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Abstract

We propose a novel framework to solve the state assignment problem arising from the signal transition graph (STG)
representation of an asynchronous circuit. We first establish a relation between STGs and finite state machines (FSMs). Then
wesolve theSTG stateassignment problem by minimizing thenumber of states in thecorresponding FSM and by using a
critical race-free state assignment technique. State signal transitions may be added to the original STG. A lower bound on
thenumber of signals necessary to implement theSTG is given. Our technique significantly increases theSTG applicability
as a specification for asynchronous circuits.

1 Introduction

Asynchronous circuits are playing an increasingly important roleindigital designs for twomain reasons:

1. Interface circuits, which are inevitably asynchronous, are becoming a bottleneck in thedesign process. The overall
system throughput depends heavily on interface circuits, but unlike data paths or synchronous controllers they are
designed mostly with littleor no CAD support. As a result, interface circuits, despite their small size, can take a
disproportionately largeamountof design effort.

2. The clock skew problem, that is increasingly difficult to handle in today's high-speed synchronous designs, can be
completely eliminated with asynchronous designs, resulting inmore modular, faster, and possibly less power-consuming
designs.

Despite this, CAD support for asynchronous design remains weak. The main reason is the difficulty indealing with the
hazards which cause a system todeviate from its specified behavior. In [8] and [12] techniques were proposed toproduce a
hazard-free implementation from a graphical specification called the Signal Transition Graph (STG)[3] under either bounded
wire delay or unbounded gatedelay models. The STG is based on a type of Petri netcalled the free-choice net, which is
expressive enough for specifying concurrency, sequencing, and conflict, yet simple enough for analysis. The specification is
complete in thatboththesystem and theenvironment behaviors arespecified.

Sufficient conditions for an STG to be implementable have been given by [3]. The most restrictive condition is the
Complete State Coding (CSC) property ([12]), which requires that the signals specified by the STG completely define the
circuit state. Until now the burden of satisfying the CSCproperty has been placed mostly on the designer. [19] and [17]
address thisproblembutonly in the contextof marked graphs, which are a subsetof STGs.

In this paper we propose a new framework to satisfy the CSC property onany live STGs byformulating the problem
as the conjunction of the constrained state minimization and critical race-free state assignment problem. We first give a
procedure toderive from an STGanequivalent FSM representation that completely captures the state information implicit
in the STG. Minimization of this FSM allows us to prove necessary conditions on the number of state signals required to
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Figure 1: STG Specification ofPLA Interface Circuit

implement it This proposed framework is general enough to embed also previous methods to solve the CSC problem for
some specific sub-classes of STGs, such as [17]. _„_ ___,_,„We also address how to extract from the minimized FSM sufficient conditions for the STO ito havedie CSC property
We propose to apply acritical race-free state assignment algorithm (such as the one proposed by Tracey [14]). Us ng the
SK^we'insertappropriate signal transitions in the STG. At this point, techniques such as [8] [12] can be used to
0"tit p^f'isTrSEtZs. Section 2defines the terms used in mis paper and discusses some previawo*.

Section 7describes how to insert state signals in the STG so that it can be implemented. Section 8gives some experimental
results. Section 9concludes this paper and outlines future work.

2 Preliminaries

2.1 Definitions

2.1.1 Signal Transition Graph

An STG -interp.tedfr.-ch^^
l^r^^^^
=s^o£^^^^
initial state ofthe STG. if/ .vcP TikPW;ce t is called the fanin transition of pifA transition t is called \tefanout transition ofaplace pif (p, t) € F. Likewise, t is caiiea we/««
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place for all its fanout transitions. An STG is an interpreted free-choice Petn net because each t6T.s mterprercd as
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free-choice (or input-choice) place if all thefanout transitions belong to input signals. Thechoice as to which transition will
be enabled is made by the environment.

A marking mo is live if for all markings m, reachable from mo, every transition can be enabled through some sequence
of firings from m,. A net is live if its initial marking is live. A marking m0 is safe (sometimes referred to as 1-bounded) if
no place can ever be assigned more than one token after any sequence of firings from mo. A net is safe if its initial marking
is safe.

A Marked Graph (MG) is a Petri net whereeachplacep hasexactlyone faninand one fanout transition. A State Machine
(SM) is a Petri net whereeach transitiont has exactlyone faninand one fanoutplace.

Hack ([5]) proved that:

Theorem 1 Let N be afree-choice Petri net.
Thefollowing three statements areequivalent:

1. N is live and safe.

2. N can be decomposed into strongly connected SM components that cover it(each component issequential and exhibits
non-deterministic choice).

3. N itcan be decomposed into strongly connected MG components that cover it(each component has concurrency and
does not exhibitnon-deterministic choice).

"Covering" means that each transition and place of the net has a correspondent in at least one SM component and a
correspondent inat least one MG component, and that no component isa proper subgraph ofanother component.

An STG is defined as live,1 if:

1. the underlying net is live and safe, and

2. for each signal t there isat least one SM component, initially marked with exactly one token, such that:

(a) it contains all transitions t" of t,

(b) each path from atransition t* to another transition t* (i.e. both rising or falling) contains also the complementary
transition/".

This ensures that each signal in the circuit always has a well-defined value in all markings reachable from the initial
one, because arising and falling transition for the same signal can never be concurrently enabled and each signal must
havealternate risingand fallingtransitions.

Two transitions tx, t2 in alive STG are concurrent ifthere exists areachable marking mwhere both tx and t2 are enabled,
h isnot disabled by the firing oft2, and t2 isnot disabled by the firing oft\.

2.1.2 State Graph

The state graph (SG) is adirected graph obtained by performing areachability analysis on the STG starting from the initial
marking mo. An SG is a 2-tuple, {V,E), where Vis a set of states and Easet ofedges <ZV xV. h state sx is connected
to a state s2 by an edge e, if there exists a marking m2 (corresponding to state s2) which is reached from marking mi
(corresponding to state sx) by firing asingle transition t. The edge eis labeled with t. In the rest of the paper we will use the
term SG state to identify also the corresponding STG marking.

2.1.3 CompleteState Coding

The procedures given by [3, 8, 12] to produce a circuit implementing an STG specification require that each SG state is
assigned a binary label, with the values of signals specified by the STG, that is consistent with the firing transitions on the
SG edges. For each sx —s2 labeled with transition *+, the value of signal t in the label of sY is 0, in the label of s2 is 1(and
vice-versa for t ). All other signals must have the same value in both labels. Such alabeling always exists ifthe STG is live.

The boolean function for each output signal t of the STG can then be defined as mapping the binary label of each SG
state s into the impliedvalue of t in s:

1Notice thedistinction between livenetand liveSTG.



Figure 2: State Graph withCSC violation

• if a transition of t is enabled in state s, then theimplied value for t is thecomplement of thevalue of t in thebinary
label of s.

• otherwise the implied value for t is thevalue of t in thebinary label of s.

Anecessary and sufficient condition for the existence ofan implementation ofalive STG is called the Complete State
Coding (CSC) property ([12]). The CSC property is satisfied if

• notwo different states are assigned the same binary label (Unique State Coding property [16]) or

• when the same binary label is assigned to two different states, the transitions ofthe output signals enabled in the two
states must be identical.

Thus, only the input transitions enabled in two states with the same binary label may be different, and it is assumed that the
environment knows how to distinguish them. Figure 2gives an example ofCSC violation. States si and s5 are assigned the
same binary label 110 but s5 has an enabled output transition Ro+ which si does not have. The CSC violation also occurs
dueto states (s2, s6), (s7, s9) and(slO, sl2).

2.1.4 Finite State Machines

Mostof the followingdefinitionsare from [15].
A Finite State Machine (FSM) model ofasequential circuit is asix-tuple (S, X, Z,N,0, R), where:

• 5 is a finite setof internal states(oftencalled simplystates) of thecircuit.

• X is a finite set ofinput states ofthe circuit (a binary vector representing the value ofits input signals).

• Z is afinite set ofoutput states ofthe circuit (a binary vector representing the value ofits output signals).

• N(i, s) is arelation from apresent state/input state pair to the next states (i.e. NCX x S x 5).

• 0(i, s) is arelation from apresent state/input state pair to the output states (i.e. OCX x 5 x Z).

• R C S is a set of initial (or reset) states.



In this work we only consider incompletely specified deterministic FSMs, where both N{i, s) and 0(i, s) are incompletely
specifiedfunctions (which must be both either specified or unspecified fora given (i, s) pair), and R is a singleton set. If
N(i, si) = {s2} for some i we say that s2 is a successor of si, and si is apredecessor of S2.

Inputandoutputsignalsare collectively referredto as theexternal signals of the circuit,and in this worktheycorrespond
exactly with theinputandoutputsignals specified byan STG from which the FSMis derived (as shownin Section 4). In the
synchronous case the FSM changes stateonce per clockcycle. In the asynchronous case the FSM changes state every time
its input state changes.

An FSM can also be representedas a directedgraph, where:

• each vertex is associated with an internal state

• each edge (also called a transition) is labeled with an input state/output state pair, and is directed from the present state
vertex to the next state vertex.

This FSM representation, in tabular form, is called FlowTablein [15].
A stable state of an FSM is a pair i, s such that N(i, s) = {s}, i.e. a self-loop in thegraph representation. An FSM is

normal if every unstable stateleads directly toa stable state(i.e. forevery inputstatez, forevery pairof states s, s' suchthat
N(i, s) = {«'}, if s ^ s' then N{i, s') = {s'})

Asetcofstates ofan FSM isoutput compatible if sx, s2 € c, 0{i, sx) ± <j>, 0(i, s2) ^ <t> => 0{i, sx) = 0{i, s2), i.e.
for each input state i e X for each state s e c, the output label, if defined, is the same. A set c of states implies a set c'
ofstates if c' = \J3eAN(h s)}. Aset cofstates is compatible if it is output compatible and itdoes not imply an output
incompatible set through anysequence of implications2.

Aset Cofcompatibles ofan FSM is aset ofmaximal compatible sets ofstates such that every state belongs to atleast one
compatible. Aset C ofcompatibles is closed if for each input state i, for each pair of states su s2ec there exists ac'eC
such that if N(i, sj) ^ <£ and N(i, s2) £ <f> then N(i, si)Cc' and N(i, s2) C c'.

Aclosed set ir ofcompatibles is a closed partition ofthe states ofthe FSM ifevery state belongs to one and only one
compatible (called block). Aclosed partition v is derived from a closed set ofcompatibles C ifevery block of* isa subset
of a compatible of C.

Astate s ofan FSM F covers a state s' ofanother FSM F' ifdl\ finite sequences ofinput states applicable to F' with
initial state s' are also applicable to Fwith initial state sand if, for all such sequences of input states, the sequence of output
states of Fwith initial state s is the same as that of F' with initial state s'. An FSM Fcovers another FSM F'ifevery state
in F' is covered by at least one state ofF. Two FSMs are equivalent ifthey cover each other. An FSM is minimized ifthere
exists no equivalent FSM with fewer states. FSM minimization amounts to finding aclosed set ofcompatibles ofminimum
cardinality, and then creating one state ofthe minimized FSM for each compatible ([15], see also Section 5.3).

An encoded FSM3 is an FSM whose states have been assigned abinary label, using the value ofaset of state signals.
Arace is a transition ofan encoded FSM where more than one state signal changes. The race iscritical if the behavior

ofthe FSM depends on the outcome ofthe race, i.e. on which signal changes first.

2.1.5 Multi-valued boolean functions and decision diagrams

Amulti-valued boolean variable is a variable vt that can take any value from a finite set5,. A boolean function ofa set of
multi-valued variables {v,} is amapping from the cartesian productof the 5, into {0, 1}. The properties ofordinary boolean
functions (where all the variables have 5,- = {0, 1}) can be directly extended to boolean functions ofmulti-valued variables
([10]).

Amulti-valued decision diagram (MDD, see [1] and [6]) is arooted directed acyclic graph where:

• every leaf node is labeled with either the value 1 or 0.

• every non-leaf node is labeled with a multi-valued boolean variable.

• every edge is labeled with onevalue of the variable corresponding to itssource node.

Notice that for incompletely specified FSMs the compatibility relation in not transitive, and as such itis not an equivalence relation.
3The encoded FSM iscalled RowMatrix in[151.



An MDD represents a boolean function over thevariables associated with theMDD labels in the following way. Every
element of the domain of the function defines a unique path from the root to a leaf, by following edges labeled with the
variable values associated withthedomain element. The function has value 1onallthepoints that correspond to paths to the
leaf 1,and0 on all theotherpoints(they obviouslycorresponds to paths to 0).

Converselyevery path from therootto the 1leafdefines a(possibly partial) assignment of valuesthatmakestheassociated
function evaluate to 1 (and similarly for 0).

2.2 Previous work

Early work in the areaof Unique State Coding enforcement (for example [19] and [16]) concentrated on the introduction of
constraints within an MG, using a sufficient conditionas a guidance. Namely both [19] and [16] recognizedthat if all pairs of
signals in the STG are locked using a chainof handshaking pairs, then the MG satisfies the Unique StateCoding condition.
We will briefly show in Section 5 how to interpretthis sufficientconditionwithin our framework, and how to use it to reduce
the number of state signals.

Also the synthesis methodology developed by Martin et al. ([2]), even though it starts from a different specification
formalism, basically guarantees CSC (a sub-case of whattheycallnon-interference) by handshaking, if possible, otherwise
by heuristic state variable insertion ([11]).

More recently Vanbekbergen etal. ([17]) proposed atechnique totransform an MG sothat it satisfies CSC.The technique
is based on the identification of pairs of SG states that cause a CSC violation. Each pair of such states is connected by an
edge inan undirected graph called the constraint graph4. Then coloring this graph provides, according tothe author, alower
bound on the number of state signals required for CSC. This approach, even though itwas originally proposed only for MGs,
bears some resemblance with the framework that we propose for general STGs. In fact graph coloring has been used since
long ago as aheuristic for FSM minimization ([18]). Furthermore Vanbekbergen did not recognize the need to use critical
race-free encoding. Critical races would show up as further violations ofCSCinthe encoded STG. Thus the main advantage
of our framework over [17] is the recognition that CSC falls within a much more general problem, previously known as
state minimization/critical race-free encoding ([15]), and that constraint graph coloring can beconsidered only as aheuristic
technique to solve the general problem.

Kishinevsky et al. ([7]) also presented a complete synthesis methodology for asynchronous circuits starting from an
event-based specification, called Transition Diagrams, that is very similar to MGs. They also used graph coloring to identify
regions ofthe state graph that must be distinguished using state signals. They recognized the problem ofcritical races, but
solved it throughiterationof the encoding procedure.

Another trade-off between MGs and general STGs based on free-choice nets is due to the fact that MGs do not allow
the behavior of the specified circuit to depend on the value ofexternal signals (e.g. abus interface with different read and
write protocols cannot be specified with an MG). The analysis and synthesis methods for MGs, on the other hand, have
often polynomial worst-case behavior, while analogous algorithms for free-choice nets have in general exponential worst-case
behavior. For example, the CSC analysis in [19] and [16] is 0{n3) in the worst case for n signals, while the algorithms
presented in this paper work on the SG, which is exponential in the number ofsignals in the worst case.

3 Overview of the proposed approach

Our approach consists ofseveral steps. First the STG is checked to see if it satisfies the CSC property. If itdoes, then we
can apply the synthesis procedures of [8] or [12] to yield ahazard-free implementation. If the STG does not satisfy the CSC
property, new state signals have to be added to distinguish the SG states that have the same binary label but different output
transitions. Our approach tries to minimize the number ofsuch signals, and to change the STG as specified by the designer
as little as possible.

More formally:

Definition 1 An STG G is implementable if

• it is live and

• it satisfies theCSC property.

4The author also adds constraints to allow optimization ofthe combinational logic implementing some particular signal, but this has no direct relevance
to the CSC problem per se.
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Definition 2 A transformation Mfrom an STG G to an STG G' is environment-preserving if

• M preserves liveness (i.e. ifG is live, thenG' —M(G) is live), and

• M does not remove any constraintfrom G, and

• M does not change thepredecessorsofany input signal transition in G.

The insertion of internal signals and the modificationof the predecessorsof non-input signal transitions are allowed, because
they do not modify the environment behavior. Furthermore, the restriction that no constraint can be removed from the
specification ensures that the implementedbehavioris a subset of the originalspecification, which in general is acceptable.

We will give a procedure that transforms any live STG G given by the designer into an implementable STG G', by
applying to it a transformation M such that:

1. if there exists an implementable G" thatcan be derived from G with an environment-preserving transformation, then
M is also environment-preserving.

2. otherwise, the amountof environment modification required by M is minimized.

We will also give an approximate procedure that, in case theenvironment-preserving transformation is too expensive to
compute, heuristically minimizes the amount of modification to the environment.

We transform a given STG intoan implementable STGas follows. First weinterpret theSG derived from theSTGas
an FSM, and apply to it classical state minimization and state encoding techniques. From this minimized encoded FSM we
extract informationsufficientto definehow many state signalsare neededand where their transitionsmust be inserted.

More indetail, the model behind this idea is depicted inFigure 3(a): a combinational circuit with inputs all the signals
specified by the STG and outputs the output signals specified by the STG. Ifthe STG does not have the CSC property, then
the model fails, because the boolean function that must beimplemented by the combinational circuit isnot well defined (see
Section 2.1.3).

We then propose toconceptually replace thecombinational circuit witha sequential circuit, because then wecantransform
the STG specification ina valid FSM representation (Figure 3(b)), that will be implemented in turn with a combinational
circuit and some state signals (Figure 3(c)). We can then remove the "artificially added" level of hierarchy, and obtain an
STG with a well-defined boolean function for each state signal and output signal.

The key point in the approach is the correspondence between classical state compatibility and Complete State Coding.
Distinguishing between incompatible markings amounts to forcing a state signal change between states in the minimized
FSM.

There isan important difference between the approach presented here and classical FSM minimization techniques. We
consider also the output signals as feedback signals, rather than only state signals. This allows to drastically reduce the
number of states in the minimized FSM.

The procedure then becomes quite natural:

1. Derive from the STG an FSM with the input state defined as a binary vector of both input and output signals, and
outputstatea binaryvector of only output signals. Theinternal states correspond to theSG states.

2. Minimize the FSM so that we obtain a lower bound on the number of state signals required to implement the given
STG specification (anecessary condition, independent ofthe synthesis methodology).



3. Encode the states of the minimized FSM so that there are no critical races.

4. Insertstatesignaltransitions in theSTG inordertodistinguish between every pairof incompatible FSMstates, andalso
every pair of SG states that violatethe CSC property. We currently can proveonly sufficient conditions to guarantee
CSC using this procedure. These conditions then must guide the minimization process, to do the least amountof
"damage" to the STG specification, especiallyin termsof the lossof concurrency.

4 Translating an STG into an FSM

Oncealabeled state graph isderived from the STG by the procedure oudined inSection 2.1.2, we obtain an FSM representation
as follows:

• thesetof internal states has oneelement s for each SG state (in the rest of the paper wewill liberally identify SG states
and FSM states based on this one-to-one correspondence).

• the set ofinput states has one element for each binary label ofan SG state (using both input and output signals).

• the set ofoutput states has one element for each implied value label ofan SGstate.

• for each internal state s, let i be the binary label ofthe corresponding SG state. Then N(i, s) = {s}, i.e. every state
has itself as next state as long as no external signal changes its value. Also let o be the implied value label of the
corresponding SG state, i.e. the "next value" of the output signals. Then 0(i, s) = {o}.

• for each edge among two SG states s' and s", let i" be the binary label of state s". Then N{i", s') = {«"}. Also let
o" be the implied value label ofs". Then 0(i", s') = {o"}.

An FSM for the state graph of Figure 2is given in Figure 4. For each state s, in Figure 2there exists acorresponding
state i in Figure 4with appropriate input and output states. For example, state si of Figure 2, has binary label 110 (Ri - 1,
Ai =1, Ro =0) and enables transitions Ai~ and Ri~. It becomes state 1in Figure 4, with aself-loop edge labeled 110/0, an
edge to state 2labeled 100/0 (corresponding to the firing of Ai~), and an edge labeled 010/0 (corresponding to the firing of
Ri~) State 1must produce output 0on inputs 110,100 and 010 because the output value for signal Ro is 0in all the binary
labels of states si, s2 and s3, none of which have transition Ro+ enabled. Also note that that the FSM is normal since each
unstable state leads directly to a stable state.

Note that CSC violations translate into output-incompatibilities among states, namely (1,5), (2,6), (7,9), (10,12). For
example, state 1must produce output 0on input 110, while state 5must produce output 1on the same input.

The relationship between this FSM and the STG can be seen in the following theorem:

Theorem 2 An STG satisfies the CSC property ifand only if the FSM derivedfrom the STG by the above procedure can be
minimized to a single state.

Proof

<j=

If an STG satisfies the CSC property, then all pairs of states in the FSM are output compatible, because SG states with
the same input label have the same implied output label, then pairs of FSM edges with the same input state have the
same output state. Since all state pairs are output compatible, there is asingle compatible, which is of course closed.
If there is asingle compatible, then pairs of FSM edges with the same input state must have the same output state. But
then SG states with the same input label have the same implied output label, and the STG has the CSC property.
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5 FSM minimization

Wenow describe how the FSM obtainedby direct translation of the State Graph,as shown in Section4, can be minimized
takinginto account the need to derive a SignalTransition GraphwithCompleteState Coding.

This can be accomplished(as outlined in Section 3) by assigningeach STG marking to a state in the minimized FSM.
Then for each pair of adjacent markings belonging to two different states, we modify the STG to constrain some of the
transitions, enabled in the second marking but not in the first one, to follow after the transition of the relevant statesignals.
This corresponds to adding new internal signals and transitions to the initial STG.

Then the objective function that the minimization procedure mustoptimize is not only the number of state signals (as it
was in theclassical FSM minimization theory), butalso the amount of"damage" done to theSTG bythe insertion of state
signals:

• increase incombinational logic size, dueto theneed tosynthesize logic alsofor thestate signals and (possibly) to the
added constraints between signal transitions.

• reduction in throughput, due to

- the increase in propagation delay through a largercombinational logic,and
- the added constraints between signal transitions.

• constraint onsomeinputsignal transitions. This, strictly speaking, is nota legal operation, because thebehavior of the
environment in general cannot be modified. Insome cases, though, it may beacceptable, eitherif also theenvironment
isbeing synthesized separately, or ifit isknown a priori that those constraints arealready satisfied, forexample because
it is known that the environment is "slow" to react.

In any case, the procedures that we will give below are guaranteed to find a solution that does not constrain the
environment, if such a solutionexists withinthe searchspace.

The following result (Theorem 5.2of [15]) shows that using this framework weobtain a lower bound on the number of
state signals:

Theorem 3 Given any minimized FSM with s, stable states under input label i, any sequential circuit realizing this FSM, in
which stable FSM states are represented by stable circuit states, must have at least [log2(maxi(s,))l feedback signals5.

These are defined astheminimum numberof wires that mustbecutto produce anacyclic circuit.



In our case every FSM state is stable, because it has a self-loop if no external signals (i.e. STG input and output
signals) change. Furthermore every FSM stable stateis represented by a stable circuit state, if we useanyof the synthesis
methodologies presented in [3], [8] or [12]. This is due to the fact that if the synthesized circuit implements the STG
specification, then after all the enabled transitionsfire, theycannotbe enabledagain until some external signalchanges.

Notice that this lower bound may not be attained by the algorithms proposed in the following Sections, because for
example we may have to use more state signals in order to avoid critical races among them.

Furthermore we can also reduce the number of state signals below the given bound if we are allowed to declare some
state invalid, because then we are modifying the FSM before realization. For example the method described in [16] adds
constraints to the STG to remove from the FSM states that can cause incompatibilities, so that the resulting FSM has only
one compatible and, by Theorem 2, the STG has CSC. However, this is not general and cannot always be done without
adding state signals.

We now formulate the constrained FSM minimization problem as follows. Let G be a live STG and let F be the
corresponding FSM,derived as shown in Section 4. Let D be a subset of the signals appearing in G. Let n be a closed
partition of the states of F. Let 7r, denote the block of tt to which state s, belongs.

Definition 3 Apair ofadjacent states sx, s2 € F belonging to distinct blocks n £ tt2 is locally distinguishable using D if
for every transition t^, such that

• t,* is enabled in s2, and

• tl is notenabled in anypredecessor of s2,

then thecorresponding signal ti is in D.

Definition 4 Apair ofstates s{, s2 € F belonging to distinct blocks xi # *2 isdistinguishable using D iffor every path
from si to s2 andfor every pathfrom s2 to sx there exists apair ofstates that are locally distinguishable using D.

In Figure 5(a), both signals cand dmust be in D, for sx and s2 to be locally distinguishable, because neither c+ nor d+
were enabled in any predecessor of s2 (namely sx and s5). So in order for the binary labels ofsi and S2 to have adifferent
value ofthe state signals, c+ and d+ must be enabled only after some state signal transition has fired (x+ in Figure 5(c)). On
the other hand in Figure 5(b) only signal dmust be in D, for s5 and s2 to be locally distinguishable, because c+ was enabled
in a predecessor of s2, namely s$.

Definition 5 Aset ofSTG signals D isa partitioning set ofsignals with respect to ic ifevery pair ofstates si,s2ofF
belonging todistinct blocks in ir is distinguishable using D.

Definition 6 Apartitioning set Disminimal ifno signal can be removedfrom it, while remaining apartitioning set.

Definition 7 Apartitioning set Disoptimal with respect to aclosed set ofcompatibles Cifit isminimal and it has:

1. the minimum number ofinput signals n, among all partitioning sets with respect to some closed partition nderived
from C, and

2. the minimum number ofoutput signals n0 among all such partitioning sets with n, input signals.

Definition 8 Apartitioning set Dis optimum ifit has the least cost (as in Definition 7) among all partitioning sets with
respect toany closed setofcompatibles C of F.

This definition ofoptimality obviously takes into account the need not to constrain input signals and the need to constrain
the leastnumberof outputsignals,as it was intuitively justified above.

In order to guarantee that the partitioning set that we obtain is optimum we need to find all compatibles ([4]), and then
find a subset C of these such that:

• C is closed, and

• there exists an optimum partitioning set Dwhose associated closed partition ir is derived from C.
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Figure6: Pre-minimized FSM

Given the above partitioningsetcost function, ifthe STG can beimplemented with an environment-preserving transformation,
then D will notinclude any input signal. Otherwise D constrains theminimum number of such signals.

Unfortunately the enumeration ofall maximal compatibles is infeasible inmost cases ofpractical interest. To obtain the
initial closed set of compatibles we are currently using a heuristic classical FSM minimization procedure ([18]). We are
interested in minimizing the cardinality ofthis set, because the minimized FSM will have one state for each block in jr. So
minimizing the cardinality ofCminimizes the cardinality of ir, and hence the number ofstate signals.

The main caution in using a classical FSM minimization procedure is tomake sure that pairs ofadjacent states sx, s2,
where every transition enabled in s2 is also enabled in su belong to the same compatibles6. Otherwise the partitioning set
algorithm will not be able to find asolution, because s2 has no transitions not enabled in st and thus we cannot insert astate
signal transition to enforce astate change from s{ to s2. This can be accomplished by apre-minimization step that merges all
such state pairs. The pre-minimization merges only compatible state pairs, because *i and s2 are obviously outputcompatible,
andthesetof possible implications from s2 is a subset of those from sx.

The result of this pre-minimization step for the FSM of Figure 4 is shown in Figure 6. For example, in state 1both Ri
and Ai can have a falling transition. In its successor state 2only Ri can have a falling transition, so the two can never be
distinguished and they must belong to the same tt, in the final partition. Then we merge them before performing the actual
FSM minimization. On the other hand, in state 3 not only Ai can have a falling transition, butalso Ri can have a rising
transition, different from the falling transition of Rienabled instate 1. So states 1and 3cannot bemerged.

We will now give an exact algorithm to find an optimal set ofpartitioning signals Dand an associated closed partition tt
starting from an initial closed set ofcompatibles C. We will also give aheuristic algorithm to find aminimal such set, in case
the exact solution is too expensive to compute.

5.1 Optimal partitioning set derivation

The exact algorithm is divided into three steps:

1. formulation, as aconjunction of boolean clauses over aset of multi-valued variables, of the conditions for aset Dto be
apartitioning set with respect to any closed partition ir derived from aset ofcompatibles C.

2. partial solution of theclauses, to find a partitioning setD of minimum cost.

6Actually there are other constraints that should be taken into account. But we defer their introduction until Section 7.1, where their motivation will
appearmore natural.
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3. derivation of ir from C and D.

5.1.1 Partitioning set conditions

Let C bethe initial closed setofcompatibles ofan FSM F derived from a live STG G. As described above, a partitioning
set D andtherelated closed partition ir must satisfy thefollowing conditions, expressed as a conjunction of clauses:

Procedure 1

7. for each state s let ps = {c e C\s € c}. Then s must belong to one andonlyone block. This can be expressed by
defining a multi-valued boolean variable Sfor eachstate, withallowed valuesin ps.

2. for each state s\

• for each successor s2 ofs\ such that s\ and s2 may belong to differentblocks,

- either s\ and s2 are assigned to the same block,

- or all the signals required to distinguish between them are in D.

Thiscanbe expressedby defining a binary-valuedvariable tfor eachsignal definedby the STG, thathas value I if
t is in D, and0 otherwise. Furthermorefor eachpair as above we create a clausestating that either the variables
associated with the states have the same value, or all the variables associated with the candidate distinguishing
signals are true.

Theworst-case running time of this algorithm is 0((?-n2m) (m is thenumber ofsignals, n is thenumber ofstates, c is the
number of compatibles). This is also a bound on the size of the conjunction of clauses.

For example, the FSM in Figure7 requires the introduction of the following clauses. Let 5, be the variableassociated
with state si, and let Ri, Ai, Ro be the variablesassociatedwith the signals.

1. (Si = c2) A(58 = c2) A(S9 = c2) A(S3 = c,) A(S5 = c,) A(S7 = cx)
to express the admissible compatibles for each state (in this example there is no choice).

2. (Si = S3) v Ri toguarantee thatS3 isdistinguishable from s\, because theonly signal enabled in s3 andnotin si is Ri.

3. (S9 = 53) VRi to guarantee thatS3 is distinguishable from s9.

4. (S5 = S8) v Ai to guarantee that s8 is distinguishable from s5.

5. (57 = 3%) VAi to guarantee that s8 is distinguishable from s7.

5.1.2 Finding a minimum cost partitioning set

One way tofind a minimum cost partitioningsetgiven the clauses described intheprevious section is tocombine the approach
described in [9] to solve binate covering using binary decision diagrams with themulti-valued extension of binary decision
diagrams (MDD).

We build an MDD representing a conjunction of theclauses. Any path from theroot to the1leafcorresponds toa partial
assignment of values to the variables. This partial assignment represents a family of partitioning sets andassociated closed
partitions.

Wethenassigna weightto each edge in the MDD, according to thecost function defined above,as follows:

1. zero for all edges whose source is a variable associated with a state.

2. zeroforall edges corresponding to the0 value of variables associated withsignals.

3. oneforall edges corresponding to the 1value of variables associated with output signals.

4. the number of output signals plus one forall edges corresponding to the 1 value of variables associated with input
signals.
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Figure 7: Closed set of compatibles

Then, as shown in[9], a shortest path from the root to the 1leaf corresponds toa minimum cost assignment that satisfies
all the constraints. The proof there was given for binary decision diagrams, but since every MDD can be translated into
a BDD with an appropriate encoding and the weights assigned to the multi-valued variables are all zero, the result applies
directly to this case as well. We have not considered the (non-trivial) problem ofoptimal ordering ofthe BDD variables yet.

Now D consists of all the signals whose variables areassigned a value of 1.
In the example above, the clauses could all be satisfied by an assignment of1to Ai and Ri, and by the assignment of each

state to the only compatible it originally belonged to.
The worst case running time of this step can be exponential in the number ofboolean variables, which is O(n) (n is

the number ofstates). So it can be doubly exponential in the number ofsignals, hence the need for a heuristic algorithm
(Section 5.2).

The assignment corresponding to ashortest path gives also acompatible for each state, that could be used as the partition,
but, with the given set of clauses, this needs not be closed. To guarantee so, we could add further clauses, expressing the
closure conditions, and use the shortest path formulation as shown above. Alternatively we can use an iterative algorithm
given inthenext section, which has a better worst-case bound.

5.1.3 Finding a closed partition

Let p, = {c e C|s Gc} be the set of initially allowed compatibles for state saccording to the closed set of compatibles C.
We can derive ir by repeating the following procedure as long as some compatible isremoved by some ps.

Procedure 2

1. for each state s

(a) for each compatible c G p3

i. ifs cannot be distinguished with Dfrom all states s'such that c g ps<
• remove cfrom ps

2. for each input state i

(a) for each compatible c eC

i. letp' = C

14



ii. for each state s such that c 6p, and such that s has anedge labeled i going tostate s'
• letp' -p' C\ps>

(thisstep computes a closurecondition under input ifor all successorsofstates thatmightbe in c)
Hi. for eachstates suchthat c e p3 andsuch that s hasan edge labeled i going tostates'

• let Ps' = p'

(this step updates the allowed compatiblesaccording to the above computation)

The output of this procedure is a closed set of compatibles,whereevery pair of states that cannot bedistinguished with D
are forced to belong to thesamesubsetof compatibles. Thisis because step 1guarantees thateverystatecan be distinguished
from any other state thatdoes not belong to the same set of compatibles. Furthermore step 2 ensures that the compatibles
satisfy the closure condition.

Then choosing thefirst element (using anytotal ordering onthesetof compatibles) of each pa as theblock of s gives the
desired closed partition ir.

The result of the above algorithm on the FSM of Figure 4 appears inFigure 7. In this case each state belonged only to
one compatible, so there was nochoice. The closed partition has two blocks, irx and ir2, corresponding tocompatibles cx and
c2 respectively.

Notice also that this algorithm can be used to check whether a given set ofsignals isa partitioning set, because of the
following Theorem.

Theorem 4 Let Fbe an FSM derivedfrom alive STG Gas described in Section 4, let Cbea closed set ofcompatibles of
F, let Dbea setof signalsofG.

Procedure 2 terminates with a non-empty p3 foralls ifand only ifDisapartitioning setforsome ir that can be derived
from C.

Proof

<= Suppose that Dis apartitioning set, with associated closed partitions ir. Let ir, be the the block to which s belongs.
Then step 1can never remove ir3 from p„because scan be distinguished from all states that are not in irs (including
those s' for which irs g p's)y due tothe definition ofpartitioning set.
Furthermore step2 willnot remove irs from pa, since ir is closed.

=» Suppose that the algorithm terminates with anon-empty closed set ofcompatibles for all states. Then choosing the first
(with any total ordering) compatible in each set gives aclosed partition ir. But all state pairs s and s' that had pa ^ ps>
are distinguishable (otherwise step 1would have made them equal), so all state pairs that belong to different blocks are
distinguishable, and D is a partitioning set.

•

Apessimistic analysis of the running time of this algorithm leads to aworst case bound of 0(<?n4), because in step 1
each state can be checked with adepth-first search on the FSM, so itis 0(cn3), in step 2each edge in the FSM needs to be
checked only once, so itis 0(cn2) (n is the number of states, c is the number of compatibles). Furthermore each iteration
removes at least one allowed block from one state, so we can iterate at most 0(cn) times. In practice the algorithm is very
fast even for large FSMs.

5.2 Minimal partitioning set derivation

In case the exact algorithm given in Section 5.1 cannot find the optimal solution in areasonable amount of space or time (as
shown above the critical step isfinding a partitioning set ofsignals) we can:

• either try to reach an optimal solution with exhaustive search over all possible subsets ofsignals, at most 2m times,
using Procedure 2to check ifagiven set of signals is apartitioning set. This has abound of 0(2mc2n4), and so itis
not exponential in n (where mis the number ofsignals, n is the number ofstates, cis the number ofcompatibles).

• oruse greedy search tofind a minimal partitioning set, trying toremove each signal infixed order.

In the latter case wecan apply thefollowing algorithm:
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Procedure 3

1. let D be theset ofall signals in G

2. for eachsignal t, beginningfrom input signals

(a) ifD-{t] is a partitioning set(checked using Procedure 2)
• thenletD = D- {t}

In this case we can take advantage of the monotonicity of the problem, to state at least the following Theorem:

Theorem 5 LetF be an FSM derivedfroma live STG as described inSection 4, let Cbea closed set of compatibles ofF.
If there exists anoptimal partitioning set D' of F (with respect toany closed partition ir derivedfrom C) such that D'

doesnotcontain anyinput signal, then Procedure 3findsa partitioningset D that doesnotcontain anyinput signal.

So, if it is possibleat all given the initialclosedset of compatibles, the heuristic algorithm does not changethe environment
specification.

Proof IfD" isa partitioningset, then for any signal t,also D" U{t} isapartitioningset. SoletD'beanoptimal partitioning
setwithout any input signal. Then the setobtained by adding allthe output signals to D' isalso feasible, and so isevery set
obtained adding toitany number of input signals. But Procedure 3 tries toremove allthe input signals first (iffeasible), and
it willcertainly finda partitioning set without inputsignals,if oneexists. •

Aworst case running time bound for Procedure 3 isOfactn4) (misthe number ofsignals, n isthe number ofstates, cis
the number of compatibles).

5.3 Minimized FSM derivation

The algorithms described above return an assignment ofeach state in the pre-minimized FSM F to one ofthe blocks in the
closed partition ir.

We can now create a minimized FSM F' from F and ir as follows (letvj denote theblock to which state sj belongs):

Procedure 4

1. for each element 7r, of it

(a) create one state sj- ofF'

2. for eachstate sx of F

(a) for eachfanout edge with input label i and next state s2
i. create one edge between s[ and s'2, with input label iand the same output label as 0(i, sx)

The result ofthe above algorithm on the FSM ofFigure 4appears in Figure 8. Notice that now the output labels appear
on the edges rather than on the states.

It is easy to show that, since ir satisfies the closure condition, then F' is adeterministic FSM. We can now proceed to
encode the states of F', as will be shown in the next section.

6 Critical race-free State Assignment

After the FSM is minimized, astate assignment is performed. This step must not introduce any critical races and should allow
state signals to change as soon as possible. We employ Tracey's single transition time (STY) state assignment technique [14]
because it satisfies both of these criteria.

Tracey's technique is based on a set ofdichotomy constraints extracted from the FSM. Each dichotomy constraint
represents atwo-block partition in which the states in one block need to be distinguished from the states in the other block by
at least one state signal. For example, adichotomy constraint, {si,s2; s3, s4}, means that there should be at least one state
signal whose value is 1(0) for si, s2 and 0(1) for s3, s4. These constraints are extracted from the FSM by examining all the
input states or edge labels. If state si makes atransition to state s2 and state s3 to state s4 under the same input state, then we
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Figure 8: Minimized FSM

must have a dichotomy constraint {si, s2; s3, s4};otherwise, there may exista critical racebecause the transient states from
si to s2 and those from s3 to s4 are not disjoint.

After the set ofdichotomy constraints are extracted from the FSM (including all the uniqueness constraints), we try to
find a minimum length encoding which satisfies all the constraints. An encoding of length n (n is equal to the number of
constraints) which satisfies all the constraints can always be found by allocating one state signal foreach constraint and
arbitrarilyassigningvalue I to the states in the firstblock,value0 to the states in the second blockand either 1or 0 to the rest
ofstates. To obtain aminimum 7length encoding, we use the exact constraint solver by Saldanha et. al. [13] which generates
all the prime dichotomies and then finds a minimum cover of the initial dichotomies bythe prime dichotomies.

The complexity of satisfying thedichotomy constraints bythe above technique is0(2"), where n is thenumber of states.
Because thenumber of thestates in the minimized FSM is usually quitesmall, we were ableto find an exact solution to the
encoding problem for all ofour examples. For large FSMs we need todevelop a technique which does not generate all the
prime dichotomies.

7 State signal insertion

We have partitioned, as shown in Section 5, the states in the original FSM F into a closed partition ir, whose blocks are
distinguishable using a selected subset ofsignals D. Then we have used the partition toobtain a minimized FSM F' and we
have assigned, as shown in Section 6, binary codes to thestates of F' without criticalraces.

In this Section we will prove that an appropriate insertion ofstate signal transitions in the original STG can guarantee that
itstill satisfies the original specification, has the CSC property, and that logic can be synthesized from it.

Inbrief for each pair ofadjacent un-minimized FSM states s{, s2 that were assigned todifferent states inthe minimized
FSM (say s[ and s2 respectively), we condition the external signal transitions, which are enabled in s2 but not in any of its
predecessors, tobeenabled only after the state signals that change from s[ to s'2 have changed.

Here we will use an algorithm that gives only sufficient conditions for the STG to have the CSC property. The algorithm
takes as input the original STG G, with initial marking m0, the pre-minimized FSM F derived from it, the partitioning set
Dand the associated closed partition ofthe states of F,and the encoding ofeach state ofthe minimized FSM. Let ir{ denote
the block towhich state s, was assigned, and let s'( denote the corresponding minimized FSM state.

Procedure 5

1. for each pair ofmaximal setsS\ and S2 ofstates ofF such that

• S\ isconnected and all the states in S\ belong to the same minimized FSM state s[ and
• S2 is connected and all the states in S2 belong to the same minimized FSM state s'2 and
• each state in S\ isapredecessor ofat least one state in S2 and each state in S2 isasuccessor ofat least one state

in S\

Note that this may not give the minimum length encoding of [logi(#states)l due tothe critical race-free constraints.
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Figure9: Encoded STG

do:

• let T2 be the set ofexternal signal transitions enabled in some state s2 GS2 but not in any predecessor ofs2
• let T\ be the set ofexternal signal transitions that are predecessors to all the transitions in T2
• foreach state signal x that changes value between s[ and s2

(a) create a new transition x"

(b) for each transition t2 € T2 do:
- for eachtransition t\ G T\

i. let qbe theplace between t\ and t\
ii. create aplace q\ with the samefanin asqand add itto thefanin ofx*

Hi. create aplace q2 with the samefanout asqand add itto thefanout ofx*
iv. store the triple q,qi, q2for later useinstep 2

2. for each added state signal transition x"

• if it hasmore than onepredecessor place

- then

* for eachpredecessor place q\
• ifthe corresponding qin step 1 was marked in mo, then mark q\

- else

* for each successorplace q2
• ifthe corresponding qinstep 1 was marked in mo, then mark q2

In step 1we must assume that it is possible to find, given T2, at least one common predecessor to all the transitions in it.
This assumption will be justified in Section 7.1.

Figure 9 describes the result ofProcedure 5 tothe STG ofFigure 1.
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Figure 10: Case 1 of Lemma 1

We willnowshowthat theoutputof thisalgorithm, called theencoded STG, isa liveSTG withCSC, and thatit specifies
a behavior that is a subsetof the original STG (and as such it is compatible with the original specification).

The first Lemma shows that the procedure produces a liveSTG, usingthe fact that the SM decomposition of the initial
STG is preserved.

Lemma 1 Let Gbea liveSTG, with initialmarking mo, let G' be an encoded STG derivedfrom G as shown in Sections 4,
5,6 and 7, withinitial marking m0.

Then every SM component G hasat leastonecorresponding SM component of G' (possibly more). Furthermore marking
m0 is live andsafe.

Proof We have the following cases for each state signal transition x*.

1. Xq has exactly one predecessor and one successor place, q\ and q2 respectively. Then according to step 2 of Procedure 5,
place q2 is marked in m0 if and only if the corresponding place q in G was marked in mo, and for each pre-existing
SM component including q we have a new one, with the same number of tokens as before (see Figure 10). So the new
marking is also live and safe.

2. xq has more than one predecessorplace. Then again for each pre-existing SM component, we have a new one (see
Figure 11).

3. xq has more than one successor place. Then again for each pre-existing SM component, we have a new one (see
Figure 12).

4. Xq has both many predecessors and successors (see Figure 13). Then a simple case analysis shows that the only live
and safe markings of G are those shown in Figure 13 (and their obvious generalizations to more transitions). Then
again for each pre-existingSM componentwe havea new one. The only case where the numberof tokens is changedis
case (d), but it can still be shown to be live and safe if mo was live and safe. Case (d) needs also to be treated specially
in step 2 of Procedure 5.

Theorem 6 LetGbea live STG, withinitialmarking m0, let G' be anencodedSTG derivedfrom G as showninSections4,
5,6 and 7, withinitial markingm0.

Then G' is live.

Proof As shown in Lemma 1 G' has at least one SM decomposition where the initial token count of each component in m0
is preserved. This ensures:

1. thateach transition in G'can be enabled infinitely often from m0.

2. that no place in G' can be marked with more than one token.

We must still show that the reachability graph of G' can be labeled consistently with signal values.
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Figure 11: Case 2 of Lemma 1
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1. this is guaranteed for external signals by Lemma 1, because the SM component that ensured it in Gis still marked with
one token.

2. for each state signal x:

(a) there can be no two concurrently enabled transitions of xbecause Procedure 5creates only one such transition
between connected sets of boundary states.

(b) moreover transitions of xalternate r^use Procedure 5inserts astate signal transition only if Ae two b^
assigned different codes inthat signal.

•

Theorem 7 Let Gbe alive STG, with initial marking m0, let G' be an encoded STG derivedfrom Gas shown in Sections 4,
5,6 and 7, with initial marking m0.

Then 6" has Complete StateCoding.

Proof Let Fbe the un-minimized FSM derived from Gas shown in Section 5.
Wecan then consider twotypes of markings of G":

1 markings where no state signal transition is enabled. The minimization Procedure 4assigned states of Fwith the same
binary label but with different implied values for output signals to different blocks. These blocks are assigned different
values of the state signals as shown in Section 6.

2. markings where some state signal transition is enabled. Let m\ be any one ofthese markings.
(a) any marking m£ reachable from m\ without firing any state signal was assigned to the same block as m[, so there

can benoCSC problem between m\ and m^.
(b) if astate signal fires, we can use the fact that the state encoding given in Section 6is critical race-free. Then the

implied value of both state signals and output signals does not depend on the outcome on the race, and there is no
CSC problem either.

•

Theorem 8 Let Gbea live STG, with initial marking mo, let G' be an encoded STG derivedfrom Gas shown in. Sections 4,
5,6 and 7, with initial marking m0.

Then G' specifies asubset of the possible execution traces specified by Gwith respect to the external signals.

Proof Procedure 5 does not remove any constraint between external signals from G. •

7.1 State splitting

We are left with only one problem to solve in order to prove the completeness ofthe approach. Procedure 5requires that
for each set T2 oftransitions enabled in all the connected successors ofaminimized state, we can find at least one common
predecessor to all transitions in T28. Asufficient condition to ensure that Procedure 5always terminates successfully can be
obtained bysplitting the states in the minimized FSM, as we show below. +

See for example Figure 14(a) and 14(b), where ifwe constrain both d~ and e~ to follow astate signal transition, say x0 ,
then wesynchronize b~ —* d~ with a+ —• e~.

While this synchronization can be shown to preserve liveness ofan STG whose underlying net is an MG, this is not
true in general for free-choice nets. See for example the net fragment described in Figure 15. The synchronization between
c+ _* g- and d+ —/" does not preserve liveness because x" can never be enabled again if pi chooses c+ but pichooses
e+. We conjecture that iftwo arbitrary concurrent transitions in afree-choice net must be constrained to solve the CSC
problem, then the solution cannot preserves at the same time behavior (modulo areduction in concurrency), liveness, safeness
and free-choice. For this reason, approaches which solve CSC by adding constraints to the STG, such as [16], are unlikely
to be extendable to free-choice STGs.

8Note that this restriction isdue tothe algorithm used toenforce CSC, and its is not inherent in the proposed framework.
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Figure 15: Illegal synchronization in free-choice STG

The problem of finding acommon predecessor toasetof transitions can be solved in somecases by dealing withit during
theminimization procedure. For example in Figure 14(a) there is no problem if a valid partition existswhere s\ is assigned
to the same block as s2 and s3. In the future, we are planning to augmentthe FSM minimization to take into account these
constraints. If there are stillcases where no valid solution can beobtained by minimization alone, then we propose to split
thestate transition. See, for example, Figure 14(c) and 14(d), where wesplit thetransition intofour states, corresponding to
blocks ir\, ir2,7T3 and ir4. Now we force different state signals tochange going from 7^ to ir2 and from v\ to 7r3, i.e. xf and
xj1" respectively.

The algorithm to perform this state splitting is as follows.
S = {si,... sn} be a maximal setof successors of sqsuch that

Let s0 be a state of the original (pre-merged) FSM. Let

• all Si GS belong tothe same minimized FSM state s[,different from the minimized FSM state of s0 (call it s0), and

• the transitionslabeling each edge so —• s, areall concurrent.

Let T2 = Us,esT2ti, where T2ii is the setof transitions enabled in s,- and not enabled in any predecessor of s,. LetTi bea
set, withminimum cardinality, of transitions such that each transition in T2 has at least one predecessor in Tx. Let n be the
cardinality of T\. If n > 1, then we split the transition from s0 to s[ into 2n states. Furthermore we assign state codes so
that there are n disjoint groups of state signals that change value from one state to the other. Each state signal will have a
transition that is a successor of one oif the n concurrently enabled signals, so Procedure 5 can terminate successfully. State
splittingterminates, in the worstcase, when all the states of the un-minimized FSM have beenreinstated, because theneach
T\ has cardinality 1.

The constraint on the disjointness of the state codes can be easily embedded in the dichotomy-based state encoding
procedure. We can just forbid to generate any prime dichotomy that contains sx on one side and s2, s3 on the other side,
because this avoids to produce a solution where thesame state signal changes value going both from si to s2 and from st to
S3-

8 Experimental Results

The algorithms described above have been implemented within the SIS sequential synthesis system developed at U.C.
Berkeley. The FSM minimizer must be able to handle very large FSMs, with thousands of states. So we resorted to using a
heuristic minimizer, that could solve all the cases presented so far inamatter of minutes ([18]).
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name initial final CPU

secsig. trans. states sig. trans. states lit.
alloc-outbound 7 18 17 9 22 3 19 6
nak-pa 9 18 18 10 22 2 30 9.9
pe-rcv-ifc 8 38 27 9 45 2 50 12.1
pe-send-ifc 8 41 54 11 54 4 33 82.2

ram-read-sbuf 10 20 16 11 22 2 20 8
sbuf-ram-write 10 20 24 12 24 3 30 11.5

sbuf-read-ctl 6 12 10 7 14 2 13 5.2

sbuf-send-ctl 6 18 14 8 24 3 34 8.4

sbuf-send-pkt2 6 20 15 7 24 2 11 5.7

sendr-done 3 6 5 4 8 2 5 3.5

atod 6 12 11 7 14 2 14 5.2

nousc 3 6 6 4 8 2 9 4.1

nousc.ser 3 6 4 4 8 2 8 3.8

master-read 14 28 132 17 36 5 77 1635.1

vbe4a 6 12 34 8 16 4 22 10.1

vbe6a 8 16 16 10 20 4 30 18.4

Table 1: Results of the proposed approach

Table 1 contains the result of our procedure on a set of industrial and literature examples, some of which are free-choice
STGs. The columns labeled"initial signals"and"initial transitions" contain the initialsize of the STG. The column labeled
"initial states" contains the number of states of the FSM before minimization, and the column labeled "final states" contains
the number of states after minimization. The columns labeled "final signals" and "final transitions" contain the size of the
encoded STG. The difference between initial signals and final signals is the number of state signals. The column labeled
"lit." containsthe numberof factored form literals in a hazard-free implementationof the encoded STG. The column labeled
"CPU time" contains the CPU time (in seconds, on a DEC5000/125) for the whole minimization, encoding and synthesis
procedure. Example "master-read" took a relatively long time to complete due to the fact that most states were assigned to all
the compatibles by the initial FSM minimization procedure, and then Procedure 2 was slow to converge.

Table 2 contains some results of [17], for comparison. Our procedure obtains largercircuits than Vanbekbergen because
we use state signals to remove CSC violation but preserve the concurrencyof the specification as much as possible, while
Vanbekbergen does not add state variables but reduces the concurrency. For example, the STG called vbe4a was solved
in [17] by removing those states that can cause incompatibilities, without requiring the addition of state signals. Presently
we do not attempt to remove any state and always add state signals,which accounts for the large area penalty in this case.
Applying the state removal technique of [17] withinourframework by hand(without too much attentionto optimality) led to
a result that did not requireany state signal and had 13 literals but more concurrency than [17].

In summary, we were able to obtain the following preliminary information on the power of the proposed methodology
from the experimental data:

1. all the STG examples known to us that required encoding were solved automatically by the procedure, leading to
results similar to hand-encoding (when such an encoding was known).

2. the FSM that must be minimized may have a very large number of states, so that heuristic minimization techniques
must be used.

3. building the BDD for theoptimum procedure was notalways possible, so thetable uniformly shows theresult of the
heuristic procedure (we shouldstill investigate the BDDvariable ordering problem).
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name initial final

sig. trans. sig. trans. lit.

vbe4a

vbe6a

6

8

12

16

6

10

12

20

5

34

Table 2: Results of [17] (for comparison)

9 Conclusions and Future Work

We haveintroduced a novel techniqueto satisfythecompletestate codingproperty on STGs. The technique, unlike previous
results,canhandleany live STG, withoutrestrictions to marked graphsor limitson thenumber of transitionsfor eachsignal.
Furthermore we believe that the proposed framework can be considered general enough to analyze the complete problem of
state assignment for event-based specifications, unlike the various "special cases" described and solved in the literature.

We have established a relation between an STG and an FSM and formulated the state assignment problem as the
conjunction of the constrained FSM minimization and criticalrace-free state assignment problems. This allowed us to prove
a lower bound on the number of state signals to be added in orderto implement the STG specification without substantially
reducing its concurrency.

We are investigating ways to view the technique in [17] in this framework, because we believe our method to be powerful
enough to view the CSC problem in its generality. So we will be able to fully exploit the trade-off between reduction in
concurrency and insertion of new signals.

In the future we are planning to investigate if state minimization can be more tightly coupled with the generation of the
set of partitioning signals,so that the the optimality of the resultcan be defined with respect to all closed partitions, and the
tradeoff between the cost of a partitioning set and the number of state signals can be better exploited. Also state splitting as
in Section 7.1 needs to be more tightly coupled with state minimization.

We also need to explore the BDD variable ordering problem for the optimum partitioning procedure, the insertion of
a minimum number of constraints between external signal transitionsand state signal transitions, to guarantee CSC at the
expense of a minimum loss in concurrency. Furthermore, the state transition insertion currently is done as close as possible
to the pointswhere a statetransition must occur in the STG. This may not be optimal in the general case, because it may be
convenientto maximize the concurrency in the encodedSTG. So we areinvestigatingways to move the predecessors of state
signal transitions as"far back" in the STG as possible,while preserving CSC. In this way the statetransition havemoretime
to fire, and the critical pathsof the specification need not to include the statesignal transitions.

The methodology that we propose may also be useful for performingstateassignments for synchronous FSMs, where we
hope to be able to exploit the use of output signalsas statesignals. We arealso planning to investigate how to use it within
other event-based specifications for asynchronous circuits, such as the one proposed in [2].
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