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Abstract

A general methodis developed forcalculating boundaryplasmafluctuations

across a magnetic separatrix in a tokamak with a divertor or a limiter. The

slab model, which assumes a periodic plasma in the edge reaching the divertor

or limiter plate in the scrape-off layer(SOL), should provide a good estimate,

if the radial extent of the fluctuation quantities across the separatrix to the

edge is small compared to that given by finite particle banana orbit. The

Laplace transform is used for solving the initial value problem. The electron

temperature gradient(ETG) driven instability is found to grow like t~ie'tmt.

I. Introduction

A divertor or limiter is needed in tokamak reactors in the original scenario in

order to maintain the low impurity levels required for fusion, and to prevent plasma

diffusing across thefield lines from reaching the chamber walls. The heat and plasma

flow across theseparatrix flux surface from theedge totheSOL can beremoved by the



divertor. This is reasonable, since parallel transport is faster than cross-field diffusion.

However, electrostatic turbulence has been demonstrated to induce particle transport

in boundary plasmas in several tokamak experiments.1'2'3'4 The determination of a

microturbulent SOL width and the power-handling capability of a divertor or limiter

is thus considered to be a major issue for the design of future large tokamaks such

as the International Thermonuclear Experimental Reactor (ITER). In recent H-mode

experiments, it has been found that boundary plasmas play a very important role

in determining the negative electric field, Er, reduced edge plasma fluctuations, and

improved properties of the main discharge.5 Thus, it is important to develop an

understanding ofthe observed plasma fluctuations and transport across the magnetic
separatrix.

Boundary plasma is defined here as the SOL through the last closed flux surface

(LCFS) near the magnetic separatrix, and thus includes both open and closed mag
netic field lines. The SOL plasma is distinct from theedge plasma because ofend-loss

tothe divertor or limiter plates. Theoretical studies ofthe turbulent boundary plasma

were previously based on assuming either plasmas within closed field line configura

tions or the SOL plasmas outside the separatrix. The proper consideration of the

mode coupling effects between the two regions have become one of most challenging
problem in the boundary plasma modeling.

A novel approach to the problem of anomalous transport in the open-field line

system starts from the electric interaction between the plasma and the divertor or

limiter.6-7'8'9 Berk, Ryutov and Tsidulko8 discovered an electrostatic instability which
is driven by the electron temperature gradients in conjunction with end-loss and

polarization drift in the gas-dynamic-trap. This idea was generalized to the electro

magnetic regime and results have been applied to analyse the electron temperature

gradient(ETG) mode in tokamak SOL plasma without magnetic separatrix by Berk,

Cohen, Ryutov, Tsidulko, and Xu.10 The ETG-modes in the SOL, which resemble the

classical rippling modes11'12, is primarily electrostatic instability due mainly to elec-



tronflow along the magnetic field lines under thecompeting influence ofthe perturbed

potential ^(x, t) = $o(x) + ^(x, t) and the perturbed temperature fe (analogous to
Ohm's law in the case of rippling modes). The unperturbed sheath potential $o(x)

exists to equalize the mean electron and ion loss rates. The temperature fluctuations

are driven by £ x Bo connective relaxation of the equilibrium temperature gradi
ent. In contrast to the case of rippling modes, parallel thermal conduction, K||Vjj,
which contributes a strong stabilizing effects to rippling modes, plays a minor role in

the ETG-modes in the SOL since the most unstable mode is quasi-flute by nature
( k\\L « 1, where L is the axial length of the system). Since the width of the

SOL, Ax, is much smaller than the typical magnetic shear length, L9 ( Ax « I5),
magnetic shear has no effect on ETG-modes. In this work, we present the principal
results that pertain to the electrostatic ETG-mode in the SOL across the magnetic
separatrix, using a Laplace transform. Due to the simplicity of the ETG-mode model,
it is reasonable to expect that the coupling of many other modes may exhibit features
similar to those discussed here. Thus, this method and the results may be of general
interest.

II. Model Equation

To characterize the region of the boundary plasma which extends across amagnetic
separatrix in a tokamak to a limiter or divertor, we consider a slab model. The

plasma in asheared magnetic field B(x) = B0(eB +£ey) is periodic along the axial
^-direction with period z= Lin the plasma edge, and is confined at the ends by two
conducting plates in the SOL as shown in Fig. 1. Lt is the magnetic shear length.
The equilibrium quantities such as 2J, Te, ne, and Bare taken to vary transversely to
magnetic field lines in the x-direction. In this model, effects on the modes of magnetic
trapped particles and magnetic field lines fanning in the SOL on themode have been
omitted.

We now derive thereduced model for the boundary plasmas which includes ioniza

tion, radiation and end-loss. The model is derived from the reduced Braginskii fluid



equations for electrostatic perturbations.13 The fluid equations consist of the elec

tron continuity equation, the electron temperature equation, the charge conservation
equation and the parallel Ohm's law,

V.j = 0 (1)
dnc _
— + V||n,V|| = 5n (2)

3 dT 3 3

T~i = -2n7*re " 2n7/Te +K^7^T' (3)
5*+«A - -vrf+iv.F.+SJV. (4)

— c^-fi x B cPnjmj dV±</>
Jl " B2 B2 dT~ '5'

bxV^

- cb x Vfl
VPi ~ eBni

where 5n is the electron ionization rate, ir the radiation loss rate, and 7/ the elec

tron energy ionization loss rate. In order to focus our attention on the analysis of

ETG-mode in the SOL, we keep only the ion VJVdrift and ion polarization drift by

restricting our analysis to high frequency phenomenon, w > ufce, where w^. is electron

transit frequency. Thus, some modes of interest, e. g., slablike rfr modes, are not

consisdered.

The problem can be solved by the following formal procedure. The vorticity

equation (derived from the charge conservation equation) is

where the first term represents the parallel component of the vorticity arising from

polarization drift. The second term represents field line diffusion (field line bending).

The electron end-loss current to the walls and the electron temperature gradient act

as destabilizing sources for the electron temperature gradient driven instability. The

ion diamagnetism reduces the growth rate at short wavelengths. Substituting the



generalized parallel Ohm's law

J|| = -*(*.** *||)V||£ (7)

into the vorticity equation, we obtain the eigenmode equation

~Hf^ (5V2*W - v^(°)) +*(*> k» h)V\\* =o, (8)
where the electron conductivity is

a(,,k„kt)m——!$i -|l+ 52a + i^I.

and we have Laplace transformed the fluid equations with ^(x, t) ~ e" and taken the
initial perturbations Tc(0) = ne(0) = 0.

The main complication of the problem comes from the boundary conditions. The
eigenmode equation can be solved separately in the edge and the SOL regions based
on the corresponding <j> axial boundary conditions along the magnetic field at z= 0
and I. The solutions are then matched at the separatrix x= 0. The scrape-off layer
is divided into two markedly different regions: (1) a narrow sheath region near the
conducting wall, with large equilibrium gradients along z of the state variable on the

order of the Debye length (to a large extent determined by the electron reflection
conditions of the walls, where the electric force dominates actions of the magnetic
field), and (2) a large bulk region (in contrast to the sheath) away from the sheaths,
with relatively weak equilibrium gradients in z. The bulk, in general, is collisional so
that fluid equations are appropriate to describe the bulk region plasma flow. The bulk
region exhibits many well-known interactions among plasma, waves, neutral gases and
impurities. The main thrust of this work to account for fluctuation transport and
radial relaxation along x (in addition to classical collisional one) within the axial flow.
The sheath, due toits small spatial scale, is treated as boundary conditions here.
III. Model Sheath Physics



The solution in the SOL should satisfy the sheath current boundary condition

that determines <j> at the sheath edge,

j|| =-<r(s,*y,&„)V||^|,=0,L =if, (9)

where Sh denotes the sheath. The expression for the plasma current near the sheath
edge is taken to be

if(X) =-if(0) =n.ec. i+7..,(1:^ee-^

jf{h(L) =-Jf(0) =neec,

2cay/lf

where c, is the sound speed, vje the electron thermal velocity, and 7, the secondary
emission coefficient.

The mass difference between electrons and ions results in a large space-charge
potential $0, and ambipolar flow to the wall demands equal fluxes of negative and
positive charge to the walls in equilibrium

Jf(0) =J^(L) =0, (11)

which yields the amplitude of the equilibrium potential $0 (sheath drop) as

A - Te(x) ~ 2m Ue Ti VI+E7} J» (12)

where A ~ 3—4except when 7,e ^ 1. In the perturbed state, the perturbed current

density i|j at the sheath edge is related to the perturbation 4> (of the sheath potential
$0) and the perturbed electron temperature fe by

e4> Afe
Te Te

(10)

(13)

Note that perturbations jf(L) and jf(0) can exist because Ev does not have to
vanish at the sheath edge though it does vanish at the wall. The first term in Eq. (13)

represents an resistive impedance which means prompt removal ofall the charges once

they pass through the sheath edge. The second term is an inductive impedance due to

thetemperature fluctuation driven byE x B0 connective relaxation ofthe equilibrium



temperature gradient, which indicates the finite impedance to the charge flow as it

passes through the sheath. It is important to emphasize that there is no net charge

accumulated on the plate because the total current to walls has to vanish for an open

circuit system. The sheath currents in Eq. (13) set the boundary condition for <j> as
Eq. (9).

In the edge, the quantities are periodic in the axial direction, so we can Fourier

transform (3), with Vj| as ik\\, which gives

-^ =-tUfcfe - iu^ - (7K +7/)?e - 3^*,^, (14)

where

2*rn
*|| = —,n = 0,1,2,.... (15)

In the SOL, the electron temperature equation is the second-order differential
equation in z of Eq. (3),

2/c|,a2fe ate . ~ . .
toTJw ~"5T ~WETe ~UJltTee<l>"(7* +^Te=°» (16)

and Te should satisfy the sheath heat flux boundary condition. The total sheath heat

flux of electrons to the conducting walls sets the boundary condition for axial bulk
temperature gradient as

&Te T
*»afl*=0'L =UeC*WU - 7*e) - Y - 7^}, (17)

where T8e is the temperature of recycled electrons. Prom Eqs. (17), (9) and (13), we
note that, since Tc and <j> satisfy different axial boundary conditions at z =0and L, we
may anticipate that fe and ^ could have different %. By neglecting the Debye length
scale, axial electron temperature variation is on the order ofthe equilibrium scale or
electron mean free path. Also, since the axial potential variation is on the order of

the perturbation scale length, then the axial variation ofelectron temperature fe is

much more rapid than that of potential <j> at the sheath edge, for the most unstable

mode. The boundary layer problem is now well defined. Within the boundary layer



z £ (L - 6,Ir) with €« X, re is not proportional to fa and the sheath heat flux
boundary condition on the electron flow to the wall forces /C||V,|fe to satisfy the
boundary condition. But within the axial bulk region z€ (c, L- e), we assume that
Te is proportional to jL For fa we may assume that V|,<£|L_e ~ V,j<£|L+0(e), and that
other quantities have similar behavior. Thus, to order e, we may assume our sheath
boundary condition at L- e. The solution obtained by employing this boundary
condition gives correct expressions for the electron current into the sheath within c

and therefore correct expressions for instability away from the edge of the boundary
layer. However, the solution cannot be expected to provide a proper description for
the temperature near the sheath. For radiative instability in a divertor plasma, the
sheath heat flux boundary condition becomes important in detennining the axial
equilibrium electron temperature profile, and the argument given above is invalid.14
IV. Eigenmode Equation

Our approach is through the initial-value problem. The motivation is that when
the usual normal-mode method yields no discrete unstable solution, we will find that
there is acontinuum of unstable mode. This results in an initial perturbation growing
as a product of exponential and a negative fractional power of time.15'16

The complete set of equations and boundary condition, after Laplace transform
with parameter s, are

£V±*b(s) - *j|A!*(5) = <Ms,s,y,s),x<0, (18)
P2sV±*s(s) +A2 Vjj*(s) = ^s(s,x1y,z),x>Oi (19)

V||*5(s)|,=0,l = ±Bs$s{s),x>01 (20)

where $(s) is periodic in z for all x. Also, by neglecting small effects of radiation 7*
and ionization 7/, we have

A\ = •: ^l5 (s + wE - iwmpi)(s + UJE + Vd)
2

A = , '-3s.l£ (S + ffafe - i(jJmpi)(s + UJB + I/*)

8

1-+ iUmn' + *aw*Te
s + iuB a+ iu>B + %HB8n.*||J

/21)

,(22)



B _ (s +iuE +vei)j/L s+iuE +iAumTe H- -^
5=~ *" (5+^+^)(i+^);^r; (23)

**( s, x, fcy, g) =tt5(s, x, fcy, z) = f;V^(0) ,. , (24)

where w^ = vTc/L is electron axial bounce frequency and ul = 2c,/£ equilibrium ion

axial loss rate(where the factor of 2comes from the contribution from two ends), all
subscripts E represent the edge quantities and 5 the SOL quantities. We have taken

initial perturbations ne(0) =0 and Te(0) = 0, and k\\ = &* +^(n = 0,1,2,. ••).
The parallel wavenumbers in the SOL k\\S are determined by the sheath boundary

condition Eq. (20). Notice that Eq. (20) is obtained in the case of the magnetic field

normal to the walls. In a sheared slab where the magnetic field is mainly in the in

direction and hits the wall (limiter or divertor plate) at small angle, the bulk plasma
flow in the SOL is essentially directed along themagnetic field. But the total electric

potential drop between plasma and wall has been shown by Chodura17 to be normal

(axial), and is fairly insensitive to the magnitude and angle of the magnetic field.
Thus, as a good approximation, Eq. (20) is still valid in a sheared slab by replacing
V|,*5(s) with ^i.

For simplicity, we assume that

tf£?(s, *, *y, z) =*s(s, x, ky, z) = P'^°\ 6(x), (25)
S + IWE - IWmpi V '

which means that we introduce an initial charge perturbation at the separatrix. It
can be proven that the final time asymptotic behavior is insensitive to the location of

initial perturbations. However, the mode structures will be modulated by the initial
charge perturbation profile.

Integrating eigenmode equations (18) and (19) across the separatrix at x= 0, we
obtain the matching condition

***(*)* d*s(s), m
5-—|*=o -z \x=o = ——: : , (26)
ox dx s + iu)E-iw.pi v '

and the condition

$je(s, x = 0, fcy, z) = $5(s, x= 0, fc„, z). (27)

9



V. Mechanism of ETG-Mode in the SOL

In the region x > 0, the solutions for $$(s) are theusual Berk et aVs8 mode when

theelectron temperature gradient and end-loss are present in the SOL for a shearless
slab. Thus we have

*s(s) = £cfew[*|W(*-£/2)]eawM-, (28)

P'XA') = -Alkfo-ky., (29)

where we assume that the outer radial boundary is at infinity (Lx -* oo) , therefore
only the transmitted wave through the separatrix in the SOL is kept. In the Appendix,

a finite radial length system with a reflected wave in the SOL is discussed.

From the sheath boundary condition Vj|$(s)|^=0,l = ±Bs$(s), we obtain

(s +iu>e - m.pJfclP2, ,V \ =-n ,' 3w* . (30)
h^L (, +i^ +igai)

Note that KAS) is not a Fourier transform quantity in x. The functional relation

between kxj(s) and s is given by Eqs. (29) and (30) (where the function may be
many-valued, labeled by /). We suppose that for some finite range ofreal values ofs,
the corresponding values ofone branch of fe^(s) are complex.

For (fc|,5,oI/2) « 1, hence 2^2. « s, we have

i(.+**-^«rf-^i±^sa, (31)
where k\ = A:2 +*2|0(s). The square root in Eq. (31) for kx,0(s) must be rendered
definite bybranch cuts in the complex s-plane radiating outwards from the zeros of

fc2t0; the path ofintegration in the inversion of the Laplace transform must not cross
these cuts. Strictly speaking, the case A^ =0is now forbidden.

Note that in a system without a magnetic separatrix, kxfi(s) becomes a Fourier

transform in x (that is, areal wavenumber kx), and Eq. (31) is the dispersion relation

of the electron temperature gradient driven instability given by Berk, Ryutov, and

10



Tsidulko.8 The physical picture of this instability is as follows. For a fluid descrip
tion, electron collisions have been assumed to be sufficient to maintain a Maxwellian

distribution and to populate the velocity-space loss cone. In equilibrium, the total

current density due to electrons and ions impinging on the plate is zero, setting the

equilibrium sheath potential $0 as indicated in Eq. (12). In this picture, fast electrons

with velocity v>yf^ are lost to the walls and slow electrons with v<J2J§* will
bereflected by the sheath potential $0. Since we assume an equilibrium electron tem

perature in the radial V-direction, and consider a seed potential <j> in the form of a

periodic variation in the y-direction, the mean electron energy fluctuations are driven

by Etf x Bo convective relaxation of the equilibrium temperature gradient. Some

electrons will gain enough energy to cross the sheath potential hill and become lost

to the wall, and some electrons will lose energy and become confined, either of which

in turn generates the local perturbed parallel current. From charge conservation, the

perturbed ion polarization current will be generated to cancel the divergence of the

parallel current. The phase shift of the two current fluctuations results in amplifi
cation of the seed potential fa thus causing the instability. However, because of the

periodic nature of perturbations in the y-direction, total current to the walls vanishes

after integrating the local perturbed parallel current density ~j\\ over y. Thus, there
is no net charge accumulation on the walls. In comparison, rippling modes result

from the coupling of electric resistivity fluctuations to potential and current fluctua

tions through Ohm's law. The electric resistivity fluctuations are driven by E x Bo

convective relaxation of the average temperature gradient. By replacing vL with h\u

where u is the directed electron velocity, u = -^ and J0 is the parallel equilib
rium current, a similar dispersion relation to Eq. (31) has been obtained for rippling
modes (or current-convective instability) by Kadomtsev and Pogutse.11'12 Thus, for
a historical reason and better description, we may also call the ETG-mode in the

SOL to be the sheath driven rippling modes. Since the parallel equilibrium current

Jo is typically some modest fraction of the ion current neec,(that is, J0 ~ 6aneeca

11



with 6a < 1), the growth rate of the rippling modes is normally smaller by afactor of
y/£ and the large parallel heat conductivity contributes astrongly stabiUzing effect
on the rippling modes for finite % Aquantitive comparison with rippling modes is
possible and is deferred to future publication.

For k\\sjL/2 ~ Itt, I= 1,2,3, ., we can solve Eq. (30) perturbatively and find that
S! ~ InfS- with asmall real part sR ~-^{l - ^). In this case, electrons
travel with the waves in the axial direction and the ohmic resistance of the bulk plasma
has been ignored. The first term in sR comes from potential perturbation 4> and the
second term from electron temperature perturbation fe due to E x B0 convection
of the equilibrium temperature gradient. Since electron temperature perturbation fe
is in phase with potential perturbation fa and §£ dominates over & in the sheath
current perturbation jf for s7 » Au>.T(S (as shown in Eq. (13)), harmonics of / >0
modes are damped by the sheath resistive impedance.

It is natural to ask whether magnetic shear affects the ETG-mode in the SOL.
Asimilar issue has been addressed in aclassic paper by Roberts and Taylor.18 They
analysed the effects of the magnetic shear on the gravitational resistive instability
in an open-field line system (e. g. , stellarator) and discovered that the convective
cells twisted to conform to the field lines. In a system with weak shear, such as
the SOL of a tokamak, the twisting of the ETG-mode by the sheared magnetic field
can be estimated by comparing the two terms in %= kz + %£. We find that c=
k%T. ~ X# w*ere A. is the width of the SOL and kx has been approximately
obtained from Eq. (29). For atypical DIII-D tokamak boundary plasma parameters,
Ax ~ lcm, La ~ lm, and s > 3^, cis typically of order 10~3. This means that for
the weakly sheared system like the SOL of tokamak, the influence of magnetic shear
on ETG-mode can be ignored.

VI. Potential Fluctuation across a Separatrix

Considering the periodic nature of the structure in z inside the separatrix, and
the continuity of EM at the separatrix, we can expand the outside solution $5|/(s) =

12



«*fo|*i(* - L/2)]eik*M* as acosine series for the inside solution $E(s)

•*M =ECjfc«[^i(* - L/2)]fn(x). (32)
From eigenmode equation (18), fn(x) is determined by

J2& /n f,2 2 , /2iri* , A;«xx2 »P* &*" - {V? +(— +̂ O^M. =0- (33)
Rom the matching condition of the radial derivative ^^ and *(s)Uo at the
separatrix, we have

nB _ x^2C,stm(knsjL/2)
° ~ \ h*. ' W

ce = t-* 4Cf(-l)"^ aa(k\sjL/2)
• Pfo-CFM ' (35)

£ 22 (-l)"fc|^sin(fe|ISJ£/2) _.... ,, _ flO)M,, ,«,

where we have set /n(0) = 1and a„ = dW21. Inside the separatrix x ~ 0, we
have approximately /„(i) ~ e"»*. Using the solutions in Eq. (31) for fc„s.0£/2 and
%yI/2 ~ Jjr, / = 1,2,3,••-, we have

C*(a0(S)-,Ms)) = *(°)M" , (37)
c»KW-iWs)) = 0. n=1,2,3,... (38)

Because the physical solution requires J2e(an) >0and Im(kxJi) >0, the above matrix
equation has no solution when #0) = 0, except for drift waves with frequencies
s=iu>mP. - iwE; thus, there is no normal mode for Ex ? 0. With ctn(s) - ikx,n(s) ^0,
we have C% = 0 for n ^ 0 and

CE = CS = ^(0)
° (ao(5) - ikXt0(s))(s +tw£ - iw.p.)' (39^

The Laplace inversion theorem,

Mx,/) = SS/^S^M*),*.) (40)
x cos[*„5t,(2 - -)] exp {i[kxj(s)x +^y] +sr},

13



is used to invert the Laplace transform, where the contour cis within the half plane
of analyticity of $5(s) and runs parallel to the imaginary axis.

The numerical solution of Eq. (31) with umP. = 0 is plotted in Fig. 2 in the
complex s-plane. The solid curve represents the case with parameter kxfi =0and
kvariable, and the dashed curve with parameter k= 1.8 and kXf0 variable, where
s=(s +iuE)p-\, k=kypav~\. v=$** We find that the maximum growth rate
is located at

k\\s,oL .
2 '

**,o(s) = 0,

KymPs = l-8(-T )*,
Ac,

«m = 7m-tWm, (41)

7W =0'38[(fe)2,/L]ij

It has been shown that the ion diamagnetism stabilizes the mode at short wavelength
(k ~ 10), but has httle effect on the maximum growth rate.8'10 The branch cut is
given by the dashed curve in Fig. 2. To find the asymptotic behavior of the integrals
*s(x,t), we deform the contour cto the left to circle the branch cut. On the basis that
the most unstable mode and its neighbouring modes dominate the others after some
time of exponential growth, the "Gaussian" approximation to the integral is obtained
by truncating the argument of the exponent in the above equation to second degree in
A£0, changing integral variable from s to A£0 and integrating the resulting expression
in closed form along the real A£0 axis.19

Thus, asymptotic behavior of the potential fluctuation </>s(x,t) can be found as

&?(x, t) - i"* exp {(7m - iu7ro)t +ik^y - (i-O^ym*)2} (42)
7m*

Thus, if the initially introduced potential perturbation is finite, the amplitude of
the wavepacket grows like He**"', where H arises from interference of components

14



of the packet due to the field matching conditions Eqs. (26) and (27) at the separatrix
x= 0. We also see that the amplitude ofthe wavepacket depends only weakly on x.

To investigate the asymptotic behavior of edge potential fluctuation <f>E(x,t),
Eq. (33) has to be solved. We consider two cases:

Case 1. Shearless slab model when La -* oo. Eq. (33) gives fn(x) = ean^x with

/toM =A|(^)a+*M- (43)
The asymptotic evaluation proceeds as in the case of fa(x,t), and we obtain the
potential fluctuation inside the separatrix as

fe(x, t) ~H exp {(7m - ium)t +kymx +ikyny). (44)

Comparing ^(x,<) with &?(x,t), we found that </>E(x,t) has the same growth rate,
but decays slowly in xinside the separatrix, on the order of k£ for k^ > 0.

Case 2. Sheared slab model. Eq. (33) can be rewritten as

^-(A+fcj/.-O, (45)

^ &=yfr&Sky* +2ST*) **<* A=^. Eq- (44) then is aparabolic cylinder
equation with even solution given as Whittaker's function,20

MM " ^[A,f„(x =0)]- (46)
It may be conjectured that magnetic shear plays asignificant role on this mode, since
in contrast to the SOL there exists a corresponding flute mode with toroidal mode
number n=0 in the edge. For n=0mode near the magnetic separatrix x~ 0, A>0
and A » $, we have

Therefore

fo(x) =eM (48)

15



which yields a0 = ky > 0. This is areasonable result since near aseparatrix x~ 0,
the magnetic shear term plays a minor role. For most interesting regions, we can
expand U(\,(0) for &large and Amoderate. When &» |A|, we have

,-A-i _&tf(A,fo)~f0 >e"*. (49)

For A"« 1,

/oW-lWr—T } 2c »tt%W, (50)

The asymptotic evaluation proceeds as in Case 1, we find asymptotically that

x Hexp^-^ +i^y}. (51)

Since the time asymptotic behavior of the potential fluctuation is determined by
matching the solution to one in the SOL at the separatrix, the magnetic shear sets
the mode radial structure. The radial width Ax of the mode inside the separatrix is
given by

^~*fero (52)
where we have taken the effect ofthe finite inertia of the electrons to dominate over
the ohmic resistance of the bulk plasma.

VII. Conclusions

It has been found that there is no normal ETG-mode for potential fluctuation
across a magnetic separatrix for Ex # 0, except for drift wave solutions. For initial

value analysis, the amplitude of the potential fluctuation grows like <-iew in time,
depends weakly on xoutside the separatrix, and decays exponentially in x inside the
separatrix. The magnetic shear limits the radial extent of the mode.

Finally, as an example ofthe possible apphcation of this work, we will estimate
the characteristics of the ETG-mode developed in this paper for DIII-D boundary
plasma parameters. For R=2.32m, q(a) =6.5, L8 =1.508m, L= qR= 15.08m, Te =
lOOeV, Lt< =1cm, A=4, we find that the maximum growth rate 7m ^ wm ^ 1x106/s
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is located at k^p, ~ 0.1 with Ax ~ 5pa to 10pa. This estimate for radial extent of
the mode is somewhat smaller than the width of the transport barrier of several
centimeters observed experimentally.

Thus, the conclusion of this work is that, although the ETG-modes in the SOL
seems to have asome effect on edge plasma fluctuations, acomplete evaluation of the
possible relevance of this mode to tokamak plasmas with limiter or divertor awaits
the development of nonlinear theory and simulation. Both of these developments are
currently under way.
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Appendix: Normal mode analysis in the SOL

In the main text, we have demonstrated that the normal mode does not exist when
only the transmitted wave through the separatrix is considered in the SOL. In the
following, we show that the normal mode exists when afinite length system is consid
ered with an imposed boundary condition $s(s)|x=L, =0; therefore areflected wave
is included in the analysis.

Starting from Eq. (28) in the main text by replacing eik*>tx with cos(kXitx +£), we
have

*s(s) =£ C? cos[km(* - L/2)] cos(kx^x +£)• (A 1)

From the boundary condition $s(s)|x=L. =0, we obtain

cos(kXitLx + £) = 0,

(+kxJlLx = (27+1)1 (A2)

with /=0, ±1,±2,••.. The eigenfunction inside the separatrix is the same as Eq. (32)
in the text

*b(*) =£ Cfcos&Z(z - £/2)]e"»*.
n *J

From the matching condition of the radial derivative ^\x=0 and $(s)|x=0 at the
separatrix, we have

Y,C«<M-jL(z - I/2)K = EC/5cos[fc,|S,<(2-I/2)](-^sinO + ^> ,
" ' s + iWE —iumpi

£C;fcos[—(*-I/2)] = Y,C?cos[km(*-L/2)]cosi. (A3)

Multiplying equation (A. 3) by cos[^(z _£/2)], integrating over z from 0to X, and
combining two equations in Eq. (A.3), we obtain an equation similar to Eq. (36):

^ 2Cf (-l)w*||5tf sin(fc||5t,I/2), . <t>(0)L6n0
V L \ki ~r32a^i (Qncose-fcjttsm0= ,V ' w,°—, (A 4)
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For the normal mode <f>(0) =0; thus, the physical solution requires the determinant
of the matrix to be zero,

a„cos{ - kXilsm( =0. (A 5)

Combining with Eq. (A. 2), we obtain aequation to determine the kx%l

^ =-cot(^Xx). (4#6)

For anLx » 1, we have

**.' =2i~xil =°»±li±2,••• (A 7)

Thus the normal ETG-mode exists with the dispersion relation given in Eqs. (30) and
(31), and kxj in Eq. (A. 7). The results for the edge potential fluctuation *E(x,t)
are the same as Eqs. (44) and (51) in the text, apart from anegative square root of
the time.
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Figures

Figure 1: Slab model for the boundary plasmas extending across amagnetic
separatrix.

Figure 2: Acomplex i-plane of Eq. (31) for the /=0mode and w.Ti =0, where
*=(« +&*) [fl*)'*,]'' and k=V. fl£)~*.
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