Evaluation of a wide range of commercial

architectures showed that they are notefficient for solving small linear systems, and that anorder

of magnitude canbe gained in speed using roughly thesame amount of silicon.

The speed and efficiency gains in SMAC are the result of a number of innovations aimed

specifically at matrixcomputations, in particular

• An address generator with split row/column addresses that are combined into a physical mem

ory address, while atthe same time allowing the address components tobe used directly as loop

counters.

• Row pivoting based ona hardware permutation table instead (as opposed to swapping of row

contents) eliminates pivoting overhead.

• Parallel pivotsearching during theelimination steps obliterates thesearch time overhead.

• "Soft" pivot searching based on comparing exponents results inconsiderable hardware savings.

In addition to these innovations, SMAC uses a multiport memory structure especially tailored to

the Gauss/LU algorithm, and it targets pipelined floating point units so that the Pipelining Margin

of the algorithm can be fully applied towards increasing the throughput of the processor

implementation.

On the hardware side, the most critical modules needed to implement SMAC have been designed:

• A heavily pipelined multiplier (pmult) withparameterized size.

• Circuits for floating point adder and multiplier datapaths, including operand normalization and

renormalization, with parameterized sizes. All are inthe dpp library design style.

• High speed datapath pipeline latches (TSPC) and multiplexers.

269

♦ A3-port SRAM (regfile, regfilew) with parameterized size and decoding.

• Ahigh-speed PLA (hpla) with fully parameterized contents and direct FSM capability.

Tests and simulations have demonstrated speeds inthe 110MHz to 180 MHz range.

9,3 Conclusion and directions for further investigation

The main questions to be answered by this dissertation are the following: Is Numerical

Processing really different from DSP? If so, can thegains produced by ASICs for DSP also be

realized inthe Numerical Processing application area? While these are a very broad and complex

questions to answer, the results presented here affirm the differences and show that the prospects

are in fact promising.

InChapter 7,it was shown that all but the most expensive commercially available processors have

considerable inefficiencies inperforming matrix computations such as the Gauss/LU algorithm. If

price is considered, all the commercial alternatives studied are inefficient. The reason for the

inefficiency is indeed that the processors are optimized for other types ofoperations than the ones

found in Numerical Processing. Some distinguishing properties of numerical algorithms were

established in Chapter 6, in particular in the areas of required memory bandwidth, permutation

lookups and the available pipelining margins. The investigation shows that an order ofmagnitude

improvement can be realized (for small matrices) by utilizing improved architectures and design

methods.

Such advances arenotwithout cost, especially because the tools and techniques for Numerical

Processor design aremuch less developed than their counterparts in the DSParena. However, it is

predictable that NP design tools and techniques can follow the successful path exemplified by DSP

and develop to a level where it is just as easy to design an Application Specific Numerical

Processor as it is to designan a corresponding DSPchip today.

The main challenges appear to be in the following areas:

270

• Applications. Additional applications of embedded Numerical Processing should be investi

gated. Some examples are listed in Chapter 1.

• Languages. While RL (or C) is a sufficient programming language for DSP and fixed point

Numerical Processing, an architecture such as SMAC cannot easily beprogrammed in any of

theexisting high-level languages. Among the most serious challenges is the development of

constructs which canefficiently express the types of addressing thatis typically used in matrix

computations. Languages such asdspC [ad92] and NumericC [ansi92] are examples ofongoing

efforts in this area. Theirapplicability in the Numerical Processing arena should be investi

gated.

• Tools. With the advent of appropriate programming languages, it will become possible to

extend systems such as C-to-Silicon so that they can be applied more naturally to numerical

problems.

• Architectures. While solving linear equations is a common task, there are also other forms of

matrix computations that areprevalent in Numerical Processing. Examples such as singular

value decomposition (SVD), eigenvalue computations, oithogonalization and sparse matrix

computationscome to mind. Some of these computations may fit in well with a SMAC-like

architecture, whereasothersmay require additional or different innovations.

ASICs for Numerical Processing require the development of new sets of languages, tools and

architectures. While some of the issues have been addressed in this dissertation, the above list

indicates thatthere aremany others thatrequire further investigation.

BIBLIOGRAPHY

[afghahi90] Morteza Afghani and Christer Svensson. A Unified Single-phase Clocking
Scheme for VLSI Systems. IEEE Journal ofSolid-State Circuits, pages 225-233,
Feb 1990.

[anna86] Marco Annaratone, Emmanuel Arnould, Thomas Gross, HT Kung, Monica S
Lam, Onat Menzilcioglu, Ken Sarocky, and Jon A Webb. WARP Architecture
and Implementation. InProceedings ofthe 13th Annual International Symposium
on ComputerArchitecture, pages 346-356. IEEE, 1986.

[ansi92] ANSI. Numerical C, draftXSJU.l. AmericanNational Standards Institute, 1992.

[att88] AT&T. WE DSP32C Digital Signal Processor Information Manual. AT&T
Documentation Management Organization, Dec 1991.

[azim88] Syed Khalid Azim. Application of Silicon Compilation Techniques to a Robot
Controller Design. PhDthesis, UC Berkeley, May 1988. UCB/ERL memo M88/
35.

[blahut85] Richard Blahut. Fast Algorithmsfor Digital Signal Processing. Addison-Wesley,
1985.

[bose88] Bidyut Kumar Bose. VLSI Design Techniques for Floating-point Computation.
PhD thesis, UC Berkeley, December 1988. UCB/CSD report 88/469.

[canny88] John F Canny. The complexity ofRobot Motion Planning. MIT Press, 1988.

[chen92] Deveraux C Chen. Programmable Arithmetic Devices for High Speed Digital
Signal Processing. PhD thesis, UC Berkeley, May 1992. UCB/ERL memo M92/
49.

[chen86] J Bradley Chen, Ronald S Fearing, Brian S Armstrong, and Joel W Burdick.
NYMPH: A Multiprocessor for Manipulation Applications. In IEEE

271

272

International Conference onRobotics andAutomation, pages 1731-1736, 1986.

[chow78] S N Chow, J Mallet-Paret, and JA Yorke. Finding Zeros of Maps: Homotopy
Methods are Constructive with Probability One. Mathematics of Computation,
32:887-899,1978.

[chu88] Chom-Yeung Chu. Improved Models for Switch-Level Simulation. PhD thesis,
StanfordUniversity, 1988. CSL report TR-88-368.

[cody80] William J Cody and William Waite. Software Manual for the Elementary
Functions. Prentice-Hall, 1980.

[craig86] John J Craig. Introduction toRobotics. Addison-Wesley, 1986.

[dahlquist74] Germund Dahlquist and AkeBjorck. Numerical Methods. Prentice-Hall, 1974.

[dec92] DEC. Alpha Architecture Handbook. Digital Equipment Corporation, 1992.

[dobber92] Daniel Dobberpuhl et al. A 200MHz 64-b dual issue cmos microprocesor. IEEE
Journal ofSolid-State Circuits, pages 1555-1567, Nov 1992.

[drexler77] FJ Drexler. Eine Methode zur Berechnung sSmtlicher L6sungen von
Polynomgleichungssystemen. Numerischer Mathematik, 29:45-58,1977.

[duffy80] J Duffy and C Crane. A Displacement Analysis of the general spatial 7R
mechanism. Mechanism and Machine Theory, pages 153-169, 1980.

[erdman90] Donald J Erdman and Donald J Rose. CAzM, Circuit Analyzer with
Macromodeling. MCNC Center for Microelectronics, Jun 1990.

[fearing91] Ronald S Fearing and T O Binford. Using a Cylindrical Tactile Sensor for
Determining Curvature. IEEE Transactions on Robotics andAutomation, pages
806-817, Dec 1991.

[fraleigh83] John B Fraleigh. A First Course in Abstract Algebra. Addison-Wesley, 3d
edition, 1983.

[gagli86] Robert D Gaglianello and Howard P Katseff. A Distributed Computing
Environment for Robotics. In IEEE International Conference on Robotics and
Automation, pages 1890-1896,1986.

[garcia77] C B Garcia and WI Zangwill. Global Continuation Methods for Finding All
Solutions to Polynomial Systems of Equations in N Variables. Technical report,
Center for Matematical Studies in Business and Economics, Report no. 7755,
University of Chicago, 1977.

[gnu90] Doug Lea. User's Guide to the GNU C++ Library. Free Software Foundation,
1990.

[golub83] Gene H Golub and Charles FVan Loan. Matrix Computations. Johns Hopkins
University Press, 2nd edition, 1983.

[golub89] Gene H Golub and Charles FVan Loan. Matrix Computations. Johns Hopkins
University Press, 3d edition, 1989.

[gupta92b] Rajesh K Gupta, Claudionor N Coelho, and Giovanni de Micheli. Synthesis and
Simulation of Digital Systems Containing Interacting Hardware and Software
Components. In IEEEISIGDA Design Automation Conference, Jun 1992.

273

[gupta92a] Rajesh K Gupta and Giovanni de Micheli. System-Level Synthesis Using Re-
Programable Components. In Proc. of the European Design Automation
Conference, Mar 1992.

[harbison87] Samuel P Harbison and Guy L Steele. C: A Reference Manual. Prentice-Hall,
2nd edition, 1987.

[hepa90] John L Hennessy and David A Patterson. Computer Architecture: AQuantitative
Approach. Morgan Kaufman Publishers, 1990.

[hoang92] Phu D Hoang. Compiling Real-Time Digital Signal Processing Applications
Onto Multiprocessor Systems. PhD thesis, UC Berkeley, May 1992. UCB/ERL
memo M92/68.

[horowitz84] Mark A Horowitz. Timing Models for MOS Circuits. PhD thesis, Stanford
University, 1984.

[hu87] Timothy Hu. Circuit Design Techniques for aFloating-Point Processor. Master's
thesis,UC Berkeley, 1987. UCB/CSD report 87/372.

[htkung78] HT Kung and CELeiserson. Systolic Architecures for VLSI. In Sparse Matrix
Proceedings, pages37-46. SIAM, January 1978.

[hwang92] Kai Hwang. Advanced Computer Architecture. McGraw-Hill, 1992. Pre
punching edition.

[intel92] Intel. Multimedia and Supercomputing Data Book. Intel Incorporated, 1992.

[iris92] Bertrand S Irissou. Design Techniques for High-Speed Datapaths. Master's
thesis, UC Berkeley, Dec 1992.

[jag85] Hosagrahar V Jagadish. Techniques for the Design of Parallel and Pipelined
VLSI Systems for Numerical Computation. PhD thesis, Stanford University,
1985.

[jain91] Rajeev Jain, PaulT Yang, and TYoshino. Firgen - a computer-aided design
system for high performance fir filter integrated circuits. IEEE Transactions on
Signal Processing, Jul 1991.

[jassica85] JR Jassica, SNoujaim, R Hartley, and MJ Hartman. A Bit-Serial Silicon
Compiler. In Proceedings oflCCD, Oct 1985.

[kane92] Gerry Kane and Joe Heinrich. MIPS Rise Architecture. Prentice-Hall, 1992.

[kernighan78] Brian W Kergnighan and Dennis M Ritchie. The C Programming Language.
Prentice-Hall, 1978.

[Ie92] Dinh Le, Milos Ercegovac, Tomas Lang, and Jaime Moreno. MAMACG: A Tool
for Automatic Mapping of Matrix Algorithms Onto Mesh Array Computational
Graphs. In IEEE International Conference on Application Specific Array
Processors, pages 511-525, Oct 1992.

[Iee86] Edward A Lee. A Coupled Hardware and Software Architecture for
Programmable Digital Signal Processors. PhD thesis, UC Berkeley, December
1986.

[Iettang89] Erik Lettang. Padroute: A Tool for Routing the Bonding Pads of Integrated

274

[luenberger84]

[mac83]

[manocha92]

[mmar92]

[micheli90]

[moreno90]

[morgan86]

[morgan87a]

[morgan87b]

[mot89]

[mot90]

[nara86]

[okamoto91]

[otten82]

[pati88]

[pieper68]

Circuits. Master's thesis, UC Berkeley, 1989.

David G. Luenberger. Linear and Nonlinear Programming. Addison-Wesley,
1984.

TheMathlab Group. MACSYMA Reference Manual. Laboratory for Computer
Science, MIT, 10edition,January 1983.

Dinesh Manocha. Algebraic and Numeric Techniques for Modeling and
Robotics. PhD thesis, Computer Science Division, Department of Electrical
Engineering and Computer Science, University of California, Berkeley, May
1992.

Monte Mar. Automated Design of Signal Acquisition Modules. PhD thesis, UC
Berkeley, 1992. In preparation.

G De Micheli, DKu, F Mailhot, and TTruong. The olympus synthesis system.
IEEE Design and Test of Computers, Oct 1990.

Jaime N Moreno and Tomas Lang. Matrix computations onsystolic-type meshes.
IEEE Computer Magazine, pages 32-51, April 1990.

Alexander PMorgan. A Homotopy for Solving General Polynomial Systems that
Respect M-homogenous Strucures. Research publication GMR-5437, General
Motors Research Laboratories, Warren, Michigan 48090, May 1986.

Alexander P Morgan. Solving Polynomial Systems Using Continuation for
Engineeringand Scientific Problems. Prentice-Hall, 1987.

Alexander P Morgan and Andrew Sommese. Computing All Solutions to
Polynomial Systems Using Homotopy Continuation. Research publication
GMR-5692, General Motors Research Laboratories, Warren, Michigan 48090,
January 1987.

Motorola. DSP96002 IEEE Floating-Point Dual-Port ProcessorUser's Manual.
Motorola Inc, 1988.

Motorola. MC88100 RISC Microprocesor User's Manual. Motorola
Incorporated, 2nd edition, 1990.

Sundar Narashiman, David Siegel, and John M Hollerbach. Implementation of
Control Methodologies on the Computational Architecture for the Utah/MIT
Hand. In IEEE International Conference on Robotics and Automation, pages
1884-1889,1986.

Fuyuki Okamoto et al. A 200-MFlops 100-MHz 64-b BiCMOS Vector-Pipelined
Processor (VPP) ULSI. IEEE Journal ofSolid-State Circuits, pages 1555-1567,
Dec 1991.

Ralph Otten. Automatic Floorplan Design. In IEEEISIGDA Design Automation
Conference, pages 261-267, Oct 1982.

Y C Pari et al. Neural Networks for Tactile Perception. In IEEE International
Conference on Robotics and Automation, 1988.

D Pieper. The Kinematics ofMechanisms Under Computer Control. PhD thesis,
Stanford University, 1968.

275

[pope84] Stephen S Pope. Automated Generation of Signal Processing Circuits. PhD
thesis, UC Berkeley, 1984.

[primrose86] EJF Primrose. On the input-output equation of the general 7r mechanism.
Mechanism and Machine Theory, 21:509-510,1986. This paper shows there are
at most 16 solutions.

[ptolemy91] Electronics Research Laboratory. Almagest: Ptolemy User's Manual. UC
Berkeley, 1991.

[rabaey91] JRabaey, CChu, PHoang, and MPotkonjak. Fast prototyping of datapath-
intensive architectures. IEEE Design and Test ofComputers, June 1991.

[rabaey88] Jan Rabaey, Hugo De Man, Joos Vanhoof, Gert Goossens, and Francky Catthoor.
Cathedral-II: A synthesis system for multiprocessor DSP systems. In Daniel D
Gajski, editor, Silicon Compilation, pages 311-360. Addison-Wesley, 1988.

[rabaey85] Jan Rabaey, Stephen Pope, and Robert W Brodersen. An Integrated Automatic
Layout Generation System for DSP Circuits. IEEE Transactions on CAD, pages
285-296, July 1985.

[rao85] SaileshK Rao. Regular Iterative Algorithms and Their Implementation on
Processor Arrays. PhD thesis, Stanford University, 1985.

[rao88] SaileshK Rao and Thomas Kailath. Regular Iterative Algorithms and their
Implementation onProcessor Arrays. Proceedings ofthe IEEE, pages 259-269,
March 1988.

[rb92] Robert W Brodersen, editor. Anatomy ofa Silicon Compiler. Kluwer Academic
Publishers, 1992.

[richards92] Brian C Richards. Generalized Tiling Primitives for TimLager. Personal
communication, Jan 1992.

[rimey89] Kenneth Edward Rimey. Acompilerfor Application-Specific Signal Processors.
PhD thesis, UC Berkeley, September 1989. UCB/CSD report 90/556.

[roy88] VP Roychowdury and TKailath. Regular Processor Arrays for Matrix
Algorithms with Pivoting. In IEEE International Conference on Systolic Arrays,
pages 237-245, January 1988.

[roy89] V PRoychowdury and T Kailath. Regular Processor Arrays for Matrix Pivoting
Algorithms. Communications of the ACM, 1989.

[ruetz86] Peter A Ruetz. Architectures and design techniques for real-time image
processing IC's. PhD thesis, UCBerkeley, May 1986. UCB/ERLmemo M86/37.

[salz90] Arturo Salz. Irsim manual. Stanford University, 1990.

[shung88] Chuen-Shen Shung. An Integrated CAD System for Algorithm-Specific IC
Design. PhDthesis,UC Berkeley,May 1988.

[shung89] Chuen-Shen Shung etal. An Integrated CAD System for Algorithm-Specific IC
Design. In Proceedings ofthe 22nd Hawaii International Conference on System
Science, pages 82-91, Jan 1989.

[shung91] Chuen-Shen Shung etal. An Integrated CAD System for Algorithm-Specific IC

276

[sparc92]

[spectrum92]

[spickelmier90]

[sriva92]

[strang80]

[svensson90]

[terman83]

[thon92]

[thor88]

[ti88]

[tsai84]

[volder59]

[walther71]

[wampler89]

[whitcomb92]

[yuan87]

[yuan89]

Design. IEEE Transactions on CAD, pages447-463, April 1991.

SUN Microsystems. The SuperSparc Microprocessor. Technical White Paper,
May 1992.

GlenZoipette (Editor). Special issue on supercomputing. IEEE Spectrum
Magazine, pages 26-76, September 1992. See especially article by Cybenko and
Kuck, p40.

Rick L Spickelmier (Editor). OctTools distribution 4.0. UC Berkeley, 1990.

Mani B Srivastava. Rapid-Prototyping of Hardware and Software in a Unified
Framework. PhD thesis, UC Berkeley, May 1992.

Gilbert Strang. Linear Algebra and its Applications. Academic Press, 2nd
edition, 1980.

Lars G Svensson. Implementation aspects of decision-feedback equalizers for
digitalmobiletelephones. PhDthesis,Lund Instutute ofTechnology, June 1990.

Chris J Terman. Simulation Tools for Digital LSI Design. PhD thesis, MIT,
September 1983.

Lars EThon andRobertW Brodersen. C-to-Silicon Compilation. InProceedings
of theIEEE Custom Integrated Circuits Conference, May 1992.

CAD Group, Stanford University. Thor tutorial, 1988.

Texas Instruments. Third-Generation TMS320 User's Guide. Texas Instruments
Incorporated, 1988.

Lung-Wen Tsai and Alexander P Morgan. Solving the Kinematics of the Most
General Six- and Five-Degree-of-Freedom Manipulators by Continuation
Methods. Research publication GMR-4631, General Motors Research
Laboratories, Warren, Michigan 48090, October 1984.

JE Voider. The CORDIC Trigonometric Computing Technique. IRE
Transactions onElectronic Computers, pages 330-334,1959.

J S Walther. A unified algorith for elementary functions. In Proceedings of the
1971 Spring JointComputer Conference, pages 379-385. IEEE, IEEE, 1971.

Charles Wampler and Alexander Morgan. Solving the 6R Inverse Position
Problem Using a Generic-case Solution Methodology. Research publication
GMR-6702, General Motors Research Laboratories, Warren, Michigan 48090,
January 1989.

Gregg Whitcomb. BUS Reference Manual. EECS Department, University of
California at Berkeley, 1992.

Jiren Yuan, Ingemar Karlsson, and Christer Svensson. A True Single-Phase
Clock Dynamic CMOS CircuitTechnique.IEEE Journal ofSolid-State Circuits,
pages 899-901, Oct 1987.

Jiren Yuan and Christer Svensson. High-speed CMOS Circuit Technique. IEEE
Journalof Solid-State Circuits, pages 62-70, Feb 1989.

APPENDIX A

puma.k CODE

#File puma3.k
/**

Name : puma.k

Purpose : Inverse kinematics for Puma robot

Author : Lars E. Thon. Copyright (c) 1987-1989. All rights reserved
***.

#pragma word_length 20
#pragma mult_subroutine

#pragma r_capacity 2
#pragma x_capacity 3

#include "const2.^

#include "puma.h"
#include "common.k"

#include "indat.k"

#include "outdat.k"

#include "catan2.k"

#include "csin.k"

#include "croot.k"

#include "closed3.k"

loop() { r
indat();

closed();

outdat();

}

277

278

init() {

}

#File const2.k
/**

Name : const.h

Purpose : puma constants

Author : Lars E. Thon. Copyright (c) 1987-1989. All rights reserved

#define ONE 0.99999

#define M20 OxOOOfffff

/* 10 addresses/control codes */

#define IO_READCOORD 0

#define IO_WRITEANGL 0

/* Powers of two */

#define totoll 2048

#define totol9 524288

#define toto20 1048576

#define toto22 4194304

/* Trigonometric constants */

#define PI 3.14159265358979323844

#define PIHALF 1.57079632679489661922

#define PIQUART 0.78539816339744830961
#define FIXPI (0.999999)
#define FIXPIHALF (0.50)
#define FIXPIQUART (0.25)

/* Conversion constants */

#define M2DEG 180.0

#define M2L (double)totoll

#define M2L2 (double)toto22

/* Cordic constants */

#define NUMIT 15 /* 0:15 or 1:15 */
#define CROOT_AMPFACTOR 0.82978162026770026000 /* croot: mode=-l, k=l:15
*/

#define CSIN_AMPFACTOR 1.64676025786545480000 /* csin : mode=+l, k=0:15
*/

#define CSIN_STARTVALUE (l/CSIN_AMPFACTOR)

const fix ctable[17] = { /* For all */
45.00000000000000000000/180,
26.56505117707799000000/180,
14.03 624346792647900000/180,
7.12501634890179770000/180,
3.57633437499735110000/180,

/

};

1.78991060824606940000/180,
0.89517371021107439000/180,
0.44761417086055311000/180,
0.22381050036853808000/180,
0.11190567706620690000/180,
0.05595289189380367500/180,
0.02797645261700367600/180,

0.01398822714226501600/180,

0.0069941136753 5291910/180,
0.00349705685070401130/180,

0.00174852842698044950/180,

0.000874264213 69378026/180

279

#File puma.h
/**

Name : puma.h

Purpose : puma constants

Author : Lars E. Thon. Copyright (c) 1987-1989. All rights reserved
***,

/* Puma constants */

#define a2 431.8

#define a3 20.32

#define d3 124.46

#define d4 431.8

#define aa2 (a2/totoll)

#define aa3 (a3/totoll)

#define dd3 (d3/totoll)

#define dd4 (d4/totoll)

#define a2s (a2*a2/toto22)

#define a3s (a3*a3/toto22)

#define d3s (d3*d3/toto22)

#define d4s (d4*d4/toto22)

#File common.k
/**

Name : common.k

Purpose : Global variables etc for inverse kinematics program
Author : Lars E. Thon. Copyright (c) 1987-1989. All rights reserved
***,

/♦Global variables*/

bool singular3, singular5, tooclose, outside;
fix goal[12], tetamatrix[48];

/*More readable names for the input variables (matrix entries)*/
#define rll goal[0]
#define rl2 goal[l]

#define rl3 goal[2]

280

#define px goal[3]

#define r21 goal[4]
#define r22 goal[5]

#define r23 goal[6]
#define py goal[7]
#define r31 goal[8]

#define r32 goal[9]
#define r33 goal[10]
#define pz goal[11]

#File indat.k
/**

Name : indat.k

Purpose : subroutine for data input to inverse kinematics chip
Author : Lars E. Thon. Copyright (c) 1987-1989. All rights reserved
***,

/*

The outside source must set the input pin source_ready to indicate
it is ready to provide data (cartesian coordinates for the robot)

*/

const volatile bool source_ready;

indat ()

C

#ifdef KT

/* If this is only a simulation we cannot access a chip pin ... */
source_ready=l;

#endif

/*busy waiting for input*/
while (!source_ready);

/*

Read in 12 numbers. The external source must watch the READSTRB pin
and also set source_ready back to 0 when it is empty (no data).
The numbers are the consecutive _rows_ of the coordinate matrix.

*/

rll= in(IO_READCOORD)

rl2= in(IO_READCOORD)

rl3= in(IO_READCOORD)

px = in(IO_READCOORD)

r21= in(IO_READCOORD)

r22= in(IO_READCOORD)

r23= in(IO_READCOORD)

py = in(IO_READCOORD)

r31= in(IO_READCOORD)

r32= in(IO_READCOORD)

r33= in(IO_READCOORD)

281

pz = in(IO_READCOORD);

}

#File outdat.k
/**

Name : outdat.k

Purpose : subroutine for data output from inverse kinematics chip
Author : Lars E. Thon. Copyright (c) 1987-1989. All rights reserved
***,

/*

The outside destination must set the input pin dest_ready to indicate
it is ready to accept the results (joint angles for the robot)

*/

const volatile bool dest_ready;

outdat () {

register int i;

#ifdef KT

/* If this is only a simulation we cannot access a chip pin ... */
dest_ready=l;

#endif

/♦busy waiting for the data destination to accept*/
while (!dest_ready);

/*

Transfer the 8x6 matrix in row order. The external destination
must watch the WRITESTRB pin and also set dest_ready back to 0
unless it is immediatley for another batch of results.

*/

#ifndef KT

for (i=0; i < 48; i++) out (tetamatrix[i], IO_WRITEANGL);
#endif

#if defined(KT_FLOAT) && defined (SIMULATE)
{

int i,k;

for (i=0; i<8; i++) {
for (k=0; k<6; k++)

printf{u%B.21ft tetamatrix[6*i+k]*M2DEG) ;
printf("\n");

}

}

#endif

#if defined(KT_FIX) && defined (SIMULATE)
{

int i,k;

for (i=0; i<8; i++) {

282

for (k=0; k<6; k++)

printf("%8.21f ", tetamatrix[6*i+k]/(float)totol9*M2DEG);
printf("\n");

}

)

#endif

}

#File catan2.k
/**

Name : catan2.k

Purpose : 2-argument arctangent by Cordic method

Author : Lars E. Thon. Copyright (c) 1987-1989. All rights reserved
***,

fix catan2 (yarg, xarg)
fix yarg, xarg;

{

register int k;

register fix x, y;
fix theta;

/* Start Cordic. The first step takes care of quadrants 2 and 3 */
if (xarg < 0) {

if (yarg >= 0) {

theta = FIXPIHALF;

x = yarg;

y = -xarg;

) else {

theta = -FIXPIHALF;

x = -yarg;

y = xarg;

}

) else (

theta = 0;

x = xarg;

y = yarg;

}

/* Scale x and y down so that they don't overflow when amplified */
x= (x»l) ; y= (y»l) ;

/*The Cordic iterations work in quadrants 1 and 4*/
for (k = 0; k <= NUMIT; k++) {

fix xnew, ynew;

if (y > 0) {

theta += ctable[k];

xnew = x + (y » k);

ynew = y - (x » k);

x = xnew; y = ynew;

) else {

283

theta -= ctable[k];

xnew = x - (y » k);

ynew = y + (x » k);

x = xnew; y = ynew;

}

)

return theta;

}

#File csin.k
/**

Name : csin.k

Purpose : sin/cos by Cordic method

Author : Lars E. Thon. Copyright (c) 1987-1989. All rights reserved
***,

csin (sinpt, cospt, theta)
fix *sinpt, *cospt, theta;

{

register fix x, y;
register int k;

bool quad2, quad3;

/*

Angles in quadrants 2 and 3 are mapped into their complementary
angles in quadrants 1 and 4. Must remember that cos/sin turns
into sin/cos with appropriate change of sign. This is fixed at the

end.

*/

quad2 = (theta > FIXPIHALF);

quad3 = (theta < -FIXPIHALF);
if (quad2)

theta -= FIXPIHALF;

else if (quad3)

theta += FIXPIHALF;

/* Assign correct starting values */

/* Scale down to avoid intermediate result overflow */
x = CSIN_STARTVALUE/2;

y = CSIN_STARTVALUE/2;

/*The Cordic iterations work in quadrants 1 and 4*/
for (k = 0; k <= NUMIT; k++) {

fix xnew, ynew;

if (theta > 0) {

theta -= ctable[k];

xnew = x + (y » k);

ynew = y - (x » k) ;

x = xnew; y = ynew;

} else {

theta += ctablefk];

284

}

}

)

xnew = x - (y » k);

ynew = y + (x » k) ;

x = xnew; y = ynew;

/*

The prescaling (to avoid overflow) cancels this operation
x /= 2; y /= 2;

*/

/♦Corrections for 2-3 quadrant*/
if (quad2) (

cospt = -x + y; / -sin */
sinpt = x + y; / cos */

) else if (quad3) {

cospt = x - y; / sin */
sinpt = -x - y; / -cos */

} else {

cospt = x + y; / cos */

sinpt = x - y; / sin */
)

#File croot.k
/**

Name : croot.k

Purpose : square root by Cordic method

Author : Lars E. Thon. Copyright (c) 1987-1989. All rights reserved
***^,

/*

Normal convergence is guaranteed for 0.03 < w < 2.42
However, this is a fixed-point routine that only allows w < 1
Some automatic scaling is necessary to avoid intermediate overflow
(for large arguments) and marginal precision (for small arguments).

OUTPUT:

When w <= 0.00: return(0)

0.75 <= w < 1.00: Prescale by 1/4 and postscale by 2 (avoid overflow)
0.03 <= w < 0.75: No scaling
0.0075 < w< 0.03: Prescale by 16 and postscale by 1/4 (improve

accuracy)

0.00 < w < 0.0075: Prescale by 64 and postscale by 1/16(improve
accuracy)

The idea of prescaling and postscaling is simple; see Walther (p382)
The maximum error is about a factor of 2, occuring for w = epsilon

*/

fix croot (w)

)

285

fix w;

register fix x, y;
register int k;

b°o1 smallflagl, smallflag2;
bool bigflag;

/♦Scaling to increase precision for small arguments, and to avoid
overflow for large arguments */

if (w<=0) return(0);

smallflagl= (w < 0.0075);

smallflag2= (w < 0.03);

bigflag = (w > 0.74);

if (smallflagl) w= w«6; else if (smallflag2) w= w«4;
else if (bigflag) w= w»2;

/*Generate starting values*/
x = w + (1/4);

y = w - (1/4);

/*Cordic iterations*/

for (k= 1; k <= NUMIT; k++) {
fix xnew, ynew;
if (y > 0) (

xnew = x - (y » k);

ynew = y - (x » k);

x = xnew; y = ynew;

) else {

xnew = x + (y » k);

ynew = y + (x » k);

x = xnew; y = ynew;

}

}

/*Postscaling*/

if (smallflagl) x= x»3; else if (smallflag2) x= x»2;
else if (bigflag) x= x«l;

return (x/CR00T_AMPFACT0R);

#File closed3.k
/**^*+ ^itit:lt^^^ + # + + +^^ + + +

Name : closed.k

Purpose : subroutine for inverse kinematics

Author : Lars E. Thon. Copyright (c) 1987-1989. All rights reserved
7

***^^^+ +^^^+ ^ilr^

#define EPS1 0.0005

#define EPS2 0.000005 /* Will detect (l/2)*s5A2 <0.000005 ie. t5 < 0.2 deg

286

*/

#undef KT_FIX_DEBUG

int i,j,k,ind2,ind2b,ind3,ind4;
fix tetal[2],teta2[4],teta3[2],teta23;
fix teta4[8],teta5[8],teta6[8];
fix Cl,c23,c3,c4,c5,c6;
fix Sl,s23,s3,s4,s5,s6;

fix px2,py2,pz2;

fix hl,h2,h3,h3b,h4,h5,h6,h7,h8,Kl,K2;
fix ql,q2,q3,y23,x23,s5s,c4s5,s4s5;
fix Ul,u2,u3,u4,u5,u6;
fix vl,v2,v3,v4,tmp;
fix distance;

closed ()

{

/*Some useful values*/

px2= px*px;

py2= py*py;

pz2= pz*pz;

/*Two solutions for tetal*/

hl= catan2(py,px);
h2= px2 + py2 - d3s;

/* tooclose = (h2<0); */

/* singular3= (h2<l/1024); */
h3= croot(h2);

#if defined(KT_FIX) && defined (DEBUG)
printf(u#px = %8d (int) %8x (hex) %10.21f (mm)\n",

px,px,px*M2L/totol9);

/* More of the same is left out here */
#endif

h3b= catan2(dd3,h3);
tetal[0]= hi - h3b;

#if defined(KT_FIX) && defined (DEBUG)
printf("#h3b = %8d (int) %8x (hex) %10.21f (deg)\n",

h3b,h3b,h3b*M2DEG/totol9);
printf("#tl[0]= %8d (int) %8x (hex) %10.21f (deg)\n°,

tetal[0], tetal[0], tetal[0]*M2DEG/totol9);
#endif

h3b= catan2(dd3,-h3);
tetal[1]= hi - h3b;

#if defined(KT_FIX) && defined (DEBUG)

287

printf("#h3b = %8d (int) %8x (hex) %10.21f (deg)\n\
h3b,h3b,h3b*M2DEG/totol9);

printf("#tl[l]= %8d (int) %8x (hex) %10.21f (deg)\n",
tetal[1], tetal[1], tetal[1]*M2DEG/totol9);

#endif

/*Two solutions for teta3*/

/*This value should really be computed once and for all in init()*/
h4 = catan2(aa3,dd4);

h5= px2+py2+pz2-a2s-a3s-d3s-d4s;
Kl = h5/2/aa2;

K2= K1*K1;

h6= a3s+d4s-K2;

/* outside = (h6<0); */

/* singular3= (h6<l/1024); */

h7= croot(h6);

h8= catan2(Kl,h7);

teta3[0]= h4 - h8;

h8= catan2(Kl,-h7);

teta3[l]= h4 - h8;

/*

Main loop. Each iteration computes a set of solutions.
Four solns for teta23 => four solns for teta2,teta4,teta5,teta6.
Later increase to eight solutions for teta4,teta5,teta6.

*/

for (i= 0; i <= 1; i++) {

csin (&sl, &cl, tetal[i]);
for (j= 0; j <= 1; j++) {

csin (&s3, &c3, teta3[j]);

ql= -aa3 -aa2*c3;

q2= cl*px+sl*py;
q3= dd4 -aa2*s3;

y23= ql*pz -q2*q3;
x23= -q3*pz -ql*q2;

/*

Certain array indices are used extensively. We compute
them here for use in the entire loop:

*/

ind2 = 2*i+j;

ind2b= 2*ind2;

teta23= catan2(y23,x23) ;

csin(&s23,&c23,teta23) ;

teta2[ind2]= teta23 -teta3[j];

288

/*

Four solutions for teta4. No overflow problems with
unit variables such as sin and cos because they will
automatically be correct modulo 2 (hah!)

*/

/*Squeeze out some more common subexpressions??*/
c4s5= - rl3*cl*c23 - r23*sl*c23 + r33*s23;
s4s5= - rl3*sl + r23*cl;

/* Overflow hazard because of inaccuracy,
whenever teta5~=90deg. Hence shift down */

s5s= (c4s5*c4s5»l) + (s4s5*s4s5»l) ;

singular5= (s5s < EPS2);
if (singulars) {

teta4[ind2b+0]= 0;
) else (

teta4[ind2b+0]= catan2(s4s5,c4s5);
)

csin (&s4, &c4, teta4[ind2b+0]);

/*Four solns for teta5*/

ul= cl*c23*c4+sl*s4;
u2= sl*c23*c4-cl*s4;
u3= s23*c4

u4= cl*s23

u5= sl*s23

u6= r33*c23;

/* To avoid inaccuracy-induced overflow if c5 or s5 are
close to 1 in magnitude */

Ul»=l; U2»=l; U3»=l; u4»=l; u5»=l; u6»=l;

s5= -rl3*ul -r23*u2 +r33*u3;
c5= -rl3*u4 -r23*u5 -u6;

/* Since s5,c5 are used elsewhere we need to
scale them back up again, possibly with saturation
We could get more fancy and recompute them if there
was no danger of saturation */

if(s5<=-0.5) s5=-l;else if(s5>=0.5) s5=ONE;else s5«=l;
if(c5<=-0.5) c5=-l;else if(c5>=0.5) c5=ONE;else c5«=l;
teta5[ind2b+0]= catan2(s5,c5);

/*Four solns for teta6.*/

vl= cl*c23*s4-sl*c4;
v2= sl*c23*s4+cl*c4;
v3= s23*s4;

v4= c23*s5; /*New*/

/* To avoid inaccuracy-induced overflow if c6 or s6 are

289

close to 1 in magnitude.
The u's are already scaled down (above)*/

Vl»=l; v2»=l; v3»=l; v4»=l;

s6= -rll*vl -r21*v2 +r31*v3;

c6= rll*(ul*c5-u4*s5)+r21*(u2*c5-u5*s5)-r31*(u3*c5+v4);

/* No need to scale s6/c6 up again since they are
only used in atan2 */

if (s6<=-0.5)s6=-l;else if (s6>=0.5) s6=0NE;else s6«=l;
if (c6<=-0.5)c6=-l;else if (c6>=0.5) c6=0NE;else c6«=l;
teta6[ind2b+0]= catan2(s6,c6);

/* The number of solns is doubled by symmetry of the hand */
teta4[ind2b+l]= teta4[ind2b+0] + FIXPI;
tetaS[ind2b+l]= -teta5[ind2b+0];
teta6[ind2b+l]= teta6[ind2b+0] + FIXPI;

/*

Place each solution in the array. Some indices are
used repeatedly and are computed once each iteration:
ind3== 4*i+2*j+k

ind4== (4*i+2*j+k)*6+(index_to_teta)
*/

for (k= 0; k <= 1; k++) (
ind3= 2*ind2+k;

ind4= ind3*6;

tetamatrix[ind4+0]= tetal[i];

tetamatrix[ind4+l]= teta2[ind2];
tetamatrix[ind4+2]= teta3[j];
tetamatrix[ind4+3]= teta4[ind3]

tetamatrix[ind4+4]= teta5[ind3]
tetamatrix[ind4+5]= teta6[ind3]

}

	Copyright notice1992
	ERL-92-139 (1 of 7)
	ERL-92-139 (2 of 7)
	ERL-92-139 (3 of 7)
	ERL-92-139 (4 of 7)
	ERL-92-139 (5 of 7)
	ERL-92-139 (6 of 7)
	ERL-92-139 (7 of 7)

