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A method for storing and retrieving information on the stable cycles of one-
dimensional maps as proposed in [Dmitriev 1991, Dmitriev, Panas & Starkov 1991] is
considered. Applicability of this method to store and retrieve two-dimensional pictures is
demonstrated. Possible extensions by compressing information are discussed. An
implementation of random access memory using a one-dimensional map is also considered.

1. Introduction

Content addressable memory orassociative memory, unlike addressed memory used in

conventional computers, appears to be the way human memory is organized. The writing and

reading out of information are not based on the location of the memory cell but on the

content of the information [Kohonen 1980].

There exists a number of ways to realize associative memory. One of the most

popular among them is the neural network model [Hopfield 1982, Grossberg 1988, Carpenter

1989]. Such models are described as dynamical systems and objects being memorized or

recognized correspond to basic attractors, such as stable equilibrium points.

Experimental data suggests that more complicated dynamics, including chaotic
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dynamics, play an important role in the information processing of biological neural systems

[Skarda & Freeman 1987]. In this regard, it would be interesting to investigate

information processing based on complicated nonlinear dynamics.

One-dimensional maps are simple models with complicated nonlinear dynamics

[Sharkovsky et al. 1986, Sharkovsky et al. 1989]. They are used in studying how cycles of

long periods play a role in information processing [Auerbach et al 1987], in investigating

the problems involved in the reconstruction of invariant strange sets in terms of cycles

[Cvitanovich 1988], in examining the feasibility of constructing grammars with allowed

words on the basis of unstable periodic orbits [Procaccia 1988], and in analyzing

information processing in systems with complicated dynamics [Wiegrinck & Tennekes 1990],

among others.

A method for storing and retrieving information based on the stable cycles of one-

dimensional maps was proposed in [Dmitriev 1991, Dmitriev, Panas &Starkov 1991 ]and simple

examples demonstrating the method were given. In the present paper we discuss the

proposed method in detail and extend it in various ways. More complicated examples are

used to estimate the potential efficiency of the method. In particular, we will use one-

dimensional maps to store and retrieve black and white and color pictures.

Strong and weak points of our proposed approach are elucidated. For example, the

presence of identical fragments having a length greater than or equal to the number of

storage levels proved rather typical in pictures with a large number of elements. More

storage levels are needed to store such images, leading in turn to a sharp increase on the

average number of iterations before converging to the cycle corresponding to the stored

picture.

To increase the storage capacity we introduce a more effective coding of information

blocks and show that this will also alleviate the problem of long transient times.

We will also show how to obtain an explicit compact representation of the maps with
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the stored information. In particular we will use the canonical piecewise-linear

representation in [Chua & Kang 1977].

Finally, we will show how intermittency can be used to realize random access memory on

one-dimensional maps.

2. Method for storing and retrieving information in one-dimensional maps.

Let us consider a string of symbols

a a a ... a (1)
1 2 3 n v '

consisting of n elements. We will call such a string an information block. The elements

of the string belong to an alphabet of N symbols. For example, the alphabet can be the

digits in octal, decimal, hexadecimal notation, the English alphabet, or a set of colors.

We want to design one-dimensional discrete-time dynamical systems (one-dimensional

maps) with M attractors (which in our case are stable cycles) such that the attractors

correspond to M information blocks. Given such a map, and an initial condition on any of

the attractors, the corresponding information block can be retrieved unambiguously from the

iterates of the map. If the initial condition is arbitrary, then it can be in the basin of

attraction of one of the attractors and the trajectory will converge to the attractor, i.e.

an information block will be retrieved from the initial condition. Here we have an analogy

with how attractors are used in Hopfield-type neural networks [Hopfield 1982, Hopfield

1984]. The difference is that our attractors are stable limit cycles instead of stable

equilibrium points.

To design a map f with a cycle of period n consisting of the points xlf...,xn, the

map should satisfy xj+1 = f(xs) for 1 < i < n and x, = f(xn). Therefore the map should

have the following points in the graph (the xm-xm+1 plane): (x^), ...(xni,xn), (xn,xi).



If we draw a curve through these points, we would have a map with the corresponding cycle.

This allows us to create maps containing an arbitrary cycle of a given period, assuming the

cycle elements do not repeat themselves within one period. To make the cycle a stable

limit cycle, we use the following fact from nonlinear dynamics: a limit cycle of a 1-D map

is stable if the product of the derivatives at all of the cycle points on the map has

magnitude less than 1. Therefore to make the limit cycle stable, we can simply draw a

short line segment through each cycle point having a slope of magnitude less than 1. The

intervals resulting from the projection of all of these line segments onto the x-axis will

then belong to the basin of attraction of the limit cycle.

If an initial condition is set on any of the intervals belonging to the basin of

attraction of a stable cycle, then the corresponding trajectory must asymptotically tend to

the cycle. We define a neighborhood of each of the cycle points to correspond to an

element of the alphabet, so that the cycle corresponds to an information block consisting

of a string of symbols.

To illustrate this, let us design a map with a stable limit cycle corresponding to an

information block. Consider an alphabet of N symbols. Assume for now that the information

block is a string without repeating elements (aj * aj, for i * j).

Let us divide the unit interval into N equal segments and number them from 1 to N.

Each point in the i-th interval corresponds to the i-th element of the alphabet. The

center of the i-th interval is located at (i-0.5)/N. The map will consist of n short line

segments inclined by an angle less than rc/4, and connected to each other by straight lines.

The coordinates of the middle points of these segments are
((mi - 0.5)/N, (m2 - 0.5)/N),...
((mn^ - 0.5)/N, (mn - 0.5)/N), (2)
((mn - 0.5)/N, (mi - 0.5)/N),

where rrij is the number of the segment corresponding to ajf the j-th element of the

information block. The length of the projection of each segment on the xm-axis should be
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less than or equal to 1/N (though equal for all segments) and is chosen to be 1/N, for

simplicity. Finally, let us connect the endpoints of the segments to obtain a continuous

1-D map. The resulting map will contain a cycle passing through the centers of the

segments. The cycle is stable, because

Ik^-kJ < 1 (3)

where kj is the slope of j-th segment.

Example 1. Let the alphabet be the first 10 letters of the alphabet a, b, c, d, e,

fi g> h, i, j. We want to store the word big (an information block consisting of the three

elements b, i, g) on a map. We divide the interval [0,1] on the xm-axis into 10 equal

segments (Fig.1a). Each segment corresponds to an element of the alphabet. The second,

ninth and seventh segment on the interval [0,1] correspond to the letters of the word big.

The middle points of these segments are xb=0.15, Xj=0.85, xg=0.65 which form a cycle of our

map. Therefore the points (xb, xj, (xif xg), (xg, xb) are points of our map in the

(xm,xm+1) plane (Fig.lb). Through each point of the cycle we draw a short line segment

centered at this point. The projection of the line segment onto the xm-axis coincides with

the corresponding interval (Fig.1c). For example, the projection of the line segment

passing through (xb> Xj)=(0.15, 0.85) coincides with the interval [0.1, 0.2]. Each line

segment, which we call an information district has a fixed length and has a slope of

magnitude less than unity. We will call the projection of an information district onto the

xm-axis an information interval. To complete the map, the endpoints of the information

districts are connected to each other and to the ends of the interval [0,1] (Fig. 1d).

To obtain a map containing an arbitrary but finite number of stable cycles the same

procedure is applied to obtain line segments going through points in each cycle. If each

element of the alphabet occurs in at most one information block and at most once in an

information block then the segments' projections onto the xm-axis do not overlap. The line

segments can then be connected with straight lines to obtain a complete map f.



When the initial condition x0 is set within the segment corresponding to an element

of one of the information blocks, then the trajectory x^x^...,^,..^ where

xi+i=f(xi), (4)
will converge to the limit cycle corresponding to this information block.

Let the alphabet be the set of numbers 0,1,...,N-1. The information block a1t...,an

corresponding to the cycle x1>x2,...,xn is then simply given by the rule

a. = int (Nx.) 1 < i < n (5)

where int(-) denotes the "integer" part of (•).

If the initial condition is one of the elements of the cycle then applying the map

f(-) iteratively will generate the cycle which corresponds to the information block of

symbols (1). In order to retrieve a particular string of symbols, a trajectory need only

originate from one of the information intervals, because according to the correspondence

between intervals and symbols of the alphabet, any point within an information interval

corresponds to the same information block element.

When considering methods for storage and retrieval of information one of the most

important characteristics is the information storage capacity, i.e. the maximum amount of

information that could be stored and read out. in the simple version of the method

discussed above the storage capacity is not large. However the potential information

storage capacity can be substantially increased if the above procedure is generalized as

follows.

As before, each element of an information block defines a segment, henceforth called

the level-1 segment, within the unit interval. This segment is in turn divided into N sub-

segments of length 1/N2. The location of each sub-segment, called the level-2 segment,

within the level-1 segment corresponds to the next element of the information block. This

procedure can be repeated recursively to obtain level-3, level-4,..., level-q segments,

where q is the total number of nested levels in this storage scheme. We will call q the



number of storage levels. In this case, the unit interval is divided into

L = Nq (6)

sub-intervals. Each sub-interval [a,b] of length N"q is a subset of "q"-nested sub-

interval of length N"(q-1) N"1; i.e. [a,b] c [a^b,] c ... c [a,,-,,^..,] where

bj-aj=N"(q"j). Hence, each subinterval can be thought of as the code of a q-symbol string.
Let the alphabet be the numbers 0,1,...,N-1. The sub-interval corresponding to the

symbol at when storing the information block (1) is [x!,x[], where
r i*

*!=IWNi (7)

xr = x1 + 1/Nq (8)
ii x '

and

g(i,j) = ((i+j-2) mod N)+1. (9)

In other words, instead of coding n symbols a1v a2 an, as n intervals of length

N"1, we create n associated strings a^.-.aq, a2a3...aq+1, ..., s^a^-.-a^ and code each

string into a "q"-nested sub-interval of length N"q. Note however that after the map is

constructed, and we are retrieving an information block, the correspondence between points

in the unit interval and the alphabet is still described by (5).

The retrieval of an information block is performed with a substring of the

information block, henceforth called a block fragment. If the fragment length is equal to

or exceeds the number of storage levels, then by our coding method, the fragment

corresponds to at most one stored information block. The corresponding initial condition,

which is extracted from the first q symbols, will automatically fall within the segment

belonging to the basin of the corresponding attractor. If the fragment length is less than

the number of storage levels, then more than one stored information block can have the same

fragment as a substring.



Ambiguous retrieval, because of the map becoming multivalued, occurs only when two or

more identical fragments of length exceeding q-1 exist in the stored information blocks.

In this case a larger number of storage levels is needed for unambiguous storage and

retrieval.

Example 2. Let us return to Example 1. The word big can be written using not only 1

level as before, but using several levels of storage as well. For instance, if we store

the word big using two storage levels (q=2), then the coordinates of the periodic points

will be (xb, Xj)=(0.185, 0.865), (x,f xg)=(0.865, 0.615), (xg, xb)=(0.615, 0.185). In this

case, the length of the information intervals is N"q=10"2=0.01. If we choose 3 levels of

storage, then the periodic points are (xb, Xj)=(0.1865, 0.8615), (xj, xg) = (0.8615,

0.6185), (xg, xb)=(0.6185, 0.1865). The map resulting from storing the word big using 2

storage levels is shown in Fig. 2.

When implementing this on a digital computer, the limit on the number of storage

levels is determined by the maximum number of significant digits used in the calculations,

and by the length of the alphabet. Numerical simulations show that with a 10-symbol

alphabet and an accuracy of 10~8, six storage levels can be reliably realized. So we can

make the information intervals as small as about 100 (« 6 bits) times the accuracy we are

working with. Hence an upper estimate of the limit capacity E of a one-dimensional map

when using M significant binary digits, M > 6, is

E cc 2M"6 (10)

It follows from the above map design rules that the repetition of any subsequence of

elements with length equal to or exceeding the number of storage levels in any information

block or even in different blocks will lead to the indistinguishability of the

corresponding map fragments. So in order to use the above method for storing and

retrieving information unambiguously, the repetition of symbol groups longer than (q-1)

should be avoided. This is our "time orthogonality" condition for ideal storage of images.

8



This restriction can be overcome by a further generalization of our map design and our

information storage and retrieval algorithms to be discussed in section 7.

3. Relation with the Bernoulli shift.

Given an initial value x in the unit interval, our one-dimensional map generates a

sequence of iterations

V xi =f<xo)' x2 = f(Xi) = f(f(xQ)) ... (11)

Let N be the alphabet length. Any number xQ in the unit interval can be expressed in a

radix N representation:
oo

X0 =I aVN'V = (0CXia2a3 "•)• (12>
V=1

where a e {0....N-1}. The classic Bernoulli shift map for N symbols is defined by

x = ¥(x ) = Nx mod 1, n = 0, 1, 2..., (13)
n+1 x rr n x '

and is shown in Fig. 3. The action of the Bernoulli shift of N symbols on the radix N

representation of x0 consists of discarding the first digit after the N-ary point "•", and

then shifting the remaining sequence to the left. In other words, (O.a.a.a. ...) becomes
12 3

(0.a2a3a4...).

If the length of the information block (or the total length of all information blocks)

is big enough, and the "probability" of transition from any of the N elements of the

alphabet to any other element is nonzero, then the rough structure of our map will resemble

the Bernoulli shift map for N symbols ¥(x). In our coding scheme, the p-th digit after the

N-ary point determines which level-p segment the point corresponds to. In our map, the

first digit after the N-ary point determines which element the point corresponds to. The

second digit after the N-ary point determines which element the first iterate of the point

corresponds to. This observation is reflected in the fact that the rough structure of the



map is close to that shown in Fig. 3.

It should be noted that the rough structure of the map will be close to that shown

in Fig. 3 even after the "factor of magnification" is increased by N times or more, (if the

total length of information blocks is sufficiently long) up to the "factor" of Nq, where

the map begins to differ from inclined straight lines. It is at this level of resolution

where information is stored.

Consider an initial condition with a finite N-ary expansion of q N-ary digits.

After q iterations of (13) the last digit will be moved to the first position. But in our

map f we insert a new digit at the q-th position at each iteration. If the accuracy of the

calculations is less than or equal to N1"q, then the map f is "expansive" and has a uniform

invariant measure on the interval [0,1]. The Lyapunov exponent for scales larger than or

equal to N1'q is X= In N.

Example 3. Let us illustrate the above observation by the following example. The

information block is the following sequence of 0's and 1's of length 25.

1011011000100010001101100

The alphabet is 0 and 1 and we store this information block using 10 levels. A

schematic picture of the resulting 1-D map is shown in Fig. 4. Although a magnification of

a small portion of this map shows some deviations from a straight line of slope 2, a rough

view of the map is very close to the Bernoulli shift for two symbols.

The length of the information districts for this example is 2"10. To verify our

statement about the macroscopicaly rough and microscopically fine structure of the map we

simply iterate the map using limited precision. We find that the iterations do not

converge to the information block when the error made in each iteration is larger than the

length of the information intervals.

We can also reduce the precision of the calculation by adding external noise. In

this case, our system will be described by the equation
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Xn+1 = f(X„) + Sn (14)

where £n is a random variable with a uniform probability distribution on the interval

(-e,e). Figure 5 shows schematically how the graph of map iterations versus e would look

like. As e is increased, the system moves from a stable limit cycle to a chaotic state

when the value of e becomes more than ec. In the chaotic state, the iterations have a

uniform probability distribution on the interval (0,1). The value of ec is approximately

equal to one half of the length of the information districts.

4. Algorithm for storing and retrieving pictures.

Let us apply the method described in section 2 to store and retrieve two-dimensional

pictures. First we divide a two-dimensional picture somehow into a set of elements. Then

we choose an alphabet of these elements, and introduce a scanning order, to generate a

string of symbols. Each of these steps may be done in different ways. We will proceed as

follows.

The first step consists of a spatial digitization to transform the initial picture

into a pattern with mxn cells. The color of each of these cells is digitized to the

nearest color from a palette of a finite number of colors. The basis of the alphabet is

the color palette, consisting of N colors. The pattern corresponding to the picture
C

consists of mxn elements from this alphabet. We can express this pattern as a two-

dimensional matrix

A = [a„], i=1 m, j=1 n, (15)

where each a., is an element of the alphabet.

The next step is the construction of the information block. As was noted before, this

could be done in different ways (depending on the particular problem), but the

transformation of the mxn pattern to an information block and the reverse transformation

must both be one-to-one.
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We will transform the two-dimensional pattern (matrix A) into an information block by

reading it line by line from top to bottom. As a result we obtain a one-dimensional

sequence of mxn symbols:

a ...a a ...a ... a ...a , (16)
11 1n 21 2n ml mn' *,D'

As a cycle of period p repeats itself after p symbols (p = mn in (16)), all cyclic

permutations are equivalent and generates the same trajectory. We can say that the system

loses its initial phase when converging towards the cycle.

This situation is undesirable when working with pictures, since a picture has a

definite beginning and a definite end and when a cyclic permutation of such an information

block is transformed back into a two-dimensional array, the result is often unrecognizable.

Therefore we mark the beginning of the information block by putting a label, which

constitutes a special symbol in the alphabet, at the beginning of the information block.

Correspondingly, when restoring the pattern from the values of the mapping variable at the

limit cycle, we consider the first element after the label as the beginning of the picture

(the label itself is not displayed). Thus the alphabet is augmented with the special

symbol for the label. The label element is used only once in each information block.

Example 4. Let us store in a one-dimensional map a picture of the letter R, as shown

in Fig. 6. We express this picture as a sequence of binary elements (black and white) and

add an element corresponding to the label at the beginning of the sequence. Assume that

the alphabet consists of three elements 0, 1, 2, where 0 corresponds to black, 1

corresponds to white, and 2 corresponds to the label. Then the information block is

written as

2111110010001010001011110010100110011.

Now we should determine the minimum number of levels necessary to store the image

unambiguously. From Fig. 6, observe that the above string contains 2 identical sub-strings

or fragments (01000101) of length 8. Hence the number of storage levels cannot be less
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than 9. Let us use 10 storage levels to store the images in Fig. 7. The resulting map is

shown in Fig. 8. The limit cycle corresponding to the picture of the letter R is also

shown in Fig. 8. Note that the "rough" structure of this map resembles the map of the

Bernoulli shift for three symbols.

In the case of color pictures the alphabet consists of N +1 elements, the set of

colors plus a symbol for the starting label. The main problem in storing such pictures is

the possibility of long identical fragments. For example, in Fig. 11a the maximal length

of identical fragments is more than 20 (therefore q needs to be larger than 20). Since the

length of information intervals is proportional to (N+1)"q, the presence of long identical
C

fragments in the picture requires high precision calculations. Furthermore, the average

amount of transient time needed before a trajectory converges to a cycle for arbitrary

initial conditions also increases with a decrease in the size of the information intervals.

To estimate the average time for a trajectory to converge to a stable cycle, when the

initial condition is chosen arbitrarily on the interval [0,1], let us model this

convergence process as a transient chaos. The dependence of the average time of a chaotic

transition process on the system parameter was studied in [Grebogi, Ott & Yorke, 1986] for

the case when the chaotic attractor transforms into a chaotic transition process as the

attractor collides with the attractor border (crisis). The typical average "convergence"

time T depends on the system parameter p as T « |p-p |"Y where p is the parameter value
C C

for the crisis point, and y is called the critical exponent of the transition process. A

theory for determining y for two-dimensional maps has been developed and a comparison with

numerical experiments has been given. This theory has been shown to be applicable also for

the critical behavior in internal crisis, and for the estimation of the average time of

transition process in controlling chaos. We will apply this theory to estimate the average

time of convergence to limit cycles in our one-dimensional maps.

Consider the process of convergence to a stable limit cycle as a transient chaos.
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The latter arises from a strange attractor by means of an internal bifurcation leading to

the birth of a stable cycle. If we simply consider each section with slope k and an x-axis

projection equal approximately to A ~ N"q as a perturbation in the Bernoulli shift map for

N symbols, then this perturbation would be singular. Therefore we use the following

procedure:

1. For every size of information districts and a fixed value for its slopes an average

time of the transition process T is assumed to exist, and the probability distribution of

the transition process duration is assumed to be exponential

p(x) oc T"1exp(-T/T). (17)

2. The dependence of T on the length of information intervals, as in many other cases

of crises and internal bifurcations, is assumed to be

T « A"Y (18)

for small A, where y is the critical exponent of the transition process that is to be

determined. The simplest approach for evaluating y is as follows. The invariant measure

of the strange attractor from the Bernoulli map x , = Nx mod 1 before the birth of a
n n+1 n

stable limit cycle is uniformly distributed over the interval [0,1]. So when we introduce

n£ information intervals of length A (the total measure of these intervals is \i(x) = n^A),

the probability of falling onto one of these intervals , assuming a uniformly probability

distribution for the initial system, is n(x)/|i(1). Thus the average time in which the

trajectory falls onto one of the information intervals is

T'1 oc ^i(x) =nzA (19)
Hence

14



T oc (nrA)'\ i.e., y =1 (20)
In our case this equation becomes

T oc (n2)"1Nq (21)
So if the number of the storage levels is too high, the convergence to the cycle will not

occur in a reasonable time. We call this excessive convergence time phenomenon an

"exponential catastrophe". We will discuss how to overcome this problem in section 7.

5. Information capacity of associative memory based on one-dimensional map.

The information capacity of a one-dimensional map, designed for associative memory,

is closely related to the questions arising from storing images. We want to know whether a

given image can be stored for a chosen number of storage levels and a chosen alphabet

length. Even more important is the question of whether a relatively small number of levels

can be chosen to store a given image. These and other questions are typical when analyzing

the potential of the method and comparing it with other methods for storing and retrieving

information.

Consider the storage of the information block 174. Let the alphabet be the numbers

0,1,...,9. This block may be stored using only one level. On the same map, we can also

store the information block 286. But if we then try to store the information block 173, we

will find out that it is impossible, because the map becomes multi-valued. However, if we

use 3 levels, then all three information blocks can be stored on the same map.

The absence of identical fragments having a length equal to or greater than the number

of storage levels is our condition of "time orthogonality" for images to be stored and

retrieved unambiguously using 1-D maps.

To answer the question about the information capacity of the method we should solve

the following problem: how many images of length n can be stored using the symbols from an
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alphabet of size N and the number of levels equal to q?

Here we give the solution for the method of image storing without labels. First let

us consider how many strings there are of length n in an alphabet with N symbols. Since

we do not use a label symbol, all cyclic permutations are considered the same. For

example, the sequences 174, 741, 417 represent the same information block for this method

of storage without label. As there could be strings that are identical to some of their

cyclic permutations (for example, a string consisting of the same symbol of the alphabet),

the total number of different strings of length n is equal to or larger than Nn/n.

Consider the case q > n. In this case the number of storage levels is greater than

the image length. Let p be the number of information blocks that are identical to some of

their cyclic permutations. These p information blocks cannot be stored on our 1-D map

because they fail to satisfy the "time orthogonality" condition. All information blocks,

except these p blocks, can thus be stored, since two different strings of length n can

only have identical fragments of length less than n, and hence less than q. So these

strings satisfy the "time orthogonality" condition. The total number of different strings

of length n that can be stored is thus (Nn-p)/n < Nn/n

In the case q < n the number of storage levels is less than the image length.

Consider the information block

C = C^.X, (22)

where the c.'s are elements of the alphabet. The information block C is stored at the

level q, q < n. To check whether C satisfies the "time orthogonality" condition, we should

compare all fragments of length q of the image, i.e.

^j = Cg(U)Cg('.2)—Cg(i.q)> i=1 —n» (23)
where g(i,j) is as defined in (9). If all these fragments are different, then the

information block can be stored. But then none of these fragments could be used in any

other image to be stored.
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The total number of the fragments with length q is equal to Nq. When storing one

information block we use n of them, which are all distinct because of the "time

orthogonality" conditon. Any other information block containing any used fragments could

not be stored. In other words, a stored information block of length n has n distinct

fragments (substrings) of length q. Therefore the number of information blocks of length n

that can be stored is less than or equal to Nq/n.

Thus, the information capacity (Cap) of storing information blocks on stable cycles of

one-dimensional maps without labels (with all images having length n) is

Nn

Cap <
n < q

n (24)
Nq

n > q
n

For example, let us consider how many six-letter words could be stored using 3 levels.

The alphabet consists of 26 elements. The total number of information blocks (words), with

cyclic permutations considered the same, is larger than 266/6. If we store the word

"cipher", then we would not be able to store information blocks containing "cip", "iph",

"phe", "her", "ere", "rci" as substrings. Having stored the word "coffee" along with the

word "cipher", we exclude six more fragments ("cof", "off", "ffe", "fee", "eec", "eco")

from the list of available fragments. To store six-letter words using 3 levels (N=26, n=6,

q=3), the capacity Cap < 2929.

It follows from equation (24) that Cap <, 1 when n=Nq, and if n > Nq then no- images can

be stored. So for a given N and n, the minimum number q of storage levels is given by

q=int(logNn) =int(J-J) (25)
The relative capacity (RCap) of the method, defined as the ratio of the maximum number

of images that can be stored unambiguously and the total number of images is:
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__ max. # of images stored ,,..
RCap tntg,, n. 1 anoc— =h<N-n.q)«total # of images

1 , n < q

1 , n>q (26)
(n-q)

N

The relative capacity depends on both q and n, and drops exponentially with a

decrease on the number of storage levels with respect to the length of images.

6. Storing information via canonical piecewise-linear representation of 1-D maps

Maps with the stored information, as studied in this paper are piecewise-linear

functions on an interval. In the process of studying such systems we have to analyze them

in some cases as functions and their transformations. In particular, when analyzing the

stability of an n-period cycle, it is convenient sometimes to use the n-th iterate fn of

the map f. Furthermore, it is useful to treat the map as a function when we insert some

local corrections for removing the "parasitic" stable cycles or strange attractors. On

such occasions and others, it is desirable to express this piecewise-linear function in a

compact closed form. Such an explicit formula can be easily derived by applying the

results of Chua & Kang [1977].

An arbitrary continuous piecewise-linear function defined on an interval is shown in

Fig. 9. If we number the segments of this function from 0 (the leftmost element) to n (the

rightmost element), and denote the slope of the j-th segment as "m", then this piecewise-

linear function f(x) may be represented exactly by the formula
n

f(x) =aQ +a^x +£bj|x-x.|, (27)
j=i

where

al = 1/2 (mQ + mn) (28)
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b = 1/2 (m - m ), j = 1,2... n (29)

n

ao =f(°)-[bjlxj!- 00)

In our case f(0) = 0, and the initial information needed to specify the function is a

M

prescribed set of points (u., v.), i=1,...L, where L =^nv n, being the number of

elements in the j-th information block, and M is the total number of stored information

blocks. Each (us, Vj) is a point of a cycle of our map on the x -x plane. The length

of the projection of an information district on the x -axis (= information interval) is

given by

A = N"q, (31)

where N is the number of elements in the alphabet, and q is the number of storage levels.

The slope k of the information segments is also given.

Now we can express the coefficients ao, a^ bj and Xj in (27) in terms of these

parameters as follows:

X0 = 0' V0 = 0' X2n+1 = 1' V2n+1 =0 (32)
j = 2i - 1, i = 1,...n (33)

j = 2i (34)

j = 2i - 1 (35)

j = 2i (36)

(37)

j = 2i - 1 (38)

m. = (yj+1 - y.)/(xj+1 - x.) j =2i (39)

The expressions (32) - (39) uniquely determine the coefficients for the 1-D map in (27) in
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X. =
J

u.
i

- 1/2 A,

X. =
J

u.
1

+ 1/2 A,

yi = V. - 1/2 k-A,

yi = V. + 1/2 k-A,

•V = y A
m. =

j
k,



explicit form.

7. Coding of information blocks.

In section 2 it was shown that an information block can be stored using q storage

levels only if it doesn't contain coinciding fragments having a length greater than or

equal to q. Therefore the main difficulty in storing information using the above method is

in the storage of information blocks having substrings containing long identical fragments.

It is clear that these fragments contain only a small amount of information, yet it is with

them that our method has the most difficulty. This observation leads us to increase the

the capacity of our 1-D maps significantly by the following generalization.

We will use the following coding scheme for such information fragments. The

information block is first scanned from the beginning to the end. If during the scanning

of an information block, or a set of blocks that are to be stored at the level q, we find

two or more identical fragments with length q, then a new element is added to the alphabet,

representing that very fragment, and all subsequent presence of this fragment in the block

(blocks) are substituted by the new symbol of the alphabet. Then again we scan the

information block (set of blocks) and if again we find (now with the alphabet of N+1

symbols) coinciding fragments with length q, then another element is added to the alphabet

and so on, thereby creating a new alphabet that contains the initial one as a subset. In

other words, we keep q fixed, while increasing N (and decreasing n in some sense) until the

information block can be stored. This procedure allows us to store any information block

using any number of storage levels greater than 1.

Example 5. Let the alphabet consist of two elements (black and white), and consider

a picture consisting of an 8 by 8 array of black squares (Fig. 10). Let us store this

information block using two levels. Following our procedure, the substring consisting of
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the first two elements of the block constitute a new element of our alphabet, as does the

first four elements of the block.

We denote the elements of the initial alphabet as w (white) and b (black), and the

added elements as b , b , b etc. (Fig. 10). The information block will be coded in the

new alphabet as a cycle of period 1 consisting of the element b64. For a picture

consisting of a 64 by 64 array of black squares, the new alphabet consists of the white

element, the black element, 2 black elements (b2), 4 black elements (b4), 8 black elements

(b8), b16> b32 b4096. The new alphabet contains 14 elements, and the information block

is described by a cycle of period 1, consisting of the 14-th element of the alphabet

(b4096)-

Of course, the above examples are degenerate cases for illustrative purposes. Let

us use this method to code the following color pictures.

Example 6. Consider the color pictures in Fig. 11 a,b,c. They consist of 16x24,

32x48 and 64x96 elements, respectively. The picture is drawn in 7 colors, so the initial

alphabet consists of 8 elements (7 colors + the label marking the beginning of the

picture). Table 1 shows the number of elements in the new alphabet (AL) and the period of

the cycle (CP) corresponding to the coded pattern for various numbers of storage levels.

As can be seen from Table 1 in all cases the storage can be performed with single precision

(16 bits) calculations.

The transient process from the initial state converging to a picture with 32x48 =

1536 elements is shown on Fig. 12. Figure 12a corresponds to a typical transient, and Fig.

12b is the corresponding picture which appears right before converging to the stored

picture shown in Fig. 11b.

Example 7. Figure 13 illustrates the simultaneous storage of two color pictures (a

kitten and a elephant) on a 1-D map using eight colors and 3 storage levels. The number of

elements in the new alphabet is 135, where 111 among them are necessary for storing the
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pictures. Figure 13a shows the typical picture corresponding to transient chaos, which

contains portions of both stored images. Figure 13b shows the picture just before

converging to the limit cycle in Fig. 13c. The map for storing these two pictures and the

corresponding limit cycles are shown in Fig. 14. In Fig. 14a the limit cycle corresponding

to the elephant is shown in yellow. In Fig. 14b the limit cycle of the kitten is shown.

The above examples demonstrate the use of coding to increase the storage capacity of

the method. In particular it permits us to set the number of storage levels q to 3 or 4.

The period of cycles corresponding to the pictures are usually reduced by 5 to 10 times.

How can we use our 1-D map as an associative memory model? In our initial storage

method it suffices to take a fragment of the information block having a length not less

than q, and use the corresponding point as an initial condition. Due to our map design

procedure, the corresponding trajectory will immediately fall into the corresponding

information interval, and the information block will be completely restored after the first

n iterations.

The situation is the same for the storage scheme based on the coding method

discussed in this section with the new alphabet. But we would like to retrieve a picture

not by a fragment of the information block expressed in the new alphabet, but by a fragment

of the picture in the initial alphabet. If we know that the fragment of the picture is an

initial substring of the information block, then the problem of associative "recalling" can

be solved by taking a fragment of the picture expressed in the initial alphabet and

matching it from left to right against the elements of the new alphabet, starting from the

longest elements in the new alphabet, and replacing it when a match is found. This will

generate a fragment in the new alphabet, which is then used as an initial condition for the

map.

8. Random access memory via 1-D map
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In our preceding method for storing and retrieving information via 1-D maps, a

stable limit cycle was used to store information blocks. We will show in this section the

possibility to realize random access in one-dimensional associative memory, in the sense

that the trajectory visits all regions which corresponds to information stored in the map.

It is clear that we cannot use stable limit cycles because the trajectory of any point in

the basin of attraction of a stable cycle will remain in the basin of attraction.

We want the trajectory to visit each region (or just the regions where information

is stored) of the phase space from time to time. For this purpose we can use a strange

attractor with a nonzero invariant measure of iteration values in every point on the

interval [0,1]. However, a strange attractor will generally visit each region briefly.

But we can exploit the phenomenon of intermittency in dynamical systems for our

random access memory. When intermittency occurs the phase trajectory of a system "lingers"

in some definite regions of the phase space. In particular, we want the trajectory to be

in the vicinities of the limit cycles corresponding to information blocks.

"Random access" in associative memory can therefore be realized by using unstable

cycles for storing information blocks. Each cycle can easily be made unstable by letting

the absolute value of the product of the slopes of the cycle points to be slightly larger

than 1. Trajectories starting from the vicinity of a cycle will leave the cycle after some

time and begins to wander in phase space until it gets into the neighborhood of the same

limit cycle (or another limit cycle with the same stability property.) Then the trajectory

will linger near this limit cycle for some time before leaving it again. If independent of

the initial condition, the trajectory visits the neighborhoods of all points, then

intermittency with respect to all cycles corresponding to stored information will be

observed over short but random time intervals. Therefore it must be noted that

intermittency takes place in a rather narrow region of the parameter space only.

Trajectories will leave the vicinities of limit cycles corresponding to stored
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information very quickly if the slopes of the information districts are too large. Other

dynamical phenomena can then occur. Analysis of these aspects requires more investigation

and will be reported elsewhere.

Here we restrict ourself to the following examples, which exhibit intermittency

designed into our 1-D maps.

Example 8. In Fig. 15 is shown a simple example of intermittency between two cycles

corresponding to the information blocks 97583 and 12345. We choose the numbers 0,1 ,...,9

as our alphabet and use two storage levels. If the slopes of the information districts are

chosen to be less than 1 in magnitude, then the trajectory of this 1-D map will converge to

one of the two limit cycles (Fig. 15 a,b), as expected. However, if we make the slopes

slightly bigger than 1, then we would observe intermittency (Fig. 15c). In this case, the

system "wanders" between the two cycles.

Example 9. Let us demonstrate the possibility of organizing random access memory

with a more complicated case. Let us store three information blocks corresponding to 3

color pictures of 48x32 elements. We use 8 colors (9 elements in the initial alphabet) and

the stored information consists of the images of the 3 words ORDER, FROM and CHAOS. We

store the information blocks using 2 levels. The method for generating the map is the same

as that discussed in section 7 except that here, we fix the slope of the information

districts to be slightly larger than one. A sequence of snap shots in Fig. 16 taken at

various intervals show the intermittent appearance of all three pictures, but at a random

yet robust order.

The trajectory visits all the regions where information is stored. By switching the

slope of the information districts to be less than 1 in absolute value we can make the

unstable cycle stable. The trajectory will then converge to a cycle, thereby retrieving

the particular information block this trajectory happens to be at when the switching

occurs. For example, we iterate the map used in Fig. 15c for 475 iterations so that the

24



trajectory is near the information block 97583. We then switch the map to the one used in

Fig. 15a,b. The block 97583 is then retrieved as the limit cycle becomes stable (Fig.

17a). Similarly when we iterate the map used in Fig. 15c for 500 iterations and switch the

map, the block 12345 is retrieved (Fig. 17b).

The idea about memory scanning organization using intermittency was discussed

qualitatively by Nicolis [1986,1991]. Intermittency arising in chaotic neural-like systems

with stored images was exhibited in [Aihara 1990]. It was shown in [Dmitriev, Idanova and

Kuminov 1991] the possibility of using intermittency to achieve memory scanning in neural

like systems with chaotic dynamics using an external oscillator which is similar to the

pacemaker.

9. Discussion

The method for storing and retrieving information proposed in [Dmitriev 1991,

Dmitriev, Panas & Starkov 1991], and applied in storing two-dimensional pictures has some

features in common with the traditional models of associative memory developed for the

analysis of temporal associations. But unlike these methods, the proposed method is based

on the properties of one-dimensional maps as dynamical systems and the information

corresponds to stable cycles.

We also discussed the strong and weak points of this method. For example, the

presence of identical fragments with length greater than the storage level is rather

typical in pictures with a large number of elements. Large storage levels are needed to

store such images, leading in turn to the necessary sharp (exponential) increase of the

average time for the iterative mapping to converge to the limit cycle corresponding to the

stored picture.

25



To increase the storage capacity a more effective coding of information blocks is

introduced, which is shown to prevent "exponential catastrophe".

Storing and retrieving information using stable limit cycles of one-dimensional maps

has much in common with the problem of image recognition. Let us compare the main features

of this method with the method discussed in [Haken 1987, Haken 1988]. A string of n

symbols (information block) is also the basis of the Haken method. However, in Haken's

approach the string is treated as a vector or a point in an n-dimensional phase space. In

our case an information block is coded as n points in a q-dimensional phase space (where q

is the number of storage levels.)

X = x ...x , ... X = x ...x , ... X = x xi...x . (40)
1 1 q n-q+1 n-q+1 n n n 1 q-1 x '

Then the points in equation (41) is "packed" into a one-dimensional map (with one-

dimensional phase space), designed so as to create a stable limit cycle passing through the

points corresponding to the elements of the information block.

It should be noted that information is not compressed in this procedure. The

compression occurs when the generalized coding procedure described in section 7 is used.

There is some analogy to the application of Karhunen-Loeve (K-L) decomposition in

Haken's method. It gives a method of systematic decomposition of the image by uncorrelated

components (features). Then we can choose to ignore some of these components. The

coefficients of the K-L decomposition contain all the information necessary to restore an

image. The coefficients of the eigenvectors with maximum eigenvalues contain most of

information (energy) of the image vector.

Thus, to retrieve the image, it is sufficient to use only the coefficients for the

eigenvectors with the largest eigenvalues, because the coefficients for the vectors with

smaller eigenvalues contain a small amount of information. The amount of computation can

be reduced if the decisions are made in a lower dimensional subspace, by neglecting
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eigenvectors with smaller eigenvalues and the corresponding coefficients in the K-L

decomposition, i.e. by compressing some information and by partly discarding some

information. Note that unlike this method of compression, our method doesn't lead to the

loss of information and is invertible.

The common feature of our method and the rapidly developing area of implementing

associative memory in neural-like structures is the use of attractors as objects,

corresponding to the stored images. Our method has the advantage that the algorithm of our

map design is sufficiently simple, and is much less computation intensive than the method

of searching for connection strengths in neural networks. Furthermore, it possesses

considerable capacity and the storage of information blocks is orthogonal by its nature,

because no overlapping of information blocks are allowed. On the other hand, it should be

noted that the extraction of an information block, unlike in neural networks, is

sequential, and hence the number of iterations necessary to retrieve an information block

is proportional to the length of the information block.

Finally, we consider the idea of using unstable limit cycles and intermittency to

generate random access memory, where the trajectory visits all regions in phase space where

information are stored.
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Figure captions

Fig.l 1-D map design for the information block big: (a) correspondence between the

alphabet and the segments on the unit interval; x(l), x(2) and x(3) corresponds to

xb, Xj, xg (b) the cycle coding the word big (c) projection of information districts
onto the x-axis (d) the final map with the stable limit cycle.

Fig.2 1-D map for storing the information block big using 2 levels. The diamonds

show the positions of cycle values when storing the same information block using only

1 level (fig. lb).

Fig.3 1-D map corresponding to the Bernoulli shift on N symbols.

Fig.4 Schematic picture of a map for storing a string of binary digits.

Fig.5 Schematic graph of map iterations versus the level of noise introduced. For e

less than ec the trajectory converges to a limit cycle. For e greater than ec, the

trajectory behaves chaotically.

Fig.6 Representation of the letter R by adding the "label" symbol to a string of

black and white elements.

Fig.7 A set of letters stored on 1-D map. The information block is created by

appending a label symbol at the beginning and reading it line by line.

Fig.8 1-D map for storing the letters in figure 7 as stable limit cycles. The cycle

corresponding to the letter R is shown.

Fig.9 An arbitrary continuous piecewise-linear function defined on an interval.

Fig.lO Use of coding on an 8x8 picture of black squares. The first five elements of

the new alphabet are shown as w,b,b2,b4,b8.

Fig.ll Images of a kitten stored on a one-dimensional map. Seven colors are used,
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with 3 levels of storage. The array size of the pictures are (a) 16x24 = 384; (b)

32x48 = 1536; (c) 64x96 =6144.

Fig.12 Transient process from the initial condition to a stable limit cycle. The

picture stored is shown in Fig. lib. (a) typical trajectory corresponding to

transient chaos; (b) the trajectory right before converging to the stable limit

cycle.

Fig.13 Simultaneous storage of two color pictures (elephant and kitten) using 3

levels. Transient process from initial conditions to one of two limit cycles: (a)

typical picture corresponding to transient chaos and includes color elements of both

pictures; (b) the picture just before converging to the stable limit cycle

corresponding to the elephant; (c) the stable limit cycle corresponding to the image

of the elephant.

Fig. 14 1-D map (shown in blue) corresponding to the simultaneous storage of two color

pictures (elephant and kitten). Shown in yellow: (a) cycle corresponded to elephant;

(b) cycle corresponded to kitten.

Fig.15 Trajectory of 1-D map for storing the information blocks 97583 and 12345. (a)

the limit cycle corresponding to the block 97583. (b) the limit cycle corresponding

to the block 12345. (c) intermittency occurring between the two cycles.

Fig.16 Typical time series of pictures exhibiting intermittency. The words ORDER,

FROM, and CHAOS appears repeatedly. The pictures are taken at various intervals and

appears chronologically from left to right.

Fig.17 Times series showing the retrieval of a selected information block from the

random appearance of stored information blocks, (a) the information block 97583 is

retrieved, (b) the information block 12345 is retrieved.



Table captions

Table 1 Table of alphabet lengths and cycle periods corresponding to different

storage levels. AL = alphabet length, CP = cycle period.



Number of

storage

levels

Number of cells

16x24 32x48 64x96

AL CP AL CP AL CP

2

3

4

5

50

30

34

24

80

102

102

136

109

71

55

206

240

300

>190

162 568

Table 1
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