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Abstract

We show the existence of effective bandwidths for multiclass Markov fluids

and other types of sources that axe used to model ATM traffic. More precisely,

we show that when such sources share a buffer with deterministic service rate a

constraint on the tail of the buffer occupancy distribution is a linear constraint on

the number of sources. That is, for a small loss probability one can assume that

each source transmits at a fixed rate called its effective bandwidth. When traffic

parameters are known, effective bandwidths can be calculated and may be used

to obtain a circuit-switched style call acceptance and routing algorithm for ATM

networks. The important feature of the effective bandwidth of a source is that it is

a characteristic of that source, the buffer size and the acceptable loss probability.

Thus, the effective bandwidth of a source does not depend on the number of sources

sharing the buffer nor on the model parameters of other types of sources sharing

the buffer.



1 Introduction

Effective bandwidths have been discovered for certain traffic models and certain perfor

mance criteria (see [1], [2], [3]). For example, consider a buffer of infinite sizewith service

rate c cells/s. Let X be the numberof cells in the buffer found by a typical arriving cell.

Suppose that

?{X>B} < e~BS (1)

must be satisfied (the performance criterion). Suppose further that there are Nj inde

pendent on-off Markov fluids [4] of typej (j = 1,2,...,if) sharing the buffer. Gibbens

and Hunt in [2] find constants at- that depend only on the parameters of a type i source

and 8, such that the constraint (1) holds for BS » 1 if and only if

K

i=i

We call cti the effective bandwidth of an on-off Markov fluid of type i.

In general, effective bandwidths depend on both the traffic/buffer models and the

performance criterion. Kelly [1] finds effective bandwidths for GI/G/1 queues under (1)

and for M/G/1 queues with the performance criterion taken to be the buffer utilization

(fraction of time X ^ 0) or mean workload (EX < B). Courcoubetis and Walrand [3]

find effective bandwidths for stationary Gaussian sources under (1). The open question

answered in this paper is the existence of effective bandwidths for more general source



models under (1).

We start by heuristically deriving an expression for P{X > B) for general source

models. Consider an infinite buffer with service rate c shared by JVt- sources of type i,

i = 1,..., K. All the sources are assumed independent. For all Mt- greater than the

average rate of cells produced by a source of type i, assume that the probability that a

source of type i produces M{T cells over a period of time of length T is approximately

exp(—THi(Mi)) where Hi is strictly convex and non-negative (this assumption follows

from large deviations as we will see later on). By independence, the probability that, for

j = 1, ...,iVt-, the jtn source of type i produces fijT cells over time T is about

exp(-rf>t(Mi)
i=i

Consequently, the probability that all sources of type i produce a total of N{MiT cells

over large time T is about

£ exp(-T £>;(/*;)

where fjt = (//i,..., /jjv<). Indeed, each choice of \i such that 2 H = N{M{ is one particular

way for N{MiT cells to get produced. This sum of exponentials can be approximated by

the largest term (originally an argument of Laplace):

vZv-"t»*i V >=1 J \ ":X>>=JV'M< i=l



= exp(-TNiHi(Mi))

where the last equality is due to the convexity of Hi. Therefore, by independence, the

probability that, for i = 1,..., JK", the sources of type i produce NiM{T over time T is

about

«p(-T£;wr<(*i)
\ t=l >

Thus, the probability that, starting from an empty buffer, the sources of type %

produce cells at rate NiMi until the buffer occupancy exceeds B is

exp (_BZNiHi(Mi)\
PV UNiMi-c)'

Indeed T = J5/(E NiMi —c) is the time the buffer occupancy takes to reach B when the

aggregate cell arrival rate is £ NiMi. By the argument of Laplace, the probability that

the buffer occupancy, starting from empty, reaches B before it returns to empty is about

exp(-S inf f%%m MP{X>B}. (2)
\ £ NiMi >c E NiMi -c) l J v ;

This paper is organized as follows. In section 2, we show the existence of effective

bandwidths in the multiclass case if the Hi satisfy certain conditions. In section 3, we

give expressions for the Hi for Markov fluids, Markov-modulated Poisson processes, and

discrete-time ergodic stationary sources. Finally, conclusions are drawn in section 4.



2 General Effective Bandwidths

We now show the existence of effective bandwidths. First, some assumptions on the Hi

are made, then effective bandwidths are defined by considering the single source case,

and finally the multiclass case is considered.

Consider an infinite buffer with deterministic service rate c cells/s, shared by N%

independent sources of type i, i = 1,...,K. Denote by [•.,•] the scalar product. Let

I\- £ (0,oo] (respectively 7,- 6 [0,00)) denote the maximum (respectively minimum)

possible cell arrival rate of a type i source. Let 7,- 6 (0,00) be the average arrival rate of

a type i source. We assume that

N e C:={JVGR£ : [N,T] > c and [Nrf] < c]

where 7 = (71,...,7K) and T := (r1,...,rJr). Let M = {MU...,MK).

By equation (2) we expect that

?{X>B} = exp(-BI{N,c) + o(B)),

where

MeA(N,c) [JV,M]-c (3)

and A(7V,c) := {MgRf : 7,- < M{ < I\- Vi and [N,M\ > c}. Thus, the constraint



(1) is equivalent to

I(N,c) > 6.

We make the following assumptions about Hi over the interval (7t,I\) for all i:

[H.0] 7i < 7,. < I\;

[H.l] Hi is strictly convex and Hi € C1^,]?,);

[H.2] oo > Hi(Mi) > 0 with Hi(Mi) = 0 & M,= 7,.;

[H.3] Ht{Ti-) = 00 even when I\- < 00.

As we will see later, assumptions [H.l] and [H.2] are an immediate consequence of

the theory of large deviations. Assumption [H.3] will also be justified later.

We will need the following technical result.

Lemma 1: For all a € (7t-,I\),

Hj(Mj)
Mi™. Hi(Mi)(Mi -a)

Proof: Fix a € (7,->r,-). Note that if I\- = 00, then by convexity

Hi(Mj) Hi(Mi)
1 > .Km w/,,;;.;/ r = limm^oo Hi(Mi)(Mi - 7J m.-oo Hl(Mi){Mi - a)



If I\- < co and JT(rt—) < oo then, by [H.3],

Hj(Mj)
Mi™i H'i(Mi){Mi - a)

Finally, if Tt- < oo and H(Ti~) = oo, define fa(y) := fT,-(rt—y1) for y <E ((r,—f,.)-1,*)).

Note that <j> is strictly convex and

lim *M , = * Urn *«
M,-r, Hi(Mi){Mi - a) I\ - a *-«, #.(y)y2

r,. - a y-°° <t>'i(y)y2

= 0. 4>

2.1 Single Source Case

Consider an infinite buffer with a single source of type i. For 6 > 0, define a,-(£) to be

the value of a such that

JEft(Af<)
i,(a) := mf -r-p—- = d

where At(a) := {Mt- : a < Mt- < I\}. Thus, at(£) = Jf1^) can be interpreted as the

rate at which to serve a single source of type i so that the constraint (1) is satisfied. We

call ai is called the effective bandwidth of the type i traffic. At this point we show that

at is well defined.

Lemma 2: at- is a continuous, increasing function on (0,oo) with range (7t-,I\).
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Proof: For a G (7t-,I\-), define

fin M\ - H*Mi)fi{a'Mi) - M^Z'

so that Ii(a) := infjvfl€A<(a) /i(a,M,-). To evaluate I; note that,

dMi
(a,M,) = 0 ^ #(a,M;) = 0

where

c/t(a,Mt) := ^(Mt)(Mi - a) - #(Mt). (4)

By assumptions [H.0]-[H.2], gi(a,a) < 0 and #(a,-) is increasing on [a,I\). By

lemma 1, #(a,I\—) > 0. See Figure 1. Thus, /,(a,-) is unimodal on [a,rt) and there

exists a unique Mt(a) € (a,I\) such that gi(a,Mi(a)) = 0 and

Ii(a) = /i(a,jfli(a)) = ff{(M<(a)).

Note that Aft(a) is continuous by [H.l], which implies that U is continuous as well.

We will now show that /,(•) is increasing on fti9Ti). Clearly Mt(r,—) = Tt-. Also,

assumptions [H.0]-[H.2] imply that #/(Mt) > ^t(Aft)/(Mt- - 7,-) for all Mt- € for,-)-

Therefore Afe(!ft+) = 7,.. Finally, by differentiating gi(a,Mi(a)) = 0 imphcitly, we find



that

M'Aa) = A tV %\ n > 0
H<'(Mi(a))(Mi(a) - a)

for all a € (7;,I\). Therefore Ii(a) = H-(Mi(a)) is an increasing function on the interval

(7,-,r,) with ii(7,-+) = 0 and ii(r,-) = oo as desired. 6

Assumption [H.3] is now physically justified in the following way. Given an infinite

buffer with service rate a cells/s and a single type i source, the probability that the

buffer occupancy, starting from empty, reaches B before it returns to empty is about

exp(—BIi(a)), for all sufficiently large B. Therefore, as a —• I\ < oo we expect that

exp(-BIi(a)) -• 0, for all sufficiently large B. Thus, as a -> I\-, Jt(a) -• oo. The

statement of assumption [H.3] now follows from the fact that 7t(a) = H-(Mi(a)) and
A

that Mi(a) -+ T,- as a —• oo. When Hi does not have a continuous derivative ([H.2]), an

identical assumption to [H.3] can be made on the generalized gradient of Hi instead of

H[.

2.2 Multiclass Case

In this section we evaluate I(N, c) of equation (3) for N € C and prove the "effective

bandwidth theorem".

For all 8 > 0, define the set

B(8) = {iV€R* : E«a»W =c}.

10



Note that, by lemma 2, B(8) C C for all 8 > 0. Take N € B(8) and recall that, for all z,

1^(6)) = S = HKMiiaiiS))). (5)

Recall that

where

I(N,c) = inf F(N,c,M)
AfeA(iV,e)

( '' ' • [JV,M]-c

Lemma 3: For all 5 > 0, N € B(6) implies I(N, c) = 5.

Proof: By differentiating we find that

Therefore,

dF
^r(JV,c,M) =0 « ^(Mi)([iV,M]-c)-2iVi^(MJ) = 0

^ H'im =̂ §^ =F(N,c,M).

VMF(N, c, M) = 0 =* £ JVi {^(M0(Mt- - <*,-(*)) - #(Mt-)} = 0.

11



Equivalently (definition (4)),

VMF(N,c,M) = 0 =* £AtaM*),M0 = 0. (6)

Therefore, if Mt- = M(ai(8)) for all 2, then VmF(N,c,M) = 0 (see equation (5)).

So we have shown that for any 8 > 0 and for all N € B(£),

VF{M(a(8))) = 0 and F{M(a(8))) = #;(Mt(a,(*))) = 8

where M(a(8)) = (MiM*)),.., MK(aK(6))).

What remains to show is that M(a(8)) € A°(JV,c) is the unique global minimizer

of F(Nic1-) on A(N,c). Assumptions [H.2] and [H.3] imply that the minimum of F

cannot be on the boundary of A. For a proof by contradiction, assume that there is

an 5 € A°(7V,c), S ^ M(a(8)), such that I(N,c) = F(S) = H^Si) < 8 for all i.

Recall that H- is an increasing function and H-(Mi(ai(8))) = 8. Therefore, I < 8 implies

Si < Mi{ai(8)) for all i. Also if Si € (7», M«(o;t-(<&))) for all i, then #(<*,•($)), 5,-) < 0 for

all i (see Figure 1). Thus, the necessary condition (6) is violated. Therefore, there exists

an i* such that 5,-. < 7t> => 0 > #{♦($•) = F(S) = J(iV, c); but F > 0 on A so we have

a contradiction. 4

The following theorem justifies the interpretation of the at- as effective bandwidths in

the multiclass case.

12



Theorem: For any 8 > 0 and N e C,

I{N,c)>8 <* £iVta<(£)<c.

Proof: We first show that N € B(8) if and only if I(N,c) = 8. By lemma 3, it

suffices to show that N € C n 5(5) imphes J(iV, c) ^ (5. So assume JV € C D5(5).

Recall that [iV,a(-)] is continuous and TV e C impHes that [iV, a(0-|-)] = [TV, 7] < c and

[TV,a(co)] = [TV,T] > c. Therefore, there exists an e ^ £, e > 0, such that [iV,a(e)] = c

(i.e., TV € B(e)) which implies-that I(N,c) = e, by lemma 3, as desired.

Thus for N € C, 7(7V,c) = £ if and only if [N,a(6]\ = EAio,-(£) = c. Since

the at- are all increasing, [JV,ot(-)] is increasing. Therefore if i(TV,c) = e > 8 then

c = [iV,a(e)] > [TV,a(£)]. Conversely, if [N,a(S)] < c, there exists an e > 8 such that

c = [iV, a(e)] which implies that I(N, c) = e. Thus

{NeC : J(JV,C)>£} = (jB(fi)

= {iV€C : [JV,a(*)]<c}. 4b

3 Models of ATM Buffer Sources

We now consider three models ofbuffer sources used to characterize bursty ATM traffic.

We will interpret the assumptions [H.l]-[H.3] for each model considered.

13



3,1 Markov Fluids

A source is called a Markov fluid if its time-derivative is a continuous-time Markov chain

on a finite state space. If the arrival process to a buffer with deterministic service rate is

a superposition of independent Markov fluids, then the buffer occupancy has piecewise-

linear trajectories with random slopes.

For each type i of Markov fluid (i = 1,...,K\ we let A*' = (Aj,..., A^.), be the state

space and Q* be the transition rate matrix of its Markov time-derivative. We assume

AJ- < AJ+1 < oo for all i,j. Therefore, in the notation of section 2, 7,- = Aj, I\- = A^.,

and 7t- := [tt*, A*] where irl is the invariant of Q{: iriQi = 0.

To define Hi, let Jq{ be the large deviations action functional for the empirical dis

tribution of a continuous-time Markov chain with transition rate matrix Q* (see the

Appendix). Take

Hi(Mi) := inf J^) (7)
[M,A»]=Mi

where the infimum is taken over the space Em. of distributions on A*. Note that the

strict convexity of J^ on Sm< implies that Hi is strictly convex on (7;,I\) = (Aj, A*m.).

14



3.1.1 Two-State Markov Fluids Example

Forexample,if the Markov fluids are all of the two state (rat- = 2) type, then (seeequation

(7))

Hi{Mi) =-jJ-^ (y9'(Ai - M.) - y/MMi -ad)2

where q[ = Q\2 and q\ = Q'21. Note that assumptions [H.1]-[H.3] are satisfied. The

single class case gives [4]:

T<a\ = (gi+g2)(a-7i)
'K> (a-Aj)(Ai-a)

By direct calculation, the effective bandwidths are

ai(S) =I-\6) = I (-o,(«) +̂ /a?(«) - «»(*))

where

«,(*) = Il+ii_A- - A' and 6,(5) = A'A' - M+M

Gibbens and Hunt [2] take Aj = 0 for all i ("on-off" Markov fluids).

15



3.2 Markov-Modulated Poisson Process

A source to a buffer is called a Markov-modulated Poisson process (MMPP) if the cell

arrivals are Poisson with intensity A where A is a continuous-time Markov chain (i.e., an

MMPP is a Poisson process with Markov intensity). Again, we have a state space A*

and the transition rate matrix Q* for each source of type i with 7,- := [tt^A1] as in the

Markov fluid case. However, 7,- = 0 and I\- = 00 for an MMPP source.

To define Hi for MMPPs, first let Ya be a random variable with Poisson distribution

and mean a-1. Define (see Cramer's theorem in [5]):

£(a,x) := sup \xy —log Eeyra) = xlog - +a—x.

The contraction mapping principle [6] motivates us to use

H,(Mt) := irf {j3,(/i) +I(fc,Al,M0}

Note that, since jL(v) 1S a strictly convex function on R^., the strict convexity of Jq

implies that Hi is strictly convex on (71, T,-) = (0,00).

3.3 Discrete-Time Sources

A discrete-time source is called a Markov chain if the number of cell arrivals of that

source, at each point in discrete-time, is a Markov chain on a finite state space A\ In

this case, the Hi are found by using the Donsker-Varadhan action functional Jg, for

16



discrete-time Markov chains (see the Appendix), instead of J^, in equation (7)). Q% is

the transition probability matrix of a type i source in this case.

More generally, consider a single source of type i where the number of cell arrivals at

time n is Zn. Assume Zn is a stationary and ergodic process satisfying the conditions of

the Gartner-Ellis theorem [7]. That is, assume

hi(y) := lim -]ogEexp((Zi + ... + Zn)y)
Tl—+00 ft

exists and is finite for all real y, and that hi is differentiable whenever hi < 00. We then

take Hi to be the Legendre transform of hi:

Hi(Mi) := sup{yMi-ki(y)}.
yeR

Also, 7,- = inf{7 : P{Z < 7} > 0}, T{ = sup{r : ?{Z > T} > 0}, and 7. = EZ. Clearly

Hi is non-negative (y = 0), convex and lower semi-continuous. Also, Hi(j{) = 0 (y = 1).

So, what remains to check is that Hi is strictly convex, C1, and [H.3] for the existence

of equivalent bandwidths.

Assuming Hi is C1, we can directly check [H.3] when the Z{ are i.i.d. First note that

H[(Mi) = h'r\Mi) where

EZ&Z
Mi = h\(y) =

exphi(yY

17



Letting p be the distribution of the Zj on [7,-,rt], we find that, as Mi -+ I\,

exphi(y)

(i.e., y -> oo). Thus, H\{M) -> oo as Mi -> IV

4 Conclusions

We have shown the existence of effective bandwidths for Markov fluids and other models

of ATM traffic. Given effective bandwidths, one can determine the spare capacity of a

buffer at any time. For instance, say we want to determine if a call of type j can be

accommodated (i.e., constraint (1) is preserved) in a buffer that is currently being used

by Ni calls of type i, i = 1,..., K. If aj < c— [JV, a(8)] then the call can be accommodated,

else it cannot. Note that these are asymptotic results that hold when the loss probability

is small. The practical relevance of these results should be exploredfor specific parameter

values.

References

[1] F. Kelly, "Effective bandwidths at multi-class queues," preprint.

[2] R. Gibbens and P. Hunt, "Effective bandwidths for multi-type UAS channel," sub
mitted to QUESTA.

[3] C. Courcoubetis and J. Walrand, "Note on effective bandwidth of ATM traffic,"
preprint

18



[4] D. Anick, D. Mitra, and M. M. Sondhi, "Stochastic theory of a data-handling system
with multiple sources," BeU Sys. Tech. «/., vol. 61 No.8, pp. 1871-1894, 1982.

[5] J.-D. Deuschel and D. W. Stroock, Large Deviations. New York, NY: Academic Press,
1989.

[6] J. Lynch and J. Sethuraman, "Large deviations for processes with independent incre
ments," Annals of Probability, vol. 15 No. 2, pp. 610-627, 1987.

[7] J. Bucklew, Large Deviation Techniques in Decision, Simulation and Estimation. New
York, NY: John Wiley and Sons, Inc., 1990.

[8] G. Kesidis, "Estimation of cell loss in high speed digital networks," Ph.D. Disserta
tion, EECS Dept, U.C. Berkeley, 1992.

5 Appendix: Donsker-Varadhan Action Functionals

For completeness, wegivethe following expression for Jq in continuousand discrete time.

In discrete time [7], Qis a transition probability matrix on a state space A= (Ai,..., Am).

For \i e Sm,

Jg(M) = _inf Gd(P;Q)

where the infimum is taken over the space of transition probability matrices on A, Gd is

the relativeentropy rate between discrete-time Markov chains,

m p

GV; <?)=!>/>,,• log £i

and /i is the invariant ofP (fiP = y) and log § := 0.

19



In continuous time ([5], p.125-128), Q is a transition rate matrix on A. For \i € Em,

•W =pmf=0G'OP;<?)

where the infimum is taken over the space of transition rate matrices on A, Gc is the

relative entropy rate between continuous-time Markov chains [8],

771 m

G°(P;Q) := X> £ [Pijlog^i +Qij-Pij

and fi is the invariant of P (jjlP = 0). This definition of Jq is different but consistent-in

the sense of the contraction mapping principle [6]-with that in [5] (see "level 2.5" large

deviations in [8]).
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g(a,M) = H'(M)(M-a)-H(M)

Figure 1: Plot of the function g
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