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Abstract

In this paper we present further properties of admissible sequences in a second order digital
filter with overflow nonlinearity. We also present an alternative test for periodic admissible

sequences for the case a = ^. Some properties of sets which produce aperiodic admissible
sequences are also presented.

1 Introduction

In [1], a simple second-order digital filter with overflow nonlinearity was introduced which exhibits
rather complicated behaviors. The periodic behavior of the system was analyzed using symbolic
dynamics. For a particular filter, all admissible periodic sequences of period less than 14 was found.

In [2], all admissible periodic sequences of period less than 22 was found and some properties of
admissible periodic sequences were presented.

In this paper, we present additional properties of admissible sequences. In section 2 the digital
filter with overflow nonlinearity is defined along with other preliminary definitions. In section 3

properties of admissible sequences are presented. In section 4 an alternative condition is presented

for finding all admissible periodic sequences for the case a = \. In section 5 we present some results
on points which generate aperiodic behavior. In particular, we show that the set of points which

generate a particular aperiodic sequence is a line-segment in the state space.



2 Digital Filter with Overflow Nonlinearity

The digital filter we consider is a second-order discrete-time dynamical system with the following
state equations [1]:

where

xi(k+l)

x2(k + l)

x2(k)

f[bxx(k) + ax2{k)\
= F

xi(fc)

x2(k) (1)

f(x) - x -In for -1 + In < x < 1 + 2n,n an integer (2)

A graph of /(•) is shown in figure 1. The state space is I2 = {(x0,xi) : -1 < x0 < 1,-1 < xi < 1}.

f(x)

Figure 1: The overflow nonlinearity f(x)

We denote the closure of I2 by I2. Throughout this paper, 6 is assumed to be —1 and \a\ < 2.
Define

h = {(xq, xi ) € I2 : -x0 + axi > 1}

lo = {(zo,*i) e I2 : -1 < -x0 + axi < 1}

7_i = {(a;o,^i) ^ I2 : -*o + ax\ < -1}

(3)

(4)

(5)

Define E as the set of infinite sequences consisting of the symbols -1,0 and 1. Let s be a

sequence in S, then —s is the sequence obtained by replacing -1 by 1 and vice versa. If s is

{soSiS2 •' •)» then cr(s) is the sequence (s\s2 •••). The period of a periodic sequence s € £ is the

smallest positive integer n such that s repeats itself after n symbols. Given an initial condition

(xo,£i) € I2 we can generate a symbolic sequence s € £ corresponding to the trajectory of the
system by the map S : I2 —*• £

5 = S{(x0, Xi)) = (s0sis2 -• -Si •• •) (6)
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€/o

€/-i

(7)

A sequence in £ is admissible if it is generated by some initial conditions in I2. In other words,

the set of admissible sequences is £F = S(I2). Sufficient and necessary conditions for a sequence
to be admissible are given in [1,2].

We partition £ into three subsets:

£q = {<s € £ : s is periodic} (8)

£/? = {«€£: s is eventually periodic, i.e. s £ £Q and <rp(s) 6 £0 for some integer p > 0} (9)

£7 = £\(£0U£/?) (10)

which corresponds to the following partition of I2:

I* = S-\HQ H£F)

//3 = 5-1(£/?n£F)

77 = 5-1(£7n£F)

3 Properties of Admissible Sequences

(11)

(12)

(13)

Remark 1: Because of symmetry s is admissible if and only if -s is admissible. It is clear that a
periodic sequence s is admissible if and only if a(s) is admissible.

Theorem 1 If 0 < a < 2, then a sequence with 11 or -1 - 1 as subsequences is not admissible.

Proof: suppose that there is an admissible sequence with 11 as a subsequence. Then there exists
£o>zi € [—1,1) such that

Thus

x2 = -x0 + axi > 1

-xi + a{x2 - 2) > 1

•xi + a(-x0 + axi - 2) > 1

(a2 - l)a?i - axo - 2a > 1

(14)

(15)

(16)

(17)



It is easy to show that when a € (0,2),

This implies that

l--<0
a

„ 1 , lxxo < -2 + (a )xi
a a

1 1
< -1 + a -

a
- 1-

a

< -1

which is a contradiction. The case of —1 —1 as a subsequence follows from remark 1.

Remark 2: This theorem extends corollary 2 in [2].

Lemma 1 Let —y/2 < a < y/2. If xo,xi € [-1,1) satisfy

x2 = -xo + axi e [-1,1)

—xi + ax2 > 1

then axo < 0. // in addition, —1 < a < 1, then axo < 0 and xi < 0.

Proof:

—Xi —axo -f a2Xi > 1

(a2 —l)xi —axo > 1

(18)

(19)

(20)

(21)

(22)

(23)

(24)

(25)

If -a/2 < a < \/2, then \(a2 - l)xx| < \xi\ < 1, so ax0 < 0. If -1 < a < 1, then -1 < (a2 - 1) < 0
and —1 < —a < 1, so from equation (25) xx < 0. •

Theorem 2 Let —y/2 < a < 2. TVien any admissible sequence cannot have the following subse
quences:

101 10-1

Proof: suppose 101 is a subsequence of an admissible sequence s. Then there exist a?o,a;i €

[-1,1) such that

X2 — —Xo + CLXi > 1

-1 < x3 = -xi -|- a(x2 - 2) < 1

-(x2 - 2) + 0x3 > 1

(26)

(27)

(28)

First let us take -y/2 < a < \/2. From lemma 1, axi < 0. But x2 = -xo + axi > 1, which

implies that axi > 1 + xq > 0, a contradiction.



Expanding x2 and X3 in equation (28),

(a3 - 2a)x! + (1 - a2)x0 + 1- 2a2 > 0 (29)

If y/2 < a < 2, then a3 - 2a > 0 and 1 - a2 < 0. Thus

(a3 - 2a) + (a2 - 1) + 1- 2a2 > 0 (30)

a3-a2-2a>0 (31)

which contradict the fact that a3- a2 - 2a < 0 on \/2 < a < 2. The other case follows from remark

1. •

Corollary 1 Let 0 < a < 2 and let s be an admissible sequence. Then s has no zeros if and only
if s is a periodic sequence of period 2.

Proof: if s is a periodic sequence of period 2, then the only possible admissible periodic sequences
permitted by theorem 1 are 1-1, -11,10,-10,01 and 0-1. To show that s has no zeros, it suffices to

show that 10 is not an admissible periodic sequence. By theorem 2,1010101010 •••is not admissible

because it contains 101 as a subsequence.

Now suppose that s has no zeros. The only sequences permitted by theorem 1 are 1 - 11- 1•• •

and —11 —11•• •, which are periodic sequences of period 2. •

Theorem 3 Let —1 < a < 1. Then any admissible sequence cannot have the following subse
quences:

101 -10-1 -101 10-1

Proof: suppose -101 is a subsequence of an admissible sequence s. Then there exist xo,xi €
[-1,1) such that

x2 = -xq + axi < -1 (32)

-1 < x3 = -xi + a(x2+ 2) < 1 (33)

-(x2 + 2) + ax3 > 1 (34)

By lemma 1, x2 + 2 < 0,

-x0 -I- axi + 2 = x2 + 2 < 0 (35)

-x0 + axi < -2 (36)

which is a contradiction since -l<a<l=>-l<axi<l=*-2< -x0 + axx < 2. The other
cases follow from theorem 2 and remark 1. •

Corollary 2 Let 0 < a < 1. Then any admissible sequences cannot have the following subse
quences:



11 •1-1 101 10-1 •101 10-1

Proof: follows from theorem 1 and theorem 3. •

Remark 3: corollary 2 implies that when 0 < a < 1 and s is an admissible periodic sequence
that is not of period 1 or 2, then s has 100 or -100 as a subsequence.

4 Periodic admissible sequences for the case a = \

In [1, 2], conditions weregiven for finding periodic admissible sequences. The number of cases that
needs to be tested for finding all admissible sequences of period k is 3*, which limits the size of the
period that we are able to analyze. In this section we will give a simple condition for finding all

admissible periodic sequences ofa certain period for the case a = \.
First, let us introduce some conventions, notations and definitions. When we talk about the

numerator and denominator of a rational number, we assume that the rational has already been

reduced to its lowest terms and that the denominator is positive.

For a vector x of rational numbers (elements of Qn), denote fi(x) as the lowest common multiple
of the denominators of each element of x. We use a similar definition for matrices of rational

numbers. For integers n and m, we write n\m if n divides m. Denote v(n) as the nonnegative

exponent of the prime 2 in the prime factorization of the integer n.

By theorem 3 in [1], searching for periodic admissible sequences is equivalent to searching for
periodic points of the discrete system (1). In [1] it is shown that if zo is a periodic point of period

k, then Zq must satisfy

z0 = (E-A*) ^oA^b-f + Sjt_2Ab + Sfc_ib)

A =
0 1 "

, b =
' 0 "

, E =
" 1 0 "

.-1 J. 2 .01.

(37)

(38)

for some $,- 6 {-1,0,1}. Since A and b are both rational matrices, zo is a rational vector. In fact,
we can compute a bound on fi{zo). Let us denote D —/i((E - A*) ). Then by equation (37)
fi(z0)\2k-2D. We can express 2k~2D as T = 2k~2D = 2lR where R is odd and u(T) = l>k-2.

Express Tzo as (p,o), where p and q are integers. We can then iterate F in 1?.
Remark 4: since F((p, q)) = (g, 2sT - p+ g/2), 5 € {-1,0,1} is a pair of integers, it follows that

q must be even.

Lemma 2 IfO < min(i/(p), u(q) —1) < /, then v(p) = u(q) —1.



Proof: Let (p;,g,) = F*((p,g)). Suppose i/(p) < v(q) - 1. We then have

(PD,fl>) = (2"W«0,2^)*i)
(Pi.ft) = (2^1, -2"(p><o +2^)-4i +2*1*! =2"Wt2)
(p2, ft) = (2"<p>*2, -2"(9)*i +2"<P)-1*2 +2'u2 = 2"M-1*3) (39)

(Pv{P)+i>qv(p)+i) = (2^p,<j,p+i)

where the <t's are odd and 2'wi and 2^2 equal to ±2T. Since tUp+i in (39) is odd, this contradicts
remark 4.

Suppose u(p) > u(q) - 1.

(po,<7o) = (2^HoX{q)ti)
(Pi.ft) = (2I/(9)ti, -2"<p)*0 + 2"M-Hi + 2*tti = 2^)"1i2)
(P2, ft) = (2^)-1<2, -2^')*i +2"M-2t2 + 2lu2 = 2"M-2t3) (40)

(Pu{q),Qu{q)) = (2^,,^-J-l)

Again tu<l+i is odd resulting in a contradiction. •

Lemma 3 u(p) > I and v(q) - 1 > /.

Proof: if either u(p) or u(q) - 1 is less than /, then u(p) = j/(g) - 1 by lemma 2.

(po,<7o) = (2"W-1*b,2"(«)t1)
(puqi) = (2^Hi,2^)+H2)

: : (41)

(Pl-u(q),qi-v(q)) = (^~1tl-u(q)^ltl-u(q))

where all the i,-'s are odd integers. In the next iteration, p/_„(g)+1 = 2/</_i/(g), and g/_j,(9)+1 = 2/+1x
to avoid contradicting lemma 2. A similar reasoning shows that from this point on, v(pi) > /

and v(qi) > /. Since this is a periodic point, po must be equal to one of these p,'s resulting in a
contradiction. •

Our main result in this section is the following:

Theorem 4 Let zo be a periodic point. Then [i(zo)\R.

Proof: from lemma 3, the numerators of zo each has a factor of 2', which we can cancel from
the denominator T —2lR. •

Remark 5: This analysis can be extended to the case when a is a rational number.

This theorem suggests an algorithm for finding all admissible periodic sequences: check whether

any of the 4R2 rational points in I2 with denominator R is a periodic point of period k. This method



has the advantage of using only integers in the computation which does not introduce any roundoff
errors. Furthermore, as 4R2 is generally much smaller than 3*, the amount of computation is
substantially reduced. To further reduce the amount of computation, we also use the following
condition:

Theorem 5 Suppose zo is a periodic point of period k. Then the integers p and q obtained from
Rzq = (p, q) must satisfy the following congruences:

2*(E - A*) = 0 mod R

Proof: multiply both sides of equation (37) by 2fc(E - A*) to obtain

2*(E - A*)z0 = 2k(s0Ak-lb + •••+ sk-2Ab + sjfc_ib)

(42)

(43)

The right hand side is a integer vector and the conclusion follows from fi(zo)\R. •

Using these conditions, we have found that there are no admissible sequences of period 23, 24

or 25.

5 Topology of J7

Lemma 4 Let s € £ be a sequence. Then S~l(s) is convex.

Proof: suppose x, y are in S~1(s), where s = (soSis2 '' ')• Let us define xt = E'(x), y, = F'(y)
for all i > 0.

Then

xt+i = F(xt) = Axt -I- bsi = Xi + Si (44)
I —1 a [2

Define zt- = xt- + ct(yi —xt), 0 < a < 1. Then

zt+i = Azt- + bsi (45)

Since I2 is convex, zt- € I2 for all i > 0. Therefore 5(zo) = 5. •

Corollary 3 If(lsoSi • ••) and (-l$oSi *••) ore both admissible, then so is (0-soSi •••)•

In other words, if (Oso^i •••) is not admissible, then either (lso«i •••) or (—l$o$i • ••) 1S not admis
sible.

Proof: follows from the fact that F(7_i) UF(ii) is not connected and thus not convex. •

Lemma 5 Let s € S7. Then S~1(s) has no interior points.



Proof: denote II(p, zq) as the ellipse described by

n(p,z0) = {xel2:(x-z0/ (x-z0)<p2} (46)

It was shown in [1] that for the linear system G(x) = Ax, G(II(/9,0)) = II(p,0) for all p. If S~l(s)
has an interior point, then there exist z0 € I2, p > 0 such that n(/>,zo) C 5~x(s). Since every
point in II(/>, zo) generate the same symbolic sequence,

F(x)-F(z0) = A(x-z0) (47)

for all x € n(/9,zo). This means that F(H(p,z0)) = n(/9,F(z0)). Similarly Fk(Yl(p,z0)) =
II(/), Ffc(z0)) for all k > 0. This means that by iterating the map F on II(/>, z0) we obtain other
ellipses of the same size. These ellipses cannot intersect as the symbolic sequence s belongs to E7.
This is impossible as I2 has finite measure and thus cannot contain infinitely many nonintersecting
ellipses of the same size. •

Theorem 6 Let s € E7DEf\ Then S~1(s) is a line-segment in I2, i.e. it has the following form:

S~1(s) = {xel2 :x = a+ p.(b-a), fi <= B} (48)

for some a,6 € J2, where B is (0,1), (0,1] or [0,1].

Proof: follows from lemma 4 and lemma 5 and the fact that the only nonempty convex sets in
I2 with no interior points are line segments. •

Some immediate facts that follow from theorem 6 are:

• If 5 € E7, then U5£=i Fn (5_1(s)) has Lebesque measure zero.

• If there are finitely many sequences in (Ea U E/?) n Ef, then there are uncountably many
sequences in E7 H E/r.

6 Conclusions

In this paper, further properties of a second order digital filter with overflow nonlinearities are
presented. We show that the admissible symbolic sequences cannot contain certain subsequences.
By transformingthe system into the integer domain, we found an alternative necessary condition for
a point to be periodic, which leads to a moreefficient and robust algorithm for finding periodic points

and periodic admissible sequences. Finally, some properties of the topology of J7 are presented.

Acknowledgements

This work is supported in part by the Office of Naval Research under grant N00014-89-J-1402 and
by the National Science Foundation under grant MIP 86-14000.

9



References

[1] L. O. Chua and T. Lin, "Chaos in digital filters," IEEE Transactions on circuits and systems,
vol. 35, pp. 648-658, June 1988.

[2] L. 0. Chua and T. Lin, "Fractal pattern of second-order non-linear digital filters: A new
symbolic analysis," International Journal of Circuit Theory and Applications, vol. 18, pp. 541-
550, 1990.

10


