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Weakly ionized processing plasmas are studied in two-dimensions using a bounded particle-

in-cell (PIC) simulation codewith a Monte Carlo Collision (MCC) package. The MCC pack

age models the collisions between charged and neutral particles, which are needed to obtain

a self-sustained plasma and the proper electron and ion energy loss mechanisms. A two-

dimensional capacitive RF discharge is investigated in detail. Simple frequency scaling laws

for jfredicting the behavior of some plasma parameters are derived and then compared with

simulation results, finding good agreements. We find that as the drive frequency increases,

the sheath width decreases, and the bulk plasma becomes more uniform, leading to a reduc

tion of the ion angular spread at the target and an improvement of ion dose uniformity at

the driven electrode.



I. Introduction

In the last decade, plasma processing has become an essential step in many manufacturing

and engineering areas, ranging from semiconductor processing and very large scale integrated

(VLSI) circuit fabrication to hardening of metals and other materials.1 Roughly one-third

of the steps in state-of-the-art integrated circuit (IC) processing involve plasmas. The role

of plasma processing is becoming even more important with decreasing feature sizes on

semiconductor wafers. Understanding how and where plasma is created and identifying

creation, loss and transport mechanisms for various species in the plasma can assist in the

design and production of more efficient plasma sources.

Computer modeling and simulation haveproven to be important and effective tools in in

creasing the general understanding of processing plasmas, giving insights into some discharge

parameters which are not easilyaccessible to laboratory measuring devices. For several years

a significant effort has been made to develop self-consistent computer simulation models of

self-sustained discharges and plasma sources. These models typically include interactions

between charged particles and electrostatic or electromagnetic fields as well as interactions

between charged and neutral particles.

Self-consistent fluid equations havebeenused by Graves and Jensen,2 Boeuf3 and Gogolides

et a/.4 to study the structural features of RF and DC glows. These models, however, assume a

certain distribution function (typically Maxwellian) for the particles. Since these discharges

are inherently complex, and the particle velocity distributions are non-Maxwellian, there

has been a considerable effort to develop self-consistent kinetic models without making any

assumptions about the distribution functions. Vender,5 Surendra et a/.,6 Birdsall,7 Vahedi et

a/.,8 and Alves et a/.9 have used Particle-In-Cell (PIC) techniques with the addition of Monte

Carlo collisions (MCC) to study RF discharges, and Vahedi et a/.10 have shown excellent

agreement between PIC simulation results and laboratory results by Godyak et a/.11.12 It
should be noted that hybrid (fluid-particle) Monte Carlo modeling of weakly ionized plasmas

by Boeufand Pitchford,13 Sato and Tagashira,14 and Sommerer and Kushner15 has also been

successful.

Although in many cases one-dimensional modeling is sufficient to give insights, two-

dimensional modeling is needed for studying ion flux uniformity across the target and for



studying density and potential profiles throughout the system. In this work the ion flux

Ti(E,0,y) at a specific energy E and direction 0 is found as a function of y, the dimension

along the target electrode. We show by both scaling law arguments and simulations that

the ion flux across the target becomes more uniform, directional and mono-energetic as the

drive frequency is increased.

II. PIC-MCC Scheme

The model we discuss here is a two-dimensional {x,y) bounded electrostatic particle

simulation with external circuit elements and an applied uniform or non-uniform magnetic

field. A rectangular mesh is placed over the system on which the particle charge densities are

accumulated in order to solve for the electrostatic field quantities at the mesh points. The

charge-gathering and particle-pushing algorithms used in this model are standard particle-

in-celltechniques which can be found in Birdsall and Langdon (1985, 1991).16 Since the ions

are typically much heavier than the electrons and hardly move on the electron time-scale,

they are advanced with a much larger time step. This is the essence of electron-field advance

and subcycling in particle simulations.16'17 Electron subcycling improves the efficincy of

multiple-species particle simulation by making the cost of advancing the ions neglegible

compared with that of the electrons.

In electrostatic codes, Poisson's equationis solvedeachtime-step with the given boundary

conditions in order to determine the contribution of the internal charge density and applied

voltages to the electric potential inside the system. We use the superposition principle to

decompose the field-solve algorithm into Poisson's equation with zero potential boundary

conditions and Laplace's equation with the applied boundary conditions where the latter

may include external capacitors and multiple RF sources. The separation of the solutions

results in a reduced iteration count for the overall field solution. The Laplace equation need

only^e solved initially in order to determine the potential profile due to the external circuit.

This approach is very similar to the capacitive matrix method in which the electricpotential

everywhere in the system is given in terms of the potential at the boundary.18

The separation is done by writing

</>(x, y, t) = <j>p(x, y, t) + <j>L{x, y)VL{y, *), (1)
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where <f> is the total electrostatic potential at time 2, <j>p is the portion of the total potential

due to the charge density inside the device with </>p = 0 on the boundaries, and fa is the

dimensionless potential shape function inside the device due to a specified voltage Vl(j/,2)

on the left boundary, which need not be uniform. Typically, part of the left boundary is

grounded and the rest of the left boundary is the target electrode driven by the external

circuit. The voltage Vx,(y,*) is determined by both the external capacitance and the applied

RF voltage. The external capacitance stops the flow of the DC current due to the asymmetry

of the system (unequal electrode areas. Note that Eq. (1) is only valid when the left

boundary contains a driven electrode and the rest of the system is grounded. A more

general version of Eq. (1) would includeother terms similar to fa(x, y, t)VL(y, t) to account

for other boundaries containing driven electrodes.

To determine the potential on the driven electrode, we apply Gauss' law as the boundary

condition:

JeEdS =Qy (2)
where Q, the enclosed charge, is due to the volume charge density p inside the enclosed

surface S and the wall surface charge density a inside S. Drawing a square Gaussian pillbox

on a two-dimensional rectangular mesh, as seen in Fig. 1, at the jth grid on the left boundary

(spanning horizontally from i = —1/2 to i = 1/2 and vertically from j —1/2 to j -f 1/2)

gives:

At A.t 1
*oExi:=1/2)j + eMEyiis0j+U2— - tMEyizs0j_1/2— - tMEx^_xf2j = a, + -pi=0,j&x , (3)

where <jj is the wall surface charge density, /?,=o,j is in the volume charge density inside the

device due to the plasma at the jth grid point for 0 < j < Ny, and Ny is the maximum

number of grid points in the y direction. The term cm in Eq. (3) is the material dielectric

constant of the wall. Equation (3) may contain other terms when evaluated at the corner

points (j = 0 and j = Ny). If the left wall is an insulator, the charge density inside the wall

is assumed to be lumped in the surface charge density term <Tj.

In this work, we assume that the walls are perfect conductors, in which case the electric

field inside the walls EXi=_1/2j and the tangential components EVi:s0j+1/2 and Eyi=oj_1/2 are

zero every where on the boundaries. We further assume that part of the left boundary

(between the grid points j = N\ and j = N2) is driven by the external circuit, and the



remaining part is grounded along with the other boundaries as seen in Fig. 2. This gives

<j> = 0 as the boundary condition on all the walls except for the driven electrode where

vLU,t) = { 4oj l*i<}< Nit

0 grounded walls .

Since the driven electrode is assumed to be a perfect conductor, the potential everywhere on

the electrode must be the same, i.e. <£0,i = ^o for N\ < j < N2. The space (which could be

several grid points) between the driven electrode and the grounded part of the left boundary

on each side (see Fig. 2) is assumed to be filled with vacuum dielectric, and the potential in

this gap is linearly interpolated between ^o and ground.

With these assumptions, Eq. (3) reduces to:

eo^0" '̂ =*i +i/*-ojA* > M<i<Ai , (5)
where Eq. (1) gives faj = fai,j + fai,j<l>o. Note that for j = iVi and j = JV2, Eq. (5) contains

other terms corresponding to the fields in the vacuum dielectric between the driven electrode

and grounded walls. The surface charge density term <tj in Eq. (5) is due to the charged

particles striking the electrode from the plasma and the charge arriving at the electrode from

the external circuit. The total charge density on the driven electrode is then:

N2

*=£>,-. (6)
i=JVi

The time variation of <r is related to the external circuit by:

where I(t) is the external circuit current, A is the area of the electrode, and Jp is the

convective current arriving at the electrode due to plasma charged particles. The external

circuit seen in Fig. 2 consists of an applied voltage source V(t) and a blocking capacitance

Cfc, in which case the external circuit current is given by:

/(<) =Cbjt{V(t) - *,). (8)

Inserting Eq. (5) into (6) gives an equation for a in terms of the unknown quantity <f>0 and

sums of known quantities fa, fa, and p. Combining this new equation for a with Eqs. (7)

and (8), we obtain an equation to determine the potential <j>0 on the driven electrode.



To determine the contribution of the internal charge density p to the potential, we solve

Poisson's equation

d2JP + fyP = -p/e0 , (9)

with the boundary conditions <f>p = 0 on all boundaries. Methods to solve elliptic equations

via finite differences are compared and contrasted in Hockney and Eastwood.18 The methods

fall into two general classes: iterative techniques and direct matrix inversions. Among the

fastest methods is a direct matrix inversion called cyclic reduction. Unlike Fourier transform

methods, cyclic reduction can easily be generalized to cylindrical and spherical coordinate

systems.

Unfortunately, like Fourier transform methods, cyclic reduction requires the potential

equation to be separable. If we want to do implicit particle simulation to gain computational

efficiency (longer time steps) while damping plasmaoscillations, then we need a method able

to solve a modified Poisson's equation given by19

dx(l + X)d*fa + dy{\ + x)dyfa = -p/e0 . (10)

Here the x term is the implicit numerical correction to fa, and p is the charge density from

particle motion based only on fields known at the present time step. Because x(xilt) ^

f(x)g(y) in general, Eq. (10) is not separable and cyclic reduction cannot be used. Instead,

we choose a more general, but slower,method to solve Eq. (9) because we want the capability

of solving Eq. (10).

The dynamic alternating direction implicit (DADI) method is an iterative technique

devised by Doss and Miller20 that converges rapidly for problemssimilar to Eqs. (9) and (10)

and is our method of choice. According to Doss and Miller, DADI is only a factor of 4 slower

than a fast direct matrix inversion method for solving Eq. (9) and the directional splitting

in the scheme makes DADI easily vectorized for large simulations done on vector computers

such as the CRAYs. Hewett, Larson, and Doss21 applied a variation of the method to solve

a cottpled set of elliptic equations arising from a reduced version of Maxwell's equations,

and their solutions required much less computer time than the biconjugate gradient method

previously used.

DADI works as follows. An artificial time dependence is added to convert Eqs. (9) or (10)

into parabolic form, then non-iterative ADI is used to advance the "parabolic" equations in



"time". A pseudo time step is dynamically adjusted to speed up convergence to the "time"

asymptotic state which is the solution of the original elliptic equation. Convergence occurs

when the residual of the elliptic equation is less that a chosen tolerance. More detailed

explanations can be found in the papers by Doss and Miller20 and by Hewett, Larson, and

Doss.21 Finally, it should be added that for parallel computers, the method of choice may be

successive over relaxation (SOR) because although DADI takes fewer iterations to achieve a

certain residual, the local nature of SOR requires less communication than an ADI sweep.

We have also added a Monte Carlo collision (MCC) package7,22 including the null collision

method24,25 to the usual PIC charged particle scheme, as shown in Fig. 3, in order to model

collisional plasmas and self-sustained discharges. The full three-dimensional character of

a collision is modeled with three velocity components. For our calculations, the neutral

particles are assumed to have a Maxwellian velocity distribution and a uniform density

between the boundaries. The model remains valid if the neutral density is a function of

position and time.

Briefly, the null collision method postulates a fictitious collision such that when its colli

sion frequency is added to the total collision frequency, the "new" total collision frequency

becomes constant over the entire energy range. This gives the same collision probability for

all the particles independent of the energy. Thus, instead of querying all simulation particles

to determine whether a collision has occurred, a certain fraction of all particles is picked at

random and tested for coUisionality. This method has been shown10 to substantially reduce

the CPU time for MCC operations.

The MCC package for the argon discharge includes electron-neutral elastic, excitation

and ionization collisions as well as ion-neutral scattering and charge-exchange collisions.

The electron-neutral cross-sections in the model are the same as those used by Surendra et

al.23 as shown in Fig. 4. Figure 5 shows the ion-neutral cross-sections used in the model.26

III. Frequency Scaling Predictions

We draw upon the work of Misium et al27 to arrive at some simple frequency scaling

predictions for capacitive RF discharges. Although the analysis done by Misium et al. is for

a one-dimensional system, we assume the same arguments hold in two dimensions as well.



Throughout the analysis, we assume that the applied voltage is held constant while the RF

drive frequency is varied.

Since the applied RF voltage is many times larger than the electron temperature, the

sheath width s is much larger than the Debye length \dc- Note that because the area ratio

of driven to grounded electrodes is typically less than unity, the sheath width and potential

drop are larger at the driven (smaller) electrodethan at the grounded electrodes. The driven

sheath acts as a vacuum capacitor27; i.e., there is a displacement current flow J& across the

sheath which is proportional to

Jd oc — VD , (11)
SD

where sd is the width of the driven sheath, Vd is the RF sheath voltage drop, and u; is the

drive frequency. The subscript D refers to the driven electrode, and the tilded symbols refer

to the RF signals.

In capacitive RF discharges, the power gained by the electrons through ohmic and

stochastic heatings can be written in the form27:

Pd = Kohmu2Vl12 + Kst0Cu2VD , (12)

where K0hm and K8toc are constants which depend only on the electron temperature Te and

the gas pressure p, independent of the plasma density n. The power deposited into the

electrons Pe/ is either lost through collisions with the neutrals, Pcoih or carried out of the

system by the electrons escaping the plasma, Peac:

Pel = (Pcoll + Peac) OC 7l8 UB EL OC 71 , (13)

where El is the electron energy loss per ionization event, ub = (kTe/M)1'2 is taken to be

the ion sound speed at the sheath edge, na is the ion density at the sheath edge, and n is

the average plasma density in the system. At fixed Vd, inserting Eq. (12) into Eq. (13), we

see that

Pei oc n oc J2 . (14)

We take the DC ion current J{D through the sheath to have the form of the collisionless

Child's law:

4

V$2JiDoc ^-, (15)



where Vd is the DC sheath voltage drop at the driven electrode. Assuming the ion current

density at the driven sheath edge to be

JiD = n8UB ocn , (16)

we find from Eq. (15) and Eq. (16) that:

V%2s2D oc ^- . (17)
n

Assuming Vd to be proportional to Vd for high voltage sheaths,28 and since n oc u>2 from

Eq. (14), we see from Eq. (17) that
1 , XsDoc- . (18)

Note that in deriving Eq.(18), if the voltages VD (or Vd) in Eqs. (12) and (17) were retained,

the frequency scaling for the sheath width would be

vX/2
3D a —I ' (19)

U\JKohm + K8tocVD

At high pressures, where the ohmic heating is the dominant heating mechanism, this scaling

reduces to

Vd
1/2

«D oc ^°— . (20)
w

However, at low pressures, the stochastic heating becomes the dominant mechanism to ac

celerate the electrons, and Eq. (19) becomes

vA/4sD oc -2— . (21)

Equation (21) suggests that at low pressures, the sheath width is very weakly dependent on

the voltage Vd, which is seen experimentally1229 and in computer simulations5.6

Inserting Eq. (18) into Eq. (11), we arrive at

h oc w2 . (22)

If instead of holding Vd constant, the power deposited into the system were held constant,

then the frequency scaling for the sheath width, the DC sheath voltage drop and the plasma

density would be different. Also, if the sheath width is several ion-neutral mean free paths,

then the collisional form of Child's law8'30 should be used to obtain the frequency scalings,

which would give different results.



The scaling laws predict several advantages of operating RF capacitive discharges at

higher frequencies including:

• Equation (18) shows that the sheath width decreases as the RF drive frequency in

creases. This causes the plasma to become more uniform along the target.

• As the sheath width decreases and becomes comparable to the ion-neutral mean free

path Atn, the ion motion in the sheath becomes less collisional, causing the ions to

arrive more nearly normal to the target. The decrease in the ion angular spread is

desirable to avoid undercut in etching.1

• Equation (12) suggests that at a fixed input power, the DC sheath voltage drop,

Vd » Vd, decreases as the drive frequency increases. Since the ions only respond

to the time averaged potential in the system, as the sheath voltage drops, the ion

impacting energy at the target decreases, causing less damage to the target.

Surendra et al.31 used a particle-in-cell simulation code to investigate the frequency de

pendence of various plasma parameters in a one-dimensional system and obtained favorable

results similar to these scaling laws. Also, the ion flux uniformity improvement at higher

frequencies was observed experimentally by Howling et al.32 in a parallel plate capacitive RF

discharge.

IV. Capacitive RF Discharge Simulations

The simulated system is shown in Fig. 2. As discussed before, the space between the

grounded and the driven electrode is assumed to be a vacuum dielectric of a few simulation

grid cells. This gap induces large fringing electric fields which can accelerate extracted ions

to large bombarding energies. The dimensions of the system are set to be Lx = 4 cm,

Ly ^ 5 cm, Leiectrode = 3 cm. Although the simulation is uniform and infinite in the z
dimension, the height of the system is arbitrarily chosen to be 100 cm to give the system a

specific volume needed for such quantities as the charge density. With these dimensions, the

area of the driven electrode is 300 cm2, and the system capacitance without the plasma is

Cay8o ~ 20 pF. The blocking capacitance in the external circuit was chosen to be Cb = 500
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pF, an order of magnitude larger than Cayao so that it would have a negligible impedance

at the RF driving frequency. This blocking capacitance, as discussed before, stops the flow

of DC current in the system. As the blocking capacitor charges up, a negative DC self-bias

Vbiaa appears at the driving electrode which is characteristic of asymmetric RF capacitive

discharges. Because the other boundaries are grounded, and the average plasma potential

Vp stays positivewith respect to the ground, the plasma-to-driven-electrode voltage Vd (the

ion bombarding energy) is given by:

VD = -Vbias + Vp . (23)

The RF voltage Vd that appears at the driving electrode is found from:

VD =V0 ffc , (24)
l^b "T l^aya

where Vo is the magnitude of the voltage source, and Cays is the capacitance of the system

with the plasma.

Three cases were studied for the drive frequencies of 11, 30, and 50 MHz to check the

frequency scalings of Eqs. (14), (18) and (22). The applied voltage Vo was held at 200 V and

the neutral gas pressure was fixed at 10 mTorr. As we can see in Fig. 6, the sheath width

measured at the driven electrode, sd, is indeed inversely proportional to the drive frequency.

As the sheath width decreases, the capacitance of the system Caya increases, which in turn

causes the RF voltage at the driven electrode to decrease as predicted by Eq. (24). This was

also seen in the simulations as shown in Fig. 7. However, if the blocking capacitance is large

enough, this effect can be ignored and the applied voltage assumed to be roughly constant

as was done in deriving the scaling predictions. Figure 7 also shows that as the RF drive

frequency increases, the plasma potential Vp decreases, while the magnitude of the negative

DC bias Vbiaa at the driven electrode increases. The DC plasma-to-driven-electrode voltage

Vd obtained from Eq. (23), however, appears to remain roughly constant over the three RF

driv#frequencies in Fig. 7, consistent with the high voltage sheath law that Vd « Vd, with

Vd held approximately fixed in the simulations.

The power deposited into the system, the plasma density, and the AC current density

are plotted logarithmically in Figs. 8, 9, and 10 respectively. They roughly show quadratic

dependence on the drive frequency as predicted by Eqs. (14) and (22). The deviation

11



from the quadratic scaling can perhaps be attributed to the two-dimensional nature of the

discharge. Recall that the Misium's model27 is derived for a one-dimensional system with a

fixed volume. In our model, as the drive frequency increases the sheaths become thinner, and

the plasma volume changes drastically, which can certainly affect the scaling laws. Figures

11-13 show potential profiles in the system at drive frequencies of 11, 30, and 50 MHz,

respectively. As the drive frequency increases, the sheath width drops, as predicted by Eq.

(18), and the bulk plasma extends through the system, causing the plasma to become more

uniform over the driven electrode.

The ion dose at the target can be obtained numerically by integrating the ion flux over a

time interval. Figure 14 shows the normalized ion dose versus y at the target at 11, 30, and

50 MHz frequencies. The peaks at the corners of the profile correspond to the large number

of ions accelerated by the fringing fields generated around the gap. These peaks are seen

at the edge of the driven electrode in all three cases. At the 11 MHz drive frequency, the

ion dose in the middle of the driven electrode is greater than the dose close to the edge of

the electrode. This non-uniformity in the ion dose can lead to non-uniform etching which

is undesirable. There is also a more rapid variation on the scale of a few millimeters which

is due to the statistical variation from the finite number of simulation particles. Figure 14

shows that at higher frequencies, the overall profile flattens. Thus, the ion dose uniformity

improves at higher frequencies.

As seen in Fig. 6, the sheath width decreases as the drive frequency increases, which

causes the ion motion in the sheath to be less coUisional. As the ion-neutral coUisionality

in the sheath drops, more ions arrive at the target with the energy corresponding to the

DC sheath voltage drop. This causes the ion energy distribution at the target to become

more mono-energetic as seen in Figs. 15-17. Because the ions make fewer collisions in the

sheath as the sheath width becomes comparable to the ion-neutral mean free path, the ion

motion becomes more directed toward the target, which decreases the ion angular spread at

the garget. This is seen in Fig. 18 which depicts the average ion angle at the target as a

function of y. The peaks seen in Fig. 18 are generated by the ions accelerated by the fringing

fields around the gap. The average ion angle at the edges of the driven electrode is roughly

20 degrees in the three cases, but the angular spread in the middle of the target decreases

from 5.1 degrees at 11 MHz to 2.3 degrees at 50 MHz. It can also be seen from Fig. 18 that

12



as the drive frequency increases, the fraction of the driven electrode over which the angular
spread remains constant increases. This increase improves the directionality and uniformity,
both of which are desirable in reactive ion etching (RIE) processes where a vertical etch is

needed to avoid undercut.1

V. Conclusions

We have developed a bounded two dimensional particle-in-cell simulation code with a

Monte Carlo Collision (MCC) package to study processing discharges. The pressure and the

applied voltage were held constant while the frequency was varied from 11 to 50 MHz to

check the predicted frequency scalings of the sheath width, the plasma density, and power

deposited into the electrons. The frequency scaling of the various parameters was verified.

Simulation of two-dimensional capacitive discharges suggests that operating RF dis

charges at higher frequencies has several advantages, including the improvement of the ion

dose uniformity at the driven electrode. At higher frequencies the sheath width decreases

and the ion motion in the sheath becomes less coUisional, causing the ions to arrive normal

to the target with a mono-energetic distribution and less angular spread.
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