Copyright © 1992, by the author(s).
All rights reserved.

Permission to make digital or hard copies of all or part of this work for personal or
classroom use is granted without fee provided that copies are not made or distributed
for profit or commercial advantage and that copies bear this notice and the full citation

on the first page. To copy otherwise, to republish, to post on servers or to redistribute to
lists, requires prior specific permission.

APPLICATION SPECIFIC PROCESSORS FOR
NUMERICAL ALGORITHMS

by
Lars Erik Thon

Memorandum No. UCB/ERL M92/139

11 December 1992

APPLICATION SPECIFIC PROCESSORS FOR
NUMERICAL ALGORITHMS

by

Lars Erik Thon

Memorandum No. UCB/ERL M92/139

11 December 1992

ELECTRONICS RESEARCH LABORATORY

College of Engineering
University of California, Berkeley
94720

APPLICATION SPECIFIC PROCESSORS FOR
NUMERICAL ALGORITHMS

by
Lars Erik Thon

Memorandum No. UCB/ERL M92/139

11 December 1992

ELECTRONICS RESEARCH LABORATORY

College of Engineering
University of California, Berkeley
94720

Application Specific Processors
for Numerical Algorithms

by
Ph.D. Lars Erik Thon Department of EECS

Abstract

The development of Application Specific Integrated Circuits (ASICs) has historically
been driven to a large extent by applications within the areas of Digital Signal
Processing (DSP) and Communication Networks. An open question is whether the gains
and advantages that have been observed by applying ASIC technology in these areas
can be duplicated in the Numerical Processing application domain. The standard DSP-
inspired approaches are not always applicable to design tools, architectures, simulation
and circuit design for Numerical Processing (NP), because NP is different from DSP in
terms of data types, data organization, data access and pipelining margins. This work
builds on the advances made in the traditional application areas and expands the
technology into the NP application domain. Two applications are used as test cases for
evaluating the ASIC/NP combination. The first case is a geometric computation
problem, and the other involves solving nonlinear equations, ultimately leading to a
core problem of matrix computations that are common to a variety of NP applications.
An automated silicon compilation approach as well as manual designs and

methodologies have been developed and applied to the test cases.

LB Bl

Robert W. Brodersen

Chairman of Committee

Application Specific Processors for Numerical Algorithms

Copyright © 1992

Lars Erik Thon

Acknowledgments

This page is for the people who made my life enjoyable while I struggled my way through
Graduate School in Berkeley. There are many people to thank, and I hope I have remembered at
least everyone I collaborated with on a daily basis and the many others that made a difference in

my private life.

Let me start out by thanking Bob Brodersen for supporting me during the long years here at

Berkeley. It has been quite a trip. I would also like to thank:

Brian Richards for being the all around wizard and author of numerous CAD tools, and for
coaching me on all aspects of chip design. Without Brian I would never have gotten even one chip
out the door. Kirk Thege and Kevin Zimmerman for helping out with the computers and making
me a trusted member of the root community. Mani Srivastava for answering all my beginners
questions about UNIX and many other topics just too numerous to mention, and helping out with
Dpp maintenance and hacking. Rajeev Jain for getting LagerIV off the ground. Erik Lettang for
getting all my pads routed. Sam Sheng for being such a helpful guy and always answering
questions and especially for making MakeThorSim work. Andy Burstein and Monte Mar for being
great cubicle-mates, and (Andy) for fixing bugs in (or is it adding features to?) ext2spice. Bill
Baringer for being very inspiring and helpful when I was learning to draw my first transistors.
Susan for completely changing my life. Nancy for being such a good friend, even afterwards. Judy
for being an inspiration during my last 2 years in Berkeley. Arlene for being the most fun to flirt
with. Jan Rabaey and Seungjeun Lee for helping out with Flint. Sigvor for providing a home away
from home for all the Norwegian students. Bertrand Irissou and John Wawrzynek for introducing
me to high-speed circuit design and helping out with the cell library, and Bertrand for being a great
pal. Ken Rimey for teaching me LISP and writing the first ever bug-free compiler. Edward Wang
for helping out when Ken was not available. Lars “Johnny” Svensson for exploring all the
architectures that I had no time to deal with, and writing the first version of MakeThorSim. Markus

Thaler and his wife for writing the longest useful CSH script ever (DMpost).

iii

Clara Chang and Jean Souza for taking care of me when I first came to Berkeley. Mark Davis and
Jeff Bradt for being best friends and partners in crime. Jennifer, Herb, Robert, Stuart and Janet for
lots of fun during my first two years in Berkeley and later. Ann Irschick and Duncan Irschick for
being the best landpersons one could wish for. Michael Coleman for being a great roommate
during my stressful dissertation-writing months. Nils and Steve for pitching in with help on my
project. All the fun people at UCBD for providing R&R when I needed it badly. Susan, Beth and
Rebecca for being the most fun dance partners, and Jerry and Jeff for not always stealing them
away. Sunny, Sue and Al for teaching the most fun PE classes. Greg for keeping me company at
the RSF. Richard Stallman, Larry Wall and the Free Software Foundation for providing the
software I used the most. I’m pretty sure I could never have finished without it. Richard Muller,
Richard White, Shankar Sastry, Ted van Duzer, Martin Graham and Paul Gray for being a very
friendly and helpful bunch of professors. Prof. Desoer for teaching the must educational class I had

at Berkeley.

I would like to thank the members of my dissertation and qualifying exam committee, Professors
Brayton, Hald and Fearing. Your help is appreciated. The administrative support from Tom Boot,
Carole Frank and Peggye Brown has been excellent, and I thank you for your speedy response to

all “emergencies”.

Last, I would like to thank my mother and my late father, who never pressured me about school at

all, with the result that I pressured myself all the more. It worked well! Thanks for everything.

iv

Table of Contents

INTRODUCTION 1
1.1 What is Numerical Processing?ccececerreerereeeresrersersessessersessesessessoseane 3
1.2 Examples of Numerical Processingccoceeeevereerereeresersenesessesessesseseanes 4
1.2.1 Inverse Position-Orientation problem for the PUMA robot...........ccceeeennnne 5

1.2.2 Inverse Position-Orientation algorithm for general 6R TObOLSccerueeens 6

Other applications involving polynomial SYSEMS ceeececcecsesceeccocsnecrneeneecesessnnns 7

1.2.3 Sensor iNVErsion PrObIEMS ..cuiiieereesancrsneesssseessaanesssasecsonnessssesssssessonaenns 8

1.2.4 Other numerical appliCations......c.evverssveeecveeeenes reeresteeessssensssssaeersraeens 9

1.3 Implementation alternatives for NP SYStEIMSc.eeeeeeeueueeeeccreenecneseeens 9
1.3.1 DSP building bIOCKS c..vveeererraeerrerersaecrnecsneeesareecseseessassosssssessnssesnnnses 10

1.3.2 General pUIDOSE COMPULETS ...veeveerrererraressaeeersanesssaeessesessesossonsossssone 11

1.3.3 ASIC DSP deSign SYSIEMS veeerrereereererruneessssseecssssesecsacsssssssonssssssnnsesns 12

1.3.4 DSP board-level design toolS......coueeerrrrrecssrreecssnneresssssssssssnsssssssnnsesnn 15

SIETA teveereenrenrenenrinriseistesieseisessesssesessnssssensessessesaennesseessessessasssen 16

1.4 Problems in Numerical Processor desig..........ceueeecereveensessnesesssesssens 16
L5 SUMMALY ..ottt escss s stssssssssnsssasassssssesesessssnees 18
INVERSE POSITION-ORIENTATION (IPO) COMPUTATION21
2.1 Kinematics Of MEChAMISINScceveverereesreeeerenseessesesncessesssnsessesssssaens 22
TransfOrmation MALTICES veveeveeeeerrreeesessorsssescssassrsonesesnessssssescessssassonsonse 23

Homogenous transform for a general linK «.......eeeeeecocesceserseseseesennsasssssssssesse 25

2.2 TPO COMPULALIONvucereererrerecrereecsesssaesesnsassssssessssssssssesssssesssessssmsenenees 26
2.3 Special case IPO computation: The PUMA robotoeeveevereeen.n. 27
2.4 TPO for general 6R TODOLSoouveemeeerererrereseseseresesseseosssss s essseens 30
2.5 Systems of polynomial EqUALIONSceeueeeeereeererrnensensseressssesenseaons 32
EXAMPIE ccceeeeereeiiiiiiiiiiennnennnnereeeeeeeeeesesceeensessssssssessssnsnnnsssssssssssensens 32

2.6 Finding all solutions of a polynomial SyStemceeeveeveeeevevnennnn.. 33
2.6.1 HOMOtOPY CONtNUALIONveeeeerrversresseeesueessvssssnessnsossnsesssesssnesssnsssessas 34

2.6.2 Problems with the continuation method........eeeeerurereeereeerueesneesnesnesnees 37

2.6.3 Non-problems with the continuation method.......c.ceeeeereerreeereesnessesnes 39

2.6.4 HOMOGENIZAtON. ..ccccvtrrreeerreernersnnecsaeeesaeesssssssesssseessnsessssesssnsessnsssens 39

2.6.5 The projective transform.................... reeesessnnaeeerrnanenasans cerrereeressessen .40
2.6.6 m-HOMOZENOUS SYStEMS veeverererrrrerreressuneonnnannns cerreeeessreeeees cereeeeernnnes 42

2.7 SUMMATY ..ccveerereereereeresreesanennes reessesssssesarsresnesnanns TSI 45

C-TO-SILICON COMPILATION 47
3.1 Why C-to-Silicon compilation? restenssensaans ceessessasssesasenns veeed8

3.2 Goals of the C-t0-SilicOn SYStEMc.oveererereeerrcrerenenesenseeensasesscenennes 50
3.3 The C-to-Silicon system.............u...... ceesssesssertsssnessrasnanenaeneas creesseseneennes 51

3.4 Retargetable COmMPIlation..........cceueueuererersuenesersrenesssesesesesnsesssenene veesnnesnencd]
The machine description file.......... B .52
The MiCTOOPETALION fil€ vvveeeeeeersrrrnrencerssrseeeesssrsssnanes SOURRURRRRRPRRRRO X,
Parameterized structure descriptioneeeeeses terererererenrasrssssnsesensararens 55

3.5 High-level simulation.............. ceessnssstesaneseasanerarssansnns cesesesessasssassssassssssanes O
3.6 Architecture exploration..................... ceresessstesstssenssasessresssesssessanesarasnarennen 59
3.7 Architecture examples............. reesaesassatsnssateessassnsassesaens reteeenasssesneesrenaens 60
3.8 Execution model..........ccceeerreereerrereruennns cestessreassssestsasesnssanesasssssenasssasanes 62

3.10 Silicon Assembly with LAGERccccocveeeeeceerreesuessereneesesesnsenscsaeaes 7 1

Overview of LAGER teeeeesssssesesssesessrassesssssessasesssssssrssssssssasesssene

3.11 Design styles in LAGERc.ccoceveereereerenreeressenssecsesssessessessasssssssassness 10
Standard cell (StACEI) veeeerrrarerecrsrererssneessssacesssnsnesesssnsasessen ceesnvarenee .76
Tiled macrocells (TIMLAZET) cveececesrsececrcesocncsoncececososcssscseessssscsssssssssene 78
Macrocell place-and-route (FLINE) ceeeececescscesecesceseccasssescscessescssoscescssoscsses .82

Datapath COMPIIET (APP)eeeseereeeeeseeserescessrsssasessessssssssssssssssssssesssssassssnsns 83
Pad-to-COTE TOUtING (PAATOULE). .. evevereeecrerssrereescsssssssssesassssssrssnsnnanans veeee 30

msminputdata0000...0..0000...0000.QCOOOOO.OO'Q‘OOOOO'OOQ.O."'OCOO.OQ..092
USING IRSIM ...vevenreceeneeresssosssssssssssssesssssssssssnosones eeeresesssseesssressssessesdI

vi

3.14 The RL JangUAgEccceeurreereereneereerrenreneneessessasssesssesessensessensessassasens 93

LiMitations ueeeseeeseessecssesssessasssesssenssasesssssssssssassssesssassosassossssosssssonsos 94

TYPE MOGIIEIS e eeeveereerererersrsersrsrsressssssesessessssssssssessesssssensssasessssseseane 95

PIABIMNAS cieieiieeeriennneecnerssssssssessssnssssssssesssessssssssssssssossonsesssssnnsansessene 95

Register declarations and register type MOdIfIErS ceveeeecsecsecsensecesceearacncsancanens 95

The DOOICAN LYPE «.eeurerrrnrrncrresrersecssccsessenecsecsccncescasesersossessssasossossossans 96
Fixed POint NUMDETS...ccvuueerrrirrnrecnecsrsrcreecssoccseccsscsssessossseesssssnenessosane 96

Predefined fUNCHONS . uesseececssssssasseerecessssssnssssansesesesssssessassessesssssssssssses 97

USEr-defined OPETAtioNS ceeeseessrreesreseaesessesssssnsesssserssssssssssssssossessasassnsas 97

Preprocessor COMMANAS veveeeeccsscrresersssscssecnecnsecsscesssscssossesssesessssssessesss 98

PrOGIam SIUCIUTC ceu.evurereecrrocasesssesssccsscarccnsecssasesssossosssssessessoosnosnessenns 98

3.15 SUMMATLY «.u.eecevniririacnisnnnsensanasssssssssesssssesssssssesssssssssssssssssssssasasasssseses 98
THE PUMA PROCESSOR 101
4.1 Characteristics of the COMPULALION............ecveveeeeemeenersssereresessesesessssens 102
4.2 Algorithm SEIECHON........c.eveveeerercereeeeeceneeceseessenesssssesesssesesesessnsas 103
4.2.1 CORDIC algorithm fOr tan2ceeerverreesseerseesseessescssossssssessnsesnans 103

4.2.2 RL program for atan2...........ceeeereereessneeveessnessssessssesssessnnesnsessnsens 105

4.3 Fixed point COMPULALIONc.ceveversererserersescmsusescaesesesecnsassssesssssnsssssssens 107
4.4 High-level SIMUIation...........cueuuevereieeneesececneeeeessssesssssesesssesssssssesnens 109
4.5 Architecture design and eXplOrationceeeeeereeeererseeseresneresonn. 110
ATChiteCtural Variations «eeeeesssseseeeeeecssrsssessesseseesesessssssossossasssessnnnssnnnne 110

Evaluation of altemNativesS «..e.uuveeeerresseseereeessnnecerensscossassssssnsesesssnnesessses 112

DISCUSSION .evvveerssrureresssssseenssareessssssseesssssssssssssssssssnnnsasssssessssnnnnnens 114

CONCIUSION «eveereererrisrunneriecssosssnsenreereesssrsesssessessessessassannessssssssnsenses 116

4.6 Chip verification and layout designc.oooeveeevuereeeeeeeeeeeoeeeeesonn, 117
4.6.1 Logic-level SIMUIAtON ...c.ceveereerreerreereeseeseesseecneensessesssessessesnessesns 117

4.6.2 Switch-level SIMUIAtiONceeverrerreerriererereeeneesseesaeesnessssosesssmsssssnns 118

4.6.3 Electrical Tule ChECKINGeevereererrereererrerrereereesusssensesseessesessessessesnen 121

4.6.4 CRiD tESHNG c.veeveiereeruenreereerrenrereeseessresseessosnsessessnsessssssssssesssssesmnns 121

4.6.5 Physical design TESUILSccervererverrrereesrererueesseesesssnsessessnsesssssssses 124

4.7 SUMMATYoocuverenecnenrenrnnrsrssssessssssssssssssesesessssssssssssessesssessmsessssene 125
SOLVING nxn POLYNOMIAL SYSTEMS 127
5.1 Software architecture of COnSOIC.........ccvvevueuevererererereeeeeeeseseomosen. 128
5.2 CONSOIC VATIANScvveeucrerrrerecrerecneieessnecesasnensessassesessssssssessssssssens s enens 131

5.2.1 General polynomial solvers........ rerveesssreeessnnne crrereeesnssnrearensessnes w132
5.2.2 Robot polynomial SOIVETSeceueeerueeennsns creeerssraresssrenessnnaee cesrneeneee 135
256-path VErsions ...eeeeeeeerenns. tersresnsnnrrntteeenessesssssessssans ceereererenanaenes ...136
96 Path VETSION ceeeeerunneeesissnenseressereseeneaeeersessrssssesssssasssssssessosssssennne .37
64 Path VETSION ceeeeeererreerneeneesssssosssessssessnsarennes teeereeeeeeessesensererenerares 138
Further path number reductions............ ceesssssesestrsssersensesnnansensene cerscrscnnes 139

Path maximum statistics........ ceretesessaeeeeannasenes reesseeeeesssrsraeesssssersennannes 143
5.4 Proﬁling GOIOCPPONRN0000000000000000000000000CCOICOIOGIOISTSIOTS 0000000000000 0000000 0000 ..00..‘.....0'.0....0...‘.149
5.5 Pipeline interleaving.............. ceresssssessansssesessnsessasnanas cerssesssnsssassssanesannsss 130

5.6 Arithmetic experiments................. veessessrsasearessessaassnsas vecsssesasssasssanssnenns 191
Single precision floating point computation ceeeeeeeeenes versreenneenenennene 151
Fixed point computation........ ceresssteeessssssanaesessssssnsansacasessssssssssnserennnns L DI

5.7 The Fix.cc fixed point arithmetic packagec.ceueuuee.. ceeeseresanassenns 155
5.8 Theoretical Bounds on variable and function valuesc.ceeuvenene. 157
5.9 Summary ceeesnserenseesarenns crsstenesassassnseseesarsarasans vessssssnssasesanssanesens 18

ALGORITHMS FOR LINEAR EQUATIONS 163
6.1 “Realification” of complex equations crestesussetsassstssasessssasossassennans 164

6.2 Algorithms for solving linear equations.............cccevereevereeesersesseresserenne. 164

6.3 The Gauss/LU algorithm...........cccceervreeeereecnenne cereerreens cessesnsesnsassssnessnes 165

6.3.1 Architectural implications...........c..... ceressnsessessssasssnnesssasesasassssasasses 108
Memory bandwidthceeeeeees terveessssnnesssansessssssrassesssssraesssssessnsnsssassss 1 O
Pipelining and pipelining margins.......... cescsersescstnse cercenee cevecnsessessesassases 171
PIPEliNe INtETIEAVING «eeeeererrrrrrreeeeeessssranesessssssssssserssssssssssnssssassssassanses 173
Pivoting .ecceveerecnscnnces cocrsns seesscreseesessserssessersssnnssnnsane cecesssernscsersscnes 174
Summary of Gauss/LU CharacCteriStiCs coeececeseccsssncecescscrccsnconenssesscensnceneces 175

6.4 The Crout algorithm....... ceeossssssasssasessasesaresastssanassaasssnanes ceeeresannesareesaens 175

SUMMAry of Crout ChATACIETISHCS veeeereesesssrssssssrenssssessssssesnasessssssassssssnnes 177

6.5 The Doolittle algorithm......... cetesseesaressaseseresanasansesasasaraasns reeeesnaseseenanes 180
Properties of Doolittle’s algOTithimn «.c.ceieececareecaserecsssecssessoncesasssssacscssnecs 180

6.6 Summary ceerecscrsne ceeeasetescttettcsrestesttsttssetietetstestcerstttsactiostssetssatiene 181

viii

ConsolC IMPLEMENTATION ALTERNATIVES 183

7.1 Commercial DSP ChipSccccevevneeerrnieresereseresenssesseseresessssssesesessssssscsesees 184
7.1.1 The AT&T DSP32C digital signal ProCESSOTeeerveevvecvecsreeessvesseees 184

7.1.2 Solving linear equations on the DSP32C.......ccccccvrerneeessnreesnereseeesnee 186
Gauss/LU 00 the DSP32Cueeuisuisuessnsessussasesssnssonssnsessessassasssessessasnns 188
POIENUAl SPEEAUP ceeeeerssrrernrererenrererersesssessassssssssesessssssssssssesssssessosssne 189

Crout or Doolittle 0n the DSP32Ceeeeeeeeeeesreressssesssvssssssesseesssssossssssne 190

7.1.3 The Motorola MC96002 digital signal ProCESSOTeevveerveersvecrnvosesones 191

7.1.4 Solving linear equations on the MCO6K.........ccccceeerrvveecrnerrseecssneescsnns 195

Crout or Doolittle 0n the MCO6K..uuseeieeenereesecoeesecssscsessesesssseenssscssessssses 198

Potential SPEEAUP «uvvveeererriersraresserarecsssssresennsssersessrsserssssessessssssosssnnne 198

7.1.5 Texas Instruments TMS320C30 digital signal Processoreeeeeeeveenne 199

7.1.6 Solving linear equations on the C30ccceeereeererneererveeecsssessrneesenees 204
SPEEAUD POLENHAL.eeeeerrueeesereesrrrrareaecessasssresrsrrssseesesssssossssssnnnsnnnnnsnnes 204

7.2 VECLOT PTOCESSOTSeeeururvecnrarrsnseseseserssssssssssessessssssasassssssssssessssnenssens 204
SUPETCOMPUIETS...evveeerssersseassencessrssssaseessssssssssssssssssssssssssssssssensensnnns 205

VeCtOr Processing CHIPS .eeesseesceeeerssesesceeseeasensseravesessssssescsssssssscennnnnnne 205

Massively Parallel ATCRIlECIUTES ..ecuveeeeeeeesrrorsanecssasesssanesssnecsseesssassossane 207

7.3 SYSOLIC ATTAYS c.cuverrnrrerenenerrrencrerersssescssneenssssnsssssssssesssssessssssnsessssssns 207
7.4 Standard MICTOPTOCESSOLScurecvrseueecseresecnnneesssssssessssssesesssssnssessens 210
7.4.1 The SPARC faMlY «......veveeemeemeenseesssessnsssessessssssssssesssssssssesssesons 210

7.4.2 The Motorola 88K familycceeuereererrerruersesseeseeseesseeseesassssonsossessenens 211

7.4.3 The MIPS R-SETIES u..veerreerrerrarcraersaersrecssecssnessaeesssssssssessasessnessssssnnne 212

7.4.4 The DEC AIpha 21064c.c..eerrueerureeneceseseeessanesssssesssnsssssssssssnsens 212

7.4.5 The INtEl 1860 XPveerreerreerrerruereereessaeessssssssesssessssessssesssesssssssness 212

7.4.6 Other RISC P familieS....ceevseeesreersneersrressanseeessesoneassnsassssssesssssssss 213

7.5 SUMIALYc.ovreirercnneesiisessseeresseescsssssssssssnsesnsssssssessssesssssessssasesssses 214
THE SMAC (SMall Matrix Computer) ARCHITECTURE................ 215
8.1 SMAC TEqQUITEINENLScvuvereevecenreceeeenaeeieseassesessssesesesssssnessssesesseene 216
8.2 Datapath and memory architeCtureceeeeeeeueuevererereresesesesesensesnens 217
Forward eminationeeeecevseriieeeeessrsanneeeeeeeeceecssssssssosssnsnnssnsessnsssses 217

Back SUDSHIULON «.ceueerverserneneisecssiessenaensanessnesesssesssessesosesssassnssnnenns 217

PIVOLSEATCH «.eeeenrrrnniiiiiniiensnreecenssnneeeessssesseeesessessssnaneensessnsnsnneees 217

Paralle] PivOt SEArCH uueeetieeererueeereeeersssrasvereseessessssosssssseassssnnssssnnnsesses 219

Consolidated data PAth v.eeeeeeeeeerereeeerreesssosecssocssossssasssssssssnssessssssssssnses 220

8.3 PivOt TOW PETMULALIONS ...v.vveeeeeeeceeeeeraeeeeeresenenesesesesesesssssssesssssessseseesans 222
8.4 Addressing and address gENEration................eeeereeeeeereerereeresessessesasnn. 223
Address COMPOSILON +.vvveeensesseeeseeensseesssssssessssssssssssssensnsassssssassssssnssns 225
Address COMPUIALON ceeeeeererreeerenesvessssssssssssesssssssessssesasssssasnsnssnsscessnns 227
8.5 Loop control and inStruction SEQUENCINGccveereeevemmerenesmreesesesseens 227
CONUOLIET SITUCIUTE <evvveveeensseeseresesssssencsssossassssessessssssssessssssassssssannnnnn 229
8.6 Building blocks for implementing SMACccvireeeeceveuerereerereenenns 230
8.7 TSPC 1atCh deSIigNu.uceveeererererereiirnrerceeencsssesssesesescesssssssenssnsassenes 231
8.8 Pipelined high-speed multiplier (pmult)ccocerererveeresivereererereenenes 234
Pipelining and COMPIESSOTS c.vvvvversessesesessessssssssssssessossssssssssesssssssossssssse 235
Operand and result pipelining (input and output delays) «...eeeeseeeesssssesessesssneses 237
VECIOT MIETEET «.vuveeeceesennsrsssssssasssessssesssassrssasssssssssssssasssssesssassnssssonee 240
Tiling and circuit implementation c..ceeceseceesenccsersassressosssssossssesessscsncsecnes 241
SIMULAtON TESUILS 1vvveeeerrerereecssrasecsssssesssssaesssansesssssasaseesesssasosssssssssane 241
TESECHID ceeeerererererneeseseeeeesesseserssssnsenssnesssessessesssssssssssossssssssssssonssse 243
TSt TESUIS . cceeeeneassrvereencressarananasessssosassasosessesesssssssssessssssssssssasessonss 246
8.9 Floating point datapath building bIOCKScecvervruervereeenrerneeereeensens 247
PIPEHNING ecueeerreessconsrerencrcneconcrscsccrersssecescassocsesscssssssscessscsossssarcsnes 252
TESECRIPS ceeererescocrcncrsncrcrsesersceseseensncsescescencessancnsescacsassssssnanasnananns 252
8.10 High speed 3-port SRAM (Fegfilew)ccoveereerererrererrerernerernenessesnens 252
Floorplan and tENE .ccceceerecnsnioccninioccasecsrcscrcscsssoresssssssecassrcnsessssescseses 255
TeSt CHIP ANA TESUIS caeeeeeerereaeeceerasrrrsessesessereasessasssssssssasssssssssssssssasses 255
8.11 High speed PLA (MPIa)......ccccocerreruereererrerrerensneseesessesseessssaessessessessesssens 257
Floorplan and NG .c.cveveeccececainecaceesececcocsssssosssecsssosescocsocscssassescassones 259
SIMUIALON o.eirrrsrencocteororececessssssossstssssossscscscncssssccessssssscesensosnaasanse 260
Test and fAbTICAON TESUIS. ceerererrrereerreerenersseresessesesssssssssscssssnssessessssses 261
8.12 Pads and clock diStriDULIONc..ccvverreerueernerruesseesaeeseccsseesasessesssesesnes 261
TESLTESUIS . ceeerererreveeeeasersensssersssesssssssesssssesssnssessossosssssssssssnresesssasas 262
8.13 SUIMMMATYueeuiieniieiiiriennineneneseeneesesneessesessssssessssessesessesesseseraesessesess 263
SUMMARY AND CONCLUSION 265
9.1 The C-to-Silicon system and the PUMA chip.........ccceoeereeeereernerennenenn 266
9.2 MatriX COMPULALIONS ...cceevereereerereerernreesesessesessessesessessessesssessossssessessases 267

9.3 Conclusion and directions for further investigation

BIBLIOGRAPHY

oooooooooooooooooooooooooooooo

APPENDIX A: puma.k CODE

xi

Figure 1-1

Figure 1-2
Figure 1-3

Figure 2-1
Figure 2-2
Figure 2-3
Figure 2-4
Figure 2-5
Figure 3-1
Figure 3-2
Figure 3-3
- Figure 3-4
Figure 3-5
Figure 3-7
Figure 3-6

Figure 3-8

Figure 3-9

Figure 3-10
Figure 3-11
Figure 3-12
Figure 3-13
Figure 3-14

Figure 3-15
Figure 3-16
Figure 3-17
Figure 3-18
Figure 3-19
Figure 3-20

Figure 3-21
Figure 3-22
Figure 3-23
Figure 3-24
Figure 3-25

List of Figures

DSP versus Numerical Processing (a) Digital filter

(b) Solving noONlinear EQUAtIONS...........cceererverrererreereersessersessessnssnssnessenessenne 3
A fully articulated robotiC aTrM........ccecveerereererenenrerreenenrerserenssseressesessesessnenes 5
Cylindrical object making contact with elastic layer with stress
SEISOTS.c.uuerenererreressessesnssesnssissesassessesssssesssssessssssssssssessensesnassesssssesssessenseseres 8
Denavit-Hartenberg link parameters............oceeeeeerenerereeserneresessesesesessnesene 22
Transformation of coordinates between SyStems..........cceeeeeveeerervesesvennes 24
Stick diagram of the PUMA 560 industrial robot...........ccecevveeverereaceennne 27
Closed form solution to IPO equations for the PUMA 560 robot............. 28
Example of multiple solutions to the IPO problemooveuveeevereuennne 29
Design process for programmable Application Specific Processor........... 48
Retargetable C-to-Silicon compilationc.ceeeeveeeeeuinisceenerereeeeennnnnns 52
Machine description file for a simple address computation unit............... 53
Microoperation file for address computation unit.................ceeeeeveeernennnee 54
Examples of 1ayout Parameters...........cueeererererereresesssesescsesesescscsseensesnssenens 55
High-level simulation of algorithm and architecture............c.ceeveveremennen. 56
SDL file (main parts) for address datapath with variable number
OF TEGISIETS.ocueueeeuenencnensenrsesecannsraesessssssssssssssasssassssessssssnnmmsssnssssssnssssns 57
Implementation of floating- and fixed point simulationce.u......... 58
Implementation of Profiling tooL.........ceeeeeerrererrneeereeerirersesesesssseseecncmenecnes 59
The architecture €Xploration PrOCESScecveeerrrererererarererersressesescsesssssens 60
Example of an architecture suitable for the C-to-Silicon system............... 61
Datapath for Decision Feedback Equalizer [svensson90] 63
Address unit for Decision Feedback Equalizer [svensson90] 64
The execution model is based on straight-line blocks of code
separated by arbitrary multiway branches.............ccooveeveeeeeerereeerenereennnn. 65
Code fragment corresponding to Figure 3-14..........coueueeueeerneuerererersrnnn. 66
Branch instruction generated by the compiler at the end of Block 32.......67
Controller architecture used in the Cathedral II systemo............. 68
Kappa controller architeCture.............o.evevereeeeenesiseseenccesnseseseesesesssssenenns 69
The chip design process in LAGERceeeeueueeereereeeeeneeseesesssnssanns 72
More detailed view of LAGER and OCT interaction during the
AESIZN PIOCESS.....euvecrecreuecnscnsansassaenrssassassessssessssssssmsssassasssnssesnsesssssssssnssses 73
Example of OCT facet containing design specification or information76
Example of a Stdcell design SpecifiCationccceeueeeeeeeveeessenesessnnnnns 77
Example of 4-row Stdcell 1ayoutc.evevveueeererereneeeseeeeeereseereesssseesenes 78
1-dimensional tiling €Xample..............eeeerereverrencuimnnecsencneaeeccnsessnsassesaens 79
User perspective and Library Designer perspective of a
Tiled Macrocell (TImLager CEll)..........cooueeeereeeeerereeerererenesesenesssessssssssns 80

xiii

Figure 3-26
Figure 3-27
Figure 3-28
Figure 3-29
Figure 3-30
Figure 3-31
Figure 3-32
Figure 3-33
Figure 3-34

Figure 3-35
Figure 3-36
Figure 4-1

Figure 4-2
Figure 4-3
Figure 4-4
Figure 4-5
Figure 4-6
Figure 4-7
Figure 4-8
Figure 5-1
Figure 5-2
Figure 5-3
Figure 5-4

Figure 5-5

Figure 5-6
Figure 5-7
Figure 5-8

Figure 5-9

Figure 5-10

Figure 5-11

A simple 2-dimensional tiling example..............eveeeeeeeereeereerereeseseesrnnns 81
Example of Flint floorplan and global routing................cceeevvevruereesesresnnns 82
A SIMPIE dAtAPALNo.cecrenerrrrrerrreserstere s s ssessesssosssssssesssnssssees 84
Generic floorplan for a datapatheceereevereeeerecnsessneeiseesssseneceseneenne 85
User’s and Library Designer’s perspective of the datapath compiler........ 85
Padring generation and pad-t0-COre routingce.eeeeeececeeenercnensaeenenns 86
Padroute uses a special channel router for ring-shaped channels.............. 87
Generating a THOR simulator from SDL...........ccccceeeueuenneeeninruenreecsessennns 89
CHDL templates are stored inside the OCT views and instantiated

and interconnected using MakeThorSim.........cceeererieererersrerevererensncenans 89
Switch level NMOS transistor device model used in IRSIM.................... 91
LAGER support for IRSIM simulation from layout.............c.ececerrvererenenen. 91
The CORDIC algorithms use vector rotations to compute

elementary fUNCHONSc.oeevererisecserssesesserensonsnesessssesssnsasssessrsesessssnesasans 104
RL code for the atan2 function computed using the

CORDIC MELhOQcovevernreirrrsnsrnensnnesisssssssesesssrersassssssssssesesessssssssasens 106
Small architecture variations had significant impact on the

PUMA chip performance and COSt (ar€a)cceceevereerervereererveresserasnens 111
The PUMA datapaths...........coovivieineiesnnnninenessesnsenssesesessssssessseesesessssens 115
Datapath with array Multiplierccocevevererrenereereesessereeresssseesesseessesnans 116
THOR simulation of PUMAL.........ccoeiverinnererieneniererenseresensessssssesessesens 119
IRSIM simulation of PUMAL..........cccoceuevereninrrereeesensssereseesessnsersssenesesesens 120
CIF plot of the PUMA Chipccoueceicuiencrneneneecneeenescecncsenesencscsencssssssencs 124
Generic flowchart for ConsolC Programs.........ccceceeereeessererereessesesererenes 129
Example of continuation paths in the complex plane.........ccccceeeeveruereneee 133
Example of continuation paths from the robot64p2gp program.............. 141

Individual histograms showing the frequency of various arc (path)

lengths among the 64 paths generated by each one of 3 different runs ...142
Histograms of max absolute values of variable and function

components on a per-path basis over 500x64 paths. Df(x)

has the largest values in this samplecccoceeeecevennrcnenrnicnsrcensccsesennencn. 144
Left: Max absolute value histogram for Example 3 (500x64 paths).

Right: Max absolute value of components of x (3x500x64 paths).......... 145
gmax and fmax histograms for f=(pana, puma, Example 3) goal

systems and 500 random goal points.There are 3x500x64 paths 146
hmax and Dgmax histograms for f=(pana, puma, Example 3) goal

systems and 500 random goal points. There are 3x500x64 paths 147
hmax and Dgmax histograms for f=(pana, puma, Example 3) goal

systems and 500 random goal POINLScc.ccereeeerereeceeeereesenrerersesnesesneans 148
Pipeline interleaving with 2 processors, and 2 paths being computed
CONCUITENLLYouviieiiiicnicnesrenseernernecaesseessaessaesssssssessaessaesssessassssassnessanens 151
The declaration of the Fix class used for fixed point computation.......... 156

xiv

Figure 6-1
Figure 6-2
Figure 6-3
Figure 6-4
Figure 6-5
Figure 6-6
Figure 6-7
Figure 6-8
Figure 6-9
Figure 7-1
Figure 7-2
Figure 7-3
Figure 7-4
Figure 7-5

Figure 7-6
Figure 7-7

Figure 7-8
Figure 7-9

Figure 7-10

Figure 7-11

Figure 7-12
Figure 7-13

Figure 8-1
Figure 8-2
Figure 8-3
Figure 8-4

Figure 8-5
Figure 8-6

Figure 8-7
Figure 8-8

Figure 8-9

Figure 8-10
Figure 8-11

Gauss/LU Step NUMDET K.....c.cerveirueerrnereniereresseessesnseesessesesessessesesassesasses
Gauss/LU algorithm without PiVOtIngccceverevereerereresereereeeneseresssaenens
Gauss/LU algorithm with partial (Tow) pivotingcoceeeveveverersvenseenes
Repetition count for selected lines of Gauss/LU algorithm.....................
Pipelining margin (PM)ccceceeeveeennrernrerererereessssssssssesesesesesesssesenes
Regular versus Interleaved back SubSttutioncoceeeeveververcrverenennes
The memory access patterns for the Crout algorithm..............ccoeveenenee.
Crout algorithm without pivoting (lincrsolnr.1.c).........c.cevevevevvrereececnenen.
Crout algorithm with pivoting (linCrSoIpr.1.C)......c.couevevevecveeercrcreruenennees
Block diagram of the AT&T DSP32C signal processorc.cecueuneen
Simplified block diagram of the MC96002 Chipccceververererererennnees
The MCO6K datapathccceeerrrreemerereerererresnsernenssesessssesesssenensosscsssssasns
The Address Generation Unit (AGU) of the MCI6Kooeeeeveeeveeerennn.

Assembly code for Gauss/LU inner loop a[]=a[]-m*b[] on
the Motorola MCOGK PrOCESSOTceueererereresrsseesesesesesssesssessasessseenne

Assembly code for Gauss/LU inner loop on Motorola MC96k
(CONUNUE)cveerrerrrrrrrereeieereiereseesesnesestsncensesesasssessessesessessensensesessosssssnes

Assembly code for Crout algorithm inner loop on the MC96k................
Block diagram of the TMS320C30 Chip...........ccevevreeemeeceerenececeeeesesnenenns
Main datapath of the TMS320C30c.ccceeeurererrerereeereerescseneressesecsensssens
TMS320C30 auxiliary register file and address arithmetic unit..............
Assembly code for Gauss/LU and Crout on the TMS320C30................
The central parts of the NEC Vector Pipelined Processor (VPP)............
Simplified block diagram of the WARP systolic processor.....................
Elimination datapathccoveeueeueeerereresnnseeecnsnsessecsensessessssssensssessns
Back substitution datapath............c..e.eeeeueeeereueeeceecennionseessnensessssessesesnns
Pivot search datapathoc.cceevvuerieeeuereeeneecrceceenesssssesesesssssssesssnns

Parallel pivot search based on comparing just the exponent
part Of the CaNAIALESccocverernreerererreeeeeeeseeiccesessensseeenssesesssseseseens

Consolidated datapath which can perform all three basic tasks...............
(a) Datapath in elimination and parallel pivoting mode

(b) Datapath in back-substitution Mode..............eveveevevevevevmeeeen
Datapath in reciprocal computation mode..............cceeeeenveeeeemrereesrereesnn.

Using a permutation table to translate row addresses
instead Of SWAPPING TOWS....c.ccerireruernrererenseressssseseesssenensesssnssnssessssssnssess

Rearranging the address bits to allow right-hand sides to be
stored as additional columns in the matrix a[][] ...eceereerereeneneneeeenenenens

Address composition from row and column components

Version of the Gauss/LU algorithm which works on augmented
multiple right-hand SIEScceeeveeveeeeeeeecceiiie oo seseseee e eessesesesens

Xv

Figure 8-12

Figure 8-13
Figure 8-14

Figure 8-15
Figure 8-16
Figure 8-17
Figure 8-18
Figure 8-19
Figure 8-20
Figure 8-21
Figure 8-22
Figure 8-23

Figure 8-24
Figure 8-25
Figure 8-26
Figure 8-27
Figure 8-28
Figure 8-29
Figure 8-30
Figure 8-31
Figure 8-32
Figure 8-33
Figure 8-34
Figure 8-35

Figure 8-36
Figure 8-37
Figure 8-38
Figure 8-39
Figure 8-40
Figure 8-41
Figure 8-42
Figure 8-43
Figure 8-44

(a) Address generation unit of SMAC (b) Contents of register files

and (c) Possible circuit implementation.............cocevereerevereeseeeeeseseessnesessnns 228
(a) TSPC p2-latch (b) TSPC n2-latch (c) 2-phase latchuuue...... 232
Circular shift register for testing sensitivity of TSPC latch

OPETration t0 CIOCK SIOPEcovureecrrrereererererseeenenesnnenesesssesesssesssssssscscsees 233
Pipelined multiplier using per-phase latch stages...........ccceceverevervcnvunnees 233
Multiplication: The parallelogram of partial products............ccceeverene... 234
4:2 compressor made from 2 full adderscceeeererereererererererrerereeenncnes 235
Basic cell of pipelined multiplier array...........ccccoeeeveereeerereeneeerereenesenes 236
Organization of pipelined multiplier array based on 4:2 compressors237
A possible floorplan for the pipelined multiplier............oceovevemerereernernene 238
Final floorplan for pmult...........ccceceeeeverereeernnrescssenesensereesenessesesessesesesenes 239
Logic diagram of pipelined Right-Hand Side (RHS) vector merger.......239
The RHS merger and the I/O latches must start with latches of the
appropriate polarity, so as to fit with the timing of the main array........... 240
Logic function of the bottom-side vector Mergercoceeeeveererrereraenenen 241
Tiling example for 8x8 pmult multipliercccevreeeerrereereererneeceenennes 242
pmult test Chip arChiteCtUrE..........cccerirerssnersseseesasosessessssssensnssesssssseseses 243
Input side test circuits for pmultccccceeereveerensecrereeeeresneseensssesessessesenns 244
Output side test circuits for pmult..........ccceeceeerereererereenesessereeneessssesaesennns 244
Timing of the input-side test circuits245

Timing of the output-side test CITCUILScceeerereereerereereererserseessernesnesens 245
CIF plot of pmult multiplier testchip (PMVt24C)cccoeeverureecnrerereresanes 246
Mantissa datapath for floating point adderccccceeveeeneceunceesvesecenscesenene 248
Exponent datapath for floating point adder...........ccevvevirsunisinisnnnsenennens 249
Mantissa alignment in 3.3ns using a logarithmic shifterc.ccceeeu.... 250
Mantissa normalizer built around logarithmic NOR-based

LR L {0 O 251
Block diagram of regfilewccinnininsinsninniinniniiininn. 253
Circuit diagrams of TEBAIEWccceceeerecrrerrrrecrnesnessresersesuesnsessessassssenes 254
Floorplan for the top level of 256x32 regfilew layout..........cccceereveeunecne 255
CIF plot of the 256x32 regfilew test chip (T€gW256C)....cc.cccecveuereeveresnnes 256
Block diagram of hpla...........cccvevenirennncesrccsssnnesneneessnnessssnsssssnsnsssnonses 257
hpla Circuit SChEMALICcoererrerrereernesrerecrenseresneesseneeseeseeseessssseaessessessens 258
Timing and latency Of hplacccccvveeciecereenneceessesssessnesesssaessesnosessnsonses 258
Floorplan and tiling of hpla. Each square denotes a leafcell.................... 259
IRSIM simulation of a hpla design at f=250MHz...........c.cceceererererrernee. 260

xvi

Table 1-1
Table 1-2
Table 1-3
Table 1-4

Table 1-5
Table 3-1
Table 3-2
Table 3-3
Table 3-4
Table 3-5

Table 4-1

Table 4-2
Table 4-3
Table 4-4

Table 4-5

Table 4-6

Table 4-7
Table 4-8
Table 4-9
Table 4-10
Table 4-11
Table 5-1
Table 5-2

Table 5-3
Table 5-4
Table 5-4
Table 5-5

Table 5-6
Table 5-7
Table 5-8

List of Tables

Use of application specific integrated circuits and systems............. 2
Typical characteristics of DSP and NP algorithms...........c.cccceverenee. 4
Some standard programmable DSP building blocksccceuune. 10
Performance of DSP chips for LU-decomposition

(NO PIVONE) ...ueereererrereereneersersersessessessessessessesssessersessassesssossossessonses 10
SIERA uses a layered approach to system implementation 17
Main programs and design styles of the LAGER system.............. 71
Fixed contents of an 0CtOBJECEccceeeeerrrererrnrererererenserenenenenesenes 75
Variable contents of an 0CtODJECtccereevruerrererverereenerrenereenesesnanes 75
Example of parameters for some tiled macrocells................cuu.... 79
The primary IRSIM model parameters for a MOSIS

L.214m CMOS PIOCESS.....ocurrerernuruseserarenerssarssssssasesenessssssssssesssssens 92
The IPO algorithm is intensive in multiplication and

tTigONOMEMriC fUNCHONS.....cucveerererererererererererenerereereecseseseseasaensane 102
Cordic functions consist mostly of shift/add operations.............. 103
The set of angles used in the CORDIC iterations..............c.oee.... 105

(a) Fixed point representation (b) Rules for fixed point
computation (c) Scaling classes for the variables

Of the IPO COMPULALION.eveverererererererereserenesenenesensorsssnssosesenes 107
Design tradeoffs affect layout area, static instruction count

and dynamic inStruCtion COUNL..........ceerreveverenecreerereecnsenenonsnssnns 113
Effect of design decisions on code size (static instruction

count)and code execution time (dynamic instruction count)....... 113
Special THOR utility models for PUMA debugging................... 118
The electrical design rule checked by the erc program............... 121
Simulation and test chip measurement results............................. 122
Physical design characteristics of the PUMA chip...................... 123
Measurements on the PUMA Chip........ccccouuveeeeemevemeereesessennnns 123
Software modules of the ConsolC family...............cereuvererurnnnn. 130
Different homotopies used to formulate and solve

TPO €QUALIONS.......ocverneeecnierarnsnaeresesesssessssaesessesesssesessssssnsssens 130
Programs in the ConsolC package............c.eueeeeeerrerererererererennns 131
Coefficients used for the random starting system in consol6r.....133
Coefficients used in the system solved in Figure 5-2 134
Starting points an end points for the 4 continuation paths

OF FAGUIE 5-2 ..ueieeeerirererierernense et esessasessesssassessssssessssens 134
Hints for solving (5-13) by hand.........cceoeveeeveeeeeeereeereeeeeeon. 138
Options for the robot64p2gp programeeeeeeeveveveevevernne. 140
Profiling results for robot64p2gp..........cceuvereeveeeeeeeeeesreresssernns 149

Xvii

Table 5-9
Table 5-10

Table 5-11
Df(x)
Table 5-12

Table 6-1
Table 6-2
Table 6-3
Table 6-4

Table 7-1
Table 7-2
Table 7-3

Table 7-4
Table 7-5
Table 7-6
Table 7-7
Table 7-8
Table 7-9
Table 7-10
Table 8-1
Table 8-2
Table 8-3
Table 8-4
Table 8-5
Table 8-6

Impact of parallelization on relative runtime of function

evaluations versus linear system SoIving.............ccoceeueueverererennnnn. 150
Convergence of ConsolC/robot64p2gp in single-precision
ATIEAMELIC co..vovvovereeeeecseennseasessssesaanstes s ssessssssssscmsensensenseaseans 152

Scaling of the fixed point variables used in computing f(x) and
154

The coefficients of (5-12), in terms of the goal point position,
orientations and the robot Denavit-Hartenberg parameters.

Ja[i]=A, MUSL oot sscnesenesesssssesssssens 159
The key arithmetic instructions of the Gauss/LU algorithm........ 168
Statement profile for Gauss/LU algorithm without pivoting....... 169
The key arithmetic instructions of the Crout algorithm............... 177
Simplified view of some key properties of linear

€quation algoTithmS........ccceeerererrerererennerereraesesersesesensesesenesesnones 181
Reservation table for data bus during one machine cycle 185
Generic form of MAC and MADD instructions............cceceevune. 187
Reservation table for relevant hardware units during
multiply-accumulate or multiply-addccceeverevereereneverenenene 187
Delays of DSP32C hardware blocks (number of states).............. 187
Optimized hand-coded versions of matinv.lib.s routine............... 189
Instruction pipeline of the MCO6k...........cccoeereuererenrerernnrererrerennns 192
Memory and bus allocation during MC96k instruction cycles....193
Instruction pipeline of the TMS320C30........ccccecererererenrerererarennns 200
Memory and bus allocation during C30 instruction cycles.......... 201
Some commercial RISC families and chipsc.ccceceeeevevereneee. 209
Relative merits of commercial hardware platforms..................... 216
Instruction set for address computation unit...........eceeeeuerereereranes 227
Branching logic for triple-nested 100PScccceeveenererrerereenesennnns 230
New datapath cells for floating point..........cceeerereerverrerrerrersenrannes 247
New TimLager tiling primitives used in hpla........ccccecereververennee. 260
The pads of the pads12 familyccccccrereerreruenereereneccseneerencnnens 262

xviii

CHAPTER 1

INTRODUCTION

The late 1980s produced a tremendous development in the area of Application Specific Integrated
Circuits (ASICs) and systems. Consumer electronic products such as Compact Disc (CD), Digital
Audio Tape (DAT) players and video camcorders typically contain several ASIC parts.
Telecommunication products such as mobile radios and telephones contain ASICs because of the
requirements of compactness, low weight and low power consumption. A list of common

applications is shown in Table 1-1.

What should be noted from this table is that the computationally intensive portions of these
applications fall within the domain of Digital Signal Processing (DSP). There has been little
development of ASICs that can be classified as belonging to the general area of Numerical
Processing (NP). We conclude that the development of computationally intensive ASICs in the

1980s has largely been driven by DSP applications.

Common to most application specific systems is that they are embedded systems, meaning that

they are intended to be self-sufficient and self-contained. This means, in particular, that they

Application area Product Acronyms

Consumer Digital Audio (CD, DAT, DCC) Compact Disk
Video products (camcorders, editing) Digital Audio Tape
High Definition Television (HDTV) Digital Comp. Cass

Telecom Mobile radio and telephony SDH=Standard
Cellular radio Digital Hierarchy,
Wireless computer networks ATM=Asynchrono
Video telephone us transmission
Voice-band data modems mode, DES=Data
Switching systems (SDH, ATM) Encryption Stan-
Encryption (DES, RSA public key) dard, RSA=Rivest-
Speech recognition Shamir-Adelman.
Speech synthesis

Workstations and | Graphics processors JPEG=Joint Pho-

computer products | Video compression (JPEG, MPEG) tography Expert
Multimedia support (audio, image) Group, MPEG=-
Vector processing units Motion Picture
Disk drive read/write channel Expert Group.

Imaging Medical imaging
Image analysis and reconstruction

Table 1-1 Use of application specific integrated circuits and systems

cannot and do not rely on outside computational power from a general-purpose computer,

typically because of size, power, economical and communication constraints. For systems
requiring numerical processing, the solutions has traditionally been to build special purpose boards
based on off-the-shelf microprocessor or DSP chips [chen86][gagli86][nara86](nara88]. The
reliance on ASIC solutions has been much lower than in embedded DSP systems, partly because
the design of numerical ASICs is often a more complex problem than the design of DSP ASICs
and partly because the benefits were unclear. However, the demands on size, power and

performance pertain to all embedded systems, and it will be shown that ASIC solutions for

Numerical Processing will also result in considerable advantages.

/\/\/ — filter —>/\/\

Figure 1-1 DSP versus Numerical Processing (a) Digital filter (b) Solving nonlinear
equations

1.1 What is Numerical Processing?

The differentiation of Numerical Processing from DSP is not obvious. After all, both areas
necessarily involve digital computation in some form. A typical example of DSP versus NP is
illustrated in Figure 1-1. The digital filtering example has many of the characteristics of a DSP
problem, such as an indeterminate data stream and real-time flow-through processing. The
numerical example, on the other hand, consists of finding the solution(s) of two 2nd degree

polynomial equations in two unknowns, corresponding to the intersection of two ellipses.

Digital Signal Processing
%
Indeterminate length data stream

Numerical Processing

Finite data set

Data originates as an analog real-world
signal

Data is an equation that needs to be solved

Add, Multiply, Delay, Accumulate

Modifying data stream Computing solution to equation
Closed form algorithm Iterative algorithm
Scalar and vector operations: Matrix operations:

Gaussian elimination, LU decomposition

Flow-through processing (data streams
through pipelined datapath)

Data is shuffled back and forth between
memory and datapath multiple times

Circular buffers, FIFO buffers

Matrix indexing, pivoting, permutations

Table 1-2 Typical characteristics of DSP and NP algorithms

Table 1-2 is an attempt to contrast DSP and NP by making a more complete list of some their

opposing characteristics. The table itself is just a list of differences, and it does not attempt to

explain the ramifications of these differences, but these will become clearer in later chapters as

examples are considered in detail. The next section presents examples that will help establish the

distinctive features of Numerical Processing.

1.2 Examples of Numerical Processing

In this section we will introduce two applications of numerical processing that will be used as

design examples later on. Both examples are taken from the field of robotics, but this is mostly a

coincidence. Under the surface, the examples contain elements that are common to many NP

problems, and this means that they can serve as interesting design examples in this dissertation.

]::0 (Px . Py P2)

6

¢; = cosO;
Si = sinb; o)
rix = components of 3x3 orientation matrix

Figure 1-2 A fully articulated robotic arm

1.2.1 Inverse Position-Orientation problem for the PUMA
robot

This application comes from the field of robot control and path planning, and is known as the
inverse position-orientation (IPO) problem!. The background is as follows: The most advanced
industrial robots have 6 revolute joints (6R) driven by independent actuators. A typical such robot

is shown in Figure 1-2,

The robot is controlled by executing a particular position/speed/acceleration profile (over time) for
each separate joint, and employing feedback to correct deviations from the given profile. However,
the robot task is more naturally described in cartesian space than in joint space. Hence, we need to
be able to compute a set of joint angles that correspond to a given position and orientation of the

robot hand in the cartesian workspace. Our task is to compute the solutions of the IPO for the

1. Also known as the Inverse Kinematics problem

6

Puma 560 robot.

The input to the IPO algorithm for the PUMA 560 [craig86] is a data set that specifies a goal
position and orientation for the robot end-effector. The algorithm itself is a closed form, but
repetitive, calculation that executes 4 times to find all the solutions to the problem (there are 8
solutions total and the algorithm computes 2 of them at a time). The nature of the computation is

geometrical, and the algorithm depends heavily on trigonometrical function evaluations.

1.2.2 Inverse Position-Orientation algorithm for general 6R
robots

A closed form solution to the IPO problem for 6R robots is known only for the case when the last
three joint axes intersect in a point [pieper68]. If the robot has a more general form, the solution
cannot be found in closed form and the problem has to be attacked using an iterative numerical
procedure. A goal position and orientation is commonly described in terms of a 4x4 matrix T
which contains a 3x3 submatrix R that specifies the orientation and a 3x1 vector p that specifies

the position. The equations that must be solved come about in the following way:

The functional relation between the angles 6=(61,62,03,04,05,06) and the resulting position and
orientation T=(R,p) can be derived easily, so that T=f(6). Our problem is to solve the equation
f(6)=T, with T given, with respect to 8. If we consider c;=cos(6;) and s;=sin(8;) to be our basic
unknowns, then the equation can be arranged so that it has the form of a system of n polynomial
equations in n variables (unknowns), with terms up to 2nd degree present [tsai84]. The number of
equations and variables to be included can also vary (with the extraneous variables being
computable from the ones contained in the equations). One particular system with 8 complex-
valued variables (4 sines and 4 cosines) will be used in this work. This means that we have a
system of 8 complex equations in 8 variables. When the system is “realified”, that is, the real and

imaginary parts of the variables are treated separately, we can tum it into a system with n=16

variables and equations.

7

The preceding paragraph implies that the IPO problem has been refined into a problem of
computing all solutions of a nxn system of 2nd degree polynomial equations. This has long been
considered a difficult problem in numerical mathematics, and only in the last 10-15 years have
robust methods been developed. The biggest problem is the requirement that all solutions to the
system must be found. It is often possible to find at least one solution using a simple numerical
method, but finding al the solutions is much more difficult. Two different approaches
[tsai84][morgan86] [manocha92] have been successfully developed during the 1980s, and we will

be concentrating on the method developed by Morgan and others.

Morgan’s method is called homotopy continuation, and is based upon finding and solving an
“easy” set of equations that is “close” to the “difficult” system that we really want to solve. Theory
has been established which proves that there exists, under mild restrictions, a path from the
solutions of the easy system to the solutions of the difficult system, and that one can track these

paths using an iterative scheme, typically involving Newton’s method [dahlquist74].

Applying Newtons method to solving a nonlinear nxn system h(x)=0 involves three major parts,
namely computing h(x), the jacobian matrix Dh(x), and solving a linear system of nxn equations.
Of these three steps, the first two can easily be parallelized and computed on one or more general
purpose DSP chips. Solving the systems of linear equations is the bottleneck in the process, and is
what we will concentrate on as our core numerical problem for this particular application. In fact,
most (if not all) multivariable iterative numerical problems will, if examined in detail, boil down to
solving linear systems or performing other matrix operations. In other words, linear algebra is the
key, and will be the focus of the second design case considered in this dissertation (Chapter 5 -

Chapter 8).

Other applications involving polynomial systems

The IPO computation for the general 6R robot is just one example of an application where the

problem essentially is computing all solutions of a system of polynomial equations. This

Figure 1-3 Cylindrical object making contact with elastic layer with stress sensors
(from [pati88])

numerical problem arises in a number of other applications, including 3D graphics, kinetics of

chemical reactions, and solid modelling [morgan87a].

1.2.3 Sensor inversion problems

Sensor inversion problems are common in systems that use arrays of sensor to measure some
physical quantity and then need to translate the measured quantity into useful information. One
example is from the area of tactile perception, where a mechanical hand is equipped with pressure
(stress) sensors on its fingers, and one wants to compute the force and/or the shape of the contact
area between the hand and the object that the hand is gripping. Such shape and force information is
needed to be able to perform dextrous manipulation of the object by the hand. This problem has
been studied in [pati88][fearing91], among others. Figure 1-3 shows the model used in [pati88].
The equations governing this system is the integral equation

oo

e.0) = [1xy-3f00d5 (1)

—c0

where £() is the resultant strain, t() is the “impulse response” of the elastic material and f () is the

9

applied force (or line pressure). The problem now is to compute the line force f from the measured
&(). This can be achieved by discretizing the equation over the region of interest, resulting in a

system of linear equations

e=Tf or Tf=c¢ (1-2)
where we can solve for the force vector f. Depending on the sensor and hand configuration, the
size if the linear system will vary but should remain fairly small (n<16) for most applications. A
multifingered hand may have many sensor arrays and will need considerable amount of numerical
processing power to compute all the forces on all the fingers in real time (100Hz sampling rate).
The force (and possibly shape) information could then be fed to the. control system to achieve
dextrous manipulation of the object. It should be mentioned that inversion problems of this type
are often somewhat ill-conditioned and may require Least Squares solution methods, which

nevertheless will amount to linear equation solving in the end.

1.2.4 Other numerical applications
* Control systems: (recursive) state estimation, (recursive) parameter estimation, system identifi-

cation, Newton-Euler equations for robot dynamics.
* Radar, antenna array processing, multivariable signal processing.

* Real-time optimization, flexible structure control.

1.3 Implementation alternatives for NP systems

Because of differences between DSP and NP, such as the ones shown in Table 1-2, the
architectures and design methods used for DSP systems are not always directly applicable to NP
design problems. We will now discuss some of the building blocks, design tools and methods used
for DSP ASIC design, and indicate some of their shortcomings with respect to Numerical

Processing problems.

10

1.3.1 DSP building blocks

The first distinction we need to make is between systems based (partly) on off-the-shelf building
blocks and systems based on ASIC (full custom) solutions. Table 1-3 shows some of the most
common DSP building blocks. The question is whether these processors can be efficiently applied
to numerical problems. The answer is that in many cases they are in fact very attractive candidates:
All of them support floating-point arithmetic and they work at quite decent clock speeds by today’s
standards. However, for certain numerical problems, such as matrix computations, the processors
are not ideally suited. As will be explained in detail later (Chapter 7), none of the processors are
capable of executing the inner loop of a Gaussian elimination (or LU-decbmposition) at full
pipeline speed. Table 1-4 shows the performance of some common DSP chips on the inner loop of
LU decomposition. It turns out that all the standard DSP chips have been designed with one goal in
mind, namely single-cycle execution of the inner loop of FIR and IIR filter programs. In essence,
the problem is that FIR/IIR filters needs multiply-accumulate (MAC) instructions whereas LU

decomposition needs multiply-’add(-store) (MADD) instructions. The MADD instructions involve

Building block | Manufacturer Clock frequency | Instruction latency
DSP32=C A’I=T 50.0 MHz 80ns
TMS320C30 Texas Instruments 33.4 MHz 60ns
MC96002 Motorola 40.0MHz 50ns

Table 1-3 Some standard programmable DSP building blocks

Processor Icycles/iteration Time/iteration Ideal time
‘DsPi2c | 15 | 120ms | 20ns |
TMS320C30 2.0 120ns 60ns
MC96002 2.0 100ns 50ns

Table 1-4 Performance of DSP chips for LU-decomposition (no pivoting)

11

3 memory references (2 read, 1 write) instead of 2, and none of the commercial DSP architectures

are designed with this requirement in mind.

In addition, there is the problem of pivoting [dahlquist74]. For all but trivial-sized LU problems, it
is necessary to rearrange the rows of the matrix after each major elimination step, so as to preserve
the numerical stability of the procedure. This rean‘angemc'ant can be done by outright swapping of
rows in the memory or by using a level of indirection in the addressing so that the row address is
passed through a permutation table which holds the information about how the rows are currently
rearranged. The DSP chips are even less able to deal with this type of situation. An extra level of
indirection will lead to additional stall of the floating-point pipeline, and decrease the performance
of the inner loop by another factor of 2 or 3. This means that the chips may run at only 1/5 of their

peak rate, which is clearly not very good utilization of their high-speed floating-point units.

A third problem with programmable DSP chips is that they are not generally available as chip
cores, that is, a designer cannot take one of the DSP chips and use it as a core around which to put
other functional blocks, all on one chip: It is often the case in e.g. telecom applications that a
designer would like to have the basic functionality of a programmable DSP chip, but will also need

to integrate it with other more specialized functions on a single chip.

Finally, even if the DSP is available as a chip core, one will often see that only certain parts of the
core are really useful, meaning that there is a lot of wasted area on the chip. If the designer needs a
programmable chip solution, it would be better to have architectural flexibility so that the designer
can include exactly those features and functional blocks that are needed. This theme will be

explored in Chapter 3 on C-to-Silicon compilation.

1.3.2 General purpose computers

The scope of this dissertation is embedded, real-time, application specific systems. As indicated
earlier, such systems are typically constrained in size, weight, power consumption and

communication capability. This means that general purpose computers (workstations,

12

supercomputers, etc.) are generally not a viable option. One could consider building systems based
on commercial microprocessors (P) and floating point coprocessors, but this alternative involves
complications such as the need for external memories, caching schemes, memory management
overhead and system busses. These complications are even more a concem for general purpose uP
chips than for DSP chips, since DSP chips always have a fair amount of on-board memory and do
not support virtual memory. The conclusion is that most uP chips are not a good alternative for
embedded NP systems. However, to be fair, Chapter 7 contains an extensive and often detailed
evaluation of a number of alternative implementation vehicles, including several DSP chips, RISC

Microprocessors, Vector processors and other more specialized architectures.

1.3.3 ASIC DSP design systems

There has been considerable work done in the area of ASIC DSP automatic design tools.
Currently, the most popular form of these toolkits is the integrated CAD environment, meaning a
“complete” system which supports all aspects of the design process. Many such toolkits are now
available either from academia or from commercial vendors. The toolkits are typically
distinguished by application area (specialization), and what level of detail the input description is
at. For example, there are systems that use structure descriptions, RTL descriptions and behavior
descriptions as their main input form. Some of the systems will be discussed below, mainly
HYPER [rabaey91], Cathedral-II [rabaey88], McDAS [hoang92], PADDI [chen92], LAGER,
FIRGEN [jain91], BLIS [whitcomb92], Olympus [micheli90] and C-to-Silicon [thon92](rb92].

Most of the work in this dissertation is based on the LAGER [rabaey85] [shung89]
[shung91][rb92] design tools, either by direct application of the tools or building on top of them.
The core of LAGER is a silicon assembler that allows a high-level structure specification of an
ASIC in terms of parameterized functional blocks. A limited behavior specification capability is
also supported in terms of boolean equations. LAGER comes with a fairly extensive collection of
prédesigned library blocks which the user can call up, parameterize (personalize) and interconnect

at will. The purely structural approach is most often used when performance is critical so that

13

manual design of the structure of the datapaths, memory and control is necessary.

LAGER is the common denominator of several higher-level synthesis systems and architecture
exploration tools. HYPER [rabaey91] is a synthesis system which converts a dataflow algorithm
specification into a hardwired ASIC implementation. The algorithm is specified as a data
flowgraph using the Silage language, and HYPER goes through several steps such as resource
allocation, datapath synthesis, operation scheduling and control synthesis to produce the structure
description that is passed on to LAGER. HYPER also can target other implementation forms than
ASIC chips. McDAS [hoang92] and PADDI [chen92] are two subparts of HYPER that target
multiprocessor DSP implementations and field-programmable DSP architectures, respectively.
However, common to all HYPER tools is that they target medium data-rate applications and that
they generate hardware implementations with flow-through pipelined processing, low levels of
resource sharing and fairly simple hardwired control. This of course reflects upon the basic design
decision which was to base the tools on dataflow-type algorithm descriptions. Many DSP
applications fit well into this pattem, but this is unfortunately not the case for a typical Numerical

Processing problem.

C-to-Silicon [thon92] [rb92] is an architecture exploration and design system for programmable
ASIC DSP chips. It allows a procedural description of the users’ algorithm in the RL language
(which is a subset of C extended with a fixed-point datatype [rimey89]), and generates a
microprogrammed ASIC, using a progressive refinement of architecture descriptions provided by
the user. The strength of the C-to-Silicon system is that the user only needs to provide a very high-
level description of the architecture in order to compile the algorithm and get accurate information
on program size and execution speed. Only after the appropriate architecture has been determined
is it necessary to develop the more detailed structure description. The RL compiler is retargetable
by the architecture description and can thus cover a wide variety of possible architectures and
performances. C-to-Silicon is typically better suited for Numerical Processing than is dataflow

synthesis programs, since numerical algorithms tend to contain more control (conditional

14

execution) and a much higher degree of resource sharing and iterative reuse of data. Chapter 3 and
Chapter 4 of this dissertation describes the C-to-Silicon system and how it was applied to design
the PUMA chip. However, C-to-Silicon is certainly not suited for all kinds of numerical
algorithms: Matrix operations, matrix addressing, and pipelined vector processing are not easily
expressed in C, resulting in a considerable performance penalty. For such purposes it will be

necessary to apply more direct, specialized and less automated methods.

Another tool built on top of LAGER is FIRGEN [jain91]. FIRGEN generates FIR filter layout
from a frequency domain specification, by first generating a structure description from the
behavior description, and then let the LAGER tools and cell libraries create the layout. In fact,
[sriva92] points out that this appears to be a common theme for the higher-level design tools:
There are two phases of the design; one that generates an architecture (structure description) from
a behavior specification, and the other that generates the physical layout from the architecture. The

two phases communicate via a well-defined structure description interface.

Other ASIC DSP design systems include Cathedral-II [rabaey88], Bit Serial Silicon Compiler
(BSSC) [jassica85], BLIS [whitcomb92] and Olympus [micheli90]. Cathedral-II is somewhat
similar to HYPER and is also geared towards medium rate DSP applications rather than Numerical
Processing. Bit serial arithmetic, as in BSSC, is not practical for numerical applications, which

most often require floating point hardware.

BLIS (Behavior-to-Logic Interactive Synthesis System) is a high-level synthesis system suited for
control-dominated designs, such as cache controllers, microprocessors, communication chips, etc.
BLIS supports functional-level synthesis from the ELLA language. Olympus is a synthesis system
based on the Hardware-C language. It supports multilevel synthesis, technology mapping and
simulation. BLIS and Olympus assume that there exists hardware primitives, typically at the gate
level, that can be used to assemble the layout. While these are indeed impressive design systems,
assembling the hardware from primitives (Standard cell, Sea-Of-Gates, gate array) most often will

not suffice when targeting high-performance Numerical Processor design. BLIS/Olympus are

15

reasonable alternatives for less performance-oriented designs such as the PUMA chip (which was
based on the C-to-Silicon system, Chapter 4). However, the C-to-Silicon system is by no means
restricted to low sample rates or clock rates, as the user can obtain high levels of performance by
providing the necessary high-speed building blocks. One could argue that BLIS/Olympus can
solve this problem as well by supplying them with the same building blocks, but that would in a.
sense defeat the purpose of the systems, considering that their main goal is exactly to synthesize
the blocks that are needed in the design. Finally, the synthesis systems, by nature, offer less control
over the resulting architecture, and it is not as easy to perform architecture explorations as in the
C-to-Silicon system. The lack of direct support for fixed-point (or other non-bitvector-like

datatypes) should also be noted.

1.3.4 DSP board-level design tools

Although the scope of this dissertation is Application Specific Integrated Circuits (ASICs), as
opposed to Application Specific Integrated Systems (ASISs), it seems relevant also to consider
some tools that are used for board-level design, since board-level systems certainly can be built for

the purpose of Numerical Processing as well as DSP.

Ptolemy [ptolemy91] is a DSP block-diagram simulator and to lesser extent a system
implementation tool. It supports multiple computation models such as synchronous dataflow,
dynamic dataflow and event-driven simulation. The computation models are called domains. The
synchronous dataflow domain has a code-generation capability which allows generation of code
fragments that can be tied together and executed on commercial DSP chips such as the Motorola
MC56000. This approach combines some of the dataflow concepts as seen in HYPER with the use
of commercial DSP building blocks. The drawbacks with respect to Numerical Processing are the
same as mentioned earlier. Being mostly a simulation environment, Ptolemy does not have any
support for the actual board design or assembly of the hardware. The code fragments can be
plugged into the processor(s) but the designer must add on the code and hardware necessary to

allow data communication and other interaction between the processor(s) and the outside world.

16

Vulcan-II [gupta92a][gupta92b] is a board-level design system which is under development at
Stanford University. It provides the ability to map an algorithm described in Hardware-C
[micheli90] to multiple ASICs and one software-controlled microprocessor, such that part of the
functionality is implemented in software. Vulcan itself performs the partitioning subtask, with the
chip designs being carried out in the Olympus framework and the software being developed on a
workstation or a uP/DSP development system The novelty of Vulcan is that the partitioning is
taking place at the algorithm description level, as opposed to the more common hardware module
partitioning. Vulcan is helpful in determining a reasonable partitioning of the algorithm onto
different hardware blocks. Other systems typically rely on the expertise of the designer to perform
this task. Sometimes a designer can also do a good job at algorithm-level partitioning, given the
expert knowledge about the purpose and nature of the computation. Manual partitions often are
done along natural functional boundaries. An example of functional partitioning is presented in
Chapter 5, where it is shown that one part of a problem is suited for a chip implementation, and the

remainder can be implemented on a generic programmable processor.

Siera

Siera is a board-level system design tool under development at UC Berkeley [sriva92]. The
system uses a layered approach to system design (Table 1-5), where the layers represent increasing
specialization, communication bandwidth and ability to meet real-time constraints. The board-
layout generation facilities of Siera were modelled after LAGER, using the SDL language and

parameterizable modules as the main features.

Siera is a flexible and powerful system that can be used for a variety of applications, including

board-level design of Numerical Processing systems.

1.4 Problems in Numerical Processor design

Examining the above examples has revealed that many of the architectures, design tools and

design techniques used in the DSP world are not necessarily well suited for NP chip designs. The

17

requirements of NP applications vary widely, as will be demonstrated by the relatively large
differences between the PUMA chip and the SMAC (Chapter 8) architecture. Still, there are
certain common features that need to be supported, even if they are not present in all NP tasks.

They are:

* Architecture. Emphasize architectures that support iterative processing as opposed to flow-
through processing. Support multiport memory access and efficient addressing and address gen-
eration techniques, especially for 2-dimensional addressing (matrices). Support pivoting for
efficient row operations in linear algebra problems. Use deep pipelining to achieve high-speed

vector processing.

* Tools. Emphasize the ability to explore a variety of architectures so that it becomes easy to
select a cost-effective implementation. Support high-level algorithmic input and the proper
arithmetic datatypes for numerical tasks.

* Circuit techniques. Pipelining and the resulting high clock rates make the latches and the
clocking schemes critical. Consider using newer clocking schemes such as TSPC (true single
phase clocking) [yuan87][yuan89][afghahi90]to cut down on the number of clock wires and to

reduce clock skew problems.

Layer Implementation level Examp.le Hardware{Softwarc
implementation
_l Work;tation T Sparc 2 —

SUN OS 4.1

2 Single-Board Computer | Heurikon HKV-30 (MC68020) on LAN
Vx Works kernel

3 Processor Module TMS320C30 on VME bus
SPOX kemel

4 ASIC Slave Processors Pulse Width Modulator (Motor Control)
Slave Bus

Table 1-5 SIERA uses a layered approach to system implementation

18

1.5 Summary

The purpose of this chapter is to establish that current design tools and methods for DSP ASICs
and systems are not always sufficient when transplanted into the domain of Numerical Processing.
The remainder of this dissertation describes two cases of Numerical Processor tool and chip
development, starting out with a concrete numerical problem, some algorithmic altematives and
previous designs of ASICs for DSPs as the background setting. The algorithms have been
analyzed in detail to establish their architectural and implementation requirements, and tools as

well as chips have been developed.

The first case is the development of the C-to-Silicon design system (Chapter 3) and its use to
design the PUMA chip (Chapter 4). C-to-Silicon is a high level design system that supports the
design path from a C program algorithm description down to silicon implementation, while
providing powerful tools for architecture experimentation, performance estimation and numerical

verification. The PUMA chip is the prototype design for the C-to-Silicon system.

The second case is the design of the Small MAtrix Computer (SMAC) architecture, and the design
of a set of hardware building blocks that can be used to implement SMAC. The SMAC chapters
also presents details of high-speed circuit design, addressing architecture and pipelined floating-

point design.

Both PUMA and SMAC have their background in the robot IPO problem introduced in this
chapter. PUMA implements the simpler case, whereas as SMAC is aimed at the general case as

well as other numerical problems involving matrix computations.

The remainder of this dissertation is organized as follows:

* Chapter 2 is a survey of the robot IPO computation problem.
* Chapter 3 presents the C-to-Silicon system.

* Chapter 4 describes the architecture exploration and hardware development of the PUMA chip.

19

Chapter 5 surveys background material on the homotopy continuation method used for solving
nxn polynomial systems, in particular as applied to the general 6R robot IPO problem. A pro-
gram package (ConsolC) is developed to experiment with different algorithms and to establish
some numerical properties of the algorithms. It is found that the computational bottleneck is to

solve small systems of linear algebraic equations.

Chapter 6 discusses available algorithms for solving linear equations. An investigation of the
properties and computational requirements of the algorithms are presented.

Chapter 7 is an evaluation and comparative study of commercial computing architectures with
respect to their efficiency in solving linear equations. The basic architectural requirements for

an Application Specific Processor are identified.

Chapter 8 describes the SMAC architecture, and the design, simulation and testing of a collec-
tion of high-speed building blocks for SMAC.,

Chapter 9 is the conclusion.

CHAPTER 2

INVERSE POSITION-
ORIENTATION (IPO)
COMPUTATION

The Inverse Position-Orientation (IPO) computation is a classical numerical problem that will be
used as an example in this work. It is ideally suited for an investigation of Numerical Processing,
because there exists a variety of algorithms for the IPO problem, ranging from fairly simple to
quite complex. This means that we can draw upon several different approaches to IPO to illustrate
various aspects of Numerical Processing while at the same time staying within the same general
application domain. This chapter will introduce IPO problems at several levels of complexity and
generality and explain how they can be solved using Numerical Processing techniques. The
algorithms will to some extent be explained in detail, based on the work of Morgan
[morgan87a][morgan87b]. Though much of this chapter is mathematical in nature, the conclusions
are simple and have immediate implications with respect to Application Specific Processors,

which is our primary focus. We will start out by describing the general IPO problem.

21

22

2.1 Kinematics of mechanisms

A general mechanism (robotic or otherwise) consists of rigid members (links) connected by joints
allowing relative motion of the links. Joints can be either prismatic (sliding, translational) or
rotational. Figure 2-1 shows a general geometrical model (the Denavit-Hartenberg model) of a
link-joint mechanism. A general link (Link;, 1y and the one joint (Joint;,) rigidly attached to it can
be uniquely described for kinematic purposes by a 4-tuple of parameters (3;, d;, o, 8;) known as
the (length, offset, twist, joint angle) of the link. The parameters are derived from the geometry of
the link as seen relative to the plane which is uniquely determined by the lines through the joint

axis of the previous link (z;) and the joint axis of the current link (z;,). Translational links have

Zi+1

Linkj,o

Xj+1

o;

Joint;,y

Figure 2-1 Denavit-Hartenberg link parameters (adapted from [morgan87a])

23

variable values for the offset d; and rotational links have variable values for the joint angle ;.

One of the basic problems in mechanism theory is to compute the position and orientation of the
joint at the end of the last link in a series of links, given the constant and/or variable values for the
Denavit-Hartenberg parameters. This problem is known as (forward) kinematics. It is assumed that
each joint has a coordinate system rigidly attached to it, with the origin of the system defining theb
joint position and the directions of the unit coordinate vectors defining the orientation of the joint.

The position and orientation are usually expressed in the form

Px ISTRSVRE!
P =1py R = 1, 1y Ty (2-1)
P, T3) I3y Ig3

where p is the position vector and R is a 3x3 orientation matrix. The 3 column vectors of R give
the coordinates of the unit vectors as seen from the coordinate system on the previous joint (or

some arbitrary base system in case the link in question is the first one in the chain).

Transformation matrices

The mathematical construct for handling this type of geometrical problem is known as the
homogenous transform. Suppose that we have three coordinate systems (0,1,2) placed arbitrarily
in space, with O considered the base coordinate system. Also suppose that we know the orientation
R12 of system 2 (in 1-coordinates) and the orientation R of system 1 (in O-coordinates). Suppose
further that we know the vector p01 (in O-coordinates) and the vector p"’ (in 1-coordinates). We
would like to compute the position vector p“2 and the orientation R%2 (in O-coordinates). Now, a
given vector p may be expressed in several different coordinate systems. For example, if we know
the coordinates lp=(p,(,py,p,) of p in system 1 then we can find the coordinates 0p if we know the
coordinates of the unit vectors of system 1 as seen from system 0. The transformation consists
simply of replacing the unit vectors (ex.eyse;) by their coordinates as seen from system 0. In other

words,

System 1

System 0

Figure 2-2 Transformation of coordinates between systems

] 0 €x1 eyl €1
p = [px py pz] => p = pxex + pyey + pzez => p = px exz + py eyz + px ezz (2'2)
€x3 ey3 €3

This means that the coordinates of p in system O are given by a simple matrix multiplication with

the rotation matrix R, that is,

0 ex 1 eyl ezl px

1
pP= €x2 ey2 € p)’ = R". p (23)

€3 €3 €5 |{P:

By applying this relation both to the vectors p01 and p12 and to the vectors making up the

orientation matrices R%! and R%2 we can deduce that

poz = pol + ROl pu and Roz - Rl)l . sz (2_4)
It is customary just to use the simplified symbols (p, p1, P2, R, Ry, R;) instead of (p°2, p°1, pu,

R°2, Rm, Rlz). The equations can then be written

p =p,+R,p, and R =R, ‘R, (2-5)

Since generally we are interested in both R and p, a notation has been devised where R and p are

25

made into components of a 4x4 matrix T, as follows:

I T2 I3 Py

T = |:RP] = | Ta1 T22 T23 Py (2-6)
01 I3 I3 I33 P,
] 000 1_

Using this notation, the coordinate transformation task can be expressed compactly as

T = |[RP|-[Ri‘R, P, +R,p,| _ (R, py| |R, P, =TT, @7
01 0 1 0 1] 01 '
This notation is known as the 4x4 homogenous transform notation.

Homogenous transform for a general link

A general link with given Denavit-Hartenberg parameters (a;, d;, a;, 8;) has the following
transformation matrix relating the position/orientation of the joint at the end of the link to the

position/orientation of the joint at the beginning of the link:

Ci =Sk Sily ac

T, = [Rp} _ si ey o, ags; 2)
01 (o p A d
0 0 1
where
c;=cosf, s; = sind, A, = cosa, K. = sina, (29)

This relation can be derived by breaking down the action of the link into 2 translations and 2
rotations, corresponding to the 4 parameters, and multiplying the corresponding matrices together
([craig86] contains one derivation but uses somewhat different parameter definitions than
[morgan87a]). For a 6 link robot arm, the implication is that the position and orientation of the

endpoint of the arm is given by the product of 6 matrices, that is,

T = T,T,T,T,T,T, = 1(6,,6,,6,,0,,6,,0,) = f(6) (2-10)

26

By nature of the matrix multiplication, Each element of T is a complicated polynomial expression
over some subset of the variables c; and s; (i=1:6). The matrix equation (2-10) is known as the
forward kinematic equation for the robot, meaning that given the angles one can plug in the
numbers and compute the position and orientation of the endpoint. We could also call it the

Forward Position-Orientation (FPO) equation.

2.2 IPO computation

The Inverse Position-Orientation problem is the opposite of the task described in the preceding
paragraph. This time, we are given the desired goal T and want to compute all values of 0 that
produce the desired T. This means, in general, that we have to solve a complicated set of nonlinear
equations and find all possible solution points. The equations do not in general have a closed form

solution, meaning that some iterative numerical method has to be employed.

This causes a multitude of problems. A common approach such as Newton’s method [dahlquist74]
does not always converge to a solution, and even if it does, it will only find one solution. The
process can be repeated from different starting points and possibly leading to other solutions.
However, there is no way to know beforehand exactly how many solutions there are (the answer
may range from none to infinitely many for any given case), so that another problem is to know

how many solutions to look for.

There are several ways to get around these problems. One is to design the robot so that the last
three joint axes intersect. In this case, a closed form solution can be derived for the IPO equations
exists. This result was derived by Pieper and is described in [craig86] p.112-119. This type of
solution is described in the next section (2.3) and is the basis for the PUMA chip design. For the
general case, the problem has remained largely unsolved until the 1980s, when Morgan and others
developed new numerical methods based on the homotopy continuation principle. This method
and some of the theory behind it will be explained in section 2.4. Recently, other methods have

also been developed [manocha92], but we will concentrate on using Morgan’s results as the main

27

:'___E' (Px . Py, P2)

6

¢ = COSB"
s; = sinb;)))
rix = components of 3x3 orientation matrix

zzzzzzzz22228

Figure 2-3 Stick diagram of the PUMA 560 industrial robot

source of Numerical Processing algorithms in this work.

2.3 Special case IPO computation: The PUMA robot

The PUMA is a standard industrial robot with 6 revolute joints, as shown in Figure 2-3. The joints
are driven by independent actuators (motors). The robot is controlled by executing a particular
position/speed/acceleration profile (over time) for each separate joint, and employing feedback to
correct deviations from the given profile. However, the robot task is more naturally described in
cartesian space than in joint space. Hence, we need to be able to compute a set of joint angles that

correspond to a given position and orientation of the robot hand in the cartesian workspace.

The closed form IPO solution derived by Pieper [craig86] is shown in Figure 2-4, The equations
are listed in the order they should be evaluated when computing the solutions. Because the
formulas contain two binary altemnatives in the form of alternative signs +sqrt(), most of the

computation has to be repeated 4 times to produce 4 different solutions.

0, = aun2(pp)-aan2(d,,+sqnp,’+p >d,%) (1)
K = (Px2+Py2+P22-822-a32-d32-d42) /2a) (2-12)
0, = aun2(a,d,)-aan2(K,*sqrt@@,>d,*-K?) (2-13)
03 = atan2(Caja,c)p,-(c P +s P, s,), (2:14)

(a,s,-d) p+(a;+a,c) €, p+ slpy)) (2-15)
€85 = T13C1Co3 T35 Cp3 #1538y (2-16)
S8 = M35, +0,C (2-17)
8, = (c,3,c,35:+555,5<€)? 8 4°'d : atan2(s S, ¢,S0); ' (2-18)
S5 = M0 0t 5) Ty (5 Cp3CyCy P+ TSy C, (2-19)
Cs = Ti3C STy S 83330 (2-20)
0 s = atan2(s5, cs) (2-21)
So = Ty (€1 Cp 8,8, €Y Ty (8, Cpy 4, €Y+ 5y, (2-22)
C = I, ((cl Cy3Cy+s,S 4) C5C, Sy ss) (2-23)

+,, ((sl C3€4C; S 4) Css, sz3s5) (2-24)

a1 (5334 54053 59) (2-25)
06 = atan2(s6, c 6) (2-26)

The number of solutions is doubled (from 4 to 8) by applying the modifications:

94=e4+1: 0.=-0 96=96+1c (2-27)

Figure 2-4 Closed form solution to IPO equations for the PUMA 560 robot

The input to the IPO algorithm for the PUMA 560 [craig86] is a data set that specifies a goal
position and orientation for the robot end-effector. The nature of the computation is geometrical,
and the algorithm depends heavily on trigonometrical function evaluations. Otherwise the
computation is straightforward and can easily be programmed into a general purpose or special

purpose computer.

29

Figure 2-5 Example of multiple solutions to the IPO problem

All immobile robots have a limited workspace, meaning that only certain positions and
orientations are reachable. In fact, by reachable workspace [craig86] is meant the volume of space
that can be reached with at least one orientation of the hand. The dextrous workspace is defined as
the volume of space which can be reached with all orientations. The dextrous workspace is a
subset of the reachable workspace. For PUMA, the reachable workspace is bordered by two
concentric spheres, with all positions in between the spheres reachable. Inside most of the
reachable workspace, any orientation is possible, whereas near minimum and maximum reach,
more limited sets of orientations are possible. For example, at full reach, only the radial orientation

is possible.

In addition to workspace considerations, there is also the question of how many solutions exist to
the problem. It was mentioned that there is up to 8 solutions for a given position and orientation of
the PUMA robot. Figure 2-5 illustrates multiple ways of reaching a given point and orientation.
This particular multiplicity is known as the elbow up/down multiplicity of joint 3. There is also the
possibility of the robot turning its “back” on the goal point and reaching around over its shoulder,
resulting in 2 more solutions. Finally, there is another elbow up/down multiplicity of joint 5,
resulting in a total of 8 solutions. When an elbow (joint 3 or 5) is straight, there is no difference
between elbow up and elbow down, meaning that the two normally different solutions degenerate

into just one. This is an example of a singularity. The technical definition of a singularity involves

30

the Jacobian matrix of the FPO equations, but generally a singularity corresponds to a multiple

root of the IPO equations.

The concepts of workspace and singularities appear naturally as part of the IPO equations (2-11) to
(2-26). In equation (2-11), a negative argument in the square root corresponds to a point that is too
close to the robot. In equation (2-13), a negative argument corresponds to a point that is outside the
reachable workspace. The notation a7 b ; ¢ used in equation (2-18) has the same meaning as in the
C programming language. Equation (2-18) handles the joint 5 elbow singularity. This singularity is
more severe than the joint 3 elbow singularity, because when joint 5 is straight, there is an infinite
number of solutions for the angles 64 and 8¢ (only the difference 0,4-8y is significant). The solution
chosen is to keep whatever is the current value of 64 and compute ¢ to match it. The joint 3 elbow
singularity is less severe in that it is simply a solution of multiplicity two. No particular

computational precautions are needed.

2.4 IPO for general 6R robots

This section describes how the system (2-10) can be reduced into a system of 8 polynomial
equations with 8 unknowns and 2nd degree terms, following the reduction work performed by

Morgan and Tsai [tsai84][morgan87a]. The first step in the reduction is to write (2-10) in the form

T,T,T, = T;'T;'TT;’ (2-28)
Here it should be mentioned that the inverse of a T-type matrix is a simple function of the original

contents, namely

Ci Si 0 '_ai
T, = R pi| _, -1 = [RT-Ripy| _ |75k oy by —diy (2-29)
01 0 1 SiK —CiHy Ay —di,
0 0 0 1

where the last equality holds especially for the case when T is a link transformation matrix. Also

note that the system (2-28) does not fully describe the system without the additional constraints

31

that each c; and s; (i=1:6) are cosine/ sines pairs of the same angle ;. This constraint can be

equivalently expressed as

ci+s? =1 i=1-56 (2-30)

Now let

P=T,TT, Q=T;'T'TT,! (2-31)

and consider the matrix equations

R=P-Q=0 S=PP-Q'Q=0 (2-82)

Morgan studied these equations using a symbolic algebra program and found that the degree of the

various elements of the equations are

3333 0003
3332 0003
deg (R) = d deg(S) = 233
ceR) =13335 °€(5) = 10002 @)
0000 3322

He also found that even though all the variables c; and s; (i=1:6) occur in some elements, a given
element of R or S typically contains only a subset of all the variables. In fact, the following set of 8
equations (picked from the elements of R=0 and S=0) contain only the 8 unknowns (c;, s;,

i=1,2,4,5):

R,, =0 R,=0 S, =0 S..=0

cc+st=1 i=1,24,5 (&34
The remaining unknowns (c;, s;, i=3,6) are determined by the other variables and can be computed
in closed form ([tsai84] p14). The system (2-34) is a system of 8 polynomial equations in 8
unknowns, with each equation having terms of degree no higher than 2. In Chapter 5 it will be

described how this system is solved using a numerical method. First, however, we are going to

describe the general method that Morgan applied to this problem.

32

2.5 Systems of polynomial equations

A system of n polynomial equations in n unknowns is an equation of the form

f(x) =0 where f:C"-Cn (2-35)
and f is a polynomial function. In other words, f is a vector valued function of the vector x, with
both x and f (x) being complex vectors with n variables. Moreover, each component f; of f must

have the form

4
m. m... m.
f,(x) = Z“aitxl D S W (2-36)
t=1

By definition, the degree of each term of the polynomial £ is defined as the sum of the exponents of
all the variables occurring in the term. Similarly, the degree of each polynomial f; is defined as the

highest degree occurring among the terms:

deg(f) = max {m +m,+...+my|te (1...t;)} (2-37)
The total degree of the system f (x) =0 is defined as the product of the degrees of the individual
equations:
deg(f) = deg(f,)deg(f,) ...deg (£,) (230
Example

The system f: C?> — C? given by

= 2 2 =
f,(X) =a;x7+a,X X+ 23X+ 2%, +ax,+2a,,=0 299)
2 2 -
f, (X) = a, X7+ 25X X, +a53X5 + 85X, + 25X, + 2= 0
is a simple example of a polynomial system. In the general case, there are n equations, n variables

and an arbitrary number of terms of arbitrary degree in each equation. For example:

= a..x2 6 5 4 3 2 =
£, (X) =2, X1X3+ 25X, +33X5X, + 84X, +2,5X5+8,,X5+ 37X, +3,3=0

o 2 2 5 4 3 2 _
£, (X) = g X7Xy + 8pX1X3 + 8p3X Xy + 8y,X) + 855Xy + 8yX5 + 2pgX5 + ApgXy + 9 =0 (2-40)

= 2 =

33

It is easy to imagine that solving such a system is a nontrivial task, considering that even one
univariate polynomial equation cannot be solved (by radicals, in closed form) for degrees higher

than 4 [fraleigh83].

2.6 Finding all solutions of a polynomial system

This section is based mainly on results by Morgan [tsai84][morgan87a][morgan87b). The
purpose of the section is to extract the relevant parts of Morgan’s work, which has developed
considerably over the last 10 years, and present the essential parts in an as simple manner as

possible.

The task is the following: Given a polynomial system, we want to find all the solutions to the
system. As we shall see, classical methods such as Newton ({dahlquist74] p249) or Elimination
([canny88] Chap.3) cannot guarantee to find all solutions (Newton) or are numerically very tricky
(Elimination). Before we go any further, some theory is required about how many roots a

polynomial can have.

Definition 2.1 [solutions at infinity]: Given a polynomial f, construct a polynomial F by setting
the coefficients of all lower degree terms to zero. Any nonzero solutions of F = 0 are called

solutions at infinity for the original polynomial.

For example, the solutions at infinity of the example (2-39) above are given by the system

= 2 2 _

2) (2-41)
F2 (X) = alel + 32]X1X2+ a3le = 0
and for the example (2-40) they are given by
F (x) =a,x5=0
F,(x) =a,x3=0 (2+42)

— 2 —
F;(x) =a;;x{+a,x;x; =0

34

The importance of the concept of solutions at infinity is clear from the following theorem:

Theorem 2.1 [Bezout]: Let f be a polynomial system of total degree d. Then:

* 1. The total number of geometrically isolated solutions and solutions at infinity of f = 0 is no

more than d.

¢ 2.If f = 0 has neither an infinite number of solutions nor an infinite number of solutions at infin-

ity, then it has exactly d solutions and solutions at infinity altogether, counting multiplicities. M

This theorem is one explanation why Newton’s method is not a reliable algorithm for solving
polynomial equations: We generally do not know how many solutions there are unless we know
the number of solutions at infinity, and to find out we have to solve an equation that is just as
complicated as the one we started out with. We may find some solutions using Newton’s method
and random starting points, but we don’t generally know when and if we have found all the
solutions. The method of resultants is numerically very hard because it typically requires an
extreme amount of precision, say 100-200 decimal digits. This makes it hard to implement in an
efficient manner. In 1977, Garcia and Zangwill [garcia77], and Drexler [drexler77] independently
developed a theory that opened the way for a new method for solving polynomial equations using
the method of homotopy continuation. The method has since been refined by Chow, Mallet-Paret
and Yorke [chow78], and expanded substantially by Morgan [morgan87aj[morgan87b]. It has

developed into the numerical algorithm that will be used as a design example in this work.

2.6.1 Homotopy continuation

The basic idea of the continuation method is the following: Suppose you want to solve the
polynomial system f(x)=0. Assume that you have another polynomial system g(x)=0 for which
you know all the solutions, and that g=0 has the same number of solutions as f=0. For example,

one can use the system

g (x) = pix;1|i +q; d, =deg(f;) i=Ln (2-43)

where p g, are random complex numbers. This system is easy to solve by hand and has exactly

35

d=dd,... d, (nonsingular) solutions. It has no solutions at infinity. Now consider the system

h(x,t) = (1-t)g(x) +t-f(x) te [0,1] (2-44)
It is easy to see that h(x,0)=g(x) and h(x,1)=f(x). In fact, h(x,*) is a family of functions that
depends continuously on the parameter t. Such a family is called a homotopy. The system g=0 is
referred to as the start system, and f=0 is referred to as the target system. The idea behind
homotopy continuation is the following: Since we know the solutions of g = 0, we can start at t = 0
with a solution of g = 0 and gradually transform it into a solution of f = 0 by increasing t in small
steps and “dragging” the solutions with us by using a local numerical method (for example
Newton’s method). By trying all the roots of g = 0 as starting points, we hope to be able to reach all
the solutions of f = 0. So far, this is of course only speculation, but it is confirmed by the following
theorem, as worded by Morgan (p60). Let p = (p;) € C" and q = (q;) € C" denote the

random parameters of g.

Theorem 2.2 ({[morgan87a] p60): Given f, there are sets of measure zero, Ap and Aq, inC"so

thatif pe A, and q¢ Aq, the following holds:

* 1. The solution set { (x,t) € C X [0,1) | h(x,t) =0} is a collection of d non-overlap-
ping smooth paths.

* 2. Each path extends from t=0 to t=1 without backtracking in t.

* 3. Each geometrically isolated solution of f = 0 of multiplicity m has exactly m paths leading to
it.

* 4. A continuation path can diverge to infinity only as t — 1. If f = 0 has no solutions at infinity,
all the paths remain bounded. If f = 0 has a solution at infinity, at least one path will diverge as

t — 1. Each geometrically isolated solution at infinity of multiplicity m will generate exactly
m diverging continuation paths. l

This is a very powerful result that allows us to find all solutions of polynomial systems. The
process of computing a continuation path from t=0 to t=1 is referred to as path tracking. The

method used is typically some variation on Newton’s method, which we will now review for

36

completeness sake. Assume we are starting at t=0 with the solution X, We then want to make a

small step to t=At and find the corresponding solution x =X,+Ax, i.e. so that h(x,, At)= 0. By

1
Taylor’s theorem we have

0 = h(x, +Ax,At) = h(x,,At) + Dh_(x,, At) Ax+ O(Ax||’) (2-45)
This leads naturally to Newton’s method, which consists of ignoring the higher order terms (on the

assumption that a small At results in a small Ax). In other words, we pretend that the
approximation
0 = h (x,, At) + Dh_(x,, At) Ax ' (2-46)

is exact and use it to solve for Ax. Then we update x with Ax and repeat the procedure (with t=At
fixed) until Ax (known as the residual) becomes ignorably small. We have then found X, and are
ready to start a new round of iterations with t=2At. There are many small variations to Newton’s
method, such as using more sophisticated predictions of the next point. It is also common practise
to use an adaptive stepsize that adjusts At whenever a step fails to converge. For the sake of our

discussion there is no need to go into further details. It suffices to note that the method of

continuation boils down to repeatedly executing the following steps:

¢ Evaluate the function h
+ Evaluate the Jacobian Dhy

* Solve the nxn linear system Dh (x ;, At) Ax = -h (x, At)

This list will be used later as the basis for our development of a processor architecture.

37

2.6.2 Problems with the continuation method

The continuation method is not without its share of problems. We shall now identify some of the
more common problems and describe how to handle them. Morgan [morgan87a] has described
measures for neutralizing all the common problems, and it is my experience that these measures

are very efficient in practice. Let us start with a list of real and potential problems:

* path crossings (singularity for t=t <1)

¢ solutions at infinity for t=t <1 (paths diverging in the middle)
* singular solutions at t=1

* solutions at infinity for t=1 (paths diverging towards the end)
¢ too many paths to track

* ill-conditioned systems (badly scaled systems)

Path crossings will occur if, for some 0<t <1, the system h (x, t,)= 0 has a singular solution (also
known as a multiple root). This case is already covered by Theorem 2.2. There is of course the
practical problem that paths may get so close to each other that the tracker may jump from one
path onto the other due to numerical error. This can happen but has not been a problem in my

experience. Likewise, Theorem 2.1 guarantees that no path will diverge at any O<t<1.

Singular path endpoints is a problem that cannot be avoided, but is not necessarily a big problem.
The main implication is that Newton’s method tends to converge slowly when the solution point is
singular (because the Jacobian becomes almost singular when you get close to the point). This
results in linear instead of quadratic convergence towards the point. While not critical, this may
lead to reduced accuracy of the obtained solution. One common way of dealing with singular roots

is to do extra iterations at the endpoint.

Paths diverging when t — 1 is serious problem. The reason is that it is hard to decide whether a
path is really divergent (in which case we may as well abandon it), or will tum back and converge

when t — 1. What happens is usually that the stepsize must be decreased repeatedly, and that we

38

eventually reach the minimum stepsize (MINSTEP) or the limit on the number of steps (MAXNS)
allotted. Later on we will describe how an arbitrary system can be transformed using the projective

transform. This will prevent solutions at infinity altogether.

Another common problem is that the system we want to solve has a high total degree. For
example, the IPO system in its crudest form has degree d=2073600. This is clearly too many paths
to track, especially considering that the problem has at most 16 physical solutions [primrose86].
The IPO system was rearranged by Tsai and Morgan [tsai84] to yield a degree of 256. This is still
somewhat high. Morgan and Sommese [morgan87b] has since developed a so-called 2-
homogenous form of the equations, reducing the degree to 96. They have also developed a theory
called the method of the generic case, which makes it possible to eliminate 32 of the 96 paths,
leaving us with 64 paths to track. The method of the generic case is a theory about the structure of
the solutions of the polynomial equations. The random starting system g is replaced by a special
(and less random) starting system that has the same “structure” (in a technical sense) as the target
system. Morgan has shown that if g is chosen so that its solution set has “generic” structure, we
can compute once and for all which starting points lead to singular solutions at infinity. These
paths will lead to singular solutions at infinity for any IPO-type target system, and these starting
points can hence be excluded from our computation. Finally, Wampler and Morgan [wampler89]
have developed an 11x11 system of degree 1024 for which only 16 paths have to be tracked, again

due to the method of the generic case. However, we do not make use of this result here.

The final item on our list of problems is ill-conditioned systems. This refers to systems that have
coefficients and/or solution components that are spread out over a wide range, from very small
(but nonzero) to very large. Such systems can sometimes be improved by equation scaling and/or
variable scaling. As it turns out, the IPO system is typically well conditioned, so we will not

discuss this problem any further here.

39

2.6.3 Non-problems with the continuation method

Morgan also mentions several examples of pathological path behavior that sometime occur in

general homotopies, but not in polynomial homotopies. They are:

» paths that end at some 0<t0<1.
* paths that remain bounded but never reach t=1 (e.g. a spiral).
+ paths that branch out into several paths or into a surface.

» paths that tumn back in t (become multiple-valued).

Theorem 2.1 guarantees that none of the above will happen for a poiynomial continuation of the

form described.

2.6.4 Homogenization

A polynomial is called homogenous if all the terms have the same degree. It is easy to see that

fis homogenousand f(x) =0 = VieC f(rx) =0 (2-47)

Given a polynomial system f, it can be homogenized into a new system f as follows:

Definition 2.2 [homogenization] Let f: C* — C" be a polynomial system. The homogenization

f:C*! 5 C" of fis defined by the relations

Yi YZ Yu
Yn-o-l’ Yn+l’ T yn-l-l

F(Y Yaur) = ¥9, 1 () (2-48)

This definition is just a precise way of saying that each term of f. is multiplied by the appropriate
power of Ypep SO that all terms get degree di. Before we go on, remember that the solutions of a
homogenous system are unique only up to a factor. Let us now look at correspondence between
solutions of f = 0 and the homogenization f. The solutions of f =0 determine a subset of the
solutions of f = 0: Since f(¥, 1) = f(y) itisclearthatif'y is a solution of f =0, then (y,1) is a
solution of f = 0. On the other hand, the solutions of f = 0 determine both the solutions of f = 0

and the solutions of f = 0 at infinity, in the following way: Suppose we have a (nonzero) solution of

40

f = 0 with Y,.;= 0. Then this solution is a solution at infinity of f, because

0="F(@0 =F() (249)
In fact, ?(y, 0) is exactly f with all the lower degree terms set to zero (by the effect of Y= O
i.e. the system F that defines the solutions at infinity for f. On the other hand, suppose

T3, Yau1) - withy_, 0. Then obviously from (2-48),

YI YZ Yn
Yn+l’ yn+l’ o Yo+1

f, (

) =0 (2-50)

so that x =y/y _ is a solution of f = 0. In summary, we can recover both the solutions and the

solutions at infinity from the solutions of f = 0.

Since f = 0 itself does not have any (additional) solutions at infinity (no homogenous system
does), it seems that it may be easier to solve f = 0 than to solve f = 0. However, there is the
uniqueness problem: The solutions of f=0are unique only up to a factor, i.e. they are lines in
C™!. This also means that they are singular and hard to find. In fact, one would expect to wander
randomly along the solution line as one gets closer to it. Not to mention the fact that the Jacobian is
non-square (nx(n+1)), which causes an under-determined linear system to appear in Newton’s

method.

2.6.5 The projective transform

The solution to this problem is the projective transform (p-transform). The projective transform

of f = Oisanew system derived from f = 0 by adding the extra constraint

n
Yos1 = L(¥) =0Ty+B = Za,y.ﬂi (2-51)
i=1
where oo € C" and B € C are random constants. By abuse of notation we will use ?(Y, L(y))
~ L
to denote the projective transform of f. We will also use the notation f . It should be noted that the

projective transform is no longer a homogenous system (there will be lower degree terms when we

41

substitute the affine expression for Yorl into f. This means that we may potentially have another
system that has solutions at infinity, which would bring us back to square one. However, we have

the following theorem:

Theorem 2.3 [morgan87a], p56): Assume that f =0 has neither an infinite number of solutions nor
an infinite number of solutions at infinity. Then for almost all & € C" and B € C, the projective

transform ?’(y, L (y)) has no solutions at infinity. B

One important question remains to be answered: Can the solutions of f be recovered from the
AL A .

solutions of f This is by no means obvious. It is clear that if f (y, L (y)) = 0 then x=y/y,,, is

a solution of f = 0. But what about the other way around? That is, given that f(x)=0, does there

exist a y such that x =y/L(y)? This was not proven by Morganl, but the following result should

suffice:

Theorem 2.4 : Assume that o € C" and B € C are random constants. Then

f(x) =0 = 3y such that f(y,L(y)) =0 and x = (2-52)

_J
L(y)
with probability one. That is, the “bad” values of o and P constitute sets of measure 0.

Proof: 'We will try to construct y from x by solving the equation x=y/L(y) or y=L(y)x. This

equation expands into

y = (oc”y + B) X (2-53)

which in turn can be written as

(I-xa™)y = Bx (2-54)
When does this system have a solution? Consider the matrix I — X" . We apply the Sherman-

Morrison formula ([luenberger84], p269)

1. Probably because he found it to be obvious.

42

- «_ATab™A™
sty = A - vaa @9
which yields
- o
[I-x0™]™ = I+ lfaTx (256)

This inverse exists as long as 1 —o"™x # 0, i.e. "X # 1. For a given x, what is the probability
that the random variable a™x is equal to 1? If a consists of independent and identically
distributed continuous random variables, then " X is another continuously distributed variable,

and hence the probability that it takes on any particular value is zero.

It also follows immediately that if we consider a finite collection x P Xy of solutions to f = 0,
the probability is zero that any product " X; is 1. We conclude that the projective transform will

produce all the solutions of f = 0, with probability one. B

2.6.6 m-Homogenous systems

The theory of m-homogenous polynomials provides a way of reducing the number of
continuation paths by exploiting special structure that may occur in some systems of polynomial
equations. The IPO system can be cast as a 2-homogenous polynomial, and this reduces the

number of paths to track from 256 to 96. Let us first define what an m-homogenous polynomial is.

Definition 2.3 [m-homogenous]: Let f: CP — C" be polynomial. Assume that the variables

Z,Zy - 12, Can be grouped into m nonempty disjoint sets Z,,Z,....Z in such a way that (for all
i=1:n)
£(Z 11,1 (2-57)
£(1,Z,1,... 1 (2-58)
(2-59)
(L L1,..,Z) (2-60)

are all homogenous polynomials. Then f is called an m-homogenous polynomial. B

43

The definition means that if we consider one group Z, of variables at a time, each of the
polynomials £ should be homogenous, considered as a function of only the variables in Z. Note
that if a polynomial is m-homogenous it is also necessarily homogenous, which is again the same
as 1-homogenous. The opposite is not generally true. The power of m-homogenous theory derives

from a special version of Bezout’s theorem that holds for m-homogenous polynomial systems.

Definition 2.4 [Bezout number]: Let dij = deg(fi, Zj) denote the degree of component f with
respect to the variable set Zj (i=1:nand j=1:m). Also let kj denote the number of variables in the set
Zj, less 1. That is, the variables in the set are Zopyyp - ’iji’ for a total of kj+l variables. Then the

Bezout number d of f is defined as the coefficient in front of the term

Haji (2-61)
i=1

where a; is the placeholder variable in the combinatorial product

l:[(i di,-a,-) (2:62)

i=1\=1

The importance of the Bezout number stems from the Theorem 2.5 (below), which states that
when f is m-homogenous, f = 0 can have no more than d geometrically isolated solutions.
However, since each solution is a line through the origin in CP (cf. non-uniqueness for
homogenous polynomials, discussed earlier), we need to be a little careful about how the theorem

is stated. The machinery needed is called projective space.

Definition 2.5 [projective space]: The k-dimensional complex projective space P* is defined as

the set of lines through the origin in C**!. This is sometimes written

P“= {[z]|ze C**'- {0} } (2:63)

where [z] denotes the line determined by z and the origin. B

4

Since a line in C**! becomes a point in P, the solution lines in CP will become solution points in

k
P* = P'xPx... xp (2.64)
and we can talk about unique solution points of an m-homogenous system, with the understanding

that these are points in P. We then have the following theorem:

Theorem 2.5 [m-Bezout]: Let f = 0 be an m-homogenous system, as defined above. Then f = 0
has no more than d geometrically isolated solutions in P. If f = 0 does not have an infinite number

of solutions in P, then it has exactly d solutions, counting multiplicities.

This settles how many solutions the system may have. It remains to explain how this leads to a
method that uses only d paths, where d is the m-homogenous Bezout number. Morgan
([morgan86], p5) presents the following result: Let g be a system chosen to have the same m-

homogenous structure as f, except for the choice of the coefficients.

Theorem 2.6 : Let g be a system chosen to have the same m-homogenous structure as f, except for
the choice of the coefficients. Assume that g = 0 has exactly d (the Bezout number) nonsingular

solutions, and define the homotopy

h(z,t) = (1-t) -y-g(z) +t-f(2z) vye C te [0,1] (2-65)
Suppose Y = re'® for some real r>0. Then for all except a finite number of 0, the following holds:
h™ (0) consist of smooth paths over C X [0, 1) , and every geometrically isolated solution of
f =0 (in projective space P) has a path convérging to it. In fact, if m,, is the multiplicity of a
geometrically isolated solution z,,, then there are exactly m,, paths converging to z,,. Furthermore,
the paths are all strictly increasing in t, and in fact dt/ds>0 on paths for te [0, 1) , where s

denotes the arc length parameter of the path. B

45

2.7 Summary

This chapter has introduced the IPO computation problem and its solution, both in closed form
(for special cases) and in general using homotopy continuation, as outlined in Section 2.6.1. The
IPO computation will be used, in various forms, as the main example in the remainder of this
dissertation. IPO computations can range from fairly simple to quite complex, depending on
whether one considers special cases or the general case. The next two chapters will describe the C-
to-Silicon design system and show how the simple version of the IPO application was used as a the

first design example for C-to-Silicon.

CHAPTER 3

C-TO-SILICON COMPILATION

C-to-Silicon is a system for designing programmable Application Specific Processors, either for
DSP applications, or as will be demonstrated in Chapter 4, Numerical Processing applications. In
particular, it is a system for designing an integrated circuit that will execute a given “C” language

[kernighan78][harbison87][rimey89] program specified by the designer.

There is a variety of reasons why such a system is useful. First of all, it is important to note that in
general it is more flexible and area efficient to design an ASIC which is programmable and uses a
time-multiplexed datapath than to design a completely hardwired datapath for a given function.
Some computations (especially of the numerical variety) also do not lend themselves easily to the

hardwired datapath approach, as noted in Chapter 1.

Given that we want a programmable processor, it is possible to purchase standard off-the-shelf
programmable DSP chips. These chips generally have high performance, at least for traditional
DSP applications. The main incentive for building an ASIC programmable DSP/NP processor is

that the design can be optimized, minimal and embeddable. Optimized means that the architecture

47

r Algorithm design

Y

Architecture design

Y

Logic design and layout design

Y

Machine language programming|

Y

Verification and evaluation

J

Figure 3-1 Design process for programmable Application Specific Processor

can be tailored to the task at hand. Minimal means the opportunity to design a bare-bones (lowest
cost and power consumption) architecture that does not contain unnecessary or unusable features.
Embeddable means that the processor can be placed on the same chip as other related circuitry, be
it analog or digital system functions. This is important especially for portable systems, where a
high level of integration is synonymous with light weight and low power consumption. Portable

communication systems is one important example.

Some DSP (TMS320) and RISC (SPARC, MIPS) chips are being offered commercially as
building blocks that can also be embedded with other circuitry. In both cases, but more pronounced
for the RISC chips, there will be overhead and architectural mismatches. Memory management
units and on-chip caches are prime examples of unwanted or unnecessary features. Data

wordlengths and data types are examples of architectural mismatches.

3.1 Why C-to-Silicon compilation?

Having discussed the need for designing programmable ASPs, I would now like to turn the

49

attention to the need for a C-to-Silicon design system. Let us start out by taking a look at the steps
involved in such a design (Figure 3-1). Independent of the level of automation, there are certain
design steps that have to be carried out. The design goal is a processor that performs one particular
computation, so the design starts at the algorithm level. Once a suitable algorithm has been chosen,
an architecture has to be designed that can execute the algorithm efficiently. Once the architecture
(and hence instruction set) has been determined, the next step is to go through the logic design and
the layout design, and to code the algorithm in the machine language of the processor. Finally, the
functionality of the complete design (both the software and the hardware) must be verified through
simulation, and the performance assessed. The performance metrics normally are area, speed

(cycle time), program code size, numerical soundness and total execution time (cycles).

The process just described is a long and complex one, and it has several problems. One obvious
problem is the need for machine language programming. This step is particularly error-prone when
the instruction set is new or under development. Also, it can be difficult to determine whether a

problem is due to an error in the program code or an error in the architecture.

A major concemn is that it is very hard to get accurate performance numbers for the design without
finishing all steps of the design process: Program code size can be estimated at the architecture
level, but only after writing out the code in considerable detail. Total execution time is very hard to
estimate accurately except through simulation of the execution, either at the logic level or at the
layout level. Speed and area can be estimated at a high level, but the estimates may not be

accurate.

The implication of the above problems is that one must carry out all of the design steps in
considerable or complete detail before being able to determine the quality of a particular
algorithm/architecture combination. Since the design process is tedious and error prone, the
designer can only afford one or a few design iterations. This means that architecture exploration is
generally not possible. Exploration means to consider several major or (more often) minor

architectural variations and accurately evaluate the costs and benefits of the variations.

50

3.2 Goals of the C-to-Silicon system

The goal of the C-to-Silicon system is to lessen some of the design burdens mentioned above,
while at the same time providing an environment that supports easy architecture exploration.

Specifically, the goals are to:

* Use a high-level “C” language for algorithm specification

* Allow architecture exploration without detailed hardware design

* Separate the hardware implementation from algorithm and hardware design
+ Simplify concurrent design of hardware/architecture/software

» Eliminate machine language coding altogether

» Support simulation at all abstraction levels

» Provide accurate performance data without detailed hardware design

The system does not by itself provide area estimates or cycle time estimates unless the designer
proceeds down to the layout level. Estimating the impact on area and speed from architecture
changes is currently left to the expertise of the designer, but can conceivably be made part of the
system in future versions. Area and speed estimates depend on the cell library used, and will
require that each cell in the library has an associated area function and speed function that can
compute the unknowns when given the cell parameters (such as wordlength or memory size and
configuration). Also, the user would have to specify what hardware blocks (macrocells) to use, as
there may be more than one version of each type of functional block. Using a default cell type for

each type of function is another possibility.

51

3.3 The C-to-Silicon system

The remaining sections of this chapter describe the various features of the C-to-Silicon system and
provide some details about how the features were implemented. The main features of the system

are

» Retargetable compilation
* High-level simulation

* Architecture exploration

The logic and layout level design and simulation tools will also be described in some detail.
Finally, there is a short summary of the syntax and semantics of the RL programming language

(from [rb92]).

3.4 Retargetable compilation

By compilation is meant the process shown in the right half of Figure 3-2. The user (chip designer)
provides an algorithm described in the RL language. RL [rimey89] is a subset of C extended with
a fixed point datatype, and will be described in some more detail in section 3.14. The RL
compiler[rimey89] compiles the program and generates symbolic microcode. The microcode is
passed through the microcode assembler (Mass), which turns the microcode into layout
parameters such as PLA contents and ROM contents. Finally, the LAGER Silicon Assembly

system [rb92] is used to generate the physical layout of the chip.

By retargetable is meant the process shown in the left half of the figure, which indicates how the
user provides a sequence of stepwise refined architecture descriptions. The RL compiler is
retargetable to a wide variety of architectures by this process. The highest level architecture
description is the machine description file (md-file). This file describes an architecture at the
block-diagram level. The refinements of the md-file are the microopération file (mo-file) and the

hierarchical structure description, which is written in the SDL (structure description) language.

52

One major strength of the C-to-Silicon system is that the designer needs only write the (high-level)
md-file in order to evaluate different architectures. Both program code size and total execution
time (cycles) can be exactly predicted by providing the md-file for a given architecture. The next
three sections will describe the md-file, the mo-file and the SDL file in more detail by means of

some simple examples.

The machine description file

Figure 3-3 shows a simple address computation unit and the corresponding machine description
file. The address unit can perform immediate, indirect and indexed addressing. Imnmediate
addressing is performed by passing the value addr straight through the unit (addr is an immediate
constant field in the instruction). Indirect addressing is performed by storing a memory address in
one of the index registers (X[0-2]) and then combining it with a 0 immediate constant. Indirect
addressing with a fixed index is also possible by using a non-zero immediate address. Finally,

indexed addressing is available by using the immediate constant as a base address and one of the

USER INPUT (PER ARCHITECTURE)
\ (RL program)

>* RL compiler

CSymbolic microcod9

>‘ Microcode assembler

C Layout parameters)

>‘ Lager Silicon Assembler

C Physical layout)

Figure 3-2 Retargetable C-to-Silicon compilation

53

index registers as the index. This is useful for array element access.

The corresponding machine description file consists of two main parts: The first part declares the
hardware resources, meaning the buses (bus) and the storage elements (file). The second part
defines the instruction set (or micrcoperation set) for the architecture, and also implicitly defines
the interconnectivity of the functional blocks such as the adder and the multiplexer. Note the close
correspondence between the textual description and the block diagram. In fact, we could say that

the machine description file is nothing more than a textual version of the block diagram

The microoperation file

The microoperations defined by the md-file generally are executed by setting an appropriate group

of control signals to some particular values. Figure 3-4 shows the microoperation file

I |

X0 addr
X1 Hardware
X2 resources
0
xbus
xsign
xsum
47 “Instruction
set”
eabus
Y
Effective address

Figure 3-3 Machine description file for a simple address computation unit

54

Y
X0 addr
X1 —
X2 pOENX[0-2]
0
pXBUSZERO
xbus
4
xsign

pOEN_EALATCH

eabus

Effective address

Figure 3-4 Microoperation file for address computation unit

corresponding to the address computation unit. The block diagram has been annotated with (some
of) the control signals needed to execute the microoperations. For example, the signal pPOENX[0-
2] is an output enable signal which selects which one of the registers X[0-2] should be read. The
signal pXBUSZERO is the mux control signal, but with a mnemonic name to indicate its function.
The mo-file is just a refinement of the md-file, in that it lists for each operation also the control

signals that need to be set to effect that operation.

55
Parameterized structure description

Once the designer has chosen an appropriate architecture, a structure description (netlist) of the
architecture must be provided in order to generate the physical layout. The input format used by
LAGER is SDL, or Structure Description Language. The complete design is typically described by
a hierarchy of SDL files, where each SDL file declares subcells, their interconnections and what
nets should be brought out to terminals. The SDL file is in turn used as a subcell at a higher level of
the hierarchy. A block defined by an SDL file will also typically have parameters that affect the
specific layout of the block. Examples of parameters are wordlengths, register bank sizes, ROM

contents, PLA contents, conditional net flags and conditional subcell flags.

Figure 3-5 shows an example of how layout parameters can be used to control the layout of a
specific block. The example used is again the address unit, where the wordlength and the number

of registers can be controlled by parameters. The actual SDL file for the address unit is 201 lines

NX

o

L

wordlength

Figure 3-5 Examples of layout parameters

56

long. An excerpt of the SDL file is shown in Figure 3-6. The parameter N controls the wordlength

and the parameter NX controls the number of address registers.

3.5 High-level simulation

It is important that a design system supports simulation at all levels of detail of the design. This

section describes the high-level simulation support in the C-to-Silicon system

After creating an RL program for the desired algorithm, the user typically wants to check the basic
soundness of the program by running it on some examples. Since there is no RL compiler targeting
general purpose computers, and the Application Specific Processor has not yet been designed, the
system provides for translating the RL code into standard C code (Figure 3-7). The program can
then be compiled on a workstation and executed on some appropriate set of input data. Floating-
point simulation is carried out by a straightforward translation of the RL program into C. The
special functions in () and out () in the RL language are replaced by C routines that read/write
using the standard i/o channels. The functions in () and out () are part of the standard library

libkt .a. Floating-point simulation provides a first soundness check and is used to make certain

RL program)
RL-to-C translator Profiling tool
(Floating point simulation) (Dynamic instr. count)
(cycle count)
RL-to-C translator
y

(Fixed point simulation)

Figure 3-7 High-level simulation of algorithm and architecture

...

RN NN Eri

;:: Name : apudpM.sdl

...

(parent-cell apudpM)

(layout-generator Flint a)
(structure-processor dpp)

(parameters N NX) ;;number of X registers

(dotimes (i NX) (subcells
(scanreg2Port REGX ((N N)))))

(subcells

(isozero ISOZERO ((N N)))

(adder ADDER ((N N)))
(scanlatch_phl EALATCH ((N N)))
(trist_inverter EAGATE ((N N))))

;7 NETS
(net Vvdd (NETTYPE SUPPLY)
((parent vdd) (ISOZERO VAdd) (ADDER Vdd) (EALATCH vdd) (EAGATE Vdd)))

(net GND (NETTYPE SUPPLY)
((parent GND) (ISOZERO GND) (ADDER GND) (EALATCH GND) (EAGATE GND)))

7:: DATA NETS
(instance REGX ((DATAIN eabus) (DATAOUT xbusl) (Vdd vdd) (GND GND)))

(net xbusl ((parent RegShiftamount) (ISOZERO IN))})
(net xbus2((ISOZERO OUT) (ADDER IN1)))

;;:; CONTROL NETS
(instance REGX (
(LOAD loadx (net-index i)); same i as in the dotimes
(OEN oenx (net-index i))
(SHIFTIN shiftin (net-index 1i))
(SHIFTOUT shiftout (net-index i))
(SCANIN scanchain (net-index i))
(SCANOUT scanchain (net-index (1+ 1i))))

(instance parent (
(LOADX loadx (width NX))
(OENX oenx (width NX))
(SHIFTIN shiftin (width NX))
(SHIFTOUT shiftout (width NX))
(SCANIN scanchain (net-index 0))
(SCANOUT scanchain (net-index NX)))
;:; Lots of other stuff deleted ...
(end-sdl)

wn
~3

0~ Ui WNE

Figure 3-6 SDL file (main parts) for address datapath with variable number of registers

58

kt -float kt -fix

(libkt.a) Qrog.ﬁx.a
cc

cc (unix compiler)

prog.float.c

prog.float

datain < W execute datain - Wexecute

Figure 3-8 Implementation of floating- and fixed point simulation

that there are no serious mistakes in the RL program.

The C-to-Silicon system also provides the capability of fixed point simulation. For fixed point
simulation, the fix variables are replaced by integer variables and the arithmetic operations are
simulated on the integers by special fixed point library routines that replace the usual integer
operators. Fixed point simulation is used to check the numerical soundness of the algorithm,
including wordlength and scaling considerations.The floating- and fixed point simulation tools are

implemented as shown in Figure 3-8. The fixed point routines in libkt.a are from [svensson90].

Finally, the C-to-Silicon system contains a profiling tool based on the standard UNIX profiling
system. On a UNIX system, profiling is used to determine how much time is spent in each
subroutine of a program (and how many times each subroutine is called). In C-to-Silicon, profiling
means to count how many times each basic block of microcode is executed, thereby giving an
exact execution cycle count for any given combination of architecture, algorithm (RL code) and

input data. Profiling is a crucial part of the architecture exploration process described in the next

section.

The profiling is implemented by inserting the special MARK (blocknumber) assembly code

59

(prog.ﬂoat or prog.ﬁx)

data in _»* execute

(gmon.out) @og.k (source program)
‘gprof (unix) * ke
(block count) (prog.s (microcode))

‘ kprof g

(cycle count)

Figure 3-9 Implementation of profiling tool

macros in between the basic blocks, as they appear in the translated C program. Upon execution,
the program will generate a file (called gmon.out) which will contain a count of how many times
each block was executed. The profiler script will extract the block count from gmon.out and the

block size from the symbolic microcode and compute the total number of instructions (cycles)

" executed.

3.6 Architecture exploration

By architecture exploration is meant the process shown in Figure 3-10. The designer can start out
creating a brand new architecture and then write the corresponding machine description file. Or,
more commonly, a suitable architecture already exists and the designer only needs to perform
small modifications to an existing md-file. Once the md-file has been created, the algorithm (RL

program) can be compiled onto the architecture, and the designer will immediately see the size of

60

:a X y_

(Write/Modify machine description ﬁle)

Y

(Compile RL program)
Y

k (Evaluate static instruction count)
~ Y

(Translate RL into C, compile, execute) .

Y

(Evaluate dynamic instruction count)

_

Figure 3-10 The architecture exploration process

the code (static instruction count). He can then repeat the process as often as necessary, or continue
and obtain the cycle count using the profiling tool described in the previous section. The profiling
information will likely lead to new design iterations, and the designer can “tune” the architecture

until a satisfactory design has been found.

The process only involves writing and modifying machine description files, and there is no logic
design or layout design involved. This means that the C-to-Silicon serves as a powerful tool for
architecture exploration. Chapter 4 contains a fairly large example of the architecture exploration

process, as it occurred during the development of the architecture for the PUMA chip.

3.7 Architecture examples

One important question regarding the C-to-Silicon system is what range of different architectures

that the system can gracefully handle. The constraints are mainly within the RL compiler itself,

mem[]

mor [

1"_H+—

0,1,%,%,Ixl-ix| | \ mux /

abus ‘ bbus‘

sign
acc
inport
=
-2 rbus
o
rf]

61

mbus

J

immed.addr

xbus

V
) add
xsign

xsum

eabus

—>

outport

—»1 rcoef |—»

\

addr to mem([]

Figure 3-11 Example of an architecture suitable for the C-to-Silicon system

62

since the layout system can handle just about any architecture and the assembler is relatively easier
to update for different architectures. Figure 3-11 shows one example of an architecture that is
suitable for the system. This particular architecture (known as Kappa) [azim88] was used as an
initial model of the types of architectures that C-to-Silicon should be able to handle. The
Characteristics of the architecture is that it contains a somewhat irregular datapath with several
distributed storage locations. The Kappa architecture was based on earlier successful architectures
[pope84][ruetz86] for speech and audio applications, and was therefore considered a good

candidate for what the C-to-Silicon system should target.

As the C-to-Silicon system developed, additional architectures were designed and tested on the
system. One example is the PUMA architecture described in Chapter 4. Another example was an
architecture for a Decision Feedback Equalizer (DFE) for mobile radio [svensson90]. The DFE
architecture is more complex than both the Kappa and PUMA architectures, in that it contains dual
address units and two independent RAM blocks. The DFE datapath with dual memories is shown
in Figure 3-12. This datapath is more regular than the PUMA datapath and quite complex. The
address unit is shown in Figure 3-13. It is considerably more complex than the address units of
Kappa or PUMA. It was found that the RL compiler had no problems compiling for the DFE
architecture, indicating that the C-to-Silicon system is quite flexible with respect to the range of

architectures allowed.

3.8 Execution model

By execution model we mean the basic method for instruction decoding and sequencing in a
processor. The previous section showed that the C-to-Silicon system accepts a variety of datapath
architectures. The execution model requirements are more strict, in that a certain basic
functionality is always needed. This section is about the requirements on the execution model
which the C-to-Silicon system (again, mostly the compiler) assumes. There are two main

restrictions:

memo[] mem1[] in
T (—
5
N
.‘_—
mor0 mor1
+ ‘
mult
shift
prod
3 v i
mux
0
IRY
0,1,,%,IxI,-Ix| | \ mux /
abus bbus
: shifter
sign ?
A
acc
out rbus
- >
Y
rl -

Figure 3-12 Datapath for Decision Feedback Equalizer [svensson90]

64

N

pointer0[] ints[] pointeri[]

Y Y

immo0 X, X<<1 X,X<<1 - imm1
I mux 0,1,x,-x 0,1,X,-x mux
baseo* * offset0 offset1 base1

NV
adder adder

eabus1 eabus2
o -4

Figure 3-13 Address unit for Decision Feedback Equalizer [svensson90]

* The processor must be programmable in microcode with no or little restrictive encoding. This
means that if the block diagram of the architecture indicates that two (or more) particular
microoperations can be performed in parallel without resource conflicts, then there should be
no encoding preventing both operations from being specified in the same microinstruction
(remember that according to our terminology, a microinstructions consist of one or more micro-
operations performed in parallel). This means that the processor will typically have a wide

instruction word with separate and independent control bits for all (or most of) the hardware

65

'

29 -

— —

2 =o=

32

—
=o-J-o0-f=0-

Figure 3-14 The execution model is based on straight-line blocks of code (numbered
above) separated by arbitrary multiway branches

resources.

* The processor must be able to execute straight-line blocks of microcode. By a straight-line
block is meant a collection of sequential /ines of microinstructions. At the end of each block,
the processor must be capable of executing an arbitrary m-way branch (conditional branch,

goto, call or return) based on arbitrary combinations of boolean flags.

* Subroutine calls are allowed if the architecture provides a mechanism for storing and retrieving
return addresses, but subroutines are not reentrant because the compiler does not assume the
existence of a stack for storing local variables. Hence, nested subroutine calls are allowed as
long as the same routine is not called more than once. In particular, recursive calls are not

allowed.

Figure 3-14 illustrates the execution model. This particular example arises from the RL code

66

for (k=1; k<=NUMIT; k++) {
/* Block 29 is here */

if (y>0) ¢
/* Block 30 is here */
} else {

/* Block 31 is herxe */
}
/* Block 32 is here */
}
if (smallflag) {
/* Block 33 */
} else if (bigflag){
/* Block 34 */
} else {
/* Block 35 #%*/
}

Figure 3-15 Code fragment corresponding to Figure 3-14

fragment shown in Figure 3-15. The code fragment is a for-loop followed by a 3-way if-statement.
Moreover, there is also a 2-way if-statement inside the for loop. The RL compiler knows that
multiway branching is available and creates a 4-way branch involving both the loop test and the 3

different cases of the if statement that follows the loop.

The contents of the various blocks are not completely shown in Figure 3-15, but roughly it is as
follows: Block 29 computes the branching condition for the if (y>0) statement and branches
accordingly to Block 30/31. Block 30/31 themselves contain some simple computations that are
not shown. Block 32 increments the counter (k++), and then evaluates the loop condition

(k<=NUMIT) and the 3 if-conditions in parallel, causing either a jump back to block 29 or one of
the if-blocks 33,34,35.

The compiler generates BRANCH instructions for the processor as shown in Figure 3-16. It is up
to the microcode assembler to translate these instructions into controller parameters. The boolean

variable _BC is computed in an earlier statement and has the value _BC:=(NUMIT-k>=0).

67

@ 32
© ©

BRANCH {
_BC => GOTO 29;
AND(!_BC,smallflag) => GOTO 33;
AND(!_BC, !smallflag,bigflag) => GOTO 34;

AND(!_BC, !smallflag, !bigflag) => GOTO 35;

Figure 3-16 Branch instruction generated by the compiler at the end of Block 32

3.9 Controller structure

We have already mentioned the basic functionality required from the controller: It must contain a
block sequencer which orchestrates the jumps between blocks, and it must contain a line sequencer
(program counter) for linear sequencing inside each block. The block sequencer must support
arbitrary multiway branches. There are many possible ways of implementing such a controller.

Two examples will be described here.

Cathedral-II controller

This controller architecture was developed as part of the Cathedral-II [rabaey88] project. A
simplified diagram of the controller is shown in Figure 3-17. This controller architecture is a
possible candidate for the C-to-Silicon system. The multiway branches are implemented through a
jump address table, and the “line” sequencing is performed with a simple increment-by-1 program

counter. When a jump instruction occurs, the status logic is instructed to look up the new program

D h
Status Branch
Logic - A‘ll’([l::ss
flags ey r_.
M

5

§ +1
.|
&b PC
\ = Micro-
Sjl<€— code |-t
B ROM
2
- g

Figure 3-17 Controller architecture used in the Cathedral II system

address in the Branch Address PLA (which functions as a branch address memory), and the mux is

used to load the new value into the Program Counter (PC).

Kappa controller

Another possible controller structure [azim88] is shown in Figure 3-18. The main parts of the
controller is the block sequencer, the line sequencer and the microcode ROM. The block sequencer
is a finite-state machine built around a PLA. Each state of the FSM corresponds to a basic block
and outputs the appropriate basic block address. The value of the current state is fed back into the
FSM as inputs along with the external inputs that constitute flag or status variables. Branching to a
néw block is triggered by the EOB (end-of-block) bit which comes from the microinstruction word

(control word). The EOB bit is set only in the very last instruction (line) of a block. For each block,

69

block sequencer control store
fsm (BFSM) (microinstructions)
block number * * *
control word
eob

line counter

stack Pushpop yome. eob = end-of-block signal

Figure 3-18 Kappa controller architecture

the block sequencer PLA contains one minterm that is sensitive to EOB=0 and keeps the FSM in
the current state, so that the blockaddress remains the same. There are also one or more minterms
that are sensitive to EOB=1, and hence get activated at the end of each block. Each such minterm
corresponds to a particular jump target (next block or next state). The minterm is sensitized to the
appropriate flag and status variables so that only one minterm! is activated by a given combination
of current state and input. An m-way branch is implemented by having m minterms with different
input conditions and different next state outputs. The controller also supports subroutine calls. The

stack (Figure 3-18) stores arbitrary return addresses which can be popped on return from the

1. That is, before PLA optimization. After processing by Espresso, the minterms may no longer be mutually exclusive,
but the overall functionality of course remains the same.

70

subroutine. The Kappa controller architecture was used, with some modifications, in the PUMA

chip described in Chapter 4.

The original version of the controller from Kappa also contained a timer and a loop counter. The
timer is used to cause a periodic restart of the program, as opposed to restarting the program using
an external reset or handshake. The timer is useful when the program processes external data

arriving at fixed sample intervals.

The loop counter was introduced to provide 0-overhead single-instruction loops, which are useful
in some DSP applications. To use this feature it is necessary to program directly in machine
language, as a high-level compilers generally are unable to determine whether or not such a special
feature can be used on any given loop. This was not a problem before, as the Kappa architecture
was programmed directly in machine language. The loop counter is not used in the C-to-Silicon

system. The timer can be used if desired.

Comparison

The functional difference between the Cathedral-II and Kappa controllers is mainly that Kappa
has a subroutine call/return capability. If the application requires subroutines, the Kappa controller
is a natural choice. The Kappa controller also has the local advantage that it can be easily
assembled from standard components in the LAGER cell library. It is therefore the controller of
choice in the C-to-Silicon system. The Cathedral-II controller has a slightly more flexible
branching and addressing scheme, in that it does not distinguish between block and line addresses.
In Kappa, the complete instruction address is the concatenation of the block/line addresses. This
means that there may be *“holes” in the address space where there are no instructions, since not all
blocks will have the same length. However, this is not really a problem because the ROM in
LAGER uses a PLA-style address decoder, meaning that unused address locations can simply be
left out from the layout. One idiosyncracy of the Kappa controller is that it actually uses two
different output fields for the next state and the block address. The natural solution would be to let

the state and the block address be one and the same.

7

Program name Function
[DMoct | LAGER/OCT DesignManagr |
dpp Datapath module generator
TimLager Tiled macrocell module generator
Stdcell Standard cell place and route
Flint Macrocell place and route
Padroute Pad to core routing

Table 3-1 Main programs and design styles of the LAGER system

Svensson [svensson90] suggested a modification to the controller architecture, where an additional
ROM (or PLA) is inserted between the stack and the BFSM. The idea is that only a subset of the
blocks will be targets of a subroutine return. Hence, the addresses of the return targets can be
encoded with fewer bits than a complete address (saving width in the BFSM minterms) and then
later looked up in the PLA or ROM, either before or after being stored on the stack. Translation

after being popped from the stack might cost a cycle and result in a performance penalty.

As used in Kappa, some of the status flags that are inputs to the BFSM come from a Logical Unit

(LGU) which is used to compute (and store) boolean flags for use in branching decisions. Having a |
Boolean Memory is necessary if a branch variable is computed early and needs to be stored until
reaching the branch instruction. Having a boolean computation capability is also useful, since it
can be used to combine multiple status signals into a single flag, hence reducing the number of

wires that must be fed into the BFSM.

3.10 Silicon Assembly with LAGER

The logic and layout level design in the C-to-Silicon system is performed within the framework of
the LAGER Silicon Assembly System [rb92][shung91]. A detailed description of LAGER can be

found in [rb92]. This section only aims to describe enough of LAGER to enable the reader to

72

Design Manager
DMoct program

OCT netlist
OCT/MAGIC layout

Layout
| DMpost | postprocesor

(CIF format layout)

Figure 3-19 The chip design process in LAGER

understand the basics of the system and to understand how it is used as part of the C-to-Silicon

system.

Overview of LAGER

LAGER is most easily understood by looking at the design process it implements. The basic
function of LAGER is to create layout from a netlist (or schematic) provided by the user, making
use of pre-designed leafcells and module generators. Several design styles are supported: Standard
cells, Tiled Macrocells, Bit-Slice Datapaths and Macrocell Place-and-Route, as indicated in Table
3-1. These design styles can be mixed and matched freely in any particular design. The design

process of LAGER is shown in Figure 3-19. The user provides an SDL (Structure Description

73

Language) netlist, which may be (and most often is) a hierarchical description that refers to other
SDL files. Each SDL file may refer to parameters which are used to personalize the subcell
instance generated through the SDL file. One could say that an SDL file is a parameterized cell
template that is instantiated by its use with a given set of parameters. Since SDL descriptions are
hierarchical, the design manager DMoct traverses the design tree and constructs the database from

the bottom up, starting with the cells at the bottom level.

A more detailed picture of the design process is shown in Figure 3-20. The design manager
program DMoct translates SDL into a parameterized OCT netlist format which is known as the
structure_master. The name master is used because the netlist is a template (or master) that can be

used to create different instances (copies) personalized by the specified parameter values. The next

(SDLnetlist) ((Schematic)

Y

Translation | DMoct

N

(OCT structure_master view)

DMoct arameter | — . [Structure
evaluation o |_Processing

(' OCT structure_instance view)

Layout ifi
DMoct Generation (DMoct calls the specific layout generators)
(OCT physical view)

Figure 3-20 More detailed view of LAGER and OCT interaction during the design process

74

step is known as instantiation: The master is combined with a set of parameters to create a
structure_instance of the cell. Typical parameters used to personalize a cell are entities such as
wordlengths or specifications of the content of a PLA or ROM. For example, a wordlength
parameter can be used to specify the number of bits in a certain bus or terminal of the cell. Once
instantiated, all nets, terminals and other parameterized structures of a cell become fixed by their
parameter values. The final step is layout generation. In this step, the design is created bottom-up
as DMoct calls the various layout generators to create the subcells and physically lay out the

connections specified by the hierarchical netlist.

The OCT database

The LAGER system is built around the OCT database [spickelmier90][rb92]. OCT is an object-
oriented database format for electronic CAD applications. It provides a simple interface for storing
and retrieving information about all relevant aspects of an evolving chip or system design. The
database can store design descriptions at various levels of detail, ranging from Printed Circuit
Board packages and interconnections down to individual geometries of a chip layout. An OCT
database is created and accessed through a set of C language functions that are provided with the

Octtools software release.

The primitive data type of the OCT database is the octObject. An octObject is a variant structure
that can contain a number of different types of actual data. The common content of all octObjects
is shown in Table 3-2. The variant (union) part of the object can contain data of any of the
primitive types shown in Table 3-3. These object types have been carefully selected for their
relevance to electronic design and have been found sufficient for a variety of chip and board level
CAD applications. The top-level object of an OCT database is always an ectFacet object, which is
used as a container to store other (non-facet) objects. Figure 3-21 shows how an octFacet can

contain various design products or design specifications.

75

Element type Element name
int (integer) type
octld objectld
union contents

Table 3-2 Fixed contents of an octObject

Data type Data name Data type Data name
octBag bag octLabel
octBox box octLayer layer
octChangelList changeList octNet net
octChangeRecord | changeRecord | octPath path
octCircle circle octPoint point
octEdge edge octProp prop
octFacet facet octTerm term
octlnstance instance

Table 3-3 Variable contents of an octObject

Use of OCT in LAGER

The OCT database is used to represent several abstraction levels in the LAGER system.
Parameterized cell templates are stored as structure_master views. Instances of parameterized cell
templates are stored as structure_instance views. Actual layout of cells and interconnections are

stored as physical views.

76

@rma| termi nal> @STANCE) @ CONNECTORS

‘ (connector mstan%

actual terminal actual terminal actual terminal

Figure 3-21 Example of OCT facet containing design specification or information
(from [rb92])

3.11 Design styles in LAGER

As shown in Table 3-1, LAGER supports several design styles which can be mixed and matched
in any given chip design. This section provides a quick overview of the design styles and how they

are typically applied in the C-to-Silicon system.

Standard cell (Stdcell)

The Standard Cell design style is based on gate-level primitives (leafcells) that can be
interconnected in an arbitrary fashion. The LAGER layout generator for Standard Cell designs is
called Stdcell. An example of a Stdcell SDL file and the corresponding logic-level schematic is
shown in Figure 3-22. The example is a simple decoder function. In C-to-Si.licon, the Stdcell is

most commonly used to implement random logic blocks for local control and buffering purposes.

sel nl

out0 = in*not(sel)

outl = in*sel

77

[(parent-cell decode)
(layout-generator Stdcell (r 1)) ;Use r=1 rows
(subcells '

(nanf211 (n0 nl)) (inv£101 i0)) ;nanf21ll is a nand/and

(instance i0 ((al sel) (o selb)))
(instance n0 ((al in) (bl selb) (02 outo0)))
(instance nl ((al in) (bl sel) (o2 outl)))
(instance parent

(in in (TERM_EDGE TOP))

(sel sel (TERM EDGE TOP))

(out0 out0 (TERM_EDGE BOTTOM)

(outl outl (TERM_EDGE BOTTOM))

(vdd vdd) (GND GND))
(end-sdl)

Figure 3-22 Example of a Stdcell design specification

A Stdcell block is generated by placing the individual gate primitives into rows of cells and routing

the interconnections between the cells in the channels between the rows. Connections from one

channel to another is handled by inserting feedthrough cells unless there are already sufficient

feedthroughs built into the cells themselves. An example of a 4-row Stdcell layout is shown in

Figure 3-23. The layout process for Stdcell designs consists of two main parts: First, the placement

and global routing of the cells is determined by the TimberWolfSC program, using a simulated

annealing algorithm. Then the detailed channel routing is created by YACR (Yet Another Channel

Router). The Wolfepost program is responsible for creating the necessary Vdd and GND terminals

on each row, and also producing MAGIC format layout in addition to the OCT layout.

78

Stdcell

Wolfe

Figure 3-23 Example of 4-row Stdcell layout. The Stdcell program is a shell script which
invokes a set of specialized placement and routing programs to create the layout

Tiled macrocells (TimLager)

The tiled macrocell designed style is used to create regular 1- or 2-dimensional layout structures
from handmade “tiles” (leafcells) that are stacked next to each other according to a tiling
specification. Tiling is typically used for regular and repetitive structures such as PLAs, ROMs,
RAMs, array multipliers and datapath stages. Parameterization is a key feature of most tiled
macrocells. Parameters are used to specify specific properties of the layout, such as the width of
the inplane and outplane of a PLA. Table 3-4 shows the parameters that control the layout of some
Tiled Macrocells from the LAGER library. A simple example of a 1-dimensional tiling is shown in
Figure 3-24. This is an example of a latch macrocell controlled by only one parameter (width). The

tiling procedure stacks a number width latch leafcells on top of each other and renames the

79

Block name Function Parameters
plasdl PLA] SR, STt AT,
input-plane, output-plane
ram3t.sdl RAM width, words, ram-address-plane,
ram-bit-plane
cs3.sdl Carry-select adder n, g, csindex
pmult.sdl Pipelined mult xwidth, ywidth
pmultvma.sdl Pipelined mult xwidth, ywidth, n, g, csindex
latch Latch width
Table 3-4 Example of parameters for some tiled macrocells
Vdd GND LD PH1 PH2
Parametrization: N
Y YYVYY -
dd GND 1d phl phi 'E.E ot
latchet] | P
in[N-11 =Blin latchcell out [outIN-11 | LIl H=s
in[N-2] =#»{ in latchcell out == out[N-2] ; dho R
in[N-3] =B>{in latchcell out [out[N-3] Tlg
Z Z
in(1] =B>{in latchcell out [outl1] -J
in[0] == in latchcell out = out[0]

r_l

leafcell terminal name aliased terminal name

Figure 3-24 1-dimensional tiling example (adapted from [rb92])

80

terminals with indexed names so that each bitslice has in/out terminals numbered according to
position. Finally, a control slice is stacked on top to buffer some of the control signals that pass

vertically through the latch slices.

C-to-Silicon users will most likely use pre-designed tiled macrocells that already exist in the
library. However, if the library does not provide the desired function, the user has the option of

designing a new library cell. There are two main tasks in the design process for a tiled macrocell:

* Leafcell design and test tiling. The various leafcells needed must be designed by hand using the
MAGIC layout editor. Typically, the designer also creates manually an example of a tiling to
check that the leafcells fit together as intended.

* Writing a tiling procedure. The tiling procedure is a C-language function which calls special
library functions that place the leafcells in the desired fashion.

Figure 3-25 shows the general picture of the design process from both the user’s perspective and

LIBRARY provides: USER provides:

Tiling procedure
(SDLor Q) Parent SDL file

P. ter val d
Leafcell layout arIanmstea:lc:: na‘:fnsesan

(MAGIC, OCT)

TimLager

Y

Macrocell layout
(MAGIC, OCT)

Figure 3-25 User perépective and Library Designer perspective of a Tiled Macrocell
(TimLager cell)

81

the library designer’s perspective.

The tiling specification can be made either directly in the SDL file or more generally as a C tiling
function. An example of a tiling function (somewhat simplified) is shown in Figure 3-26. The
example is a structure consisting of N rows, where each row consists of two leafcells (leafA and
leafB) tiled next to each other. The layout is generated by a loop that iterates over the rows. Each
call to Addup(leafcell) places a leafcell so that the LL (lower left) comer of the leafcell is abutted
with the UL (upper left) comer of whatever has been tiled already. Addright(leafcell) places the
LL comner of the leafcell so that it abuts the LR (lower right) comer of the most recently placed
leafcell. It should be mentioned that much more general mechanisms are available for placing a

new cell relative to previously placed cells, but for row-oriented layout. Addup and Addright are

usually sufficient.

leafA_7 C tiling procedure

for (k=0; k<N; k++){
Addup (“leafar”,...,END);
Addright(”“leafB”,...,END);
leafA_0f leafB_0

Figure 3-26 A simple 2-dimensional tiling example. Both C tiling procedure and SDL
tiling procedure shown

=8

N

SDL tiling procedure

(dotimes (i N)
(subcells
(leafA ((instance (X 0) (Y 1i))))
(leafB ((instance (X 1) (Y i))))
))

82

Ch#14 Ch#10 Chi#13

Figure 3-27 Example of Flint floorplan and global routing

For simple tiling procedures it is also possible to specify the tiling directly in the SDL file, as
shown in Figure 3-26. The (x,y) relative position of each cell is specified by attaching X and Y
properties to the subcells as they are declared. This is simpler than writing the corresponding C

function.

Macrocell place-and-route (Flint)

After designing macrocells using layout generators such as Stdcell and TimLager, other tools are
needed to place the macrocells and route the connections between them. Flint, the Macrocell
Place-and-Route tools is the most general layout generator in the LAGER suite. It can place and

route macrocells in arbitrary numbers and sizes. The place-and-route process consist of 5 distinct

83

steps: placement, channel definition, global routing, absolute placement and detailed routing. The
first three steps are often referred to as floorplanning and can be performed in an interactive or
automated fashion. Placement simply means a relative placement of the macrocell blocks. Channel
definition means defining the routing channels in between the blocks. Since Flint is based
exclusively on channel routing, it is necessary that the placement and the resulting channels form a
slicing structure [otten82]. This means that it is often easier to let Flint create the channel structure
for you than to do it manually. Global routing means the assignment of net groups (cables) that
have the same source and destination to a sequence of routing channels to form a path from the

source to the destination. Each side of each macrocell is considered a distinct source or destination.

Once the floorplan is ready, the channel sizes can be estimated and the absolute placement of the
cells can be made. Finally, the detailed router creates the actual geometries for the nets in each

channel. Figure 3-27 shows an example of a Flint floorplan and global routing.

Flint is often used multiple times in the chip design process, and at several levels of the hierarchy.
This means that a cell that was made by Flint at one level can be used again as a Flint subcell at a
higher level. Usually this will result in suboptimal routing, as it is always better to optimize the
placement and routing of all cells at the same time as opposed to dividing the problem into several
pieces. By using the FLATTEN feature of DMoct, it is possible to do all of the macrocell place-
and-route at the same time, even if the designer has chosen to specify the design in a hierarchical
fashion. Hierarchical specifications are often easier to create and debug, since there may be less

nets and terminals to consider at each level.

Datapath compiler (dpp)

The datapath compiler (dpp) is a specialized tool for creating bit-sliced datapaths. The idea is that
a datapath consists of functional blocks (adders, registers, shifters, multiplexers, ...) that all have
the same wordlength and that are interconnected in some arbitrary fashion. Figure 3-28 shows an
example of a simple datapath consisting of an adder, a multiplexer that allows for saturation of the

addition result, and an accumulator which can feed its content back to one of the adder inputs.

84

carry scanout
inbus
&
8’: > outbus
» (@)
g P 2 -
onebus I /
out_feedback I
scanin

Figure 3-28 A simple datapath (adapted from [rb92])

The overall strategy of the datapath compiler is that the datapath functional blocks (or stages) are
ordered linearly along the horizontal direction, with the stage-to-stage nets routed in the horizontal
direction and the control signals flowing vertically in each stage. Nets that need to be routed over
(through) a stage to reach another stage are handled by built-in feedthrough lines in the bit-slices,
or by adding extra feedthrough cells as necessary. The datapath compiler generates the stages of
the datapath, decides the ordering (unless specified manually), and creates all the routing for the
data and control nets. The bitslices of all stages are also equalized in height by inserting special

stretch cells in between the bitslice leafcells.

Dpp in fact uses TimLager and Flint to perform all layout generation. TimLager is used to tile the
individual stages, including feed, stretch and control slice cells. Flint is then used to create the
routing between the stages and to the periphery of the datapath. The main function of dpp is to
estimate the height of the bitslices in each stage, including necessary feedthroughs, so that the
proper amount of feedthroughs and stretching can be inserted. Dpp also generates a complete

floorplan for Flint. An example is shown in Figure 3-29.

85

Top Channel
Local Loca%l = Local DATA
/:-’//I"\}/z\/// / %
: . pmE CONTROL
o POWER
— B S " =
Jo = - E
L b~] =Channel
y //////// S i . Y] =Stretch
- . 1 =Feedthru
Bottom Channel - S ienfiall

Figure 3-29 Generic floorplan for a datapath

From LIBRARY: From USER:

Datapath SDL file

Tiling procedures (block instances and nets)

(SDL or C)
Parameter values and
Leafcell layout Instance names
(MAGIC, OCT)

dpp,TimLager,Flint

Y

Macrocell layout
(MAGIC, OCT)

dpp uses TimLager
and Flint for
tiling and routing

Figure 3-30 User’s and Library Designer’s perspective of the datapath compiler

86

As for tiled macrocells, the C-to-Silicon user will most often use pre-designed dpp stages that exist
in the LAGER library. If special functions are needed, the procedure for designing a new

functional block for dpp (Figure 3-30) is very similar to the procedure described for TimLager.

Pad-to-core routing (Padroute)

The final step in the layout process for a chip design is to create the pad ring and to lay out the
interconnections between the chip core and the pads. A special pad routing program (Padroute)
automates this process in LAGER. The padring is assembled by first creating padgroups for the
North, East, South and West side of the chip and then adding space pads (if increasing the size of
the padring is necessary) and comer pieces. Each padgroup is specified by its own SDL file, and
the complete chip is an SDL file which uses the core and the 4 padgroups as subcells.

Bonding pads
Vdd/GND rails

Space pads

Padgroup W

Corner

Padgroup S Piece

Figure 3-31 Padring generation and pad-to-core routing (adapted from [rb92])

87

Track0

Track1

TrackN

Figure 3-32 Padroute uses a special channel router for ring-shaped channels

The pad-to-core routing problem is somewhat unusual in that a circular routing area is involved.
Padroute treats all of the routing area as one channel (Figure 3-32), using a special radial channel

router [lettang89][rh92].

3.12 Logic-level simulation

While not an integral part of the C-to-Silicon system, logic and switch level simulation tools play
an important role in the C-to-Silicon design process. This and the following section is an overview

of the simulations tools and strategies that are employed in the system.

Logic simulation is used to verify the basic topology (interconnectivity) and logic-level

implementation of an architecture, and hence is an important part of the verification process for a

C-to-Silicon design. The logic simulator used in LAGER is THOR [thor88], which was developed
at the University of Colorado (Boulder) and Stanford University. The simulator is based on logic
models written in the CHDL (C Hardware Description Language), which is essentially C but with
special macros for defining module terminals, and library support for bit and bitvector operations.
THOR also comes with a standard library of logic gate models. THOR models often are at a higher
abstraction level than simple logic gates (AND, OR, ...), since the entire logic-level behavior of a
complex block (say, a RAM) can easily be modelied without any need to consider the individual
gates or transistors inside the block. In fact, THOR is spans the behavior level, register-transfer

level and logic level of simulation models.

The interconnection of logic units to form a simulation model is specified in a special netlist
language called CSL (actually, CSL uses a pinlist format for specifying nets). Block delays can be
specified as output delays of the individual blocks. Since accurate delay information may not be
available, it is common to use zero delay or unit delay in all models. THOR is a compiled
simulator, meaning that for each design, a unique binary program is created to model the design.
Both CHDL files and CSL files are preprocessed and converted into standard C files that are
compiled using any standard UNIX C compiler. THOR is equipped with an analyzer program,
which is a graphical presentation interface which can show selected logic-level waveforms from

inside the circuit.

The LAGER cell library contains THOR models for all cells. The problem of logic simulation
hence becomes a question of generating the netlist for the design (in CSL format), and to compile
the simulator. Since CSL uses a completely different syntax and a pinlist format, there may be
considerable difference between the original SDL files and the corresponding CSL files. SDL
supports both pinlist and netlist format concurrently, so it is necessary to parse the SDL files

completely (by hand or with a program) in order to generate the corresponding CSL files.

The obvious solution for an automated approach is to use the already parsed information as it

appears in the OCT database. A translator named MakeThorSim was created by Svensson and

89

THOR
‘ SDL structure descriptioa ® Inaccurate or no timing
Verifies the netlist and the
* DMoct basic logic design
- ® Quick results even for

(OCT netlist) large designs

* MakeThorSim
(chip.csl)

i g B N IS

* gensim

(chip.exe

Figure 3-33 Generating a THOR simulator from SDL

((CHDL templates \)
(Parameters)

(Netist)

Lt

HDL modeils

Cc
MakeThorSim gensim

(o]0)
\Structure_instance view/

CSL netlist

y
(THORexe)

Figure 3-34 CHDL templates are stored inside the OCT views and instantiated and
interconnected using MakeThorSim

90

Sheng [rb92] for this purpose. MakeThorSim generates the CSL netlist directly from the OCT
database, so that consistency between the original SDL files and the THOR netlist is ensured.
Figure 3-33 shows the process of generating a simulation model of the design chip.sdl.
MakeThorSim flattens the OCT netlist down to the level where each “leaf”” has a THOR model.
The CSL is then created. If a net has different names at different levels of the SDL/OCT hierarchy,
the netname at the top level is used. Since SDL files have parameters, the THOR models stored in
the cell library are in fact parameterized templates that are instantiated by MakeThorSim (the
actual parameter values are inserted). The C compilation of the THOR simulator is performed by

the gensim program (Figure 3-34). MakeThorSim does not provide net delay estimation.

The advantage of the THOR simulator is that it is very quick, and provides verification of the basic
logic design. However, it does not provide accurate timing information when used as described
here. It is possible to generate timing information, but this would require parameterized delay
models for each CHDL block model, and a procedure for back-annotating the CSL file with
additional delay values estimated from actual wiring capacitances in the layout. This also requires
that the layout is generated before the THOR simulation takes place, which is not always

convenient.

3.13 Switch-level simulation

Switch level simulation is used to verify the functionality and timing of finished layout. The
switch level (N)MOS transistor device model [terman83][horowitz84][chu88][salz90] is shown in
Figure 3-35. A switch level model of a circuit is made from the original transistor network by
replacing the transistors by their switch level models and adding in all the wire and diffusion
capacitances as lumped capacitors at the appropriate nodes. IRSIM [salz90] is a circuit simulator
based on this model. It uses 4 possible states for each node: low(0), high(1), unknown(x) and
forced undefined(u). Waveforms are modelled as step functions. The transistor parameters Caate

and R are known or can be derived from the device sizes and the fabrication process parameters.

91

Drain
(Vgs < Viow ?open :unknown)
(VGs > Vhigh ? closed : unknown)

Figure 3-35 Switch level NMOS transistor device modél used in IRSIM

(Layout (MAGIC))

TR g g g

iy - ed
Gxttacted circuit (EX’I‘,SIMD
* IRSIM

(Waveform display) /(

®Fairly accurate timing information
@ Verifies connectivity and functionality of actual layout
@ Can be calibrated to match SPICE for small circuits

Figure 3-36 LAGER support for IRSIM simulation from layout

92

Parameter name Value Comment
Tga — .00153_——mcimnce pF/um?

lambda 0.60 microns/lambda
lowthresh 0.4 logic low threshold (normalized)
highthresh 0.6 logic high threshold (normalized)
Channel resistances width(um) length(um) resistance (Q2) _
n-chan dynamic-high | 100 12 17710 —
n-chan dynamic-low 100 1.2 908.0
n-chan static 10.0 12 944.0
p-chan dynamic-high 200 12 1182.0
p-chan dynamic-low 20.0 1.2 2435.0
p-chan static 20.0 1.2 11220

Table 3-5 The primary IRSIM model parameters for a MOSIS 1.2um SCMOS process.
Equivalent resistance values have been computed from SPICE simulations

An IRSIM simulation is most often based directly on extracted layout to make the circuit model

reflect the layout as accurately as possible.

IRSIM input data

IRSIM requires two input files:

* The parameter file contains electrical parameters for the circuit technology, mainly properties
of the transistors, such as threshold voltages, gate area capacitances and dynamic channel resis-
tances (for the piecewise linear model). There are also area capacitances for various layers, but
this information is not used by IRSIM presently. IRSIM provides a calibration facility where a
SPICE model (e.g. as provided by MOSIS) can be used to tune the parameter file so that there is
close correspondence between IRSIM and SPICE delay values. The difference between SPICE
and IRSIM is often less than 10% when using tuned models on a moderately sized circuit (say,

a full adder with 50 transistors). An example of a parameter file is shown in Table 3-5.

93

* The circuit file is a flat circuit description in the MAGIC sim file format. This file is typically
generated directly from the circuit layout by using the MAGIC extract facility and then running

the ext 2 sim program to flatten the hierarchical ext description into a flat sim file.

* Additional command files and/or interactive entry can be used to specify input pattems, timing

and simulation commands. The simulation results are displayed through a graphical interface

called the analyzer.

Using IRSIM

IRSIM is the basic tool to check a layout for connectivity, functionality and timing. Any missing
connections or shorts in the layout will be revealed if properly exercised by the test patterns.
Functionality can likewise be established by applying appropriate input sequences. The timing
accuracy is also quite reasonable as long as the wiring resistance in the circuit can be ignored.
Since IRSIM does not model interconnection resistance, it will not produce accurate results if, for
example, a layout contains long polysilicon lines. LAGER provides an a post-processing tool
(DMpost) which takes care of circuit extraction and generating the sim file (Figure 3-36). An

example of IRSIM simulation is shown in Chapter 4.

3.14 The RL language

The RL language [rimey89] is an approximate subset of C. RL includes only those features of C
that correspond closely to the capabilities of DSP architectures—recursion, for example, is not
supported. RL includes two major extensions: fixed point types and register type modifiers. It is

therefore not strictly compatible with C.

Fixed point types are a convenience for the programmer. The underlying integer arithmetic is
inconvenient to write by hand, partly because simple fixed point constants correspond to huge
integers, and partly because the natural multiplication for fixed point numbers is not the same as
integer multiplication. In adding a new numerical type to a programming language, finding an

elegant notation for the new constants can be difficult. In RL, all constants are typeless real

9

numbers that take on appropriate types from context. In declarations and type casts, the fixed point

type of range -2" < x < 2" is denoted by f£ix : n; or if n = 0 then just by £ix.

Register type modifiers, which are generalized C register declarations, let the programmer suggest

storage locations for critical variables. For example,

register "r* fix y;
declares the variable y to be a fixed point number to be stored in the register bank r. A reasonable
default is chosen if the name of the register bank is omitted. Register type modifiers are also

helpful with multiple memories, and they can be applied to pointers. For example,

“mem" £ix * "mem2" p;

declares p to reside in mem2 and point into mem.

Limitations
Many parts of C have been left out of RL for the sake of simplicity:

* There is no separate compilation.

* There are no explicit or implicit function declarations; functions must be defined before they

are used.

* Initial values may only be specified in declarations of variables that are to be stored in read-only

memory.

* There are no struct, union, or enum types; no char, float, or double types; and no
short, long, or unsigned modifiers. This leaves only void, int, pointer types, array

types, and the RL-specific types, bool and fix.
» There are no goto, switch, continue, or break statements.

¢ There is no typedef, no sizeof, and there are no octal or hexadecimal constants.

Because the target processors do not provide a stack for local variables, it is also necessary to
prohibit recursive function calls. For the same reason, the programmer has to be aware that doing a

function call within the scope of a register declaration will force the compiler to produce rather

95

poor code.

Type modifiers

InRL, the const type modifier is used mainly in declaring variables that are to be stored in read-
only memory. The volatile type modifier is used mainly to identify boolean variables that
represent signals on extemal pins. A volatile bool variable represents an output pin which is
set by the processor. A const volatile bool variable represents an input pin which is

sensed by the processor.

Pragmas

In RL, pragmas have the same form as the #define preprocessor command, but start with
#pragma instead. Pragmas define flags and parameters that control the RL compiler and other
software, as in these examples:

* arch_file gives the name of the machine description file to use

* word_length determines the number of bits in a processor word

* Xx_capacity sets alimit on the number of registers that the compiler may assume for the reg-
ister bank x.

Register declarations and register type modifiers

The RL compiler assigns a variable to a specific memory or register bank depending on

+ whether or not it is a register variable,
* its base type, and
« if the base type is a pointer type, the bank that it points into.

The defaults for a given architecture are specified by pragmas in the machine description, but can
be overridden by pragmas in the RL program. For example, to override the usual defaults for
Kappa and store non-register integer variables, and pointers into bank mem, in bank x instead

of in bank mem, the programmer would put the following pragmas into the RL program:

#pragma int_memory "x"
#pragma mem_pointer_memory "x"

96

Assigning all variables to default memory and register banks is sometimes too crude. For such
cases, RL has register type modifiers. A register type modifier is written as the name of a memory
or register bank in double quotes. It is a type modifier, like const and volatile, that can
appear wherever const and volatile can appear. For example, an integer variable x stored in

the bank foo would be declared like this:
“foo" int x;
A more complex example is a pointer to int, residing in the bank bar and pointing into the bank
foo:
*foo" int * “bar" p;
The boolean type

In C, boolean values (true and false) are represented by integers, which is convenient for typical
general-purpose computers. In contrast, our application specific target processors perform boolean
operations on (and store) individual bits. This is the reason for having a distinct boolean type,

bool, inRL.

In RL, there are no implicit conversions to or from bool, except in certain cases involving literal

numbers. True can be written as (bool) 1; false, as (bool) 0; and in most cases, the casts can

be omitted.

The operations that return booleans as results are the relationals (<, >, <=, >=, ==, !=)
and the boolean operations (&&, | |, !). The operations that require boolean operators are the
three boolean operations, and the conditional expression (condition ? then-part : else-part). The

testsin if, while, do-while, and for statements are also required to be boolean.

Fixed point numbers

RL has a set of fixed point types. Arithmetic on fixed point numbers is saturating, except in shift

operations. This is in contrast to integer arithmetic, which is always non-saturating.

97

The fixed point types have names of the form £ix: n, where n is a possibly negative integer. The
form fix is a shorthand for £ix : 0. Values of type £ix :n have a machine-dependent precision
(controlled by the pragma word_1length) and lie in the range -2" < x < 2”". Casts may be used to
convert between the different fixed point types, but conversions between fixed point and integer
types are not allowed. A cast of a fixed point datum to another fixed point type is typically

implemented with an arithmetic shift operation.

All of C’s floating-point arithmetic operators are available in RL for fixed point arithmetic. With
the exception of multiplication and division, the arguments of a binary fixed point operator must
have the same type, as must the second and third arguments in a conditional expression. Casts are
commonly used to accomplish this. Fixed point values may be explicitly shifted with the

arithmetic shift operators << and >>.

Predefined functions

RL has three predefined functions: abs (), in (), and out (). These functions are overloaded to
take arguments of type int as well as type £ix:n. The value returned by in () may be
considered to be of type number, that is, the resulting type (after implicit conversion) depends on

a limited amount of context. In ambiguous cases, casts must be used.

User-defined operations

Hardware-supported operations that are not predefined in RL can be specified in the machine
description file. An operation is defined and given a name, and one or several implementations of
the operation are specified in the same way as for the predefined operations. An operation defined
in this way is available in RL in the form of a “function call”, where the function has the same
name as the operation. This is useful for hardware lookup tables and in general for handwritten,
idiomatic instruction sequences. For example, a multiplication step with some particular behavior
on overflow might be implemented as a user-defined operation because it would not be compiled

into efficient code if written in pure RL.

98

Preprocessor commands

There are four new preprocessor commands in addition to those of standard C. They are useful for

unrolling and partially unrolling loops: #repeat, #endrepeat, #rrepeat, and #endrrepeat. The form

#repeat id N
...text...
#endrepeat

is roughly equivalent to

#define id 0
...text...
#undef id
#define id 1
...text...
#undef id

#define id N-1
...text...
#undef id

#rrepeat and #endrrepeat are similar, except that they count backwards.

Program structure

The last difference between RL and C is that the RL programmer may (and often will) leave
main () undefined. In its place, the code should define 1oop () and optionally init (). The
compiler then supplies an implicit main (), where init () is called once (if it has been
defined), and then 1loop () is called indefinitely. This is an appropriate form for a program which

reads a indefinite input stream.

3.15 Summary

The C-to-Silicon system is a powerful design tool for Application Specific Processors for
Numerical Processing and DSP. The system supports easy architecture exploration and

performance evaluation at a the architecture level, without having to perform detailed logic and

99

layout level design. High-level algorithm simulation is also supported. C-to-Silicon uses the
LAGER Silicon Assembly System to perform layout and simulation tasks, resulting in a very
powerful and general system. It has been shown that C-to-Silicon is flexible with respect to the

range of architectures and algorithms that can be implemented.

CHAPTER 4

THE PUMA PROCESSOR

The PUMA processor has served as a first test case for the C-to-Silicon system. The design of the
PUMA chip demonstrates and exercises all the central features of the system, including
architecture exploration and system simulation. One of the important results that will be presented
is that small and inexpensive changes to a generic architecture can have a dramatic impact on cost

and performance.

This chapter is arranged as follows: The first section presents the computational task to be
implemented on the chip. The task is examined in detail to identify its primary computational
characteristics. In the second section, this knowledge is applied to select and develop algorithms
that will allow to an efficient integrated circuit implementation. Following the program code
development, the computation is simulated both in floating point and fixed point to verify the
numerical soundness of the formulation. The next section describes the architecture exploration
process and discusses the merits of the various architectural alternatives. The final sections
describe the finished chip developed in this process and its physical characteristics, including the

chip layout design and the chip-level verification results.

101

102

4.1 Characteristics of the computation

The PUMA chip performs the Inverse Position-Orientation computation for the PUMA 560
industrial robot (Figure 2-3). The background for this problem, as well as the specifics of the
computation were described earlier in section 2.3 (p27). At this point we are concerned with
translating the expressions (2-11) to (2-27) into RL code and at the same time assess the

computational needs in evaluating the expressions.

The RL code started out as a C program that was used for an initial investigation of the PUMA
IPO problem. The C code had been debugged and verified before the idea of a chip design was
conceived, and it consisted of a pretty straightforward translation of the IPO equations, using the C
math library to evaluate the necessary elementary functions. Some important facts about the IPO
computation were found by studying the C program, in particular it was found that the

computation is intensive in multiplications and trigonometric function evaluations.

Table 4-1 contains a summary of the operations involved (for computing all eight solutions). The
table shows clearly that there is strong need for efficient algorithms for the sin/cos/atan2/sqrt
operations. The standard method used in general purpose computer systems is rational
approximation. That is, using an approximation which is the ratio of two polynomials [cody80].
Rational approximations usually involve polynomials of degree 3-4 each. This adds up to 4-6

multiplications and 1 division [which would cost about 8 multiplications using Newton-Rhapson’s

Operation Count Operation Count
— e —
Mult(var) 208 atan?2 22
Mult(const) 2 cos 14
Add 108 sin 14
Sub 104 sqrt 2
Divide (var) 1 Divide (const) 1

Table 4-1 The IPO algorithm is intensive in multiplication and trigonometric functions

103

function shift and add add mult
T

atan2 34 17 0

cos and sin 36 19 0

sqrt 32 18 1

Table 4-2 Cordic functions consist mostly of shift/add operations

method], resulting in 12-14 multiplications for each atan2 evaluation.

To minimize area requirements it is always desirable to employ an architecture without an array
multiplier. Not having an array multiplier makes the rational approximation approach very time
consuming. In fact, just evaluating atan2 22 times would involve more multiplications and
additions than all the remaining parts of the algorithm. This fact provided a strong motivation to

investigate the use alternative algorithms for sin/cos/atan2/sqrt, based on CORDIC operations.

4.2 Algorithm selection

CORDIC [blahut85][walther71][volder59] is a family of algorithms that meets our requirements:
It can compute all the functions needed, and in the absence of an array multiplier, it is also much
faster (fewer cycles) than rational approximation. For a 20 bit wordlength (and full accuracy), the

operation count is shown in Table 4-2.

Note that cos and sin are computed at the same time at no extra expense. This is quite handy in our
case, because both sin and cos of each angle are always needed. As will be seen later, CORDIC
can be efficiently implemented on a datapath which has an adder with a variable preshifter for one

of the adder inputs. A description of a typical CORDIC algorithm follows.

4.2.1 CORDIC algorithm for atan2

The function atan2 (y,x) is defined as the angle between the x-axis and the vector (x,y). It is an

extension of the regular atan(y/x) to cover all 4 quadrants. The atan2 CORDIC algorithm is based

104

r= Jx2+y*

xy)

©.0)

Figure 4-1 The CORDIC algorithms use vector rotations to compute elementary functions

on rotating the vector (x,y) through a sequence of rotation angles until it becomes (r,0), as
indicated in Figure 4-1. The arctangent can then be found by adding up all the angles that (x,y)
were rotated by. The key to the efficiency of the CORDIC method is that there are certain angles
by which rotation is very simple, and that any angle can be approximated by a (signed) sum of

such angles. CORDIC uses the angles @, = atan 2%, meaning that we have

1 2*

= —_—, SinQ, = ———— (4-1)
J1+27% J1+27%

Rotating (x,y) by the angle @y results in a new vector (x’,y’) that is related to (x,y) by the equation

B‘]:lic‘)s% Sin(P{IX[j: 1 1 TkxE{]:K 1 2"‘XI§I=K x+2%y
] |sing, coso, Jrez 2™ 1] 2% 1 —2¥x+y

' (4-2)
Ignoring the factor K, note that the rotation only involves addition and multiplication by negative

powers of 2. The latter can be performed by a downshifter, so that no actual multiplications are

necessary. Ignoring K (which is <1) means that X and y’ will both be too large by the same factor.

105

k P k P k @
— —
0 45000000 [7 0447614 | 14 0.003497
1 26.565051 8 0223810 | 15 0.001748
2 14.036243 9 0.111905 | 16 0.000874
3 7.125016 | 10 0055952 | 17 0.000437
4 3576334 | 11 0027976 | 18 0.000218
5 1789910 | 12 0013988 | 19 0.000109
6 0895173 | 13 0.006994 | 20 0.000054

Table 4-3 The set of angles used in the CORDIC iterations

However, to get the correct arctangent, only the ratio y,/x’ is relevant, and it remains correct when
both the numerator and the denominator are off by the same factor. In other words, we simply
ignore the K-factor, and atan2 can therefore be computed solely with shifts and adds. The actual
algorithm consists of a loop where at each iteration we examine the sign of y and apply a rotation

by either -@y or +@, whichever angle rotates the vector towards the origin.

There remains the question of whether this process converges, and whether there is a bound on the

approximation error. Indeed, it can be shown that

T T °°
Ve (—35) (W) e {-L1} suchthat 0= yp, (4)
k=0

This means that for all angles 0 in quadrants 1 and 4, there exists a sequence of rotation directions
Yy =+/-1that will make the accumulated rotation angles converge to 0. The actual values of the
angles g, are shown in Table 4-3. The error in the approximation at step k is always less than the

next angle @y,.

4.2.2 RL program for atan2

Figure 4-2 shows the complete program text of the CORDIC atan2 function (catan2), as

programmed in the RL language, using the fixed point data type.

106

/************************ Catan2 .k ************************/1

/* Copyright (c) Lars E. Thon 1988 */2
fix catan2 (sin, cos) 3
fix sin, cos; 4
{ 5
register int k; 6
register fix X, Vi 7
fix theta; 8

9

/* Start Cordic. The first step takes care of quadrantsl0

2 and 3 */ 11

if (cos < 0) { 12

if (sin >= 0) { 13

theta = FIXPIHALF; X = sin; y = -coOS; 14

} else { 15

theta = -FIXPIHALF; X = -sin; y = COS; 16

} 17

} else { 18
theta = 0; x = cos; y = sin; 19

} 20

21

/* Scale x,y so they don’t overflow when amplified */ 22

xX= (x>>1); y= (y>>1); 23

24

/* The Cordic iterations work in quadrants 1 and 4 */ 25
for (k = 0; k <= NUMIT; k++) { 26
fix Xnew, ynew; 27

if (v > 0) { 28

theta += ctable(k]; 29

xnew = X + (y > k); ynew =y - (x >> k); 30

X = Xnew; y = ynew; 31

} else { 32

theta -= ctablelk]; 33

Xnew = X - (y > k); ynew = y + (x >> k); 34

X = XNew; y = ynew; 35

} 36

} 37

38

/* The accumulated angle is returned as result */ 39
return theta; 40

} 41

Figure 4-2 RL code for the atan2 function computed using the CORDIC method

107

X

‘Operation | Sea

lengths (px’ai’di)

lengths? +2048% 20482 23.(-3)
angles (Oi) in T 3.17 (approx.)
units (si, P ik) = | 2 2.18

Table 4-4 (a) Fixed point representation (b) Rules for fixed point computation (c) Scaling classes
for the variables of the IPO computation

One of the reasons for this fairly detailed exposition on atan2 CORDIC algorithm is to highlight a

small detail of the algorithm which turns out to be of special significance to the architecture

design. The detail in question is the occurrence of the operations of the type (x>>k) inside the for-

loop, where Kk is the loop index. This will be referred to later as the variable shift operation.

The RL program for the PUMA IPO algorithm consists of 5 functions and a main program. Total
code size is 658 lines of text, out of which 263 lines contain one or more actual RL statements
(after removing comments, blank lines, etc.). It is clear that the IPO algorithm is nontrivial both in
size and complexity, and therefore constitutes a good test case for the C-to-Silicon system. The

complete RL code (puma.k, etc.) can be found in Appendix A.

4.3 Fixed point computation

Since our target processor does not support the floating point data type, it is important to perform

a careful analysis of how to implement the algorithm efficiently in fixed point arithmetic. The goal

108

is to minimize the wordlength w (sometimes denoted N). The parameters determining the

wordlength are the precision and range requirements of the variables in the program.

The basic concepts of fixed point computation are reviewed in Table 4-4. The first sub-table
explains how fixed point numbers are represented, that is, how to compute an integer which will
contain the appropriate bit pattern when converted to 2C (two’s complement) binary form. For a
given variable x, if abs(x)<2* then a scale S=2° can be used. The basic tradeoff is to choose 2° large
enough to give sufficient range and small enough to give sufficient accuracy. Scaling by powers of
2 is convenient, because the processor can easily convert between numbers of different scale by
performing shift operations. Converting scales will, however, lead to loss of significant bits as the
bits are shifted out on the right-hand side. It is sometimes handy to use other scale values than

powers of two, for example as the scale value for angles, as will be explained below.

Since RL only allows power-of-two scales, other scales must be simulated by doing the
appropriate scaling operations outside the chip and declare the variables to be of type fix:0. In fact,
it was easier in the program puma.k to declare ALL variables to be of the type fix:0. Note that

constants and input data must be prescaled according to the third section of Table 4-4.

The second section of Table 4-4 lists the rules for computing the resulting scale when applying an
arithmetic operator to a pair of fixed point numbers, and the requirements for the operands. Adding
two numbers only makes sense if they have the same scale, and multiplying to numbers yields a

third number with a different scale.

The third section of the table lists the scales used for the variables in the puma.k RL program. The
scale 2048 for lengths is chosen because the maximum reach of the robot is about 900mm. We
cover this with a safety factor of two. Products of lengths get the scale 2048 for consistency. The
reason for scaling angles to & is the following: The formulas for Bl and 93 both involve the
subtraction of two angles. Since each of the two angles may be in [-%,+=x], the result can in

principle be anywhere in the range [-2m,+2%]. Hence there will be a need to reduce the value

109

modulo 7 so that it falls inside [-r,+7]. If we use & as the scale of the angles, the modulo reduction
comes for free during the subtraction (due to the modulo arithmetic of the processor when

operating in non-saturating mode).

It would also seem reasonable to use scale 1 for the ¢; and the s;: We know that a sine/cosine will
always be between —1 and 1, so a scale of 1 should be sufficient. This is tempting, but consider the
effect of inaccuracy: If cos=0.999 becomes cos=1.001, the value will wrap around and become
cos=—0.999. These two values are not at all “close”, because they correspond to very different
angles. (This is not analogous to the situation with angle values, where +179.99° and —179.99°

describes essentially the same angle.) Hence we decided to use a scale of 2.

The wordlength chosen was w=20. It was derived as follows: The target is to compute 61,...,66
with an error of less than 0.05°, or 4.5 decimal digits. To achieve this, about 5.5 decimal digits of
precision is needed in the intermediate calculations. This corresponds to about 19 bits. Adding one

bit to account for the negative numbers we end up with w=20.

4.4 High-level simulation

Using the above scaling scheme, the IPO computation was programmed in RL, using CORDIC
subroutines for the elementary functions. To make sure that the program and the scaling were
sound, we used the KT tools to perform first floating point and then fixed point simulation.The
simulations showed that the program works well unless the specified goal frame is close to a
singularity ([craig86] p146). It should be noted that a floating point program will also produce
inaccurate results in this case. Moreover, the loss of accuracy is often accompanied by the property
that the position/orientation is only weakly dependent on the value of the particular inaccurate
angle. It is also possible to detect during the computation that we are close to a singularity, and
issue an error signal. The typical case had an angle error of less than 0.02° for each one of the 48
angles when simulated using target positions/orientations generated with a random number

generator Some results of the high-level simulation are shown in Table 4-9.

110

4.5 Architecture design and exploration

The Kappa architecture was used as the starting point for the architecture exploration. Kappa
originated in audio (speech processing) applications [pope84], and was developed further for use
in a PID robot joint controller [azim88]. See Figure 3-11 for a block diagram of the Kappa
datapath. Starting with this datapath, I went through several changes to the architecture, each time
trying to make inexpensive modifications that would improve the efficiency in executing the
algorithm. It should be stressed that most of these changes only had to be done on paper or in the
machine description file, as explained in Chapter 3. Hence it was possible quickly to evaluate a

number of alternatives without expensive investment in logic or layout design.

For each variation of the architecture, the C-to-Silicon system was used to collect several cost and
performance metrics: Number of basic blocks, Total code size (static instruction count) and Total
execution time in cycles (dynamic instruction count). From these results were also derived area

measures. Area costs of any additional hardware blocks were also considered.

Architectural variations

The design alternatives that were considered are illustrated graphically in Figure 4-3 and also
listed in Table 4-5. Each variation was created by making a set of choices between the pairs of
alternative architectural features shown in the figure. The details of the alternatives will be
explained below. Note that some of the alternatives are not independent. For example, the question

of whether or not to use a subroutine for multiplication is relevant only if the array multiplier is not

used.

The first pair of alternatives from Figure 4-3 is the use of a shift-add multiplication strategy versus
a full array hardware multiplier. The second pair of alternatives is relevant if the shift-add strategy
is used. The alternatives are between expanding (in-place) all multiplications into N (the
wordlength) shift-add operations, or to provide the architecture with a subroutine call/return

capability so that one block of code can be used for all the multiplications.

(1) Shift-add vs. Array multiplier

IR b
Y [wa] [

A Y

p=(p>>1)+a*by p=a*b

(2) Inline multiplication vs. Subroutine

¥

return

(3) Limited-range barrel-shifter vs. Full-range log shifter

v
Y~ R6+L1 Y~ RI;LI

(4) Constant shifter (x>>const) vs. Variable shifter (x>>k)

{ x0
shift «— const \\/_/ shift @~ x1

I F [=

Figure 4-3 Small architecture variations had significant impact on the PUMA chip
performance and cost (area)

111

112

The third pair of altemnatives is concerned with shifter types. The notation R<n>L<m> is used to
denote a shifter that can shift (up to) n places to the right or m places to the right in one cycle. The
alternatives are an R6L1 limited range barrel shifter and a R15L1 full range logarithmic (1-2-4-8)
shifter.

Finally, the tradeoff between having a constant shifter and a variable shifter was considered. A
constant shifter is a shifter which can only shift by an amount which is fixed in the instruction at
compile time (also known as an immediate constant). In contrast, the variable shifter also can shift
by an amount which comes from a register, in this case any one of the index registers of the

address unit.

Evaluation of alternatives

Table 4-6 shows the results of evaluating the architectural alternatives. The first 4 entries (0-3)
assume that the architecture has no array multiplier, i.e. that shift-add multiplication is used.
Entries 0-1 in the table contrast the use of inline code versus a subroutine call for multiplication.
Using the subroutine means an increase in the number of basic program blocks, but a large
decrease (34%) in code size, since one piece of code is shared by all the multiplication operations.
Since the architecture has a low-overhead subroutine call, there was essentially no difference in

execution time. Additional hardware cost (a small stack circuit) is minimal.

Now consider entry 2. Compared to entry 0, the difference is that the constant shifter has been
replaced by a variable shifter. This has an even more dramatic effect than introducing subroutine
capability. The code size is down by 41% compared to case 0. The explanation is simple: The
catan2 RL program (Figure 4-2) contains a for-loop where the variable k is the loop index. The
variable k is also used inside the loop to specify the amount of shift, as in the expression (x>>k).
What happens if the architecture does not support variable shifts? Then the loop cannot be
compiled as written. The loop has to be unrolled, meaning that its contents must be duplicated 17
times (NUMIT=16), each time with a different value of k inserted as a constant. Similar unrolling

is necessary in the other CORDIC routines. This becomes very expensive in terms of static

Alternative 1

Alternative 2

array multiplier (possibly pipelined)

iterative shift/add multiplier

inline multiplication code

subroutine call

R6L1 shifter

R15L1 logarithmic shifter

constant shifter (r>>I)

variable shifter (r>>x[I])

Table 4-5 Design tradeoffs affect layout area, static instruction count and dynamic
instruction count

Case | Shifter Mult type Num blocks | Code size (H:AH?Z) Cycles
0 | consamt |inlimccode | 201 | 2924 0.00 | 18156
1 constant | subroutine 255 1920 -13.63 | 18156
2 variable | inline code 66 1720 -18.17 | 18156
3 variable | subroutine 120 717 -31.78 | 18156
4 variable | array (delay 1) 66 683 2778 | 9192
5 variable array (delay 1%) 66 642 -28.37 | 9028
6 variable | array (delay 3*) | 66 723 -27.20 | 9352

113

Table 4-6 Effect of design decisions on code size (static instruction count) and code

execution time (dynamic instruction count)

instruction count, as evident from Table 4-6. A solution is to introduce an extra instruction bit

which selects between the immediate constant and the lower 4 bits of an index registers X0-X2 as

source for the shift amount. This was a very inexpensive addition to the hardware, but it paid off

greatly by reducing program (and hence ROM) size, without changing the execution speed.

Entry 3 shows the combined effect of a subroutine stack and a variable shifter. The code size is

down by 75%. Note that the cycle count remains the same, as we are still executing the same

sequence of datapath operations.

Entries 4-6 show the results of introducing an array multiplier unit as part of the datapath (see

114

Figure 4-5). First of all, the number of blocks is reduced because the multiplication subroutine
calls go away. More impressive is that the execution time is cut in half. A reduction was expected,
considered that the program has a large amount of multiplications. The code size, however, shows
little improvement. The small reduction consists mostly of the space taken up by the former

multiplication subroutine.

The three different cases 4-6 were done as an experiment to see whether the introduction of
pipeline delay and/or extra input multiplexers would make a large difference in the performance.
Case 4 assumes that each multiplier input can only come from one particular source (e.g. the left
input from mbus and the right input from the ram). Cases 5-6 assumes that either input can come
from either source (marked with a * in the table), which could be important for example when
squaring a number. We observe that neither the pipeline delay nor the input routing had much of an
impact on either static or dynamic instruction count. This is positive evidence that the compiler is

doing a good job at both scheduling and of data routing.

Discussion

The table shows that alternative 3 is a clear winner area-wise, and with the same speed as
alternatives 0-2. The alternatives 4-6 provide higher speed at the cost of additional area.
Considering the cost and design effort for a 20x20 array multiplier, we decided against using one.
Previous layout indicated that a 20x20 array would be at least 2.54x2.60mm in 2um technology,
plus a substantial overhead in hooking up the busses between the multiplier and the datapath. The
original R6L1 shifter was also rejected. The R6L1 shifter does not provide adequate shifts for the
CORDIC operations at the given wordlength (N=20), because shifts up to (NUMIT—1)=15 are
required. Repeated shifts would then be necessary. More serious is that variable shifts would not
be possible, as there would be no easy way to break a variable shift into 3 repeated shift operations.
Finally, the logarithmic shifter does not require any decoding of the shift amount, making the

datapath implementation easier.

115

mem[]
mbus ‘
xQ1
mor > 0 immed.addr
l R
0’1’x,-XQIXI,‘lX| \mUX/ XbUS
abus * bbus‘ v,
-\ s/
\/ xsign
sign Xxsum
Y
acc >
inport
eabus
< —
rbus
Ml - ¢
outport
- addr to mem[]
—»{ rcoef

Figure 4-4 The PUMA datapaths

116

mor |« -

mbus

0,1 !x"xalxl !'le \Lﬂux /

abus bbus

sign

acc

Figure 4-5 Datapath with array multiplier (only relevant part of datapath is shown)

Conclusion

In summary, we decided to use the architecture with the R15L1 logarithmic shifter, variable shift
capability, a subroutine stack and no array multiplier. The final PUMA datapath is shown in Figure
4-4. Assuming that the chip can run at 10MHz clock rate, the IPO equations can be solved at a rate
of 107/18156=551 times per second. This is sufficient for most purposes (most robots have a
control loop that runs at less than 100Hz, and the IPO loop typically is run at a slower rate than the

control loop).

117

4.6 Chip verification and layout design

The logic and layout design of PUMA was carried out in the LAGER environment, following the
methodology described in section 3.10 (p71). The PUMA chip core consists of 221 macrocells,

with 6 macrocells at the top level and 7 levels of hierarchy.

Most of the design was created by translating or redesigning old Kappa SDL files, which were
used in the previous LAGER-III system [shung89][shung91]. LAGER-III was based on Franz
Lisp and the Flavors database and the current LAGER is a thorough modemization based on the C
language and the OCT database. Creating PUMA from Kappa was a complicated task, as the old
design had never been simulated and there were numerous bugs that had to be discovered and fixed
both in the logic design and in the various library modules and leafcells. The architectural

modifications turned out to be fairly easy to accomplish.

Because of the size of the microcode (670 lines) it became necessary to make the microcode ROM
double-wide and insert an output multiplexer to select the appropriate half of the bits. This made

the chip floorplanning manageable at the cost of some delay and extra design time.

4.6.1 Logic-level simulation

The logic-level simulation was carried out using THOR and MakeThorSim (Chapter 3). Models
for the library cells had to be developed and installed in some cases. MakeThorSim tumed out to
be a great help as soon as the program reached a stable condition. The main problem with THOR
was the lack of delay modelling, which meant that there would often be multiple transitions of the
same signal at the same time. This made it crucial that the models keep track of the time the signals

last changed, to avoid infinite evaluation loops.

Debugging the logic design with THOR was a somewhat complex task, but was aided by some
special THOR utility models that were especially developed for the PUMA simulation. For

example, a breakpoint model was developed especially to watch the value of the (blocknumber,

118

breakpoint stop simulation when (block, line) reaches certain value

file_binmon print binary value to file every time input changes

file_hexmon print hex value to file every time input changes

rename dummy block to rename a signal to something more meaningful
watchdog_strobe watch a strobe signal and print bus value when strobe is high

watchdog_break watch a bus an stop simulation whenever a certain value appears

SUN 4/60 (Sparc 1) 31:07 min (12:04 for the graphic analyzer) (100ms per clock cycle)
SUN 4/75 (Sparc 2) 17:04 min (6:13 for the graphic analyzer) (57ms per clock cycle)

Table 4-7 Special THOR nutility models for PUMA debugging. Simulation execution
times.

linenumber) pair and stop the simulation temporarily at any given location so that the user could
check the state of the simulation and decide what to do next. Similarly, the file_binmon model was
developed to watch buses and print the time and value of every change into a file for further

analysis. A complete list of the utilities are shown in Table 4-7.

THOR is a fairly speedy simulator, allowing a complete simulation (~18000 cycles) of the RL
program on the PUMA chip in less than 1 hour. Combined with MakeThorSim and the breakpoint
and watchdog utilities, it formed a reasonably powerful environment where it was possible to
diagnose and fix several bugs per day, as long as the symptoms were not too obscure. This is not to
say that the debugging environment would work well for the casual designer, but it was sufficient

for an experienced designer. Examples of the execution speed of THOR are shown in Table 4-7.

4.6.2 Switch-level simulation

The PUMA chip layout was simulated extensively using the IRSIM switch-level simulator
(section 3.13 on page 90). Circuit descriptions extracted from the PUMA layout were used as

input for IRSIM, leading to more accurate delay and timing results than what is possible in the

119

ogeeL 0cczL (1 ¥+72 goceL
A

‘! L 1

06leL
'l

11:] ¥

0L12L

09i2L

0512l
'l

ovics
L

oeles

adlsad

8H1SHM

{0-611LHOGNI

LN S X SUCED X BIZLLT X BoGoP X 20000 |l0-611LHOd1NO

Billl

[o-61]dpnBgues
[o-6t)weszdpne
[61-0ldpnegwes

SNAWIISHON
W3NT13SEON

Y 20000 |lo-6thnosow

gsnqes
lo-0tlesngee
[0-2]1snqee
{o-61linoyoiejes
[61-vlisnax
{o-611snqu
[o-61}wns

NID

lo-61)snaq

{o-61lsnqe

[0-61hnoxnwq
ulqswIBlYSILND

[0-61]ujerebase
NOISNdY

NoISNY
|l0-64]01313SHQAY3HOLSD

[61-0]pewwiNOBI01SO

[e-0InBNInOB0159

[ss-elsuginoe.oiso

A S e
S S

RN

lo-¥}sHOQVYHLSNI
[2-0]sseppexooiq

6 THOR simulation of PUMA. The analyzer shows the output phase of the RL
program (starting at OUTPORT=dc5e8[hex])

Figure 4-

120

B : B R R LR R D R L LEF LT PR P PP PP PPN

(su) o

‘guisavay”

1GULSILIIM™

.swnv

 IHOINIVLVD]

ageep

81221

$0000; 1HOLNOVLVA |

oM wel

i praS WBI

)

S

ey

i

Wz* .E“_ MSolEE

i | uiwes

10

0o

€0

10

€0

®

og: :sseippe wet

ok iwspzdiyoyo

qoe UpLSIO

20 : wnunsy)

£1592 Zogge roodo| ey

w ! g0 80 20 ‘| eo 10 20 | oo 8} L
D= : S
: " :

m 24 20 2 | 10 90 | s | vo | o

T

m S$S81pPBYO0Iq

,_ NIIDO10™

‘ewd

i

SN
SERE M .Wa

Figure 4-7 IRSIM simulation of PUMA. The bus _DATAOUTPORT is the same as the

bus denoted _OUTPORT in the THOR simulation

121

logic level simulation. The execution of the microcode, including data input and output, was

simulated in its entirety, and the results have been verified against those computed in the high-level

and logic-level simulations.

4.6.3 Electrical rule checking

Electrical design rules are design rules that apply to the electrical interconnection of layout
geometries, as opposed to topological properties of the geometries. Examples of electrical design
rule violations are listed in Table 4-8. The MAGIC design rule checker is only a topological
checker and does not know about electrical design rules, partly because such rules tend to vary

(especially between analog and digital designs).

Because of the complexity of PUMA and the many levels of hierarchy, it became difficult to check
electrical design rules manually. A program named erc (electrical rule checker) was developed

which automated this task. erc checks for all the errors listed in Table 4-8.

4.6.4 Chip testing

The PUMA chip was tested using a Tektronix DAS 9100 pattern generator/data acquisition unit.
There was complete functional agreement between the measurements of the chip and the THOR/
IRSIM simulations. Table 4-9 shows all the simulation and chip measurement results for a random

test case. Note that the biggest error between the floating point and fixed point simulation is 0.01

Geometries Electrical rule violation |

pwell/nwell floating (not connected to anything)

pwell/nwell tied to Vdd/GND instead of GND/Vdd

pwell/nwell tied to something other than GND/Vdd (e.g. a signal)
Vdd/GND unconnected

Vdd/GND shorted together

Table 4-8 The electrical design rule checked by the erc program

122

degrees, indicating that the fixed point formulation is sound. Also note that THOR, IRSIM and the
chip itself were 100% in agreement, and that the difference between the high-level fixed point

simulation and the chip is at most 0.01 degrees.

IRSIM is usually a conservative predictor of chip speed. For the PUMA chip, the simulation
worked up to 6.5 MHz (using untuned, conservative transistor parameters for a 2um process).
Measurements on the actual chip showed that it was fully functional only up to 4.6MHz. The first
block to fail was the RAM. The datapaths, the program ROM and the block sequencer were all
functional up to 8.2MHz at 5V. The discrepancy between IRSIM and the measurements is due to
the fact that the circuit extraction does not include wire resistances (IRSIM does not handle wire
resistance). Resistance extraction is important when there are long polysilicon lines in the layout.
This was the case in the RAM and PLA modules. These modules had been optimized with respect

to area by using polysilicon lines instead of metal lines in certain key circuits.

Source of results o1 62 03 84 05 06
Floating point -50.11 3305 | -6240 -61.46 15040 | -167.04
(kt -float) 15367 | 12203 | -6240 39.41 167.04 92.74
Fixed point -50.11 3305 | -62.40 6147 15040 | -167.05
(kt -fix) 153.67 | 12203| -62.40 3940 | 167.04 92.74
Error 0.00 0.00 0.00 0.01 0.00 0.01
(Fix - Float) 0.00 0.00 0.00 0.01 0.00 0.00
THOR, IRSIM, dc5e8 17768 d3a0c d44b0 6af3a 89368

and measured

on the chip (hex) 64460 | S6c6e d3a0c 1c05¢ 76c84 41134
Converted 1o -50.11 3304 | -62.40 -61.46 15040 | -167.04
degrees 153.67 | 122.03 -62.40 39.41 167.04 92.74

Table 4-9 Simulation and test chip measurement results. Two out of eight solutions are

shown for a randomly generated test case

123

It is clear that by spending more area and using metal lines, the speed can be increased
substantially. In fact, a subsequent C-to-Silicon chip design [mmar92] simulates at SOMHz. The
chip has not retumed from fabrication at the time of this writing. The main reasons for the speed
improvement is that the RAM has been reworked to avoid the polysilicon lines, the overall smaller
RAM size (26 words), the use of newer technology (1.2 um versus 2.0 um) and that the program
running on the machine is about 1/7 the size of PUMA'’s program. Nevertheless, the results

indicate that the C-to-Silicon system can also be used for high-performance designs.

Characteristic Value Comment

wordlength 20 size of all the datapaths
cstore PLA 13x649x77 49973 bits (microcode ROM)
lgu PLA 16x32x8 inputsx mintermsx outputs
cfsm PLA 21x171x26 inputsx mintermsx outputs
data RAM 172x20 3440 bits

technology 2u scalable CMOS (nwell)
width x height | 9864x9608 | A%

transistors 99384

pads 126

package 208 pin PGA

Table 4-10 Physical design characteristics of the PUMA chip

Block Speed Comment

chip (IRSIM) 6.2 MHz without resistance modelling
chip 4.6 MHz limited by RAM speed

RAM 4.6 MHz long poly lines (area optimized)
datapath 8.2 MHz

control store 8.4 MHz

control fsm 8.4 MHz

program counter | >10 MHz

Table 4-11 Measurements on the PUMA chip

124

Figure 4-8 CIF plot of the PUMA chip

4.6.5 Physical design results

The IPO algorithm is quite complex compared to the algorithms employed in many DSP
applications. Therefore, the resulting microprogram is large (about 670 lines after compression),
yielding a chip of 9.8 x 9.6 mm? in 2u technology. Table 4-10 sums up the key results of the

physical chip design. The completed chip is shown in Figure 4-8. It was fabricated through the

MOSIS service.

125

4.7 Summary

The design of the PUMA chip demonstrated the feasibility of the C-to-Silicon system, and served
as a driving force during the development of the system. All the main features of the system were
exercised and tested during the design of PUMA. Easy architecture exploration proved to be an
indispensable feature for performance and tradeoff evaluation. High-level simulation (floating and
fixed point) were used to develop a numerically sound algorithmic formulation of the IPO
computation. Automatic layout generation was successfully employed to create the complete chip.
Logic and switch level simulation support tools were used to debug the design and verify the
layout and timing of the processor. PUMA has been successfully fabricated and tested, and C-to-

Silicon is now currently being applied to other design projects.

CHAPTER 5

SOLVING nxn POLYNOMIAL
SYSTEMS

The general TPO problem for 6R robots will now be considered. It is markedly more complex
than the PUMA case, and constitutes a suitable test case for investigating architectures and
implementations of Numerical Processing systems. Since the general IPO problem can be cast as
solving a system of n polynomial equations in n unknowns, I will start out by describing the
development of a family of C software programs (named ConsolC) for solving such systems, using
the homotopy continuation method described in Chapter 2. There were several reasons for

developing the ConsolC software:

» Portability. Existing software was only available in the Fortran 77 language, which is not
widely used in the UNIX workstation environment. We also wanted to take advantage of the
UNIX programming environment, since frequent software modifications were expected.

» DSP chip compilers. We wanted to investigate how the [IPO computation would fare on com-
mercial DSP chips. C compilers are available for most current DSP architectures, whereas For-

tran is much less common. By developing a C package, the migration to DSP chips is much

simpler.

127

128

* Algorithm insight. It was assumed that developing and running the C code would provide addi-
tional knowledge about the algorithms, both structurally and numerically. Such knowledge can
be applied to identify the time-critical parts of the computation and to determine how these

could benefit from an application specific architecture.

The original Fortran Consol software was developed by Morgan [morgan87a]. This chapter
describes the development of the C version, starting with a description of the algorithm and how
various software modules were designed to implement the computation. In particular, the software
features especially required for the IPO computation are described. An important task was to test
the software on some realistic inputs, so as to assess the robustness of both the method and the

implementation.

Following the development of ConsolC, the package was used to investigate the general IPO
computation. The purpose of the investigation was to learn about the numerical properties and the
complexity of the algorithm, since this knowledge is important when considering Application
Specific Processor implementations. In particular, convergence, path lengths, variable ranges (max
values) and execution profiles were scrutinized. Some experiments with fixed point arithmetic for
selected parts of the algorithm is also included. The fixed-point version of the ConsolC package
was created by translating all the C code into C++ and developing a special Fix package in C++ to
perform the fixed-point arithmetic. This was much simpler in C++ than it would have been in C

due to the operator overloading mechanism available in C++.

5.1 Software architecture of ConsolC

The purpose of ConsolC is to track the paths of the homotopy continuation

h(x,t) = (1-t) -g(x) +t-f(x) te [0,1] (5-1)
where h(x,0)=g(x) is the starting system and h(x,1)=f(x) is the goal system. ConsolC uses

Newton’s method to move along each path as explained on page 36. At each step, the program

solves the equation

129

0 = h (x,, At) +Dh, (x,, At) Ax (5-2)
and uses the value of Ax to move to the next point. A generic flowchart for the programs in the
ConsolC family is shown in Figure 5-1, and a listing of the main subroutines or modules are given

in Table 5-1. The steps of the algorithm should be familiar from Chapter 2: The first task is to read

Read coefficients of f(x)

Read run parameters

pe

Preprocessing

Y

Initialize run parameters

Select a solution X to g(x)=0

Set start of path to (x,t)=(x?, 0)

Track the path

from t=0 to t=1

Flag

failed path

Print solution -t

Y

Print path statistics

Yes

ore paths?
No

Figure 5-1 Generic flowchart for ConsolC programs

130

Function Software module Function Software module
Set start of path to
Start consol8.c 9=, 0) consol8.c
. . Track the path from consol8.c, predict.c,
Read coefficients of f(x) | inputa.c =0 to t=1 comect.c
Read run parameters inputb.c Check convergence stepcheck.c
Initialize run parameters | consol8.c Print solution postproc.c
Select solution to g(x)=0 | startpoint.c Print path statistics postproc.c
Table 5-1 Software modules of the ConsolC family
Homotopy Formulation Source System size
%
256 path 0- or 1-homogenous [morgan84] 8x8 complex, 16x16 real
96 paths 2-homogenous [morgan86] 8x8 complex, 16x16 real
64 path 2-homogenous [morgan87b] 8x8 complex, 16x16 real
16 path 2-homogenous [wampler89] 11x11 complex, 22x22 real

Table 5-2 Different homotopies used to formulate and solve IPO equations

the coefficients of the equation we want to solve, and to set runtime parameters such as desired
path tolerances and the number of steps that should be allowed before a path is considered
divergent. Preprocessing can mean a number of tasks. In the case of the IPO equations it is used to
convert a goal point and a set of Denavit-Hartenberg parameters into the coefficients of the goal
system. The main loop of the program consists of selecting a new starting point, tracking the path

from t=0 to t=1 and recording the solution (endpoint) and the path statistics.

131

5.2 ConsolC variants

As mentioned in Chapter 2, there are a variety of formulations of the IPO polynomial system,
with a varying number of paths to track. Table 5-2 shows the most useful systems currently known
The first 3 systems (256,96,64) were known at the time ConsolC was developed, whereas the 16-

path method is a more recent development.

The ConsolC package contains programs suitable for each of the 256/96/64 formulations, as well
as generic variants that can handle any type of polynomial system.Table 5-3 contains a listing of

the various programs in the ConsolC package. A description of the different versions follows in

L Program name Properties of program
consolér f.g are bothﬁdratic equations in 2=unknowns
consol8qp f.g=generic quadratic, 1-h projective transform
consol8tp f.g=tableau, 1-h projective transform
robot8tp f=tableau[robot input], 1-h projective transform, 256 paths
robot8pl f=hard-coded robot, g=generic quadratic, 1-h projective transform, 256 paths
robot8p2 f=hard-coded robot, g=generic quadratic, 2-h projective transform, 256 paths
Star96p2 f=hard-coded robot 2-h, g=Sommese 96 path start system with 2-h projective

transform, h=gamma factor

robot96p2 f=hard-coded robot, g=generic robot, h=gamma factor, 2-h transform, 96 paths
robot64p2 f=hard-coded robot, g=generic robot, h=gamma factor, 2-h ransform, 64 paths
robot64p2g fjljlirgc:;::sd:vc: t;lo})l:al:, :;gfneric robot, h=gamma factor, 2-h transform, 64paths,
mm164p2éb, ' ’{‘—Itjnirgc;-s;dvead t;"o?:; !g,;’%inenc T *bot h-gamma f:‘sctolv'. 2-h transform, 647path-s
pltran Transform solutions from Euclidian space to 1-h projective space
p2tran Transform solutions from Euclidian space to 2-h projective space

Table 5-3 Programs in the ConsolC package

132

the next few sections.

5.2.1 General polynomial solvers

The most general form of ConsolC is known as consol8t2p. This version allows both f and g to be
specified in “tableau” (or tabular) form. This means that each equation can have the completely

general polynomial form

Y
f,(x) = Y axmxg.. e (59)
t=1

For each equation, the program reads first how many terms t;, the equation contains. Then for
each term, it reads the coefficient a;, and then the exponent m,,, (possibly 0) for each of the k=1:n
variables in the system (or n+p variables in the case of a p-homogenous transformed system). The
tableau form is practical for general investigations but the evaluation of the functions f,g,h and
their Jacobians are slow. Since the IPO problem involves quadratic equations, conso18t 1p was
instead designed to solve only such systems but in a faster manner by hardcoding the quadratic
form into the function evaluation code. The general polynomial solvers typically uses a starting

system of the form

g (X) = px{'+q, d,=deg(f) i=ln (54)

but as we shall see later, it is sometimes beneficial to use more specialized starting systems.

A simple version of ConsolC that can only do systems of 2 equations in 2 unknowns and of 2nd
degree is known as consol6r. This program was initially used to explore the continuation
method and to generate examples of continuation paths. An example of the 4 continuation paths
(each with 2 complex variables) generated by consolér is shown in Figure 5-2. The particular

system used in this example was f: C> — C? given by

f, (x)

£,(X) = ay X} + ayX, Xy + 8y3X2 + 84X + 8psX, + By (5-6)

2
A X7+ 25X Xy + 23X5 + 814X, + 815X, + 86 (5-5)

As starting system, consol6r always uses the system

Y
path0.Z[0]
3.50 _—F<_ path0.Z[1]
Y hul T~ < ‘pathi Z10] -
3.00 Z A - pathl Z[1]
e N palbaZT0]
/ N\, a2 Z[1T ~
250 T v path3.Z[0] ~
I \ Path3.Z[1] ~
2.00 | }
o\ '
N !
1.50 <
h /
- -~ ./
/7
1.00 e ra
,/
— .
0.50 "> e o
'0-*
T
0.00 ot
\.‘
Vi]
0.50 v
/\V ! \ ;
o
; 3
-1.00 ‘\ V " A’ O‘
bl ot © ="
\ s ./‘)J- k\ -
-1.50 S 1=
X
-1.50 -1.00 -0.50 0.00 0.50 1.00 1.50

133

Figure 5-2 Example of continuation paths in the complex plane. These particular paths are
for 2 equations of 2nd degree in 2 unknowns. The complex variables are x1= Z[0] and
x2=Z[1] in the figure. There a 4 paths (8 trajectories) corresponding to the 4 solutions of

the system

Coef

Real part

Imaginary part

Coef

Real part

p! 0.12324754231 | 0.76253746298 | ql 0.58720452864 0.01321964722

Imaginary part

p2

0.93857838950

-0.99375892810

q2

0.97884134700

-0.14433009712

Table 5-4 Coefficients used for the random starting system in consolér

134

Coefficient Value Coefficient Value

all T7%%6 a2l OT;55203
al2 0.977589 a22 0.668641
al3 0.150897 a23 0.823866
al4 0.400489 a24 0.209538
als 0.312564 a25 0.230056
alé 0.679323 a26 0.879568

Table 5-5 Coefficients used in the system solved in Figure 5-2. All coefficients are
real, so that solutions generally exist in complex-conjugate pairs

Startpoint Real Imag Endpoint Real Imag
x1 0.138191 -0.747731 x1 -0.461010 -1.075700
x2 0.568454 0.448099 x2 0.392620 -0.203800
x1 -0.138191 0.747731 x1 0.234650 -0.516840
x2 0.568454 0.448099 x2 -0.407340 -0.772730
x1 0.138191 -0.747731 x1 0.234650 0.516840
x2 -0.568454 -0.448099 x2 -0.407340 0.772730
x1 -0.138191 0.747731 x1 -0.461010 1.075700
x2 -0.568454 -0.448099 x2 0.392620 0.203800

Table 5-6 Starting points an end points for the 4 continuation paths of Figure 5-2. Note
that there is considerable symmetry in the starting points due to the simple form of the
starting system (5-7). This fact is reflected in the figure as some trajectories starting at
the same point (By trajectory is meant the trace of one variable of the N=2 variables
that make up a continuation path)

g, (x) =p;xi+q, g:(x) =p,xi+q, v (&7

where P9, are “random” complex numbers. In consol6r, the actual numbers used for g and the

coefficients of the system f solved in Figure 5-2 are shown in Table 5-4. One notable property of

135

the paths in Figure 5-2 is the widely varying spacing between the points along the path. This is
partly due to the fact that consol6r is a simple program which does not use stepsize control but

rather a fixed increase of the continuation parameter t at each step.

5.2.2 Robot polynomial solvers

The remaining programs of ConsolC are all specialized IPO solver programs that were
independently developed and do not have any direct counterparts in the Fortran Consol package.
Robot8t1p is a tableau-type program, but in this case the tableau is generated from robot parameter
inputs (goal point, Denavit-Hartenberg) instead of outside the progrdm (by the user). Hence it is

easier to use for the IPO application but still slow.

The remaining IPO solver programs are specialized versions that have been optimized for speed at

the cost of lesser generality. The goal system for all the IPO programs is
f(z) = 8;12,2y+ 8, 52,2, + 8; 32,23+ 8, 42,2, + &; 52527+ B, (Z5Zg + B; 72627+ Q; gZeZg
+ 02, +8; 102y + 8 1) 23+ Q; 1924+ Q; 1325+ Q; 1426 T Q; |5Z7 + ;1623
ta,, i=1-4

f(z) = 23;,_o+125_4-1 i=5-8 (5-8)

These equations are the expansion of the shorthand equations (2-34). The expressions for the
coefficients a; ,are generally very complicated functions of the goal point and the Denavit-
Hartenberg parameters. The equations for f(z) are available in Morgan’s book [morgan87a] but in
such a complicated form that it is unlikely one could copy them without making errors. I therefore
decided to use the symbolic algebra program Macsyma [mac83] to derive the necessary equations
from scratch, and then compare the result to Morgan’s book. The results are shown in Table 5-12
(at the end of the chapter). They agree with Morgan’s derivations. The parameters involved in the
coefficient expressions in the table are the Denavit-Hartenberg parameters
a;, d;, A, = cosa, p; = sino, and the position/orientation parameters (Chapter 2), reproduced

here as (5-9).

136

Ci —S:A sil; ac TRITRITY M l, m, n_p,

T, = [R P] = |Si GN il ags; T = [R Pl = [faT2TsPy - | I, myn,p, (59)
01 0w A d 01 |ryrypryp, l,m, n,p,
0 0 0 1 0001 0001

256-path versions

The programs robot8p1 and robot8p2 both are 256-path homotopy trackers for the IPO system.
Their only difference is that they use a 1-homogenous and 2-homogenous formulation (Definition

2.3 on page 42) of the problem, respectively. The 1-homogenous form of (5-12) is

fi@) = 8;,2,2;+2,92,2, + 3, 32,25 + 8, 4224+ 8; 52527 + B 6Z5Zg + B, 12627 + A, g2
+8,92129 + 8 102929 1 8, 2329 + 3; 132,47

2 .
+ 8132529 + ;142629 + 8y 52929 + ;162529 T ;1725 i=1-4

f(2) = 23,_o+2};_4~7} i=5-8 (5-10)

A polynomial system does not necessarily have a 2-homogenous form, but the IPO system has a 2-
homogenous form based on the variable groupings (1,2,5,6) and (3,4,7,8). This results in the

following 2-homogenous formulation;
£(2) = 812,25+ 2, 52,2, + 8, 32,2, + 8, (2,2, + 2, 5252, + ; 6Z5Zg + &; 72627 + Q; gZ6Zg
F 2592129+ 8 102529 + &; 1123210 + ;122429
T8 132529 + ;142629 + Q; 1527210+ 8 162321 T+ ; 11202y i=1-4

£(2) = 23 9 +123; 4292, i=5-8 (5-11)

The purpose of the n-homogenous forms is to avoid the problems with solutions at infinity. The
system described by (5-12) has degree 256, so it has at most 256 solutions unless it has an infinite
number of solutions (in the case of a singularity). Morgan proved [morgan87b] that (5-12) has at
most 64 finite solutions. This means that there will be at least 192 paths leading to solutions at
infinity. In the same paper, Morgan proved that in the special case when (5-12) represents an IPO

system, there are at most '64 finite solutions. Hence there will be at least 224 divergent paths to

137

track, whereas only 64 paths may lead to finite solutions. Tracking divergent paths is always a
problem because the program must use a rule to decide when to abandon a path and declare it to be
divergent. There is no universal rule that always works. The n-homogenous formulation plus the
use of the projective transform generates a system with no solutions at infinity. This shortens the
computation time because there are no diverging paths that need to be followed for any length of
time. Also, the solutions of the n-homogenous system can be transformed back to solutions of the

original system and it is now easy to separate the finite solutions from the solutions at infinity.

96 path version

The main problem with the 256 path version is that there are many paths to track that will not lead
to an interesting solution. We would rather not compute all the solutions at infinity since there is no
real use for them. Morgan and Sommese [morgan86] also made headway with this problem,
showing that the number of paths could be reduced to 96 by using a starting system g of the same

form as f, but with different (“random™) parameters. That is, g has the form

g(z) =b;,2,z;+ b; 22,2, +b; 32,2, + b; 42,2, +b; 5z5Z, + b; 62525 +b; ;z¢z, + b; 5Z¢Zg
+b;9Z) +b; 102, +b; 1123+ b; 52,4+ b, 1325+ b, 1426+ b; 1527 +b; 1624
+b,, i=1-4

8i(z) = z§;_o+23;_4—1 i=5-38 (5-12)

Both f and g are cast in their 2-homogenous form before the computation is performed. The 2-
homogenous Bezout number of f and g are 96, meaning that there are at most 96 distinct solutions.
Hence there are only 96 paths to track. However, there is one problem with the method; We do not
know the solutions to g(z)=0, so we have no points to start the tracking process from. Sommese
solved this problem by inventing a simple system G(z) which can be solved by hand, and which
can be used (once) as a starting system for finding the solutions of g(z). Once we have the
solutions of g(z), the system can be used over and over again. The artificial system G(z) has the

following form:

138
G(2) = z,(z3-32,+11)
Gy(z) = z5(z,— 724 +5)
Gy(z) = 2,(z, - 325+ 11)
Gy(2) = 27(2,~ 725 +5)
Giz) =g(z)i=5-8 (5-13)
The solutions of this system has to be computed by hand and in one case by a reduction that
produces a system that can in tum be solved in a ConsolC run. Because of the complexity of these

hand calculations, they are not included here, but Table 5-6 contains some hints about how to

compute them. There is definitely some work involved, but the hints are a good start.

After the hand calculations, the ConsolC program was used to compute all 96 solutions of g(z)=0.

The solutions were then successfully used as starting points in the program robot96p2.

64 path version

As an additional result, Morgan and Sommese discovered and proved that (5-10) always has an
identical set of 8 multiplicity 4 solutions at infinity. Moreover, when using the generic starting
system (5-12), the same set of starting points will always lead to these 32 uninteresting solutions,

no matter the particular robot coefficients in the goal system. This naturally leads to a 64 path

Case Assumptions Useful implications
1 21=23=25=27=0 22,724,26,28=+-1
2 zl=z3=0 22,74=+-1
3 z1=z7=0 22,28=+1
4 25=z7=0 26,28=+—1
5 23=z5=0 24,26=4+-1
6 z1,23,25,27'=0 Create 2 eqns in 2 unknowns and solve numerically

Table 5-7 Hints for solving (5-13) by hand

139

version (robot64p2) were we simply skip the paths that lead to the 8x4 solutions. The programs

robot64p2, robot64p2g and robot64p2gp are all variants of the 64-path version.

Further path number reductions

Since the time of this work, some further reductions in the number of paths have been made. It
has been known since 1980 [duffy80] that there could be at most 32 solutions to the general [IPO
problem, meaning that the 64-path version does at least twice as much work as should be
necessary. Moreover, Primrose [primrose86] proved that there are in fact 16 or less different
solutions to the IPO problem. Since systems exist that do in fact have 16 solutions, this means that

no further reduction is possible in the general case.

Wampler and Morgan [wampler89] developed a 11x11 polynomial system for which only 16 paths
have to be tracked. Again, they used the method of the generic case to skip 304 of the 320 paths
that would otherwise have to be tracked for this system, ending up with only 16 paths to track. The
formulation is general, but has to be broken down in two cases depending on whether the robot has

any joints with zero twist angles.

5.3 ConsolC and the IPO problem: Numerical properties

This section contains information about the numerical behavior of ConsolC (actually
robot64p2gp) when applied to various instances of the general 6R IPO problem. Robot64p2gp was
first run on the 3 examples used by Morgan in his book [morgan87a). A large collection of
software programs was developed along with ConsolC to postprocess the ConsolC outputs into
various useful formats. For example, one postprocessor searches the output file for the joint angles

and sort them so that they can be compared to Morgan’s results. This verified that ConsolC was in

working order.

Continuation path plots

Another interesting use of the output data is to plot the continuation paths in the complex plane.

140

robot64p2gp [-dhpsS] [-x xgraphfile] < infile > outfile
Option Function

-d Divtest. Print when dividend>divisor
-h Print values of f,Df,g,Dg,h,Dh at every evaluation
-p Print running maximum of pivots
- Collect maximum statistics on x,f,g,h.df,dg,dh (per run)
-S Collect maximum statistics on x,f,g,h,df,dg,dh (per path)
-X Output xgraph plot data to named file

Table 5-8 Options for the robot64p2gp program

The ConsolC programs have an option (-x) which allows logging (to a file) the value of x at each
step along the continuation path. The file can then be postprocessed into a format suitable for the
xgraph program and displayed on the workstation. Figure 5-3 shows two continuation paths
produced by robot64p2gp. The paths are from the same family of 64 paths generated by one
execution of robot64p2gp. The starting system is g=Example3 (as always in robot64p2gp) and the
goal system is f=Examplel. Path 6 is a “nice” path where all variables stay close to the origin. Path
81 is the worst path from this run and has 4 variables straying quite far from the origin whereas the
other 4 variables stay close, in fact so close that their paths are not discernible on this plot. This

path takes longer to track and is more of a challenge to the accuracy of the computer arithmetic.

Path lengths

The length of a continuation path is defined as the sum of the Euclidean distances between the
points along the path. The distance is measured in C8, since the path is in an 8-dimensional
complex space. ConsolC provides path length information on demand. For example, path 81 has
length 714.7 and path 6 has length 17.8, approximately. By sorting and examining all the path

lengths for each run it became clear that there is a wide variation in the path lengths both inside a

outlx.p6.z
3.00 path6.Z[0]
I 2T
2.50 t = < ‘path6.Z[2]
, \ path6.Z[3]
2.00 < 7 zamsfzm" -
1.50 = / path6.Z(5]
NS 7| pam
100 ——+— < path6Z[7]
.’l 4 el g r
.oy M X ',l
0.50 ——? 7 £ I(y = E
0.00 A .2 1 t 1
X ¥ \\~ [] {-" /7 1 .5
=P
0.50 A P
4 | Chany
-1.00){' ‘\“ ‘
o A g o\ l
\\,/ 4 ~
-1.50 o -
{/ ~<d. . ~ o
-2.00 s <
250 . l‘ = ,’
‘\ \ N
-3.00 . ~— —
- — -
-3.50 ‘\ /"
\' . "l
4.00 STy L
X
-2.00 -1.00 0.00 1.00 2.00

Y

outlx.p8l.z

40.00 PamBIZI0]
D e
- th81-Z{0
30.00 e aa | s I
4 WAL pathdi 2]
20,00 2 A T AT
y paths1.2{1]
10.00 + I Pab8iZ[2)
\ Path81ZZ)
0.00 y S | g S
. \ EthSl.Z{fir_
-10.00 +—, 4 Paths1.273)
1) Y \
'20000 " , \ ‘. -‘
3000 1 J; + v
1
-40.00 - 4 : :
-50.00 { " + -‘
|
-60.00 = T 14 T
-70.00 ——+ ! 4 !
\ 1 } ¢
8000 -— ; ; —
} R \ 1
90.00 — ’
-100.00 — .
\ \f
-110.00 I A Vi
-120.00 e s (.l
-130.00 N 7
\ ’
-140.00 s pL
-150.00 L
-15000 -10000 -50.00 0.00 50.00 100.00

Figure 5-3 Example of continuation paths from the robot64p2gp program. Path 6 is a “nice” path
which does not stray far from the origin. Path 81 is the worst of all the 64 paths in this run, which
used g=Example3 as the start system and f=Example] as the goal system. Each curve represents 1

out of 8 complex variables that make up a continuation path.

841

142

arc length histogram
count

50.00 —
45.00 —

40.00 -

35.00 —

s

30.00

25.00

20.00 —

15.00 —

10.00 —

500

0.00 —

log10(arclen)

=)
=
g
N
8
§_

Figure 5-4 Individual histograms showing the frequency of various arc (path) lengths
among the 64 paths generated by each one of 3 different runs
given run and between different runs. For example, the shortest path was path 29 which had length
1.79. Figure 5-4 shows the frequency of path lengths among the 64 paths of 3 different runs (note
that the x-axis is logarithmic). The 3 runs are using f=Example1, f=Example2 and f=Example4.
Example 4 is similar to the starting system (Example 3) but with a different goal point. Not
surprisingly, Example 4 generates the most short paths and the lowest maximum path length as

well. This is because the system is fairly close to g=Example3 (the starting system). The main

143

observation to make from the histograms is that most paths are fairly short (10° < path length < 10
1), but that in most of the test cases there are a few paths that are unusually long. Note that having
a long path does not imply that the variables take on large values, even though it may look as if this
is the case from path 81. The counter-example is a path which crisscrosses the area around the
origin without any variable straying very far. The opposite implication is, however, true: Short

paths imply small values of the variables.

Path maximum statistics

One of the most important implementation issues for Numerical Processing is the range and
precision needed for the data types representing the real numbers, as well as the format (fixed
point, floating point). While path length statistics can give some idea of what range and precision
is needed, we need more complete information on the range of the variable and function values

that can be expected during a continuation run.

ConsolC programs can provide the maximum absolute values of all components of x, g(x), f(x),
h(x), Dg(x), Df(x), Dh(x), either on a per-run or per-path basis. This feature was used to collect a
large number of statistics from different runs using robot64p2g. 500 runs each were made with the
goal robot being the Panasonic NM-5740, the PUMA 560 and Morgan’s Example 3, using random
goal position/orientation points. Each of these 3 cases generated 500x64=32000 max values for
each of the variables/functions mentioned. This large data collection was then histogrammed in
two different ways. The first 3 histograms (Figure 5-5 and Figure 5-6) are for the 3 different robots
(Pana, Puma, Example 3) and contain max values for all the components individually. The main
observations to make is that it is typically Dh which takes on the largest values and whose peak in
the distribution is the farthest to the right. Values as high as 10° have been observed for some

paths.

I also have made 7 plots (one for each of x, g(x), f(x), h(x), Dg(x), Df(x), Dh(x)) that each contain
3 histograms (one for each of Pana, Puma, Example). These plots (Figure 5-6 - Figure 5-9) make it

easier to compare between the different target robots. The observation to make here is that

pana max histogram

count x 103
3000 T I I | I | — x.'.n.f.’f..
: fmax
28.00 |- : ~ e
3 - - -
. Bmax
26.00 (— H -
® H dfmax
24.00 - : | Tgmax
H dhmax
22.00 |- H] l -
H
20.00 [i ! -
il J
18.00 |- H o —
H | .'
16.00 - H 1 -
H 1]
! ' '
14.00 |- 4 : [-
. M 1
12.00 il ' |
1 ‘ n
10.00 §: : [B -
TR do
8.00 - E' E' : I —
HU i !
6.00 |- H ' ! —
I 1 i
| FLU I - [] _
400 T PR N D
I ' LI 11 I |
L H]
200 3. =| ' !il i :l g:l .
000 =~ ;l ,l l-:l 4l i i . J—
| | | | | | log10{max)
0.00 2,00 4.00 6.00 8.00 10.00

puma max histogram

count x 103
30.00 T T T T T T =] xmax
2800 ; fax
’ : goax.
26.00 l: - Bm_a"_
E dfmax
24.00 g , ~ Tpmax
H dhmax
22.00 i ! =
i !
20.00 5)] -
H !
wol- h .
! : "
16.00 iy ’ o -
o : '
14.00 H i . :l —
.
12.00 i E i —
1 : '
H : H 4o
10.00 E' » il -
]
8.00 i - :' : |
TR o 4
N .
6.00 ioda N .
H El E H [1
4.00 5: .: H E U+ I .
200 =I -'. : ' I Il
. . . —
1IN - L i v
ook - B o B @ I oim oo . -
1] L L ! | log10(max)
0.00 2.00 4.00 6.00 .00 10.00

Figure 5-5 Histograms of max absolute values of variable and function components on a per-path basis
over 500x64 paths. Df(x) has the largest values in this sample

144!

ex3 max histogram Xmax

count x 103 count x 103
T 1 T T T xmax I | I | I T xmax.cx3
30.00 |- : dtme 30.00 i
: gmax Xmax.puma
28.00 - : - gz:_x_ 2800 . pu
26.00 - T - 3fmax 26.00 -
EY dgmax |
24.00 - h — dhmax 24.00
2200 - = - 22,00 _
20,00 |- ; - 20.00 -
18.00 [E Iy . 18.00 _
] B
1600~ * E ; - 16.00 -
[] B
uol- * E# . 14.00 .
. Bl
1200~ & : - 12.00 .
[]
1000 3 — 10.00 .
]
8.00 - E - 8.00 _
600 & . = 6.00 i
[] []
.
4001 3 . 400 _
P B
200 'E E: -1 2.00 -
000 = -l __ - 0.00 .
1 1 L] L
log10(max) 1 |)
og10(max)
0.00 2.00 4.00 6.00 8.00 8.00 10.00

Figure 5-6 Left: Max absolute value histogram for Example 3 (500x64 paths). Right: Max absolute value
of components of x (3x500x64 paths)

SPl

count x 103

30.00
28.00
26.00
24.00
22.00
20,00
18.00
16.00
14.00
12.00
10.00

8.00

6.00

4.00

2.00

0.00

gmax

gmax.ex3

log10(max)

28.00
26.00
24.00
22.00
20.00
18.00
16.00
14.00
12.00
10.00

8.00

6.00

4.00

2.00

0.00

count x 103

fmax

a—
!

ill’(llﬂ

TR R

e

»
8

&

'8_

Figure 5-7 gmax and fmax histograms for f=(pana, puma, Example 3) goal systems and 500 random goal

points.There are 3x500x64 paths

=)

8 [VIR T R R s e

8

10.00

log10(max)

41

ount x 103

20.00
19.00
18.00
17.00
16.00
15.00
14.00
13.00
12.00
11.00
10.00
9.00
8.00
7.00
6.00
5.00
4.00
3.00
200
1.00
0.00

LT L UL LT oL LT e

T L L T

PR R s a s

o
8
g
g -

Figure 5-8 hmax and Dgmax histograms for f=(pana, puma, Example 3) goal systems and 500 random
goal points. There are 3x500x64 paths

&
[~ ol
[=]

2sestseniseeresssrvese

log10(max)

22.00

20.00

18.00

16.00

14.00

12.00

10.00

8.00

6.00

4.00

2.00

0.00

S PTOTrT T e,

log10(max)

i

dfmax dhmax
count x 103 count X 103
2600 1 [T I T T —] dfmax.ex3 2800 1 I I T I T = dhmax.ex3
dfmax.pana dhmax.pana
2400 s 2600 dhiaax piia
22.00 b | 24.00 [~ . —
R &= i
20.00 |- - 2200 &
£ 2000 |- £ _
18.00 = - =]
= =
E 18.00 E -
16.00 — — =
g 16.00 - § -
14.00 - =] — E
E 14.00 = -
=] =
12.00 — &= — &=
= . 1200 - £ .
10.00 |- g £ N 10.00 =
= E ' =
8.00 - § ?E' T 8.00 |- = -
f-—)
6.00 |- = = . i E
E &= 6.00 [— = = —
E=
4001 E = 7 400 - E g .
g = = B2
2.00 = 1 2.00 & - -
B g g - E = B
S e D 2o
0.00 |- L . 5 8 8 232 4 _ _J 0.00 +— L 2 2 3B = -
| | | | | | log10(max) | | | | | | log10(max)
0.00 2.00 4.00 6.00 8.00 10.00 0.00 2.00 4.00 6.00 8.00 10.00

Figure 5-9 hmax and Dgmax histograms for f=(pana, puma, Example 3) goal systems and 500 random

goal points. There are 3x500x64 paths

Syl

149

Example 3 predictably has the lowest maximums, whereas Pana and Puma are much higher but

about the same (Puma generally slightly higher than Pana).

5.4 Profiling

Execution profiling refers to the practise of determining how much time a given program spends.
executing the various subroutines of the code. For ConsolC, the purpose of profiling is to find out
what parts of the code are the most time intensive, so as to identify where an ASP can have the
most impact on the execution speed. The UNIX profiling tool (gprof) was used for this purpose,
and the main results are shown in Table 5-8. The main work being performed by the program is to
evaluate functions and to solve the linear equations for the Newton iterations. The profile shows
that the function evaluations, that is, g(x), f(x), h(x), Dg(x), Df(x) and Dh(x), take 57.2% of the

total running time (which was 62.01 seconds), whereas solving the linear equations takes 36.6%.

One should not jump to the conclusion that this means that function evaluation is the bottleneck.
In fact it is not. The reason is that the function evaluation can easily be parallelized: Each
component of g(x), f(x), Dg(x) and Df(x) can be computed independently and in parallel.
Combining the results into h(x) and Dh(x) is a small matter. Indeed, if all the components of the
functions were equally complex to comphte, we could get a speedup of 8x8+8x8+8+8=144 by

computing all the components in parallel on different processors. An additional factor of 2 can be

Function Percent time Subfunction Percent time
— S ————— e — —
hfunt 57.2% gfunt 21.2%
ffunt 19.0%
linnr 36.6% Infngap 26.8%
Insngap 9.6%

Table 5-9 Profiling results for robot64p2gp. The Afunt function evaluates h(x) and Dh(x).
The linnr function is the linear equation solver

150

Before parallelization After parallelization (estimated)
Program part
seconds percent seconds percent
—_——————————— —— —— —_— e ——
h(x), Dh(x) 3547 57.2% 025 0.9%
Linear equations 22.70 36.6% 22.70 84.7%
Other 3.84 62% 3.84 24.4%

Table 5-10 Impact of parallelization on relative runtime of function evaluations versus
linear system solving

realized by computing the real and imaginary parts in parallel. The assumption that all function
components are equally complex does not hold exactly for the IPO system, but it is accurate
enough to make our point, which is that the function evaluation part of ConsolC is easily
parallelizable and hence not the true barrier to high performance. Table 5-9 shows the impact of
parallelizing the function evaluations 144 times. The result is that the linear system solving now
takes up 84.7% of the time and the function evaluations only 0.9%. (The rest of the time is various
i/o and pre/postprocessing overhead that may or may not be present if the computation is done in

an Application Specific Processor.)

3.5 Pipeline interleaving

In addition to the concurrency available in the function evaluation, there is also the possibility of
having several continuation paths being computed at the same time. This is not necessarily a good
idea if one has to spend more hardware. On the other hand, it is likely that there are two main
processors in the system: One for the function evaluation and one for solving the linear equations.
Once Processor 1 has computed h and Dh, Processor 2 takes over and solves the linear system.

This means that both processors will be idle half the time.

Since there are multiple paths to be tracked, the solution to this efficiency problem is to use

pipeline interleaving [lee86], meaning that we process 2 paths at the same time, with one path

151

Schedule time

LU, | LU, | LU, LUy | LU, | LU,

Figure 5-10 Pipeline interleaving with 2 processors, and 2 paths being computed
concurrently

being in the function evaluation stage while the other one is in the linear equation stage. The

method is illustrated in Figure 5-10.

3.6 Arithmetic experiments

One of the most important considerations for an ASP implementation of IPO/ConsolC (or parts
thereof) is the arithmetic requirement of the computation. This section describes how this aspect of
the design was explored using the ConsolC environment. The first subsection presents the results

floating point experiments whereas the other subsection presents the results of a partial fixed point

computation.

Single precision floating point computation

This experiment was performed simply by using the C datatype float throughout all the programs
and apply the appropriate compiler options to turn off the common practice that double is used in

intermediate results. The results were promising, but using float required that some of the ConsolC

152

convergence parameters be adjusted to less strict values before convergence was possible. This is

to be expected, as float has 6.9 decimal digits of precision whereas double has 16.9 or more. The

epsbig epssmall =1 ©=0.99999 t<0.99999 1<0.99

0.01 epsbig/1000 28 24 12 1

0.01 epsbig/100 ‘ 32 31 1 1
0.01 epsbig/10 38 25 1 1

0.01 epsbig 45 18 1 1

0.01 epsbig/1000 - 28 4 12 1

0.01 epsbig/100 32 31 1 1
0.01 epsbig/10 38 25 1 1

0.01 epsbig 45 18 1 1

0.01 epsbig/1000 28 24 12 1

0.01 epsbig/100 32 31 1 1
0.01 epsbig/10 38 25 1 1

1
0.01 epsbig/looo 28 26 10 5
0.01 epsbig/100 32 31 1 1
0.01 epsbig/10 38 25 1 1
0.01 epsbig 44 19 1 1

Table 5-11 Convergence of ConsolC/robot64p2gp in single-precision arithmetic.
Variations over different machine architectures and compilers

153

main convergence results are shown in Table 5-10, which shows for each test how many of the
paths reached t=1 or got reasonably close to t=1 before ConsolC gave up. The table refers to some
of the convergence parameters of ConsolC, known as epsbig and epssmall. These variables are

used to set the convergence criterion for the Newton steps as follows:

* eps = (t<0.95 ? epsbig : epssmall);

* converged = (norm2 (Ax)<eps);

In other words, the epsbig is used for the crude stepping during the path tracking and the epssmall
is used while zeroing in on the final solution towards the end of each path. The convergence
criterion is that the euclidean norm of the last Ax should be less than eps. The value typically used
in ConsolC (double-precision) is epsbig=0.01 and epssmall=epsbig/1000. As can be seen from the
table, convergence improves if epssmall is reduced. The paths that do not converge well even at
epssmall=epsbig are ones leading to the singular solutions at infinity, so they are not really a
practical problem. One path (number 16) never gets closer than t=0.97 in any of the tests, and it
was found (by checking the corresponding double-precision path) that this is due to a somewhat
nasty path shape towards the end. The conclusion is that ConsolC is viable in single precision

floating-point arithmetic, but it is unlikely that much less precision than this is practical.

The table shows some small variations between various compilers and architectures, but the

variations are small.

Fixed point computation

Considering the above results, there is little hope that all of ConsolC can be implemented in fixed
point arithmetic and produce accurate solutions at any reasonable wordlength. However, it is likely
that certain sub-parts of ConsolC can implemented in fixed point. As explained in the previous
section, the main tasks of ConsolC are function evaluation and solving linear systems. The
arithmetic requirements for these two processes are quite different. It is well known [dahlquist74],

[golub83]{golub89] that one can easily construct examples of linear systems that are quite

154

impractical to solve in fixed-point arithmetic. In fact, any system which is even close to singular
will cause great problems. Since we know that 32 of the 64 IPO paths always lead to singular

solutions, it is clear that fixed point Gaussian elimination is not viable.

The other main computational part of ConsolC is function evaluation. As shown in section 5.3, the
values of the variable x and the function values g(x), f(x), h(x), Dg(x), Df(x), Dh(x) can span over
a wide range of values, from 0 to about 10°. This means that fixed point implementation is
difficult. but not impossible. One favorable property of the functions is that they all are
polynomials, and hence have a simple sum-of-products form. This makes them easier to compute
since, for example, one never has to worry about dividing one number with a potentially very

small other number.

It was decided to investigate fixed point implementation further by trying to perform the
computation of f(x), Df(x) in fixed point, convert the results to floating point and then perform all
other computations in (double-precision) floating point. This approach was taken partly because it
enables us to isolate the inaccuracies. The actual implementation of the fixed point arithmetic is

presented in the next section.

Wordlengths and scaling is even more critical in ConsolC/robot64p2gp than in PUMA (Chapter 4).
The range and precision required is also much larger. Values of x; up to 10* have been observed
(cf. earlier histograms), meaning that about 14 bits are required for the integer portion of the

variable. Another 14 bits are required to get a resolution of 0.0001, and with some extra bits as a

range, precision range, precision
(no paths converged) | (nice paths converged)

x, Df 9,21 5,-25
x2, f 18, -12 10, 20
Fcoef 1,-29 1,-29

Table 5-12 Scaling of the fixed point variables used in computing f(x) and Df(x)

155

safeguard we get close to 32 bits as a minimum for x. 31 bits were used (see next section) in the
fixed point computation because of hardware/software limitations. The experiments revealed that
the precision was not at all sufficient, and that all the paths diverged in the middle (O<t<1). Since
there was no easy way to extend the wordlength, I tried to increase the precision at the expense of
the range just to see if I could get convergence at least for those paths that were nice enough not to
cause any overflows. The two variations are shown in Table 5-11. The parameters range and
precision refer to how many of the 31 bits were allocated before and after the binary point. It was
found that by reducing the range for x to 5 it was possible to get most of the paths to converge. The

results were accurate to 4-5 decimal digits in the case of nonsingular solutions.

The conclusion is that fixed point computation of the function parts of ConsolC is viable in certain
application, but it is questionable whether it is economical at the wordlengths (64 bits?) that would

be required to ensure both accuracy and margin against overflow.

5.7 The Fix. cc fixed point arithmetic package

The fixed point version of ConsolC/robot64p2gp was implemented in the C++ programming
language. C++ was chosen because it is a superset of ANSI C and provides user-defined data types
(Classes) and operator overloading. Operator overloading allows the programmer to provide
special functions to extend the standard arithmetic operators (such as +,-,*./) to apply to an
arbitrary datatype. This is very practical since it is cumbersome to use functions and write e.g.

sum(a, sum(b, c)) when the natural form of the expression is (a+b+c) .

For ConsolC, a new datatype (Class Fix) was developed. This meant that the C code could be used
almost unaltered except for changing the datatype of the affected variables from double to Fix and
specifying the appropriate scale factors. Some available fixed point packages for C++ that are
publicly available were evaluated [gnu90], but found to be inappropriate for the purpose since they
did not support variable (or mixed) scale factors. The declaration of the Fix class is shown in

Figure 5-11. All the standard arithmetic operations have been implemented.

156

class Fix

int bits;
int scale;
public:

}i

member int
member int
member
member
member
member
member
member
friend Fix
friend Fix
member
friend Fix
friend int
friend int
friend int
friend int
friend int
friend int
friend int
friend int
friend int
friend int
friend int
friend int
friend int
friend int
friend int
friend int
friend int
friend int
member Fix&
member Fixé&
member Fixé&
member Fix&
member Fix&
member Fix&
member Fix&
member Fix&
member Fix&
member Fix&
member Fixé&
friend Fix
friend Fix
friend Fix
friend Fix
friend Fix
friend Fix
friend Fix
friend Fix
friend Fix
friend Fix

friend char*

friend Fix

friend istream&
friend ostream&

friend void
friend void
friend void
friend void

fbits();
fscale();
Fix (Fix&);

Fix (int=0);
Fix (double&, int);

~Fix();:

setFix(double&, int);
setScale(int);

int2Fix

(int, int=0);
double2Fix(double,

operator double();
rescale(Fix&, int=0);

operator==
operator!=
operator<
operator<s=
operator>
operator>=
operator==
operator!=
operator<
operator<=
operator>
operator>=
operator==
operator!=
operator<
operator<=
operator>
operator>=
operator=
operator=
operator=
operator+=
operator-=
operator*=
operator/=
operator*=
operator/=
operator>>=
operator<<s=
operator-
operator+
operator-
operator*
operator/
operator*
operator*
operator/
operator<<
operator>>
Ftoa (Fix&,
atoF (const

operator <<
error (char*

(Fix&, Fix&);
(Fix&, Fix&);
(Fix&, Fix&);
(Fix&, Pix&);
(Fix&, Pix&);
(Fix&, PFix&):;
(double, Fix&);
(double, Fix&);
(double, Fix&);
(double, Fix&);
(double, Fix&);
(double, Fix&);
(Fix&, double);
(Fix&, double);
{(Fix&, double);
(Fix&, double);
(Fix&, double);
(Fix&, double);

(Fix&) ;
(double&) ;
(int&) ;
(Fix&) ;
(Fix&) ;
(Fix&) ;
(Fix&) ;
(int);
{int);
(int);
(int);
(Fix& X);

(Fix&, Fix&);
(Fix&, Fix&);
(Fix&, Fix&);
(Fix&, Fix&);

(Fix&, int);

(int , Fix&);

(Fix&, int);
(Fix&; int) ;
(Fix&, int);

int=1, int=12,

int=0);

int=4);

char*, int scale=0);
operator >> (istream&, Fix&);
(ostream&, Fix&);

msg} ;

overflow (Fix&, char *msg="");
scaleerr (char*);
rangeerr (char*);

Figure 5-11 The declaration of the Fix class used for fixed point computation

157

5.8 Theoretical Bounds on variable and function values

The problem of finding a tight bound on the continuation variables is difficult. To see why, recall

that the continuation variables are

X = (€}, 8),Cp 5, €4 54, C5,85) € C° ¢; = cosh, s; = sin@, (5-14)

The key observation is that for the complex variables c; and S;»

ci+si=15cl>+|s)? = 1 (5-15)

For example, if

a’=-1+10i,b> =2+10i then a’+b =1 but | al+]bl? = 205 E16)
Hence, the sine/cosine constraint does not in reality provide a useful bound. For the 16-path
continuation, the intermediate systems (O<t<1) actually correspond to physical robots. If one could
guarantee that all the robots corresponding to O<t<1 have 16 solutions, it could be argued that the
variables will be pure real and hence the paths will be bounded by the sine/cosine constraint.
However, no condition has been proven under which such a guarantee would hold, and it is easy to
find a case where some O<t<1 corresponds to a robot with fewer than 16 solutions.The same

problem occurs (at least for the system used here) for the bounds on function values.

Some bounds on the solutions of polynomial systems can be found in the literature, but they are
generally so slack that they are not useful here. For example, [canny88] refers to the “Gap

Theorem”, which states that

f(x) =0=>Vi=1-n x| <w(R(f)) < (3dc)*" (5+17)
where w(R(f)) is the sum of the absolute values of the coefficients of R(f), the resultant of f. The

coefficients of R(f) are a function of the coefficients of f, leading to the explicit bound shown in the

equation, where

* nis the number of equations

* dis the degree of each equation

158

¢ cis a bound on the coefficient size
For the IPO equations, we have n=8, d=2 and (say) c=1. This results in the bound

Ixill < (3-2-1)82" = 62 = 105 (5-18)

This bound does not provide any useful information for our purposes.

5.9 Summary

This chapter has presented the development and use of the ConsolC software package. ConsolC
was used as the basis of a 64-path homotopy continuation solver (robot64p2gp) for the Inverse
Position-Orientation computation for a general 6R robot. The qualitative behavior of the algorithm
was examined by creating plots of the continuation paths. The program has been tested on more
than 1500 different sets of input data and a number of statistics have been collected. The path
length statistics show that most paths are “nice”, but that almost every run will have some “nasty”
paths that take a long time to track. The maximum value statistics show that most paths have low
maximum values for x (say, < 102) whereas h,Dh and the other function values can be as high as

10° for the nice path and as high as 10° in the worst cases.

Experiments have shown that robot64p2gp is viable also in single precision floating point, and that
the function evaluation part of the algorithm can even be computed in fixed point in some cases.
However, it looks like using floating point is more economical because of the wordlength required
in fixed point. A special fixed point computation package was developed in the C++ language to

perform the fixed point experiments.

Profiling of the algorithm shows that in the straightforward implementation, the function
evaluation part of the algorithm is more time-consuming than solving the linear equations.
However, parallelization of the function evaluation is straightforward and leaves solving linear

systems as the foremost computational bottleneck.

159

Coef Value

a[l,_lf]. l_aEl]*mu[Z]:a[6]*ny+la[l]*m-u[Z]*mu[6]*my 1

a[l1,2] -mu[2]*1a[6]*nx-mu[2]*mu[6]*mx

a[1,3] -la[17*muf2]*1a[6]*nx-la[1]*mu[2]*mu[6]*mx

a[14] -mu[2]*1a[6]*ny-mu(2)*mu[6]*my

a[1,3] -mu[3]*1a[4]*mu[5]

a[1,8] mu[3]*mu(5]

a[1,9] mu[11*1a[2]*1a[6]*ny+mu[1]*la[2]*mu[6]*my

a[1,10] -mu[1]*1a[2]*1af6]*nx-mu[1]*1a[2]*mu[6]*mx

a[1,11] mu[17*mu(2]*laf6]*nz+mu[1]*mu[2]*mu[6]*mz

a[1,13] -mu[3]1*mu[4]*1a[5]

a[1,15] -1a[3]*mu{4]*mul[5)

a[1,17] -la[17*1a{2]*1a[6]*nz-1a[1]*1a[2]*mu[6]*mz+la[3]*1a[4]*1a[5]

al2.1] la[17*mu[2]*py-la[1]*mu[2]*d[6]*1a[6]*ny-la[1]*mu[2]*d[6]*mu[6]*my-
la[1]*mu[2]*a[6]*ly

a[2,2] -mu[2]*px+mu[2]*d[6]*1a[6]*nx+mu[2]*d[6]*mu[6]*mx+mu[2]*a[6]*Ix

a[2.3] -la[1]7*mu[2]*px-+la[1]*mu[2]*d[6]*1a[6]*nx+1a[1]*mu[2]*d[6]*mu[6]*mx
+la[11*mu[2]*a[6]*1x

a[2.4] -mu[2]*py+mu[2]*d[6]*1a{6]*ny+mu[2]*d[6]*mu[6]*my+mu[2]*a[6]*]y

a[2,6] mu(3]*laf4]*a[5)

a[2,7] mu[3]*a[5]

a[2,9] mu[1]*1a[2]*py-mu[1]*]a[2]*d[6]*1a[6]*ny-mu[1]*1a[2]*d[6]*mu[6]*my
-mu(1]*la[2]*a[6]*ly

a[2.10] -mu[1]*la[2]*px+mu[1]*1a[2]*d[6]*1a[6])*nx+mu[1]*1a[2]*d[6]*mu[6]*mx
+mu(1]*1a[2]*a[6]*Ix

al2.11] mu[1]*mu(2]*pz-mu[1]*mu([2]*d[6)*1a[6]*nz-mu[1]*mu[2]*d[6]*mu[6]*mz
-mu[1]*mu(2]*af{6]*1z-d[1]*mu[1]*mu([2]

Table 5-13 The coefficients of (5-12), in terms of the goal point position, orientations and

the robot Denavit-Hartenberg parameters. la[i]=A;, mu=j;

160

Coef Value

a[2,12] a[1]*mu[2]

a[2,13] | -mu[3]*mu[4]*d[5]

a[2,14] mu[3]*a[4]

a[2,16] | la[3]*mu[4]*a[5)

-la[1]*1a[2]*pz+1a[1]*1a[2]*d[6]*1a[6]*nz+la[1]*1a[2]*d[6]*mu[6]*mz

al2,17] +la[1]*1a[2]*a[6]*1z+1a[3]*1a[4]*d[5]+1a[3]*d[4]+d[3}+d[2]*Ia[2]+d[1]*]1a[1]*]a[2]

af3,1] a[2])*1a[6]*nx+a[2]*mu[6]*mx

a[3,2] la[1]*a[2]*Ia[6]*ny+la[1]*a[2]*mu[6]*my

a[3,3] a[2]*1a[6]*ny+a[2]*mu[6]*my

a[3.4] -la[1]*a[2]*1a[6]*nx-1a[1]*a[2]*mu[6]*mx

a[3,5] -d[3]*mu[3]*1a[4]*mu([5]

a[3,6] a[31*mul5]

a[3,7] a[3]*1a[4]*mul5]

a[3,8] d[31*mu(3]*mul(5]

a[3,9] -mu[1]*d[2]*1a[6]*ny+a[1]*1a[6]*nx-mu[1]*d[2]*mu[6]*my+a[1]*mu[6]*mx

a[3,10] a[1]*1a{6]*ny+mu[1]*d[2]*1a[6]*nx+a[1]*mu[6]*my+mu[1]*d[2]*mu[6]*mx

a[3,12] mu(1]*a[2]*1a[6]*nz+mu[1]*a{2]*mu[6]*mz

a[3,13] -d[3]*mu[3]*mu[4]*1a[5]

a[3,14] | a[31*mu[4]*1a[5]

a[3,15] [-d[41*mu[4]*mu[5]-d[3]*1a[3]*mu[4]*mul[5]

a[3,16} a[41*mu(5]

-1a[6]*nz*pz-mu[6]*mz*pz-1a[6]*ny*py-mu[6]*my*py-la[6]*nx*px-mu[6]*mx*px
a[3,17] +la[1]*d[2]*1a[6]*nz+d[1]*]1a[6]*nz+1a[1]*d[2]*mu[6])*mz+d[1]*mu[6]*mz+d[6]
+d[51*1a[5]+d[4]*1a[4])*1a[5]+d[3]*1a[3]*1al4]*1a[5]

a[4,1] 2*a[2]*px-2*a[2]*d[6]*1a[6])*nx-2*a[2]*d[6]*mu[6]*mx-2*a[2]*a[6]*Ix

Table 5-13 The coefficients of (5-12), in terms of the goal point position, orientations and
the robot Denavit-Hartenberg parameters. la[i]=A;, mu=j;

161

Coef Value
?[4 2 _2*la[1]*a[2]*py-2*la[1]*a[2]*d[6]*la[6]*ny-2*la[l]*a[2]*d[6]*mu[6]*my _
’ -2*la[1]*a[2]*a[6)*ly
af4,3] 2*a[2]*py-2*a[2]*d[6]*la[6]*ny-2*a[2]*d[6]*mu[6]*my-2*a[2]*a[6]*ly
al4.4] -2*la[1]*a[2]*px+2*1a[1]*a[2]*d[6])*1a[6])*nx
’ +2*la[1]*a[2]*d[6]*mu[6]*mx+2*1a[1]*a[2)*a[6]*1x

af4,5] 2*a[3])*a[5]

a[4,6] 2*d[3]*mu[3]*1a[4]*a[5]

al4,7] 2*d[31*mu([3]*a[5]

a[4,8] -2*a[3]*1a[4]*a[5]
-2*mu[1]*d[2]*py+2*a[1]*px+2*mu[1]*d[2]*d[6]*1a[6]*ny-2*a[1]*d[6]*1a[6]*nx

a[4,9] +2*mu[l]*d[2]*d[6]*mu[6]*my-2*a[l]*d[6]*mu[6]*mx+2*mu[l]*d[2]*a[6]*ly
-2*a[1]*a[6]*1x
2*a[1]*py+2*mu[1]*d[2]*px-2*a[1]*d[6]*1a[6]*ny-2*mu[1]*d[2]*d[6]*1a[6)*nx

a[4,10] -2*a[1]*d[6)*mu[6]*my-2*mu(1]*d[2]*d[6]*mu[6]*mx-2*a[1]*a[6)*1y
-2*mu[17*d[2]*a[6]*1x

a[4,11) -2*a[1}*a[2]

al4.12] 2*mu([1]*a[2]*pz-2*mu[1]*a[2]*d[6]*1a[6]*nz-2*mu[1]*a[2]*d[6]*mu[6)*mz

’ -2*mu[1]*a[2]*a[6]*1z-2*d[1]*mu[1]*a[2)

a[4,13] 2*a[31*a[4]-2*d[3)*mu[3]*mu[4]*d[5]

af4,14] 2*a[3]*mu[4]*d[5]+2*d[3]*mu[3]*a[4]

a[4,15] 2*af4]*a[5]

a[4,16) 2*d[4]*mu(4]*a[5]+2*d([3]*1a[3]*mu[4]*a[5]
-pz*pz+2*d[6]*la[6]*nz*pz+2*d[6]*mu[6]*mz*pz+2*a[6]*lz*pz+2*la[l]*d[2]*pz
+2*d[1]*pz-py*py+2*d[6]*la[6]*ny*py+2*d[6]*mu[6]*my*py+2*a[6]*ly*py
-px*px+2*d[6]*1a[6]*nx*px+2*d[6]*mu[6]*mx*px+2*a[6]*Ix*px

al4,17] -2*la[11*d[2]*d[6]*1a[6]*nz-2*d[1]*d[6]*1a[6]*nz-2*Ia[1]*d[2]*d[6]*mu[6]*mz

i -2*d[11*d[6)*mu[6])*mz-2*1a[1]*d[2]*a[6]*1z-2*d[1]*a[6]*Iz-d[6]*d[6]
-a[6]*a[6]+d[S]*d[5]+2*d[4]*Ia[4]*d[5]+2*d([3]*1a[3]*Ia[4]*d[5]+a[5]*a[5]
+d[4]*d[4]+2*d[3]*1a[3]*d[4]+a[4]*a[4]+d[3]*d[3]+a[3]*a[3]-d[2]*d[2]
-2*d[1]*1a[11*d[2]-a[2]*a[2]-d[1]*d[1]-a[1]*a[1]

Table 5-13 The coefficients of (5-12), in terms of the goal point position, orientations and

the robot Denavit-Hartenberg parameters. lafi]=A;, mu=p,

CHAPTER 6

ALGORITHMS FOR LINEAR
EQUATIONS

In Chapter 5 it was shown that solving linear equations is the bottleneck to high-speed execution
of programs in the ConsolC family, in particular the IPO solver known as robot64p2gp. As linear
equations is a task common to many Numerical Processing applications, an in depth study will be
made. The purpose is to identify the critical parts of the most widely used algorithms (e.g. Gauss,
LU, Crout, Doolittle), and study the properties that are critical to the speed performance of the
algorithms. This knowledge is used as basis for Chapter 7, whose purpose is to evaluate how well
the algorithms can be implemented on architectures that are either commercially available or that

have been proposed in the research literature. The platforms that will be considered are

* Commercial DSP chips and RISC processors
* Systolic Arrays

* Vector Processors and Massively Parallel Architectures

Suitable custom architectures for an Application Specific Processor will then be considered in

Chapter 8.

163

164

6.1 “Realification” of complex equations

Before starting to look at algorithms, there is one small detail that needs to be discussed. The
equations we would like to solve have the form of a system with variables and coefficients that are

complex numbers:

Ax = b A e CNN xe CN be CY (6-1)
This poses additional problems for computers that do not compute directly with complex numbers
(most do not), so in the rest of this dissertation we shall assume that the system has been “realified”
as described next. By splitting up the matrix and the vectors into their real and imaginary parts, the

system can be rearranged in the following way:

(Al+iA2) . (X|+iX2) = bl+ib2 (6'2)

A x;—Ax, = b,
Ax,+AXx,=Db,

A -A, X = b, (6-4)

This means that the original NxN complex system has become a 2Nx2N real system. From now

(6-3)

on, when referring to an nxn system of equations, we typically mean the realified system with

n=2N.

6.2 Algorithms for solving linear equations

There exists a number of different algorithms for solving nxn systems of linear equations. Some
of the most common ones are plain Gaussian elimination (Gauss), LU decomposition (LU),
Crout’s method and Doolittle’s method [dahlquist74]. These methods have many properties in
common, but still are sufficiently dissimilar that their efficiency can be markedly different on

different architectures, or even on one and the same architecture.

165

6.3 The Gauss/LU algorithm

The Gauss algorithm and the LU decomposition are so closely related that they will be treated
together. Figure 6-2 contains the program text for a function which solves Ax=b using the Gauss/
LU method. The basic purpose of the Gauss/LU algorithm is to factor A into a product LU where
L is an nxn lower triangular matrix and U is an nxn upper triangular matrix. The only difference
between plain Gauss and LU is that in Gauss, the L matrix is discarded whereas in LU, both L and
U are stored, typically replacing the contents of the original A matrix. We assume that the reader is
familiar with the basic idea of the Gauss/LU algorithms, which can be found in [dahlquist74],
[strang80] or almost any other textbook on linear algebra or matrix computations. What we want
to concentrate on here is the data storage, data addressing and computational aspects of the
algorithm. For simplicity, we first consider Gauss/LU without pivoting. Pivoting means to
rearrange (either literally or via an extra level of indirect addressing) the remaining rows of A

(which now cbntains L,U under construction) so that the row with the largest (absolute value) first

)

e/,
/s

/7777777777 all 0's

current pivot element (ay)

column being zeroed out

rows involved in row operation

rows already finished

Figure 6-1 Gauss/LU step number k. All the numbers underneath the pivot element are
about to be zeroed out by primitive row operations of the form

a; ,
S TR i [i=k+1-n (6-5)
gy

166

#include "linreal.h*
#define fptype double

int linsol (n, a, b)
int n;
fptype a[N] [N], b([N];

fptype temp, test, m, prod;
int i, 3, k;
fptype epsO= 1.0e-22;

/* Forward elimination */ /* k is the diagonal index */
for (k=0; k<n-1; k++) {
/* Check for singularity */
temp= a(k][k];
if (temp<0.0) temp= -temp;
if (temp<=eps0) (
printf("linsol: singular matrix encountered (k=%d)\n",k);
printf(“temp= %le\n"”, temp);
return(-1);

}

/* Perform elimination step */
for (i=k+1; i<n; i++) /* Note k+1 NOT k */
/* Store m-factor where the 0's in U would go */
m = (afi] [k]*=(1/a[k]([k]));
for (j=k+1; j<n; j++) (/* Note k+1 NOT k */
alil[jl-= m*a[k][]];
)
bli]-= m*b[k];

)

/* Back substitution. There is no fwd substitution since we
worked on the rhs along with the lhs */

for (i=n-1; i>=0; i--) { /* Row in a and b */
prod= b[i];
/* This loop is *intentionally* not executed when i==n-1 */
for (k=i+l; k<n; k++) (/* Col in a, Row in b */

prod-= a[i] [k]*b[k];

}
b(i]l= prod/alil[i];

}

return;

Figure 6-2 Gauss/LU algorithm without pivoting. A common refinement is to store
(1/a[k][k]) on top of a[k][k], since it is needed 2¢(n-k) times

W oot W

167

int linsol (n, a, b)

int n;

fptype a[N][N], bIN];
fptype temp, test, m, prod, epsO= 1.0e-22, y[N];
int i, 3, k, imax, itemp, ir, kr, row([N];

/* Start with the identity permutation */
for (i=0; i<n; i++) row([il= i;
/* Forward elimination, k is the diagonal index */
for (k=0; k<n-1; k++) (
/* Find largest row leader in remaining (n-k)x(n-k)matrix.*/
temp=0; imax=k;
for (i=k; i<n; i++) {
ir= row[i];test= alir][k];
if (test<0) test= -test;
if (test>temp) (imax=i; temp= test;)
)
if (temp<=eps0) {
printf("linsol: singular matrix encountered (k=%d)\n*,k);
printf("temp= %le\n®", temp); exit(-1);
)
/* Change permutation arrays to make al[imax][k] the pivot */
itemp=row([k]; row(k]l=row[imax]; row([imax]=itemp;

/* Perform elimination step */
kr= row(k]; /* Location of pivot */
for (i=k+1l; i<n; i++) (/* Note k+1 NOT k */

ir= row[i];
m = (a[ir][k]l*=(1/alkr](k]));

for (j=k+l; j<n; j++) { /* Note k+l NOT k */
alir] [j)-= m*a[kr][j];
)
blir)-= m*b[kr]; /* Right hand side */
}
}
/* Back substitution */
for (i=n-1; i>=0; i--) {
ir = row([i]; /* Row in a and b */
prod= bf[ir];
for (k=i+1l; k<n; k++) (/* Col in a, Row in b */
kr= rowl[k];

prod-= alir] [k]*bl[kr];

)

blir]= prod/alirl([i];
}
/* Unscramble b into y and then copy back into b */
for (i=0; i<n; i++) { ir =rowl[il; y[il]l= blir];)
for (i=0; i<n; i++) { blil= y[il;)
return;

Figure 6-3 Gauss/LU algorithm with partial (row) pivoting

W oo oUW

168

element becomes the pivot row. This is done because it improves the numerical stability of the

algorithm by avoiding divisions by small numbers.

6.3.1 Architectural implications

Without pivoting, the C code for LU/Gauss has the form shown in Figure 6-2. Figure 6-1 shows in
pictorial form what happens at step k of the algorithm. Think of k as the counter that picks the next
element on the diagonal as the pivot element. The critical statements from Figure 6-2 have been

extracted and analyzed in Table 6-1. This table is a key to understanding the architectural

Line Operation Mult | Div | Add | Read | Write

26 m=(a[il [k]/=a[k][k]); 0 1 0 2 1

28 afi][jl-= m*alk] []]; 1 0 1 2 1
30 b[i])-= m*b[k]; 1 0 1 2 1
40 prod-= a[i) [k]*b[k]; 1 0 1 2 0
42 b[il= prod/al[il(i]; 0 1 1 1 1

25 kr= row[k]; 0 0 1 1 0

27 ir= row[i]; 0 0 1 1 0
28 m=(al[ir] [k]/=a[kr]l[k]); |0 1 0 2 1
30 alir]l[j]l-= m*a[kr][j]; 0 1 0 2 1
32 blir]-= m*b[kr]; 0 1 0 2 1
37 ir = row[i]; 0 0 1 1 0
41 prod-= al[ir] (k] *blkr]; 1 0 1 2 0
43 b[ir]= prod/alir][i]; 0 1 1 1 1

Table 6-1 The key arithmetic instructions of the Gauss/LU algorithm

169

requirements of the Gauss/LU algorithm. The main result to notice is that most of the important
operations (lines 26,28,30) in Gauss/LU require 3 memory accesses (2 reads and 1 write) each
time they are executed. Any architecture which aims to execute the inner loop (line 28) of the
algorithm at the rate of one statement per cycle must support at least this amount of memory
traffic. If the datapath can finish line 28 at the rate of one result per cycle, it will do no good unless
the memory is a 3-port which can provide 2 reads and 1 write to supply the operands and store the
results. Note here that we assume that items such as the variable m is stored in a local register

while the computation is taking place to avoid further demands on the memory bandwidth.

Memory bandwidth

The main consequence of the previous paragraph is that a memory system that only supports 1 (or
2) operations per cycle will slow down the execution of the algorithm at least by a factor of 3 (or

2), even if the datapath itself is able to keep up with the computation.

In addition to analyzing memory accesses, it is also useful to count how many times the various

Repetition count
13 for (k=0; k<n-1; k++) { n 16
24 for (i=k+1; i<n; i++) { (1/22)n(n-1)-1 119
26 m=(ali) [k]}/=alk][k]); (1/2)n(n-1)-1 119
28 alil[j)-= m*a(k][j]; (1/6)(n-1)n(2n-1) 1240
30 bli]-= m*b[k]; (1/2)n(n-1)-1 119
37 prod= b[i]; n 16
40 prod-= a[il [k]*b[k]; (12)n(n-1)-1 119
42 bl[i]l= prod/al[i][i]; n 16

Table 6-2 Statement profile for Gauss/LU algorithm without pivoting

170

Gauss/LU operation count
f(n) x 103

10.50 — B

10.00 —)
9.50 :
9.00 5
8.50
8.00 Y
7.50
7.00 7
6.50 ;
6.00 ;
5.50 .
5.00 2
4.50 -
4.00 i
3.50 2
3.00 :
2.50 -
2.00 -
1.50 .
1.00 -

0.50] "5 e o C’"""F"
-a=

0.00 -t =g

-0.50 n
5.00 10.00 15.00 20.00 25.00 30.00

Figure 6-4 Repetition count for selected lines of Gauss/LU algorithm, as function of n

statements of the algorithm are executed. Table 6-1 shows how many times each of the important
statements of Gauss/LU is executed. The numbers are found by looking at the loops and applying

the formulas

n _ 1 n) _ 1
k;k_in(n 1) and glk = zn(n+1) (2n+1) (6-6)

to derive the repetition count functions

171

fm)=n fn) = %n(n—l) -1 fm) = %(n—l)n(2n—1) 67
Pipelining and pipelining margins

The datapath operations of the Gauss/LU algorithm are multiplications, divisions (or reciprocals),
additions, subtractions, or combinations thereof, such as multiply-accumulate (MAC) and
multiply-add (MADD). For example, the innermost loop of Gauss/LU (line 28) is a MADD
instruction.

By pipelining we mean (in this context) to partition a datapath operation and its corresponding
hardware on a sub-functional level so that e.g an add is broken down into several clocked stages,
each of which can be clocked at a higher speed than would be possible if the entire add operation
was to be performed in one stage.The main property of an algorithm which allows us to use
pipelining is that the operands being fed into the pipeline must not depend on the results that are
currently being computed inside the pipeline. If a dependency exists, the pipeline must idle until
the results are available to be used as input operands again. The MAC operation is the simplest

example of an operation that is not easily pipelineable: For example, the MAC sequence

n-1

p=b- Y ab, (68)

k=i+l

which would typically be implemented as

p= bl[i]l; for (k=i+1l; k<n; k++) p-= al[i][k]*b[k];
cannot have a pipelined subtraction because we need the result (the running sum) to feed back as

one of the arguments to the next addition.

During the elimination process, the Gauss/LU algorithm has the very favorable property that
whenever a matrix element is read out to be updated (line 28), it will not be needed again until (n-
k)2 operations later, where n is the size of the matrix and k is the step number (k=0:n-2) as in
Figure 6-2. Of course, as k becomes larger, this pipelining margin becomes smaller and smaller

(but never smaller than 4, for k=n-2). Even for the next-to-last step (k=n-3), the margin is 9

172

|
..
..
..

7%/

Without right-hand sides(margin 4) With 2 right-hand sides (margin 8)

% rows already finished pivot row

. current pivot element ay # Sé?vmoepn;?a?igir?g modified by

Right hand side(s) of Ax=b

Figure 6-5 Pipelining margin (PM)

PM at step k

= the number of steps before an update target is needed as input again
= the number of update steps in step k

= the size of the (n-k)x(n-k) submatrix that is being updated

= (n-k)? steps, k=1:n-2, if there are no right-hand sides

= (n+r-k)(n-k) steps, k=1:n-2, if there are r right-hand sides

The minimum pipelining margin over all k=1:n-2
= 2*2 = 4; if there are no right-hand sides
= (r+2)*2; if there are r right-hand sides

General formula

PM(n,k,r) = (n+r—k) - (n—k) (6-9)

173

operations, meaning that we could potentially have a datapath with 9 pipeline stages (for a
MADD), and be able to keep it 100% occupied all up until the very last iteration of Gauss/LU.
This is an important observation that can be used during architecture design. If the system that we
are solving has one or more right-hand sides (Ax=b, Ax=b’,), the pipelining margin increases to

(n+r-k)(n-k), with a minimum value of (2+r)*2 for k=n-2. See Figure 6-5.

The concept of pipelining margins appears to have general applicability. The following is an

attempt at defining the term more precisely.

Definition 7.1 [pipelining margin] The pipelining margin of an expression, in the context of the
remaining algorithm, is the minimum number of operations which take place between the
initiation of the evaluation of the expression and the time at which the result is needed as an input

to another expression of the algorithm.

Pipeline interleaving

The back-substitution part of the algorithm (line 40) is a problem spot because it contains the
dreaded MAC operation, and hence cannot easily be pipelined. However, there is another trick that
can be applied here. The computation of the loop can be rearranged (Figure 6-6) so that the we
compute each running sum b[i] one piece at a time, instead of finishing each one of them
completely before moving on to the next one. Each time b[i] is updated, it will not be needed again
until n-k operations later. This is not quite as favorable as the (n-k)? pipelining margin seen in the
elimination loop, but it helps, especially for large matrices. The term pipeline interleaving [lee86]
was coined to describe the general concept of interleaving independent operations on a pipelined

datapath.

Using pipeline interleaving, the biggest source of pipeline bubbles in the overall algorithm is the
computation of 1/a[k][k] in line 12. A common refinement is to store a[k][k]-1 on top of a[k][k],
since a[k][k] is no longer needed and the inverse will be needed 2+(n-k) additional times. This will

minimize the problem.

174
Pivoting

Pivoting is a numerical safeguard made necessary by the limited range and precision of computer
arithmetic, and is sometimes also a fundamental requirement reflecting a need to rearrange the
equations of a linear system. [dahlquist74] (section 5.3.3 p150) contains examples that show the
importance of pivoting. In the program of Figure 6-3, pivoting is implemented (lines 11-17) by a
search among the remaining rows (i=k:n) for the row with the largest leading element, and then
swapping this row (called the pivot row) with row k. The swapping of the rows is not literally
performed. Instead, we use a permutation table (the array row[1) which translates any given row
index into the physical index for where that row is stored. This saves the time otherwise spent on

copying rows from one location to another.

Pivoting slows down the Gauss/LU algorithm, both because of the search and because of the extra
level of indirection caused by the table lookup. The lookup overhead can be reduced somewhat by
precomputing variables such as ir=row[i] (line 27) whenever multiple elements in the same
row will be accessed (line 30). The search overhead is not easily reducible on a general purpose

computer.

/* Regular back substitution */ 1
for (i=n-1; i>=0; i--) { /* Row in a, Row in b */ 2
prod= b[i]; 3
for (k=i+l; k<n; k++) { /* Col in a, Row in b */ 4
prod-= al[i] [k]*b(k];)

) 6
b(i]l= prod/a[i][il]; 7

} 8
9

/* Interleaved back substitution */ 10
for (k=n-1; k>=0; k--) { /* Row in a, Row in b */ 11
blk]= blk]/alk][k]; 12
for (i=k-1; i>=0; i--) { /* Col in a, Row in b */ 13
bl{il-= af{i] [k]*b[k]; 14

) 15

} 16

Figure 6-6 Regular versus Interleaved back substitution

175
Summary of Gauss/LU characteristics

This section has presented several important characteristics of the Gauss/LU algorithm, including
memory bandwidth requirements, the MADD (not MAC) character of the algorithm, the concept
of pipelining margin and how a positive margin can be created by interleaving, and finally pivot

searching and permutation lookups.

6.4 The Crout algorithm

The Crout algorithm [dahlquist74] is an alternative formulation of the LU decomposition
computation. It is different from the Gauss/LU method in that it does not involve repetitive
updates of the same matrix element. Instead, the elements of L,U (also called M,U in Dahlquist’s
terminology) are computed completely one at a time using a an accumulation (MAC) sequence. As
in Gaussian elimination, in step & the kth column of L and the kth row of U are determined, but in

Crout the elements a;; with i,j>k are not touched until later steps. Crout’s algorithm can be derived

k

‘/////,Z///////////////////%

%
Y

7% Kk

Figure 6-7 The memory access patterns for the Crout algorithm. Left side shows the
computation of mjy and right side shows the computation of uy;

zm,[, U i=k-on uy=a;-dmpu, j=k+lon

176

from the matrix equation A=LU as follows: The element form of A=LU is

r
a; = z'mipul,j r = min(i, j) (6-10)
p=1

where the use of r=min(i,j) is a convenient way to exclude the O-clements of the triangular
matrices from the sum. Equation (6-10) with i=1:n and j=1:n produces n? equations for the
unknowns of L,U. Note that L,U each contains (1/2)n(n+1) unknown elements, for a total of
n(n+1) unknowns. This is a reflection of the fact that the LU decomposition of a matrix is not
unique. In Crout’s method, one chooses uy,=1 (k=1:n) to get n? equaﬁons in n? unknowns out of
(6-10). Now consider two cases of (6-10). If we look at the upper triangle of the matrix A=(a;),

that is, a,; with k=1:n and j=k+1:n, the equation reads

k
a;= ym,u,, k=1-n j=k+lon (6-11)
p=1

Note that r=min(k,j)=k in this case. Similarly, if we look at the lower triangle and the diagonal, that

is, ay with k=1:n and i=k:n, the equation reads

k
a = Zmipupk k=1-n i=k—-n (6-12)
p=1

By virtue of the choice uy=1 (k=1:n) we can now rearrange (6-12) and (6-11) as

k-1
my =2~ ymyu, k=1-n i=k-n
p=1

k-1
ukj=akj—z'mkpupj k=1-n j=k+1—>n
p=1 (6-13)

Starting with k=1 and progressing towards k=n, these equations can then be evaluated in order so
that at each k we find m,, ..., m,, (one column of L) and then u, , ,, ..., u,, (one row of U) at a
time. Figure 6-7 is a picture of the way Crout’s method progresses through the matrix, and how

L,U can be stored on top of A. C code for Crout‘s algorithm with and without pivoting is included

177

26 prod-= a[k][pl*a(p]l[j]; |1 0 1 2 0

33 prod-= al[k] [pl*blp]); 1 0 1 2 0
44 prod-= a[i) [k]*b[k]; 1 0 1 2 0

Table 6-3 The key arithmetic instructions of the Crout algorithm
in Figure 6-8 and Figure 6-9, respectively.

Crout’s method has different properties than the Gauss/LU algorithm. The most important property
of Crout is that the inner loops (lines 26,33,44 of Figure 6-8) are of the multiply-accumulate
(MAC) variety as opposed to the multiply-add (MADD) type found in the Gauss/LU algorithm.
The consequence is that Crout’s method is not as amenable to pipelining as the Gauss/LU
algorithm. The advantage of Crout is that none of the inner loops have more than 2 memory
operations (both are read operations), whereas Gauss/LU has 3. This fact is of course related to the
MAC or MADD character of the algorithms: If the algorithm performs accumulations, the running
sum is kept in a datapath accumulator register. If the algorithm is of the multiply-add-update type,

the result must be written to memory every cycle.

Summary of Crout characteristics

The Crout algorithm is more attractive than Gauss/LU when it comes to memory bandwidth, but
less attractive when it comes to pipelining margin (there is none). As for pivoting (see Figure 6-9),
Crout is worse than Gauss/LU, because the algorithm strides through rows in its inner loop (line
25), meaning that a row address must be permuted (translated) at every step of the inner loop. This

was not the case in the Gauss/LU algorithm.

178

#include "linreal.h"
#define fptype double

int linsol (n, a, b)

int n;
fptype a[N][N], b[N];
{
fptype prod, bprod, epsO= 1l.0e-22;
int i, 3, k, p;

/* k is the step index */
for (k=0; k<n; k++)
/* Compute Dahlquist’s m{i,k] and store in ali,k] */
for (i=k; i<n; i++) {
prod= ali] [k];
for (p=0; p<k; p++) (
prod-= al[i][p]*alp] [k];
}
ali] [k]=prod;
}

/* Compute Dahlquist u(k,j] and store in al(k,j] */:
for (j=k+1; j<n; j++) {

prod= alk][j];

for (p=0; p<k; p++) (

prod-= a(k] [pl*alp][j];

)

alk][j)l= prod/alk][k];
}
/* Forward elimination of L*y = b */
prod= b[k];
for (p=0; p<k; p++) {

prod-= alk] [p]*blp];
)
blk]l= prod/alk][k];

)

/* Back substitution. There is no fwd substitution since we

W Jo0 Ui WhE=

38

worked on the rhs along with the lhs. Assume u(i,i)=1 (Crout) */39

for (i=n-1; i>=0; i--) {
prod= bl[i];
/* This loop is *intentionally* not executed when i==n-1 */
for (k=i+l; k<n; k++) (/* Col in a, Row in b */
prod-= al[i] [k]*b[k];
)
bli]l= prod;

Figure 6-8 Crout algorithm without pivoting (lincrsolnr.1.c)

40
41
42
43
44
45
46
47
48

179

int linsol (n, a, b)
int n; fptype a[N] [N], b([N];
{
fptype temp, test, prod, eps0= 1.0e-22, y([N];
int i, 3, k, p, imax, itemp, ir, kr, pr, row([N];

for (i=0; i<n; i++) row[i)=i; /* Identity permutation */
/* k is the step index */ ‘
for (k=0; k<n; k++) {

/* Find next pivot row: imax= argmax{i=k:n) la[irow[i],k]!*/ 10

WO wN

temp=0; imax=k; 11

for (i=k; i<n; i++) { 12

ir= row[i]; test= a[ir][k]; if (test<0) test= -test; 13

if (test>temp) (imax=i; temp= test;) 14

} 15

if (temp<=eps0) (16
printf(“linsol: singular matrix encountered (k=%d)\n", k);17

printf (“temp= %le\n", temp); exit(-1); 18

) 19

/* Change permutation arrays to make a[imax)[k] the pivot */ 20
itemp=row(k]; row[k]=row[imax]; row[imax]=itemp; 21

/* Compute Dahlquist's m[i,k] and store in a[i,k] */ 22

for (i=k; i<n; i++) (23
ir=row([i); prod= alir][k]; 24

for (p=0; p<k; p++) {pr=row[pl; prod-= alirl[pl*alpr]l(k];}25

alir) [k])=prod; 26

} 27

/* Compute Dahlquist's u[k,j] and store in alk,j] */ 28
kr=row[k]; 29

for (j=k+1; j<n; j++) { 30
prod= al[kr][j]; 31

for (p=0; p<k; p++) (pr=row(p]}; prod-= alkr][pl*alpr]([j];)}32
alkr][j)l= prod/alkr](k]; 33

) 34

/* Forward elimination of L*y = b */ 35

kr= rowl[k]; prod= blkr]; 36

for (p=0; p<k; p++) (pr= row[pl; prod-= a[kr]([p]l*blpr];} 37
b[kr]= prod/a[kr][k]; 38

} 39
/* Back substitution */ 40
for (i=n-1; i>=0; i--) { 41
ir = row([i]; prod= blir]); 42

for (k=i+l; k<n; k++) {kr= row[kl]; prod-= a[ir](k]*bl[kr];) 43
blir]= prod; 44

) 45
/* Unscramble b into y and then copy back into b */ 46
for (i=0; i<n; i++) {ir =rowlil; y[il= bl[ir];) 47
for (i=0; i<n; i++) {(b[il= y[i];)} 48
} 49

Figure 6-9 Crout algorithm with pivoting (lincrsolpr.1.c)

180

6.5 The Doolittle algorithm

The Doolittle algorithm is similar to the Crout algorithm in that it can be derived from (6-10). The
basic idea is the same, but now my,=1 (k=1:n) is chosen instead uy=1 (k=1:n). The derivation
again starts by splitting Equation (6-10) into two cases, this time first for the lower triangle and

then for the upper triangle and the diagonal. For the lower triangle we have

k
3;= Y myu, k=1-n j=k+lon (6-14)
p=1

and for the upper triangle/diagonal we have

k
a = 3 myu, k=len i=k+1-n (6-15)
p=1

By virtue of the choice my, =1 (k=1:n) we can now rearrange (6-14) and (6-15) as

k-1
ukj=akj—2m,‘pupj k=1-n j=k-n
p=1

k-1
my = a,- Yy mu, k=1-n i=k+l-n
p=l (6-16)

Starting with k=1 and progressing towards k=n, these equations can then be solved for u,,, ..., u,,

(one row of U) and then m, , ,, ..., m,, (one column of L) at a time.

Properties of Doolittle’s algorithm

The difference between Crout and Doolittle from an implementation point of view is marginal.
They have exactly the same properties when it comes to memory bandwidth, pipelining margin

and permutation lookups.

181

6.6 Summary

The preceding material is an attempt to provide some insight into the nature of the various
algorithms that can be used to solve dense systems of linear equations. Which algorithm is best
depends greatly on what hardware architecture is available, so it is useful to summarize the key
properties for future reference. Table 6-4 contains a relative ranking of Gauss/LU, Crout and.

Doolittle with respect the properties memory bandwidth, pipelining margin and permutation

lookup frequency.
Property Gauss/LU l Crout Doolittle
memory bandwidth - + +
pipelining margin + - -
permutation lookup frequency 0 - -

Table 6-4 Simplified view of some key properties of linear equation algorithms

CHAPTER 7

ConsolC IMPLEMENTATION
ALTERNATIVES

The algorithms described in Chapter 6 can be implemented, with varying degrees of efficiency
and difficulty, on a wide range of commercially available processors and also on a number of
experimental architectures that have been described in the research literature. Examples of

relevant processors and architectures are

Commercial DSP chips

Systolic arrays and Massively Parallel Architectures

Standard microprocessors (RISC chips)

L

Vector Processors and Supercomputers

This chapter is an investigation of the efficiency of a selection of architectures and processors. The
purpose is to identify the main bottlenecks to efficient execution. For the memory subsystem,
efficiency is measured as the memory’s ability to retrieve operands and store results without idling
the datapath. For the datapath, efficiency is generally measured in term of latency and throughput.
The control unit (program sequencer and address generation unit) is judged on its ability to

generate the addresses and control signals necessary to keep both the memory and the datapath

183

184

fully occupied with useful operations. One concrete metric for efficiency is the utilization rate of

the datapaths, where utilization is defined as

ActiveCycles

Utilization = TotalCycles

A
U= T (7-1)

The active cycles are the cycles where new datapath instructions are issued, as opposed to the idle
cycles, where the datapath is waiting for operands to arrive or a status value to become available.
Note that the utilization rate can depend both on the datapath itself (if a missing operand is
currently being computed but not yet finished) and the memory (if the operand is coming from
memory). This serves to illustrate that the overall performance of the system will depend both on
individual properties of the major units (memory, datapath, control) and on how they work

together.

7.1 Commercial DSP chips

The commercial DSP chips that will be considered in this study are the AT&T DSP32C, the Texas
Instruments TMS 320C30 and the Motorola MC96002. It turns out that many of the relevant
architectural features of these processors are the same. For this reason, only the DSP32C will be
studied in great detail. Afterwards, the analogies between the DSP32C and the other processors
can be drawn fairly easily and many of the conclusions will be the same. All the processors
mentioned are high-end units that have built-in floating point hardware. This means that they are

(at least arithmetically) suited for numerical processing tasks.

7.1.1 The AT&T DSP32C digital signal processor

A simplified block diagram of the DSP32C is shown in Figure 7-1 [att88]. The main architectural
features of this processor is a highly multiplexed program/data bus (for simplicity referred to as
just the data bus hereafter) which operates at 4 times the instruction rate, a multiplexed set of
RAM/ROM barnks, and a modestly pipelined (2 stages) floating point datapath, while at the same

time having a highly pipelined approach to the fetching of operands, instructions and the writing of

Address bus

Data/instruction bus

Figure 7-1 Block diagram of the AT&T DSP32C signal processor

State 0 1 2 3

Clock cycle 0 1 2 3

Clock time 20ns 20ns 20ns 20ns
Instruction number k

Data bus N Zy4 =;k_3 Yis I
Function Write result Read X operand | Read Y operand | Read Instruction

185

Table 7-1 Reservation table for data bus during one machine cycle. The clock frequency is

50MH:z

186

results, where a given instruction may span as many as 4 instruction cycles.

The most general DSP32C instructions involve 4 memory accesses (denoted Z,X,Y;I) as shown in
Table 7-1. An instruction cycle consists of 4 clock cycles or states. In each state, the databus is
occupied by a different data item, as shown in the table. The index k is a running count of the
machine cycles. What the table says is that the memory write (Z) corresponding to the instruction
issued 4 cycles ago occurs in the same cycle as the operand reads (X,Y) for instruction k-3 and the
reading of the opcode (I) for instruction k itself. This means that a complete accumulate with a

memory store takes 4 cycles (actually 17 states) to complete.

To see how the architectural features manifest themselves during execution, we need to look at
some instruction examples. The most interesting instructions from our point of view are the MAC
and MADD type instructions, which are shown in Table 7-2. A reservation table which applies
both for the MAC instructions and the MADD instructions is shown in Table 7-3. One important
restriction is that X and Y must come from different memory banks. Otherwise there will be 1 wait
state between the accesses, and a corresponding delay of the pipeline. In other words, each RAM
needs 2 states per read operation. Fortunately, a new MAC/MADD instruction can be started every
cycle as long as the accumulated value stored to Z is not needed as an operand until 4 cycles later
at the earliest. Otherwise, one would have to wait the full 17 states. If X,Y are from the same
memory bank, there will be 6 states per MAC/MADD instead of 4. As mentioned earlier, the
floating point datapath is not pipelined except one stage between the multiplier and the adder. The
delays of the most important hardware blocks are shown in Table 7-4. Interleaving is the term used
to describe the practise of accessing X and Y from different memories. RAM[0-2] refer to the on-
chip RAM banks whereas RAM[A-B] refer to additional off-chip memory banks. The number n

denotes extra wait states.

7.1.2 Solving linear equations on the DSP32C

The purpose of this section is twofold. First it aims to establish how efficiently the DPS32C can

187

Instruction type Generic format | Example

MAC [2=]aN=[-]aM{+, -}Y*X | *r244r18= al= a0+ *r2 * *r2++rio

MADD [(Z=]aN=[-]Y(+, -)aM*X | *r2++r18= al= *1r2 + a0* *r2++rl9

Table 7-2 Generic form of MAC and MADD instructions. [J=optional { }=alternative. aN, |
aM denote accumulator registers and X, Y,Z are memory locations. rN=address register

RAMO Zwr
RAM1 |

Data bus

Multiplier

Adder

Table 7-3 Reservation table for relevant hardware units during multiply-accumulate or
multiply-add

Block Delay Interleave with Block Delay

— — —— — e—————
RAM[0-2] 2 Any other RAM adder 4
RAMI[A-B] | 2+n Only RAM[0-2] multiplier 5

Table 7-4 Delays of DSP32C hardware blocks (number of states)

be programmed to solve linear equations. Secondly, we want to see how the architecture can be

improved to increase the speed of execution.

As mentioned in the introduction to this chapter, one efficiency measure for a given processor is
the utilization rate of its datapaths. This makes sense situations in which the datapath is a given

and unchangeable entity.

188

Gauss/LU on the DSP32C

To get an exact, provably minimal cycle count for an algorithm on a given architecture is usually
not feasible. However, one can usually get bounds on the performance by studying the inner loops
of the algorithm and see how fast they can be executed. The inner loop of the Gauss/LU algorithm

is the elementary row operation

m= (af[ir] [k]*=(1/alk][k]));
for (j=k+1; j<n; j++) alir][jl-= m*a[krl[j];

The basic elimination operation is a[]= a[] - m*b(]. It can be performed as

do 0, rl2
*rl++ = al = *rl + a0 * *r2++

where rl is a pointer to row a[], 12 is a pointer to b[] and m is stored in a0. If a[] and b[] come from
the same memory bank (which is natural, since they are rows of the same matrix), it is possible to
execute this loop at a rate of 6 (not 4) states/iteration. The 2 additional states are wait states
incurred by having to access the same memory bank in succession, as opposed to interleaving two
different banks. This means that there is a basic inefficiency factor of 1.5 between what the
processor can actually do and what the datapath would be able to produce if the operands were

delivered on time and the result could be written on time.

Additional slowdowns will occur in the outer loops of the algorithm due to such tasks as pivot
searching, permutation lookups and loop administration. As noted above, deriving the exact
numbers is difficult. One alternative is to use sample code written by an expert programmer and
compare the execution time (cycles) to the theoretical minimum which can be found by simple
counting of operations in the algorithm. The DSP32C comes with a number of hand-coded
subroutines for various purposes, and one of them (matinv.lib.s) is a routine that finds the inverse
of an nxn matrix A. The inverse of A is the matrix X which satisfies AX=I. This equation can be
viewed as n systems of linear equations with the same coefficient matrix A but n different right-
hand sides, namely the n columns of 1. These systems can all be solved together by treating the

different right-hand sides at the same time during elimination. The work (MADD operations)

189

involved is

work(AX=I)= 2*forward_elim(Ax=b) + N*back_subst(Ax=b) (7-2)

which in turn is

work(AX=I) = 2*(13)(N°-N) + N*(1/2)N? = (7/6)N> - (2/3)N (73)
This amounts to 4768 operations for N=16, or 4*4768=19072 DSP32C states if the processor‘
datapaths works at 100% efficiency. This number was compared to the state execution count for
the hand-coded routine matinv.lib.s, including additional loop optimizations performed by myself
in order to make the code as efficient as at all possible. The most efficient hand-coded version was
a factor of 3.4 less efficient than a fully exploited datapath would be (Table 7-5). It should be noted
that matinv.lib.s uses pointer arithmetic for all array addressing, so that all the overhead which is

seen here essentially comes from pivot searching, permutation (which is performed by swapping

lines), loop administration and memory conflicts.

Potential speedup

What are the weaknesses of the DSP32C chip with respect to the Gauss/LU algorithm? A factor of
3.4 datapath inefficiency is actually not bad for a general purpose chip, but it could probably be
reduced to almost 1 by a special purpose memory architecture and controller. Assuming the

datapath (in its current incarnation) could be kept 100% busy, the next step to achieve additional

name states (factor) wait states loops optimized
— — — — — —————
matinv.lib.s 83957(4.4) 7865 none
matinv.libl.s 71701(3.7) - 2 (D,E)
matinv.lib2a.s 65107(3.4) - 3 (D,E,J)
matinv.lib2b.s 64687 (3.4) - 4 (D,E,J,P)
matinv.lib2c.s 63847(3.4) 7419 5 (D,E,J,P,Q)

Table 7-5 Optimized hand-coded versions of matinv.lib.s routine

190

performance must be to improve the speed of the datapath itself.

In the DSP32C, there is no pipelining inside the functional blocks. What if the datapath was
pipelined at the clock cycle level instead of at the instruction cycle level? That is, if the adder had
4 pipeline stages and the multiplier 5 stages, both would be able to accept new operands every
clock cycle. As noted on page 171, the forward elimination process has a pipelining margin of at
least 9 (which happens to equal 4+5) except in the very last iteration of the main loop. Assuming
that we can make full use of this pipelining margin, it would enable an increase in performance by
a factor of 4 (the datapath throughput increases by a factor of 4 because the clock is 4 times faster

than the original instruction cycle).

Of course, such a scheme would in turn increase the burden on the memory system and the data
bus by a factor of 4. The original system of a time-multiplexed data bus would have to be replaced
by a multiport/multibus memory system that works at the same speed as the clock and is able to
support 3 reads and 1 write every clock cycle. As an alternative, one could change the Von-
Neumann architecture of the DSP32C (common data and instruction storage) to a Harvard

architecture (separate data and instruction storage) and use a 2-read/1-write data memory system.

The total effect of these changes would be about an order of magnitude performance improvement

for the total system.

Crout or Doolittle on the DSP32C

As mentioned in Chapter 6, the distinguishing feature of the Crout (or Doolittle) algorithm is that
it relies on MAC (multiply-accumulate) operations in the inner loop. These can be executed at the
rate of 5 states per iteration, 1 state of which is a wait state for accessing X and Y from the same
memory. This is slightly better than Gauss/LU. However, even without wait states the inefficiency
of Gauss/LU is 2.96 (versus 3.4), so the expected gain is less than 15%. This is not to say that
Crout does not make sense on the DPS32C as is (it certainly does), but if we try to pipeline the

datapath as suggested for Gauss/LU in the previous section, there will be no gain available due to

191

the lack of a pipelining margin in the Crout algorithm.

7.1.3 The Motorola MC96002 digital signal processor

A simplified but realistic block diagram of the Motorola MC96002 (MC96k hereafter) is shown
in Figure 7-2 [mot89]. The MC96k architecture is a quite different from the DSP32C. Most
noticeable is the large number of independent data and address bussesthat connect the internal and
external RAM banks to the main datapaths. The internal RAM consists of 3 independently
operated banks known as P, X and Y. The P(rogram) bank is dedicated to storing instructions, and
the X,Y banks are dedicated to storing data. This is different from the DSP32C, where data and
program can be mixed freely in the RAM banks. There are two external memory busses (portA,
portB) which can connect to physically separate external RAM banks or other MC96k chips. The

instruction set of the MC96k is register oriented, but with parallel data moves.

An instruction cycle on the MC96k consists of 2 clock cycles. Table 7-7 shows how the various
RAM banks and buses are allocated during instruction cycles. The most striking feature of the
MC96k architecture is that 50% of all the memory cycles for blocks BX,Y are statically allocated
for DMA access. This means that even though PX,Y are capable of 2 accesses per instruction,
only 1 such access is available to the executing program.There is of course a good reason for this
scheme. First of all, the processor is intended for DSP multiprocessing applications, and the DMA
channels are intended for transferring data between multiple processors and/or between each
processor and a shared memory. The static allocation scheme makes the DMA control simpler, and
also ensures predictable performance during interprocess communication. The actual DMA
instructions are programmed by storing control codes, starting addresses and transfer counts into

special DMA registers (which are in fact mapped into the X memory address space).

The datapath (called Data Unit in Figure 7-2) is also quite different from the one found in
DSP32C. The programming model of the MC96k is that all datapath operations are register-to-

register operations, but with the possibility of specifying 0-2 parallel moves which transfer values

192

Address switch A

Address switch B

A A
! I
Y
PORT A A%dress P RAM X RAM YRAM | PORTB
en
A
i Y
A Y
Data switch A Data switch B
Y
Program Control Data Unit

Figure 7-2 Simplified block diagram of the MC96002 chip. The data and address switches
are the main connections between the chip and the outside world

Icycle 0 1 2 3 4
Fetch FO
Decode -
Execute -

Table 7-6 Instruction pipeline of the MC96k

193

XRAM

Y RAM read/write
PRAM read/write
PortA and B read or write

read or write

Clock cycle 0 1 2 3 4 5
Clock time 25ns 25ns 25ns 25ns 25ns 25ns
Clock phase 10, t1 2,13 10, t1 2,13 10,t1 2,83
Instruction 0 1

read or write

Table 7-7 Memory and bus allocation during MC96k instruction cycles. Assumes

fc=40Mhz (the fastest part available)

Floating point adder
Xbus < g ’ ’)
e T]]
us fviv _ dvlvy §v[¥
Format converter
Registers
DO0-D9 high | D0-D9 med | D0-D9 low

']

§

11

Reciprocal/sqrt seed ROM

Logic operations

Floating point multiplier

Figure 7-3 The MC96k datapath. The register file is 3x32=96bits wide and accommodates
IEEE extended precision operands, but the unit itself computes only single-extended

(44 bit) results

194

PAB PAB
GDB GDB
PDB + + PDB
'y
tempN
m0-3 n0-3 r0-3

rYVYY

mux | mux | mux

XAB YAB PAB

Figure 7-4 The Address Generation Unit (AGU) of the MC96k. Only 1/2 of the unit is
shown. Other independent half contains the registers m4-7, n4-7, r4-7

between the registers and the RAM banks (in either direction). The main datapath (Figure 7-3)
contains 10 registers named DO-D9. The registers are 96 bits wide and always store the operands
using the 96-bit IEEE double-extended precision format. This is mostly for the convenience of
communicating with the outside world, as all the arithmetic instructions of the MC96k are carried
out in 44-bit IEEE single-extended precision. Higher precision IEEE standard arithmetic can be

performed in software at the cost of lower speed.

The datapath contains an adder/subtracter unit and a multiplier unit for floating point operations.
Both units have a latency of 1 instruction cycle (there is no datapath pipelining) and can operate in

parallel. The results of one unit can be used as operands of either unit in the next instruction cycle.

195

7.1.4 Solving linear equations on the MC96k

As mentioned earlier, the X and Y banks are allowed 1 access each per instruction. This means
that even with its multitude of busses and address generators, MC96k is still not capable of
executing a 2-read, 1-write instruction that can efficiently perform the inner loop of the Gauss/LU
algorithm. In fact, the MC96k is even less capable than the DSP32C in this respect, because it can
only perform 2 data accesses (from different banks!) per instruction, whereas DSP32C can

perform 3 (but with penalty when X,Y,Z come from the same RAM bank).

Because the MC96k is a register-register machine with parallel moves (the DSP32C is a memory-
memory machine), there are more altemative code sequences for computing the Gauss/LU inner
loop than on the DSP32C. Figure 7-5 and Figure 7-6 show 4 different assembly code fragments for

the Gauss/LU inner loop. As before, the basic elimination operation is a[]= a[] - m*b([].

Case 1 is the “natural” formulation with a[] and b[] residing in the same memory bank. While the
assembly code is somewhat complicated, the conclusion is easy: Because the X bank has to be
accessed 3 times per iteration, and the architecture allows only 1 access per instruction, the inner
loop is 3 instruction cycles long, which is not very good. The datapath is capable of doing 6 flops

in this period, but only 2 useful operations are performed, meaning the efficiency is 33%.

Case 2 was designed to alleviate the memory bottieneck by assuming a[] is in the X bank and b{] is
in the Y bank (the cost of copying b[] from X to Y will most likely negate any savings, but we
would like to check anyway). Surprisingly enough, the loop still takes 3 instruction cycles. This
time, the problem is that MC96k only has 2-operand subtraction (and addition). “2-operand”
means that the result of a subtraction must be written back on top of one of the operands, as in
dest=dest-src. This causes a problem on line 9 of the code, where we would have liked to say
something like d2.s=d0-d1 instead of being forced to say d0.s=d0—d1. If this were possible, the

code could be arranged as shown in Case 4, with 2 instructions in the inner loop.

Case 3 unrolls the loop by a factor of 2 to avoid the problem caused by the 2-operand subtract

196

Common definitions tor Case 1-3

#define alk] (x0) 1
#define alk++] (xr0)+ 2
#define b[k] (ra) 3
#define b[k++] (rd)+ 4
#define m (rl) S
Case 1 : Both a[] and b[] in the x:ram

;label ;falu operation ;i X-move ;y-move ;jcycles 1
init move r0= #aaddr 1 2
move rd4= #baddr 1 3

move rl= #maddr 1 4

move dd.s= x:m 1 5

move dS5.s= x:b[k++] 1 6

loop do #n, endloop 3 7
dl.s = d4*ds d0.s= x:a[k] N 8

d0.s = d0-41 dS5.s= x:b[k++] N 9

move x:al[k++]= d0.s N 10
endloop . ;Total 11
3N+8 12

Case 2 : a[] in x:ram and b[] in y:ram.
No improvement due to lack of 3-operand subtraction

;label ;falu operation ; X-move ;y-move ;jcycles 1
init move rO0= #aaddr 1 2
move rd= #baddr 1 3

move rl= #maddr 1 4

move dd.s= x:m d5.s= y:blk++]1 5

loop do #n, endloop 3 6
dl.s = d4*4ds d0.s= x:a[k] N 7

d0.s = d4d0-41 d5.s= y:b[k++]N 8

move x:a[k++]= d0.s N 9
endloop ;Total 10
3N+7 11

Figure 7-5 Assembly code for Gauss/LU inner loop a[]=a[]-m*b[] on the Motorola
MC96k processor. Some liberties have been taken with the assembly language syntax to
make the code more readable: (1) The #define statements define textual substitutions
that allow us to use the mnemonic names such as a[k] in the program text instead of the
actual register names such as (10). (2) Arithmetic operations have been written in the
natural form (d1.s=d4*d5) instead of the standard syntax (fmpy.s d4,d4, di). 3)
The parallel moves have been written as assignments (x:a [k++]= d0. s) instead of the
src,dest syntax (d0.s, x:al[k++])

:label
init

loop

endloop

#define
#define
#define
#define
#define

;label
init

loop

endloop

Workaround that involves unrolling the loop by a factor of two

Case 3 : a[] in x:ram and b[] in y:ram

;ifalu operation

move
move

move

move

dl.s= d44*ds

do #n/2, endloop
d0.s = d0-4d1
dl.s = d4*ds
d2.s = 42-41
dl.s = d4*d5
a[k] (ro0)

)

; X-move
r0= #aaddr
r4= #baddr
rl= #maddr
d4.s= x:m
d0.s= x:al(k]

d2.s= x:a[k+1]
x:alk++]= d0.s
d0.s= x:al[k+1]
x:alk++]= d2.s

;y-move

dS.s=

dS5.s=

d5.s=

Case 4 : a[] in x:ram and b[] in y:ram
If MC96k actually had a 3-operand subtraction

alk+1l] (r0+n0)
alk++] (r0)+
blk++] (x5)+

m

(rl)

;falu operation

move
move
move
move
move

dl.s= d44*d5s
do #n, endloop

d2.s=
dl.s=

do-dl
d4*ds

Definitions

1 X-move
r0= #aaddr
r4= #baddr
rl= #maddr
n0= 1

d4.s= x:m
d0.s= x:al[k]

d0.s= x:alk+1]
x:alk++]= A2

Y:b[k++]

y:b[k++]

v:blk++]

;y-move

dS5.s=

dS.s=

y:blk++]

y:blk++]

197

;cycles 1.
1 2
1 3
1 4
1 5
1 6
3 7
N/2 8
N/2 9
N/2 10
N/2 11
;Total 12
2N+8 13

1

2

3

4

5

6
;cycles 7
1 8
1 9
1 10
1 11
1 12
1 13
3 14
N 15
N 16
;Total 17
2N+9 18

Figure 7-6 Assembly code for Gauss/LU inner loop on Motorola MC96k (continued)

198

limitation. In this version, dO and d2 are used as alternating destinations for the result of the
subtraction. The inside of the loop is now 4 instructions long, but is executed only N/2 times. This
means that in effect we have 2 instructions per iteration. The key instructions in Case 3 are the
ones numbered 8 and 10. These lines contain the code where dO (d2) is computed at the same time
as d2 (d0) is filled with a new a[]-value from the X memory. Case 4 shows the more elegant code

which would result if the MC96k had a 3-operand subtraction.

The above programming exercise allows us to draw some conclusions about the basic efficiency of
the MC96k with respect to the Gauss/LU algorithm. If b[] is not copied to the Y bank, the
efficiency is 1/3 in the datapath. If b[] could be copied to Y at no cost (which is not actually
possible, even using DMA), the efficiency could be made 1/2 by unrolling the loop by a factor of
2.

Crout or Doolittle on the MC96k

Crout and Doolittle require 2 accesses to the same bank, which means 2 instructions in the inner
loop and a 50% datapath utilization. Another possibility is to copy pieces of the matrix to the other
bank, which will allow the use of a 1-instruction multiply-accumulate (MAC) loop. This is the
same basic loop that is used in an FIR filter, which is one of the traditional uses of a chip such as
the MC96k. Figure 7-7 shows an assembly code fragment for the inner loop under the assumption
that one of the vectors has been copied to bank Y. The copying overhead will to some extent
negate the savings, even though one can get away with copying only on piece of data and use it

several times before having to copy again.

Potential speedup

The MC96k chip is less well-suited for Gauss/LU than the DSP32C. For Crout, they are about the
same, as the DSP32C needs wait states whereas the MC96k needs copying between memory
banks. I have no complete, handwritten and optimized code for the MC96k corresponding to the

matinv.lib.s code for the DSP32C, but it can be expected that they will fare about the same,

199

Case 5 : Crout algorithm inner loop (dot product) s=sum(i=1:n, a[i]*bli]),

assuming that a[] is in bank X and b[] has been copied to bank Y

#define alk] (rd) 1
#define al[k++] (rd)+ 2
#define b[k] (x0) 3
#define b[k++] (r0)+ 4
#define B[k] (r5) S
#define B[k++] (r5)+ 6
7

;Label ;falu operation ; X-move ;y-move ;cycles 8
init move r0= #aaddr 1 9
move r4= #baddr 1 10

move r5= #btmp 1 11

move d0.s=b[k++] 1 12

loop do #N, endcopy 1 13
move d0.s=x:b[k++] y:B[k++]=d0.s N 14
endcopy 15
move dd.s=x:al[k++] dS5.s=y:B[k++] 1 16

loop do #N, endloop 1 17
dl.s=d4*dS5, d2.s=d2+dl d4.s=x:alk++] dS5.s=y:B[k++] N 18
endloop ;Total 19
2N+7 20

Figure 7-7 Assembly code for Crout algorithm inner loop on the MC96k

meaning that the MC96k will have a utilization rate of about 1/3. Again, another factor of 4 can be
gained by pipelining the datapath. As before, this also requires a memory system update to

accommodate the increased bandwidth requirement.

7.1.5 Texas Instruments TMS320C30 digital signal processor

The TMS320C30 (C30 for short) is somewhat similar to the MC96k in that it has numerous
internal buses and two external bus interfaces. Figure 7-8 shows a simplified block diagram of the
chip [ti88]. The C30 is somewhat more complex than the MC96k in that almost all memories (the
exception is the cache) are connected to all possible buses. Surprisingly, there is only one bus
connection between the memory system and the ALU. This bus is time-multiplexed so that two
memory accesses can take place in one instruction cycle. The instruction pipeline timing is shown

in Table 7-8. Each instruction spans 4 instruction cycles (Fetch, Decode, Read, Execute). The

200

P, D1, D2, DMA address buses

- A
A A
" 3
8 Y AR Yy LA A -
a
& Cache RAMO RAMI ROM S
= 5
2 Y Y | 3
53]
v Y Y
y 4 Y Y
P DATA, DMA data buses
y
Program counter
Instruction register Data and address DMA
ALU Controller
Controller
Figure 7-8 Block diagram of the TMS320C30 chip
Icycle 0
e

Fetch FO

Decode -

Read -

Execute =

Table 7-8 Instruction pipeline of the TMS320C30

201

Clock cycle 0 1 2 3 4 5
Clock time 30ns 30ns 30ns 30ns 30ns 30ns
Instruction 0 1

RAMO-1 read/write | read/write | read/write | read/write | read/write | read/write
ROM, Cache | read/write | read/write | read/write | read/write | read/write | read/write
Primary bus |reaa read
Expand bus read or write read or write read or write

Table 7-9 Memory and bus allocation during C30 instruction cycles. Assumes
fc=33.4MHz. The latency of the Primary Bus is variable, depending on the order of
operations (read, write) and the speed of the external RAM. Example shown is for 0-wait
RAM. The expansion bus always takes 2 clock cycles per read or write

#

< mux > To DDATA bus

A A A
cpul
cpu2
regl
reg2
vy Vl vy Vl
fmult falu/shift
y v y *
mux
register file
> RO-R7
To AR(O-AR7

Figure 7-9 Main datapath of the TMS320C30

202

T 3
- N h=
b 13 3
A A ﬁ A
e Auxiliary registers [

ARO-AR7 <

-
(DISPO, IR0, IR

57 N

Figure 7-10 TMS320C30 auxiliary register file and address arithmetic unit

memory and bus allocation during an instruction cycle is shown in Table 7-7. The instruction cycle
consist of two clock cycles. Figure 7-9 shows the main datapath of the C30, and Figure 7-10 shows
the auxiliary registers (ARO-AR7) and the address arithmetic unit. The AR registers are mainly

used for address computations.

The main datapath is fairly standard, with a floating point multiplier and a floating point adder that
can operate in parallel. The programming model is a mix of the register-register and the memory-
memory model: Up to two of the operands can be read from memory whereas the remaining ones
must be registers. If there are no reads, one store can be performed per instruction. For parallel
multiply/add operations, the destinations must be registers. The address unit has two independent
adders which can be used to increment, offset or displace a base address coming from a register

ARO-AR?7. This corresponds to the ability of having two memory accesses per cycle.

The main difference between the C30 and the DSP32C/MC96K is that C30 is the only processor

;Label

loop

I
elim:

;Operations and moves

1di
1l4i
1di
laf
1ldi
mpy£3
subi

rptb
mpy£3
subf3
stf

#define al[k++]
#define b[k++])

;Label

eloop

elim:

Case 1 : Gauss/LU inner loop a[]= a[]-m*b][]

a[] and b[] in same RAM

~

@Qa,ar0 :
@b, arl ;
@m,ar2
*ar2,r0
N, rc

~e o~

r0, *arl++,rl :
1l,rc ;

elim ;
rl, *arl++,r0 :
*ar0,rl,r2 H
r2, *ar0++ H

Comment
points to al]
points to b[]

m->xr0
N->rc¢ (number of elements)

m*b[]->r0
rc=N-1

; setup the repeat block

n*b[k+1]->r0
alk]l-m*b[k]->r2
a(k]-m*b[k]->alk]

Case 2 : Crout inner loop s=sum(a[],b[},i=1:n)

a[] and b[] in same RAM

*arQ++
*arl++ (ir0)

;Operations and moves :

1di
ldi
1di
1di

subi
mpy£3
rptb
mpy£3
addf3

stf

@a,ar0 H
@b, arl H
N, rc ;
N, ir0 ;
1l,xc ;

alk++],b[k++],r0;
elim ;
alk++],blk++],x0;
r2,r2,r0 ;

r2, *arQ++ ;

Comment

points to al]

points to b[]

N->rc (number of elements)
N->rc (number of elements)

rc=N-1

r0= a[l*b[]

set up the repeat block
r0= a[l*b[]

r2= r2+a[]*b[]

alkl-m*b[k]->a[k]

203

;Cycles?

R R

[

15
;Totallé
2N+11 17

0 o0 U Wi

;Totall?
N+11 18

Figure 7-11 Assembly code for Gauss/LU and Crout on the TMS320C30

204

capable of 2 reads from the same RAM bank in one clock cycle.

7.1.6 Solving linear equations on the C30

The C30 is not ideally suited for the Gauss/LU algorithm, since it can perform at most 2 memory
accesses per instruction. Figure 7-11 contains assembly code for the inner loop of Gauss/LU. The
need to insert an stf (store float) instruction in line 15 is the reason why there will be 2 cycles per

iteration.

The C30 fares much better with the Crout algorithm than with Gauss/LU. As mentioned earlier,
C30 is the only processor (so far) which can read two operands out of the same memory without
any speed penalty. This makes C30 the best candidate for the Crout algorithm: The inner loop only
needs to contain one instruction (see Figure 7-11). There is 100% datapath utilization when

running the Crout algorithm on the C30.

Speedup potential

As it stands, the C30 is a very good processor for the Crout algorithm. The overhead in looping,
addressing, pivoting and row swapping has not been accurately estimated, but it can be expected

that for the complete algorithm one can get about 50% datapath utilization (a factor of 2 overhead).

As is the case for the other processors, pipelining the datapath will not help unless the memory

system is upgraded so that one can use a Gauss/LU algorithm with sufficient pipelining margin.

7.2 Vector processors

Vector Processors (VP) are computer architectures that are especially designed to process arrays
(vectors) of floating-point numbers at high speed by using heavily pipelined functional units that
rely on the programmer and/or the program compiler to exploit the pipelining margins that can be

found in scientific numerical computation algorithms.

205
Supercomputers

The most well-known vector processors belong to the class of “Supercomputers”, meaning the
highest speed, multi-million dollar machines such as the Cray-1, Cray-2, Cray X-MP, Cray Y-MP,
Fujitsu VP100/200, Hitachi S810/820, IBM3090/VF, NEC SX/2 and the Convex C-1 [hepa90].
There are also smaller, board level array processors such as the ones formerly made by Floating

Point Systems corporation.

Common to all these systems is that they are aimed at medium-to-large scale scientific
computation problems, and not small real-time problems such as repeatedly solving 16x16
systems of linear equations. Hennessy and Patterson [hepa90] make it clear in their exposition that
due to the heavy startup penalty of the vector operations on a commercial supercomputer, they are
not very efficient for small systems. In fact, of the machines mentioned, all but one have vector

registers of size 64 or larger, implying that smaller vector lengths are not efficient.

Supercomputers are impractical in embedded applications due to their prohibitive size and cost.
For the purpose of this dissertation, the main utility of Supercomputers is that they use some
implementation techniques and architectural techniques that can also be applied on a smaller scale.

This fact will be explored further in Chapter 8.

Vector processing chips

The NEC corporation Vector Pipelined Processor (VPP) is a single-chip implementation of some
of the central functions of a supercomputer [okamoto91]. Figure 7-12 shows the main datapath of
the VPP. VPP has 2 functional units (adder and multiplier), both containing 5 pipeline stages. The
processor contains 8 separate 2-port SRAM blocks which are used as vector registers to feed the
functional units, store results and as buffers between the vector registers and main memory
(offchip). VPP is made in BICMOS 0.8 um technology and runs at f=100MHz, which means that
the peak throughput is 200 Mflops.

The paper [okamoto91] shows clearly that the chip is not intended for stand-alone use. It appears

206

busl(mpy)
3 'y busZ(ach};
bus3(load)
busd(xfer)
+ ‘ * ‘ bus5(store)
64w 64 w 64 W 64 w | vector registers
External memory interface
¥ A
Pipelined load Pipelined store
A
busl(mpy)
¥ busZ(achK
bus3(load)
bus4(xfer)
* * * * bus5(store)
96 w 9% w 9% w 96 w | temp/buffer
registers

Figure 7-12 The central parts of the NEC Vector Pipelined Processor (VPP). The various
vector registers have either 64 word or 96 word capacities

that the main function of the chip is to implement some of the most central and time-critical
operations of a Supercomputer on one chip, which is vastly more efficient than traditional
approaches such as using ECL (Emitter Coupled Logic) gate arrays. ECL implementations

typically require many chips and fluid cooling, making the system larger and more expensive. The

207

speed of VPP is.not high enough to rival that of ECL-based Supercomputers, though.

As for applicability to small-scale linear systems, the VPP uses 64-word vectors, which is too
long for our purposes, and requires a sophisticated interleaved-bank external memory system. It
appears that the VPP can be a very good solution for medium-scale computational problems where

a relatively inexpensive and compact solution is required.

Massively Parallel Architectures

Massively Parallel (MP) architectures such as the Connection Machine CM-5 [hwang92] are
similar to the Vector Processors (Supercomputers) mentioned above in that they are large and
expensive systems intended for large-scale scientific problems. MP architectures involve many
(from 16 to 65636 or more) processors that communicate over a special interconnection networks.
(the hypercube type network is one popular example). The most pronounced problem in MP
architectures is exactly the communication between the processing nodes, and how to exchange
data efficiently. As a result, the hardware utilization is lower and the cost of communication

circuits is much higher in MP architectures than in VP architectures [spectrum92].

7.3 Systolic Arrays

There is a multitude of architectures and design techniques that can be grouped under the general
heading Systolic Arrays (SAs for short). The term was originally coined [htkung78] to describe a
1- 2- or n-dimensional structure of (relatively) simple processing elements with only nearest-
neighbor communication and one central memory which is connected to the array only at (some

of) the boundaries of the array.

Example of a 1-d systolic array (the WARP processor [anna86]) is shown in Figure 7-13. It is
commonly agreed upon (but not universally so) that Systolic Arrays belong to the class of SIMD
(Single Instruction, Multiple Data) architectures, meaning that all the processing elements perform

the same task at the same time, but on different pieces of data.

208

Host
addr
Memory /Interface

Unit
X X
- — > —_— — —
»] |« =—>» 2 |a>» [[@«>»| n-] j¢«=—>» n P Y
[— > — >

Figure 7-13 Simplified block diagram of the WARP systolic processor

A strict definition [roy88] of a Systolic Array demands regularity (mostly identical processors),
spatial locality (only local interconnections), temporal locality (all combinational elements are
latched, no zero delay operations) and pipelined operation (throughput independent of the order/
size of the system). Many of the early systolic architectures were special purpose and could only
perform one task efficiently. After the initial plethora of architectures and implementations,
researchers discovered that one of the most difficult problems with systolic architectures is to
program them to execute a variety of algorithms in an efficient manner. In fact, [roy89] has shown
that based on the strict definition, it can be formally proven that matrix algorithms that use
pivoting, including Gauss/LU, are not systolic. That is, they cannot be executed on such an

architecture without breaking one of the requirements of the definition.

These experiences and the observed limitations have led to developments in the field of Regular
Iterative Arrays (RIA) [jag85](jag87](rao85][rao88], Regular Processor Arrays [roy88]{roy89]

and Mesh Array Computational Graphs [1e92][moren090], which are less restricted relatives of

209

systolic architectures. For example, it is allowed to insert FIFO and LIFO buffers in between the
processors. Most of the reported work has concentrated on synthesizing an architecture for a given
algorithm and/or mapping an algorithm onto a given array. Some interesting results have been
achieved, but all the methods appear to have in common that they do not (so far) address what is
the main concemn in this work, which is efficient resource usage and high datapath utilization. For
example, [roy89] shows that Gauss/LU can be performed in O(Nz) time with N processors, but no
efficiency measures are provided. [1e92] demonstrates a technique that can map the Gauss/LU
algorithm (without pivoting) into the Mesh Array Computational Graph format, which can then be

mapped onto a regular array. Again, the datapath efficiency is not known.

Regular Array architectures are in-between Vector Processors and Massively Parallel architectures
in complexity. Programming a Regular Array is a difficult task even if it is not critical to have the
highest possible resource utilization. SA architectures also have in common with Vector
Processors and Massively Parallel architectures that the implementations are typically too large
and too expensive for embedded applications. SA architectures are usually implemented as board-
level or wafer-scale designs, meaning that they are large and costly. For small linear systems it

appears that a single-chip implementation is necessary for economical reasons.

Architecture Implementations Architectures Implementations
SUN Sparc CY700, Viking, Tsunami || HP PA-RISC PA: 7100 series
Motorola 88k MC88100 IBM POWER RS6000/500 series
MIPS R-series | 2000, 3000, 4000, 6000 Intel RISC i860, 1960
DEC Alpha 21064

Table 7-10 Some commercial RISC families and chips

210

7.4 Standard microprocessors

Standard microprocessors such as the families and implementations listed in Table 7-10 are
commonly used to execute numerical algorithms in a Unix workstation environment. For example,
CAD programs such as SPICE and CAZM [erdman90] involve large (and sparse) linear systems
which are solved by C subroutines that are compiled and run on one of the RISC (Reduced

Instruction Set Computer) chips listed in the table.

Most users never know how efficiently their workstations solve this (or any other) problem, and
are satisfied with the speedup that comes along with the periodical technological advances. This
makes perfect sense since a workstation is a general purpose computing environment and number-

crunching typically makes up a small part of the overall workload.

It is therefore not very surprising to find that many of the RISC chips are not particularly efficient
for solving systems of linear equations, be they the large and sparse variety or smaller dense

systems of the sort we are interested in.

7.4.1 The SPARC family

The most advanced member of Sparc architecture family to date is the Viking (a.k.a. SuperSparc)
chip [sparc92]. It is called a “superscalar” implementation of the Sparc architecture because it can
issue and execute up to 3 different instructions every clock cycle. (Recall that many DSP and
RISC chips have a pipelined execution with perhaps as many as 4-5 instructions being in different
stages of execution at the same time. However, only one new instruction is issued (started up) each

clock cycle. In a superscalar machine there are multiple instruction pipelines as well.)

The Viking chip has certain restrictions that apply to any group of 3 instructions that are candidates

for being issued in parallel:

* Maximum 2 integer results

* Maximum of one data memory reference

211

¢ Maximum of one floating point arithmetic instruction

* A group cannot include a control transfer (branch)

These restriction tells us right away that the Viking cannot be very efficient at executing either the
Gauss/LU or the Crout algorithm, as the memory bandwidth simply is not available. For the
Gauss/LU algorithm, there will be at least 3 instruction cycles, corresponding to the three
necessary memory accesses. For the Crout algorithm there will be at least 2 instruction cycles. The
restriction of one floating-point operation per cycle also means that even without the memory

access restriction, one could still not get below 2 instructions per iteration.

One important feature of the Sparc family (and other RISC chips) is that they do not have any
explicitly parallel instructions, such as the fmult||fsub instruction found in the MC96k. One reason
behind this fact is that the RISC families are designed to be scalable architectures that can have
both low-end and high-end implementations. In the low end, it is necessary that the architecture
does not specify parallel instructions that may be costly to implement, and in the high end, there
may be so much parallelism that it is unreasonable to try to specify all of it explicitly in
instructions. Instead, the RISC families use the above mentioned SuperScalar approach, where
extra hardware is expended to search the instruction stream of groups of instructions that can be
issued in parallel. This search becomes exponentially expensive with the number of parallel
instructions. In fact some of the new RISC chips could humorously be called “Complex
Instruction Sequencing Computers”, as a pun on the old “Complex Instruction Set Computer”

acronym (CISC).

7.4.2 The Motorola 88k family

The MC88100 (MC88k for short) is a heavily pipelined load/store register-register machine with
a Harvard architecture (separate extenal program and data busses), and a built-in floating point
unit [mot90]. One instruction is issued every clock cycle (machine cycle=clock cycle) and the

instruction pipeline is 3 cycles long. Offchip memory access latency is 3 cycles plus wait states (if

212

any) but the loads/stores are pipelined so that up to 3 loads/stores can be in progress at the same

time with an effective access time of 1 cycle each.

Since each cycle can have only one data access, Gauss/LU takes at least 3 cycles and Crout at least
2 cycles per iteration. Because of the heavy pipeline delay (fadd=5, fmult=6 cycles), Crout will in
reality take at least 11 cycles per iteration. There is no provision in the instruction set for doing
parallel load/stores or multiple floating point instructions (say, multiply-accumulate) in the same

cycle.

7.4.3 The MIPS R-series

The fastest member of the MIPS family is the R4000 chip [kane92], which is also the only
implementation that includes the floating-point unit on-chip. R4000 is heavily pipelined with an 8-
stage instruction execution unit and 1 instruction issue per clock cycle. The latencies are fadd=4
and fmult=7 cycles, which precludes efficient execution of Crout’s algorithm. The Gauss/LU

algorithm is hampered by the restriction of 1 load/store per instruction.

7.4.4 The DEC Alpha 21064

The 21064 is the first implementation of the Alpha architecture [dobber92][dec92]. It has the
highest clock speed of any microprocessor to date (f=150MHz) and a true 64-bit architecture, as
well as 2-issue superscalar operation. From the documentation that is currently available it is not
possible to determine what kinds of instructions are allowed to be executed in parallel, but it is
clear that since the Alpha is a register-register and load/store architecture, it cannot provide more
than 2 memory accesses per instruction cycle. This implies that Gauss/LU will take at least 2
cycles per iteration, and most likely more. The pipeline delay of the floating point unit is 10 cycles,

meaning that Crout will not be very efficient.

7.4.5 The Intel i860 XP

The i860 XP is the most advanced member of the Intel RISC family [intel92]. It has a load/store

213

register-register architecture which can execute one integer operation and one floating point
operation per cycle by explicitly programming the parallel instructions. The floating point
instruction set include some dual-operation instructions that execute but a multiply and an add/
subtract at the same time. This means that a maximum of 3 instructions can be issued each cycle.
However, there can be at most 1 load/store (counts as an integer operation even if it load is to a
floating point register) per machine cycle. Hence Gauss/LU will take at least 3 cycles per iteration
and Crout will take at least 2. Also, the pipeline delay of 2 for the floating point add will have a

negative effect on Crout.

7.4.6 Other RISC pP families

A clear pattern can be established from the above 5 examples of current RISC architectures. All
the common architectures are lacking one or more of the features required for Gauss/LU and

Crout, such as

* Insufficient memory bandwidth per instruction cycle (Gauss/LU, Crout)
* Insufficient parallel load/store/fp instructions (Gauss/LU, Crout)

* Too large pipeline latencies (Crout)

The other 2 architectures listed in Table 7-10 (HP, IBM) are difficult to evaluate because the
companies generally are not willing to provide architecture information beyond the instruction set
level. The detailed timing of the instructions are not available. It can still be expected that they

have one or several of the limitations listed above.

In general, it is clear that the RISC chips are less suited to solving linear equations than are the
current crop of DSP chips. This is quite reasonable taking into account that the RISC architectures

are intended for general purpose computing.

214

7.5 Summary

This chapter quantifies and compares the efficiency of a variety of architectures and chip/processor
implementations with respect to the Gauss/LU and Crout algorithm, as applied to small-scale

linear systems.

The main conclusions are that the commercial DSP chips are probably the most efficient means
commercially available for solving linear equations. The DSPs are small, quite fast and relatively
inexpensive, but it is also clear that their DSP-tailored architectures are not exactly what is needed
for the given problem. The overhead (and corresponding speed reduction) is usually a factor of 2-
4, and it appears that a completely tailored pipelined architecture can increase the speed by an

order of magnitude.

Commercial RISC chips are slower than the DSP chips because their main application areas do not
warrant the more specialized architectural techniques used in DSP chips. Other architectures such
as Vector Processors and Massively Parallel Architectures have features that can be applied in
custom architectures for matrix operations, but the commercial solutions are too large and too

costly for embedded applications.

The next chapter describes how application specific architectures and circuits can be applied to

create Numerical Processors that are more efficient than the commercially available solutions.

CHAPTER 8

THE SMAC (SMall Matrix
Computer) ARCHITECTURE

All the commercial hardware platforms considered in the previous chapter have some less-than-
optimal properties when applied to solving small systems of linear equations (Table 8-1). Some of
the platforms are very fast but too large and costly. Others are fairly inexpensive but not as

computationally efficient as they could be.

This chapter describes a new architecture called SMAC (SMall Matrix Computer) which is aimed
specifically at solving small systems of linear equations in an efficient manner. SMAC was
designed partly using features borrowed from known computer architectures, and partly by
developing new methods specifically aimed at efficient execution of the Gauss/LU algorithm. It

will be shown how the various architectural features support the Gauss/LU algorithm.

The architecture is based on a collection of building blocks (memory, control functions and
datapaths), the most critical of which have been designed as CMOS circuits all the way through
layout, fabrication and testing. Design details, test results and performance evaluations of the

building blocks are presented.

215

216

8.1 SMAC requirements

The requirements that have been identified in the preceding chapters are the following:

¢ Memory architecture:
The memory must be able to sustain 2 reads and 1 write per cycle.
 Datapath architecture and pipelining:
The hardware should exploit the available pipelining margin (PM) as much as possible by hav-
ing an appropriately pipelined MADD (multiply-add) unit.
* Pivoting:
The pivot search must be fast, preferably in parallel with other useful other operations.
¢ Permutation:
The permutation operation (address translation or row swapping) should be transparent.
¢ Address generation:

SMAC must have an efficient set of address generators and a control sequencer that will make

efficient use of the datapath.

The hardware should be programmable to some extent (especially matrix sizes), and it should be

possible to exploit pipeline interleaving during the back substitution phase.

Actual

Processor Cost Size Raw speed speed Efficiency
DSp + T O—t —0 — 0
RISC 0 0 0 - -
Supercomputer -- - ++ 0 -
VPP - - ++ + 0
MPA - - ++ 0 —_
Systolic Arrays - -— ++ 0 -

Table 8-1 Relative merits of commercial hardware platforms

217

8.2 Datapath and memory architecture

There are 3 main tasks to be performed by the datapath and the memory:

+ Forward elimination.
* Pivoting.

¢ Back substitution.

These tasks create different demands for the datapath and memory. The challenge is to create a
datapath/memory architecture that can handle all 3 tasks without either one of them requiring a
large hardware overhead that is not useful for the other 2 tasks. To develop the architecture, one
possible approach is to create 3 different datapath architectures and then try to consolidate them

into one efficient datapath for all 3 tasks.

Forward elimination

A datapath suitable for the elimination operations is shown in Figure 8-1. The main features are
the 3-port memory, which provides 2 operands and stores 1 result each cycle, and a pipelined

multiply-add datapath. The register m is used to hold the scale factor afi][k)(1/a[k][k]).

Back substitution

The back substitution datapath (Figure 8-2) is quite similar to the elimination datapath but

requires an accumulator for the multiply-accumulate operations.

Pivot search

Pivot searching can be done in a number of ways. The datapath shown in Figure 8-3 takes a naive
approach were the pivot candidates are searched serially after all of them have been computed.
The accumulator is used to hold the currently largest pivot, and its value is compared to the next
candidate by using the adder circuitry. The adder outputs a status signal which is used to select

which if the two values to store back into the accumulator.

218

3-port SRAM
+ m= (al[il[k]l*= (1/alk]l[k])):; 1
- for (j=k+1; j<n; j++) { 2
P ali]l[j]1-= m*a[k] [j]; 3
} 4
ST 5
FP\QGd Figure 8-1 Elimination datapath
=
3-port SRAM .
prod= b[i]; 1
for (k=i+l; k<n; k++) { 2
prod-= al[i] [k]*b[k];]
} 4
; EP?““ bl[il= prod*(1l/a[illi]); 5
N
FP add
Figure 8-2 Back substitution datapath
FP acc
|

temp=0; imax=k;
for (i=k; i<mn; i++) {
ir= row[i]; test= al[ir] [k];
if (test<0) test= -test;
if (test>temp) ({
imax=i; temp= test;

}

o Uk W

I Figure 8-3 Pivot search datapath

219
Parallel pivot search

Another approach to pivot searching is to look at the values of the row leaders a[i][k+1] as they
are computed (instead of waiting until all of them are finished). Parallel searching requires some
extra hardware since the regular adder will be busy computing the updated values. Because of its
size, it would be prohibitive and wasteful to replicate the entire adder just to use it for pivot
searching, as it would be idle at all other times. One low-cost alternative solution is to compare
only the exponents of the candidates with each other. This means that only the mantissa part of the
floating point adder needs to be replicated, and that we need only store the (8-bit) exponent in-

between comparisons. This is a very attractive option.

Comparing only the exponents does not guarantee finding the true maximum value among the
pivot element candidates, but this is not really a problem since two floating point numbers with the
same exponent can at most be a factor of two different from each other. Such a small factor will
not adversely affect the numerical accuracy of the Gauss/LU algorithm. Figure 8-4 shows how the

current MaxExp and MaxRow can be stored and fed into an additional exponent comparator in the

adder.
3-port SRAM * Only search/compare among
+ the row leaders
i e Update MaxExp each time it
- is surpassed

m e Update MaxRow accordingly

* Before starting next round
(k++) of elimination,
D MaxE erform the row permutation
FP add Xp P P
(several methods possible)

MaxRow

Figure 8-4 Parallel pivot search based on comparing just the exponent part of the
candidates

220
Consolidated data path

The datapaths in Figure 8-1 to Figure 8-4 are reasonably similar, and consolidating them all into
one datapath (Figure 8-5) is mostly an exercise in multiplexing the inputs and outputs so that the
final datapath can take on either one of the required personalities by applying the appropriate set of

control signals. Figure 8-6 shows how the datapath is used for elimination, parallel pivot searching

A
3-port l
— > W SRAM m
B
0/2
MaxExp
-
MaxRow
FP acc

Figure 8-5 Consolidated datapath which can perform all three basic tasks

—

MaxExp
-
MaxRow
=b-a p=b- =p- (=) b=
b=b-m-a p= P =D0;-p P=P (; i=P

Figure 8-6 (a) Datapath in elimination and parallel pivoting mode (b) Datapath in back-substitution mode

| (44

222

MaxExp

MaxRow

Figure 8-7 Datapath in reciprocal computation mode
2—-x-y,(acc) = acc acc- y (tmp) =y, (acc)
and back substitution. The signal flow for each case is drawn in bold type. Figure 8-7 shows how
the datapath can be used to compute reciprocals (for division) according to Newton’s method. One

possibility not shown in the figure is to use a seed ROM lookup table to speed up the reciprocal

computation.

8.3 Pivot row permutations

The row exchange that follows a pivot search can either be performed literally by swapping rows

(via a temporary storage space) or by leaving the rows in place and instead apply a permutation

223

function to every row index before using it to address the memory. Figure 8-8 shows the basic
principle of using a permutation table. Instead of swapping the entire rows, the table allows us just
to swap the indices of the table. SMAC therefore uses a table instead of row swapping. The lookup

in the permutation table (PTAB from now on) can be pipelined so that it does not slow down the

memaory access.

8.4 Addressing and address generation

The loop structure of the Gauss/LU algorithm produces a complicated but at the same time
regular memory access pattern for each of the 3 memory ports. SMAC must contain an address
unit which can generate these patterns with the appropriate timing. In particular, the address unit

must pass the addresses through the permutation table to effect the row index translation.

To develop the proper structure of the address unit, it is easiest to start out with the memory
structure itself and see what the requirements are. The address variables can generally be called
i,j,k since these are the names customarily used in the C program code. The main idea of the

addressing scheme is that the RAM address for a certain matrix element are created by

permutation table matrix (rows)
0 0 -
1 2
2 1
3 3 —

Figure 8-8 Using a permutation table to translate row addresses instead of swapping rows

224

concatenation of the row address and the column address. Using a pseudo-C notation, this means

that the address of a[i][j] (known i C notation as &a([i][j]) is

&ali][jl=i<j

where ¢ is used to denote concatenation of the bit patterns. As long as the number of rows and the
number of columns are powers of 2, this method will not create any holes in the address space. For

example, we can use 4 bits for i and 4 bits for j to form a complete 8 bit i+j address.

It is preferable to store the right-hand side(s) b along with A in the same RAM and access them as
a[][n], a[lin+1], ..., a[1[n-1+r]. Now, the RAM size must usually be doubled when one needs a
bigger size, say from 256 to 512 elements, but sometimes it is possible to simply cut out from the
layout the unused parts and add on exactly the number of extra words (elements) needed.
However, it is still necessary to increase the address size by 1 bit, and this increase must happen in

the most significant bit (MSB) of the address.

To address the extra column(s), we would like to tack on additional address bits to j. However, this
does not correspond to increasing the total address at the MSB side. The solution is to rearrange the
bits as shown in Figure 8-9 before applying them to the memory. For simplicity, one can assume

that the number of right-hand sides (RHSs) are also a power of 2 (1,2,4,....).

e
[

% Logical address

2N Physical address

Figure 8-9 Rearranging the address bits to allow right-hand sides to be stored as additional
columns in the matrix a[][]

225

i (from dp) k i J k

imax k Imax

aW aA
—> W PTAB
- R A
Y Y
rearrange/concatenate
to RAM address port(s)

Figure 8-10 Address composition from row and column components. The PTAB row
address translation table is included. The circuitry shown is replicated 2 or 3 times in the
SMAC architecture, except that the translation table can be shared

Address composition

From studying the Gauss/LU algorithm one can see that only certain combinations of the indices
i,j,k occur as row and column indices. Figure 8-11 shows the version of Gauss/LU which is
intended for the SMAC algorithm. Specifically, the combinations [ik][ijk] are the ones that are
used. This is reflected in the block diagram in Figure 8-10, which shows the hardware for
composing a complete memory address from the row/column components and the multiple
variables that are required. The special registers imax and R are used for the pivot update

operation:

R = ptab [k] ptab[k] = ptab[imax] ptab[imax] = R (8-1)

226

int linsol (n, r, a) 1
int n, xr; /* r= #right-hand sides */ 2
fptype a[N] [NPR]; /* augmented with right-hand sides */ 3

{ 4

fptype m, prod; 5
int i, j, k, ir, kr, npr= n+r, row[N]; 6
7

/* Assume pre-pivoted matrix */ 8
for (i=0; i<n; i++) row[il= i; 9
10

/* Forward elimination, k is the diagonal index */ 11
for (k=0; k<n-1; k++) { 12
/* Replace pivot with reciprocal */ 13
alkr]l[k]l= 1.0/alkr](k]; 14

15

/* Compute all the m-factors and store in al[ir]([k] */ 16

for (i=k+1; i<n; i++) | 17
alir] [k]= alir][k]*al[kr] [k]; 18

) 19

/* Eliminate */ 20

for (i=k+1l; i<n; i++) { 21

m= a[ir] [k]; 22

for (j=k+1; j<npr; j++) (/* Note k+1 NOT k */ 23

alir][j)= alir]l[j] -m*a{kr])[j], update_max_pivot(); 24

} 25

} 26

} 27
28

/* Compute the last reciprocal 1l/afn-1]([n-1] */ 29
afkr][n-1]= 1.0/al[kr][n-1]; 30
31

/* Back substitution on augmented matrix. 32
Note u(i,i)==already reciprocal */ 33
for (i=n-1; i>=0; i--) { /* Row in a and b */ 34
for (j=n; Jj<npr; j++) (35
prod= alir][j]; /* alir] [n+j]==b[ir][j] (rhs) */36

/* 0 iterations when i=n-1, that is k=n */ 37

for (k=i+1l; k<n; k++) { /* Col in a, Row in b */ 38

prod-= alir][k]*alkr]l[j]; 39

} 40
alir)(jl= prod*alirl[i]); /* Pivot already reciprocal */41

} 42

} 43
} 44

Figure 8-11 Version of the Gauss/LU algorithm which works on augmented multiple right-
hand sides. This is the form of the algorithm which SMAC is based on. Row index
translation and pivot searching and updating are not shown explicitly in the code, as it is
assumed these are taken care of behind the scenes by special hardware. The back

substitution part of the algorithm is not interleaved in the above formulation

227

Operation type Operations
ConstanTs- ar=0,ar=n-1 B
Tests ar<n-1,ar<n,ar<npr, ar>0
Arithmetic arl=ar2,arl=ar2+1l,ar++,ar--

Table 8-2 Instruction set for address computation unit

The Read/Write ports are called A/W and the corresponding addresses are aA/aW.

Address computation

From studying the algorithm in Figure 8-11 one can determine which operations are needed in the
address computation unit. The necessary instruction set is shown in Table 8-2, using the name ar
to denote one of the registers i,j,k. The block diagram for the address unit is shown in Figure 8-12.

One possible circuit implementation of an individual register is also shown.

8.5 Loop control and instruction sequencing

The sequencing of the loops in the Gauss/LU algorithm is one of the more complex task of the
SMAC architecture. As an illustration, let us first look at how the loops might be administered on a

commercial uP or DSP architecture.

If one compiles the code of Figure 8-11 using a standard C compiler, each for-loop of the generic

type will be transformed into more convenient (from a hardware viewpoint) formulations

1. for (k=0; k<n-1; k++) (BLOCK)

2. k=0; while (k<n-1) (BLOCK; k++)

3. k=0; A: if (!(k<n-1)) goto AEND; BLOCK; k++; goto A; AEND:/**/;

and then converted to machine instructions. The loop test seen in (3) is serial in nature and means
that several cycles (likely 4 cycles in this case) is used after each loop iteration to determine

whether there is another iteration. In a superscalar architecture, it may be possible to execute, say,

228

| v |

i
-
j Address Limit
< registers registers
(ar) (Ir)
e

0,1,-1 [ijk]

l Y Y Y

vV vV

indices

limits
i |. . n
] ar oL e —C
k n-2
0 n+r :l

. I —O busout
— {>c T+
g
out oen
1

Flgure 8-12 (a) Address generation unit of SMAC (b) Contents of register files and (c)
Possible circuit implementation

229

the instructions

k++; goto A;
in the same cycle. One could even imagine precomputing k+1, compare it to n, set a flag, and
know beforehand whether to jump backward or go forward at the end of the loop. These are

techniques that to some extent are used in compilers, or can be forced by the user by writing the

loop increments and tests using more explicit, machine-near constructs.

The above comments apply to a single loop. If there are nested loops, the problem becomes
considerably more complex. A superscalar (say, 2-3 instruction issue) machine will not be
powerful enough to produce a 0-overhead loop branch. The problem is especially apparent when 2
or more loops end at the same location, as seen in lines 25-26 and 42-43 of Figure 8-11. In such
cases, there is in essence a multiway branch to be taken depending on the value of several flags.
None of the superscalar architectures are capable of such a job, specifically because the instruction

set is intended also for scalar implementations.

What is necessary in SMAC is a multiway branch controller, analogous to the one used in the C-to-
Silicon system (section 3.8 on page 62). At the same time, it is most likely not useful actually to
program SMAC using a compiler such as the RL compiler. The compiler would not be able to

understand our address composition scheme (page 225), which is a key to performance.

Controller structure

The controller structure for SMAC can follow the general picture outlined in section 3.9 (p. 67).
Since the actual number of instructions in SMAC is rather small, it may make sense to use justone
finite state machine (FSM) and not also an additional “control store”. The details will not be
worked out here, but Table 8-3 contains a small part of the state table to indicate. how the
branching at the end of each loop is handled, in the case of (up to) 3 nested loops, which is what is
needed for the Gauss/LU algorithm. The variables (bits) is_last(ABC) are status bits from the

address unit, which pre-computes whether the current iteration of each loop will be the last one.

230

is_last (ABC) action is_last (ABC) action
000 goto C 100 goto C
001 goto B 101 goto B
010 goto C 110 goto C
011 goto A 111 quit loops

Table 8-3 Branching logic for triple-nested loops, assuming the program has already
entered the loop. Can be minimized before implementing it in an FSM

The only difficulty with this scheme is that it assumes that all loops will be executed at least once.
The loop in line 38 of Figure 8-11 is sometimes executed only once. This case will require some

additional attention.

8.6 Building blocks for implementing SMAC

In the following sections, the focus is changed from SMAC architecture to SMAC
implementation issues. To create an implementation of SMAC requires a large amount of circuit
design. Many of the critical parfs of SMAC are not readily available in the LAGER library, and in
other cases it is necessary to design new blocks for higher speed. The goal is to create a set of
building blocks that will allow implementations with clock speed in the 100MHz(+) range, using
standard 1.2pm SCMOS design rules from MOSIS.

The LAGER Silicon Assembly System is employed throughout this design effort, and all blocks
are designed as parameterized automatic module generators, so that they can be created in variable
sizes on demand. This ensures that the blocks can be used also in other applications. The blocks
have generally been implemented using the TSPC (True Single Phase Clocking) design style,
[yuan87][yuan89][afghahi90], which will be described below.

The next few sections describe the implementation of several critical circuit blocks (and

corresponding automatic module generators) for SMAC. These include

231

* A heavily pipelined multiplier (pmult) with parameterized size.

* Circuits for floating point adder and multiplier datapaths, including operand normalization and

renormalization, with parameterized sizes, in the dpp design style.
» Datapath pipeline latches.
* A 3-port SRAM (regfile, regfilew) with parameterized size and decoding.

* A high-speed PLA (hpla) with fully parameterized contents and FSM capability.

Several of the blocks have been fabricated and tested, and the test results will be presented.

8.7 TSPC latch design

Some of the most common latch and clocking technologies use either a 2-phase non-overlapping
clock, or a single phase clock but with some form of local inversion. TSPC [yuan89] is a latch and
clocking technology which uses a single clock phase that is never inverted. This technology has
the advantage that only 1 clock signal needs to be distributed around the chip, which saves area
and reduces the clock load. TSPC also saves transistors because there are fewer clock drivers, and

no local inversion is necessary.

The basic TSPC latches are shown in Figure 8-13. There are two main types: The pz—latch and the
n’-latch. The pz-latch is transparent when clk=0 and latched when clk=1. The nZ-latch is
transparent when clk=1 and latched when clk=0. To understand how the latches work, consider the
n2-latch as an example. When clk=1, the clocked transistors are conducting and the latch is
essentially two inverters in series (transparent). When clk=0, the first stage of the latch will block a
1 input because the clocked transistor is not conducting, and the latch as a whole is blocked. If the
input is a 0, the first stage will invert it into a 1, but this 1 will in turn be blocked by the (identical)

second stage.

The pz-latch works in an analogous fashion: When clk=0, the clocked transistors are conducting

and the latch is two inverters in series (transparent). When clk=1, the first stage of the latch will

232

]

["1~

out

I

out

P

clk—

<—"—"-|—J':<"-|—"—-"—+.

in

_'| >O——0ut

phl

Y B

Figure 8-13 (a) TSPC p?latch (b) TSPC n-latch (c) 2-phase latch

block a 0 input. If the input is a 1, the first stage will invert it into a 0, but this 0 is blocked by the

second stage.

Note that the TSPC latches have 6 transistors, which is the same amount as the standard 2-phase

non-overlap latches if we count the extra inverter that is needed for local inversion of the

appropriate phase.

233

inl in2 in3 in4

Figure 8-14 Circular shift register for testing sensitivity of TSPC latch operation to clock
slope

TSPC-based systems are less sensitive to skew problems than 2-phase systems, and special
techniques such as distributing the clock against the data flow direction can be used to minimize
the problem. On the other hand, TSPC systems depend on having a small edge rise/fall time,
because a clock with an intermediate value will set both a p2-latch and a n2-latch in a
semitransparent state. If two such latches are connected directly in series with no delay in between,

the signal may race through both latches during one edge if the edge rate is not sufficient.

The specific rise/fall times needed are best determined by simulation of a test circuit, for example
the circular shift register shown in Figure 8-14. The minimum slopes depend on the node loading
as well as the transistor sizing. A typical simulation result for a 1.2 um CMOS process (HP

CMOS34) was 3.0 ns for minimum-sized devices.

an] ————
——— p[n]=a[n-2]*b[n-2]

b[n]

Figure 8-15 Pipelined multiplier using per-phase latch stages

234

8.8 Pipelined high-speed multiplier (pmult)

The design goals of pmult were determined by the fact that the module is intended as a building

block for custom floating point units:

[]

Pipelined design for high throughput

[

Minimal pipe latch overhead

L]

Sufficient regularity to allow automatic module generation

¢ Parameterized size

Figure 8-15 shows the basic principle of pipelined multiplication, which in this case means that a

new set of operands can be applied each clock cycle, and that a new result will become available

each clock cycle.

Multiplication a+b of two numbers consists of adding the appropriate multiples of a to itself, as
illustrated in the familiar multiplication parallelogram in Figure 8-16. Each row in the
multiplication array is typically a carry-save adder which passes on the carries generated to the
next stage below, to avoid having a carry propagating up along each stage. At the bottom of the
array, there will be a Carry Vector and a Sum Vector which must be summed using a carry-

propagate adder. This is operation is often referred to as vector merging.

az ag a5 a4 az az a4 ag a7 ag a5 a4 ag a2 a1
| Jbg [b
| Iby o L b?
|] b3 o | b3
| | by 3 by
| | T 1—55 g, L b5
b b
| B, 0 — > | bS

Figure 8-16 Multiplication: The parallelogram of partial products. The parallelogram is
typically rectified (reshaped into a rectangle) to save area. Grouping of multiple partial
products is optional

235

If a multiplier is implemented on a chip, the parallelogram is normally pushed into a rectangular
form, and the alignment mismatch between the stages is taken care of by special inter-stage

routing.

Pipelining and compressors

Carry-save multipliér arrays can be pipelined between each stage if desired. However, the heavier
the pipelining the larger the latency of the unit. For a 24x24 multiplier, the latency would be
roughly 12 clock cycles of there is one pipe stage for each partial product, with one corresponding
clock phase. Since many algorithms, such as Gauss/LU, have a limited pipelining margin, it makes

sense to try to add up more than | partial product in between each pipe stage.

One possible design is that each pipe stage combines the previous Sum/Carry vectors with 2
additional partial products to generate the next Sum/Carry vectors. This method implied that there
will be 4 bits (of equal binary weight) to add at each position, requiring at least 3 bits of output to

encode the result. The 4:2 compressor (also known as a 4:2 adder or 5:3 counter) is a logic circuit

inl in2 in3 ind
l l l Signal Weight
FA [in14 1
NPC (out) cS — 1
D I
' ‘ NPC (in) NPCou),C | 2
S 1
FA

|

Figure 8-17 4:2 compressor made from 2 full adders

N -—0N

236

which performs the desired task. The 4:2 compressor takes 4 inputs (and a carry) of weight 1, and
outputs a Sum of weight 1 and two carries of weight 2. The second carry (named NPC for Non-
Propagating Carry) is fed into the neighboring compressor, but will not propagate any further, as

can be deduced from the logic diagram.

The basic cell for the multiplier array contains the compressor, 3-bits of pipeline latches and the
“and” functions necessary to form the partial products asb; and a<b;, ;, as shown in Figure 8-18.
The inputs in1/in2 are used for the Sum/Carry bits from the previous stage, and the in3/in4 inputs
are used for the muitiplicand (a). The wires pplbar and pp2bar carry the bits b;,b;, ;, of the
multiplier b.

Using a pipelined array of 4:2 adders requires that the stages must be wired up as shown in Figure

inl1 in2 in3bar indbar
- pplbar
- i * + pp2bar
NOR | NOR
Y v vy
NPC (out) -=— 4:2 adder <«— NPC (in)
C S
' v '
TSPC latch

vy Y

Figure 8-18 Ba51c cell of pipelined multiplier array. The cell exists in a p 2_Jatch version
and an n?-latch version. The S,C and a; bits are pipelined through the latch

a4 a3 a2 al a0
a4 a3 a2 al a0
L
o T B
a4 a3 a2 al a0 [e— b2
a4 a3 a2 al a0 4 b3
el :
vl W W [—C
a4 a3 a2 al a0 [<— b4
a4 a3 a2 al a0 <— b5
L=
rYvww o w [—2¢

237

b0

bl
S0
C1=0

51

Figure 8-19 Organization of pipelined multiplier array based on 4:2 compressors. Each
stage produces 2 sum bits and 1 carry bit which are routed out on the right-hand side

8-19. Each stage produces 2 sum bits and one carry bit (S, Sop41, Coy) that are routed out to the

right-hand side of the array. These vectors of carries and sums must be added using a carry

propagate adder, analogous to the vector merging that is going to take place on the bottom of the

array.

Operand and result pipelining (input and output delays)

Since there is a pipe delay between each of the stages in Figure 8-19, it is necessary to delay the

inputs (byy, byy,1) correspondingly. Also, the results (Syy, Soi41, Coy) arrive in a staggered fashion

and need to be delayed. The inputs must be delayed more at the bottom of the array, and the

outputs more at the top. This is a convenient property, because it means that the I/O delays can be

238

arranged into a square piece of layout, as indicated in the preliminary floorplan shown in Figure 8-
20. This floorplan gives a regular and rectangular structure to the layout. However, the vector-
merge addition spans 2N-1 bits for an NxN multiplier, and is the critical delay path. The length of
the carry-propagate can be reduced to length N by adding up the Sum and Carry bits on the Right
Hand Side (RHS) as the bits become available, before passing them into the output delays. This
approach is shown in Figure 8-21. Since the RHS bits arrive in a staggered fashion, the RHS adder
can be pipelined as shown in Figure 8-22. Each stage of the pipeline consists of adding together
(S2x» Sok+1, Coi) with the carry-in from the previous stage. This operation requires 2 Full Adders,
much like the 4:2 compressor circuit, and the 4:2 compressors and the RHS adder cells will

therefore be matched in their speed, which is convenient.

Because the stages in the main array operate on alternate clock phases (low or high clk), the RHS
merger as well as the input/output delays must be carefully assembled from latches of the correct

polarity (n-type or p-type).

:ozitpj;itr delays

Figure 8-20 A possible floorplan for the pipelined multiplier

239

Figure 8-21 Final floorplan for pmult. The RHS vector merge can be done by a simple
pipelined ripple-carry, leaving only an NxN bit vector merge at the bottom

Cns Sn3 Snu C3S3 S2 C1S1 SO

n/2-3 n/2-1
Y Y
Ph3 Pog P3 P2 Pl PO

C_wrap (to bottom side vector merger)

Figure 8-22 Logic diagram of pipelined Right-Hand Side (RHS) vector merger. The
output delay latches are also shown, with numbers indicating the number of stages for an
NxN multiplier

240

Cn_3 Sn-3‘ Sn—4 C3 S3 S2 Cl Si1 S0

p n p

o

= =

o o o
\J Y Y Y Y Y
Ps P, P3 P2 Pl PO

Figure 8-23 The RHS merger and the 1/O latches must start with latches of the appropriate
polarity, so as to fit with the timing of the main array

Vector merger

The bottom-side vector merger must be a fast adder that can add two 32-bit numbers within the
course of 1 clock phase, which is 5ns or shorter for clock frequencies of 100 MHz or higher. The

functionality required is shown in the logic diagram of Figure 8-24.

Fortunately, such an adder exists in the LAGER library (cs3.sdl). It is a carry-select adder with
pass-gate logic for high speed operation. The cs3 adder can be hooked up to the main array using

the Flint Place-and-Route tool.

If the cs3 adder were not fast enough, it is also possible to pipeline the final carry-propagate stage

of the multiplication.

241

0 |Con-1 Son2|Conz Sona|l Ch Sni1|Cna Sn2| C_wrap

PZn-l 1:'211-2 P2n-3 Pn Pn-‘l Pn-z

Figure 8-24 Logic function of the bottom-side vector merger

Tiling and circuit implementation

The design of pmult is strongly influenced by the requirement that the layout should be amenable
to automatic module generation. The layout design of pmult involved creating the necessary
leafcells, as well as making them fit together (partly with the help of routing cells) so that the

resulting layout could be tiled by the TimLager layout generator (cf. section 3.11).

The tiling procedure for pmult is fairly complex, consisting of 255 lines of C code. The details of
the code will not be presented here. However, Figure 8-25 shows a tiling example for a small (8x8)
multiplier. This example is large enough to show the tiling in its full generality. There is a total of
23 different leafcells that are used to form the multiplier, not counting the cells in the cs3.sdl carry-

select adder.

Simulation results

A 24x24 test layout of the multiplier was automatically generated, including the cs3.sdl VMA
(vector-merge adder). The layout was extracted and simulated with IRSIM, yielding a clock speed

of 108 MHz using parameters derived from the HP CMOS34 process.

compRT | compRT | compRT | compRT | compRT | compRT | compRT | compRT
pmult | pmult | pmult | pmult | pmult | pmult | pmult | pmult
compR | compR | compR | compR | compR | compR | compR | compR
nmult | nmult | nmult | nmult | nmult | nmult | nmult | nmult
con:pR compR | compR | compR | compR | compR | compR | compR
pmult | pmult | pmult | pmult | pmult | pmult | pmult | pmult
compR | compR | compR | compR | compR | compR | compR | compR
nmult | nmult | nmult | nmult | nmult | nmult | nmult | nmult

2131313
R R K
AEIEIE
5161717
=l 2|8| &
13| 38]| 3
815|617
HEIEIES
18|93
81 81|56
m_go..‘i
o] Tl O
gl8l&8]¢

Figure 8-25 Tiling example for 8x8 pmult multiplier. The main array contains 9 different leafcells, and the RHS/

input/output section contains 14 different cells. The numbered cells have the following names:
1=invRT, 2=in20utT, 3=0utdRT, 4=yinvR, 5=in2outL, 6=in2outR, 7=outdR, 8=indR.

Semantics: R=route or right, L=left, T=top

wi

243

Test chip

A test chip with the 24x24 multiplier has been designed, fabricated and tested. Because of the
high-speed operation of the chip, it is not practical to apply inputs and observe outputs at full
speed. Instead, a test architecture was developed that allows alternating sets of inputs to be applied
from internal registers at full speed, while the alternating outputs are latched into two different '
result registers. The result registers are static and will hold the results for later external observation
at low clock speed. Figure 8-26 shows the test chip architecture. For high speed testing, the PLA is
used as a sequencer to control the alternate application of two pairs if inputs to the multiplier array,

and the latching of the results as they emerge at the end of the pipeline.

The input-side test circuits are shown in Figure 8-27. The registers store two operands which can
be alternated as inputs to the pipeline by toggling the multiplexer control signal (this is done by the

PLA). The inputs can also be fed straight to the array by controlling the 2nd multiplexer. On the

pin_x pin_y
tx <{ ty] Test support circuits:
‘ tx = x-input circuit

ty = y-input circuit

tpl = p-output (lower) circuit
pmult (multiplier) tph= p-output (upper) circuit
cs3 (vector merge adder) f—#{ = —] pla =test sequencing PLA

tpl

pmv = pipelined mult and
vector merge circuit.

tph -

‘ pla

pin_p

Figure 8-26 pmult test chip architecture

-
MUX f—pp x
—p»{ Idreg |——-n | T
mux sel direct/latched
—»1 Ildreg [——»
* selx1/x2
ldx1/x2
128 Joad » outiny
in 1 6x84x8 Dc - out
12x2,8x2
16x2 A 16x2,8x2

P

n2 p2

inlatchl/2

—p| Idreg

=

—p| ldreg

~

mux

*

1

pin_p

* pad on/off
1ect/ latched

selpl/p2

ldp1/p2

Figure 8-28 Output side test circuits for pmult

245

clk |

plain stable stable
pla out stable stable
X,y stable stable

Figure 8-29 Timing of the input-side test circuits. The alternation of two sets of inputs
(x1,y1) and (x2,y2) can be controlled by a PLA which selects the appropriate source
register. The PLA output must change during clk=1

dk [L LT Lo
p_h (vma in) I stable . stable .

p_h(vmaout) stable j stable . stable

inlatch1[n2] W oo [l sco-

inlatch2[p2] stable . stable . stable
ldp({1,2}inv.pla | | (This is the PLA output)
1dp(1,2) 7774 1dpil,2}=nor(ldplinv.pla,clk)

1dp{1,2} = nor (Idplinv.pla, clk) = and (Idp1.pla, clkbar)

Figure 8-30 Timing of the output-side test circuits

246

LR EEEECECEECEEE T ag B LEEECELT
i }
i I [l L m
e e BT =4 Hm
l;.] i ;E
R TH i : TETTTE £
= i f
- HiE i
% |
§ rxn - TR TTATS - Lo (RERENENENRENENEN] e
. *u - gl
=
! T i f
= IT 8
| £
[EE13E [N EEEEINE (B EERENEN] [E (K1 ER(ER EE] 5 XN ERERERN] IR IEIEEINE | K BRI EEERREL] [} BN EE I EEEGasasninini
[1XE N l%u [E1EX (X1 EXTENEN) X (X1 ERINE £X1 XX ONT ENTNERN] [RIEIENEE | H IR N ERRERET) [] |n|< RN IR XX (X1 XRTS

Figure 8-31 CIF plot of pmult multiplier testchip (pmvt24c). The chip is severely pad-
limited. The size is 16702x12932A2, or 10021x7759um?

output side (Figure 8-28), the results can either be passed straight to the pins under manual control,

or they can be latched into the registers under PLA control.

Test results

The chip (pmvt24c) was tested using an HP 16500 pattern generator and logic analyzer. I found
that the chip had one serious problem, namely that the clock drivers were not strong enough to
create the necessary slope to avoid races in the TSPC latches (cf. section 8.7). However, by turning
the supply voltage down to 3V, it was possible to make the chip work (probably because the
latches slowed down more than the clock drivers), and the functionality was verified at f=30MHz.
This test was done straight through the pads, as the PLA did not work at this voltage (the PLA will
be discussed in a later section). As a result, the speed is not as high as what could be achieved with
the internal test generation/acquisition and at full supply voltage. I believe that the 108 MHz speed

predicted by simulation can be achieved with better clock drivers.

247

8.9 Floating point datapath building blocks

The pmult block described in the previous section is the cornerstone of the floating point unit
design, and is intendedv for multiplying the mantissas of two floating point numbers. In addition, an
exponent datapath, plus circuits for mantissa normalization, are needed. The building blocks
needed are mostly a subset of the functions needed to create a floating point adder, so in this
section we will concentrate on blocks needed to create high-speed, pipelined, parameterized

floating point adders.

All the blocks described in this section are created in the dpp design style (cf. section 3.11), which
is a key to easy parameterization. The strategy is that one can use dpp to create two separate
datapaths: one for the mantissa and another one for the exponents. The mantissa datapath is shown
in Figure 8-32, and the exponent datapath in Figure 8-32. The notation x.{s,m,e} is used to denote

the sign, mantissa and exponent part of the number x, respectively.

Table 8-4 contains a list of the new datapath blocks designed for the floating point library. Some of

Name Function
bufS Buffer with selectable size
fmux Fast mux21

fnorM Fast NOR of M-out-of-N datapath bits (0-detect, floating point normalize)

fshift Fast logarithmic up/down shifter stages (1,2,4,8,16)

fxor Fast controlled inverter (XOR with N data inputs, 1 control input)
invS Inverter with selectable size

ldreg Static (weak feedback) register with load

n2 n-squared tspc latch

p2 p-squared tspc latch

shift_tc shift.c from Lager/cellib/dpp but with tc=top control slice

Table 8-4 New datapath cells for floating point

X.m y.m

sign(x.e-y.e)
X M ons
abs(x.e-y.e)
— align (un-normalize)
3.3ns
xor(x.s,op1) y y xor(y.s,op2)
—_— xor xor lons[
Y Y
add add 5.0ns
> mux o0 (select positive)
delta(s.e) g renormalize (upN/down1)
~10.2ns

s.m

Figure 8-32 Mantissa datapath for floating point adder.
The adder computes the function s=f(x,y)=o0p;(x)op,(y) where op;, opy=+/-.
Delays are estimates based on new library cells and N=24 bits mantissa

x.e y.e
inv inv
* sign(x.e-y.e)
add add -
Y Y 1
mux mux -
1.0 ns

max(x.e,y.e)

. abs(x.e-ye)

delta(s.e)

!

Xor

1.0 ns

sgn delta(s.e)
—

rl

add

Y

saturate

'

S.e

Figure 8-33 Exponent datapath for floating point adder.
The adder computes the function s=f(x,y)=op;(x)opy(y) where op;, opy=+/-.
Delays are estimates based on the new library cells

249

250

the blocks are really a family of blocks with the same function, such as the fshift block, which
contains logarithmic shifter stages for up or down shifting and 1,2,4,8,16 bits of shift.

It appears that alignment and normalization operations are in general the most time-consuming and
complex part of floating point hardware design. Mantissa alignment refers to the operation of
shifting down the mantissa and correspondingly increase the exponent of the operand with the
smallest exponent so that the exponent becomes the same as for the larger operand. This is a
necessary precursor to adding the two mantissas, and corresponds to the concept in fixed point
arithmetic that it only makes sense to add numbers that have the same scale. Figure 8-34 shows the
approach used in this work, which is to use a logarithmic shifter. The log shifter has the advantage

that no decoding of the shift amount is necessary.

The normalization operation at the end of an addition means to shift the mantissa up so that there
are no leading zeros, and adjust the exponent down correspondingly. When the width of the

mantissa is fixed (not a parameter), handmade custom layout such as the one used in

normalized ‘

shift8a —p» down8a

(inv) 0.6ns
shift8b —p d

nv) GOV ens
hift4
° g (inv) downd 0.6ns
shift2 —p down2

(inv) 0.6ns
shiftl —p» .__downl

(non-inv) 0.9ns

aligned ‘

Figure 8-34 Mantissa alignment in 3.3ns using a logarithmic shifter

251

[hu87][bose88] is advantageous. The approach taken here (Figure 8-35) is not the fastest method,
but it is much easier to parameterize. The idea is first to look for a 1 among the first 16 bits, and
shift up if there is none, then look for a 1 among the first 8 bits of the (possibly shifted) result, and
so on. However, since a 16-bit NOR is very slow, I have instead used two stages of 8-bit NOR,
since 8-8-4-2-1 shifts are sufficient to normalize a 24 bit mantissa. Moreover, in the figure is

shown that the two 8-bit NOR operations are done in parallel (on the uppermost 16 bits of the

unnormalized

delta(s.e) [exponent adjust]

upl

normalized l

Figure 8-35 Mantissa normalizer built around logarithmic NOR-based 1-detectors and
logarithmic shifter stages. Total delay is 10.3ns (estimated)

252

input), and the 2nd shift of 8 is performed only if both of the NOR operations did not detect a 0.
The delay of the extra AND gate is inconsequential since it takes place while waiting for the delay

through the first shifter stage.

Pipelining
Pipelining the datapaths (not shown in the figures) is easily accomplished by inserting TSPC latch
datapath stages. The optimal number and placement of the stages depends on the mantissa and

exponent size, but it can be expected that about 4 stages (2 clock cycles) will be sufficient for 24+8

bits mantissa+exponent formats when targeting f=100MHz.

Test chips

No test chips containing the new floating point library have been fabricated. However, an earlier
chip (tcr24) was designed and fabricated that contained a normalizer using the same logarithmic
normalizer idea as shown here. This circuit did not use the trick with the parallel 8-bit NOR
evaluations, and the circuit design was also considerably less aggressive. The chip was fabricated
in VTI 2um CMOS and had a delay of 27ns from pad to pad. It is expected that a 1.2um version
based on the above method will perform at 10ns.

8.10 High speed 3-port SRAM (regfilew)

The regfilew high-speed 3-port SRAM is based on a fixed-size (32 words x 64 bits) handmade

layout described in [iris92], with the following additions:

* The hand-tiled leafcells have been modified for automatic tiling (alignment, overlap boxes,
labelling).

» The design has been made parameterizable.

* Additional cells for tileable Vdd, GND and clk routing to the edges of the layout.

* Construction of parameterized tiling procedure.

* Optional 2-1 column decoding.

253

A block diagram of regfilew is shown in Figure 8-36. The address lines are precharged high while
clk=1, and the outputs A,B are valid during clk=0. The write input must be precharged high during
clk=1 and then conditionally pull down before the end of clk=0. Circuit-wise, regfilew is identical
to the circuits of [iris92], with the exception of the addition of column decoding. Figure 8-37
shows the storage cell and the read/write circuits, including the modification for 2-1 column.

decoding.

a_decoder <«——| a_addr_drv rA

b_decoder <—— b_addr_drv B

ﬁ platch nlatch

arow_drv | brow_drv

' arowsel browsell

) nlatch

- roith b_sense B
platch

bitcell array whit/wbitb write_drv W
) nlatch

bt a_sense A

[}
wrowsel
| w_row_drv |

h
+ platch nlatc
w_decoder <—— w_addr_drv <—I— w

Figure 8-36 Block diagram of regfilew. A,B are read ports and W is the write port. The
terminals rA,rB,rW are the address signals

DATA_ouUT

Write Logic

cLe o I
160%x2

Senee Logic _—

Figure 8-37 Circuit diagrams of regfilew (a) Storage cell and read port (b) Storage cell and write port.
The transistors marked with an arrow are additions for 2-1 column decoding

1274

255
Floorplan and tiling

Regfilew is constructed from 24 leafcells and 9 additional hierarchical subcells. The TimLager
module generator was used for the automatic tiling. The tiling procedure consists of 558 lines of C
code and uses 3 levels of tiling hierarchy. The block arrangement at the top level of a 256x32 bit

version is shown in Figure 8-38.

Test chip and results

A CIF plot of the RW256C test chip is shown in Figure 8-39. In addition to the 256x32 regfilew
instance, it contains various precharge circuits for the inputs and some additional registers and

multiplexers to keep the I/O pin count down. The pads saved in this manner were allocated for

dec2toarr sam.pwr

“ ‘d‘é'chtoavrr . sam.pwr

7

Figure 8-38 Floorplan for the top level of 256x32 regfilew layout, based on a 128x64
array and 2-1 column decoding

256

il L] _ ‘ I [|
i s l .\ l]x‘rl"_"‘ I i I xE'x :l el T . 4 T . L -“;i m
':I g A aim AH-JT%H_%. u {-'mﬁ it} | W -ELE F i
Hefof A 5o o o 1 § 1 - H
|ljm : ,I - T a8 :___i _______________ " r] i = JJ-‘g
M e e e R e
; 5E Ement]
: HE
2 HE
; =i 3 By : _|EE:::E ::ﬂ
B B =~
L [l THE
] j i HE
- SN T
el e
fHHE |y
. B SIEE ;_
... 44
--- D
..... = e it | i il ;
i’"I’:: wesperje moneos purmded EE .
N DA EEEE 1
m m m m

Figure 8-39 CIF plot of the 256x32 regfilew test chip (regw256¢).The size is
10032x11482A2, or 6019x6889um?>

additional Vdd/GND/clk connections. Unfortunately, the number of pads were still not sufficient
to provide a clean Vdd/GND/clk supply, and the chip was not functional. The first chip (64x32
version) described in [iris92] had the same problem. That chip has been fabricated in a 2nd
version, using the same SRAM core but with a large amount of decoupling capacitance (made
using gate oxide) on the chip itself. This 2nd chip was functional at 180MHz, indicating that
regfilew can indeed be expected to perform at high speeds. The IRSIM simulation of the 256x32

regfilew predicts at maximum clock speed of 170MHz.

257

8.11 High speed PLA (hpla)

The hpla high-speed PLA (Programmable Logic Array) is based on the handmade design in
[iris92]. Irissou also wrote a special-purpose layout generator that generates MAGIC layout of the
PLA, but in this work the TimLager generator and the OCT framework was used. The

modifications made were

* Leafcells modified for automatic tiling.
» Parameterized size and contents of the PLA.
* Additional cells creates Vdd, GND and clk buses with terminals at the border of the layout.

* Construction of a parameterized TimLager tiling procedure.

The circuit schematic for hpla is shown in Figure 8-41. The inputs do not need to be precharged,
but must be stable during clk=0. Outputs change during clk=1 and are stable during clk=0, just like
the inputs (Figure 8-42). The latency through the PLA is 1 clock cycle, which means that the

L and

and_plane—> sense or_driver
5 o
T : l
Q.
and_driver or_sense
T in T (optional feedback) nlatch out

Figure 8-40 Block diagram of hpla

258

ROWSKLI_B ROWSEL

Mo|
cLxB >_¢1 - 32 I;,_< cuc>_¢ig/
M1 24 o
32 32 0
Mi10 b_‘ cLK ROWSEL2
a2

L
Ms M1z T
c:ucn)_q CLIC MINTERM 12 so o
a 24 M3
cu:,_i
R 176

Figure 8-41 hpla circuit schematic. The marked transistors correspond to the minterm
patterns in the inplane and the outplane

?

clk
plain stable stable
pla out stable stable

Figure 8-42 Timing and latency of hpla

259

=2 : ==

== sasn Sensel rorvers: mai -

_— H : w——
o oS =

Figure 8-43 Floorplan and tiling of hpla. Each square denotes a leafcell

outputs can be fed straight back as inputs to create a state machine. This is very convenient for

controller applications.

Floorplan and tiling

The general tiling pattemn of hpla is shown in Figure 8-43. The design contains 33 leafcells, 16 of
which are different variations of the basic 2x2 bitcell used in the in/outplanes. Because some of the
cells in the right half of the layout do not align with cell boundaries in the left half (the precharge2
cell), the halves were originally tiled separately and then put together at a 2nd level of hierarchy.
This inconvenience (and others like it) led to the development of a new and more general set of
tiling primitives for TimLager [richards92). The new tiling primitives (Table 8-5) makes it
possible to place any comner of a new cell relative to any corner of a previously placed cell. These
primitives are very useful for tiling structures that do not follow the customary left-to-right,

bottom-to-top scheme that TimLager was originally designed for. They also makes it possible to

cik#O

kb
N 200K 000 240 200 201
ouT 200K OOVOOOC oDho1too 000110 poooocy 0020802 oo 0047802

N .
o

Figure 8-44 IRSIM simulation of a hpla design at f=250MHz.

inputsemintermseoutputs=10+50+28

tile most designs in a straightforward and intuitive manner, whereas earlier it was often necessary

to rotate some subblocks to make them fit into the tiling paradigm. The tiling procedure hpla.c

consists of 319 lines of C code.

Simulation

Figure 8-44 shows an IRSIM simulation of an hpla instance of size 105028 at f=250MHz. There

appears to be still a good margin on the clock speed.

Function name

Function semantics

Generalizes Addup()/Addright(). Place new cell at any corner of current bbox.

Addcell()
NewBound() Push a new, 0-sized bounding box on top of a bbox stack.
MergeBounds Merge the two bounding boxes at the top of the bbox stack.

Table 8-5 New TimLager tiling primitives used in hpla

261

Test and fabrication results

The pmult testchip (pmvt24c) was intended to serve as the testchip also for the hpla design. As
mentioned earlier, the clock drivers on pmvt24c were not sufficient, and hence the chip did not
provide any data on the speed. Again, the 2nd generation of the testchip from [iris92] showed that

the speed is at least 130MHz for the given 10+50+28 example.

8.12 Pads and clock distribution

Special care must be taken in designing (and using) pads for high-speed chips. The pad ring for a
high-speed chip must provide adequate

* Driving ability (delay, slope) for signals arriving on chip.

* Driving ability for signal going off chip.

* Vdd and GND connections, with special emphasis in handling high peak currents without
excessive Vdd and GND bounce (due to pin and bonding wire inductance, mostly).

¢ Clock driving ability, and especially sufficient clock slope for TSPC circuits.

The pads used in the aforementioned test chips were procured from Prof. Wawrzynek’s group. The
output pad was designed for 100MHz signal operation, with 2ns rise/fall time into 8nH/30pF and a
ground bounce of less than 0.5V. Each output pad requires a pair of Vdd/GND pads to supply it.
The pads were reworked into LAGER format so that they could be used with TimLager and
Padroute (section 3.11 on page 76). The members of the pads12 library are listed in Table 8-6.
There are separate Vdd/GND pads for the padring itself and the chip core, the idea being to keep

the core power clean even if the pad power lines are bouncing.

The clock drivers are also based on pads, with large pullup (pulldown) transistors residing in
special clock driver pads that are bonded to Vdd (GND) and then tied together onchip to form a

gigantic inverter that drives all clock lines.

262

Name Description Name Description

analog_12 Plain analog pad, no driver gndpad_12 GND pad for padring supply
2nd stage clock driver pulldown . Input pad with truefinverted

clkn_12 (n) transistor in2_12 outputs
1st stage clock driver pulldown (n) | .

clkndrv_12 {ransistor in_12 Input pad
2nd stage clock driver pullup (p)

clkp_12 transistor out_12 Output pad

clkpdrv_12 st st:age clock driver pullup (n) thry_12 Space pad for enlarging pad
transistor nng

comer_12 Corner piece of pad ring vddcore_12 | Vdd pad for chip code

gndcore_12 | GND pad for chip core vddpad_12 Vdd pad for padring supply

Table 8-6 The pads of the pads12 family
Test results

It was found that the above pad scheme was not sufficient for the speed and current requirements
in the test chips, nor the test chip described in [iris92). Part of the reason is that the bonding wire
inductance was higher than anticipated (15nH versus 8 nH), and another part was that it was

prohibitively expensive to spend the number of Vdd/GND pads necessary to get reasonably high

clock slopes and reasonably low power supply bounce.

For the 2nd design, [iris92] successfully used a different approach based on placing large
decoupling capacitors onchip. The capacitors were made by creating large transistors with the gate
tied to Vdd and the source/drain tied to GND, and fitting them undemeath the power supply lines.
With local decoupling, it did not make sense to use pads as clock drivers. Instead, the clock drivers

were placed on the chip, still using the approach that all clock lines are driven from one central

point. This method was pioneered by [dobber92].

263

8.13 Summary

The design of the SMAC Small MAtrix Computer architecture has been presented. The
architecture contains a number of innovations aimed specifically at matrix computations, in

particular

* An address generator with split row/column addresses that are combined into a physical mem-
ory address, while at the same time allowing the address components to be used directly as loop

counters.

* Row pivoting based on a hardware permutation table (as opposed to swapping of row contents)

eliminates pivoting overhead.
* Parallel pivot searching during the elimination steps obliterates the search time overhead.

* “Soft” pivot searching based on comparing exponents results in considerable hardware savings.

In addition to these innovations, SMAC uses a multiport memory structure especially tailored to
the Gauss/LU algorithm, and it targets pipelined floating point units so that the Pipelining Margin
of the algorithm can be fully applied towards increasing the throughput of the processor

implementation.

On the hardware side, the most critical modules needed to implement SMAC have been designed:

* A heavily pipelined multiplier (pmult) with parameterized size.

* Circuits for floating point adder and multiplier datapaths, including operand normalization and

renormalization, with parameterized sizes. All are in the dpp library design style.
* High speed datapath pipeline latches (TSPC) and multiplexers.
* A 3-port SRAM (regfile, regfilew) with parameterized size and decoding.

* A high-speed PLA (hpla) with fully parameterized contents and direct FSM capability.

All the blocks have been simulated for speeds in the 110 MHz to 170 MHz range. Test chip results
reported in [iris92] confirm speeds of 180MHz for some of the blocks.

CHAPTER 9

SUMMARY AND CONCLUSION

The basic premise of this dissertation is that

¢ Itis likely that the benefits of ASIC implementation for DSP computations can be duplicated in

the area of Numerical Processing.

* The knowledge base, CAD tools, design methods and architectures developed for Application
Specific Digital Signal Processor design are to some extent applicable also in the Numerical

Processing domain.

* Because Numerical Processing pose different computational demands, additional innovations
and developments need to be made in all the aforementioned areas in order to realize the gains

of ASIC implementation.

The dissertation contains two main parts (Chapters 3-4 on C-to-Silicon/PUMA and Chapters 5-8
on ConsolC/SMAC) that present different approaches to Numerical Processor design. The next
few sections summarize the work described in these chapters and then present the conclusions
along with some directions for future investigation in the area of Application Specific Processors

for Numerical Algorithms.

265

266

Both the PUMA chip and the SMAC architecture are based on a study of algorithms for the
Inverse Position-Orientation (IPO) computation for robots with 6 revolute joints. IPO is used as
the common thread, while at the same time providing two radically different examples of
numerical computation tasks. Taking the designer’s perspective, Chapter 2 presents a survey of
IPO computational methods and mathematical background with special emphasis on the facts that

are important to the system and chip designer.

9.1 The C-to-Silicon system and the PUMA chip

The C-to-Silicon system is a powerful design tool for Applications Specific Processors for
Numerical Processing and DSP. The system supports easy architecture exploration and
performance evaluation at a the architecture level, without having to perform detailed logic and
layout level design. High-level algorithm simulation is also supported. C-to-Silicon uses the
LAGER Silicon Assembly System to perform layout and simulation tasks, resulting in a very
powerful and general system. It has been demonstrated that C-to-Silicon is flexible with respect to

the range of architectures and algorithms that can be implemented.

C-to-Silicon is the result of an integration effort that pulls together an assortment of tools to form a
complete design system that spans the range from the algorithm description down to mask layout

and fabrication. The design goals for C-to-Silicon system were to

¢ Use a high-level “C” language for algorithm specification

* Allow architecture exploration without detailed hardware design

* Separate the hardware implementation from algorithm and hardware design
+ Simplify concurrent design of hardware/architecture/software

« Eliminate machine language coding altogether

* Support simulation at all abstraction levels

* Provide accurate performance data without detailed hardware design

267

The successful design of the PUMA chip, as described in Chapter 4, demonstrates that the design
goals have been met. PUMA is a 100,000 transistor CMOS chip that executes an algorithm
described by 260 lines of “/C” statements, computing all IPO solutions to the PUMA 560 industrial

robot in real time.

C-to-Silicon has subsequently been applied to other chip designs, notably as part of work on
analog-to-digital (A/D) converters [mmar92]. This is a DSP application where the C-to-Silicon

processor performs filtering tasks related to oversampled A/D converters.

9.2 Matrix computations

Many (most, some would say) numerical algorithms can be reduced to a core of matrix
computations when viewed at a detailed level. One of the reasons behind this fact is that matrix
computations are both reliable and computationally tractable as long as they are properly
formulated. Hence, it is a popular and powerful approach to try to reduce more general numerical
problems into matrix problems, using the theoretical background of multivariable functions and
linear algebra. It is therefore important to investigate matrix computations when considering

application specific architectures for numerical algorithms.

The homotopy continuation method for solving systems of n polynomial equations in n unknowns
is a good example. It boils down to Newton’s method applied to a set of continuation paths, which
in essence means that the computation consists of evaluating functions and derivatives, and
solving linear systems of equations. The general Inverse-Position Orientation (IPO) computation

for 6R robots can be cast in this form.

ConsolC was developed as a tool for experimenting with homotopy continuation algorithms,
especially as they apply to solving the general IPO equations. Experimentation was in turn
motivated by the need to obtain detailed knowledge about the numerical and structural properties

of the algorithms, for the purpose of determining efficient computing architectures. It is clear that

268

the matrix operations are.in fact the key to rapid execution of continuation algorithms, and that the
numerical precision can be maintained using reasonable wordlengths. The remaining parts of the

computation can easily be parallelized and executed on standard processors.

The SMAC architecture was developed in response to the need for high-speed, efficient
computation of solutions to linear equations. Evaluation of a wide range of commercial
architectures showed that they are not efficient for solving small linear systems, and that an order

of magnitude can be gained in speed using roughly the same amount of silicon.

The speed and efficiency gains in SMAC are the result of a number of innovations aimed

specifically at matrix computations, in particular

* An address generator with split row/column addresses that are combined into a physical mem-
ory address, while at the same time allowing the address components to be used directly as loop

counters.

* Row pivoting based on a hardware permutation table instead (as opposed to swapping of row

contents) eliminates pivoting overhead.
* Parallel pivot searching during the elimination steps obliterates the search time overhead.

* “Soft” pivot searching based on comparing exponents results in considerable hardware savings.

In addition to these innovations, SMAC uses a multiport memory structure especially tailored to
the Gauss/LU algorithm, and it targets pipelined floating point units so that the Pipelining Margin
of the algorithm can be fully applied towards increasing the throughput of the processor

implementation.

On the hardware side, the most critical modules needed to implement SMAC have been designed:

* A heavily pipelined multiplier (pmult) with parameterized size.

* Circuits for floating point adder and multiplier datapaths, including operand normalization and

renormalization, with parameterized sizes. All are in the dpp library design style.

* High speed datapath pipeline latches (TSPC) and multiplexers.

269

* A 3-port SRAM (regfile, regfilew) with parameterized size and decoding.

* A high-speed PLA (hpla) with fully parameterized contents and direct FSM capability.

Tests and simulations have demonstrated speeds in the 110MHz to 180 MHz range.

9.3 Conclusion and directions for further investigation

The main questions to be answered by this dissertation are the following: Is Numerical
Processing really different from DSP? If so, can the gains produced by ASICs for DSP also be
realized in the Numerical Processing application area? While these are a very broad and complex
questions to answer, the results presented here affirm the differences and show that the prospects

are in fact promising.

In Chapter 7, it was shown that all but the most expensive commercially available processors have
considerable inefficiencies in performing matrix computations such as the Gauss/LU algorithm. If
price is considered, all the commercial alternatives studied are inefficient. The reason for the
inefficiency is indeed that the processors are optimized for other types of operations than the ones
found in Numerical Processing. Some distinguishing properties of numerical algorithms were
established in Chapter 6, in particular in the areas of required memory bandwidth, permutation
lookups and the available pipelining margins. The investigation shows that an order of magnitude
improvement can be realized (for small matrices) by utilizing improved architectures and design

methods.

Such advances are not without cost, especially because the tools and techniques for Numerical
Processor design are much less developed than their counterparts in the DSP arena. However, it is
predictable that NP design tools and techniques can follow the successful path exemplified by DSP
and develop to a level where it is just as easy to design an Application Specific Numerical

Processor as it is to design an a corresponding DSP chip today.

The main challenges appear to be in the following areas:

270

* Applications. Additional applications of embedded Numerical Processing should be investi-

gated. Some examples are listed in Chapter 1.

* Languages. While RL (or C) is a sufficient programming language for DSP and fixed point
Numerical Processing, an architecture such as SMAC cannot easily be programmed in any of
the existing high-level languages. Among the most serious challenges is the development of
constructs which can efficiently express the types of addressing that is typically used in matrix
computations. Languages such as dspC [ad92] and NumericC [ansi92] are examples of ongoing
efforts in this area. Their applicability in the Numerical Processing arena should be investi-
gated.

* Tools. With the advent of appropriate programming languages, it will become possible to
extend systems such as C-to-Silicon so that they can be applied more naturally to numerical
problems.

* Architectures. While solving linear equations is a common task, there are also other forms of
matrix computations that are prevalent in Numerical Processing. Examples such as singular
value decomposition (SVD), eigenvalue computations, orthogonalization and sparse matrix
computations come to mind. Some of these computations may fit in well with a SMAC-like

architecture, whereas others may require additional or different innovations.

ASICs for Numerical Processing require the development of new sets of languages, tools and
architectures. While some of the issues have been addressed in this dissertation, the above list

indicates that there are many others that require further investigation.

BIBLIOGRAPHY

[afghahi90]

[anna86]

[ansi92]
[att88]

[azim88]

[blahut85]
[bose88]
[canny88]

[chen92]

[chen86]

Morteza Afghahi and Christer Svensson. A Unified Single-phase Clocking
Scheme for VLSI Systems. IEEE Journal of Solid-State Circuits, pages 225-233,
Feb 1990.

Marco Annaratone, Emmanuel Amould, Thomas Gross, H T Kung, Monica S
Lam, Onat Menzilcioglu, Ken Sarocky, and Jon A Webb. WARP Architecture
and Implementation. In Proceedings of the 13th Annual International Symposium
on Computer Architecture, pages 346-356. IEEE, 1986.

ANSI. Numerical C, draft X3J11.1. American National Standards Institute, 1992.

AT&T. WE DSP32C Digital Signal Processor Information Manual. AT&T
Documentation Management Organization, Dec 1991.

Syed Khalid Azim. Application of Silicon Compilation Techniques to a Robot
Controller Design. PhD thesis, UC Berkeley, May 1988. UCB/ERL memo M88/
35.

Richard Blahut. Fast Algorithms for Digital Signal Processing. Addison-Wesley,
1985.

Bidyut Kumar Bose. VLSI Design Techniques for Floating-point Computation.
PhD thesis, UC Berkeley, December 1988. UCB/CSD report 88/469.

John F Canny. The complexity of Robot Motion Planning. MIT Press, 1988.

Deveraux C Chen. Programmable Arithmetic Devices for High Speed Digital
Signal Processing. PhD thesis, UC Berkeley, May 1992. UCB/ERL memo M92/
49.

J Bradley Chen, Ronald S Fearing, Brian S Armstrong, and Joel W Burdick.
NYMPH: A Multiprocessor for Manipulation Applications. In JEEE

271

272

[chow78]

[chu88]
[cody80]

[craig86]
[dahlquist74]
[dec92]
[dobber92)

[drexler77]
[duffy80)
[erdman90]

[fearing91]

[fraleigh83]

[gagli86]

[garcia77]

[gnu90]
[golub83]
[golub89]

(gupta92b]

International Conference on Robotics and Automation, pages 1731-1736, 1986.

S N Chow, J Mallet-Paret, and J A Yorke. Finding Zeros of Maps: Homotopy
Methods are Constructive with Probability One. Mathematics of Computation,
32:887-899, 1978.

Chom-Yeung Chu. Improved Models for Switch-Level Simulation. PhD thesis,
Stanford University, 1988. CSL report TR-88-368.

William J Cody and William Waite. Software Manual for the Elementary
Functions. Prentice-Hall, 1980.

John J Craig. Introduction to Robotics. Addison-Wesley, 1986.
Germund Dahlquist and Ake Bjorck. Numerical Methods. Prentice-Hall, 1974.
DEC. Alpha Architecture Handbook. Digital Equipment Corporation, 1992,

Daniel Dobberpuhl et al. A 200MHz 64-b dual issue cmos microprocesor. I[EEE
Journal of Solid-State Circuits, pages 1555-1567, Nov 1992,

FJ Drexler. Eine Methode zur Berechnung simtlicher Losungen von
Polynomgleichungssystemen. Numerischer Mathematik, 29:45-58, 1977.

JDuffy and CCrane. A Displacement Analysis of the general spatial 7R
mechanism. Mechanism and Machine Theory, pages 153-169, 1980.

Donald) Erdman and Donald] Rose. CAzM, Circuit Analyzer with
Macromodeling. MCNC Center for Microelectronics, Jun 1990.

Ronald S Fearing and T O Binford. Using a Cylindrical Tactile Sensor for
Determining Curvature. IEEE Transactions on Robotics and Automation, pages
806-817, Dec 1991.

John B Fraleigh. A First Course in Abstract Algebra. Addison-Wesley, 3d
edition, 1983.

Robert D Gaglianello and Howard P Katseff. A Distributed Computing
Environment for Robotics. In /EEE International Conference on Robotics and
Automation, pages 1890-1896, 1986.

CB Garcia and W1 Zangwill. Global Continuation Methods for Finding All
Solutions to Polynomial Systems of Equations in N Variables. Technical report,
Center for Matematical Studies in Business and Economics, Report no. 7755,
University of Chicago, 1977.

Doug Lea. User’s Guide to the GNU C++ Library. Free Software Foundation,
1990.

Gene H Golub and Charles F Van Loan. Matrix Computations. Johns Hopkins
University Press, 2nd edition, 1983.

Gene H Golub and Charles F Van Loan. Matrix Computations. Johns Hopkins
University Press, 3d edition, 1989.

Rajesh K Gupta, Claudionor N Coelho, and Giovanni de Micheli. Synthesis and
Simulation of Digital Systems Containing Interacting Hardware and Software
Components. In JEEE/SIGDA Design Automation Conference, Jun 1992.

[gupta92a]

[harbison87]

[hepa%0]

[hoang92]

[horowitz84]

[hu87]

[htkung78]

[hwang92]

(intel92]
[iris92]

[jag85]

[jain91]

[jassica85]

[kane92]
[kernighan78)

[1e92]

[lee86]

[lettang89]

273

Rajesh K Gupta and Giovanni de Micheli. System-Level Synthesis Using Re-
Programable Components. In Proc. of the European Design Automation
Conference, Mar 1992,

Samuel P Harbison and Guy L Steele. C: A Reference Manual. Prentice-Hall,
2nd edition, 1987.

John L Hennessy and David A Patterson. Computer Architecture: A Quantitative
Approach. Morgan Kaufman Publishers, 1990.

PhuD Hoang. Compiling Real-Time Digital Signal Processing Applications
Onto Multiprocessor Systems. PhD thesis, UC Berkeley, May 1992. UCB/ERL
memo M92/68.

Mark A Horowitz. Timing Models for MOS Circuits. PhD thesis, Stanford
University, 1984.

Timothy Hu. Circuit Design Techniques for a Floating-Point Processor. Master’s
thesis, UC Berkeley, 1987. UCB/CSD report 87/372.

H T Kung and CE Leiserson. Systolic Architecures for VLSI. In Sparse Matrix
Proceedings, pages 37-46. SIAM, January 1978.

Kai Hwang. Advanced Computer Architecture. McGraw-Hill, 1992. Pre-
publishing edition.

Intel. Multimedia and Supercomputing Data Book. Intel Incorporated, 1992.

Bertrand S Irissou. Design Techniques for High-Speed Datapaths. Master’s
thesis, UC Berkeley, Dec 1992.

Hosagrahar V Jagadish. Techniques for the Design of Parallel and Pipelined
VLSI Systems for Numerical Computation. PhD thesis, Stanford University,
1985.

Rajeev Jain, Paul T Yang, and T Yoshino. Firgen - a computer-aided design
system for high performance fir filter integrated circuits. /EEE Transactions on
Signal Processing, Jul 1991.

JR Jassica, S Noujaim, R Hartley, and MJ Hartman. A Bit-Serial Silicon
Compiler. In Proceedings of ICCD, Oct 1985.

Gerry Kane and Joe Heinrich. MIPS Risc Architecture. Prentice-Hall, 1992,

Brian W Kergnighan and Dennis M Ritchie. The C Programming Language.
Prentice-Hall, 1978.

Dinh Le, Milos Ercegovac, Tomas Lang, and Jaime Moreno. MAMACG: A Tool
for Automatic Mapping of Matrix Algorithms Onto Mesh Array Computational
Graphs. In IEEE International Conference on Application Specific Array
Processors, pages 511-525, Oct 1992,

Edward A Lee. A Coupled Hardware and Software Architecture for
Programmable Digital Signal Processors. PhD thesis, UC Berkeley, December
1986.

Erik Lettang. Padroute: A Tool for Routing the Bonding Pads of Integrated

274

[luenberger84]
[mac83]

[manocha92]

[mmar92]
[micheli90]
[moreno90]

[morgan86]

[morgan87a]

[morgan87b)

[mot89]
[mot90]

[nara86]

[okamoto91]

[otten82]
[pati88]

[pieper68]

Circuits. Master’s thesis, UC Berkeley, 1989.

David G. Luenberger. Linear and Nonlinear Programming. Addison-Wesley,
1984.

The Mathlab Group. MACSYMA Reference Manual. Laboratory for Computer
Science, MIT, 10 edition, January 1983.

Dinesh Manocha. Algebraic and Numeric Techniques for Modeling and
Robotics. PhD thesis, Computer Science Division, Department of Electrical
Engineering and Computer Science, University of California, Berkeley, May
1992,

Monte Mar. Automated Design of Signal Acquisition Modules. PhD thesis, UC
Berkeley, 1992. In preparation.

G De Micheli, D Ku, F Mailhot, and T Truong. The olympus synthesis system.
IEEE Design and Test of Computers, Oct 1990.

Jaime N Moreno and Tomas Lang. Matrix computations on systolic-type meshes.
IEEE Computer Magazine, pages 32-51, April 1990.

Alexander P Morgan. A Homotopy for Solving General Polynomial Systems that
Respect M-homogenous Strucures. Research publication GMR-5437, General
Motors Research Laboratories, Warren, Michigan 48090, May 1986.

Alexander P Morgan. Solving Polynomial Systems Using Continuation for
Engineering and Scientific Problems. Prentice-Hall, 1987.

Alexander P Morgan and Andrew Sommese. Computing All Solutions to
Polynomial Systems Using Homotopy Continuation. Research publication
GMR-5692, General Motors Research Laboratories, Warren, Michigan 48090,
January 1987.

Motorola. DSP96002 IEEE Floating-Point Dual-Port Processor User’s Manual.
Motorola Inc, 1988.

Motorola. MC88100 RISC Microprocesor User's Manual.
Incorporated, 2nd edition, 1990.

Sundar Narashiman, David Siegel, and John M Hollerbach. Implementation of
Control Methodologies on the Computational Architecture for the Utah/MIT

Hand. In /EEE International Conference on Robotics and Automation, pages
18841889, 1986.

Fuyuki Okamoto et al. A 200-MFlops 100-MHz 64-b BICMOS Vector-Pipelined
Processor (VPP) ULSL. IEEE Journal of Solid-State Circuits, pages 1555-1567,
Dec 1991.

Ralph Otten. Automatic Floorplan Design. In /EEE/SIGDA Design Automation
Conference, pages 261-267, Oct 1982.

Y C Pati et al. Neural Networks for Tactile Perception. In IEEE International
Conference on Robotics and Automation, 1988.

Motorola

D Pieper. The Kinematics of Mechanisms Under Computer Control. PhD thesis,
Stanford University, 1968.

[pope84]

[primrose86]

[ptolemy91]
[rabaey91]

[rabacy88]

[rabaey85]

[rao85]

[rao88]

[rb92]
[richards92]
[rimey89]

[roy88]

[roy89]
[ruetz86]

[salz90]
[shung88]

[shung89]

[shung91]

275

Stephen S Pope. Automated Generation of Signal Processing Circuits. PhD
thesis, UC Berkeley, 1984.

EJF Primrose. On the input-output equation of the general 7r mechanism.
Mechanism and Machine Theory, 21:509-510, 1986. This paper shows there are
at most 16 solutions.

Electronics Research Laboratory. Almagest: Ptolemy User’s Manual. UC
Berkeley, 1991.

JRabaey, C Chu, P Hoang, and M Potkonjak. Fast prototyping of datapath-
intensive architectures. IEEE Design and Test of Computers, June 1991.

Jan Rabaey, Hugo De Man, Joos Vanhoof, Gert Goossens, and Francky Catthoor.
Cathedral-II: A synthesis system for multiprocessor DSP systems. In Daniel D
Gajski, editor, Silicon Compilation, pages 311-360. Addison-Wesley, 1988.

Jan Rabaey, Stephen Pope, and Robert W Brodersen. An Integrated Automatic
Layout Generation System for DSP Circuits. IEEE Transactions on CAD, pages
285-296, July 1985.

Sailesh K Rao. Regular Iterative Algorithms and Their Implementation on
Processor Arrays. PhD thesis, Stanford University, 1985.

SaileshK Rao and Thomas Kailath. Regular Iterative Algorithms and their
Implementation on Processor Arrays. Proceedings of the IEEE, pages 259-269,
March 1988,

Robert W Brodersen, editor. Anatomy of a Silicon Compiler. Kluwer Academic
Publishers, 1992.

Brian C Richards. Generalized Tiling Primitives for TimLager. Personal
communication, Jan 1992.

Kenneth Edward Rimey. A compiler for Application-Specific Signal Processors.
PhD thesis, UC Berkeley, September 1989. UCB/CSD report 90/556.

VP Roychowdury and T Kailath. Regular Processor Arrays for Matrix
Algorithms with Pivoting. In /EEE International Conference on Systolic Arrays,
pages 237-245, January 1988.

V P Roychowdury and T Kailath. Regular Processor Arrays for Matrix Pivoting
Algorithms. Communications of the ACM, 1989.

Peter A Ruetz. Architectures and design techniques for real-time image
processing IC’s. PhD thesis, UC Berkeley, May 1986. UCB/ERL memo M86/37.

Arturo Salz. Irsim manual. Stanford University, 1990.

Chuen-Shen Shung. An Integrated CAD System for Algorithm-Specific IC
Design. PhD thesis, UC Berkeley, May 1988.

Chuen-Shen Shung et al. An Integrated CAD System for Algorithm-Specific IC
Design. In Proceedings of the 22nd Hawaii International Conference on System
Science, pages 82-91, Jan 1989.

Chuen-Shen Shung et al. An Integrated CAD System for Algorithm-Specific IC

276

[sparc92]

[spectrum92]

[spickelmier90]

[sriva92]

[strang80]

[svenssonS0]

[terman83]

[thon92]

[thor88]
[ti88)

(tsai84]

[volder59]

[walther71]

[wampler89]

[whitcomb92]

[yuan87]

[yuan89]

Design. IEEE Transactions on CAD, pages 447-463, April 1991.

SUN Microsystems. The SuperSparc Microprocessor. Technical White Paper,
May 1992.

Glen Zorpette (Editor). Special issue on supercomputing. /EEE Spectrum
Magazine, pages 26-76, September 1992. See especially article by Cybenko and

Kuck, p40.
Rick L Spickelmier (Editor). Oct Tools distribution 4.0. UC Berkeley, 1990.

Mani B Srivastava. Rapid-Prototyping of Hardware and Software in a Unified
Framework. PhD thesis, UC Berkeley, May 1992.

Gilbert Strang. Linear Algebra and its Applications. Academic Press, 2nd
edition, 1980.

Lars G Svensson. Implementation aspects of decision-feedback equalizers for
digital mobile telephones. PhD thesis, Lund Instutute of Technology, June 1990.

Chris J Terman. Simulation Tools for Digital LSI Design. PhD thesis, MIT,
September 1983.

Lars E Thon and Robert W Brodersen. C-to-Silicon Compilation. In Proceedings
of the IEEE Custom Integrated Circuits Conference, May 1992.

CAD Group, Stanford University. Thor tutorial, 1988.

Texas Instruments. Third-Generation TMS320 User’ s Guide. Texas Instruments
Incorporated, 1988.

Lung-Wen Tsai and Alexander P Morgan. Solving the Kinematics of the Most
General Six- and Five-Degree-of-Freedom Manipulators by Continuation
Methods. Research publication GMR-4631, General Motors Research
Laboratories, Warren, Michigan 48090, October 1984.

JE Volder. The CORDIC Trigonometric Computing Technique. /RE
Transactions on Electronic Computers, pages 330-334, 1959.

J'S Walther. A unified algorith for elementary functions. In Proceedings of the
1971 Spring Joint Computer Conference, pages 379-385. IEEE, IEEE, 1971.

Charles Wampler and Alexander Morgan. Solving the 6R Inverse Position
Problem Using a Generic-case Solution Methodology. Research publication
GMR-6702, General Motors Research Laboratories, Warren, Michigan 48090,
January 1989.

Gregg Whitcomb. BLIS Reference Manual. EECS Department, University of
California at Berkeley, 1992.

Jiren Yuan, Ingemar Karlsson, and Christer Svensson. A True Single-Phase
Clock Dynamic CMOS Circuit Technique. /EEE Journal of Solid-State Circuits,
pages 899-901, Oct 1987.

Jiren Yuan and Christer Svensson. High-speed CMOS Circuit Technique. /EEE
Journal of Solid-State Circuits, pages 62-70, Feb 1989.

APPENDIX A

puma.k CODE

#File puma3.k
/**
Name : puma.k

Purpose : Inverse kinematics for Puma robot

Author : Lars E. Thon. Copyright (c) 1987-1989. All rights reserved

***/

#pragma word_length 20
#pragma mult_subroutine
#pragma r_capacity 2
#pragma x_capacity 3

#include “"const2.k®
#include "puma.h®
#include "common.k*
#include “"indat.k®
#include “outdat.k"
#include "catan2.k®
#include "csin.k"
#include "croot.k*
#include “closed3.k"

loop() {
indat () ;
closed() ;
outdat () ;
)

277

278

init () ¢
}

#File const2.k
/**
Name : const.h

Purpose : puma constants

Author : Lars E. Thon. Copyright (c) 1987-1989. All rights reserved

***/

#define ONE 0.99999
#define M20 Ox000fffff

/* 10 addresses/control codes */
#define IO_READCOORD 0
#define IO_WRITEANGL 0

/* Powers of two */
#define totoll 2048
#define totol9 524288
#idefine toto20 1048576
#idefine toto22 4194304

/* Trigonometric constants */

#define PI 3.14159265358979323844
#define PIHALF 1.57079632679489661922
#define PIQUART 0.78539816339744830961
#define FIXPI (0.999999)

#define FIXPIHALF (0.50)

#define FIXPIQUART (0.25)

/* Conversion constants */
#define M2DEG 180.0

#define M2L (double) totoll
#define M2L2 (double) toto22

/* Cordic constants */

#define NUMIT 15 /* 0:15 or 1:15 */
#define CROOT_AMPFACTOR 0.82978162026770026000 /* croot: mode=-1, k=1:15
*/

#define CSIN_AMPFACTOR 1.64676025786545480000 /* csin : mode=+1, k=0:15
*/

#define CSIN_STARTVALUE (1/CSIN_AMPFACTOR)

const fix ctable[17] = { /* For all */
45.00000000000000000000/180,
26.56505117707799000000/180,
14.03624346792647900000/180,
7.12501634890179770000/180,
3.57633437499735110000/180,

279

1.78991060824606940000/180,
0.89517371021107439000/180,
0.44761417086055311000/180,
0.22381050036853808000/180,
0.11190567706620690000/180,
.05595289189380367500/180,
.02797645261700367600/180,
.01398822714226501600/180,
.00699411367535291910/180,
.00349705685070401130/180,
.00174852842698044950/180,
.00087426421369378026/180

O O O OO0 OO0

}i

#File puma.h
/**
Name : puma.h

Purpose : puma constants

Author : Lars E. Thon. Copyright (c) 1987-1989. All rights reserved

***/

/* Puma constants */
#define a2 431.8
#define a3 20.32
#define 43 124.46
#define d4 431.8

#define aa2 (a2/totoll)
#define aa3 (a3/totoll)
#define dd3 (d3/totoll)
#define dd4 (d4/totoll)

#define a2s (a2*a2/toto22)
#define a3s (a3*a3/toto22)
#define d3s (dA3*d3/toto22)
#define dds (d4*d4/toto22)

#File common.k
/**
Name : common.k

Purpose : Global variables etc for inverse kinematics program

Author : Lars E. Thon. Copyright (c) 1987-1989. All rights reserved

***/

/*Global variables*/
bool singular3, singular5, tooclose, outside;
fix goal[l2], tetamatrix[48];

/*More readable names for the input variables (matrix entries)*/
#define rll goal (0]
#define ri12 goal([l]
#define ril3 goal[2]

280

#define px goal[3]
#define r21 goal[4]
#define r22 goal (5]
#define r23 goal[6]
#define py goal[7]
#define r31 goal[8]
#define r32 goal[9]
#define r33 goal[l0]
#define pz goal[ll]

#File indat.k
/************'A'***
Name : indat.k

Purpose : subroutine for data input to inverse kinematics chip
Author : Lars E. Thon. Copyright (c) 1987-1989. All rights reserved

***/

/*
The outside source must set the input pin source_ready to indicate

it is ready to provide data (cartesian coordinates for the robot)
*/

const volatile bool source_ready;
indat ()

{

#ifdef KT

/* If this is only a simulation we cannot access a chip pin ... */
source_ready=1;
#endif

/*busy waiting for input*/
while (!source_ready);

/*
Read in 12 numbers. The external source must watch the READSTRB pin
and also set source_ready back to 0 when it is empty (no data).

The numbers are the consecutive _rows_ of the coordinate matrix.
*/

rll= in(IO_READCOORD) ;
rl2= in(IO_READCOORD) ;
rl3= in(IO_READCOORD) ;
px = in(IO_READCOORD) ;

r21l= in(IO_READCOORD) ;
r22= in(IO_READCOORD) ;
r23= in(IO_READCOORD) ;
py = in(IO_READCOORD) ;

r31l= in(IO_READCOORD) ;
r32= in(IO_READCOORD) ;
r33= in(IO_READCOORD) ;

281

Pz = in(IO_READCOORD) ;
}

#File outdat.k
/**
Name : outdat.k

Purpose : subroutine for data output from inverse kinematics chip
Author : Lars E. Thon. Copyright (c) 1987-1989. All rights reserved

***/

/*
The outside destination must set the input pin dest_ready to indicate
it is ready to accept the results (joint angles for the robot)

*/

const volatile bool dest_ready;

outdat () (
register int i;

#ifdef KT
/* If this is only a simulation we cannot access a chip pin ... */
dest_ready=1;
#endif
/*busy waiting for the data destination to accept*/
while (!dest_ready);

/*
Transfer the 8x6 matrix in row order. The external destination
must watch the WRITESTRB pin and also set dest_ready back to 0
unless it is immediatley for another batch of results.

*/

#ifndef KT
for (i=0; i < 48; i++) out (tetamatrix[i], IO_WRITEANGL) ;
#endif

#if defined (KT _FLOAT) && defined (SIMULATE)
{
int i,k;
for (i=0; i<8; i++) (
for (k=0; k<6; k++)
printf("%8.21f", tetamatrix[6*i+k]*M2DEG);
printf(*\n®);

}
#endif

#if defined(KT_FIX) && defined (SIMULATE)
{
int i,k;
for (i=0; i<8; i++) {

282

for (k=0; k<6; k++)
printf("%$8.21f *, tetamatrix[6*i+k]/(float)totol9*M2DEG) :;
printf("\n");

}
#endif

)

#File catan2.k
/**
Name : catan2.k

Purpose : 2-argument arctangent by Cordic method

Author : Lars E. Thon. Copyright (c) 1987-1989. All rights reserved

***/

fix catan2 (yarg, xarg)
fix yarg, Xarg;
{
register int k;
register fix X, ¥;
fix theta;

/* Start Cordic. The first step takes care of quadrants 2 and 3 */
if (xarg < 0) {
if (yarg >= 0) {
theta = FIXPIHALF;

X = yarg;
Yy = -Xarg;

} else {
theta = -FIXPIHALF;
X = -yarg;
Yy = Xarg;

)

} else (

theta = 0;

X = xarg;

Y = Yarg;

}

/* Scale x and y down so that they don't overflow when amplified */
X= (x>>1); y= (y>>1);

/*The Cordic iterations work in quadrants 1 and 4*/
for (k = 0; k <= NUMIT; k++) (
fix Xnew, yhnew;

if (y > 0) (
theta += ctablelk];
xnew = X + (y >> k);
ynew =y - (x >> k);
X = Xnew; y = ynew;
} else {

283

theta -= ctable[k];
Xnew = x - (y >> k);
ynew = y + (x >> k);
X = Xnhew; y = ynew;
}
)
return theta;

}

#File csin.k
/**'k*********
Name : ¢sin.k

Purpose : sin/cos by Cordic method

Author : Lars E. Thon. Copyright (c) 1987-1989. All rights reserved

*************'k***/

c¢sin (sinpt, cospt, theta)
fix *sinpt, *cospt, theta;
{
register fix X, Vi
register int k;
bool quad2, quad3;
/*

Angles in quadrants 2 and 3 are mapped into their complementary
angles in quadrants 1 and 4. Must remember that cos/sin turns
into sin/cos with appropriate change of sign. This is fixed at the
end.

*/

quad2 = (theta > FIXPIHALF);

quad3 (theta < -FIXPIHALF);

if (quad2)

theta -= FIXPIHALF;

else if (quad3)

theta += FIXPIHALF;

/* Assign correct starting values */

/* Scale down to avoid intermediate result overflow */
X = CSIN_STARTVALUE/2;

y = CSIN_STARTVALUE/2;

/*The Cordic iterations work in quadrants 1 and 4*/
for (k = 0; k <= NUMIT; k++) {
fix Xnew, ynew;

if (theta > 0) {
theta -= ctable(k];
xXnew = X + (y >> k);
ynew = y - (x >> k);
X = Xnew; y = ynew;
} else {
theta += ctablel[k];

284

Xnew = x - (y >> k);
ynew =y + (x >> k);
X = Xnew; y = ynew;

)

/*
The prescaling (to avoid overflow) cancels this operation
X /=2; v /= 2;

*/

/*Corrections for 2-3 quadrant*/
if (quad2) (

cospt = -X + y; / -sin */

sinpt = x + y; / cos */
} else if (quad3) (

cospt = x - y; / sin */

sinpt = -x - y; / -cos */
} else {

cospt = x + y; / cos */

sinpt = x - y; / sin */

}

#File croot.k
/**
Name : croot.k

Purpose : square root by Cordic method

Author : Lars E. Thon. Copyright (c) 1987-1989. all rights reserved

***/

/*
Normal convergence is guaranteed for 0.03 < w < 2.42
However, this is a fixed-point routine that only allows w < 1
Some automatic scaling is necessary to avoid intermediate overflow
(for large arguments) and marginal precision (for small arguments) .

OUTPUT:

When w <= 0.00: return(0)

0.75 <= w < 1.00: Prescale by 1/4 and postscale by 2 (avoid overflow)

0.03 <= w < 0.75: No scaling

0.0075 < w < 0.03: Prescale by 16 and postscale by 1/4 (improve
accuracy)

0.00 < w < 0.0075: Prescale by 64 and postscale by 1/16 (improve
accuracy)

The idea of prescaling and postscaling is simple; see Walther (p382)

The maximum error is about a factor of 2, occuring for w = epsilon
*/

fix croot (w)

285

fix w;
{
register fix X, ¥;
register int k;
bool smallflagl, smallflag2;
bool bigflag;

/*Scaling to increase precision for small arguments, and to avoid
overflow for large arguments */

if (w<=0) return(0);

smallflagl= (w < 0.0075);

smallflag2= (w < 0.03);

bigflag = (w> 0.74);

if (smallflagl) w= w<<6; else if (smallflag2) w= w<<4;
else if (bigflag) w= w>>2;

/*Generate starting values*/
x =w+ (1/4);
y =w - (1/4);

/*Cordic iterations*/
for (k= 1; k <= NUMIT; k++) (

fix Xnew, ynew;
if (y > 0) {
xnew = x - (y >> k);

ynew =y - (x >> k);

X = Xnew; y = ynew;
} else {

Xnew = x + (y >> k);

ynew = y + (x >> k);

X = Xnew; y = ynew;

}

/*Postscaling*/
if (smallflagl) x= x>>3; else if (smallflag2) x= x>>2;
else if (bigflag) x= x<<l1;

return (x/CROOT_AMPFACTOR) ;
)

#File closed3.k
/**
Name : closed.k

Purpose : subroutine for inverse kinematics

Author : Lars E. Thon. Copyright (c) 1987-1989. All rights reserved

***/

#define EPS1 0.0005
#define EPS2 0.000005 /* Will detect (1/2)*s5%2 <0.000005 ie. t5 < 0.2 deg

286

*/

#undef KT_FIX_DEBUG

int i,3,k,ind2, ind2b, ind3, ind4;

fix tetal[2],teta2[4],teta3[2],teta23;
fix teta4[8],teta5[8],tetab6[8];

fix cl,c23,c3,¢4,c5,c6;

fix sl,s23,s3,s4,85,s6;

fix px2,py2,pz2;

fix hl,h2,h3,h3b,h4,h5,h6,h7,h8,K1,K2;
fix ql,q92,q93,y23,x23,s5s, c4s5, s4s5;
fix ul,u2,u3,u4,us,us;

fix vl,v2,v3,v4, tmp;

fix distance;

closed ()

{

/*Some useful values*/
px2= pX*px;
pY2= py*py;
p22= pz*pz;

/*Two solutions for tetal*/

hl= catan2(py,px);

h2= px2 + py2 - d3s;

/* tooclose = (h2<0); */

/* singular3= (h2<1/1024); */
h3= croot (h2);

#if defined(KT_FIX) && defined (DEBUG)
printf(“#px = %8d (int) %8x (hex) %10.21f (mm)\n",
PX, pX, px*M2L/totol9) ;
/* More of the same is left out here */
#endif

h3b= catan2(dd3,h3);
tetal[0]= hl - h3b;

#if defined(KT_FIX) && defined (DEBUG)

printf("#h3b = 28d (int) %8x (hex) %10.21f (deg)\n",
h3b, h3b, h3b*M2DEG/totol9) ;

printf(“#t1[0]= %8d (int) %8x (hex) %10.21f (deg)\n*,
tetal[0], tetal[O0], tetal(0]) *M2DEG/totol9);

#endif

h3b= catan2(dd3,-h3);
tetal[l]= hl - h3b;

#if defined(KT_FIX) && defined (DEBUG)

printf("#h3b = %8d (int) %8x (hex) %10.21f (deg)\n",

h3b, h3b, h3b*M2DEG/totol9) ;

printf (“#t1[1]= %8d (int) %8x (hex) %10.21f (deg)\n",

#endif

tetal[l], tetalll], tetal[l]*M2DEG/totol9);

/*Two solutions for teta3*/

287

/*This value should really be computed once and for all in init()*/
h4= catan2(aa3,dd4);

h5= px2+py2+pz2-a2s-a3s-d3s-dds;
K1l = h5/2/aa2;

K2= K1*K1l;
hé= a3s+d4s-K2;
/* outside = (h6<0); */

/* singular3= (h6<1/1024); */

h7= croot (h6);

h8= catan2(K1l,h7);
teta3[0]= h4 - hS8;
h8= catan2(K1,-h7);
teta3([1]= h4 - hS8;

/*

*/

Main loop. Each iteration computes a set of solutions.
Four solns for teta23 => four solns for teta2,tetad,teta5,tetab.
Later increase to eight solutions for tetad,teta5,teta6.

for (i= 0; i <= 1; i++) {

csin (&sl, &cl, tetalli]);
for (j= 0; j <= 1; j++) {

csin (&s3, &c3, teta3(jl);

gl= -aa3 -aa2*c3;
d2= cl*px+sl*py;
g3= dd4 -aa2*s3;

y23= ql*pz -q2*q3;
xX23= -g3*pz -ql*q2;

/*
Certain array indices are used extensively. We compute
them here for use in the entire loop:

*/

ind2 = 2*i+j;

ind2b= 2*ind2;

teta23= catan2(y23,x23);

csin(&s23,&c23,teta23);

teta2[ind2]= teta23 -tetal3[j];

288

/*
Four solutions for tetad. No overflow problems with
unit variables such as sin and cos because they will
automatically be correct modulo 2 (hah!)

*/

/*Squeeze out some more common subexpressions??*/

cds5= - rl13*cl*c23 - r23*sl*c23 + r33*s23;

s4s5= - rl3*sl + r23*cl;

/* Overflow hazard because of inaccuracy,
whenever teta5~=90deg. Hence shift down */
s5s= (cd4s5*cds5>>1) + (sds5*s4s5>>1) ;

singular5= (s5s < EPS2);
if (singularS5) {
teta4[ind2b+0]= 0;
} else (
tetad[ind2b+0])= catan2(s4s5,cdsS);
}
csin (&s4, &cd4, tetad4([ind2b+0]);

/*Four solns for tetab*/
ul= cl*c23*cd+sl*sd;

u2= sl*c23*cd-cl*s4;

u3d= s23*c4;

ud= cl*s23;

ubS= sl*s23;

ub= r33*c23;

/* To avoid inaccuracy-induced overflow if ¢5 or s5 are
close to 1 in magnitude */
ul>>=1; u2>>=1; u3d>>=1; ud>>=1; uS>>=1; u6>>=1;

s5= -rl3*ul -r23*u2 +r33*u3;
c5= -rl13*ud -r23*uS5 -ub;

/* Since s5,c5 are used elsewhere we need to
scale them back up again, possibly with saturation
We could get more fancy and recompute them if there
was no danger of saturation */

if(s5<=-0.5) s5=-1;else if(s5>=0.5) s5=ONE;else s5<<=1;
if(c5<=-0.5) c5=-1;else if(¢5>=0.5) c5=0ONE;else c5<<=1;
teta5[{ind2b+0]= catan2(sS5,c5);

/*Four solns for teta6.*/
vl= cl*c23*sd4-sl1*c4;

v2= sl*c23*sd+cl*cd;

v3= s23*gs4;

vd= c23*s5; /*New*/

/* To avoid inaccuracy-induced overflow if c6 or s6 are

289

close to 1 in magnitude.
The u's are already scaled down (above)*/
vl>>=1; v2>>=1; v3i>>=1; vd>>=1;

$6= -rll*vl -r2l1*v2 +r31*v3;
c6= rll*(ul*c5-u4*s$)+r21*(u2*c5—u5*sS)—r31*(u3*c5+v4);

/* No need to scale s6/c6 up again since they are
only used in atan2 */

if (s86<=-0.5)s6=-1;else if (s6>=0.5)s6=0ONE;else sb6<<=1;
if (c6<=-0.5)c6=-1;else if (c6>=0.5)c6=0ONE;else cb<<=1;
teta6[ind2b+0]= catan2(s6,c6);

/* The number of solns is doubled by symmetry of the hand */
teta4[ind2b+1]= tetad[ind2b+0] + FIXPI;

teta5[ind2b+1]= -teta5{ind2b+0];

teta6[ind2b+1]= teta6[ind2b+0] + FIXPI;

/*
Place each solution in the array. Some indices are
used repeatedly and are computed once each iteration:
ind3== 4*i+2*j+k
indd== (4*i+2*j+k)*6+(index_to_teta)
*/
for (k= 0; k <= 1; k++) (
ind3= 2*ind2+k;
ind4= ind3*6;
tetamatrix[ind4+0])= tetal[i];
tetamatrix[ind4+1])= teta2([ind2];
tetamatrix[ind4+2]= teta3([j];
tetamatrix[ind4+31= tetad4[ind3];
tetamatrix[ind4+4]= tetaS5[ind3];
tetamatrix[ind4+5]= teta6[ind3]};

	Copyright notice1992
	ERL-92-139 (1 of 7)
	ERL-92-139 (2 of 7)
	ERL-92-139 (3 of 7)
	ERL-92-139 (4 of 7)
	ERL-92-139 (5 of 7)
	ERL-92-139 (6 of 7)
	ERL-92-139 (7 of 7)

