
Copyright © 1992, by the author(s).
All rights reserved.

Permission to make digital or hard copies of all or part of this work for personal or
classroom use is granted without fee provided that copies are not made or distributed
for profit or commercial advantage and that copies bear this notice and the full citation

on the first page. To copy otherwise, to republish, to post on servers or to redistribute to
lists, requires prior specific permission.

HARDWARE MAPPING AND MODULE

SELECTION IN THE HYPER SYNTHESIS

SYSTEM

by

Chi-Min Chu

Memorandum No. UCB/ERL M92/46

8 May 1992

HARDWARE MAPPING AND MODULE

SELECTION IN THE HYPER SYNTHESIS

SYSTEM

Copyright © 1992

by

Chi-Min Chu

Memorandum No. UCB/ERL M92/46

8 May 1989

ELECTRONICS RESEARCH LABORATORY

College of Engineering
University of California, Berkeley

94720

HARDWARE MAPPING AND MODULE

SELECTION IN THE HYPER SYNTHESIS

SYSTEM

Copyright © 1992

by

Chi-Min Chu

Memorandum No. UCB/ERL M92/46

8 May 1989

ELECTRONICS RESEARCH LABORATORY

College of Engineering
University of California, Berkeley

94720

Hardware Mapping and Module Selection in the HYPER
Synthesis System

by

Chi-Min Chu

Abstract

The computationally intensive parts of high-performance real-time systems, such

as video, image or speech recognition, are usually implemented on clusters of heavily

pipelined data paths, controlled by a relatively simple finite state machine. Synthesiz

ing such architectures is a tough task for a human designer and adequate CAD tools are

therefore a must. The HYPER synthesis system has been developed to address this class

of architectures.

The focus of this dissertation is on the interface between HYPER and the hard

ware. This platform includes hardware selection, hardware mapping, and hardware database.

The task of the hardware selection is to select a set of hardware modules which minimize

the implementation cost of an algorithm, given the timing and throughput constraints. At

the same time, simple operators are clustered into large combinatorial blocks to reduce the

register count and to increase the throughput. The proposed approach is organized as a

search employing a relaxed scheduling for cost estimation and uses a simple, yet accurate

timing analysis to verify timing constraints.

Hardware mapping is to translate a flow graph with scheduling and allocation data

into an actual hardware structure, consisting of data paths, a central controller, and interface

logic. The major tasks of the hardware mapping involve data path optimizations, such as

data path partitioning, multiplexer reduction and register file merging, and control path

optimizations. The goal is to improve the area utilization under the throughput constraints.

Both the hardware selection and the hardware mapping processes require the in

formation about the available cell library. A rule-based library database with many useful

access routines was therefore developed to provide the information. Currently, the HYPER

hardware database implements the Lager cell library, which includes three types of modules:

data-path modules, array modules, and standard-cell modules.

Many real-time applications have been synthesized using HYPER, including a

Viterbi Processor, a 7th order IIR filter and a CORDIC processor. Simulations have been

performed to verify the correctness of these designs and layouts have been produced to

demonstrate the quality of the transformations in the hardware mapper. Area-delay trade

offs of different implementations have also been made to study various design requirements.

Based on the study and critique of the final layouts of many designs, the hardware platform

has been gradually refined.

Jan Rabaey

Committee Chairman

HI

Contents

List of Figures vi

List of Tables viii

1 Introduction 1

1.1 High Level Synthesis and Existing Systems 1
1.2 Interface Between HYPER and Hardware 2

1.3 HYPER Overview 4

2 Hardware Mapping 9
2.1 Problem Definition 9

2.2 Input Format 10
. 2.2.1 Control Data Flow Graph 10

2.2.2 Decorated CDFG 12

2.3 Target Architecture 13
2.3.1 Clocking Strategy 14

2.4 Previous Work on Hardware Mapping 15
2.5 Hardware Database System 17

2.5.1 Database Format 17

2.5.2 Accessing the Database 19
2.5.3 Examples of the Database 20

2.6 Data Path Generation 25

2.6.1 Register File Merging 28
2.6.2 Multiplexer Reduction 36
2.6.3 Data Path Partitioning . 41

2.7 Control Path Generation 47

2.7.1 State Transition Diagram Generation 49
2.7.2 Control Slice Synthesis 52
2.7.3 Finite-State Machine Synthesis 54
2.7.4 Control Optimization 56

2.8 Significance of the Transformation Order 61
2.9 Processor Synthesis 63
2.10 Conclusion on Hardware Mapping 66

IV

3 Hardware Module Selection 68

3.1 Motivation and Problem Definition 68

3.2 Existing Hardware Selection Approaches 70
3.3 Clustering Based Module Selection 71
3.4 Possible Clock Rate 72

3.5 Timing Analysis 73
3.5.1 Derivation Rules 76

3.6 Clustering Based Search Algorithm 82
3.7 Hardware Swapping 83
3.8 Hardware Cost Function 85

3.9 Clustering for Hierarchical Graphs 88
3.10 Experiments and Results 90
3.11 Conclusion on Module Selection 95

4 Test Examples and Simulation Results 98
4.1 Epsilon Processor 98
4.2 Viterbi Processor 105

4.3 Infinite Impulse Response (IIR) Filter 108
4.3.1 Partitioning of the IIR Filter 118

4.4 Finite Impulse Response (FIR) Filter 119
4.5 CORDIC Algorithm 122
4.6 Wave Digital Filter 127
4.7 Conclusion on Test Examples 128

5 Conclusion 130

5.1 Contribution 130

5.1.1 Optimized Hardware Mapping 130
5.1.2 Clustering Based Hardware Selection 131
5.1.3 Hardware Database System 131
5.1.4 System Evaluation 132

5.2 Future Work 132

5.2.1 Overall System 133
5.2.2 Hardware Mapping 133
5.2.3 Hardware Selection 134

Bibliography 136

A User's Manual 143

A.l Hardware Mapper 144
A.2 Hardware Selector 146

B HYPER Hardware Database Format 147
B.l Introduction 147
B.2 Structure of Database 148
B.3 Standard Cell Database 150

B.4 Database for Data Path Modules 150

B.4.1 Database of Data Path Modules in HYPER 158

B.5 Database for Array Modules 168
B.5.1 Array Module Database in HYPER 170

B.6 Conclusion 173

Flow Graph Format For Hardware Mapper 174
C.l Introduction 174

C.2 Definition of Graph 175
C.3 Node-list Description 178

C.3.1 Node-name 178
C.3.2 Node-implement 178
C.3.3 Node-width 179

C.3.4 Node-function 179
C.3.5 Node-attribute 179

C.4 Edge-list Description 179
C.4.1 Edge-value 181
C.4.2 Edge-width 182
C.4.3 Edge-type 182
C.4.4 Edge-in-node 182
C.4.5 Edge-out-node 183
C.4.6 Edge-attribute 183

C.5 Parent-node Description of Edges 184
C.6 Subgraph Description of Nodes 184
C.7 In/out-edge Description of Nodes 187
C.8 Control-step Description of Nodes 187
C.9 Preprocessing 188
CIO Flow Graph Example - IIR Filter 190
C.ll Conclusion 205

VI

List of Figures

1.1 HYPER Overview 3
1.2 CORDIC Algorithm in Silage 6

2.1 Flow Graph of the CORDIC Algorithm 11
2.2 Target Architecture of HYPER 14
2.3 Example to Illustrate Hardware Mapping 15
2.4 Major Steps of Data Path Generation 26
2.5 Register File Merging 29
2.6 Multiplexer Increasing/Decreasing Due to Register Fi le Merging 30
2.7 Hardware Model of HYPER 31
2.8 Multiplexer Reducible Modules 33
2.9 Optimal Register File Structure for Toy 37
2.10 Multiplexer Reduction 38
2.11 Algebraic Commutativity for Multiplexer Reduction 39
2.12 Multiplexer Cost Found by Proposed Approach and Exhaustive Search ... 41
2.13 Major Steps of Control Path Generation 48
2.14 State Transition Diagram Generation 50
2.15 Rules for State Transition Diagram Generation 51
2.16 An Example of State Transition Diagram Generation 52
2.17 Dummy State Removal 53
2.18 Three Types of Control Slice Structures 55
2.19 Trace of the Hardware Graph 56
2.20 Control Register Allocation 59
2.21 Procedure for Allocating Control Register 60
2.22 Different Interface Logic Structures As Resulting From Two Control Opti

mization Orders 64
2.23 Comparison Between Layouts With and Without TERM-EDGE Property . 65

3.1 Illustration of the Motivation 69
3.2 Primitive Node and Composite Node 72
3.3 Operation Chaining 74
3.4 Flow Graph Example to Demonstrate the Derivation Rules 75
3.5 Flow Graph to Demonstrate the Derivation Rules 77

Vll

3.6 Flow Graph to Demonstrate the Ripple Offset 79
3.7 Clustering Based Search Strategy 83
3.8 Graph Cycles Caused by Clustering 84
3.9 Hardware Swapping 85
3.10 Cost Estimation - Min Bound 87
3.11 Bound Ratio of Execution Units for 48 Examples 88
3.12 Node Clustering in Hierarchical Flow Graphs 89
3.13 Example to Illustrate Time Allotment 90
3.14 A Biquad Example 91
3.15 Clustering Result 92
3.16 Greedy Approach vs. Probabilistic Approach 94
3.17 Saving Multipliers by Clustering Additions 95
3.18 Partial Clustering 96
3.19 Hardware Swapping to Meet Throughput Constraints 97

4.1 CDFG of the Epsilon Processor 101
4.2 Data Path of the Epsilon Processor 102
4.3 State Transition Diagram of the Epsilon Processor 103
4.4 Layout of the Epsilon Processor 104
4.5 Simulation of the Epsilon Processor 106
4.6 Flow Graph of the Viterbi Processor 108
4.7 Architecture of the Viterbi Processor 109
4.8 Layout of the Viterbi Processor 110
4.9 Flow Graph of the 7th Order IIR Filter 113
4.10 3 IIR Filter Layouts of Different Implementations 114
4.11 Layout of the IIR Filter with Multipliers 115
4.12 Impulse Response of the IIR Filter 116
4.13 Snap Shot of the IIR Filter Simulation 117
4.14 Three IIR Filter Implementations to Demonstrate Data Path Partitioning . 120
4.15 Flow Graph of the FIR Filter 121
4.16 Layouts of the FIR Filter 123
4.17 Impulse Response of the FIR Filter 124
4.18 Layout of the CORDIC Example 125
4.19 Simulation of the CORDIC Example 126
4.20 Flow Graph of the 5th order WDF 127
4.21 Layout of the 5th order WDF 129

B.l Structure of the Database 149
B.2 Sample Standard Cell Library 151

C.l Major Steps of Data Path Generation 176
C.2 Transformation to Handle Broadcasting 189

Vlll

List of Tables

2.1 Number of Tri-state Buffers Needed Before and After Mapping 32
2.2 Benchmark Results for Register File Merging 36
2.3 Number of Tri-state Buffers Needed Before and After Applying Commutative

Transformation 41

2.4 Total Number of Tri-state Buffers Reduced 42

2.5 Performance of the Linear Placement Program in DPP 42
2.6 Performance of Rejectionless Simulated Annealing vs. Kernighan-Lin. ... 46
2.7 Performance of Rejectionless Simulated Annealing vs. Traditional Simulated

Annealing 47
2.8 Area Reduction Achieved by NOVA 51
2.9 Benchmark Results for Control Signal Merging 57
2.10 Benchmark Results for Utilizing Local/No Control Optimization 58
2:11 Benchmark Results for Optimizing Register-File Control Signals 58
2.12 Benchmark Results for Overall Control Optimizations 61
2.13 Benchmark Results Showing the Effect of Different Control Optimization

Orders 63

4.1 Comparison of Two Epsilon Processor Implementations 102
4.2 Comparison of Four IIR Filter Implementations 113
4.3 CPU Time Distribution for IIR Filter Synthesis (on SUN 4/100) 118
4.4 CPU Time Distribution in Hardware Mapper for IIR Filter Synthesis 118
4.5 Partition of the IIR Filter 119

4.6 Comparison of Two FIR Filter Implementations 122

B.l Data Item and Format of Standard Cell Database 150

B.2 Keyword in the Parameters Attribute of Data Path Database 152
B.3 Functions Defined for the Parameters Attribute of Data Path Database. . . 152

B.4 Lisp Functions Used for All Attributes of Hardware Database 153
B.5 Boolean Functions in the Hardware Database 155

B.6 Keyword for Specifying CTL-IN-TERMINAL Attribute 156
B.7 Primary Control Output of Functions 156
B.8 Keyword in the Parameters Attribute of Array Database 168

C.l Node Function Handled by Hardware Mapper 180

IX

C.2 Node Attribute 181
C.3 Edge Attribute 183

o (.-

Acknowledgements

I would like to acknowledge the following people and organizations for their help
to the successful completion of this project.

Professor Jan Rabaey, my research advisor, deserved many credits ofthis project.
He not only first defined the HYPER framework, but also worked with me throughout
this project. His leadership of the HYPER Group is superb. His guidance, support and
inspiration is invaluable and it has been a great pleasure to work with him.

The other members ofthe HYPER Group contribute many useful suggestions to
this project. Miodrag Potkonjak worked on the HYPER scheduling, allocation, assignment,
and transformations. He was an algorithm expert and often provided me with many inter
esting ideas. PhuHoang has been working on theSilage to flow graph compiler and theflow
graph to C transformer. He also helped in defining many ASCII flow graph formats. His
useful comments and fresh perspectives about the project have been ofgreat help. Markus
Thaler, one early member of HYPER, defined Turtle, the first language adopted by HY
PER, and suggested several interesting ideas. David Schultz performed an extensive Thor
simulation for the IIR example to verify the correctness of HYPER.

Many colleagues of mine also provided their personal help: Mani Srivastava has

been of great help for sharing his expertise in Lager and many other areas. Sam Sheng
provided many assistance in making the Thor simulation work. Ken Rimey and Ed Wang
helped in solving many problems in running Lisp.

I would like to thank Professor Newton and Professor Stone for being the second
reader and the third reader of this dissertation.

This project is supported by DARPA under various contract numbers. Harris

Semiconductor Inc., the industrial supporter of HYPER, provides part of the HYPER
funding and gives us many useful feedbacks in improving the system.

Special thanks tomy colleagues Bernard Shung, Alex Lee, Dev Chen, and my wife,
Jeanne Tsai, for their cheerful supports.

Chapter 1

Introduction

1.1 High Level Synthesis and Existing Systems

Given a specification of the system behavior and a set of constraints, the task

of high level synthesis is to find a structure that implements the required behavior while

satisfying the constraints. The constraints may include timing, area, or power requirements

of the final design. The behavior of a system is defined as the way the system interacts with

its environment. The structure refers to the set of interconnected components that make

up the system. Good overviews of high level synthesis and the state of art techniques can

be found in [65] and [8].

The major tasks involved in high level synthesis are input compilation, algorithmic

and architectural simulations, hardware module selection, resource estimation, hardware

allocation, assignment, scheduling, transformation and hardware mapping. Each task can

be further divided into subtasks. Many of the tasks are NP-hard problems l. Furthermore,

they are interrelated and dependent on one another. Due to the complexity of the high

level synthesis tasks, many high level synthesis systems have been developed to help human

designers to find an efficient solution. Even with the aid of these synthesis systems, the

synthesis task still requires many design iterations and interactions between the human

designers and the synthesis environment. However, the design time is greatly reduced.

Most of the high level synthesis systems aim for a particular application and a

NP is the set of all problems which can be solved by nondeterministic algorithms in polynomial time.
NP-complete problems areasubset of the NP problems which cannot be solved by an deterministic algorithm
in polynomial time[71].

CHAPTER 1. INTRODUCTION 2

target architecture. For example, IMEC's Cathedral II system [26] aims for a subset of dig

ital signal processing (DSP) algorithms to be architecturally realized by a set of concurrent

dedicated bit-parallel processors on a single chip. The System Architect's Workbench [22]

[9] from Carnegie Mellon University supports three different synthesis paths: a general syn

thesis path, a pipelined-instruction-set-specific synthesis path, and a microprocessor specific

synthesis path. There are also many other systems such as the ADAM system [37] from

University of Southern California and the HAL system [49] from Carleton University. Most

of these systems study some specific synthesis problems such as scheduling and estimation.

A survey of the important current high level synthesis systems is presented in [74], which

lists many of the major contributions and approaches of those systems.

Similar to most of the high level synthesis systems, The HYPER (which stands

for high performance) [19] [29] [50] [59] synthesis system was developed to address the archi

tectures of a particular type of applications - the computationally intensive parts of high-

performance real-time systems, such as video, image or speech recognition systems. These

systems are usually implemented on clusters of heavily pipelined data paths, controlled by

a relatively simple finite-state machine. The amount of resource sharing is limited.

The most important feature of HYPER, which distinguishes it from other synthesis

systems, is a single global optimization strategy. This optimization strategy drives not

only the resource assignment and scheduling process but also the preceding optimizing

transformations. In all those phases of the synthesis process, HYPER attempts to optimize

a so called resource utilization table, which maps the utilization of the different resources

(such as execution units, memory, interconnect and I/O bandwidth) onto the allotted time

period.

1.2 Interface Between HYPER and Hardware

The focus of this dissertation is on the interface between HYPER and hardware.

This hardware platform includes three modules: hardware selection, hardware mapping and

hardware database. The system overview of HYPER is shown in Figure 1.1, which illustrates

the major components of HYPER and how the platform is organized and interacts with the

other modules of HYPER.

Hardware selection is the first step in the HYPER synthesis process. It links

every operator in the flow graph to a hardware library element. At the same time, groups

CHAPTER 1. INTRODUCTION

(Silage

Synthesis Manager
t?w selection

\estimation

(Schematic) signa, fIow

control/data flowgraph

(OCT)

hardware
mapping

parameterized
structure

LAGER IV

macrocell based

integrated circuit

programmable arith.

Figure 1.1: HYPER Overview

of operations are clustered into "composite" hardware nodes (which contain no registers),

based on a careful timing analysis. From this point on, the synthesis tools can use the

abstract control step or clock cycle concept, instead of having to operate on absolute time.

The result of the synthesis operations, such as the hardware assignment and

scheduling information, is back-annotated onto the flow graph database. Once the syn

thesis process is completed, the hardware mapper translates the flow graph into a hardware

structure containing data paths, a central control, and glue logic. Silicon can then be gener

ated from the hardware structure using Lager IV [20] or other silicon compilation systems.

Both the hardware selection and the hardware mapping processes require an accu

rate knowledge of the available cell library in terms of functionality, speed, area, and black

box view. This is provided by a rule-based library database. This library currently has more

than thirty blocks which provide all the basic functions supported by HYPER. A database

editor which helps designers to input, retrieve, edit or delete a cell and/or its attributes has

also been developed. This editor allows the designers to easily introduce special purpose

blocks.

CHAPTER 1. INTRODUCTION 4

The motivation of this project can be summarized as follows:

• Compare tradeoffs between various hardware implementations. Both the hardware

selection and the hardware mapping processes can produce several designs for the

same specification depending on the given constraints. This facilitates the designers

in exploring the design space and comparing the tradeoffs among area, speed, power
etc.

• Verify synthesis results through real hardware. Through the hardware platform, the

performance of the synthesis processes, including scheduling, allocation, assignment

and transformation, can be accurately quantified by mapping to real hardware.

• Perform transformations to achieve efficient designs. To efficiently implement the

high level synthesis results, transformations at the hardware level such as data path

partitioning and multiplexer reduction are extremely important. Therefore, one of

the motivations on the hardware mapping is to recognize the important hardware

transformations and to characterize the performances of those transformations.

• Provide a framework to interface with various design styles and/or hardware modules.

The flexibility of choosing different clocking strategies, design styles, or cell libraries

is achieved by the hardware database system. To provide the flexibility, the hard

ware database has the following characteristics: First, it contains all the important

information which is necessary to the synthesis process. Second, the information in

the database is ordered so that they can be easily accessed. Finally, the database is

flexible enough to accommodate different clocking strategies and wiring options.

1.3 HYPER Overview

Before going into further details of the hardware platform, the overall HYPER

synthesis system will be briefly described. This overview of HYPER is essential in under

standing the design flow of HYPER and the interaction between the hardware platform and
the other synthesis tools in HYPER.

HYPER consists of a library ofsoftware modules, operating on a centralized flow-

graph database. An algorithm for real-time applications (described using Silage [60] [61]
or entered in a schematic format) is first compiled into an intermediate control data flow

CHAPTER 1. INTRODUCTION 5

graph (CDFG), stored in the OCT database [23]. Silage is a signal-flow language developed

especially for DSP specifications. It has many useful features such as fixed-point data

types, sample delays, and multiple data rates which allow designers to quickly and precisely

describe their DSP algorithms. Control macro constructs are being incorporated to enhance

the expressive power of Silage. Thesemacros include loops and if-then-else blocks to capture

the global control flow of an algorithm. Figure 1.2 describes the well-known CORDIC

algorithm [6] [73] [75] in the Silage language to show some of the features.

The CDFG is an one-to-one mapping from the Silage description. It is a hierar

chical graph due to the control constructs: The body of a loop or a conditional statement

is represented by a subgraph, which is compacted into a single node at the next hierarchy

level. This representation has the advantages of compactness and expressiveness compared

with a flat flow graph. More information about the CDFG can be found in [28]. After the

parsing of the flow graph, a number of standard, architecture-independent, compiler trans

formations such as elimination of dead code, manifest expressions, common sub-expressions

and algebraic identities, are executed.

Before synthesis is performed, simulation of the algorithm at the behavioral level is

necessary not only to verify the functionality of the algorithm, but also to optimize certain

algorithm parameters. A compiler has been developed to generate C codes from the CDFG

description of an algorithm. The C codes take a command file and an input-sample file as

inputs, and produce an output-sample file. The behavior simulation results can be used

to cross check with the functional simulation results. The functional simulation will be

performed on the structure generated by HYPER at the end of the synthesis process. This

cross check provides a way to verify the correctness of the transformations performed over

the synthesis steps.

The first step in the synthesis process is the module selection as described above.

The synthesis process is then continued with operations such as estimation, allocation,

transformation, assignment and scheduling. These operations are briefly described in this

section. For details of each operation, please refer to [50] and [59].

In the estimation phase, min-bounds and max-bounds on the required resources

are deduced. These bounds are important for several reasons: first of all, they delimit the

design space, and thus speeding up the synthesis search process. Second, the computed

min-bounds can serve as initial solutions for the allocation process. Finally, these bounds

serve as parts of the resource utilization table to guide the transformation, assignment and

CHAPTER 1. INTRODUCTION

#define xyWord fix<22,18>

#define phaseWord fix<22,20>

#define N 20

#define Angle90 phaseWord (0.5)

#define Corrector xyWord (0.60725285)

func main(Xin, Yin: xyWord; CorAngles: phaseWord[N])

Amplitude: xyWord; Phase: phaseWord =

begin

(X[0], Y[0], Phi[0]) =ifYin >= 0 -> (Yin, -Xin, Angle90)

|| (-Yin, Xin, -Angle90)

fi;

(i:1 .. N-1)::

begin

(X[i],Y[i],Phi[i]) =

ifY[i-1]>=0->

(X[i-1]+(Y[i-1]»(i-1)),Y[i-1]-(X[i-1]»(i-1)),Phi[i-1]+CorAngles[i-1])

II

(X[i-1]-(Y[i-y]»(i-1}), Y[i-1]+(X[i-1]»(i-1)), Phi[i-1]-CorAngles[i-1])

fi;

end;

Amplitude =xyWord (X[N -1] *Corrector);

Phase = Phi[N-1];

end;

Figure 1.2: CORDIC Algorithm in Silage

CHAPTER 1. INTRODUCTION 7

scheduling operations.

In the allocation phase, the number of execution units, the size of register files, and

the distribution of the available time over subgraphs are decided either by human designers

or by an initial guess from the estimation step. The goal of this phase is to come up with

the minimal hardware configuration that meets the performance constraints.

The scheduling process assigns operations to so called control steps. The goal is

to schedule all the operations within a given amount of time on the predefined allocation.

Assignment determineson which particular execution unit a givenoperation will be realized,

from which register the execution unit will request data, where the execution unit will send

the result and which connection will be used for sending the data.

To ensure that the potential of a given algorithm is maximized, the application

of optimizing transformations is a must. Transformations are changes in the signal flow

graphs which improve the final implementation without altering the input-output relation

ships. Currently, several transformations including loop unrolling, constant multiplication

expansion, and retiming for scheduling [48] have been implemented in the HYPER environ

ment.

Allocation, transformation, assignment and scheduling are all interdependent pro

cesses. Designers can try out different designs of the same algorithm by modifying allo

cations and/or timing constraints to meet the required performance. The scheduling and

assignment may fail in the synthesis process due to the fact that not enough resources are

allocated. Under this circumstance, the design can either increase resources or invoke trans

formations to improve the resource utilization. Even when the scheduling and assignment

succeed, the designer may still want to cut down resources to further improve the area effi

ciency. Therefore, the synthesis process is indeed a recursive procedure. Xhyper, a graphic

front end of HYPER running on the XI1 window system, has therefore been developed to

help designers iteratively fire up these tools and find the optimal design. More details on
the operation of xhyper can be found in [28].

After the synthesis process, the flow graph with the hardware assignment and

scheduling information (called the decorated flow graph) is mapped into a hardware struc

ture and silicon is generated using the Lager IV [20] silicon compiler.

HYPER was developed in a bottom up fashion. The hardware mapper was first

developed based on the assumption that all the scheduling and assignment information is

available at the step of hardware mapping. Then the scheduler was developed assuming

CHAPTER 1. INTRODUCTION 8

that the hardware allocation and selection have been completed. After developing the
scheduler, we then started working on the hardware selection and the hardware allocation

problems. Estimation was developed along with the scheduler. A set of transformations

were incorporated into HYPER after the basic HYPER structure had been established.

This dissertation is organized according to the chronical order of the tools de

veloped, emphasizing on the hardware platform of HYPER. In Chapter 2, the hardware

mapping process including the problems encountered in this process and the solution we

chose are presented in detail. In Chapter 3, the problems and techniques used in hardware

selection are addressed. Chapter 4 demonstrates several benchmarks that have been suc

cessfully generated by HYPER. Finally, conclusions of this work along with the possible
future directions are given in Chapter 5.

Chapter 2

Hardware Mapping

2.1 Problem Definition

Hardware mapping is the last step in the synthesis process, which consists of the

mapping of the scheduled and allocated flow graph (or the decorated flow graph) into the

available hardware blocks. Currently, the result of this step is a structural description in

the sdl-language [20], which serves as the input to the Lager IV silicon assembly environ

ment. The hardware mapper can also be adapted to different silicon assembly systems by

generating different structural descriptions. The mapping process transforms the decorated

flow graph into three structural subgraphs: the data path structure graph, the controller

state-machine graph, and the interface graph. The interface graph determines the relation

ship between the data path control inputs and the controller output signals. This graph is

important because it defines the overall clocking strategy of the data paths. Three dedicated

mapping tools then translate these structural subgraphs into the corresponding structural
views.

In addition to the algorithmic processes such as data path partitioning, multi

plexer reduction and register-file merging, the hardware mapping process takes on several

translation steps, which require an accurate knowledge of the available cell library in terms

offunctionality, speed, area, and black box view. This is provided by the rule-based library

database, which is alsoa part of the proposed hardware platform and will be discussed later
in this chapter.

For the control path, the hardware mapper first generates the state transition

diagram from the scheduling information. Interface logic is then generated based on a

CHAPTER 2. HARDWARE MAPPING 10

demand-driven approach. A finite-state machine is finally produced for the central control.

Several control optimizations are performed in this process. One optimization example is
the recognition of the control signals that are independent of control states and replacing
them by a local control in the interface logic. The details ofall these optimization steps are
also discussed later in this Chapter.

This Chapter begins with a review of the input format and the target architecture

of the hardware mapper, followed by a description of the related research in hardware

mapping. After the description of the hardware database system, which is given in Section
5, the data path generation and control path generation is discussed in detail. Finally, this
Chapter is concluded after a discussion of the order of the transformations.

2.2 Input Format

The input format to the hardware mapper is a decorated CDFG (Control Data
Flow Graph). A simple example ofthis format is shown in Figure 2.1 which is part ofthe
CORDIC algorithm. Adetail description of the decorated CDFG can be found in Appendix
C. The rest of this section briefly summarizes its characteristics.

2.2.1 Control Data Flow Graph

Ina CDFG, a node can represent either an operation (called a leaf node) oran in
stance ofa complete subgraph (called a hierarchical node). In this way, hierarchical graphs
can be defined. Currently, HYPER supports two types ofhierarchical nodes including func
nodes and control macros such as loop (iteration) nodes and if-then-else nodes. Two types of
edges are allowed in the CDFG. As shown in Figure 2.1, the solid edges represent the data
dependency between two nodes and the dotted edges represent the control precedences be
tween them. Only the solid edges are used in the hardware mapper to trace the interconnect

between hardware modules. Control edges are ignored.

In Figure 2.1, two levels of hierarchies are shown. In the first level, three macro

nodes represent the control flow of the algorithm. In the subgraph of each macro node
(i.e. the second hierarchy), a data-flow graph is given to represent the data-flow operations
inside, the macro. The first func node describes the initialization phase of this algorithm.
Inside the subgraph, some storage elements are reset or initialized. The loop (iteration)
node represents the main loop of the algorithm. A data-flow description is given in the

CHAPTER 2. HARDWARE MAPPING

initialization (func

comp&ratoi
compl (>=

subgraph jimQ-i

subgraph

subgraph
(func)••postprocessing

register
reg2port

regl

Yin -Yin -Xin Xin A90 -A90

IIIUA » IIIUA * mux

X (write) Y (write) Phi (write

Figure 2.1: Flow Graph of the CORDIC Algorithm

11

CHAPTER 2. HARDWARE MAPPING 12

subgraph to represent one iteration of the CORDIC algorithm. In addition to the data

flow operations, some operations which are necessary to test the ending condition of the

loop are also included in the subgraph. These operations have to be performed after each

iteration to decide whether to continue the next iteration. The last func node represents

the postprocessing after the main loop. Final results of the main loop are corrected by a

constant factor and sent off-chip. These operations are represented by the multiply node

and the read nodes inside the subgraph of the last func node.

The reason for choosing the CDFG format is due to the fact that an efficient

implementation of a high-performance system requires an unambiguous description of the

overall control flow of the system as well as the data-flow description. Purely control-flow

description cannot represent the parallelism, which is essential in high-performance real

time systems. Purely data-flow description, on the other hand, does not have the control

macro constructs or the control precedences, which are important for an efficient controller

synthesis. Therefore, a CDFG format is essential in synthesizing real-time algorithms.

Hierarchy is another important feature of the representation. Hierarchy helps in

keeping the original construct ofan algorithm specified by the designers. The original con

struct usually includes structural hints from the designers, and therefore is very important

for the synthesis process. Hierarchy is also very important for reducing synthesis time.

Without the hierarchy of the iteration nodes, the large amount of vertices and edges of the
flat graphs will greatly slow down most of the synthesis tools.

2.2.2 Decorated CDFG

The result of the synthesis operations, including hardware selection, allocation,

assignment, and scheduling, is back-annotated onto the flow graph. The hardware mapper

then translates the decorated flow graph into a hardware structure. For each operation

node, the required decoration includes a positive integer to represent the relative order of

the operation and the type and the name of the operator on which the operation will be

performed. For a hierarchy node, only the scheduling information is needed. For special

nodes such as merge nodes or bit-select nodes, no decoration is required by the mapper. For

each edge, information on the storage type (register of variable), the name of the storage

element, and the implementation ofthe storage element is required for themapping process.
Figure 2.1 shows the decoration ofone comparison node and the decoration of the output

CHAPTER 2. HARDWARE MAPPING 13

edge of that node as an example of the decoration.

2.3 Target Architecture

A real-time system is normally a heterogeneous composition of architectures and

components. These architectures can be classified into several categories based on the

amountofoperation sharing on an arithmetic unit. One extremeend of the scale represents

the traditional micro-processor architecture, where all operations are time-multiplexed on

one single general-purpose ALU. This architecture is classified as control driven. On the

other end of the spectrum, one can find architectures such as systolic arrays, where each

operation is represented by a separate hardware unit. This architecture is called hard-wired

or data-flow driven.

In the computation intensive parts of the real-time systems, the data rate often

approaches the maximally achievable clock rate. In those cases, the use of a cluster of

dedicated bit-sliced data paths with extensive pipelining and limited resource sharing is
unavoidable. Examples ofsuch architectures are found inspeech recognition [27] and image
processing systems [63], where the data rates are at the order of 10M samples per second.

The bit-sliced data path cluster is exactly the target architecture of HYPER. The charac

teristics of this kind of architecture are that the data paths are hard wired in order to

match the algorithmic data flow. The amount of programmability is very restricted. The

controller section for those architectures is therefore small compared to the data path and
memory blocks, but has to be fast and efficient.

Figure 2.2 shows the template of the HYPER target architecture. This template

involves a data path cluster, a Finite-State Machine (FSM), a set of control slices, and

other modules such as array multipliers and on-chip memories. The data path cluster
includes modules such as theexecution units, registers, andmultiplexers. These modules are

partitioned properly to achieve layout efficiency. An on-chip Finite-State Machine (FSM)
is generated by the mapper as the central control. Between the central control and each

data path is a control slice for the interface logic and the local control. Control signals
may also go directly from the FSM to the data paths or vice versa without going through
the interface logic. Other modules such as on-chip cache memories, array multipliers, or
register files are also possible in this architecture to achieve a higher processing rate. There
are two restrictions on this architecture template. First, only one central control is allowed.

CHAPTER 2. HARDWARE MAPPING

F^>

<^=>
data

I/O

0

data path cluster

T
hw graph generation

mux reduction

data path partitioning

on-chip memory

io interface

logic

(stdcell)

local control

clocking

o

0

central

control

(FSM)

o
handshaking

signals

T
state diagram generation

control optimization

status reg minimization

14

Figure 2.2: Target Architecture of HYPER

Second, the design must be synchronous. Even with these restrictions, this architecture is

powerful enough to implement the applications that HYPER is targeted at.

Figure 2.3 shows a simple example of the mapping process. A decorated flow

graph produced by the synthesis process is taken as the input to the hardware mapper and

a register transfer level description of the decorated flow graph is generated by the mapper.

2.3.1 Clocking Strategy

Currently, the hardware mapper assumes a two-phase non-overlapped clock in the

target architecture. Registers are loaded at one of the phases (e.g. phase one) and register

outputs are enabled at the other phase (e.g. phase two). The same assumption also applies

to the memories and the state registers of the FSM. Other clocking strategies can also

be implemented by HYPER since the clocking information of each module is specified by

CHAPTER 2. HARDWARE MAPPING

adderl

time n 1

Decorated Flow Graph

hardware

mapping

a d

ctl

slice

b c

2 ¥
/

r
e

4-

1
f
.1.

mull
ctl

slice

1

g ctl slice

Hardware Structure

15

FSM

state1

state2

state3

Figure 2.3: Example to Illustrate Hardware Mapping

the designer in the hardware database library. The CTL-IN-TERMINAL attributes in the

database provide the values of the control inputs, which also specify a proper phase of

the clock. With the modification of the CTL-IN-TERMINAL attributes and some simple

changes in the mapper, synchronous designs ofother clocking strategies can be synthesized.

Notice that all the modules in the same database library should have a consistent

clocking strategy to ensure the correctness of synthesis results. For example, assume that

Register A and Register B are two types of registers in the same database. If Register A

loads data at phase one and outputs data at phase two, Register B should also loads data

at phase one and outputs data at phase two.

2.4 Previous Work on Hardware Mapping

Not many synthesis systems address the hardware mapping issue. Even systems

that address hardware mapping havedifferent approaches due to different architectures and

optimization goals. Cathedral III [39] emphasizes on the timing optimization of execution

units. The synthesis process of Cathedral III starts with a one-to-one mapping of the

CHAPTER 2. HARDWARE MAPPING 16

function nodes to the execution units. The system then tries to optimize the timing of the

execution units so that the units can be multiplexed. In HYPER, the optimization goal

of the hardware mapper is on the area efficiency. The execution units are selected from a

hardware cell library in a previous module selection phase based on the resource utilization

and the hardware cost. With the execution units selected and scheduled, the hardware

mapper simply performs transformations to achieve efficient area utilization.

The AT&T Mind [21] system aims toward the logic optimization. Comparing with

Mind, the emphasis of HYPER is on the data-path optimization, even though HYPER

performs logic optimizations as well. The logic optimization in HYPER can be performed

by both the control-path optimization in the hardware mapper and by the MIS tool [34],

[43], which is invoked in the layout generation phase. Another difference between the

hardware mapper of HYPER and Mind is the layout style. Mind chooses the standard cell

implementation, while the HYPER hardware mapper focuses on the bit-sliced data path

structure. Therefore, some issues such as data path partitioning are not considered in Mind,

but are extremely important for the HYPER mapper.

Similar to the Mind system, Register Transfer Level (RTL) synthesis systems such

as the VHDL Synthesis System (VSS) of University of California at Irvine [56] and the

Synopsys tools also aim toward the logic optimization. In addition, resource allocation,

state assignment and test vector generationare emphasized. Tasks such as register grouping

and data path partitioning, which are automatically performed by the HYPER hardware

mapper, are performed manually by human designers in those systems.

The CMU's LASSIE [70] system provides a flexible framework for mapping the

structural output of the System Architect's Workbench [22] onto a variety of layout styles.

The hardware mapper in HYPER is not as general, but can be extended to provide sim

ilar features. Compared with LASSIE, the HYPER mapper is more concentrated on the

performance of the transformations rather than providing a general mapping environment.

Feedback-driven data-path optimization is proposed in Faslot [14] to improve lay

out efficiency. In HYPER, this process can be performed interactively between the designer

and the hardware mapper. Since the layout generation normally takes hours to perform,

it is impractical for the hardware mapper to automate this iterative process. Instead, the

mapper provides useful data such as the estimated data path area and the number of nets

for each module to help the designer in choosing proper hardware implementations before

performing the layout generation.

CHAPTER 2. HARDWARE MAPPING 17

The emphasis of the HIS system [33] from IBM is on the allocation of the hardware

resources including functional units, registers, and buses. The optimization is basedon path

analysis and mutual exclusiveness. Many technology dependent optimizations that HYPER

performs are not considered in HIS since no real hardware platform is assumed.

The key observation from comparing various hardware mappers is that hardware

mapping should be built on top of the hardware models and the optimization goals. Since

HYPER is aimed at high-performance real-time applications, the proper architecture tem

plate is the bit-sliced data path cluster. Based on the well-defined architecture template, the

HYPER mapper can perform many useful data path optimizations to improve the hardware

efficiency.

2.5 Hardware Database System

Before describing the hardware mapper in further detail, I will first describe the

hardware database system. The database system contains information such as delay, area,

hardware parameters, and black-box views of the hardware blocks, which constructs the

register-transfer level hardware structure. Currently, the database is implemented in the

Lisp syntax. It can be rewritten in the OCT format when the structure of the database is

finalized. A detailed description and a user's manual of the database system can be found

in Appendix B. This section will highlight the major features and the design philosophy of
the system.

2.5.1 Database Format

Hardware blocks in the Lager silicon compilation system [20] can be divided into

three categories: data-path blocks, array blocks, and standard-cell blocks. The HYPER

database system is organized accordingly. Rb-dp addresses the data-path blocks such as

adders, registers, and multiplexers. Rb-array focuses on the array blocks including memory
blocks, Programmable Logic Arrays (PLA's), and execution blocks such as multipliers. Rb-
std is designed for the standard cells, which are mainly used in the interface logic. The

basic structures of the three databases are the same, but the detailed information for each

category is different due to the applicability of the information to these blocks. The basic

structure of the databases can be described in the following format:

CHAPTER 2. HARDWARE MAPPING 18

database :=

((functionl

(cell-namel

(item-name1 datal)

(item-name2 data2)

;; other items of cell 1

)

(cell-name2

;; items of cell 2)

;; other cells of functionl)

(function2

;; cells of function2)

;; other functions)

From this format, we can see that the basic structure is a hierarchical database

with function names as the primary key. Under a function name, several blocks that imple

ment the function are provided. Multi-function blocks will appear under all the functions

that they can perform. For each block, information such as parameters, area and delay
is specified. This information is called the attributes of the hardware block. For multi

function blocks, some attributes such as delay and parameters are function dependent and
therefore may have different values for different functions.

In addition to the above structure, the database can also be organized in the
following format with the cell name as the primary key and the function name as the
secondary key:

database :=

((celll

(functionl

(item-name1 datal)

(item-name2 data2)

;; other items of cell 1 performing functionl

)

(function2

;; items of cell 1 performing function2)

CHAPTER 2. HARDWARE MAPPING 19

;; other functions that celll performs)

(cell2

;; functions of cell2)

;; other cells)

The HYPER hardware database supports both structures and provides access routines so

that the user can use either the function nameor the cell name as the primary key to access

the database.

As described above, the three databases may have different attributes. The reason

is that someattributes are only applicable to a certain types of blocks. For example, modules

in rb-dp have a parameter attribute, which specifies the hardware parameters such as the

bit width of the modules. This parameter attribute doesn't apply to the modules in the

standard cell database since this database is designed for the glue logic and the bit widths

of these modules are always one. Different databases can have the same attribute, but the

value of the attribute may have different formats. For example, the parameter attribute of

the data path modules is usually a single parameter, namely the word width. For the array

modules, however, the parameter attribute usually involves a list of parameters such as the

input width, the output width, and the array contents of the modules. Therefore, different

attribute formats are defined for each database.

2.5.2 Accessing the Database

The search of the database can be driven either by timing or by area constraints.

All the cells are stored in the database in the increasing order of the cell size so that the

search can be performed efficiently. However, the cheapest-cell-first rule doesn't apply if

the block size can not be evaluated before the silicon compilation process. The structure of

certain hardware blocks such as Programmable Logic Arrays (PLA's) depends on the logic

synthesis tools, and therefore the block area can't be evaluated until the layout generation

phase. Those typesof blocks will be stored in the database according to the newest-cell-first

order1. Asetofaccess routines have been implemented tofacilitate the interface between the
HYPER tools and the databases. In addition to the access routines, a database editor has

also been implemented under the Lisp environment. This editor provides the cell designers

with functions to insert, delete, or update a hardware block or the attributes of the block.

That is, the latest generated module will be stored on top of the others so that it can be easily accessed.

CHAPTER 2. HARDWARE MAPPING 20

2.5.3 Examples of the Database

Several examples will be shown in this section to illustrate the basic features of

the hardware database. The complete hardware database which describes the Lager cell
library can be found in Appendix B.

Example 1:

(+ ("adder" (PARAMETERS (N))

(AREA (* N 48 214))

(DELAY (+ 6 (* N 2.2)))

(ONE-BIT-DELAY 6)

(RIPPLE-DELAY (* N 2.2))

(RIPPLE-OFFSET 0)

(DATA-TERMINAL (OUT (INI IN2)))

(POWER-TERMINAL (Vdd GND))

(CTL-IN-TERMINAL ((CIN GND) (CININV VDD)))

(CTL-OUT-TERMINAL COUT)

(CTL-TERM-EDGE ((CIN BOTTOM) (CININV BOTTOM)

(COUT TOP)))

(COMPLEMENT-OUT OUTINV)

(DRIVING-CAP NO))

("fastAdder" (PARAMETERS (N))

(AREA (* N 48 250))

(DELAY (+ 4 (* N 1.2)))

....))

This example demonstrates the structure of the database. In this example, +

(addition) is the function name and the primary key to access the database. Under the

key, two modules, "adder" and "fastAdder", are described. Notice that "fastAdder" has a

shorter delay and a larger area; therefore, it is listed after the "adder" block according to
the cheapest-cell-first rule.

CHAPTER 2. HARDWARE MAPPING 21

This example also demonstrates the basic attributes of a data-path block. The first

attribute of a data-path block is a list of hardware parameters of the block. In this example,

"adder" has only one hardware parameter, N, which represents the block width. The second

and the third attributes are the area and the delay of the block. Both attributes are Lisp

expressions of the hardware parameters. The ripple delay, one-bit delay, and ripple offset

attributes are used for the ripple model in the hardware selection phase. These attributes

are dealt with further in Chapter 3.

The data-terminal attribute specifies the output terminal and the input terminals

of the block. Each block can have only one output terminal for a specific function, while its

input-terminal attribute can be a list of terminals. If a module has more than one output

terminal, the data-terminal attribute should specify the output terminal that carries the

result of the given function (called the primary output terminal). The complementary

output can be specified in the complement-out attribute and the other outputs are ignored

in this description since these outputs are carrying values of other functions.

The power-terminal attribute specifies the power terminals that need to be con

nected, either to power (Vdd) or to ground (GND). The control input/output terminal

attributes not only specify the terminal names, but also the values of these terminals for

that specific function. This information will be used to derive the interface logic of the

control path. The control-terminal-edge attribute specifies which side a control terminal

should be brought out. The hardware mapper can make use of this information to improve

the layout efficiency. The driving-capability attribute specifies whether the hardware mod

ule has an output buffer allocated inside the module. This information is important for the

hardware mapper to allocate extra buffers if there are many fan-outs in the design.

Example 2:

(« ("shift" (PARAMETERS (N (SBY (STRUCTURE M))))

(RANGE (-31 31))

(AREA (* N 50 (+

(* (myLength SBY (list "upl" "downl")) 84)

(* (myLength SBY (list "up2" "down2")) 90)

(* (myLength SBY (list "up4" "down4")) 102)

CHAPTER 2. HARDWARE MAPPING 22

(* (myLength SBY (list "up8" "down8")) 130)

(* (myLength SBY (list "upl6" "downl6"))

186))))

(DELAY (* 1.5 (length SBY)))

(ONE-BIT-DELAY (* 1.5 (length SBY)))

(RIPPLE-DELAY 0)

(RIPPLE-OFFSET M)

(DATA-TERMINAL (OUT (IN)))

(POWER-TERMINAL (Vdd GND))

(CTL-IN-TERMINAL

((shift BUS ((length SBY)

(encoded.SHIFT SBY)))

(shiftbar BUS ((length SBY)

(NOT (encoded.SHIFT SBY))))

(msbin BUS ((length SBY)

SHIFT.IN.NUM))))

(CTL-OUT-TERMINAL NIL)

(CTL-TERM-EDGE

((shift TOP) (shiftbar TOP) (msbin TOP)))

(COMPLEMENT-OUT NIL)

(DRIVING-CAP NO)))

This example illustrates a data-path block with control buses and multiple param

eters. "Shift" is a log shifter which composes various numbers ofsub-blocks to perform the
left shift operation (<<). The shift range is specified by the range attribute. A negative
number in theshift range represents shifting toward theopposite direction. In this example,
the maximal number ofbits that "shift" can perform is 31 bits (either to the right or to the
left). This log shifter has twohardware parameters: N is the block width of the shifter and

SBY is the structure of shifter. SBY can be derived from the number of bits to be shifted

(M). For example, M= 7, the log shifter should contain three sub-blocks: upl (which shifts
one bit toward the left), up2, and up4. Therefore,

SBY = STRUCTURE(M) = ("upl" "up2" "up4")

CHAPTER 2. HARDWARE MAPPING 23

STRUCTURE is a function defined in the database to return a list of sub-blocks based on

the integer M.

The area of the log shifter is a complex Lisp expression. A function "myLength",

which calculates the number of a certain sub-block in the SBY list, is pre-defined in the

database. The area expression is then specified using this function. Continuing from the

previous example, M = 7 and SBY = ("upl" "up2" "up4"), we have:

(myLength SBY (list "upl"."downl")) = 1

(myLength SBY (list "up2" "down2")) = 1

(myLength SBY (list "up4" "down4")) = 1

(myLength SBY (list "up8" "down8")) = 0

(myLength SBY (list "upl6" "downl6")) = 0

Therefore, the area of this specific log shifter is:

N * 50 * (84 + 90 + 102)

Notice that myLength is different from length, which is a Lisp function and returns the

number of elements in a given list. For example, in the expression for the one-bit-delay, we
have:

(* 1.5 (length SBY)) = (* 1.5 3) = 4.5

Torepresent the control bus, a keyword "BUS" is given following the control terminal name.

Both the value of the control bus and the width of the control bus have to be specified in

the control-terminal attribute following the BUS keyword. The format for the control bus

can be defined as follows:

control bus :=

(terminal-name BUS (bus-width bus-value))

Both the bus value and the bus width can be Lisp expressions. In the log shifter example,
the bus width is:

(length SBY) = 3

and the bus value is specified in terms of a pre-defined function "encode-SHIFT", which

takes SBY as the input and returns encoded values for the control bus.

CHAPTER 2. HARDWARE MAPPING 24

Example 3:

(RAM ("RAM3T" (PARAMETERS (("in-width" INWIDTH)

("out-width" OUTWIDTH)

("ram-address-plane" INPLANE)

("ram-bit-plane" OUTPLANE)))

(AREA (* "in-width" "out-width" 31 28))

(DELAY (+ (* 2 "in-width") (* 2 "out-width")))

(DATA-TERMINAL (RAMDATABUS (RAMADDRESS RAMDATABUS)))

(POWER-TERMINAL (Vdd GND))

(CTL-IN-TERMINAL ((PHU CK2) (PHI2 CK1)

(READ OEN) (WRITE LOAD)))

(COMPLEMENT-OUT OUTINV)

(DRIVING-CAP SMALL)

(REDUCIBILITY NIL)))

This example shows a RAM module "RAM3T" in the array database. This module

has multiple hardware parameters: in-width, out-width, ram-address-plane and ram-bit-

plane. Each parameter is defined as an expression of a set of keywords, of which the

definitions can be found in Appendix B. The expression can be any Lisp function or user-
defined function such as "log" and "exp".

Unlike the data-terminal attribute of the data-path modules which allows only

one output terminal specification, the data terminal attribute of memory modules is able

to represent multiple-port cases. For this example, RAM3T has only one I/O port and

therefore the representation is the same as the previous examples and can be simply given

by an output terminal followed by an input terminal list (anordered list). For multiple-port
cases, the format of the attribute is a more complicated expression and can be found in

Appendix B.

The reducibility attribute specifies if the output is tri-state buffered. If this at

tribute is t (true), the output of the memory module is tri-state buffered and therefore

the memory is multiplexer reducible. Otherwise, this module is not multiplexer reducible.

CHAPTER 2. HARDWARE MAPPING 25

Multiplexer reduction will be discussed later in this chapter. The other attributes of the

array modules are similar to those of the data path modules.

This example assumes a two-phase non-overlapped clock, which is the clocking

strategy of most Lager designs. Based on the clocking strategy, the values of the control

input terminals are defined. This module can also be used in designs of other clocking

strategies by modifying the value of the control-input-terminal attribute.

2.6 Data Path Generation

Having described the hardware database system, we now start the discussion of

the hardware mapper with the data path generation. Data path generation is to produce a

data path description in the sdl-language from a decorated flow graph. Figure 2.4 outlines

the major steps in the data path generation. Allocation and assignment information of

the decorated flow graph is needed for the hardware graph generation step and scheduling

information is required for the register file merging step.

The data path generation process begins with the initialization step, which ini

tializes a symbol table and some variables for the hardware mapper. The second step of

the process is to interpret the assign operations (i.e. equal operations) of the decorated

flow graphs. Assignments are used to represent data transfers and can be implemented in

several ways. For instance:

• If a variable is set to zero and this variable isstored in a counteror a resetable register,

this equal operation can be implemented by a reset of the counter or the register.

• If c value is assigned to more than one register or execution unit, this assignment is

a broadcast operation.

• If both the input value and the output value of an equal operation are stored in

registers, this operation represents a register transfer.

The hardware mapper has to find the cheapest way to implement the equal operations.

A simple rule-based system is used in the hardware mapper to solve this problem. This

rule-based system allocates proper hardware units and decides proper control operations

for the equal operations by checking the attributes of the input and output edges of the
assign nodes.

CHAPTER 2. HARDWARE MAPPING 26

initialization

><

assignment

interpretation

>r

word width

handling

>f

HW graph generation

HW allocation

>f

HW connection

state ^ r

state diagram

generation

diagram register file

merging

> r

mux reduction

> f

dp partitioning

^ *

code generation

Figure 2.4: Major Steps of Data Path Generation

CHAPTER 2. HARDWARE MAPPING 27

The third step in the data path generation involves deciding the bit width for

each hardware module. Most of the nodes and the edges in the decorated flow graph have

been given the width attribute before hardware mapping. However, some of them such as

constant edges, which will be mapped to constant modules, may not have a proper width.

The hardware mapper will assign the width attributes for those modules according to a set

of rules. Those rules are:

• For control edges, which may be mapped to control registers, their widths are 1.

• Derive the width of a node from its input/output edges and derive the width of an

edge from its input/output nodes.

• A constant edge can have a width equal to \log2(value)].

• Else take the default value, that is, 1.

The Cathedral System [24] also addressed the data alignment problem. The focus

is on the hardware minimization (including multiplexers and routing) and the approach is

to formulate the problem into an integer linear programming problem. Compared with the

Cathedral System, HYPER uses a simpler rule-based approach. The reason is that most of

the data alignment problems can be solved by a setofderivation rules in the Silage compiler.

For problems that have not been solved by the derivation rules, the hardware mapper simply

applies the rules described above to complete the synthesis process. Although the rules are

easy, they provide a feasible solution without losing much hardware.

After the three preprocess stepsas described above, the hardwaremapper is ready

to generate hardware by putting down hardware blocks and connecting them. The result

of this step is a hardware graph in which each node represents a hardware block and each

edge represents a net. Hardware blocks include registers, constant blocks, and execution

units such as adders and shifters. To connect the hardware blocks, multiplexers or tri-state

buffers may be needed for nets with multiple fan-in's. However, some of the multiplexers

can be reduced later in the multiplexer reduction step. The resulting hardware graph is a

flat graph, unlike the flow graph which is hierarchical. A hierarchical hardware graph will
be built later when registers are merged into register files.

After the hardware graph is generated, several optimizations can be performed.

Themajor optimizations implemented in thehardware mapper include register file merging,

multiplexer reduction, and data, path partitioning. These three optimizations are further

CHAPTER 2. HARDWARE MAPPING 28

discussed in the following subsections. Notice that these optimizations will not change the

functionality of the hardware graph. Their purpose is to improve the area efficiency. The

final step of the data path generation is code generation which produces the data path

sdl-files.

2.6.1 Register File Merging

1. Motivation and Problem Definition

The purpose of register file merging is to improve area efficiency. By merging

registers into register files, all the registers in a register file can share the same data bus

and use a decoder for the control. In addition to improving area efficiency, register file

merging also reduces the problem size for the data path partitioning since a register file

can be treated as a single module instead of several entities. Figure 2.5 illustrates the

advantages of the register file merging. In this Figure, Registers a, b, c, and d are merged

into a register file. Both the numberof the input buses and the number of the output buses

reduce from 4 to 1. The number of control lines reduces from 4 to 2 with a local decoder

allocated.

There are twoconstraintsfor the register file merging: All the registers in a register

file have to be tri-stated and cannot have any I/O conflicts since all the registers share the

same data bus. By having no I/O conflicts, I mean that the registers can not load data at

the same time, nor can they enable outputs simultaneously.

Register file merging may affect the number of multiplexers (or tri-state buffers)

needed. Figure 2.6 shows two examples where the number of the tri-state buffers increases

and decreases respectively after the merging. Assume thfrt all the registers have tri-stated

outputs. In Example 1, the numberof the tri-state buffers increases from 0 to 1. In Example

2, the number of the tri-state buffers decreases from 2 to 1. The rules for allocating tri-state
buffers are explained later in this section.

From the above description, the problem of the register file merging can be defined
as follows:

Register file merging is to merge those registers with tri-stated outputs intoregister files

so that there is no I/O conflicts and the cost function, which includes the total number

of the data buses and the number of the multiplexers required, is minimized.

CHAPTER 2. HARDWARE MAPPING

in1

Ctl1

in2

ctl2

in3 •

ctl3-

in4 •

ct!4-

i

1

0Ut1

out2

out3

out4

register file

merging

29

in out

decoder

cth ct!2

Figure 2.5: Register File Merging

If the cost of the multiplexers is not considered and the registers in a register file

are treated as the nodes of the same color, the register file merging problem is exactly the

graph coloring problem [42], which is NP hard. Simulated annealing [38] is known as a good

approach for solving NP-hard problems such as placement problems, wiring problems [38]

[41] and resource allocation problems [15] and is therefore chosen to solve the register file
merging problem.

Even though the register file structure is part of the hardware model in the al

location and scheduling phase of HYPER as shown in Figure 2.7, the hardware mapper

still tries to solve the register file merging problem for two reasons. First, the hardware

mapper is designed to be general enough to handle any hardware structure and therefore no

fixed hardware model is built in. Even without the register file information from the prior

synthesis process, the mapper should be able to merge registers to reduce the hardware

cost. Second, the scheduler and allocator do not take the multiplexer cost into account and

therefore the register file structure from the allocator may not be suitable at this level of ab

straction. Table 2.1 shows some examples in which the number of tri-state buffers reduces

CHAPTER 2. HARDWARE MAPPING

Examplel: number of tri-state buffers increases

r 1 r2

^ '

exul

r3

exu2 merge r2 and r3

Example2: number of tri-state buffers reduces

r1 r2 r3

t t

i I

exul exu2 merge r1 and r2

30

r2

r1 r3

exul exu2

r1

r2 r3

exul exu2

Figure 2.6: Multiplexer Increasing/Decreasing Due to Register Fi le Merging

after the mapping process. The numbers of tri-state buffers for three different structures

are shown in this table. The first column represents the register file structure from the al

locator, the second column represents the register file structure after the mapping process,
and the third column represents the structure in which each register is treated individually
(that is, no register is merged.). We can see from this table that reduction in the tri-state

buffers is achieved for most examples by performing the register file merging.

2. Simulated Annealing Approach

To solve the register file merging problem, the following information has to be

provided: the interconnect of all the hardware blocks, the information whether a hardware

block is tri-state buffered, and a constraint graph representing the I/O conflicts among the
registers. This information can be obtained as follows: the interconnect is found from the

hardware graph, the tri-state buffered information is obtained from the hardware database,

CHAPTER 2. HARDWARE MAPPING

register

file 1

register

file 2

\ exu /

(1) Exu's can have any number of inputs.

(2) Output of exu feeds into register files, itcan

not go directly into another exu.

Figure 2.7: Hardware Model of HYPER

31

and the constraint graph canbe derived from the state transitiondiagram, which is produced

in the control path generation process from the scheduling information of the flow graph.

The state diagram generation is discussed in the control path generation section of this

chapter.

With the required information, the register file merging problem can now be re

formulated as follows: Given the interconnect of the hardware blocks and a constraint

graph representing the register I/O conflicts, find a new hardware structure with tri-stated

registers merged into register files so that the cost function given below is minimized.

Cost = numberuof-register-files + C * cost-of-multiplexers

Where C is a constant weighting factor. Notice that if C is equal to zero, the register file

merging problem reduces to a graph coloring problem. However, the second term is usually

CHAPTER 2. HARDWARE MAPPING

Examples Before Mapping After Mapping No Register File

IIR, vl 40 28 31

IIR, v2 23 18 19

IIR, v3 19 17 19

FIR 5 5 5

Volterra 8 7 8

Table 2.1: Number of Tri-state Buffers Needed Before and After Mapping.

32

more important than the first term in the merging problem and therefore, the register file

merging problem cannot be treated as the graph coloring problem. From some experiments,

C should be set to around 10 to find good solutions.

The number of register files can be easily calculated; however, to find out the

multiplexer cost, a more complicated rule has to be followed. Before giving the rule, the

unit of the multiplexer cost is defined. Since all the multiplexers can be implemented by tri-

state buffers and each tri-state buffer represents one input of a multiplexer, we can simply

use the number of the tri-state buffers needed (i.e. the number of the total multiplexer

inputs) as the multiplexer cost. In the Lager cell library, the cost of a 2-to-l multiplexer

is almost twice the cost of a tri-state buffer2. Therefore, using the number of multiplexer

inputs as the multiplexer cost is an easy and reasonable approach to calculate the cost.

For cell libraries with different costs of tri-state buffers and multiplexers from those of the

Lager cell library, using tri-state buffers to implement multiplexers may not be desirable

since different implementations of multiplexers may lead to a lower cost. In this case, the

multiplexer costs cannot be defined in terms of the number of the total multiplexer inputs.

A look-up table which includes the costs of various multiplexers is needed for this case to

calculate the multiplexer costs. In the next section, a simple algorithm to build this table
from the hardware cell library is described.

To calculate the multiplexer costs, we need to know when a multiplexer is needed.

Consider an input terminal of a hardware module: if the terminal has only one fan-in, no

multiplexer is required. On the other hand, if the terminal has more than one fan-in (say
N), a N-input multiplexer is needed. However, there are cases where the multiplexers can
be removed or reduced. A module is said to be multiplexer reducible if its output is tri-state

2In the Lager cell library, the delay values for the tri-state buffer and the 2-to-l multiplexer are 1.2 nsec
and 2.2 nsec respectively. The areas for these two cells are 1900 A2 and 3588 A2. The area ratio is 1.89.

CHAPTER 2. HARDWARE MAPPING

mux N-input mux

if

(1) B is mux reducible.

(2) B has no other fan-out.

B
•••

'

mux

>f

A

mux of N-1 inputs

33

Figure 2.8: Multiplexer Reducible Modules

buffered. Examples of such modules are tri-stated registers, register files, and memories.

The multiplexer reducibility is one of the attributes in the hardware database library and

will be examined for each module in the hardware graph. If a multiplexer-reducible module

is one of the N fan-in's and this module doesn't have any other fan-out, it can be removed

from the inputs of the multiplexer and directly connected to the output of the multiplexer.

The N-input multiplexer is now reduced to a multiplexer of N - 1 inputs. Figure 2.8

illustrates the idea. The no-other-fan-out condition as described above of the multiplexer-

reducible module of Figure 2.8 is needed to guarantee that this module only enables its

output when Module A requires the output.

We can now describe an algorithm to find the multiplexer cost. This algorithm

runs through all the hardware modules, checks the possible fan-in conditions for all the

input terminals of the modules, and calculates the number of tri-state buffers required.

for each hardware module, do {

for each input terminal {

if (one or zero fan-in) {

cost no change;

} else {

cost += number of total fan-in;

for each fan-in module {

if (mux reducible && only one fan-out)

CHAPTER 2. HARDWARE MAPPING 34

cost—;

>

>

}

}

Having defined the cost function, we now describe the register file merging al
gorithm. The register file merging algorithm is basically a simulated annealing approach

with some heuristics built in as a preprocess. The purpose of the preprocess is to simplify
the problem size so that the annealing time can be reduced. Two heuristics have been
considered:

• If two tri-stated registers have the same fan-out and have no I/O conflict, it is advan

tageous to merge these two registers into a register file.

• If two tri-stated registers have the same fan-in and have no I/O conflict, it is advan
tageous to merge these two registers.

The second heuristic is not always true. In the cases of data broadcasting, the
situation where two registers share thesame execution-unit fan-in will also happen; however,

these two registers should not be merged. On the other hand, the first heuristic is a useful

guidance for the initial clustering and has been built in the algorithm. After implementing
the first heuristic, the benchmark results show big improvement on the running time for
complicated examples andalmost equivalent performance for small examples. Therun times

for both cases (simulated annealing with the initial clustering and without the clustering)
are listed in Table 2.2. The complete register file merging algorithm is given below.

initial clustering of registers based on heuristics;

initializing cost & temperature;

do until satisfied {

do until satisfied {

randomly choose a move;

if no legal move, break;

evaluate cost;

CHAPTER 2. HARDWARE MAPPING 35

if accept the move,

update the move matrix and the current cost;

>

update temperature;

}

To select a legal move, a move matrix is generated. This matrix is a N by N matrix

where N is the number of registers under consideration. Each row of the matrix represents

a register file and each column represents a register. Consider the matrix entry (i, j), the

possible values of this entry include Nodeln (meaning that register j is in register file i),

Restricted (meaning that register j can not be moved to register file i due to I/O conflicts),

and Available (meaning that moving register j to register file i is a legal move). Notice that

only half of the matrix is needed due to the equivalence of the register file structures before

and after the row permutations of the matrix. Each column can have one and only one

Nodeln entry since a register can only reside in one register file. This move matrix provides

a simple mechanism to update the register file structure and to randomly choose a legal

move.

3. Results of the Proposed Approach

Table 2.2 demonstrates the performance of the algorithm. For simple examples

such as Toy, the optimal solution is found by the algorithm. Figure 2.9 shows the optimal

register file structure of Toy. In this example, five registers (rO to r4) and two execution

units (e5 and e6) are allocated. Assuming that all the registers are multiplexer reducible

and all the execution units are non-reducible, with the given I/O conflicts of the registers,

the algorithm finds the optimal solution, which has three register groups. If each register

is treated as a separate entry, five I/O data buses for the registers and six tri-state buffers

are needed. The optimal structure only needs three data buses and three tri-state buffers.

For the complex examples such as the IIR's and the BPF (Band Pass Filter),

improvements on both bus costs and multiplexer costs are achieved. The reason why the

multiplexer costs cannot reduce significantly for some examples is that those examples

have extensive resource sharing and therefore the multiplexers are unavoidable. Since the

multiplexer cost is much more important than the bus cost, the algorithm doesn't improve

CHAPTER 2. HARDWARE MAPPING 36

Example Toy IIR, vl IIR, v2 BPF FIR

filter

2nd order

WDF

Volterra

of registers 5 34 44 56 18 14 17

of tri-state
buffers reduced

3 3 1 15 1 2 1

of buses
reduced

2 4 11 28 1 1 3

Run time

(SPARC 2)
negligible 12 sec 3 sec 39 sec 1 sec negligible 1 sec

Run time

w/o heuristic
negligible 4 min 3 sec 57 sec 2 sec negligible negligible

Table 2.2: Benchmark Results for Register File Merging.

the bus cost much. Table 2.2 also shows that the run time of the algorithm on a SPARC

station is within seconds for all the examples. Comparing the run time of the algorithm

with the preprocess with that of the algorithm without the preprocess, the algorithm with

preprocess takes a little longer for the Volterra example. This is due to the fact that the

annealing process is so short that the run time of the preprocess becomes more significant

than the run time of the annealing. The total run time of this example, however, is very

short for both algorithms. For benchmarks such as the BPF and one of the IIR filters,

the preprocess plays an important role in reducing the run time. The run time reduces

significantly after the preprocess is implemented.

2.6.2 Multiplexer Reduction

1. Motivation and Problem Definition

The goal of multiplexer reduction is to improve area efficiency by removing mul

tiplexers or tri-state buffers. Several mechanisms can be used to remove multiplexers.

Merging registers into register files as described in the previous section is one of the mecha

nisms. Another possibility is to check the commutativity of operators. If operators such as

additions have commutable inputs, their input connections can be swapped to reduce the

number of multiplexers. Even when the number of multiplexers cannot be reduced, we can

still try to find cheaper ways to implement the multiplexers. Figure 2.10 shows how the

CHAPTER 2. HARDWARE MAPPING

Given I/O conflicts: (r2r3)(M r4) (rO r1)

r1 r2 r3 r4

t t

e5 e6

register file

merging

rO

e5

37

e6

Figure 2.9: Optimal Register File Structure for Toy

combination of these ideas can help to reduce the multiplexer cost. In a continuation of

the example shown in Figure 2.3, a hardware graph was generated in the mapping process
(shown at left). Assuming that the hardware allocator only allocates one adder, namely

adderl, for the algorithm, two multiplexers are required for multiplexing the inputs of the

two additions. If Register c and Register d do not have any I/O conflict, theycan bemerged

into a register file and one of the multiplexers can be reduced. Similarly, if Register a and

Register b do not have any I/O conflict, they can also be merged and the final hardware

structure is shown at the right topcorner of the figure. However, if Register a and Register b

do have I/O conflicts, the multiplexer at theoutputs of Register a and Register b cannot be

reduced. Assuming that tri-state buffers are much cheaper than multiplexers, the hardware

mapper will replace the multiplexer with two tri-state buffers and the final configuration is

shown at the right bottom corner of this figure.

2. Approaches

Finding the cheapest way to implement a multiplexer can be a complicated prob

lem. In general, given a cell library with several implementations of tri-state buffers and

multiplexers, finding the cheapest way to implement a N-input multiplexer with the given

CHAPTER 2. HARDWARE MAPPING 38

mux

reduction

non-reducible

mux

fT] :tri-state

a b c

! 2C

d reg

file

reg

file

mux mux V^
N

adderl (
—• /

s (+) adder 1
•

•

2L

w

f
a

I

i

b

I

t

I

reg

file

mull \^J /
y

{

f

•

•

j adder 1

Figure 2.10: Multiplexer Reduction

cells, where N is any natural number, is a combinatorial problem. Fortunately, N is rela

tively small (less than six) for most cases and an exhaustive search can be performed to find

the cheapest implementation. Instead of doing an exhaustive search, a divide-and-conquer

search mechanism is developed to find a good multiplexer implementation. This mechanism

divides N into two parts, Nl and N2, and go through all possible values of Nl and N2 to

find the best cost of the N-input multiplexer. This approach is a recursive algorithm in
which the cost of the N-input multiplexer depends on the costs of the multiplexers with

fewer inputs. The complexity of this approach is 0(N2). Comparing with the exhaustive
search, the simplification is in the division of N into two parts. For exhaustive search,

N can be divided into two to N parts and this search leads to a combinatorial problem

called partitions with restriction[6S]. In conclusion, the search for a low-cost multiplexer

implementation is important in achieving an efficient design. With the proposed search
mechanism, this search is greatly simplified.

Algebraic commutativity can be used to remove multiplexers. Figure 2.11 illus

trates the idea. If an operation has commutable inputs, the hardware mapper will perform

CHAPTER 2. HARDWARE MAPPING

e

decorated flow graph
before transformation

i
mux mux

2 multiplexers required
before transformation

>=>
swap one of

addition inputs

(+) adder! (+)

decorated flow graph
after transformation

mux

e

only one multiplexer
is required

Figure 2.11: Algebraic Commutativity for Multiplexer Reduction

39

CHAPTER 2. HARDWARE MAPPING 40

an exhaustive search to swap its commutable input connections and find the minimal num

ber of multiplexers required. The search time is on the order of 2n where n is the number

of fan-in's of the commutable inputs. Under most circumstances, n is less than 10 and the

run time is within seconds. Very often, designers won't pay attention to the algebraic com

mutativity when specifying an algorithm, and since the synthesis process doesn't take the

multiplexer cost into account, extra multiplexers may be allocated. The proposed search

which is basedon the algebraic commutativity provides a simple mechanism to remove these

extra multiplexers.

3. Results

Given the costs of tri-state buffers and multiplexers, Figure 2.12shows the differ

ence in the multiplexer costs between the exhaustive search and the proposed divide-and-

conquer approach. The solid lines are the optimal multiplexer costs and the dotted fines

are the solutions found by the divide-and-conquer approach. Consider the costof a N-input

multiplexer where N ranges from 1 to 7, Figure 2.12(a) demonstrates that the costs found

by the divide-and-conquer approach and the exhaustive search are exactly the sameassum

ing that the cost of a tri-state buffer is 10 and that the cost of a 2-input multiplexer is 15.

As a matter of fact, if a cell library has only tri-state buffers and 2-input multiplexers to

implement N-input multiplexers, the cheapest N-input multiplexer found by the proposed

approach is the optimal implementation.

Figure 2.12(b) shows the cost difference between the proposed approach and the

exhaustive search assuming that the cost of a tri-state buffer is 10, the cost of a 2-input

multiplexer is 15, and the cost of a 3-input multiplexer is 20. The maximal difference is 10

for both the 5-input multiplexer and the 7-input multiplexer.

Table 2.3 shows several examples in which the algebraic commutativity is used to

reduce the number of multiplexers. For the Epsilon processor, very few hardware resources

are shared; therefore, the number of tri-state buffers does not reduce after the transforma

tion. For the Viterbi processor and the IIR filter, 36% and 16% reduction is achieved by

applying the commutativity transformation.

Table 2.4 shows the total number of tri-state buffers reduced combining all the

proposed techniques. For the four examples shown, the reduction ratio ranges from 38% to

12.5%. Since the multiplexer reducibility depends on many factors such as the amount of

CHAPTER 2. HARDWARE MAPPING 41

N-input *

muxcosi j

60
s

50
/

40 jf
30 f
20 /
10

1 1 1 1 1 1 1 1 y
1 2345678N

(a) Given: cost(tri) = 10

cost(2-input mux)« 15

N-input +

mux cos

60 /

50 '""/
40 //
30 f
20 /
10

i i i i i i i i >

1 2345678N

(b) Given: cost(tri) o 10

cost(2-input mux) = 15

cost(3-input mux) = 20

Figure 2.12: Multiplexer Cost Found by Proposed Approach and Exhaustive Search

Examples Before Transformation After Transformation

Epsilon 6 6

Viterbi 11 7

IIR 37 31

Table 2.3: Number of Tri-state Buffers Needed Before and After Applying Commutative
Transformation

resources shared and the hardware database, the effect ofmultiplexer reduction varies signif

icantly for different examples. The results in Table 2.4 have demonstrated the importance
of the multiplexer reduction for most examples.

2.6.3 Data Path Partitioning

1. Problem Definition

The task of data path partitioning is to divide data-path modules (including reg

isters, multiplexers, and execution units such as adders) into several groups so that a more

efficient layout can be achieved. Each group forms a data path and among different groups,
data buses are used for interconnect. As described in Chapter 1, HYPER has been de-

CHAPTER 2. HARDWARE MAPPING

Example IIR, vl BPF WDF Volterra

of tri-state buffers
before reduction

37 39 25 8

of tri-state
buffers reduced

10 15 4 1

Reduction ratio 27% 38% 16% 12.5%

Table 2.4: Total Number of Tri-state Buffers Reduced.

Examples # of cells Area improvement Run time Note

dpi 3 0% 0.02 sec find optimal
bdp 13 0% 0.44 sec

dp2 14 2% 0.48 sec

odp 23 2% 2.36 sec

audp 27 -4.8% 5.72 sec

42

Table 2.5: Performance of the Linear Placement Program in DPP.

veloped to address the design of the computationally intensive parts of high-performance

real-time systems. Therefore, the data path generated by HYPER usually contains a large

number of hardware blocks. If all the blocks are put in a single data path, chip layouts

can be extremely inefficient. Furthermore, the linear placement program in the Data Path

Processor (dpp) of Lager IV, which uses a modified Kernighan-Lin Algorithm [69] [5], can
handle up to about 25 hardware blocks well. Beyond the limit, the performance of the pro

gram starts to degrade. Table 2.5 shows the performance of the linear placement program

in dpp. Theareaimprovement is compared with the placement chosen byhuman designers.

We can see the performance degradation of the program if the data path contains more

than 25 blocks. Data path partitioning is therefore necessary to achieve better layouts if
there are more than 25 blocks in the data path.

2. Rejectionless Simulated Annealing Approach

The partitioning process is performed in three phases. First, a depth first search

is performed throughout the hardware graph. Sets of disjoined blocks are put in different

CHAPTER 2. HARDWARE MAPPING 43

groups. Each group is further divided if different word lengths are found within the group.

This criterion is due to the constraint that Data Path Processor cannot handle multiple

word-lengths in a single data path. If the number of blocks in a group is still too large

after the above two processes, a modified simulated annealing algorithm [52] is finally used

to partition the data paths. The first two processes can be performed in polynomial time

[71]; however, the third process which solves the partitioning problem with size constraints

is NP-hard [12]. Several partitioning algorithms have been tried for the third phase and the

rejectionless simulated annealing approach was finally chosen [52]. The rest of this section

will focus on our experience with the partitioning algorithms.

The first approach attempted was the Kernighan-Lin algorithm. The reasons for

choosing the Kernighan-Lin algorithm were as follows:

1. For most target applications of HYPER, the total number of data path modules is

less than 100 even in an extremely complicated data path.

2. The linear placement program in Lager IV can handle up to 25 blocks pretty well.

3. From 1 and 2, the number of times needed to apply the partitioning process can be

derived:

100/25 = 4 = 22

Based on the above analysis, the number of times the two-way partitioning has to be

applied for most cases is less than two and therefore a simple partitioning algorithm may

be sufficient. However, from the benchmark runs such as various implementations of the

IIR filter and the Viterbi processor, we found that the performance (in terms of the number

of data buses) of the Kernighan-Lin algorithm is 50% to almost 4 times worse than a

simulated annealing approach. Since data buses are extremely expensive in chip layouts, a

more sophisticated algorithm with a better performance has to be considered.

Simulated annealing generally performs better than classical edge-interchanging

algorithms such as the Kernighan-Lin algorithm [25]. However, the speed and the conver

gence of simulated annealing can become a drawback when partitioning a large number

of nodes with additional constraints such as upper bounds of nodes within a group. A

rejectionless simulated annealing approach [52] [58] is therefore adopted and used to deal

with both the performance problem of the Kernighan-Lin algorithm and the speed problem

CHAPTER 2. HARDWARE MAPPING 44

encountered by the simulated annealing approach. This algorithm improves the speed in
the following ways:

rejectionless As the traditional simulated annealing process approaches the final solution,
most moves generated are rejected and the generation of moves costs most of the run

time. The new algorithm improves the run time by accepting all moves. However,

the nature of a probablistic approach is not changed since all the moves are ordered

according to a badness measure and a move is chosen probablistically.

cooling schedule The traditional simulated annealing approach spends substantial amount

of time on evaluating an exponential function to decide if a move is taken. For most

computers, exponential functions take much longer run time than additions or mul

tiplications 3. The new algorithm uses the function aT\ + a3T2 for the badness mea

surement where a is the cost of a move. This function can be easily evaluated and

the computer run time can be reduced. At the beginning of the search process, we

set Ti » T2. Along with the annealing process, we increase T2 gradually and keep

T\ constant. As time proceeds, the badness measurement gives more preference to

moves that are more likely to reduce the cost (more greedy) in an identical way to
the simulated annealing approach.

random number generator Random number generators aresources for the simulation of

randomness in simulated annealing. It would beinteresting to find out how much one

can trade on the quality of the random number generators to achieve better speed.
Studies showed that a simple linear congruential-based algorithm [53] can improve
the speed substantially without sacrificing much quality. The final version of the

partitioning program thus uses the Park-Miller random generator for the annealing
process.

In the hardware mapper, data path partitioning is performed after the register file
merging process. Aregister file is treated as a macro block and cannot be divided during the
partitioning. Some of the hardware modules such as register files and barrel shifters have

large areas; on theother hand, some modules are small such as tri-state buffers. Therefore,
it is not reasonable to use the total number of modules within a group as the constraint
for partitioning. A more reasonable measure is the maximal length of a data path. We

On a SPARC station, an exponential function takes about 5 times longer than a multiplication.

CHAPTER 2. HARDWARE MAPPING 45

restrict the length of a data path so that extremely long data paths are avoided. Another

experience which was gained from inspecting chip layouts is that non-uniform lengths of

data paths tend to produce inefficient placement. Therefore, we also try to equalize the

lengths of data paths in performing the partitioning.

The annealing process can be divided into two phases: the clustering phase and

the exchanging phase. Initially, each node forms a group and the number of groups is equal

to the numberof nodes. During the clustering phase, nodes are clustered into bigger groups

and the number of groups reduces. After the clustering phase, the annealing process enters

the second phase (the exchanging phase) when the number of groups remains unchanged
and nodes are tossed among different groups.

The constraints for both phases are the same (the maximal length of the data

paths) except that some cushions are left in the clustering phase for further improvement.

This cushion will be reduced with the annealing process and set to zero at the end of the

process. The reason for setting the maximal-length constraint with some cushion is that as

the clustering process proceeds, the groups with more blocks will tend to attract even more

blocks due to their larger gravity. Without the constraint or the cushion, the result of the

clustering will be several overfed groups with no room to improve. Therefore, we have to

be careful not to overfeed these groups in the clustering process.

The rejectionless simulated annealing approach is implemented as follows: a node

is first randomly chosen, then a non-empty group is selected based on the badness measure

of the node in that group. A group with a smaller badness measure is more likely to be

chosen. When a tie occurs (i.e. equal badness measure for several groups), the node being

tossed will go to the group with a shorter length to equalize the group sizes. The annealing

process stops when further tossing does not improve the cost for a number of movesor when

a maximal number of steps (which is a function of the graph size) is reached. A simple

outline of the partitioning program is given below:

Decide maximal number of steps;

Form a list of bad elements for each groups;

while (stopping criteria not satisfied) {

Pick a random element a;

Pick a new group membership for a;

CHAPTER 2. HARDWARE MAPPING

Example Number

of nodes

Number

of nets

Cost of RSA Cost of KL

Viterbi 40 51 4 6

IIR, vl 78 109 5 19

IIR, v2 63 93 4 15

Table 2.6: Performance of Rejectionless Simulated Annealing vs. Kernighan-Lin.

(all picks according to probabilities and badness)

if the move is legal (not violating maximal-length constraint)

Update graph, cost, and bad lists;

46

3. Results

Table 2.6 compares the rejectionless simulated annealing (RSA) approach with

the Kernighan-Lin (KL) algorithm. The performance of the RSA approach is much better

than the Kernighan-Lin approach for the three examples shown. Since the Kernighan-Lin

approach is implemented in Lisp and the RSA approach is implemented in C, it is unfair

to compare the run time. However, the run time is not a major issue in the comparison

since the run time for both approaches is less than 20 seconds. Table 2.7 compares the

performance of the rejectionless simulated annealing approach with the traditional simulated

annealing (SA) approach. For the simple examples such as EX1 and EX2, both approaches

have similar performance. For complex examples, the new approach eitherhas much shorter

run time (FIR and IIR, v3) or much better performance (Volterra and IIR, vl). From the

comparison, we are confident about the performance and the run time of the rejectionless

simulated annealing approach. Notice that for the third IIR example, the minimal costs

found by both approaches are still very high. This is due to the tightly-connected structure
of the graph.

CHAPTER 2. HARDWARE MAPPING 47

Example #of
nodes

#of
nets

Cost

of RSA

Steps
of RSA

Run time

of RSA

Cost

ofSA

Steps
ofSA

Run time

ofSA

EX1 10 12 7 4101 lsec 6 5310 lsec

EX2 10 12 4 3065 Osec 4 5310 2sec

IIR, vl 78 109 5 32147 15sec 11 55770 4sec

IIR, v2 63 93 4 25491 12sec 5 46748 3sec

IIR, v3 67 116 31 20420 8sec 30 1998777 117sec

FIR 40 61 9 35002 3sec 13 3000223 177sec

WDF 39 56 9 35002 3sec 14 41170 4sec

Volterra 65 97 3 35003 9sec 9 54017 3sec

Table 2.7: Performance of Rejectionless Simulated Annealing vs. Traditional Simulated

Annealing.

2.7 Control Path Generation

After the data paths are generated, the hardwaremapper proceeds to generate the

control paths, which include a finite-state machine (FSM) as the central control and several

control slices as the local control and the interface between the FSM and the data paths.

Figure 2.13 illustrates the major steps in the control path generation. Before the FSM

and interface logic can be generated, a state transition digram (STG) is extracted from

the scheduling information of the decorated flow graph. The state transition diagram is

optimized by removing some dummy states in which nooperationsare performed. Examples

of the dummy states are the ending states of the if control macros. The optimized STG is

then used in both the FSM map generation and the register file merging process (described

in the data path generation). An FSM map is a 2-dimensional table in which each control

signal is assigned a Boolean value4 for each state. The FSM map is constructed from both

the structure of the interface logic and the state transition diagram. This map will be

further optimized by several control transformations to reduce the area of the control paths

and the size of the control nets. Finally, a bds description [72] for the FSM and several bds

and sdl files for the interface logic are generated.

In general, control signals can be categorized as control inputs and control outputs.

Control inputs are signals generated by the FSM to control the data paths or the memory

modules. Controloutputs are signals generated by the data paths and used by the FSM to

4A Boolean value can be 0, 1, or DONT-CARE.

CHAPTER 2. HARDWARE MAPPING

hardware

data base

decorated

flow graph

interface logic

generation

state transition diagram

(STG) generation

STG optimization,

state assignment

FSM map

generation

control optimization

code generation

(sdl and bds files)

register file

merging

48

Figure 2.13: Major Steps of Control Path Generation

make decisions on state transitions. For the control inputs, the required interface logic can
be generated by consulting the hardware database. The CTL-IN-TERMINAL attribute in

the database specifies the values of the control inputs given the operation to be performed.
From these values, the required interface logic can be derived. For the generation of the

control outputs, not only the hardware database needs to be consulted, the decorated flow

graph must also be traced. By simply consulting the hardware database without tracing
the flow graph, redundant logic may be generated. For example, the overflow logic of an
adder may not be needed for certain instances of the adder. Therefore, the interface logic
generator uses a demand-driven approach by tracing the flow graph to avoid redundant
logic.

The state diagram generation is described first in this section, followed by the

CHAPTER 2. HARDWARE MAPPING 49

FSM and interface logic synthesis. Finally the control optimization is discussed.

2.7.1 State Transition Diagram Generation

A State Transition Diagram (or State Transition Graph STG) is a graph in which

each node represents a state and each edge represents the transition between its input node

(called the current state) to its output node (called the next state). Each edge is associated
with a condition which specifies when the transition should take place. Each node (i.e.
state) is associated with some operations to be performed in that state. A node can also

be an idle state in which no operation is performed.

State transition diagrams can be extracted from the scheduling information of

the decorated flow graphs. The schedule of a node is expressed by a non-negative integer

interpreted as the relative ordering of the node to the other nodes in the same subgraph.

Figure 2.14 shows a simple example to illustrate the STG generation process. Given a

decorated flow graph at the left, this process generates a STG as shown at the right. The

state with a double-circle is the initial state. Since there is no control macro in the flow

graph, all the transitions in the STG are unconditional. Notice the transition from State

3 back to State 0. This is due to the Silage assumption that all Silage descriptions are

recursive. That is, there is always an infinite loop outside of the whole Silage description.

State diagram generation is a recursive process due to the hierarchical nature of the

flow graph. To process a flow graph, the STG generator first groups nodes intostates based

on the scheduling information and then generates states according to several generation

rules. Figure 2.15 illustrates these rules. A STG structure as shown at the left hand side

of the figure will be generated if a loop node is found in the flow graph. State s represents

the state in which the looping condition is checked. During the first iteration, the FSM

will transfer to the states corresponding to the subgraph of the loop node without going

through the State s. Each time after the subgraph is performed, the looping condition will

be checked to determine whether the FSM will stay in the loop. If this condition is true,

the FSM stays in the loop; otherwise, the FSM jumps out of the loop and goes on to the
state corresponding to the next macro node of the flow graph.

The STG structure of the if nodes is shown at the right hand side of Figure 2.15.

In State s, the branching condition of the if node is checked to determine which branch to

take for the FSM. Each branch of the STG is represented by a subgraph of the if node. A

CHAPTER 2. HARDWARE MAPPING 50

Schedule = 0(+ Schedule = 0

Schedule = 1 Condition = T

Schedule = 21 >= ») Schedule = 3

Figure 2.14: State Transition Diagram Generation

dummy ending state is generated in the STG as the merging state of the branches. This

dummy state will be removed later in the state optimization process.

Figure 2.16 shows a simple example of the STG generation process using the above

generation rules. For clarity, each state in the STG is properly labeled with the function of

its corresponding node in the flow graph.

After the state diagram is generated, a transformation is performed to remove the

dummy states of the flow graph. Dummy states are states in which all hardware blocks,
including execution units and memories, are idle. Dummy states do not include states

for synchronization such as wait states. An example ofdummy states is the ending state
of the if control macro. Due to cases such as an if macro inside another if macro, the
transformation process has to trace the state transition diagram to find out the correct

next states for all the states after the transformation. Figure 2.17 shows a simple example
of the state transition diagrams before and after the transformation. In this figure, the fi
states represent the ending states of the i/macros. Notice that the $ state becomes the real

ending state of both if macros after the transformation.

After the transformation, a straightforward state-assignment strategy is applied
to the state transition diagram. The number ofbits required for the states using this strat
egy is \log2{number.ofMates)]. The state-assignment process can also be performed by

CHAPTER 2. HARDWARE MAPPING 51

loop:tGt^ f if: AJS*
subgraph

of loop

subgraph if
condition true

subgraph if

condition false

ending state

(removable)

Figure 2.15: Rules for State Transition Diagram Generation

Examples Number of

Inputs
Number of

Outputs
Number of

States

Area

Reduction

Epsilon 9 18 10 7.69%
Viterbi 16 31 20 15.6%
7th order IIR 4 74 12 0%

Table 2.8: Area Reduction Achieved by NOVA

programs such as NOVA [4] or JEDI [3]. NOVA is a program that performs an optimal

assignment of binary codes to the states of an FSM. JEDI is a general symbolic encoding

program intended for multi-level logic optimization. Since the implementation of the cen

tral controller in HYPER is a PLA based FSM, NOVA is chosen as the potential candidate

for state assignment to improve the FSM area. Table 2.8 shows the area reduction after

the state assignment performed by NOVA. For more control-oriented examples such as the

Viterbi processor, a 15.6% area reduction is achieved. However, for many other target appli

cations of HYPER such as the IIR filter, the state transition is purely sequential and no area

reduction is achieved by NOVA. In conclusion, more elaborate state-assignment program

should be involved in the hardware mapper to replace the straightforward state-assignment

strategy currently implemented when synthesizing more control-oriented applications.

CHAPTER 2. HARDWARE MAPPING

fxl)

.J»

sub

graph

Clf y --> 2 subgraphs:

loop) ibranch i

fx2j
Ibranch 2

hierarchical

flow graph

branch 2

state transition

diagram

* Each node in the state diagram represents a state.

* Each node in the flow graph represents an operation or a function.

52

Figure 2.16: An Example of State Transition Diagram Generation

2.7.2 Control Slice Synthesis

Control slices (or interface logic) between the data paths and the FSM are purely

combinational with no state. Therefore, the interface logic can be directly generated from

the decorated flow graph without the scheduling information. As described before, the

interfacelogic contains two parts: control logic required by signals from the FSM or outside

the processor to the data paths (called control inputs) and control logic required by signals

from the data paths to the FSM or OiT chip (called control outputs). For control inputs, the

hardware database is consulted to find out what logic is required for each hardware block.

For control outputs, the required logic is produced by a demand-driven algorithm so that

no redundant logic is generated.

The interface logic is partitioned according to the partition of the data paths.

The purpose of the interface logic partitioning is to improve the layout efficiency. We have

experimented to put all the interface logic in one module and this configuration produced a

routing bottleneck around the interface logic. With the interface logic properly partitioned,

the floor planning and the routing of the whole processor can be performed much more

efficiently.

CHAPTER 2. HARDWARE MAPPING

b1 b2

dummy state

removal

b1

Figure 2.17: Dummy State Removal

53

b2

The best strategy for the layout of the interface logic would be pitch matched with

the data path blocks. The resulting routing between the data paths and the interface logic

becomes very clean without any doglegs. Figure 2.18 shows three types of control-slice

structures. In this figure, two data paths and their interface logic are shown. In (a), the

interface logic is not partitioned. In (b), the interface logic is partitioned but not pitch

matched with the data-path blocks. In (c), the interface logic is partitioned and pitch

matched with the data-path blocks, (c) produces the best layouts among the three and is

the intended structure. However, the Lager IV environment currently cannot support the

pitch matching between the data paths and the control slices. Therefore, all the layout

examples that have been generated from HYPER have the structures as shown in (b).

A bds file and a sdl file are generated for each interface logic module after the

control optimization step, which are described later. MIS II further reduces the logic in

the layout generation process. A standard cell implementation is finally generated through

CHAPTER 2. HARDWARE MAPPING 54

Lager IV with each control terminal properly assigned to an edge of the interface logic

module.

2.7.3 Finite-State Machine Synthesis

During the control slice generation process, an FSM I/O list, which specifies the

input and output signals of the FSM, is produced. The I/O list along with the state

transition diagram is used to generate a FSM table (or FSM map), in which the value of

each control signal at each state is specified. The entry of the FSM table can be one of the

following three Boolean values: TRUE, FALSE, and DONT.CARE. Each entry is assigned

a default value initially. The correct values of the entries will be determined later by going

through the state transition diagram and activating operations in each state. One heuristic

for the FSM synthesis process is to assign the Boolean value DONT.CARE to the FSM table

entries as much as possible. This facilitates the subsequent control optimizations as well

as increases the degrees of freedom for the logic synthesis tool MIS II. The control signals

for registers (LOAD and OUTPUT-ENABLE), however, should never be DONT.CARE to

guarantee the correctness of the data flow.

Since registers are allocated to edges (not nodes) in the flow graph, the register

LOAD/OUTPUT.ENABLE operations are not part of the operation lists associated with

the states in the state transition diagram. The operations of a register are activated by its in

put/output execution units and by tracing the flow graph. The LOAD/OUTPUTJENABLE

signal is activated only when its input/output execution unit is activated.

As described in the previous section, multiplexers/tri-state buffers will be properly

introduced during the data path generation process. The values of the selection signals of

these multiplexers/tri-state buffers are determined by the trace of the hardware graph. The

hardware graph is traced in the direction of the data flow in the flow graph. Figure 2.19

illustrates the idea. When Operation A is activated, data flows from the input of A (i.e.

regl) to the output of A (i.e. reg2). The corresponding hardware graph is traced from

regl to reg2. Three control signals are turned on during the trace: the OUTPUT.ENABLE

(oen) of regl, the select signal of muxl, and the LOAD signal of reg2.

After all the entries in the FSM table are specified, we can start performing the

control optimizations to reduce the table size and to simplify the routing between the control

path and the data paths.

CHAPTER 2. HARDWARE MAPPING

dpi

dpi

block
dp2

^E5
3L£

ctl slice — routing bottleneck around clt_slice

H
FSM

(a) control slice not partitioned.

/

^IE^

block

not pitch matched ^"r^l5>n

dp2

^

£
ctl slicel doglegs al slice2

dpi

ctl slicel

TF
"ST5

3^.

FSM

(b) data paths and control slices not pitch matched.

H

TE

/
block,

pitch matched ^^:

\

iZ
FSM

o
ctl for
block i.

Z^

(c) data paths and control slices pitch matched.

dp2

ctl slice2

Figure 2.18: Three Types of Control Slice Structures

55

CHAPTER 2. HARDWARE MAPPING

regl

G>ddert data flow

reg2

decorated flow graph

regl — oen

muxl —select

^adderl

reg2 — load

hardware graph

56

Figure 2.19: Trace of the Hardware Graph

2.7.4 Control Optimization

The control path synthesis process in HYPER performs four transformations on

the interface logic and the FSM to reduce the control path and the control net routing.

These four transformations are described below with some simple benchmark results showing

the significance of the transformations. The overall performance of these optimizations is

discussed at the end of this section.

1. Merging Equivalent or Complementary Signals

The first control optimization in the control path synthesis process is to merge

equivalent or complementary FSM control signals. This optimization may require proper

allocations of buffers or inverters in the interface logic. As described above, the Boolean

value DONT.CARE is assigned as much as possible in the FSM synthesis step to facilitate

the merging. For example, if an execution unit is not activated at a particular state, all

its control inputs are set to DONT.CARE. With this optimization, the FSM size and the

control-net routing are reduced substantially due to the DONT.CARE assignment and the

fact that many control signals are inherently complementary to each other. Table 2.9 lists

the FSM sizes before and after the optimization from some benchmark runs. The complexity

CHAPTER 2. HARDWARE MAPPING

Epsilon
processor

Viterbi

processor

7th order

IIR

11th order

FIR

5th order

WDF

of flow
graph nodes

24 51 44 31 116

of flow
graph edges

40 100 61 41 144

FSM outputs
before merge

22 48 93 60 184

FSM outputs
after merge

17 28 76 35 161

reduction

percentage

22.7 41.7 18.3 41.7 12.5

57

Table 2.9: Benchmark Results for Control Signal Merging

of each benchmark is also shown in this table. The same benchmarks are used throughout

this section and the complexity will not be repeated in the other tables. The result shows

12.5% to 41.7% FSM size reduction from this optimization and the run time is negligible

for all benchmarks.

Notice that MIS II also performs the merging of equivalent or complementary

signals. The reasons for performing this transformation in the control optimization step

rather than performing in MIS II are: first, not as many formal terminals5 are produced for

the FSM. Second, the hardware mapper can properly allocate buffers in the interface logic.

2. Local Control or No Control

The second control optimization in the HYPER control path synthesis is to recog

nize control signals that are independent of the FSM states and replace them by a distributed

control in the interface logic. This optimization is especially useful for cases such as pipeline

registers and multiplexers since the load and output-enable signals of pipeline registers can

be simply driven by clock signals and the control signals of multiplexers can usually be hard

wired locally. Table 2.10 shows the FSM reduction result from this optimization. 8.6% to

25% reduction is achieved.

&In OCT, a formal terminal is a terminal of the current facet and an actual terminalis a terminal of an
instance. That is, a formal terminal is an I/O terminal in the current block, whereas an actual terminal is
a terminal internal to the block.

CHAPTER 2. HARDWARE MAPPING

Epsilon
processor

Viterbi

processor

7th order

IIR

11th order

FIR

5th order

WDF

FSM outputs
before opt.

22 48 93 60 184

FSM outputs
after opt.

19 42 85 45 166

reduction

percentage
13.7 12.5 8.6 25 9.8

Table 2.10: Benchmark Results for Utilizing Local/No Control Optimization

Epsilon
processor

Viterbi

processor

7th order

IIR

11th order

FIR

5th order

WDF

FSM outputs
before opt.

22 48 93 60 184

FSM outputs
after opt.

22 44 85 50 140

reduction

percentage
0 8.3 8.6 16.7 23.9

Table 2.11: Benchmark Results for Optimizing Register-File Control Signals

3. Register File Decoder Allocation

58

Allocating decoders for register files can reduce FSM sizes as well as the wiring

between FSM's and interface logic. Table 2.11 shows the benchmark result for this opti

mization. The performance of this optimization depends on the quality of the register file

merging in two ways. The reduction is more significant if more register files are generated

and this optimization is more important when the register file sizes are large. Table 2.11

shows that the reduction has no effect on one of the benchmarks, the Epsilon processor.

This is due to the fact that the Epsilon processor is a relatively simple example and there

fore it has very few registers allocated. Since no register file is generated for the Epsilon

processor, the reduction rate is 0%. On the other hand, this optimization achieves signif

icant reduction for some other examples such as the wave digital filter. This wave digital

filter has 53 registers allocated and all the registers have the same word length. Therefore,

the register file merging can be performed efficiently.

CHAPTER 2. HARDWARE MAPPING 59

^>

(> Jtime =2 comparator

>

mux_ctl

a b c d

it <1r * 1

1

ctl j
reg ;

FSM

a b mux ctl

muxl> mux > mux

times 3 1 time = 4 1 I t
mux2 «—

aphdecorated flow graph hardware gr

Figure 2.20: Control Register Allocation

4. Control Register Allocation

The final optimization in the control path synthesis uses the life time analysis and

the algorithm for the clique partitioning problem [13] to allocate the minimal number of

control registers. Control registers are needed when the producing time and the consuming

time of a control signal are not equal, and therefore a temporary storage is required. Control

registers are not allocated in the HYPER hardware allocation process since the hardware

allocator only allocates data-path registers. Control registers will be part of the finite-state

machine and are treated identically to the states of the FSM. Figure 2.20 shows a simple

example to illustrate the allocation of control registers. In this Figure, Mux_ctl is generated

at Time 2 and consumed at Time 4. Between Time 2 and Time 4, a control register in the

FSM is allocated to store the value of mux_ctl.

Figure 2.21 demonstrates the procedure of allocating the control registers. In Step

1, the life time of all control signals is collected. In Step 2, a conflict graph G is derived

from the life time collected in Step 1. In G, each node represents a control signal and an

edge is drawn between Node i and Node j if the life time of control signal i and control

signal j overlaps. In Step 3, the complementary graph G' of G is derived. In G', an edge

is drawn between Node i and Node j if there is no edge between Node i and Node j in G.

Finally in Step 4, the algorithm for the clique partitioning problem is applied to G' and in

this example, two cliques are found. We conclude that two control registers are needed to

CHAPTER 2. HARDWARE MAPPING

Step 1:collect life time of control signals. Step 2: derive conflict graph G.

1 *•

2

3

4

5 »-

i 1

i 1

i 1

—i i—i

Step 3: derive complement graph G'.

<£HJ)
2H3

}

t

}

Step 4: solve clique partitioning problem.

|0HS)j
Clique 2

Clique 1

60

Figure 2.21: Procedure for Allocating Control Register

store the five control signals in this example.

This optimization does not improve FSM sizes much. For the IIR, FIR, and WDF

examples, there is neither control signal nor control macro description in the flow graphs.

Therefore, no control register is needed. For the Epsilon processor and the Viterbi processor,

very few control registers are required and the optimization doesn't reduce the FSM much

either. The exact numbers of the control registers required and reduced depend on the

scheduling of the control operations that generate and/or consume the control signals. This

optimization results in approximately one to two bit reduction of the FSM states for both the

Epsilon processor and the Viterbi processor. Similar results are obtained for the CORDIC

algorithm since the CORDIC example doesn't have many control operations either. When

dealing with examples that involve many control macros and many control-signal operations

CHAPTER 2. HARDWARE MAPPING

Epsilon
processor

Viterbi

processor

7th order

IIR

11th order

FIR

5th order

WDF

FSM outputs
before opt.

22 48 93 60 184

FSM outputs
after opt.

14 26 66 32 134

reduction

percentage

36.4 45.8 29.0 46.7 27.2

61

Table 2.12: Benchmark Results for Overall Control Optimizations

such as comparisons, this optimization can become very useful.

5. Overall Performance of Control Optimization

The overall performance of the control optimizations is shown in Table 2.12. The

optimization process reduces FSM sizes substantially. 46.7% to 27.2% reduction is achieved

for the benchmarks.

2.8 Significance of the Transformation Order

The major transformations performed in the data path synthesis process are reg

ister file merging, multiplexer reduction, and data path partitioning. The natural order to

perform these transformations is to merge registers first, taking into account of the multi

plexer cost, then perform the multiplexer reduction. When the hardware graph is finalized

with register files treated as macro nodes, the partitioning process partitions the hardware

graph and generates the data paths.

These transformations are all ad hoc transformations. They are performed as the

synthesis process proceeds. Therefore, the order of the transformations is fixed according

to the synthesis steps. Without these transformations, the synthesis result is still correct.

However, the area efficiency will be much worse.

When performing several transformations in sequence, thesetransformations should

be orthogonal. Otherwise, the transformations performed first should take into account of

the effect of the subsequent transformations. In the hardware mapper, data path partition

ing is orthogonal to register file merging and multiplexer reduction. However, the register

CHAPTER 2. HARDWARE MAPPING 62

file merging is not orthogonal to the multiplexer reduction. Therefore, when merging reg

isters into register files, multiplexer costs are calculated based on the expected multiplexer

structure after the multiplexer reduction.

Unlike the data path transformations, there is no inherent order for the control

path transformations. Currently, under the HYPER hardware mapper, the order of these

transformations is to perform merging equivalent/complementary signals first, followed by

utilizing local control, then allocating register file decoders, and finally the control register

allocation. The first three transformations are mainly for reducing the FSM output size,

while the last transformation deals with the number of FSM states. These two categories

of transformations are independent from each other and can be performed in either order

without affecting the synthesis result6. Within the first category (i.e. the first three trans

formations), the order of the transformations doesn't affect the final FSM size either. The

reason is that all the transformations check on certain properties of a control signal. If the

control signal has such a property, the transformation tries to reduce this signal. For signals

with one or more of the properties, they will be reduced anyway regardless of the order of

the transformations. For signals without any of the properties, they will still be part of the

FSM after the transformations, also regardless of the order of the transformations. Table

2.13 shows the FSM sizes of the same benchmarks as the previous section with a different

control optimization order. This result confirms our reasoning that the order of the control

optimizations doesn't affect the final FSM sizes.

Even though FSM sizes will not be affected by the order of the transformations,

the final structure of control paths, may be slightly different for various orders of the control

transformations. For example, if we perform the transformation of utilizing the local control

&e/ore the transformation of mergingequivalent control signals, a signal with both properties

(i.e. the FSM entries of this signal are both independent of the states and equivalent to the

entries of another signal) will be produced differently. This signal will be generated from

a local control slice rather than from the fan-outs of another control slice. Figure 2.22

shows the difference of the interface logic for these two different transformation orders. The

tradeoff between these two structures is that the first structure has simpler interface logic,

6Ifa more sophisticated state-assignment program such as NOVA is performed, the order of the control
transformations still doesn't affect the final result. The reason is that these transformations try to reduce
either the number of states or the number of control outputs. However, the state assignment tries to
reduce the PLA (or FSM) size given the number of states and the number of control I/O's. These control
transformations should be performed before the state assignment so that the minimal number of states and
control outputs are given to the state assignment process.

CHAPTER 2. HARDWARE MAPPING

Epsilon
processor

Viterbi

processor

7th order

IIR

11th order

FIR

5th order

WDF

of FSM outputs
before opt.

22 48 93 60 184

of FSM outputs
after opt. order
1- > 2- > 3

14 26 66 32 134

of FSM outputs
after opt. order
2- > 1- > 3

14 26 66 32 134

63

Table 2.13: Benchmark Results Showing the Effect of Different Control Optimization Orders

while the second structure has simpler routing for the control nets. Techniques have been

proposed in [44] and [55] to transform Structure 1 to Structure 2 so that little replication

is traded for a smaller number of partitioned nets.

2.9 Processor Synthesis

After data paths and control paths are generated, the top level processor can be

produced. The major tasks in the processor synthesis are memory block generation, net

generation, and processor optimizations which try to improve layout efficiency and processor

performance.

To generatememory blocks, the synthesis program first consults the arraydatabase

to find the hardware parameters for each block. If a parameter value is not specified by the

user or by the previous synthesis steps, the hardware mapper will try to derive the value

from other relevant parameters. If the parameter value still cannot be determined after the

derivation, the user has to specify it in the layout generation phase.

The net generation process produces all the interconnects between modules in

cluding data, control, clock, and power nets. To ensure the electrical performance of the

processor, local buffers are allocated for the clock nets to avoid possible clock skew. Fur

thermore, the sizes of these buffers are properly scaled according to the stage ratio [51] to

achieve the minimum delay7.

7For a cascaded set of inverters, the optimum stage ratio for minimum delay is 2.7. However, ratios of 2
to 10 can be used to optimize other attributes such as size or power dissipation.

CHAPTER 2. HARDWARE MAPPING 64

W W

interface logic interface logic

(a) Performing merging before local control (b) Performing merging after local control

Figure 2.22: Different Interface Logic Structures As Resulting From Two Control Optimiza

tion Orders

Based on the study-and-critique of the final layouts of some benchmarks such

as the 7th order IIR filter and the Viterbi processor, the hardware mapping process has

been gradually refined. Especially the heuristics of the data and control path partioning

have been heavily influenced by this generate-critique process. This process has resulted

in a dramatic improvement in the area efficiency of the layouts generated by the hardware

mapper. The most important heuristics are listed as follows:

• Interface logic should be properly partitioned. The standard cell implementation

should be specified as one row and, if possible, pitch matched with the data path

blocks.

• Data paths should be partitioned into approximately equal sizes. Data paths of irreg

ular sizes usually produce inefficient layouts at the processor level.

• Both data terminals and control terminals of data paths and control paths should

be properly assigned the TERM-EDGE property. Without the assignment, data

and control nets may cross the whole processor, producing inefficient layouts. After

assigning the TERM JEDGE property, most nets become local and the layout is much

cleaner. Figure 2.23 shows the comparison of two layouts with and without assigning

CHAPTER 2. HARDWARE MAPPING

I*

^>

ctl slice 1

HZ
data path 1 C\

data path 2 C^

n
ctl slice 2

65

H
ctl slice 1

•T^ data path 1 (JT

y data path 2 (j

ctl slice 2

T

(a) Processor layout with term_edge properly specified (b) Processor layout without term_edge specified

Figure 2.23: Comparison Between Layouts With and Without TERM-EDGE Property

this property. It's obvious that the layout with the TERM-EDGE property assigned

is much cleaner than the other one. Notice that after assigning the TERM-EDGE

property, the data path sizes may increase if not enough feed throughs are provided

by the data path modules. Even with the possible area increase in the data paths,

the overall processor area reduces due to a more efficient processor routing.

For the control terminals of the data path modules, the TERM-EDGE property

is easily decided from the hardware database. For the data terminals, however, deciding

the TERM-EDGE property optimally at this stage is difficult since the placement of the

data path blocks won't be performed until the silicon compilation step. Currently, the

TERM-EDGE property of the data terminals is assigned based on two constraints. First,

both sides of the data paths have approximately equal amount of data nets to avoid routing

bottleneck. Second, the TERM-EDGE property is assigned so that all the terminals within

one net are located at the same side of the data paths.

More sophisticated heuristics have been tested to improve the layout quality. One

of the heuristics is to avoid multiple-way nets in the data path partitioning to simplify the

routing problem. Another improvement of the hardware mapper is to allow user interaction

CHAPTER 2. HARDWARE MAPPING 66

so that the number of data paths or the maximal length of a data path can be specified by

the designer. These options allow more freedom to the users in exploring the design space

based on the characteristics of each individual design.

2.10 Conclusion on Hardware Mapping

In this chapter, the hardware mapper of HYPER is described in detail including

the input format, the target architecture, and the major synthesis process. The hardware

database, which provides the necessary area and timing information of all the hardware

modules, is also discussed. Performance of the hardware mapper has been demonstrated

through some real applications and several modifications have been made on the mapper to

improve the layout quality. Future extension of the hardware mapper involves the following

subjects:

• A testing strategy as part of the database. This strategy requires the operational

information of the normal mode and the testing mode as well as the interconnect

information of the scan path. Based on the industrial standard, JTAG can be chosen

as the starting point to implement the testing strategy.

• Various clocking strategies. The current clocking strategy of HYPER is based on the

two-phase non-overlapped clock. Designs of one-phase clock or more sophisticated

clocks such as the four-phase clock should also be synthesizable from HYPER. To

do this, additional information for various clocking strategies should be provided for

each hardware modules. That is, the CTL-IN-TERMINAL attributes in the hardware

database have to be changed. In addition, the hardware mapper needs to be modified

so that the control signals are triggered at appropriate phases and the clock nets are

properly routed.

• Other hardware platforms. The current target architecture of HYPER is the bit-

sliced data-path clusters. Other hardware platforms such as standard cells or gate

arrays may be appropriate for certain applications. To accommodate these different

hardware platforms, the transformation process of the hardware mapper should be

made flexible so that the transformations can be performed optionally in different

orders. Furthermore, more transformations should be introduced for the new hardware

platforms to achieve high quality designs.

CHAPTER 2. HARDWARE MAPPING 67

• More precise area estimation of the final layout. The current hardware mapper pro

vides users with the number of nets and the area of each module for area estimation.

A more precise estimation can be made based on the HYPER hardware model and

the routing efficiency extracted from real layouts. This estimation can assist designers

in determining the design quality without going through the layout generation phase.

68

Chapter 3

Hardware Module Selection

3.1 Motivation and Problem Definition

Given a behavior description of an algorithm represented by a signal flow graph,

the goal of hardware selection is to select a proper clock period (if not specified by the

user), to link every operator in the flow graph to a hardware library element, and to cluster

operations into groups (called composite nodes), so that a minimal hardware cost is obtained

under timing and throughput constraints.

The motivation of the hardware selection and clustering is illustrated using Figure

3.1. A hardware database and a flow graph are given at the top of this figure. The database

contains a barrel shifter (BS) to perform shift operations (>>) and two adder circuits, the

carry ripple adder (CRA) and the c-arry select adder (CSA), for additions (+). The database

also contains information on the area and delay of these operators. Consider the given flow

graph and assume that the clock rate is 35 nsec, two possible implementations are shown

at the bottom of Figure 3.1. The first implementation uses a fully pipelined structure (i.e.

all intermediate variables are stored in registers), while the second implementation tries

to cluster operations into composite nodes. Although Implementation 1 uses a cheaper

adder (CRA), it probably will require more registers than Implementation 2. Furthermore,

Implementation 1 takes three clock cycles to process a sample, while Implementation 2

only needs two clock cycles. The increased latency of Implementation 1 might not matter

in pipelinable algorithms, but is a major bottleneck in recursive algorithms, which form

the majority of the real-time systems. In light of this example, the module selection and

clustering process can be rephrased as selecting sets of execution units, which may be

CHAPTER 3. HARDWARE MODULE SELECTION

Database:

Ceil Delay Area

BS 30 nsec 300

CRA 30 nsec 200

CSA 15 nsec 250

Reg 2 nsec 100

BS

Flow graph

+ JCRA

Implementation

+)CRA

Implementation

69

Figure 3.1: Illustration of the Motivation

composite, to minimize the area cost under timing and throughput constraints.

The hardware selection process,as described above, is anon-trivial task. It consists

of the foUowing elements: a search strategy, a hardware cost estimation, and a timing model

for accurate timing analysis. The relationship of these elements are that the hardware cost

estimation directs the search, while each proposed solution is checked with the timing

analysis.

In the HYPER synthesis environment, hardware module selection is performed

before estimation, hardware allocation, assignment, and scheduling. Therefore, very little

information is available at this stage. One of the major challenges for the hardware selectoris

to come up with a reasonable cost function with limited information. Several cost functions

have been experimented and a relaxed-scheduling approach is finally chosen to estimate

the cost. The timing model is another important issue. It has to be efficient and capable

of capturing the delay properties of all types of function nodes. Finally, the search of the

CHAPTER 3. HARDWARE MODULE SELECTION 70

optimal solution is a NP-hard problem [66]. Heuristics have been developed to perform an

efficient search.

3.2 Existing Hardware Selection Approaches

A survey of the previous efforts in module selection can be found in [66]. The

approaches that have been proposed can be put into three categories: employing the mixed

integer linear programming (MILP) or the integer linear programming (ILP) techniques [2]

[10] [40], performing local optimization based on a goodness measure or a rule-based system

[45] [47] [57] [11], and finding an optimal solution of a simplified problem (for instance,

pipelined design) [36] [66].

Comparing with the existing approaches, the HYPER hardware selection has the

following features:

• The algorithm is able to handle recursive, hierarchical, real-time graphs with timing

constraints.

• A ripple timing model, which accurately models the timing behavior of each hardware

module at the block level, is proposed. Since HYPER allows multiple clock-cycle

operations and operation chaining to achieve an efficient design, the proposed timing

model has to accurately represent the module delay. Furthermore, the timing analysis

has to be efficient since the analysis has to be performed for each intermediate solution

in the search process,

• An efficient search mechanism based on clustering is developed. It is well known that

the problem of module selection is combinatorial in nature. Therefore, an efficient

algorithm is a must.

• An accurate hardware cost estimation is employed. As described above, hardware

selection takes place before allocation, assignment, scheduling and all the other syn

thesis steps in HYPER. The advantage of having hardware selection before the rest

of the synthesis steps is that more information about the delay and area of hardware

modules is available to the scheduler, resulting in more efficient designs [57]. However,

this arrangement makes the cost estimation very difficult during hardware selection.

CHAPTER 3. HARDWARE MODULE SELECTION 71

A hardware cost estimation, which is based on a relaxed-scheduling technique and

reflects not only the execution unit cost but also the register cost, is therefore used.

Section 3 describes the proposed approach in detail. After a global description

of the algorithm, a detailed description of each sub-task is given in the following sections.

Some benchmark results are presented followed this description. Finally, conclusions are

drawn and future developments are discussed.

3.3 Clustering Based Module Selection

The proposed technique is based on an iterative node clustering/declustering strat

egy. Driven by an overall search, nodes are clustered and hardware modules are selected

such that the overall cost is minimized. Each proposed solution is checked against the tim

ing constraints using a simple, yet accurate timing model. The algorithm for clustering and

hardware selection can be summarized as follows:

read flow graph description and hardware database;

feasibility test:

allocate fastest hardware;

if (not meet throughput constraint) return FAIL;

for each possible clock rate, do {

initialization:

allocate cheapest hardware;

assign each variable to registers;

until meeting stop criteria, do {

order clustering/declustering candidates using similarity test;

pick one candidate probabilistically;

perform clustering/declustering;

(swap in more expensive hardware if necessary)

compare cost and update flow graph;

}

}

update flow graph according to the best solution found;

CHAPTER 3. HARDWARE MODULE SELECTION 72

primitive node [+] composite node (macro) [+ »]

Figure 3.2: Primitive Node and Composite Node

Before going into further detail of the algorithm, two terms are defined. We call

a cluster a primitive node if there is only one flow graph node in the cluster. If there is

more than one node in a cluster, this cluster becomes a composite node (or a macro node).

We use the notation [opl op2 ... opN] to represent a composite node with N operations,

opl, op2, ..., and opN. Figure 3.2 shows a simple example of a primitive node [+] and a

composite node [+ >>].

3.4 Possible Clock Rate

If the clock rate is not specified by the user, the algorithm will decide on an

optimal rate by scanning over the possible solutions and selecting the one with the lowest

cost. Given the throughput constraint (T nsec) of an algorithm, the possible clock periods

for the algorithm are T nsec (one clock cycle per sample), T/2 nsec (two clock cycles per

sample), T/3 nsec etc. The lower bound of the clock period is limited by the module delay of

the fastest possible module selected for the algorithm. That is, min-clock-period = T/n >

min{modulejielay). Notice that lower clock rates are always easier to implement. For

this reason, it is advantageous to avoid very small clock periods, even though the proposed

approach has no problems in handling graphs where most of the operations take multiple

cycles.

CHAPTER 3. HARDWARE MODULE SELECTION 73

3.5 Timing Analysis

During the clustering process, the delay of each proposed cluster has to be checked

against the available clock-period. A fully expanded bit-level model has been proposed

[40]. This model is very accurate indeed, but is too time-consuming. On the other hand, a

straightforward timing model, which approximates the timing delay as the sum of the delays

of the composing modules, is used in other synthesis systems. This method is very fast, but

does not accurately model the behavior of a chain of operators. In our approach, the timing

analysis has to be performed repeatedly during the clustering process. HYPER therefore

uses an accurate, yet easily computable ripple model to simplify the timing estimation

problem.

The model is based on a number of observations, demonstrated in Figure 3.3. The

critical path of a Carry Ripple Adder (CRA) is Ml + 7V1, where Ml and ATI are the one-

bit delay and the ripple delay of the CRA. When two CRA's are concatenated, the critical

path becomes 2* Ml + Nl. Notice that the ripple delay JV1 doesn't double in this case. In

the third example where we have one CRA followed by a comparator, the critical path is

N1 + Ml + N2 + Ml. Both ripple delays are included in the critical path due to the fact

that the CRA and the comparator have different ripple directions. The last example shows

a more complex case where a shifter is located between two carry ripple adders. Although

the shifter doesn't have a ripple delay, it causes a ripple offset. Therefore, the critical path

should also include a partial ripple delay of the last carry ripple adder.

The ripple model characterizes a hardware block by three parameters: the ripple

delay (RD), the one-bit delay (OBD), and the ripple offset (RO). The ripple delay expresses

the propagation delay of a module as a function of its hardware parameters such as the

word length. A positive RD implies that the ripple direction is ripple-to-the-left (LSB to

MSB) and a negative RD implies that the ripple direction is ripple-to-the-right (MSB to

LSB). This function can be any expression (e.g. linear, log, or square root) to capture the

delay behavior of execution units such as carry look ahead adders and carry select adders.

The one-bit delay is the critical delay of the one-bit operation. It can also be a function of

the hardware module parameters. The ripple offset is used for some special modules such as

shifters which cause a disruption in the critical path (without actually having any internal

inter-bit ripple). It is also a function of the hardware parameters and can be either positive

or negative to represent the shift directions.

CHAPTER 3. HARDWARE MODULE SELECTION

M1

^
CRA

"T
M1

&
CRA

N2

Ml

M1
CRA

lNI,Y J.

mi j CRA

M1 CRA

r y

Comparator M2 M3

N1(offset)

M1

\Shifter

CRA

cp (critical path) «

M1 +N1

cp = N1 + 2 * M1 cp = N1 + M1 + N2 + M2 cp = N1 + M1 +

M3 + M1 +

N1 (offset)

CRA (carry ripple adder):

ripple delay: N1

one-bit delay: M1

ripple offset: no

Comparator:

rippledelay: -N2

one-bit delay: M2

ripple offset: no

Shifter:

ripple delay: 0

one-bit delay: M3

rippleoffset: - # bits shift

74

Figure 3.3: Operation Chaining

The critical path of a flow graph is then estimated by tracing the graph and

maintaining three parameter values for each edge - the longest ripple delay (LRD) so far

(including the module associated with the delay), the total accumulated delay (AD), and

the current ripple offset (CRO). These values of an edge can be derived from the ripple

parameters of its input node and the parameters of the input edges of the node. The

derivation starts with all the input edges initialized to LRD = 0, AD = 0, and CRO = 0.

If a register is assigned to an edge, this edge can be considered as an input edge. For each

node, we consult the hardware database to calculate its ripple parameters. With the flow

graph topologically ordered, we proceed to derive the critical path of the flow graph using

some basic derivation rules, which will be given in the next section. Figure 3.4 shows a

simple example to demonstrate how the ripple model finds the critical path of a flow graph.

For each node in this figure, the three numbers represent the RD, the OBD, and the RO of

the node respectively. Similarly, each edge is labeled and annotated with the LRD, the AD,

and the CRO. Consider, for example, the chained [+>>+] operation. The shifter causes a

CHAPTER 3. HARDWARE MODULE SELECTION 75

E -15

19-10+15+3=27(>=) • 27+15+2=44<- critical path
o r 0

Figure 3.4: Flow Graph Example to Demonstrate the Derivation Rules

ripple offset and therefore a partial ripple is included in the AD of Edge C. To calculate this

value, backtracking is required since two cases are possible: (a) The critical path includes

the whole ripple of the first addition and the partial ripple of the second addition, (b) The

critical path includes the partial ripple of the first addition and the whole ripple of the

second addition.

Consider another example: the chained addition and subtraction in the figure.

The addition and the subtraction have the same ripple direction, but the subtraction has

a longer RD. According to the derivation rules, the LRD after the subtraction should take

the longest ripple so far and therefore the RD of the subtraction. Furthermore, the AD

should include the RD of the subtraction, but not the RD of the addition. Therefore, the

LRD is:

LRD after addition - RD of addition + RD of subtraction + OBD of subtraction

= 19-10 + 15 + 3

= 27

Consider the last example: the chained subtraction and comparison (>=). These

two operations have different ripple directions; therefore, the AD and thus the critical path

should include the RD's of both operations. The ripple direction and LRD of the output

edge are modified according to the >= node. The critical path based on the derivation is:

LRD after subtraction + RD of comparison + OBD of comparison

CHAPTER 3. HARDWARE MODULE SELECTION 76

=27+15+2

= 44

The advantage of the proposed approach is that the modeling is at the module

level, resulting in a fast and module-width independent analysis. Even with the possible

backtracking, the analysis can be performed efficiently. On average, the timing analysis

takes less than 1% of the total run time. Moreover, this model is very accurate in the sense

that it correctly reflects the ripple characteristics of hardware modules. Although false

timing path problems can still occur, most of the problems are avoided by incorporating

the false paths into the model (for instance, a carry bypass adder). Finally, the ripple model

is also very general. As described before, the ripple delay, the one-bit delay, and the ripple

offset can all be functions of module parameters. We can therefore easily characterize all

types of delay behavior using this model. More precise modeling at this level of abstraction

does not make sense since the effects of wiring and loading can only be computed when the

final architecture is known.

3.5.1 Derivation Rules

The three ripple parameters of an edge can be derived by the ripple parameters of

its input node and the ripple parameters of the input edgesof that node. In this section, the

derivation rules of the ripple model will be given. The best way to analyze different ripple

casesis by looking at the ripple directions (RDir) of the input node and its input edges and

then comparing the AD and LRD of the edges. We will start the analysis without ripple

offset first and extend the analysis to include the cases with ripple offset.

No Ripple Offset

Assume that the input edges have no ripple offset and that the input edges are

data edges (i.e. they are not control lines.), the timing analysis includes three different cases

as will be described below. To demonstrate the different cases, we assume the model shown

in Figure 3.5. In this model, Node C has only twoinput edges, A and B. The order of A and

B doesn't affect the derivation rules and it is straightforward to generalize the derivation

with more input edges. The three ripple parameters of Edge D have to be computed.

CHAPTER 3. HARDWARE MODULE SELECTION 77

Given:

LRD(A) \ A / B LRD(B)

AD(A) \ / AD(B)

CRO(A) V—s/RD(C)
(C JOBD(C)

CRO(B)

S RO(C)

D

Derive: LRD(D), AD(D), and CRO(D)

Figure 3.5: Flow Graph to Demonstrate the Derivation Rules

case 1: RD(C) = 0 In this case, Node C has no ripple delay. The ripple parameters of D

depends on the bigger value of AD(A) and AD(B)1. Suppose that AD(A) >= AD(B),

the derivation rules are:

LRD(D) = LRD(A)

AD(D) = AD(A) + OBD(C)

CRO(D) = R0(C)

case 2: RD(C) > 0 In this case, Node C ripples to the left such as an adder. There are

several possibilities and the ripple parameters of D depend on the maximal AD values

of these possibilities:

1. For input edges that have zero-valued LRD's (e.g. LRD(A) = 0), we have:

LRD(D) = RD(C)

^ince the signs of these values represent the ripple directions, weare only comparing the absolute values
of AD(A) and AD(B).

CHAPTER 3. HARDWARE MODULE SELECTION 78

AD(D) = AD(A) + OBD(C) + RD(C)

CRO(D) = R0(C)

2. For input edges that have positive LRD's (e.g. LRD(A) > 0), we have:

LRD(D) = max(LRDCA), RD(O)

AD(D) = max(AD(A)+0BD(C), AD(A)-LRD(A)+RD(C)+OBD(C))

CRO(D) = R0(C)

3. For input edges that have negative LRD's (e.g. LRD(A) < 0), we have:

LRD(D) = RD(C)

AD(D) = AD(A) + RD(C) + OBD(C)

CRO(D) = R0(C)

case 3: RD(C) < 0 In this case, Node C ripples to the right such as a comparator. The

derivation rules are similar to case 2 except the signs of the parameters, which indicate

the ripple directions. For clarity, the rules are listed below. Notice that RD(C) < 0

in this case.

1. For input edges that have zero-valued LRD's (e.g. LRD(A) = 0), we have:

LRD(D) = RD(C)

AD(D) = AD(A) + OBD(C) - RD(C)

CRO(D) = R0(C)

2. For input edges that have negative LRD's (e.g. LRD(A) < 0), we have: (Notice

that the maxes in the following formulas are taken on the absolute values.)

LRD(D) = max(LRD(A), RD(C))

AD(D) = max(AD(A)+0BD(C), AD(A)+LRD(A)-RD(C)+OBD(C))

CRO(D) = R0(C)

3. For input edges that have positive LRD's (e.g. LRD(A) > 0), we have:

LRD(D) = RD(C)

AD(D) = AD(A) - RD(C) + OBD(C)

CRO(D) = R0(C)

For control inputs to Node C, their CRO's and LRD's are both 0. The derivation

rules as described above still apply. Similarly, if Node C produces control outputs such as

CHAPTER 3. HARDWARE MODULE SELECTION

CRO(A) = 0

PRD(C.O)

V

AD(D)

nodeC

e.g. C is a carry ripple adder.

RD(C) =2N, where N is bit width.

IfCRO(A) = -3 ("-" indicates right offset.)

PRD(C,0)=2*3 = 6

79

Figure 3.6: Flow Graph to Demonstrate the Ripple Offset

the carry-outs of additions, the output edges will have both its CRO and LRD equal to 0.

The AD values can be calculated using the above derivation rules.

Ripple Offset

In this section, the derivation rules are extended to handle the ripple offset cases.

Figure 3.5 will still be used as the hardware model and the ripple parameters of Edge D

will be derived.

Assume that CRO(A) is not zero, CRO(D) is simply CRO(A) + RO(C). This is

due to the accumulative property of ripple offset. CRO will be reset to 0 when a ripple

operator such as a carry ripple adder is met. To derive LRD(D) and AD(D), we consider

the following three cases:

case 1: RD(C) = 0 Since Node C doesn't have a ripple delay, ripple offset does not affect

the derivation rules. The rules described in the previous section still apply.

case 2: RD(C) > 0 Node C ripples to the left such as a carry ripple adder. Before giving

the rules, we need to define a new notation PRD (Partial Ripple Delay). PRD(C,0)

is the partial ripple delay of Node C due to the ripple offset 0. Figure 3.6 illustrates

the situation and gives a simple example of the PRD. Having defined PRD, we now

consider six possibilities for case 2:

1. Assume that LRD(A) = 0 and that CRO(A) < 0, the ripple offset doesn't affect

the derivation:

CHAPTER 3. HARDWARE MODULE SELECTION 80

LRD(D) = RD(C)

AD(D) = AD(A) + OBD(C) + RD(C)

2. Assume that LRD(A) = 0 and that CRO(A) > 0, the ripple offset shortens the

critical path:

LRD(D) = RD(C)

AD(D) = AD(A) + OBD(C) + RD(C) - PRD(C, CRO(A))

3. Assume that LRD(A) > 0 and that CRO(A) < 0, we have two possible critical

paths: (a) The critical path includes whole LRD(A) and partial RD(C). (b) The

critical path includes partial LRD(A) and whole RD(C). The derivation rules

can be written in the foUowing formula:

AD(D) = max(AD(A) + OBD(C) + PRD(C, CRO(A)),

AD(A) - LRD(A) + RD(C) + OBD(C) + PRD(A, CRO(A)))

LRD(D) = LRD(A) if AD(D) takes the first term in the above formula

RD(C) otherwise

4. Assume that LRD(A) > 0 and that CRO(A) > 0, there are also two possible

critical paths as described in the following formula. Notice that AD(D) may be

smaller than AD(A) since the MSB's of A are thrown away in this case.

AD(D) = max(AD(A) + OBD(C) - PRD(A, CRO(A)),

AD(A) - LRD(A) + RD(C) + OBD(C) - PRD(C, CRO(A)))

LRD(D) = LRD(A) if AD(D) takes the first term in the above formula

RD(C) otherwise

5. Assume that LRD(A) < 0 and that CRO(A) < 0, the derivation rules are:

LRD(D) = RD(C)

AD(D) = AD(A) + RD(C) + 0BD(C) - PRD(A, CR0(A))

6. Assume that LRD(A) < 0 and that CRO(A) > 0, the derivation rules are:

LRD(D) = RD(C)

AD(D) = AD(A) + RD(C) + 0BD(C) - PRD(C, CRO(A))

case 3: RD(C) < 0 Node C ripples to the right. The derivation rules are similar to case

2 except the signs of the ripple parameters, which indicate the ripple directions. The

rules are listed below:

CHAPTER 3. HARDWARE MODULE SELECTION 81

1. Assume that LRD(A) = 0 that CRO(A) < 0, we have:

LRD(D) = RD(C)

AD(D) = AD(A) + OBD(C) - RD(C) - PRD(C, CRO(A))

2. Assume that LRD(A) = 0 and that CRO(A) > 0, the ripple offset doesn't affect

the derivation:

LRD(D) = RD(C)

AD(D) = AD(A) + OBD(C) - RD(C)

3. Assume that LRD(A) < 0 and that CRO(A) < 0, there are two possible critical

paths:

AD(D) = max(AD(A) + OBD(C) - PRD(A, CRO(A)),

AD(A) + LRD(A) - RD(C) + OBD(C) - PRD(C, CRO(A)))

LRD(D) = LRD(A) if AD(D) takes the first term in the above formula

RD(C) otherwise

4. Assume that LRD(A) < 0 and that CRO(A) > 0, we have two possible critical

paths: (a) The critical path includes whole LRD(A) and partial RD(C). (b) The

critical path includes partial LRD(A) and whole RD(C). The derivation rules

can be written in the following formula:

AD(D) = max(AD(A) + OBD(C) + PRD(C, CRO(A)),

AD(A) + LRD(A) - RD(C) + OBD(C) + PRD(A, CRO(A)))

LRD(D) = LRD(A) if AD(D) takes the first term in the above formula

RD(C) otherwise

5. Assume that LRD(A) > 0 and that CRO(A) < 0, the derivation rules are:

LRD(D) = RD(C)

AD(D) = AD(A) - RD(C) + 0BD(C) - PRD(C, CR0(A))

6. Assume that LRD(A) > 0 and that CRO(A) > 0, the derivation rules are:

LRD(D) = RD(C)

AD(D) = AD(A) - RD(C) + 0BD(C) - PRD(A, CR0(A))

For the control input cases, since CRO's of control inputs are equal to zero, the

derivation rules as described in the previous section still apply. For the control output

CHAPTER 3. HARDWARE MODULE SELECTION 82

cases, both CRO's and LRD's of control outputs are equal to 0 and the AD values can be

calculated using the rules described in this section.

3.6 Clustering Based Search Algorithm

While clustering can improve clock cycle utilization and reduce register costs, it

may also reduce resource sharing and hence increase hardware costs. To address these

contradictory requirements, the module selection process is organized as a probabilistic

iterative-improvement process. The basic moves are either the clustering of two nodes

(primitive or composite) into a composite one or its inverse - the declustering move, which

decomposes a composite node into two nodes. The second move is essential when local

minima are to be avoided.

For each move, it is first decided whether to perform clustering or declustering.

This decision is based on the number of available candidates for each. The number of candi

dates for clustering is the number of edges, while the number of candidates for declustering

is the number of composite nodes. If clustering is chosen, a similarity test is performed to

measure the possible benefit of clustering for each candidate. Figure 3.7 demonstrates the

process through a simple example. In this Figure, the number of clustering candidates and

the number of declustering candidates are 4 and 2 (2 composite nodes [++]) respectively.

Assume that clustering is probabilistically chosen, the similarity test is then performed. For

each edge, a tuple is constructed based on the functionality of its input and output nodes.

A table is used to record the occurrence of each instance. In this example, the combination

[++] [+] occurs twice in the graph, while other combinations never occur or occur only

once. Using the occurrence table as a measure, the algorithm probabilistically selects the

candidate for clustering. If, for instance, the [++] [+] combination is selected, the flow

graph is updated and the composite nodes [+ + +] are constructed. The flow graph after

the execution of this move is shown at the right side of Figure 3.7.

On the other hand, if declustering is chosen as the next move, a different measure

is used for calculating the possible benefit of the candidates for declustering. The node with

the leastoccurrence is the most probable candidate for declustering.

Graph cycles may be introduced during the clustering process. Figure 3.8 illus

trates the situation. If the two nodes to be clustered are respectively the input node and

the output node of one single node, graph cycles will be created by clustering. Graph cycles

CHAPTER 3. HARDWARE MODULE SELECTION

++

»

(1) cluster candidates: 4

decluster candidates: 2

=> perform clustering

(2) similarity test:

\in
out\ 1+ +] W [»]

[++] 0 0 1

W 2 0 0

[»] 0 1 0

=> cluster [+ +] and [+]

83

++

»

Figure 3.7: Clustering Based Search Strategy

cause a race condition in the flow graph and must be removed to achieve a feasible schedul

ing. That is, the flow graph must be acyclic. In general, graph cycles will be generated if

the two nodes to be clustered have respectively a higher and a lower topological order than

a certain node. To avoid the graph cycles, flow graphs are topologically ordered before the

clustering is performed. When clustering two nodes, a test, which goes through the nodes

with topological orders between the two clustered nodes, is performed to ensure that no

graph cycle is produced.

3.7 Hardware Swapping

The hardware selection is performed during the clustering process. Initially, all

operations are implemented on the cheapest hardware. During the clustering, more expen

sive (but faster) hardware might be swapped in if needed to meet the timing constraint. An

exhaustive search with pruning is performed to choose the candidate operation for swapping

as well as the proper hardware module to execute the operation. This search is inexpensive

CHAPTER 3. HARDWARE MODULE SELECTION 84

Figure 3.8: Graph Cycles Caused by Clustering

since the choices for swapping are limited for most cases and the pruning can be performed

efficiently by evaluating the cost of the proposed hardware function.

Figure 3.9 shows a simple example of the swapping process. To cluster an addition

node and a comparison node, the algorithm has to check the timing constraint. Assuming

that with the cheapest hardware implementation, the new cluster cannot meet the timing

constraint. After searching through the database, a faster module, a carry select adder in

this case, is found to replace the cheapest addition module, the carry ripple adder. After

the swapping, the new cluster satisfies the timing constraint and the clustering of these two

nodes is completed.

An important constraint on composite nodes is introduced to simplify the hard

ware selection process: the same implementation is used for all composite nodes with the

same flow graph structure (except the multi-function units). For example, in Figure 3.9,

the implementation for the composite node [+ >] is a carry select adder followed by a

comparator. From this constraint, all the composite nodes with an addition node followed

by a comparison node are implemented by a carry select adder followed by a comparator.

This constraint greatly simplifies the hardware selection problem. The hardware selector

now only needs to work on the master of a composite node instead of each instantiation of

CHAPTER 3. HARDWARE MODULE SELECTION

carry ripple

hw swap

critical path >timing constraint critical path < timing constraint

85

carry select

Figure 3.9: Hardware Swapping

the composite node.

The information of the available hardware blocks is provided by the parameterized

hardware database system as described in Chapter 2. A set of database access routines have

been implemented in the database system to facilitate the hardware selection process.

3.8 Hardware Cost Function

The cost function for the clustering and hardware selection process can be repre

sented by the following formula:

Cost = cl *MAX(0, {CP - tmax)) +c2 *5^(ARi *NRi)
i

This formula includes two terms which are weighted by cl and c2. The first term represents

the timing constraint, while the second term represents the hardware cost of the proposed

solution. In the first term, tmax is the available time of the algorithm given by the designer

and CP is the critical path of the algorithm. If the timing constraint is met (i.e. tmax >

CP), this cost is 0 and the total cost is equal to the hardware cost; otherwise, the timing

cost is more significant than the hardware cost. This implies that cl should be much larger

than c2. Initially, cl can be small and as the search process moves on, cl will gradually

increase and become infinity when the search process ends. This means that an initial

CHAPTER 3. HARDWARE MODULE SELECTION 86

solution may not meet the timing constraint, but as the search process proceeds, the timing

constraint becomes more and more important and the final solution must meet the timing

constraint.

The second term of the cost function is the estimated total area of the execution

units. In this formula, Am is the area of resource Ri and Nm is the number of required

RVs. Am can be calculated from the hardware database; however, Nm can not be exactly

determined until after the hardware allocation process. A precise estimation for Nm is

therefore required.

An absolute min-bound can be used to calculate Nm> This min-bound is computed

using the following formula:
., . 0Ri * Dm
Nm > —

*>max

Where Dm is the duration of a single operation of class Ri and Om is tne number of Ri

nodes in the flow graph. A similar bound is also used in SLIMOS [36] and MOSP [66].

Even though it is very simple to calculate, this min-bound is too optimistic and will present

a totally wrong picture. It assumes that all operations can be distributed evenly over

the available time, which is rarely the case. A more precise bound can be found using a

technique called discrete relaxation [59]. This approach uses a relaxed-scheduling technique

to determine the minimal execution time of the graph given a certain allocation. The

relaxation is achieved by considering only one node type at a time and ignoring the precise

precedences between nodes. Only the as-soon-as-possible (ASAP) and as-late-as-possible

(ALAP) times (as obtained from the graph leveling) are retained. This approach turns an

NP-complete problem into a problem of complexity Nm * logNm- The overall estimation

consists of an iterative procedure, starting from the absolute min-bound. Nm is increased

until a schedule can be found.

Figure 3.10 shows a simple example where the absolute min bound breaks down.

Assuming that all operations can be performed within one clock cycle and that the through

put constraint is 3 cycles/sample, the absolute minimum bound estimates that only one

adder is needed. However, inspection of the graph clearly shows that at least two adders

are needed to meet the throughput constraint due to the distribution of the additions in

the earlier time-slots. The relaxed scheduling approach, on the other hand, correctly finds

the minimal number of adders needed by the iterative procedure.

Figure 3.11 shows the ratio of the sharp minimum bound obtained by the relaxed

CHAPTER 3. HARDWARE MODULE SELECTION 87

f+) (+} (+)
*i\j*2 J^ A3
(M) Q(1-1)Q(1-2)

3 clock cycles available

(1 cycle/operation)

#E

S

Con

1 A

NAIVE MIN BOUND (adders)

v, ,,0 #Operations 3
XUs= #Cycles 3 ": 1

SHARP MIN BOUND

ack Based List Scheduling
sidering only 1 single resource

dder 2 Adders

1

2

3

A1

A3

A2?

1

2

3

A1.A2

A3

Figure 3.10: Cost Estimation - Min Bound

scheduling technique against the absolute minimum bound for 48 benchmark runs of real

applications. An average of 65% improvement on the estimated minimum bound is achieved

by the relaxed-scheduling approach. On average, the difference between the sharp minimum

bound and the real execution unit cost is less than 15% [62].

The cost of registers is reflected in the tie breaking rules. As described in the

algorithm, the search process always keeps the best solution found so far. If a tie happens,

two tie breaking rules are used to select the most promising solution. The first rule is to

choose the solution with a smaller number of clusters. The reason is that a smaller number

of clusters implies a smaller number of variables to be stored in registers and therefore a

better chance of finding a solution with less registers. The other tie breaking rule is to

choose the solution with a lower clock rate due to a possibly easier implementation.

CHAPTER 3. HARDWARE MODULE SELECTION

20

Example number

Figure 3.11: Bound Ratio of Execution Units for 48 Examples

3.9 Clustering for Hierarchical Graphs

The proposed approach is capable of performing clustering and hardware selection

for hierarchical flow graphs. To facilitate the HYPER synthesis process, all the operation

nodes are clustered into several function nodes if there are control macro nodes at the same

level of hierarchy. This clustering process is called functional clustering and should not be

confused with the clustering in the hardware selection and clustering process. Figure 3.12

shows the idea of the functional clustering. In this figure, two operation nodes in front of

the loop node are clustered into a function node and the last operation node is reduced

to the subgraph of another function node. The numbers in italic next to the nodes in

the clustered flow graph represent one possible schedule. This functional clustering can be

easily performed by a topological ordering.

With the clustering of operations into function nodes, the hardware selection and

clustering of hierarchical flow graphs becomes much easier. The clustering and hardware

selection process now only needs to be performed on the lowest hierarchy level of the flow

graphs where all the operation nodes reside.

Performing the relaxed scheduling for cost estimation on a hierarchical graph is

somewhat more complex than the flat graphs since only the total available time is known,

88

CHAPTER 3. HARDWARE MODULE SELECTION

a b i[0]

clustering

I tunc J

89

2 50 1Q0 2 lfl.1] j
Vsubgraph Vr W i/ 2 KrJ 2\iJ I

T •* ;
break iQ] j

i[50]

ksubgraph
3 I tunc *•

Figure 3.12: Node Clustering in Hierarchical Flow Graphs

but not the time allotted to each subgraph. During the estimation process, we therefore

distribute the available time over the subgraphs using a simple heuristic, called the stress

of a graph, which is defined by the following formula for a graph g:
number.ofjnodes(g)

Stress{9) = tmat(9)-CP(g)+l
CP(g) represents the critical path of Graph g and tmax(g) the current available time. A
good time distribution tries to equalize the stress over all subgraphs. A high stress factor
implies too many nodes in Graph g, but not enough time is allotted. The time distribution
algorithm first sets the available time for each graph to its critical path. Next, more time is
allocated to the graph with the highest stress. This process is continued until the available
time is completely used. After the time distribution process, the cost estimation can proceed

as for the flat graph case.

Figure 3.13 shows a simple example to illustrate the time allotment process.

Subgraph 1 has 3 nodes and the critical path is 3 cycles. Subgraph 2 has 4 nodes and the
critical path is 2 cycles. Suppose that the total available time is 7 cycles, the extra time is:

7 - 3 - 2 = 2cycles

CHAPTER 3. HARDWARE MODULE SELECTION

Given: total available time 7.

subgraphs:

3 nodes

critical path (CP) = 3

available time (AT) = 3

stress = 3

subgraph2:

4 nodes

CP = 2

AT = 2

stress = 4

time allotment

subgraph1:

AT = 4

stress = 3/2 = 1.5

subgraph2

AT = 3

stress = 4/2 = 2

90

Figure 3.13: Example to Illustrate Time Allotment

This process first calculates the stress for both subgraphs and finds out that Subgraph

2 has a higher stress (4) than Subgraph 1 (3). One extra cycle is therefore allocated to

Subgraph 2. With the extra time, Subgraph 2 now has a lower stress (2) than Subgraph

1 (3). Subgraph 1 gets the other extra cycle and the allotment process is completed. The

stress of the two subgraphs after the allotment are 1.5 and 2 respectively.

3.10 Experiments and Results

A simple biquad example is illustrated in Figure 3.14. The critical path is marked

by a dotted line. Assuming that the designer specifies the sampling rate to be 2MHz.

Consider two cases: in case one, the designer specifies the clock rate to be 16MHz, and

the throughput constraint is 16/2 = 8cycles/sample. With the cheapest hardware and the

fully pipelined (i.e. store all variables in registers) structure, the critical path is 8 cycles

assuming single cycle operations. The structure satisfies the throughput constraint and the

hardware required is two adders, one subtracter, two barrel shifters and fourteen registers.

After a similarity test, [>> +] is chosen to be the candidate for clustering. The solution

CHAPTER 3. HARDWARE MODULE SELECTION

Given:

sampling rate: 2MHz

Result:

cluster

yes/no

clock

rate
+ - »

»

+

+

+
reg

no 16M 2 1 2 0 0 14

yes 16M 1 1 1 1 0 13

no 12M

yes 12M 0 1 1 1 1 12

If multiple function units allowed:

1 ALU, 1 shifter, and 9 registers

91

Figure 3.14: A Biquad Example

after clustering is shown with the dotted boxes. The hardware required is shown in the

second row of the table in the figure. The cost reduces due to the lower number of required

registers. If multi-function units such as an ALU are allowed, this algorithm finds a solution

with only one ALU, one shifter, and nine registers. The hardware cost is much lower than

those of the solutions with only single-function units. In HYPER, the hardware selector

proposes sets of feasible hardware modules including both multi-function units and single

function units and the scheduler/allocator can make decisions on which set of modules to

use.

Consider the other case in which the designer specifies the clock rate to be 12MHz.

Now the fully pipelined structure fails to meet the throughput constraint since the critical
path (8) is longer than the cycles allowed (6). After theclustering, the critical path reduces
to 6 cycles and meets the throughput constraint. The hardware cost is shown in the last

row of the table.

In addition to the probabilistic approach as described in this chapter, a greedy

approach which always chooses the most prominent candidate for clustering has also been

CHAPTER 3. HARDWARE MODULE SELECTION 92

benchmark
sample

rate

clock

(nsec)

time on

SPARC

before/

after
#nodes #edges #reg.

exu

cost

7th order IIR 1 MHz 75 2min
before 45 46 40 164

after 38 39 35 134

10th order FIR 1 MHz 90 1.6min
before 40 41 33 184

after 33 34 32 154

5th order WDF D.7 MH2 100 1.3min
before 34 43 27 460

after 28 38 27 260

3rd order WDF 1 MHz 70 1.1 min
before 25 26 14 72

after 25 26 10 55

3rd order WDF 2 MHz 60 3.7min
before 25 26 no sol. no sol.

after 15 22 12 136

Figure 3.15: Clustering Result

implemented. The benchmark results of the greedy approach along with the results of the

probabilistic approach can be used to demonstrate the tradeoff between the time and the

performance of these two approaches. For the same biquad example, the greedy approach

finds a solution with 1 adder, 1 subtracter, 1 shifter, 2 [>> +] units, and 13 registers.

Compared with the probabilistic approach, the hardware cost is one shifter and one register

more. The run time is 4 seconds vs. 45 seconds. Notice that two [>> +] units are required

in this case. With the absolute minimum bound, one would estimate that only one [>> -f]

unit is needed. However, through the relaxed-scheduling approach, we correctly estimate

that two [>> +] units are required.

Figure 3.15 shows some benchmark results of the probabilistic approach. The clock

rates were predefined except the last one in which the algorithm tries to find the best clock

rate. The execution-unit costs and the register costs in this table are the real costs after

the allocation process. Notice that the register costs cannot be calculated directly from the

number of flow graph edges since several variables (i.e. edges) can share the same register.

The number of edges, however, gives some indication on the amount of registers needed.

We can see form the results that the clustering process helps to meet the timing

CHAPTER 3. HARDWARE MODULE SELECTION 93

constraints as well as to reduce the hardware costs. For the first three cases, clustering

improves the hardware costs. About 83% to 90% of the variables are stored in registers and

the register costs are reduced for most cases. In addition, the execution-unit costs reduce

after clustering, ranging from 16% to 43%. For the 3rd order WDF case, no clustering is

performed since the fully pipelined implementation is very efficient. The reduction of the

hardware cost as shown in this table is achieved through the use of multi-function units.

For the last case, clustering is required to meet the throughput constraint. This table also

shows that all the solutions are found within minutes on a SPARC station.

The same benchmarks are also used to test the greedy approach and the results

are shown in Figure 3.16. The performance of the greedy approach is slightly worse than

the probabilistic approach for three examples and equivalent to the probabilistic approach

for the other two examples. The run time of the greedy approach is much shorter than

that of the probabilistic approach. However, the run time of the probabilistic approach

is still acceptable. The reason why the greedy approach has a similar performance to the

probabilistic approach is that the benchmarks have very regular flow graph structures and

therefore the greedy approach can also find good solutions. For irregular flow graphs, the

probabilistic approach should perform much better than the greedy approach.

From running the benchmarks and analyzing the results, we observe several inter

esting points:

• Although multipliers usually are not clustered, the clustered implementation can still

save multipliers and greatly reduce hardwarecosts by clustering other operations. The

5th order WDF as shown in the above table is a good example, in which a multiplier

is saved due to the clustering of additions. After the clustering, more clock cycles are

available for multiplications and therefore less multipliers are required. Figure 3.17

illustrates the situation.

• Partial clustering may be advantageous in some cases. Figure 3.18 shows an example

to demonstrate the idea. The first implementation in the figure clusters all instances

of [++], while the second implementation only clusters three of the four instances.

The second implementation requires less hardware due to a better utilization of the

[+] unit (adder). The above situation can usually be detected by a low utilization of

some hardware units after clustering. A partial declustering is required in this case

to improve the hardware cost.

CHAPTER 3. HARDWARE MODULE SELECTION 94

benchmark
sample

rate

clock

(nsec)

time on

SPARC

prob./

greedy
#nodes #edges #reg.

exu

cost

3rd order IIR 1 MHz 75 7 sec
prob. 38 39 35 134

greedy 38 39 37 144

10th order FIR 1 MHz 90 6 sec
prob. 33 34 32 154

greedy 33 34 32 154

5th order WDF 3.7 MH2 100 8 sec
prob. 28 38 27 260

greedy 29 39 27 260

3rd order WDF 1 MHz 70 3 sec
prob. 25 26 10 55

greedy 25 26 14 72

3rd order WDF 2 MHz 60 10 sec
prob. 15 22 12 136

greedy 14 22 14 156

Figure 3.16: Greedy Approach vs. Probabilistic Approach

• In addition to clustering, we can also try to choose more expensive but faster hardware

for multiple-cycle operations to meet the throughput constraint. Figure 3.19 shows

a simple example to illustrate the idea. Assume that the available time is 2 clock

cycles (40/20 = 2), the slow adder (CRA) takes two clock cycles (35+5 = 40), and

the fast adder (CSA) takes one clock cycle (12+5 = 17). The initial solution selects

the slow adders for all the three additions. Since clustering the flow graph cannot

meet the throughput constraint, hardware swapping is performed. Fast adders are

swapped in for the two additions on the critical path and the throughput constraint is

satisfied. Hardware swapping can be easily implemented in the proposed algorithm.

In addition to the clustering and declustering moves, swapping moves are introduced.

The number of candidates for the swapping moves is the number of nodes of multiple-

cycle operations. If the swapping moves are probabilistically chosen, the similarity test

as described above is performed and hardware is swapped according to the possible

benefit of swapping for each candidate.

• Although multi-function units such as an ALU or an adder/subtracter may have a

larger area and a longer delay than single-function units, they are more versatile

CHAPTER 3. HARDWARE MODULE SELECTION 95

Given:

(1) throughput constraints: 5 clock cycles.

(2) [+] takes one clock cycle, [*] takes 2 clock cycles, and [+ +] takes one clock cycle

(1) fully pipelined: (2) clustered implementation:

hardwarecost: one adder, 2 multipliers. hardware cost: two adders, one multiplier.

Figure 3.17: Saving Multipliers by Clustering Additions

and therefore offer increased chances for resource sharing. The benchmark results

demonstrates that the introduction of multi-function units is extremely important for

an efficient implementation.

3.11 Conclusion on Module Selection

An algorithm to perform hardware selection and operation clustering has been

developed. This algorithm also decides on a proper clock rate if not specified by the user.

The benchmark results show the excellent performance of the proposed algorithm. The

contribution of this work can be summarized as follows:

• This algorithm is able to handle recursive graphs with fixed timing constraints.

• Chained operators are allowed based on an accurate timing analysis.

CHAPTER 3. HARDWARE MODULE SELECTION

Given: throughput constraint is 4 cycles/sample.

(1) fully clustered: (2) partially clustered:

hardware cost: 2 [+ +] units, 1 [+] unit. hardware cost: 1 [+ +] unit, 1 [+] unit

96

Figure 3.18: Partial Clustering

• A precise, relaxed-scheduling-based cost estimation which considers both the execution-

unit cost and the register cost is implemented.

• A clustering-based search strategy efficiently solves the clustering and hardware swap

ping problem.

Hardware selection and clustering is a relatively new area, in high-level synthesis

and there is no standard benchmark or standard hardware library to compare with. More

over, the performance of the hardware selection also depends on how well it interacts with

the other synthesis processes such as scheduling, allocation, and transformations. To fur

ther prove the quality of the new algorithm, exhaustive search shall be performed on simple

examples. For complex examples, layouts should be generated (through the Lager silicon

compilation system) to verify the quality of the solutions.

CHAPTER 3. HARDWARE MODULE SELECTION

Given: clock cycle = 20 nsec

available time = 40 nsec

cell OBD RD

CRA 5 35

CSA 5 12

reg 2 0

hw selection
CSA

=>
CSA

Figure 3.19: Hardware Swapping to Meet Throughput Constraints

97

Chapter 4

Test Examples and Simulation

Results

98

In this chapter, several real-time applications are presented to demonstrate the

effectiveness of the HYPER synthesis system, focusing on the hardware selection and the

hardware mapping. Layouts of the examples, which are generated by the Lager IV silicon

compilation system, are shown to demonstrate the quality of the transformations performed

in the hardware mapper. Functional simulation results from the Thor simulator [32] are also

discussed to verify the correctness of the examples. The examples shown in this Chapter

range from general-purpose filters, such as the IIR filter and the FIR filter, to application

specific processors, such as the Viterbi processor. One of the examples is the standard

benchmark from the High Level Synthesis Workshop [16], while the others are carefully

designed for real applications.

4.1 Epsilon Processor

Epsilon processor is a part of a real-time, large-vocabulary, continuous speech

recognition system [64] [67] based on the e model1. The function of the Epsilon processor

can be described by the following formula:

Pc = MAXfL^Pi x €i)

The c model is used to alleviate the excessive computational and storage requirements associated with
modeling a fully connected graph in the speech recognition problem.

CHAPTER 4. TEST EXAMPLES AND SIMULATION RESULTS 99

Where N is the vocabulary size, P, is the probability that the word i ends at a particular

point of time t, €t- is the probability out of the ith word, and Pe is the output probability.

After calculating the output probability by the above formula, we can multiply the output

probabihty by €j (representing the probabihty into the jib. word) to get the probability of

the jth. word at time t + 1.

To implement the Epsilon function on a customized processor, several architectural

decisions are made:

1. To minimize the amount of hardware, the logarithm of the probabilities is used. The

multiplication in the above equation can therefore be reduced to an addition.

2. €{'s are stored in a single off-chip RAM memory.

3. P,'s are obtained from an off-chip FIFO in an asynchronous fashion.

4. The process starts upon the validation of a RESET signal and the iteration stops

when €{ equals a certain value (eg. 3000).

The system clock rate is 5MHz and the throughput constraint of the Epsilon

processor is to perform a maximum value of 10,000 iterations in a 10 msec frame. The

behavior of the Epsilon processor can be described in Silage as given below:

#define MAX_NR_0F_W0RDS 3000

#define END_FLAG OxFF

#define bit fix<l, 0>

func main(reset : bit; FWP: fix<32, 0>;

epsl: fix<14, O>[MAX_NR_0F_W0RDS]) eof.flag: bit

begin

while (reset == TRUE) do

begin

endflagGGl = FALSE;

iOQl = 0;

pb_epslQQl = 0;

bt_epsl@@l = 0;

CHAPTER 4. TEST EXAMPLES AND SIMULATION RESULTS 100

end;

while (i < MAX_NR_OF_WORDS && endflag « FALSE) do

begin

i = i®l + 1;

(bt.in, pb.in) = (FWP<31..14>, FWP<13..0>);

endflag = (epslCi] == END.FLAG);

tmp = pb.in + epslfi];

(pb.epsl, bt_epsl) = (tmp >= pb.epslQl ftft endflag == FALSE)?

(tmp, bt_in) : (pb.epslfil, bt.epslQl);

end;

eof_flag = endflag;

end;

From the Silage description, a flow graph is generated by a one-to-one mapping

process with some simple compiler transformations. The flow graph is shown in Figure

4.1. The basic structure of the flow graph can be divided into three parts: The first part

is the initialization process of the algorithm, which is represented by the first while node.

The second part is the main loop of the algorithm, which iteratively finds the maximal

output probability and is represented by the second while node in the figure. To achieve

the throughput constraint, the central loop has to be scheduled as compact as possible.

The last part of the algorithm is represented by a func node in which postprocessing such

as saving the computation result or signaling end-of-process is performed.

One particular implementation of the Epsilon processor is to allocate hardware to

each operation such that no resource is shared. This implementation achieves the maximal

speed. The data path structure and the state transition diagram of this implementation are

shown in Figure 4.2 and Figure 4.3 respectively. This design has been partitioned into five

data paths based on the partitioning algorithm. The layout produced by the Lager system

is given in Figure 4.4. The area is 2.95 mm2 assuming the 2-micron CMOS technology.

Another possible implementation of the Epsilon processor shares some hardware

resources so that the hardware cost can be reduced. With the same flow graph as shown

CHAPTER 4. TEST EXAMPLES AND SIMULATION RESULTS

subgraph
while

'' 4 initialvalues

subgraph

endflag(i)

break

loop

ra

epeip) po_ln(IJ

&. 9
endflag[I]

0

bt_bi(I]

pb_«P»tPl

0 «-»(hik) °

r^T— r3-.
F F

W_«P«1P] '

101

......j

subgraph

tunc J >

eofteg

| F I tWd node

jM j merge node

[OK- : cMay Reoa with Initial value

Figure 4.1: CDFG of the Epsilon Processor

CHAPTER 4. TEST EXAMPLES AND SIMULATION RESULTS

DalaR8C<31-14> DalaRec<13-0> DataBus<7-0> AddressBus<12-0>

* > REG REG *REG h
DATA REG

\ ADDER / \ CQMP /

COUNTER

OxFF

Otar

matmnn

r1 YV~7\ CQMP /

\ 2:1 MUX 7 °—^jTMUX

REG [«-

,

REG

EPSILON REG

7

-» aoi.Saj

Epsilon1

Processor

Controller

I s»
rru

I ^ v.

I fUeWWlftt

l«Mt

102

Figure 4.2: Data Path of the Epsilon Processor

in Figure 4.1, we modified the scheduling and allocation and obtained a different design.

In this design, the scheduling of the central loop cannot be as compact as the first im

plementation. Five clock cycles are required for each iteration instead of four clock cycles

as obtained by the first implementation. Furthermore, some overhead such as irreducible

multiplexers is introduced due to resource sharing. Table 4.1 shows the timing and area

tradeoffs of these two implementations.

Comparing with the manual design of the Epsilon processor, the HYPER design

has a smaller area even though both designs have the same resource allocation. The area

description exu's area ratio main loop timing

imp 1 dedicated HW 1 adder, 1 counter
2 comparators

1 (2.95mm2) 4 cycles

imp 2 resource sharing 1 adder,
1 comparator

0.92 5 cycles

Table 4.1: Comparison of Two Epsilon Processor Implementations.

CHAPTER 4. TEST EXAMPLES AND SIMULATION RESULTS

reset

FIFOempty
lend

FIFOempty

103

ireset

Figure 4.3: State Transition Diagram of the Epsilon Processor

difference is due to the fact that the manual design uses scan registers for testing, while the

HYPER design doesn't have the built-in test.

Functional level simulation has been performed on the Epsilon processor to verify

the correctness ofthe synthesis process. Several problems, including the processor initializa

tion and the semantics of the control macros, were detected through the simulation. After

the modification ofthe design, thesimulation succeeded and the correctness of the synthesis

process is proved.

Figure 4.5 shows a snapshot of the simulation. Scope 0 shows the input signals,
while Scope 1shows the state transition of the FSM and the output signals. In Scope 0, PHI1
and PHI2 are the two-phase non-overlapped clocks, ctl_net-78 is the reset signal, gl_net4
and gl_net3 are the FIFO inputs, and gl-netO is the RAM data. In Scope 1, FSM-LOCAL
shows the state transition, gl_net5 is the RAM address, ctl_net.72 is the read signal to
RAM, ctl.net-83 is the end flag, net3 and netl are the outputs from the multiplexers in the
data path. We can see in the simulation that after the reset signal, the processor enters the
main loop, in which the processor reads in data from the RAM and the FIFO and processes

CHAPTER 4. TEST EXAMPLES AND SIMULATION RESULTS 104

processorl

Figure 4.4: Layout of the Epsilon Processor

CHAPTER 4. TEST EXAMPLES AND SIMULATION RESULTS 105

the data. The main loop terminates when the RAM data is zero and the end flag is set.

During the last iteration of the main loop, the multiplexers select the FIFO data and store

the data in the Epsilon registers (See Figure 4.2). After one iteration of the algorithm, the

processor enters the idle state (state 8) and waits for the next reset signal to be reactivated.

The basic steps to run the simulation are summarized below as a reference [20] [7]

[17]:

1. Use DMoct (design manager in the Lager IV system) to generate structure master

views (SMV) and structure instance views (SIV) for all the modules of the processor,

including data path blocks, FSM, control logic, and memory blocks.

2. Use MakeThorSim to generate simulation models of these modules and the intercon

nect between them.

3. Attach generators, monitors, and analyzers to appropriate ports. Generators are used

to generate input signals; while monitors and analyzers are used to observe the output

waveforms.

4. Compile the model files and run the simulation. Sets of test vectors should be carefully

designed to cover as many different cases as possible in the simulation.

4.2 Viterbi Processor

Viterbi processor is a special purpose VLSI processor developed for a real-time

speech recognition system based on the Hidden Markov Model (HMM) [18]. The function

of the Viterbi processor can be described by the following equation:

P(Oi,$) = MAXp[P(Oi-Up) x Afas)] x P(0i\s)

where s is the current state, p is the predecessor of state s, and o, is the feature value

at frame t. The above equation states that the state probabihty of the most probable

state sequence that ends in s and generates 0, (denoted by P(Oi,s)) is equal to the state

probabihty of the previous state p (denoted by P(Ot_i,p)) times the transition probabihty

between p and s (denoted by A(p,s)) times the output probabihty P(o,|s).

CHAPTER 4. TEST EXAMPLES AND SIMULATION RESULTS

-r;:7wi.i»M»Ja".o'.|^i"^-'-'-w«,'fc«;Ti];<glwi

a_rm_n

et**MKMj

BL>-a(i7-o;

tf_n*Kp-0 3.

.-.'*". IT—s^Ttt*. **a.*iievrli. ...•^cmytrr-n f---'V<«<1 Nor77132-1:1? ^VrT\TWOB»n»^7»r««xo«1) =•- **' —ti.j«.»fit--.(i —-~^i»^

nnn

FSMJ.OACM3-0]

Bl_iw«S(12-«]

f*t3(13-0]

nm fWYTYYYin

, Jl. JL

nnrw mnnm

A... J

0007

34 6* 102 136 170 204 234 272 306

Figure 4.5: Simulation of the Epsilon Processor

106

CHAPTER 4. TEST EXAMPLES AND SIMULATION RESULTS 107

The Viterbi algorithm is computationally intensive and requires high throughput

processors to meet the real-time constraint. Several architectural decisions have been made

on the design so that a single-chip implementation can meet the throughput requirement.

1. As in the Epsilon processor, we use the logarithm of probabilities so that the multi

plications in the above equation are reduced to additions. Since negative logarithm

(i.e. P < 1) is used, the MAX operation becomes a MIN operation.

2. Three on-chip caches are allocated to store the previous-state probability P(0t-_i,p)

for fast accessing. All the previous-state probabilities are pre-fetched to the caches

from off-chip memories. These caches are two-ported memories so that they can be

read and written simultaneously.

3. Off-chip RAM's are used to store A(p,s) and P(ot|s).

4. Parallel computation is necessary to process the high data rate. Three equivalent

parallel data paths are therefore allocated in one processor.

Similar to the design process of the Epsilon processor, a Silage description can be

written for the Viterbi processor. The differences between the two processors are, first, the

operation of the Viterbi processor is much more complicated than the Epsilon processor.

Second, in addition to the loop control macros, if control macros are also included in the

Silage description of the Viterbi processor. Finally, the Viterbi processor has three on-

chip memory blocks. Due the differences between these two processors, we consider the

implementation of the Viterbi processor to be valuable.

After writing the Silage description and generating the flow graph, the synthesis

process was executed and the architecture was generated. The simplified flow graph of

the Viterbi processor is shown in Figure 4.6, which has a similar structure to the Epsilon

processor. Figure 4.7 shows the HYPER generated architecture of the Viterbi processor.

Due to the high throughput requirement, this processor is fully pipelined and no hardware

resource is shared.

The layout of the Viterbi processor is generated by the Lager system and is shown

in Figure 4.8. The area of the core is 28.29mm2 and there are 50,000 transistors on the

chip. From the layout, we can see that three on-chip caches are generated and the data

path is partitioned into five data path blocks. Compared with the hand design, the HYPER

design is about 10% larger. The area difference is due to the different controller structures,

CHAPTER 4. TEST EXAMPLES AND SIMULATION RESULTS 108

reset subgraph

initial values

subgraph

max[n]

subgraph

<- initialization

main loop

<- postprocessing

Figure 4.6: Flow Graph of the Viterbi Processor

the different hardware used for certain modules, and the different placement and routing

for these two designs.

Similar to the Epsilon processor, functional level simulation has been performed

for the Viterbi processor to guarantee the functional correctness of the design. Using the

Epsilon processor and the Viterbi processor examples, we successfully demonstrate the

correctness and quality of the hardware mapper.

4.3 Infinite Impulse Response (IIR) Filter

A low pass filter with a 6 KHz cut-off frequency, 0.25 dB ripple in the passband,

and -80 dB attenuation in the stop band is implemented using HYPER. This filter is a 7th

order filter with three biquad's and one first-order filter in series. Each biquad implements

CHAPTER 4. TEST EXAMPLES AND SIMULATION RESULTS

P(Oi-1,p)

8 cache
regs

P(Oi-1,p1
A(pi,s)

£
comp

IT

input

topology

8 cache
regs

SMMMmMMM
P(Oi-1,p2

A(p2,s)

!S%$8M%&f}S$S$fS8SS$fSH

CO Tip

mmmmmmm

mux

(oi|s)

,W...V\ I

8 cache
regs

P(Oi-1,p3
A(p3,s)

ix^«>ft^«tt«a-msfii

register

normalization

> * > r ,., ^ t

destination

grammar node
output max[P(Oi,s)]

Figure 4.7: Architecture of the Viterbi Processor

109

CHAPTER 4. TEST EXAMPLES AND SIMULATION RESULTS 110

Figure 4.8: Layout of the Viterbi Processor

CHAPTER 4. TEST EXAMPLES AND SIMULATION RESULTS 111

the following transfer function:

out _ 1+ a\z~l + aiz~2
in 1 + biz~1 +&22~2

Where a^s and 6t's are the coefficients found from the filter synthesis tool FILSYN [1].

The first-order filter is the reduced case of the biquad when a<i and 62 are both zero. The

coefficients of the first-order filter are also obtained from FILSYN. The Silage description

of the IIR filter is described as follows:

#define numl6 fix<32,10>

#define CoefO 0.001953125

#define Coefl.l -1.3125

#define Coefl_2 0.625

#define Coef1_3 1

#define Coef1.4 1

#define Coef2_l -1.25

#define Coef2_2 0.75

#define Coef2.3 0.0625

#define Coef2_4 1

#define Coef3_l -1.125

#define Coef3.2 0.921875

#define Coef3_3 -0.25

#define Coef3_4 1

#define Coef4_l -0.71875

#define Coef4_2 1

func main (In : numl6) Out : numl6 =

begin

Inl = numl6(In*Coef0);

In2 - biquad(Inl, Coefl_l, Coef1.2, Coefl_3, Coefl_4)

In3 = biquad(In2, Coef2_l, Coef2_2, Coef2_3, Coef2_4)

In4 = biquad(In3, Coef3_l, Coef3_2, Coef3_3, Coef3_4)

Out = firstorder(In4, Coef4_l, Coef4_2);

CHAPTER 4. TEST EXAMPLES AND SIMULATION RESULTS 112

end;

func biquad(in, al, a2, bl, b2 : numl6) : numl6 =

begin

stateOQl =0.0;

state@Q2 =0.0;

state = in - (numl6(al*stateQl) + numl6(a2*stateQ2));

return = state + (numl6(bl*state®l) + numl6(b2*state©2));

end;

func firstorder(in, al, bl: numl6) : numl6 =

begin

stateQQl =0.0;

state = in - numl6(al*stateQl);

return = state + numl6(bl*stateQl);

end;

Based on the Silage description, the flow graph of the IIR filter is obtained and

is shown in Figure 4.9. In this figure, triangles represent constant multiphcations and D's

represent delay nodes. These constant multiphcations can be expanded to add-shift's in the

real implementation. A program called CANDI [35] is used to find the minimal number of

add-shift's required for the multiplications.

The Silage description of the IIR filter is first simulated algorithmically to ensure

that the design meets the performance specification. After the simulation, hardware se

lection and transformations such as multiplication expansion and retiming are performed.

Estimation is done each time when a new flow graph structure is generated after the transfor

mation. When the estimated quality is satisfied, allocation and scheduling will be performed

and a decorated flow graph is generated. Hardware mapper then takes the decorated flow

graph and produces all the files required for layout generation. For the IIR example, four

implementations with different allocation and scheduling were generated using HYPER.

Table 4.2 shows the timing and area tradeoff of the four implementations. Three layouts

of the four implementations are shown in Figure 4.10. These layouts are properly scaled to

show their relative sizes. The area grows almost linearly when the computation time goes

CHAPTER 4. TEST EXAMPLES AND SIMULATION RESULTS

Biquad Biquad Biquad
First

Order

113

0-1
0

U<P=H>-1 •-O-X-O-i

Figure 4.9: Flow Graph of the 7th Order IIR Filter

imp 1 imp 2 imp 3 imp 4

clock cycles 20 16 13 10

adder 1 2 2 2

subtracter 1 1 1 2

barrel shifter 1 1 1 2

register 36 37 41 46

tristate buffer 15 17 16 25

area (mm2) 13 18.9 18.6 27.95

Table 4.2: Comparison of Four IIR Filter Implementations.

down. Table 4.3 summarizes the distribution of the CPU time over the synthesis modules

for this particular example on a SPARC II workstation. Table 4.4 summarizes the running

time of the major transformations in the hardware mapper.

Another implementation of the same IIR algorithm without the constant multi

plication transformation is also synthesized using HYPER. Two multiphers are needed for

this implementation and the throughput is 13 clock cycles per sample. Figure 4.11 shows

the layout of this implementation. In addition to the two array multiphers, one adder, one

subtracter, 31 registers, and 11 tristate buffers are allocated. The chip area is 32mm2 2

and about 70%larger than the implementation with the constant multiplication expansion.

2This is a 16-bit implementation.

CHAPTER 4. TEST EXAMPLES AND SIMULATION RESULTS

Implementation-!:

area: 13.0 mm2

cycle: 20

Implementation:

area: 18.9 mm2

cycle: 16

lmplementation3:

area: 27.95 mm2

cycle: 10

114

Figure 4.10: 3 IIR Filter Layouts of Different Implementations

The benefit of the constant multiplication expansion is successfully demonstrated using this

example.

The functional correctness of all produced layouts has been analyzed using the

Thor simulator and the simulation results have been checked against the simulation results

at the Silage level. This functional simulation has assured us of the correctness of the

applied transformations and synthesis operations. Figure 4.12 is the functional simulation

result of the IIR filter, which shows the impulse response of the low pass filter. Figure

4.13 is a snap shot of the simulation. In this figure, PHI1 and PHI2 are the two-phase

non-overlapped clocks, FSM-LOCAL is the state transition of the FSM. gl-netO is the input

signal (an impulse), and gl-netl is the output of the filter.

The IIR example has demonstrated that designers can easily compare the tradeoffs

of various implementations using the HYPER synthesis system. Optimizations at the flow

graph level do not necessarily reduce the chip area, nor does less hardware allocation. Layout

level issues such as data path partitioning, placement and routing play a very important

role. How to predict the chip area al the flow graph level without generating real layouts is

CHAPTER 4. TEST EXAMPLES AND SIMULATION RESULTS 115

Figure 4.11: Layout of the IIR Filter with Multipliers

CHAPTER 4. TEST EXAMPLES AND SIMULATION RESULTS

X Graph

s^ out
le-HD

3

lc-KM

3

lc+03

3

lc+02

3

le+01

3

le+OU

\
3

le-01

3

le-02

X

0.00 50.00 100.00 150.00 200.00 250.00

Figure 4.12: Impulse Response of the IIR Filter

116

CHAPTER 4. TEST EXAMPLES AND SIMULATION RESULTS 117

•moRlE^^gyariWalawd*^^ cira« neil

FSU_UVUX{0-2

t/Lffpf-9,

V U T

g)_Mti(3i4J

30 60 90 120 150 180 210 240 270 30C

Figure 4.13: Snap Shot of the IIR Filter Simulation

CHAPTER 4. TEST EXAMPLES AND SIMULATION RESULTS

Flow Graph Generation 0.8 sec

Module Selection 1.8 sec

Estimation/Allocation 1.7 sec

Retiming 7.4 sec

Assignment/Scheduling 1.9 sec

Hardware Mapping about 2 min

Layout Generation about 1 hour

Table 4.3: CPU Time Distribution for IIR Filter Synthesis (on SUN 4/100)

Lisp Set-up and Compilation about 1 min

Register File Merging 7 sec

Data Path Partitioning 17 sec

FSM Generation and Optimization 8 sec

Control Slice Generation 5 sec

Other Tasks 10 sec

Total about 2 min

118

Table 4.4: CPU Time Distribution in Hardware Mapper for IIR Filter Synthesis

difficult. A probabilistic model may be useful to analyze the relationship between the high

level transformation and the reduction in the chip area. The use of HYPER can help the

designers in collecting large amount of data to perform the analysis. Even though the flow

graph transformation and/or the hardware allocation do not always reduce the chip area,

exploring various transformations and allocations produces a more efficient design most of

the time.

4.3.1 Partitioning of the IIR Filter

In addition to comparing the tradeoffs of different resource allocation, HYPER

also helps in exploring various layout alternatives. For example, we can specify the number

of data paths in the hardware mapping process to improve the layout efficiency. Taking

the second implementation from Table 4.2, three possible designs with different data path

partitioning are generated. Table 4.5 lists the number of data nets, the number of control

nets, and the areas of these three designs. Figure 4.14 shows the layouts of these IIR filters,

CHAPTER 4. TEST EXAMPLES AND SIMULATION RESULTS

Data Paths # Data Buses # Control Nets Area (mm2) Area ratio

two 12 264 22.11 1.17

three 15 266 18.9 1

four 12 269 23.21 1.228

119

Table 4.5: Partition of the IIR Filter

which are properly scaled to show their relative sizes3. For this example, the three-datapath

design is the most efficient one. This design is also the result from the automatic data path

partitioning.

Although layout efficiency depends heavily on the performance of the placement-

and-routing tool, data path partitioning also plays an extremely important role. A good

data path partitioning not only reduces the number of nets, but also produces proper sizes

of data paths. Since the performance of data path partitioning can only be verified by
the final layouts, the combination of the HYPER tool and the Lager tool provides a useful

mechanism to explore the design space. In conclusion, the experiment described in this

section is interesting because it demonstrates the capability of exploring the design space
by the synthesis tools. Furthermore, it also verifies the quality ofthe datapath partitioning
process in the hardware mapper.

4.4 Finite Impulse Response (FIR) Filter

This section describes the synthesis ofa 10th order FIR filter, which performs the
x/sin(x) function. In general, the transfer function of a FIR filter can be described by the
following formula:

out ^
-r- = > C{Z
in f-f

Where c,'s are the constant coefficients found from FILSYN. The Silage description ofthe
filter is shown below and the flow graph is given in 4.15. This FIR filter example is very
similar to the IIR filter example as described above in the synthesis process. The purpose
of studying this example, however, is to test the hardware selection and clustering process
of the HYPER system.

3These are 8-bit implementations.

CHAPTER 4. TEST EXAMPLES AND SIMULATION RESULTS 120

2 dp: 3.99*5.55 mm2 3 dp: 4.08*4.62 mm2 4 dp: 3.64*6.38 mm2

Figure 4.14: Three IIR Filter Implementations to Demonstrate Data Path Partitioning

#define numl6 num<16,0>

#define aO -0.001953125

#define al 0.003906250

#define a2 -0.007812500

#define a3 0.01953125

#define a4 -0.06640625

#define a5 0.7500000

func main(In : numl6) Out : numl6 =

CHAPTER 4. TEST EXAMPLES AND SIMULATION RESULTS

In

aOV a1V a2V a3V a1V aOV

begin

Accl •

Acc2 •

Acc3 s

Acc4 '•

Acc5 «

Acc6 j

Acc7 =

Acc8 :

Acc9 =

AcclO

Out =

end;

K+)-^Q—^C)->B" (+)~Xi)~~* 0ut

Figure 4.15: Flow Graph of the FIR Filter

• numl6(In@10 * aO);

• numl6(In®9 * al) + Accl

• numl6(In@8 * a2) + Acc2

• numl6(InQ7 * a3) + Acc3

• numl6(In®6 * a4) + Acc4

• numl6(In®5 * a5) + Acc5

• numl6(In<94 * a4) + Acc6

•• numl6(InQ3 * a3) + Acc7

-> numl6(InQ2 * a2) + Acc8

= numl6(In«l * al) + Acc9;

numl6(In * aO) + AcclO;

121

The critical path ofthe flow graph is 11 clock cycles. After clustering, the critical
path reduces to 9 clock cycles. Table 4.6 shows the comparison between the two imple
mentations. For this particular example, the clustering process is useful in reducing both
the critical path and the hardware cost. The hardware cost after clustering is decreased
due to a smaller number of registers required. Figure 4.16 shows the two layouts of the
FIR filter. Layout 1 doesn't use the clustering approach, while Layout 2 uses the proposed

CHAPTER 4. TEST EXAMPLES AND SIMULATION RESULTS 122

available

time

critical

path
adder subtracter shifter [»-] register

no clustering 15 11 1 1 2 0 33

with clustering 15 9 1 0 1 1 29

Table 4.6: Comparison of Two FIR Filter Implementations.

hardware selection and clustering algorithm. These two layouts are properly scaled to show

their relative sizes, which are24.48mm2 and 22.41mm2 respectively assuming the 2-micron
CMOS technology and 16-bit implementations.

Similar to the IIR example, the functional correctness of the FIR filter is also

checked by running the Thor simulation. The impulse response of the FIR filter is shown

in Figure 4.17.

4.5 CORDIC Algorithm

CORDIC algorithm [6] [73] [75] is an iterative approach to calculate Polar coor

dinates from Cartesian coordinates and vice versa. The Silage description and the flow

graph of the CORDIC algorithm has been shown in Figure 1.2 and Figure 2.1 respectively.

As described in Chapter 2, the flow graph includes three major steps represented by three

hierarchical nodes - the first func node represents the initialization step, the iteration node

represents the main loop of the algorithm, and the second func node represents the post

processing step. Many DSP algorithms have a similar flow graph structure as the CORDIC

flow graph and therefore they can be handled in a similar fashion. The goal of experiment

ing the CORDIC algorithm is to test the capability of HYPER in handling hierarchical flow

graphs.

The non-pipelined design of the algorithm has a critical path of 88 clock cycles.

Given a throughput constraint, say 150clock cycles per sample, the estimator can distribute

the available time over different hierarchical nodes according to a heuristic measure, called

the criticality4 of the nodes. Then the scheduler/allocator can perform hierarchical schedul

ing from the estimation result. The scheduler is able to complete the scheduling with the

lower bound of the hardware. However, the resource utilization is low due to the fact that

4The criticality of a hierarchical node is a function of the critical path and the number of nodes of the
subgraph of the hierarchical node. It is similar to the stress discussed in Chapter 3.

CHAPTER 4. TEST EXAMPLES AND SIMULATION RESULTS 123

Implementation!: 4.97 mm *4.92 mm lmplementation2: 4.72mm *4.75MM

Figure 4.16: Layouts of the FIR Filter

not many execution units can be shared by different operations. Multiple function units

should be able to cure this problem. Another Silage description of the CORDIC algorithm
with no hierarchical nodes is also written and synthesized using HYPER. The run time for
the scheduling and allocation is about 2 minutes, which is much longer than the run time
of the hierarchical version (less than 10 sec). But the run time is still fast enough and
acceptable for this example.

The synthesis process allocates one subtracter, one adder, one barrel shifter, one
comparator, one multiplexer, and one memory unit for the CORDIC processor. After the

hardware mapping, the layout of the CORDIC example is generated and as shown in Figure
4.18. The core area is 33mm2 assuming a. 22-bit implementation and the 2-micron CMOS
technology.

The simulation result is shown in Figure 4.19. In this simulation, 8 sets5 of

inputs are tested and the algorithm correctly finds the corresponding amplitude and phase
Each set is a Cartesian coordinate (x, y).

CHAPTER 4. TEST EXAMPLES AND SIMULATION RESULTS

YxlO3

3.20

3.00

2.80

2.60

2.40

230

2.00

1.80

1.60-

1.40-

1.20-

1.00-

0.80-

0.60-

0.40-

0.20-

0.00-

-0.20-

-0.40-

0.00

X Graph

50:00 100.00 150.00 200.00 250.00

Figure 4.17: Impulse Response of the FIR Filter

124

fir_OutH

CHAPTER 4. TEST EXAMPLES AND SIMULATION RESULTS 125

Figure 4.18: Layout of the CORDIC Example

CHAPTER 4. TEST EXAMPLES AND SIMULATION RESULTS

X Graph

0.00 2.00 4.00 6.00

cordic_AmplitudeH

cordic_.PhaseH

Figure 4.19: Simulation of the CORDIC Example

126

CHAPTER 4. TEST EXAMPLES AND SIMULATION RESULTS 127

Figure 4.20: Flow Graph of the 5th order WDF

as shown in Figure 4.19, in which the solid line is the amplitude output and the dotted
line is the phase output (in ir).

4.6 Wave Digital Filter

Wave Digital Filters (WDF) are a class ofdigital filters with excellent properties.

They can be designed using explicit formulas without the knowledge of classical network
theory. A good review of the WDF design can be found in [54]. Similar to the FIR filter
and the IIR filter design, the coefficients of a WDF can be obtained by running a filter
synthesis tool called FALCON [46].

A fifth order elliptic wave digital filter has been chosen as a standard benchmark

for high level synthesis [16]. The flow graph of this filter is shown in Figure 4.20. This

example has 26 addition nodes and 8 multiplication nodes. Assuming that each addition

takes one clock cycle and that each multiplication takes two clock cycles, this filter has

a critical path of 17 clock cycles. Since this benchmark is mainly used as a standard for

comparing the performance of various scheduling approaches, many design issues such as
I/O and the hardware database are not considered.

Unlike [16]. the purpose of addressing the wave digital filter in this chapter is to

CHAPTER 4. TEST EXAMPLES AND SIMULATION RESULTS 128

demonstrate the capability of HYPER in synthesizing this filter. Therefore, we consider

many physical design issues including the I/O ports and the cell library. The critical path

based on the physical design is 15 clock cycles, rather than 17 clock cycles. Given the

sampling period equal to the critical path, 3 adders, 2 multipliers, and 27 registers are

allocated without using the proposed clustering approach as described in Chapter 3. With

the clustering approach, the hardware required is 2 adders, 1 multiplier, 1 [+ +] unit, and 27

registers. The hardware cost reduces significantly due to the fact that only one multiplier is

required. A similar scenario has been discussed in Chapter 3 to demonstrate the hardware

cost reduction by clustering.

Given a throughput constraint of 18 clock cycles per sample, two adders, one mul

tiplier, and 23 registers are allocated. The layout can be generated using the hardware

mapper and the Lager system as the previous examples and is shown in Figure 4.21. As

suming a 20-bit implementation, the core area is 41.74mm2 under the 2-micron technology.

4.7 Conclusion on Test Examples

Several real-time applications are discussed in this chapter. Layouts as well as

simulation results of these applications are shown to demonstrate the performance of the

HYPER tools, focusing on the hardware mapper and the hardware selector. These examples

have successfully demonstrated the quality and correctness of the HYPER design.

Throughout the presentation, we also found many interesting points such as the

comparison of the automatic design and the manual design, the almost linearity of the

time-area tradeoff of the IIR filters, and the usefulness of the transformations. Many more

examples will be designed in the future to further test the performance of HYPER. These

tests are essential to improve the quality of the HYPER design and to discover other design

alternatives.

CHAPTER 4. TEST EXAMPLES AND SIMULATION RESULTS 129

fTyrrrw»rw^KCBwiw^^p8rrayiiii iiinnii rtmj

Figure 4.21: Layout of the 5th order WDF

130

Chapter 5

Conclusion

An interactive synthesis environment, HYPER, for high-performance real-time

applications has been developed. This system has been successfully used to generate various

implementations of several processors. In this project, we defined a hardware platform

for the HYPER synthesis system, which involves three major components - the hardware

mapper, the hardware selector, and the hardware database. This platform is important

because it serves as the link between the high level synthesis systemand the actual hardware.

Many benchmarks experimenting with the operation and effectiveness of this platform are

also presented in this dissertation. The contributions and future extensions of this work are

summarized in the following sections.

5.1 Contribution

5.1.1 Optimized Hardware Mapping

In contrast to a one-to-one mapping between a decorated flow graph and its actual

implementation, several optimization steps are taken in the HYPER hardware mapping

process. For the data path, the hardware mapper performs multiplexer reduction, data path

partitioning, and register file merging. For the control path, the mapper tries to simplify the

finite-state machine and the interface logic by reducing the number ofstates and the control

nets between different modules. Although these optimizations are mostly ad hoc, they play

an extremely important role in generating efficient hardware. Through some comparisons

with the manual design, the quality of these optimizations is demonstrated.

CHAPTER 5. CONCLUSION 131

Various algorithms and heuristics have been developed for the optimizations. In
developing these algorithms, we compared the quality ofdifferent approaches and chose the

proper approach through the benchmark results. Furthermore, we studied the effect of the

transformation order. The hardware mapper is gradually refined by this generate-critique
process.

5.1.2 Clustering Based Hardware Selection

The HYPER hardware selection algorithm solves the clustering and the selection

problems simultaneously. A proper clock rate will also be decided if not specified by the
designer. This algorithm is able to handle recursive, hierarchical, real-time graphs with
timing constraints.

A ripple timing model, which models the timing behavior of hardware modules at

the block level, is proposed to facilitate the selection and clustering process. This model

is based on operation chaining and uses sets of derivation rules to calculate the critical

path. Timing and throughput constraints can be efficiently verified through this simple, yet
accurate ripple model.

A search mechanism based on clustering and declustering is developed. Both the

hardware selection problem and the clustering problem are combinatorial in nature. We

therefore developed some heuristics, which employ the hardware utilization to direct the

search, to reduce the search space.

An accurate hardware cost estimation isemployed in the proposed algorithm. Since

the hardware selection takes place before the allocation, assignment, scheduling and all the

other synthesis steps in HYPER, a precise cost estimation is very difficult in the hardware

selection. A hardware cost estimation, which is based on a relaxed-scheduling technique
and reflects not only the execution unit cost but also the register cost, is therefore used to

evaluate the quality of proposed solutions.

5.1.3 Hardware Database System

The information of the available hardwareblocks is provided by a hardwaredatabase

system, which contains information including delay, area, hardware parameters, and black-

box views. Currently, the HYPER hardware database contains about thirty data-path
modules, ten array modules, and ten standard-cell modules. New modules can be easily

CHAPTER 5. CONCLUSION 132

introduced using the database editor, which is developed as part of the database system.

The database system is important for both the hardware mapper and the hardware selector

because it serves as an interface between the synthesis processes and the available cell li

brary. A set of access routines have also been developed to facilitate the synthesis processes

to search the database.

5.1.4 System Evaluation

Several processors for real-time applications, such as the Viterbi processor for

connected-speech recognition and the 7th order IIR filter, have been designed and generated

through HYPER to evaluate the system performance. The system is able to generate all

the way down to layouts from the high level Silage descriptions. The quality of the HYPER

design is then compared with that of the manual design to demonstrate the effectiveness of

the synthesis system. The system evaluation is objective since the examples are real and

the comparison is based on the layouts, rather than the estimation of the hardware costs.

Functional simulations of the designs have been performed using the Thor simula

tor to verify the correctness of the transformations in the synthesis process. Results from the

functional simulation are checked against the results of the algorithmic simulation. Several

problems on control macros, clocking strategies, initialization, and I/O "have been detected

and fixed based on the simulation results. This verification is extremely important for the

synthesis system to demonstrate its usefulness.

With the HYPER synthesis system, tradeoffs of different designs can be easily

made. Several implementations withdifferent scheduling and allocation have been generated

through HYPER to demonstrate the area-timing tradeoff of these implementations.

5.2 Future Work

Although many milestones have been reached in this project, many features, which

are essential to make HYPER a complete and successful synthesis system, are still missing.

Some of the features are research-related problems, such as the I/O management, the mem

ory management, and the transformation mechanism; while the others are interface tools to

make the system more user friendly or easier to adapt to other design styles. These features

will be discussed in the following sections with the emphasis on the hardware mapping and
the hardware selection.

CHAPTER 5. CONCLUSION 133

5.2.1 Overall System

Future research directions of HYPER will focus on I/O, memory, and flow graph

transformation issues. Various I/O protocols, both synchronous and asynchronous, should

be supported. Different interprocessor communication schemes such as FIFO's and shared

memories should be provided. These I/O options require the enhancement of the hardware

database and some modifications of the current tools.

To achieve an efficient design, memory management is extremely important. The

memory management problem decides where the memory shouldreside (on-chip or off-chip),

how to partition the memory, what kind of memory to use (static or dynamic, single-ported

or multiple-ported), and whether to use memory hierarchies. Solving the memory man

agement problem requires extensive study and evaluation. Previous work on the memory

management for DSP applications can be found in [30] and [31]; in which memory manage

ment strategies and several optimization tasks are proposed to compile multi-dimensional

data structures into register files and SRAM's. Currently, HYPER assumes that arrays

are"stored in memory blocks and variables are stored in registers. This simple scheme still

leaves much room for improvement and the previous work on the memory management can

be a useful reference.

Although HYPER has already included many useful transformations such as re

timing for synthesis, constant multiplication expansion, and pipelining, many more transfor

mations are still needed to provide more design options or to make the design more efficient.

An ideal transformation environment should provide not only a graphic front end and a set

of transformation tools as most systems do, but also a transformation mechanism which

helps the user in performing the transformations. We propose a transformation database

which stores data including the conditions, the method, the effects/side-effects, and the

expected results of a transformation based on estimation [59]. This database provides the

designers with a clear picture of what kind of transformation can be performed and how to

pursue such a transformation, and thus greatly simplifies the design task.

5.2.2 Hardware Mapping

Future work on hardware mapping will focus on the mapping of the decorated

flow graphs onto different technologies or layout styles. The current hardware mapper can

take any decorated flow graphs (with no assumptions on the hardware models) and map

CHAPTER 5. CONCLUSION 134

them to a datapath-cluster architecture (Lager IV). Many optimizations are introduced in

the mapper to improve the area utilization based on the customized, bit-sliced layout style

and the register-file hardware model adopted by the HYPER scheduler. To interface with

other layout styles, such as gate arrays or standard cells, a different set of transformations

may be required. For example, data path partitioning, which tries to improve the layout

efficiency for the bit-sliced data paths, may not be needed for the standard cell design

since the place-and-route tool for the standard cells shall handle the partitioning problem

automatically. However, a timing analyzer, which extracts the resistance and capacitance

of routing wires and calculates the wire delay, may become crucial for the standard cell

design. To decide a proper set of transformations for different design styles is not an easy

task. The generate-critique process, as employed in the hardware mapper, should be used

to achieve the layout efficiency.

In addition to the transformations for different design styles, some other utility

tools are also very important for the hardware mapper. For example, a graphic tool which

displays the register-transfer-level result from the synthesis process can help the designer

easily understand the structural design. A more evolved database editor can help the

designer introducing new cells without knowing the exact database format. Even though

these tools do not involve hard research problems, they will make the system much more

user-friendly.

5.2.3 Hardware Selection

The possible future work of hardware selection includes implementing other ap

proaches such as the integer programming (or mixed integer programming) algorithm and

the rule-based system and comparing the benchmark results of these approaches to find the

best approach for the HYPER synthesis system. As described in Chapter 3, the performance

of a hardware selection algorithm also depends on how well it interacts with the other syn

thesis processes. Therefore, the comparison should be based on the synthesized structure,

rather than the hardware cost estimation. We have established the ripple model for delay

evaluation and the relaxed-scheduling approach for cost estimation. These methodologies

can also be used for the other approaches.

There is still much room left to improve the proposed clustering approach. The

annealing schedule as well as the choices between the clustering move and the declustering

CHAPTER 5. CONCLUSION 135

move can be further investigated. Some other cost estimations such as the stochastic min

bound can also be tried out. In conclusion, the clustering and hardware selection prob

lem is a hard problem. Although many interesting heuristics have been proposed, further

evaluation is still needed. This evaluation may lead to a more evolved approach.

136

Bibliography

[1] S/FILSYN Quick Reference Manual, release 1.0 version 04 edition, April 1983.

[2] L. Hafer A. Parker. A formal method for the specification, analysis, and design of

register-transfer level digital logic. IEEE Transactions on CAD, January 1983.

[3] B. Lin A. R. Newton. Synthesis of multiple level logic from symbolic high-level de

scription languages. In Proc. VLSI 89 Conference, Munich, West Germany, August

1989.

[4] T. Villa A. Sangiovanni-Vincentelli. Nova: State assignment of finite state machines

for optimal two-level logic implementations. In 26th ACM/IEEE Design Automation

Conference Proceedings, Las Vegas, June 1989. ACM/IEEE.

[5] D. G. Schweikert B. W. Kemighan. A proper model for the partitioning of electrical

circuits. In Proc. 9th Design Automation Workshop, pages 298 - 301, 1972.

[6] Richard Blahut. Fast Algorithms for Digital Signal Processing. Addison-Wesley, 1985.

[7] R. W. Brodersen, editor. A Framework and Tools for Silicon Compilation. Kluwer

Academic Publishers, Boston, MA., 1992.

[8] D. D. Gajski D. E. Thomas. Introduction to silicon compilation. In D. D. Gajski,

editor, Silicon Compilation, chapter Chapter 1, pages 1 - 47. Addison-Wesley, 1988.

[9] R. A. Walker D. E. Thomas. Behavioral transformation for algorithmic level ic design.

IEEE Transactions on CAD, 8(10):1115 - 1128, October 1989.

[10] D. Fogg. Operatior selection: Two approaches. In Proceedings Forth High-Level Syn
thesis Workshop. ACM. October 1989.

BIBLIOGRAPHY 137

11

12

13

14

15

16

19

20

21

22

23

L. Ramachandran D. Gajski. An algorithm for component selection in performance

optimized scheduling. In Proceedings IEEE ICCAD }91. IEEE, November 1991.

M. R. Garey D. S. Johnson. Computers and Intractability: A Guide to the Theory of

NP-Completeness. W. H. Freeman and Company, 1979.

C. Tseng D. Siewiorek. Automated synthesis of data paths in digital systems. IEEE

Transactions on CAD, 5(3):379 - 395, July 1986.

D. W. Knapp. Feedback-driven datapath optimization in faslot. In Proceedings IEEE

ICCAD '90. IEEE, November 1990.

S. Devadas and A. R. Newton. Algorithms for hardware allocation in data path syn

thesis. In Proc. IEEE ICCD Conference, Cambridge, MA., October 1987. IEEE.

G. Bordello E. Detjens. High-level synthesis: Current status and future directions.

In 25th ACM/IEEE Design Automation Conference Proceedings, pages 477 - 482.

ACM/IEEE, July 1988.

ERL, University of California at Berkeley. Lager Tool Set, December 1988.

A. Stolzle et al. A flexible vlsi 60,000 word real-time continuous speechi recognition

system. In Proc. IEEE Workshop on VLSISignal Processing, San Diego, November

1990. IEEE.

C. Chu et al. Hyper : An interactive synthesis environment for high performance real

time applications. In Proc. IEEE ICCD Conference, Cambridge, MA., October 1989.

IEEE.

C. S. Shung et al. An intergrated cad system for algorithm-specific ic design. In Proc.

International Conference On System Design, Hawaii, January 1989. IEEE.

C. Tseng et al. A module binder for high level synthesis. In Proc. IEEE ICCD Con

ference, Cambridge, MA., October 1989. IEEE.

D. E. Thomas et al. Algorithmic and Register-Transfer Level Synthesis: The System

Architect's Workbench. Kluwer Academic Publishers, Boston, MA., 1990.

D. Harrison et al. Data management and graphics editing in the berkeley design

environment. In Proc. IEEE ICCAD Conference, Santa Clara, November 1986. IEEE.

BIBLIOGRAPHY 138

[24] D. Lanneer et al. Architectural synthesis for medium and high throughput signal

processing with the new cathedral environment. In R. Camposano and W. Wolf, edi

tors, High-Level VLSI Synthesis, chapter Chapter 2, pages 27 - 54. Kluwer Academic

Publishers, 1991.

[25] D. S. Johnson et al. Optimization by simulated annealing: An experimental evaluation;

part i, graph partitioning. Operations Research, 37(6):865 - 892, November - December

1989.

[26] J. M. Rabaey et al. Cathedral-ii: A synthesis system for multiprocessor dsp systems.

In D. D. Gajski, editor, Silicon Compilation, chapter Chapter 8, pages 311 - 360.

Addison-Wesley, 1988.

[27] J. M. Rabaey et al. A large vocabulary real time continuous speech recognition system.

In R. Brodersen H. Moscovitz, editor, VLSISignal Processing. IEEE Press, 1988.

[28] J. M. Rabaey et al. HYPER vl.O. University of California, Berkeley, January 1991.

[29] J. Rabaey et al. Fast prototyping of datapath-intensive architectures. In IEEEDesign

and Test of Computers, June 1991.

[30] J. Vanhoof et al. Compiling multi-dimensional data streams into distributed dsp asic

memory. In Proceedings IEEE ICCAD '91. IEEE, November 1991.

[31] P. E. R. Lippens et al. Memory synthesis for high speed dsp applications. In Proceedings

IEEE CICC '91, San Diego, CA., May 1991. IEEE.

[32] R. Alverson et al. THOR User's Manual. Stanford University, January 1988. Tech.

Rep. CSL-TR-88-348 and 349.

[33] R. Bergamaschi et al. Data-path synthesis using path analysis. In 28th ACM/IEEE

Design Automation Conference Proceedings, San Francisco, June 1991. ACM/IEEE.

[34] R. Brayton et al. Mis: A multiple-level logic optimization system. IEEE Transactions

on CAD, 6(6):1062- 1081, November 1987.

[35] R. Jain et al. Custom design ofa vlsi pcm-fdm transmultiplexer from system specifica

tions to circuit layout using a computer-aided design system. IEEEJSSC, SC-21(1):73

- 85, February 1986.

BIBLIOGRAPHY 139

[36] R. Jain et al. Module selection for pipelined synthesis. In 25th ACM/IEEE Design

Automation Conference Proceedings. ACM/IEEE, June 1988.

[37] R. Jain et al. Experience with the adam synthesis system. In 26th ACM/IEEE Design

Automation Conference Proceedings, Las Vegas, June 1989. ACM/IEEE.

[38] S. Kirkpatrik et al. Optimization by simulated annealing. Science, 220(4598):671 -

680, May 1983.

[39] S. Noteet al. Automatedsynthesis ofa high speed cordic algorithm with the catehdral-

iii compilation system. In Proceedings ISCAS '88, Helsinki, 1988. IEEE.

[40] S. Note et al. Combined hardware selection and pipelining in high performance data

path design. In Proceedings IEEEICCD '90, Cambridge, MA., September 1990. IEEE.

[41] F. I. Romeo. Simulated Annealing: Theory and Applications to Layout Problems. PhD

thesis, University of California, Berkeley, March 1989.

[42] F. S. Roberts. Applied Combinatorics. Prentice-Hall, 1984.

[43] R. Brayton E. Sentovich F. Somenzi. Don't cares and flobal flow analysis of boolean

networks. In Proceedings IEEE ICCAD 'S8. IEEE, November 1988.

[44] C. M. Fiduccia and R. Mattheyses. Alinear-time heuristic for improving network par

titions. In 19th ACM/IEEE Design Automation Conference Proceedings. ACM/IEEE,

July 1982.

[45] G. W. Leive. The Design, Implementation, and Analysis of an Automated Logic Syn
thesis and Module Selection System. PhD thesis, Carnegie-Mellon University, January

1981.

[46] L. Gazsi. Explicit formulas for lattice wave digital filters. IEEE Transactions on

Circuits and Systems, CAS-32(1):68 - 88, January 1985.

[47] Y. S. Foo H. Kobayashi. A knowledge-based system for vlsi module selection. In

Proceedings IEEE ICCAD '86. IEEE, November 1986.

[48] M. Potkonjak J. M. Rabaey. Retiming for scheduling. In Proc. IEEE Workshop on

VLSI Signal Processing, San Diego, November 1990. IEEE.

BIBLIOGRAPHY 140

[49] P. G. Paulin J. P. Knight. Force-directed scheduling for the behavioral synthesis of

asic's. IEEE Transactions on CAD, pages 661 - 679, June 1989.

[50] M. Potkonjak J. Rabaey. A scheduling and resource allocation algorithm for hierarchi

cal signal flow graphs. In 26th ACM/IEEE Design Automation ConferenceProceedings,

Las Vegas, June 1989. ACM/IEEE.

[51] N. Weste K. Eshraghian. Principles of CMOS VLSI Design: A Systems Perspective,

pages 196 - 201. Addison Wesley, 1985.

[52] J. W. Greene K. J. Supowit. Simulated annealing without rejected moves. IEEE

Transactions on CAD, 5(1):221 - 228, January 1986.

[53] S. K. Parker K. W. Miller. Random number generators: Good ones are hard to find.

Communications of the ACM, 31(10):1191 - 1201, 1988.

[54] U. Kaiser. Wave digital filters and their significance for customized digital signal

processing. TI Engineering Journal, pages 29 - 44, September - October 1985.

[55] C. Kring and A. R. Newton. A cell-replication approach to mincut-based circuit par

titioning. In Proceedings IEEE ICCAD '91. IEEE, November 1991.

[56] J. S. Lis and D. D. Gajski. Vhdl synthesis using structured modeling. In 26th

ACM/IEEEDesign Automation Conference Proceedings. ACM/IEEE, June 1989.

[57] M. McFarland. Using bottom-up design techniques in the synthesis of digital hard

ware from abstract behavioral descriptions. In 23th ACM/IEEE Design Automation

Conference Proceedings. ACM/IEEE, June 1986.

[58] M. Potkonjak. Hierarchical probabilistic graph partitioning algorithm. Intrnal Report,

University of California, Berkeley, 1989.

[59] J. Rabaey M. Potkonjak. Resource driven synthesis in the hyper system. In Proc.

IEEE ISCAS Conference, New Orleans, May 1990. IEEE.

[60] P. Hilfinger. A high level language and silicon compiler for digital signal processing. In

Proc. IEEE Custom Integrated Circuits Conference. IEEE, May 1985.

[61] P. Hilfinger. Silage: A Language for Signal Processing. University of California, Berke

ley, March 1989.

BIBLIOGRAPHY 141

[62] Miodrag Potkonjak. High Level Synthesis: Resource Utilization Approach. PhD thesis,

University of California, Berkeley, 1991.

[63] P. Reutz R. Brodersen. A realtime image processing chip set. In Proceedings Interna

tional Solid State Circuit Conference, pages 148 - 149, San Francisco, February 1986.

IEEE.

[64] R. Yu D. Chen J. Rabaey R. Brodersen. A vlsi grammar processing subsystem for a

real-time large vocabulary continuous speech recognition system. In Proceedings IEEE

CICC '90, Boston, MA., May 1990. IEEE.

[65] M. McFarland A. C. Parker R. Camposano. Tutorial on high-level synthesis. In 25th

ACM/IEEE Design Automation Conference Proceedings. ACM/IEEE, June 1988.

[66] R. Jain. Mosp: Module selection for pipelined designs with multi-cycle operations. In

Proceedings IEEE ICCAD '90, Santa Clara, November 1990. IEEE.

[67] D. C. Chen R. Yu J. Rabaey R. W. Brodersen. A vlsi grammar procseeing subsystem

for a real-time large-vocabulary continuous speech recognition system. IEEE Journal

of Solid-State Circuits, 26(3):443- 448, March 1991.

[68] John Riordan. AnIntroduction to Combinatorial Analysis. Princeton University Press,

1980.

[69] B. W. Kernighan S. Lin. An efficient heuristic procedure for partitioning graphs. The

Bell System Tech. Journal 49:2, pages 291 - 307, February 1970.

[70] M. T. Trick S. W. Director. Lassie: Structure to layout for behavior synthesis tools. In

26th ACM/IEEE Design Automation Conference Proceedings, Las Vegas, June 1989.

ACM/IEEE.

[71] Robert Sedgewick. Algorithms. Addison Wesley, 1983.

[72] R. B. Segal. BDSYN Users' Manual, Version 1.1. University of California, Berkeley,

September 1987.

[73] J E Voider. The cordic trigonometric computing technique. IRE Transactions on
Electronic Computers, pages 330 - 334, 1959.

BIBLIOGRAPHY 142

[74] R. Walker. A survey of high-level synthesis systems (second edition). Technical Report

90-30, Rensselaer Polytechnic Institute, October 1990.

[75] J S Walther. A unified algorithm for elementary functions. In Proceedings of the 1971

Spring Joint Computer Conference, pages 379 - 385. IEEE, IEEE, 1971.

143

Appendix A

User's Manual

This appendix contains the information on how to use the hardware mapper and

the hardware selector in HYPER. Both the hardware mapper and the hardware selector

can be fired through xhyper - the synthesis manager of HYPER under X-window, or inde

pendently.

APPENDIX A. USER'S MANUAL 144

A.l Hardware Mapper

HyperMap —Hardware mapper for Hyper

SYNOPSIS

HyperMap [-R] [-p] [-n] [-s] [-v] flowgraph

DESCRIPTION

HyperMap takes a Lisp fonnat flowgraph description (usually generated by FIow2Lisp) as the input and
produces all the necessary files to generate layouts through LAGER IV. Hyper assumes a datapath cluster
architecture; therefore, the LAGER files generated include:

(1) sdl files for datapaths, whicharecalled dp_#.sdl. # is 0,1,2 etc.

(2) sdl files and bds files for control slices, which are called cs_dp_#.sdl and cs_dp_#.bds respec
tively. Again, # is a number starting from 0. cs_dp_0 matches with dp_0, cs_dp_l matches with
dp_l, etc. Controlslices will be implementedby standard cells.

(3) A bds file for the central control, which is called FSMl.bds. The central control will be imple
mented by a finite state machine.

(4) A sdl file and a parval file of the highest hierarchy, which are called processor.sdl and
processor.parval respectively.

(5) A log file, processor.log, which records someinformation for debugging.

(6) A file called processor.sta which contains somestatistics of theprocessor.

(7) An optional file, ck_gen.sdl, for buffering clock signals. This module will be implemented by
standard cells.

Thehardware mapper needs both the flowgraph description and thedatabase information of available cells.
The flowgraph description is a Lispprogram which willbecompiled in themapping process. Itcan be gen
erated by Flow2Lisp from theASCII flowgraph fonnat orhand written by a designer. The detail format of
thedescription are explained in Appendix C. The cell databases are also in the Lisp format The default
databases are^yper/lib/Hardware/rb-dp, which is the datapath cell library, and Tiyrjer/lib/Hardware/rb-
array, which is the memory block and array module library. For more information on the database, see
Appendix B.

HyperMap staits upthe Lisp environment (acl), loads the sources files, compiles theflowgraph description
and performs transformations and optimizations onthe flowgraph. Themajor steps of themapping process
and some statistics of theprocessor willbe displayed as the process goes on. These information helps the
user to find out thecomplexity of adesign and thepossible reasons of failures in themapping process.

OPTIONS

-R Specifythe path of thehardware database library. The default path is"hyper/lib/Hardware.

-p Specify if datapath partition is needed. The default is t (true) for performing the partition. If no
partition is needed, the value should be given nil.

-n Specify the number of datapaths afterpartitioning. This isonly used if -p flag is L

-s Number to limit the largest datapath size.This number is only usedif -p flag is t and -n flag is not
specified. The default value of this flag is 120,000, which isabout 20 blocksin a datapath.

-v Verbose mode

APPENDIX A. USER'S MANUAL 145

FILES

"nyper/lib/Hardware£b-dp
"hyper/lib/Hardware/rb-array

SEE ALSO

Flow2Lisp

AUTHORS

Chi-Min Chu

Universityof California, Berkeley
chu@zabriskie.Berkeley.EDU

BUGS

In case of an error, read processorJog to find out more information. If some of the error messages are not
understandable, users can use :zoom command in the acl environment to find out what causes the error.
For the datapath partitioning, if the largest datapath size (-s flag) isgiven too small (less than a block) or
the number of the datapaths after partitioning (-n flag) is too large, the program may ran into an infinite
loop. Even though the hardware mapper has performed many optimizations in generating efficient
LAGER layouts,more optimizationroutines canbe introduced in the future.

NAME

APPENDIX A. USER'S MANUAL 146

A.2 Hardware Selector

hwSelect - Hardware Selection andRegister AssignmentModule

SYNOPSIS

hwSelect [-a] [-A] [-c] [-s] [-d] [-v] [-p] flowgraph

DESCRIPTION

Given a behavior description of an algorithm represented by a signal flow graph, the tasks of hardware
selection are to decide the length of clockcycles (if not specified by the user), to choose proper hardware
blocks for the nodes,and to assign certain edges to be registers so thatthe minimized hardware cost under
the timing andthroughput constraints can be achieved. This program uses the path specified by the hyper
file to search for thehardware databases for choosing proper hardware modules.

The best solution found to satisfy the timing and throughput constraints will be back annotated onto the
flowgraph, withtheclockcycle, uieregister assignment, and thehardware chosen annotated asappropriate
attributes. Notice that hwSelect may produce MACRO nodes in the flowgraph if hardware functions are
created in this phase. If no solution is found, the program aborts with appropriate error messages andno
output file is produced.

OPTIONS

-a Loading the input from anafl-database. The default is input from anOCT database.

-A Storing theoutputto anafl-database. The default is output to anOCTdatabase.

-d Debug mode.

-c Specifying the lengthof a clock cycle in nsec.

-s Specifying the sampling period (ie. the inputsample rate) of the algorithm in nsec. This number
determines the throughput

-p Fullypipelined structure, no clustering is performed. The throughput constraint maybe violated in
this case.

-v

FILES

Verbose mode. Displays various characteristics regarding the hardware selection process and its
results.

"nyper/lib/hyper
Tiyper/lib/HardwareAb-dp
"hyper/lib/Hardware/rb-array

AUTHORS

Chi-Min Chu

University of California, Berkeley
chu@zabriskie.berkeley.edu

BUGS

This program provides minimal processing of theread/write nodes. All the read/writes nodes will be anno
tated as the RAM modules andregisters are allocated for the I/Oports of the memories.

Appendix B

HYPER Hardware Database

Format

147

B.l Introduction

This document describes the hardware database format for the HYPER synthesis

environment. This format is in the Lisp syntax and it is a hierarchical database. The

author would assume that readers have the basic Common Lisp background in reading

this document. The best way to understand the database is by going through a complete

example. An example of this database can be found in Section 4 of this Appendix, which

is a database currently used for the data path synthesis. Another example can be found in

Section 5, which is the database currently used for the memory and array modules. Asubset

of the database for the standard cells are also listed in this appendix and it can be found

in Section 3. The structures of these three databases are the same, but the information

required is slightly different for each case. In the following sections, the general structure

of the databases will be outlined first, followed by the detailed format of each database.

All the three databases described in this appendix are based on the Lager IV cell

library and have been used in many real examples including a 7th order IIR filter, the

Epsilon processor, the Viterbi processor etc. Although many attributes of. the hardware

modules have been incorporated in the database, more features such as testing capabilities

and power consumption information of the hardware modules may still be needed in the
future.

APPENDIX B. HYPER HARDWARE DATABASE FORMAT 148

The reason for designing the database in the Lisp format instead of using OCT is

for the ease of modification. Different strategies on the database have been tested without

working on OCT to speed up the modification. When the final strategy is determined, the

database should be rewritten in OCT or in another object oriented environment. Questions

and comments on the database format can be mailed to chu@zabriskie.berkeley.edu.

B.2 Structure of Database

The structure of the database can be illustrated in Figure B.l. At the top level,

function names are used as the key. The database returns a list of cells that implement the

function. Then the cellname is used to access the information of the cell under this func

tion. Information of a cell is slightly different for the three databases. For the data path cell

library, information of a cell includes parameters, area, delay, one-bit-delay, ripple-delay,

ripple-offset, data-terminal, power-terminal, ctl-in-terminal, ctl-out-terminal, ctl-term-edge,

complement-out, and driving-cap. For the array cell library, information of a block con

tains parameters, area, delay, one-bit-delay, ripple-delay, ripple-offset, data-terminal, power-

terminal, ctl-in-terminal, complement-out, reducibility and driving-cap. For the standard

cell library, only area, delay, data-terminal, complement-out, and driving-cap are needed.

We can see that the data path cell library has the most information, memory block cell

library has all the information except ctl-out-terminal and ctl-term-edge. The standard cell

database has the least information and is a subset of the other two. The data format of each

item in various databases may be different and will be further described in the following
sections.

The databases are organized as the Common Lisp associate lists. To be precise,

The data are of the following format:

database :=

((functionl

(cell-namel

(item-name1 datal)

(item-name2 data2)

»» • • •

)

(cell-name2

APPENDIX B. HYPER HARDWARE DATABASE FORMAT

Function

celh cell2

data data

item jtem
one n

DATA BASE

Function

cell3 celh

l I I

data data

item item
one* n'

Function

Figure B.l: Structure of the Database

;; ...)

149

(function2

ii ...

)

If a cell can perform multiple functions, it may occur in the database several times. The

wiring and delay information of the cell may be different for different cases to perform
various functions.

A database editor which helps the designer interfacing with the database system

has been implemented. It works under the Lisp environment. Several access functions,
input functions, and delete functions are available to the users so that they do not have to

remember the detailed structure of the database. Nevertheless, the users still need to know

the data format for each item. The default value for each data item is nil. That is, if a data
item is not specified, "nil" will be assumed.

APPENDIX B. HYPER HARDWARE DATABASE FORMAT 150

Attribute Format Example Note

area s-exp (* 70 100) in lambda square
delay s-exp 2 in nsec

data-terminal (out (inl in2 ..)) (02 (1A IB))
complement-out symbol 01 possible values: nil/term-name
driving-cal symbol no possible values: small/big/no

Table B.l: Data Item and Format of Standard Cell Database.

B.3 Standard Cell Database

This section describes the simplest database - standard cell database. Each stan

dard cell contains five data items. Table B.l lists these items and data formats.

Standard cells are mainly used for glue logic between data paths and central control

(FSM). Therefore, the functions of the standard cells in the HYPER system are purely

combinational and the attributes required in the database are very easy. Both the area

and delay of a cell are s-expressions to represent the size and the critical delay of the cell.

The data-terminal attribute specifies the input/output terminals. The output terminal is a

single terminal which appears as the first element of the attribute (which is a list). The input

terminals are an ordered list, which is the second element of the attribute. Complement-

out specifies if a complementary output terminal is available in the cells. If there is a

complementary output terminal, the terminal name is given in the attribute. Driving-cap

specifies the driving capability of the cell. The hardware mapper is able to choose a cell

with a proper driving capability using this value. Figure B.2 is a sample standard cell

library which shows some simple standard cells in the current Lager library and gives the

flavor of the database format.

B.4 Database for Data Path Modules

The database for the data path modules has more attributes than the standard

cell database. These attributes are listed as follows with a description of their formats:

parameters This attribute specifies the hardware parameters of a data path block. The

format of the parameters attribute is a list of parameters. For most data path blocks,

this list contains only one element - N (the word width of the block). For more

APPENDIX B. HYPER HARDWARE DATABASE FORMAT 151

((and (,,nanf211,,

(AREA (* 76 38)) (DELAY 2)
(DATA-TERMINAL (02 (Al Bl)))
(COMPLEMENT-OUT 01) (DRIVING-CAP NO)))

(or ("norf211"

(AREA (* 76 46)) (DELAY 2)
(DATA-TERMINAL (01 (Al Bl)))
(COMPLEMENT-OUT 02) (DRIVING-CAP NO)))

(not ("invflOl"
(AREA (* 76 22)) (DELAY 1)
(DATA-TERMINAL (0 (Al)))
(COMPLEMENT-OUT nil) (DRIVING-CAP NO))

("invfl03"

(AREA (* 76 38)) (DELAY 1)
(DATA-TERMINAL (0 (Al)))
(COMPLEMENT-OUT nil) (DRIVING-CAP SMALL))

("invfl04"

(AREA (* 76 46)) (DELAY 1)
(DATA-TERMINAL (0 (Al)))
(COMPLEMENT-OUT nil) (DRIVING-CAP BIG)))

(xor ("xorf201"

(AREA (* 76 54)) (DELAY 2)
(DATA-TERMINAL (01 (Al Bl)))
(COMPLEMENT-OUT nil) (DRIVING-CAP NO)))

(buffer ("buff101"

(AREA (* 76 30)) (DELAY 1)
(DATA-TERMINAL (0 (Al)))
(COMPLEMENT-OUT nil) (DRIVING-CAP BIG)))

)

(1) Delay is based 2u technology, nominal case, primary output.
(2) Since std cells are used for glue logic, only the following

information is needed :
(A) area, delay
(B) data-terminal, complement-out
(C) driving-cap

(3) If sequential logic is going to be built, the control terminals
will be needed. The timing information can be managed as in
rb-dp.

Figure B.2: Sample Standard Cell Library

APPENDIX B. HYPER HARDWARE DATABASE FORMAT

Name Description

N output word width
M number of bits shift

CONSTANT constant to compare with
PATTERN bit string that forms the constant block

Table B.2: Keyword in the Parameters Attribute of Data Path Database.

Name Parameters Description

structure-left M decide log shifter structure from # bits shifted
structure-right M same as shiftJeft except for shifting right

152

Table B.3: Functions Defined for the Parameters Attribute of Data Path Database.

complicated blocks, parameters may contain more than one hardware parameter. For

example, Log shifters have two hardware parameters: N and M (the number of the

shifted bits of the shifters). The element of the parameter list can take two forms:

It can either be a list of (parameteri keyword^) or it can be simply parameter^,

representing the keyword is the same as the parameter name parameter^.

Some of the hardware parameters can be calculated from the attributes or arguments

of the decorated flow graph. Some of them, on the other hand, can only be decided

when silicon compilation is performed. For the hardware parameters that cannot be

calculated from the flow graph parameters, their keywords should be USER-DEFINE.

For the other parameters, their keywords should be Lisp expressions. A Lisp expres

sion can either be a keyword or a function of the keywords which are recognized by

the database. A list of internally defined keywords (or called flow graph parameters)

and internally defined functions specifically used for this attribute are shown in Table

B.2 and Table B.3 respectively. A list of general Lisp functions that are used for both

the parameters attribute and the other s-expression attributes are listed in Table B.4.

More functions can be included in the list in the future to expand the HYPER feature.

range This attribute specifies the shift rangeofa shifter. The format of the rangeattribute

is {lower —bound upper - bound), where lower - bound and upper - bound are two

APPENDIX B. HYPER HARDWARE DATABASE FORMAT

Name Parameters Description/Example

+ Nl, N2 ... Nl -f N2 + ...

- Nl, N2 ... Nl - N2 - ...
* Nl, N2 ... Nl * N2 * ...

/ Nl, N2 ... (Nl / N2) / ...
sqrt N square root of N
exp N e"

expt Nl, N2 Nl"2

log Nl, N2 logisj2Nl
ceiling Nl \N1]
length LI length of list LI
my-length LI, L2 (my-length '(1 3) '(a b c)) = (a c)

Table B.4: Lisp Functions Used for All Attributes of Hardware Database

153

integers to represent the maximal number and the minimal number of bits shifting

(can be negative meaning shifting toward the opposite direction).

area This attribute specifies the area of a module. It is a Lisp expression of the hardware

parameters of the module.

delay This attribute specifies the critical delay of a module and has the same format as

the area attribute, a function of the hardware parameters of the module. Currently,

the values of the delay attributes are based on the 2-micron CMOS technology and

represent the nominal casedelayof the modules. The delay attribute may be expanded

in the future to include delay values of various technologies, worst case delays, and

delays for different loads. A file of delay values may be needed for each module in this

case.

one-bit-delay This attribute is used in the ripple model to specify the one bit delay of the

module. It is a Lisp expression of hardware parameters.

ripple-delay Same as one-bit-delay except that this attribute specifies the ripple delay of

the module. If the ripple delay has a positive value, the ripple direction of the module

is LSB to MSB (ripple to the left). On the other hand, if the ripple delay is negative,

the ripple direction of the module is MSB to LSB (ripple to the right).

APPENDIX B. HYPER HARDWARE DATABASE FORMAT 154

ripple-ofFset This attribute specifies the ripple offset of a module used in the ripple model.

Similar to the ripple-delay attribute, the signs of the ripple-offset values indicate the

ripple-offset directions.

data-terminal This attribute specifies the data terminal connection of the module. The

format is (output—terminal (input—terminali input—terminal ...)) where output-

terminal is the name of the primary output terminal and input —terminals are the

names of the input terminals. Input terminals have to be listed according to the input

terminal order of the performed function. This order can be found in Appendix C for

all the functions recognized by the hardware mapper.

power-terminal This attribute specifies which power terminals have to be connected for

the module. It's a list of two possible elements: Vdd (power) and GND (ground).

ctl-in-terminal This attribute specifies the required control input connection for the mod

ule. The format is a list of elements. Each element is either "(terminal-name con

nection)" or simply "terminal-name", meaning the terminal name is the same as the

connection."Connection can be a keyword or an expression of the recognized keywords

(not an expression- of the control terminals of the module). Table B.5 is a list of

expressions recognized by the hardware mapper. In addition to Boolean functions,

the expression can also be an if function. The format of the if function is (if condi

tion expressionl expression2), meaning that if condition is true, the control input is

expressionl, otherwise, the control input is expression2. This feature is very useful

for modules such as adders and counters, in which the odd bit-slice is different from

the even bit-slice and therefore different control connections are required for modules

of even and odd bit-widths. For this specific application, condition should be either

oddp (meaning odd number of bits) or evenp (meaning even number of bits).

The keywords used in the ctl-in-terminal attribute is listed in Table B.6. Some of the

keywords may only be recognized by a certain modules performing a specific function,

while the others are general keywords and are recognized by the hardware mapper for

all modules. Notice that control input terminals of one module such as an ALU may

be connected differently to perform different functions. Another important feature

of the hardware database is that control buses are supported. This feature is mainly

used for modules such as log shifters which have a. decoded/encoded bus as the control

APPENDIX B. HYPER HARDWARE DATABASE FORMAT

Function Parameters Description

and Bl, B2, ... Bl and B2 ...

or Bl, B2, ... Bl or B2 ...

not Bl not Bl

nand Bl, B2, ... Bl nand B2 ...

nor Bl, B2, ... Bl nor B2 ...

xor Bl, B2, ... Bl xor B2 ...

Table B.5: Boolean Functions in the Hardware Database.

155

input terminals. The format for the control bus is as follows:

(ctl-term-name BUS (bus-width bus-connection))

where BUS is a keyword to specify that ctl-term-name is a control bus. Both bus-

width and bus-connection are Lisp expressions to specify the control bus width and

the control bus connection. Two functions are defined specifically for the bus connec

tion of the log shifters: encoded_SHIFT and decoded-SHIFT. Both functions take one

parameter as input: the number of bits shifted of the log shifter. Encoded.SHIFT

specifies that the control input bus is decoded and hence an encoder is needed, de-

coded-SHIFT, on the other hand, specifies that no encoder is needed for the control

bus connection.

ctl-out-terminal This attribute specifies the connections of the control output terminals.

If a module does not have any control output, this attribute should be nil. Otherwise,

this attribute can either be a control terminal name, meaning this terminal is the

primary controloutput, or a Lisp expression specifying the required boolean functions

in the control slice of the module. For the latter case, the basic format is (function
terminal^ terminal^ ...) where function is a boolean function listed in Table B.5

and terminal's are the control terminal names. The if function described in the

control-in-terminal attribute is also available for this attribute. Table B.7 lists the

primary control output for each function. For functions not listed in the Table, their

primary output should be nil.

ctl-term-edge This attribute specifies the terminal edges of control terminals. If the ctl-

term-edge attribute ofa control terminal is not specified, this terminal may be brought

APPENDIX B. HYPER HARDWARE DATABASE FORMAT 156

Keyword Recognized by Which Function Description/Meaning
Vdd (or 1) all connect to high
GND (or 0) all connect to low

CK1 all connect to clock signal one
CK2 all connect to clock signal two
LOAD register, counter, memory load input
OEN register, counter, memory output enable
R/W memory 1 to read memory, 0 to write memory
SHIFT shifter 1 to perform shift, 0 otherwise
COUNT counter 1 to perform count, 0 otherwise
SELECT mux 1 to select input1, 0 to select input2
RESET register, counter 1 to reset the storage, 0 otherwise
KEEP scan register 1 to keep the scan value, 0 otherwise
SCAN scan register 1 to scan input, 0 otherwise
SHIFTJN-NUM shifter number to shift in: 1/0/sign
L# shifter left shift # bits
R# shifter right shift # bits

Table B.6: Keyword for Specifying CTL-IN-TERMINAL Attribute.

Function Primary Control Output

+,-,++ carry out

==, !=, >=, <=,>,< comaprison result

Table B.7: Primary Control Output of Functions.

out either side (top or bottom). The format of this attribute is a list in which each

element is of the from: "(control-terminal-name top/bottom)".

complement-out This attribute, as in the standard cell library, specifies if a complemen
tary output terminal is available.

driving-cap This attribute is the same as that in the standard cell library to specify the
driving capability of the module.

The following subsection is a print-out of the current hardware database of the

data path modules in HYPER. Most of the cells are from the Lager cell library. Some

of them, however, are dummy cells for the demo purpose or for the ease of the synthesis
process. When reading this print-out, keep in mind that the database is read by the Lisp

APPENDIX B. HYPER HARDWARE DATABASE FORMAT - 157

interpreter and that the interpreter does not distinguish lower-case and upper-case letters.

The default of the interpreter is upper-case. Therefore, if lower-case letters such as the

module names are needed, quotes have to be used.

APPENDIX B. HYPER HARDWARE DATABASE FORMAT 158

B.4.1 Database of Data Path Modules in HYPER

((++ ("counterO" (PARAMETERS (N)) (AREA (* N 263 (/ (+ 50 51) 2)))
(DELAY (+5 (* N 3)))
(ONE-BIT-DELAY 5)

(RIPPLE-DELAY (* N 3))
(RIPPLE-OFFSET 0)

(DATA-TERMINAL (OUT (IN)))
(POWER-TERMINAL (Vdd GND))
(CTL-IN-TERMINAL

((PHIA CK1) (PHIAINV (NOT CK1)) (PHIB CK2)
(PHIBINV (NOT CK2)) (CIN GND) (LOAD LOAD)
(LOADINV (NOT LOAD))
; aaa*. keyword,
(COUNT COUNT) (COUNTINV (NOT COUNT))))

(CTL-OUT-TERMINAL COUTINV)
(CTL-TERM-EDGE

((PHIA TOP) (PHIAINV TOP) (PHIB TOP) (PHIBINV TOP)
(CIN BOTTOM) (LOAD TOP) (LOADINV TOP) (COUNT TOP)
(COUNTINV TOP) (COUTINV TOP)))

(COMPLEMENT-OUT OUTINV) (DRIVING-CAP NO))
("counterE" (PARAMETERS (N)) (AREA (* N 263 (/ (+ 50 51) 2)))

(DELAY (+5 (* N 3)))
(ONE-BIT-DELAY 5)
(RIPPLE-DELAY (* N 3))
(RIPPLE-OFFSET 0)
(DATA-TERMINAL (OUT (IN)))
(POWER-TERMINAL (Vdd GND))
(CTL-IN-TERMINAL

((PHIA CK1) (PHIAINV (NOT CK1)) (PHIB CK2)
(PHIBINV (NOT CK2)) (CIN GND) (LOAD LOAD)
(LOADINV (not LOAD))
(COUNT COUNT) (COUNTINV (NOT COUNT))))

(CTL-OUT-TERMINAL COUT)
(CTL-TERM-EDGE

((PHIA TOP) (PHIAINV TOP) (PHIB TOP) (PHIBINV TOP)
(CIN BOTTOM) (LOAD TOP) (LOADINV TOP) (COUNT TOP)
(COUNTINV TOP) (COUT TOP)))

(COMPLEMENT-OUT OUTINV) (DRIVING-CAP NO)))
(>= ("comparatorE" (PARAMETERS (N)) (AREA (* N 211 49))

(DELAY (* N 2))

(ONE-BIT-DELAY 0)
(RIPPLE-DELAY (- (* N 2)))
(RIPPLE-OFFSET 0)
(DATA-TERMINAL (NIL (A B)))
(POWER-TERMINAL (Vdd GND))
(CTL-IN-TERMINAL

((AGTBININV VDD) (AEQBIN VDD)))
(CTL-OUT-TERMINAL (not AGTBINV))
(CTL-TERM-EDGE

((AGTBININV TOP) (AGTBINV BOTTOM)))
(COMPLEMENT-OUT NIL) (DRIVING-CAP NO)))

APPENDIX B. HYPER HARDWARE DATABASE FORMAT

(== ("compconst" (PARAMETERS (N CONSTANT))
(DELAY (* N 1))
(ONE-BIT-DELAY 0)
(RIPPLE-DELAY (- (*
(RIPPLE-OFFSET 0)

(DATA-TERMINAL (NIL
(POWER-TERMINAL (Vdd GND))
(CTL-IN-TERMINAL NIL)
(CTL-OUT-TERMINAL CNTOUT)
(CTL-TERM-EDGE ((CNTOUT TOP)))
(COMPLEMENT-OUT NIL) (DRIVING-CAP NO))

("comparatorE" (PARAMETERS (N)) (AREA (* N 211 49))
(DELAY (* N 2))
(ONE-BIT-DELAY 0)
(RIPPLE-DELAY (- (* N 2)))
(RIPPLE-OFFSET 0)
(DATA-TERMINAL (NIL (A B)))
(POWER-TERMINAL (Vdd GND))
(CTL-IN-TERMINAL

((AEQBIN VDD) (AGTBININV VDD)))
(CTL-OUT-TERMINAL AEQB)
(CTL-TERM-EDGE

((AEQBIN TOP) (AEQB BOTTOM)))
(COMPLEMENT-OUT NIL) (DRIVING-CAP NO)))
(PARAMETERS (N)) (AREA (* N 211 49))
(DELAY (* N 2))

(ONE-BIT-DELAY 0)
(RIPPLE-DELAY (- (*
(RIPPLE-OFFSET 0)
(DATA-TERMINAL (NIL
(POWER-TERMINAL (Vdd GND))
(CTL-IN-TERMINAL

((AEQBIN VDD) (AGTBININV VDD)))
(CTL-OUT-TERMINAL (OR AEQB AGTBINV))

terminal names AAAA a****aa

(CTL-TERM-EDGE

((AEQBIN TOP) (AGTBININV TOP) (AEQB BOTTOM)
(AGTBINV BOTTOM)))

(COMPLEMENT-OUT NIL)
(PARAMETERS (N)) (AREA
(DELAY 2)

(ONE-BIT-DELAY 2)
(RIPPLE-DELAY 0)

(RIPPLE-OFFSET 0)
(POWER-TERMINAL (Vdd GND))
(DATA-TERMINAL (DATABUS (DATABUS)))
(CTL-IN-TERMINAL

((LOAD (AND LOAD CK1))
(LOADINV (NOT (AND LOAD CK1)))
(OEN (AND CK2 OEN))

(OENINV (NOT (AND OEN CK2)))))
(CTL-OUT-TERMINAL NIL)
(CTL-TERM-EDGE

((LOAD TOP) (LOADINV TOP) (OEN TOP) (OENINV TOP)))
(COMPLEMENT-OUT NIL) (DRIVING-CAP NO))

N 1)))

(IN)))

(AREA (* N 45 47))

(<= ("comparatorE"

(REG ("register"

N 2)))

(A B)))

(DRIVING-CAP NO)))
(* N 47 105))

159

APPENDIX B. HYPER HARDWARE DATABASE FORMAT 160

("reg2port" (PARAMETERS (N)) (AREA (* N 107 48))
(DELAY 2)
(ONE-BIT-DELAY 2)
(RIPPLE-DELAY 0)
(RIPPLE-OFFSET 0)
(DATA-TERMINAL (OUT (IN)))
(POWER-TERMINAL (Vdd GND))

(CTL-IN-TERMINAL

((LOAD (AND LOAD CK1))
(LOADINV (NOT (AND LOAD CK1)))
(OEN (AND CK2 OEN))
(OENINV (NOT (AND OEN CK2)))))

(CTL-OUT-TERMINAL NIL)
(CTL-TERM-EDGE

((LOAD TOP) (LOADINV TOP) (OEN TOP) (OENINV TOP)))
(COMPLEMENT-OUT NIL) (DRIVING-CAP NO))

("scanreg" (PARAMETERS (N)) (AREA (* N 66 199)) (DELAY 2)
(ONE-BIT-DELAY 2)
(RIPPLE-DELAY 0)

(RIPPLE-OFFSET 0)
(DATA-TERMINAL (OUT (IN)))
(POWER-TERMINAL (Vdd GND))
(CTL-IN-TERMINAL

(SCANIN (LOAD LOAD) (LOADINV (NOT LOAD))
(PHIl CK1) (PHIIINV (NOT CK1))
(PHI2 CK2) (PHI2INV (NOT CK2))
(SCAN SCAN) (SCANINV SCANINV)

(KEEP KEEP) (KEEPINV KEEPINV)))
(CTL-OUT-TERMINAL SCANOUT)
(CTL-TERM-EDGE

((LOAD TOP) (LOADINV TOP) (PHIl TOP) (PHIIINV TOP)
(PHI2INV TOP) (SCAN TOP) (SCANINV TOP) (KEEP TOP)
(KEEPINV TOP) (SCANIN TOP) (SCANOUT BOTTOM)
(PHI2 TOP)))

(COMPLEMENT-OUT MASTER) (DRIVING-CAP SMALL)')
("scanregmx" (PARAMETERS (N)) (AREA (* N 66 199)) (DELAY 2)

(ONE-BIT-DELAY 2)

(RIPDLE-DELAY 0)
(RIPPLE-OFFSET 0)

(DATA-TERMINAL (OUT (IN)))
(POWER-TERMINAL (Vdd GND))
(CTL-IN-TERMINAL

(SCANIN (LOAD LOAD) (LOADINV (NOT LOAD))
(PHIl CK1) (PHIIINV (NOT CK1))
(PHI2 CK2) (PHI2INV (NOT CK2))
(SCAN SCAN) (SCANINV SCANINV)
(KEEP KEEP) (KEEPINV KEEPINV)))

(CTL-OUT-TERMINAL SCANOUT)
(CTL-TERM-EDGE

((LOAD TOP) (LOADINV TOP) (PHIl TOP)
(PHIIINV TOP) (PHI2INV TOP) (KEEP TOP)
(KEEPINV TOP) (SCANOUT BOTTOM) (PHI2 TOP)
(SCANIN TOP) (SCAN TOP) (SCANINV TOP)))

(COMPLEMENT-OUT MASTER) (DRIVING-CAP SMALL))

APPENDIX B. HYPER HARDWARE DATABASE FORMAT 161

("scanmslatch" (PARAMETERS (N)) (AREA (* N 52 108)) (DELAY 1)
(ONE-BIT-DELAY 1)

(RIPPLE-DELAY 0)
(RIPPLE-OFFSET 0)
(DATA-TERMINAL (OUT (IN)))

(POWER-TERMINAL (Vdd GND))
(CTL-IN-TERMINAL

(SCANIN (LOAD LOAD) (LOADINV (NOT LOAD))
(PHIl CK1) (PHIIINV (NOT CK1))
(SHIFT SCAN) (SHIFTINV SCANINV)))

(CTL-OUT-TERMINAL SCANOUT)

(CTL-TERM-EDGE

((LOAD TOP) (LOADINV TOP) (PHIl TOP)
(PHIIINV TOP)

(SHIFT TOP) (SHIFTINV TOP) (SCANOUT BOTTOM)
(SCANIN TOP)))

(COMPLEMENT-OUT NIL) (DRIVING-CAP SMALL)))
(MUX ("mux2tol" (PARAMETERS (N)) (AREA (* N 52 69)) (DELAY 2)

(ONE-BIT-DELAY 2)

(RIPPLE-DELAY 0)
(RIPPLE-OFFSET 0)

(DATA-TERMINAL (OUT (INI IN2)))
(POWER-TERMINAL (Vdd GND))

(CTL-IN-TERMINAL ((SEL1 SELECT)

(SEL2 (not SELECT))))
(CTL-OUT-TERMINAL NIL)
(CTL-TERM-EDGE ((SEL1 TOP) (SEL2 TOP)))
(COMPLEMENT-OUT OUTINV)
(DRIVING-CAP NO)))

(NOP ("adder" (PARAMETERS (N)) (AREA (* N 48 214))
(DELAY (+6 (* N 2)))
(ONE-BIT-DELAY 6)
(RIPPLE-DELAY (* N 2))

(RIPPLE-OFFSET 0)
(DATA-TERMINAL (OUT (INI)))
(POWER-TERMINAL (Vdd GND))
(CTL-IN-TERMINAL ((CIN GND) (CININV VDD)))
(CTL-OUT-TERMINAL COUT)
(CTL-TERM-EDGE ((CIN BOTTOM) (CININV BOTTOM)
(COUT TOP)))
(COMPLEMENT-OUT OUTINV) (DRIVING-CAP NO)))

(+ ("adder" (PARAMETERS (N)) (AREA (* N 48 214))
(DELAY (+6 (* N 2)))
(ONE-BIT-DELAY 6)
(RIPPLE-DELAY (* N 2))

(RIPPLE-OFFSET 0)
(DATA-TERMINAL (OUT (INI IN2)))
(POWER-TERMINAL (Vdd GND))
(CTL-IN-TERMINAL ((CIN GND) (CININV VDD)))
(CTL-OUT-TERMINAL COUT)

(CTL-TERM-EDGE ((CIN BOTTOM) (CININV BOTTOM)
(COUT TOP)))

(COMPLEMENT-OUT OUTINV) (DRIVING-CAP NO))

APPENDIX B. HYPER HARDWARE DATABASE FORMAT 162

("add_sub" (PARAMETERS (N)) (AREA (* N 48 324))
(DELAY (+9 (* N 2)))
(ONE-BIT-DELAY 9)
(RIPPLE-DELAY (* N 2))
(RIPPLE-OFFSET 0)
(DATA-TERMINAL (OUT (INI IN2)))
(POWER-TERMINAL (Vdd GND))
(CTL-IN-TERMINAL ((CIN GND) (CININV VDD)))
(CTL-OUT-TERMINAL COUT)
(CTL-TERM-EDGE ((CIN BOTTOM) (CININV BOTTOM)
(COUT TOP)))

(COMPLEMENT-OUT OUTINV) (DRIVING-CAP NO))
("ALU" (PARAMETERS (N)) (AREA (* N 100 500))

(DELAY (+6 (* N 2))) (ONE-BIT-DELAY 6)
(RIPPLE-DELAY (* N 2))
(RIPPLE-OFFSET 0)
(DATA-TERMINAL (OUT (INI IN2)))
(POWER-TERMINAL (Vdd GND))
(CTL-IN-TERMINAL

((CIN GND) (CININV VDD)
(SELECT1 1) (SELECT2 0) (SELECT3 0)))

(CTL-OUT-TERMINAL COUT)
(CTL-TERM-EDGE ((CIN BOTTOM) (CININV BOTTOM) (COUT TOP)

(SELECT1 TOP) (SELECT2 TOP)
(SELECT3 TOP)))

(COMPLEMENT-OUT OUTINV) (DRIVING-CAP NO)))
(- ("subtractor" (PARAMETERS (N)) (AREA (* N 48 245))

(DELAY (+7 (* N 2)))
(ONE-BIT-DELAY 7)
(RIPPLE-DELAY (* N 2))
(RIPPLE-OFFSET 0)
(DATA-TERMINAL (OUT (INI IN2)))
(POWER-TERMINAL (Vdd GND))
(CTL-IN-TERMINAL ((CIN Vdd) (CININV GND)))
(CTL-OUT-TERMINAL COUT)
(CTL-TERM-EDGE ((CIN BOTTOM) (CININV BOTTOM)

(COUT TOP)))
(COMPLEMENT-OUT OUTINV) (DRIVING-CAP NO))

("add_sub" (PARAMETERS (N)) (AREA (* N 48 324))
(DELAY (+ 9 (* N 2)))
(ONE-BIT-DELAY 9)
(RIPPLE-DELAY (* N 2))
(RIPPLE-OFFSET 0)

(DATA-TERMINAL (OUT (INI IN2)))
(POWER-TERMINAL (Vdd GND))
(CTL-IN-TERMINAL ((CIN VDD) (CININV GND)))
(CTL-OUT-TERMINAL COUT)
(CTL-TERM-EDGE ((CIN BOTTOM) (CININV BOTTOM)

(COUT TOP)))
(COMPLEMENT-OUT OUTINV) (DRIVING-CAP NO))

APPENDIX B. HYPER HARDWARE DATABASE FORMAT 163

("ALU" (PARAMETERS (N)) (AREA (* N 100 500))
(DELAY (+7 (* N 2)))
(ONE-BIT-DELAY 7)
(RIPPLE-DELAY (* N 2))
(RIPPLE-OFFSET 0)
(DATA-TERMINAL (OUT (INI IN3)))
(POWER-TERMINAL (Vdd GND))
(CTL-IN-TERMINAL

((CIN Vdd) (CININV GND) (SELECT1 0) (SELECT2 1)
(SELECT3 0)))

(CTL-OUT-TERMINAL COUT)
(CTL-TERM-EDGE ((CIN BOTTOM) (CININV BOTTOM) (COUT TOP)

(SELECT1 TOP) (SELECT2 TOP)
(SELECT3 TOP)))

(COMPLEMENT-OUT OUTINV) (DRIVING-CAP NO)))
(NEGATE ("subtractor" (PARAMETERS (N)) (AREA (* N 48 245))

(DELAY (+7 (* N 2)))
(ONE-BIT-DELAY 7)
(RIPPLE-DELAY (* N 2))
(RIPPLE-OFFSET 0)
(DATA-TERMINAL (OUT (IN2)))
(POWER-TERMINAL (Vdd GND))
(CTL-IN-TERMINAL ((CIN Vdd) (CININV GND)))
(CTL-OUT-TERMINAL COUT)
(CTL-TERM-EDGE ((CIN BOTTOM) (CININV BOTTOM)

(COUT TOP)))
(COMPLEMENT-OUT OUTINV) (DRIVING-CAP NO)))

(XOR ("xor2" (PARAMETERS (N)) (AREA (* N 40 50))
(DELAY 1)

(ONE-BIT-DELAY 1)
(RIPPLE-DELAY 0)
(RIPPLE-OFFSET 0)
(DATA-TERMINAL (XOR2 (A B)))
(POWER-TERMINAL (Vdd GND))
(CTL-IN-TERMINAL NIL)
(CTL-OUT-TERMINAL NIL)
(CTL-TERM-EDGE NIL)
(COMPLEMENT-OUT XOR2_INV) (DRIVING-CAP NO)))

(AND ("and2" (PARAMETERS (N)) (AREA (* N 40 50))
(DELAY 1)

(ONE-BIT-DELAY 1)
(RIPPLE-DELAY 0)
(RIPPLE-OFFSET 0)
(DATA-TERMINAL (AND2 (A B)))
(POWER-TERMINAL (Vdd GND))
(CTL-IN-TERMINAL NIL)
(CTL-OUT-TERMINAL NIL)
(CTL-TERM-EDGE NIL)
(COMPLEMENT-OUT AND2 INV) (DRIVING-CAP NO))

APPENDIX B. HYPER HARDWARE DATABASE FORMAT 164

("ALU" (PARAMETERS (N)) (AREA (* N 100 500))
(DELAY 1)
(ONE-BIT-DELAY 1)
(RIPPLE-DELAY 0)
(RIPPLE-OFFSET 0)

(DATA-TERMINAL (OUT2 (INI IN2)))
(POWER-TERMINAL (Vdd GND))

(CTL-IN-TERMINAL

((SELECT1 0) (SELECT2 0) (SELECT3 1)))
(CTL-OUT-TERMINAL NIL)
(CTL-TERM-EDGE

((SELECT1 TOP) (SELECT2 TOP) (SELECT3 TOP)))
(COMPLEMENT-OUT NIL) (DRIVING-CAP NO)))

(OR ("or2" (PARAMETERS (N)) (AREA (* N 40 50))
(DELAY 1)

(ONE-BIT-DELAY 1)
(RIPPLE-DELAY 0)

(RIPPLE-OFFSET 0)
(DATA-TERMINAL (OR2 (A B)))
(POWER-TERMINAL (Vdd GND))
(CTL-IN-TERMINAL NIL)
(CTL-OUT-TERMINAL NIL)
(CTL-TERM-EDGE NIL)
(COMPLEMENT-OUT OR2_INV) (DRIVING-CAP NO)))

(NOT ("inverter" (PARAMETERS (N)) (AREA (* N 40 31))
(DELAY 1)

(ONE-BIT-DELAY 1)
(RIPPLE-DELAY 0)
(RIPPLE-OFFSET 0)
(DATA-TERMINAL (OUTINV (IN)))
(POWER-TERMINAL (Vdd GND))
(CTL-IN-TERMINAL NIL)
(CTL-OUT-TERMINAL NIL)
(CTL-TERM-EDGE NIL)
(COMPLEMENT-OUT NIL) (DRIVING-CAP NO)))

(! ("inverter" (PARAMETERS (N)) (AREA (* N 40 31))
(DELAY 1)

(ONE-BIT-DELAY 1)
(RIPPLE-DELAY 0)
(RIPPLE-OFFSET 0)
(DATA-TERMINAL (OUTINV (IN)))
(POWER-TERMINAL (Vdd GND))
(CTL-IN-TERMINAL NIL)
(CTL-OUT-TERMINAL NIL)
(CTL-TERM-EDGE NIL)
(COMPLEMENT-OUT NIL) (DRIVING-CAP NO)))

APPENDIX B. HYPER HARDWARE DATABASE FORMAT 165

(DECODE ("constant" (PARAMETERS (N PATTERN))
(AREA (* N 13 48))
(DELAY 0)
(ONE-BIT-DELAY 0)
(RIPPLE-DELAY 0)
(RIPPLE-OFFSET 0)
(DATA-TERMINAL (OUT (IN)))
(POWER-TERMINAL (Vdd GND))
(CTL-IN-TERMINAL NIL)
(CTL-OUT-TERMINAL NIL)
(CTL-TERM-EDGE NIL)
(COMPLEMENT-OUT NIL) (DRIVING-CAP NO)))

(trist-BUF ("trist_buffer" (PARAMETERS (N)) (AREA (* N 38 50))
(DELAY 1)
(ONE-BIT-DELAY 1)
(RIPPLE-DELAY 0)
(RIPPLE-OFFSET 0)
(DATA-TERMINAL (OUT (IN)))
(POWER-TERMINAL (Vdd GND))
(CTL-IN-TERMINAL

((CNTL OEN) (CNTLINV (not OEN))))
(CTL-OUT-TERMINAL NIL)
(CTL-TERM-EDGE

((CNTL TOP) (CNTLINV TOP)))
(COMPLEMENT-OUT NIL)
(DRIVING-CAP SMALL)))

(» ("barrelR6Ll" (PARAMETERS (N)) (RANGE (-6 1))
(AREA (* N 63 170)) (DELAY 4)
(ONE-BIT-DELAY 3)
(RIPPLE-DELAY 0)
(RIPPLE-OFFSET (- M))
(DATA-TERMINAL (OUT (IN)))
(POWER-TERMINAL (Vdd GND))
(CTL-IN-TERMINAL

((SHFTL1 LI) (SHFT0 R0) (SHFT1 Rl)
(SHFT2 R2) (SHFT3 R3) (SHFT4 R4)
(SHFT5 R5) (SHFT6 R6) (PRCHRG CK1)))

(CTL-OUT-TERMINAL NIL)
(CTL-TERM-EDGE

((SHFTL1 TOP) (SHFT0 TOP) (SHFT1 TOP)
(SHFT3 TOP) (SHFT4 TOP) (SHFT5 TOP)
(SHFT2 TOP) (SHFT6 TOP) (PRCHRG TOP)))

(COMPLEMENT-OUT NIL) (DRIVING-CAP NO))
("shift" (PARAMETERS (N (SBY (STRUCTURE RIGHT M))))

(RANGE (-31 31))
(AREA (+ (* (my-length SBY

(my-length SBY
(my-length SBY (list "up4"
(my-length SBY
(my-length SBY

(DELAY

(*

(*
(*

(*

(*
))

(* 1 (length SBY)))

(list "upl"
(list "up2"

"downl")) 84)
"down2")) 90)
"down4")) 102)

(list "up8" "down8")) 130)
(list "upl6" "downl6")) 186)

APPENDIX B. HYPER HARDWARE DATABASE FORMAT 166

(ONE-BIT-DELAY (* 1 (length SBY)))
(RIPPLE-DELAY 0)
(RIPPLE-OFFSET (- M))
(DATA-TERMINAL (OUT (IN)))
(POWER-TERMINAL (Vdd GND))
(CTL-IN-TERMINAL ((SHIFT BUS ((length SBY)

(encoded_SHIFT SBY)))
(SHIFTBAR BUS

((length SBY)
(NOT (encoded_SHIFT SBY))))

(MSBIN BUS

((length SBY) SHIFT_IN_NUM))))
(CTL-OUT-TERMINAL NIL)
(CTL-TERM-EDGE

((SHIFT TOP) (SHIFTBAR TOP) (MSBIN TOP)))
(COMPLEMENT-OUT NIL) (DRIVING-CAP NO)))

(« ("barrelR6Ll" (PARAMETERS (N)) (RANGE (-1 6))
(AREA (* N 63 170)) (DELAY 4)
(ONE-BIT-DELAY 3)
(RIPPLE-DELAY 0)
(RIPPLE-OFFSET M)
(DATA-TERMINAL (OUT (IN)))
(POWER-TERMINAL (Vdd GND))
(CTL-IN-TERMINAL

((SHFTL1 LI) (SHFTO R0)
(SHFT2 R2) (SHFT3 R3)
(SHFT5 R5) (SHFT6 R6)
(DIN SHIFT_IN_NUM)))

(CTL-OUT-TERMINAL NIL)
(CTL-TERM-EDGE

((SHFTL1 TOP) (SHFTO TOP) (SHFT1 TOP)
(SHFT3 TOP) (SHFT4 TOP) (SHFT5 TOP) (SHFT6 TOP)
(SHFT2 TOP) (PRCHRG TOP) (DIN BOTTOM)))

(COMPLEMENT-OUT NIL) (DRIVING-CAP NO))
("shift" (PARAMETERS (N (SBY (STRUCTURE_LEFT M))))

(RANGE (-31 31))
(AREA (* N 50

(+ (* (my-length SBY
(my-length SBY
(my-length SBY
(my-length SBY
(my-length SBY
186)

)))
(DELAY (* 1 (length SBY)))
(ONE-BIT-DELAY (* 1 (length SBY)))
(RIPPLE-DELAY 0)
(RIPPLE-OFFSET M)
(DATA-TERMINAL (OUT (IN)))
(POWER-TERMINAL (Vdd GND))

(*

(*

(*

(*

(SHFT1 Rl)

(SHFT4 R4)

(PRCHRG CK1)

(list "upl" "downl"))
(list "up2" "down2"))
(list "up4" "down4"))
(list "up8" "down8"))
(list "upl6" "downl6"))

84)
90)

102)
130)

APPENDIX B. HYPER HARDWARE DATABASE FORMAT 167

(CTL-IN-TERMINAL
((SHIFT BUS ((length SBY)

(encoded_SHIFT SBY)))
(SHIFTBAR BUS ((length SBY)

(NOT (encoded_SHIFT SBY))))
(LSBIN BUS ((length SBY) SHIFT IN NUM))))

(CTL-OUT-TERMINAL NIL) ~
(CTL-TERM-EDGE

((SHIFT TOP) (SHIFTBAR TOP) (LSBIN BOTTOM)))
(COMPLEMENT-OUT NIL) (DRIVING-CAP NO)))

(@ ("transfer" (PARAMETERS (N)) (AREA (* N 107 48)) (DELAY 0)
(RIPPLE-DIR NIL)
(ONE-BIT-DELAY 0)
(RIPPLE-DELAY 0)
(TIMING-CONSTRAINT NIL)
(DATA-TERMINAL (OUT (INI)))
(POWER-TERMINAL (Vdd GND))
(CTL-IN-TERMINAL NIL)
(CTL-OUT-TERMINAL NIL)
(CTL-TERM-EDGE Nil)
(COMPLEMENT-OUT NIL) (DRIVING-CAP NO)))

("#" ("transfer" (PARAMETERS (N)) (AREA (* N 107 48)) (DELAY 0)
(RIPPLE-DIR NIL)
(ONE-BIT-DELAY 0)
(RIPPLE-DELAY 0)
(TIMING-CONSTRAINT NIL)
(DATA-TERMINAL (OUT (INI)))
(POWER-TERMINAL (Vdd GND))
(CTL-IN-TERMINAL NIL)
(CTL-OUT-TERMINAL NIL)
(CTL-TERM-EDGE NIL)
(COMPLEMENT-OUT NIL) (DRIVING-CAP NO)))

(= ("transfer" (PARAMETERS (N)) (AREA 0) (DELAY 0)
(RIPPLE-DIR NIL)
(ONE-BIT-DELAY 0)
(RIPPLE-DELAY 0)
(TIMING-CONSTRAINT NIL)
(DATA-TERMINAL (OUT (INI)))
(POWER-TERMINAL (Vdd GND))
(CTL-IN-TERMINAL NIL)
(CTL-OUT-TERMINAL NIL)
(CTL-TERM-EDGE NIL)
(COMPLEMENT-OUT NIL) (DRIVING-CAP NO)))

APPENDIX B. HYPER HARDWARE DATABASE FORMAT 168

Keyword Modules Description

INWIDTH RAM, ROM, FSM, PLA input width in bit
OUTWIDTH RAM, ROM, FSM, PLA output width in bit
INPLANE RAM, ROM, FSM, PLA map of input plane
OUTPLANE RAM, ROM, FSM, PLA map of output plane
MINTERM FSM, PLA number of min-terms

BDSYN FSM, PLA bds file of the module

WIDTH FIFO, reg file word width

LENGTH FIFO, reg file, counter, timer length of the module
INIT counter initial value of counter

N multiplier output bit width
Nl multiplier bit width of multiplicand
N2 multiplier bit width of multiplier
USER-DEFINE all given by user in silicon compilation

Table B.8: Keyword in the Parameters Attribute of Array Database.

B.5 Database for Array Modules

The database format for the array modules is very similar to the database format

for the data path modules except for some attributes. The attributes in the array database

are listed as follows with the emphasis on the difference between the attributes of the data

path database and those of the array database:

parameters Similar to the data path database except that a different set of keywords are

defined for various modules. Since most hardware parameter names of array modules

are lower-case, quotes are needed for the parameter names. The functions recognized

by the hardware mapper in this attribute are listed in Table B.4 and the keywords
are listed in Table B.8.

area Similar to the data path database except that the area of some modules cannot be

decided until the logic synthesis is performed. Examples of such modules are PLA's

and FSM's. For those modules, the area attribute just shows the proportion of the

parameters to the area.

delay Similar to the data path database. Again, delay of some modules cannot be decided

until the logic synthesis step. Therefore, the delay attribute onlyshows the proportion

of the parameters to the delay.

APPENDIX B. HYPER HARDWARE DATABASE FORMAT 169

one-bit-delay Same as the data path database.

ripple-delay Same as the data path database.

ripple-offset Same as the data path database.

data-terminal Similar to the data path database except that multiple-port input/output

is supported for memory modules. The format for single-port (one input port and one

output port) memory blocks is "(output-data-term (address-term input-data-term))",

which is the same as the data-terminal attribute in the data path database1. The

format for multiple-port memory is as follows:

([(pi dl) (p2 d2) ...] [(pi al dl) (p2 a2 d2) ...])

where pi is a port name, a,- is the address terminal name of p,- and d{ is the input/output

data terminal name of p,-. The first bracket contains output terminals and the second

bracket contains input terminals. The orders of the elements in the brackets are not

important; however, the orders in the parentheses are important. Again, the input

data terminals can be omitted for ROM modules.

power-terminal Same as the data path database.

ctl-in-terminal Same as the data path database.

complement-out Same as the standard cell database.

driving-cap Same as the standard cell database.

reducibility This attribute specifies if the module is tri-state buffered (i.e. multiplexer

reducible). The value is t if it is, nil otherwise.

The following subsection is a print-out of the current array database of HYPER.

Notice that some of the modules in the Lager cell library do not have the required informa

tion and since the print-out is mainly for demonstrating the database format, the missing

information will be given an appropriate expression based on the correct format. Also keep

in mind that the database is read by the Lisp interpreter and hence there is no difference

between the lower-case letters and the upper-case letters.

'The input data terminal can be omitted for a ROM module.

APPENDIX B. HYPER HARDWARE DATABASE FORMAT 170

B.5.1 Array Module Database in HYPER

Need to define keywords for different modules to interpret
parameters. The interpretation can also be an expression,
eg. (log OUTWIDTH 2)
for ram, rom : INWIDTH OUTWIDTH INPLANE OUTPLANE
for fifo : WIDTH LENGTH

for fsm, pla : INWIDTH OUTWIDTH BDSYN (INPLANE OUTPLANE MINTERM)
for reg file : WIDTH, LENGTH
for counter : LENGTH INIT ...

for multiplier : Nl, N2, N
No CTL-OUT-TERMINAL needed. However, REDUCIBILITY is needed.

((* ("mult" (PARAMETERS (("n" Nl) ("m" N2) ("s" USER_DEFINE)
("csindex" USER_DEFINE)))

(AREA (* (+ 375 (* 129 (- (max "n" "m") 1)))
(+ 342 (* 135 (+ 1 (min ("n" "m")))))))

(DELAY (+ 30 2
(* 3 (+ 2 (/ (ceiling (min (- "n" 1)

(- "m" 3))) 2)))))

Ln (- "n" 1)
(- "m" 3))) 2))))

(ONE-BIT-DELAY 2)
(RIPPLE-DELAY (* 3 (+2 (/ (ceiling (min (- "n" 1)

(RIPPLE-OFFSET 0)

(DATA-TERMINAL (P (X Y)))
(POWER-TERMINAL (Vdd GND))
(CTL-IN-TERMINAL NIL)

(COMPLEMENT-OUT NIL) (DRIVING-CAP NO)

(REDUCIBILTY NIL)))
(ram ("RAM3T" (PARAMETERS (("in-width" INWIDTH)

("out-width" OUTWIDTH)
("ram-address-plane" INPLANE)
("ram-bit-plane" OUTPLANE)))

(AREA (* "in-width" "out-width" 31 28))
(DELAY (+ (* 2 "in-width") (* 2 "out-width")))
(DATA-TERMINAL (RAMDATABUS (RAMADDRESS RAMDATABUS)))

; mul-port ([(pi dl) ..] [(pi al dl) ...])
; 1-port (d [a d])
(POWER-TERMINAL (Vdd GND))
(CTL-IN-TERMINAL ((PHIl CK2) (PHI2 CK1)

(READ OEN) (WRITE LOAD)))

(COMPLEMENT-OUT OUTINV) (DRIVING-CAP SMALL)

(REDUCIBILITY NIL))

("dpram" (PARAMETERS (("width" OUTWIDTH)
("words" (expt 2 INWIDTH))))

(AREA (* "width" "words" 31 28))

(DELAY (* 2 "width"))
(DATA-TERMINAL (((PORT1 IN) (PORT2 OUT))

((PORT1 WRITE_ADDR IN)
(PORT2 READ_ADDR OUT))))

(POWER-TERMINAL (Vdd GND))

(CTL-IN-TERMINAL ((PRE (not CK1)) (WRITE LOAD)))

(COMPLEMENT-OUT NIL) (DRIVING-CAP SMALL)
(REDUCIBILITY NIL)))

APPENDIX B. HYPER HARDWARE DATABASE FORMAT 171

(rom ("ROM" (PARAMETERS (("in-width" INWIDTH)
("out-width" OUTWIDTH)
("rom-address-plane" INPLANE)
("rom-bit-plane" OUTPLANE)))

(AREA (* "in-width" "out-width" 159 20))
(DELAY (+ (* 2 "in-width") (* 2 "out-width")))
(DATA-TERMINAL (OUT (ADDRESS)))

; mul-port ([(pi dl) ..] [(pi al) ..])
; 1-port (d [a])
(POWER-TERMINAL (Vdd GND))
(CTL-IN-TERMINAL ((PHIl CK2) (PHI2 CK1)))
(COMPLEMENT-OUT OUTINV) (DRIVING-CAP SMALL)

(REDUCIBILITY NIL)))

(fifo ("FIFO" (PARAMETERS (("width" WIDTH) ("length" LENGTH)))
(AREA (* 59 73 "length" "width"))
(DELAY (* 3 (sqrt N)))
(DATA-TERMINAL (OUT (IN)))
(POWER-TERMINAL (Vdd GND))

(CTL-IN-TERMINAL ((PHIl CK2) (PHI2 CK1)))
(COMPLEMENT-OUT OUTINV) (DRIVING-CAP small)
(REDUCIBILITY NIL)))

(pla ("pla" (PARAMETERS (("inwidth" INWIDTH) ("outwidth" OUTWIDTH)
("minterm" MINTERM)
("input-plane" INPLANE)
("output-plane" OUTPLANE)))

(AREA (* "minterm" (+ "inwidth" "outwidth")))
(DELAY 5)
(DATA-TERMINAL (OUT (IN)))

(POWER-TERMINAL (Vdd GND))

(CTL-IN-TERMINAL ((CLOCK CK1)))
(COMPLEMENT-OUT NIL) (DRIVING-CAP NIL)
(REDUCIBILITY NIL)))

(fsm ("fsm_bdsyn" (PARAMETERS (("inwidth" INWIDTH)
("outwidth" OUTWIDTH)

("bdsyn" BDSYN)))
(AREA (+ "inwidth" "out-width"))

; use the same leafcell as ROM

(DELAY 5)

(DATA-TERMINAL (OUT (IN)))
(POWER-TERMINAL (Vdd GND))

(CTL-IN-TERMINAL ((PHIl CK2) (PHI2 CK1)))
(COMPLEMENT-OUT NIL) (DRIVING-CAP NIL)

(REDUCIBILITY NIL)))

(reg-file ("latch" (PARAMETERS (("width" WIDTH)))
(AREA (* "width" 20 164))
(DELAY 2)
(DATA-TERMINAL (OUT (IN)))
(POWER-TERMINAL (Vdd GND))
(CTL-IN-TERMINAL ((LD LOAD) (PHIl CK1)

(PHI2 CK2)))

(COMPLEMENT-OUT NIL) (DRIVING-CAP NIL)

(REDUCIBILITY NIL)))

APPENDIX B. HYPER HARDWARE DATABASE FORMAT 172

(counter ("lpc" (PARAMETERS (("initcnt" INIT) "num_of_loopslice"
"detslice" "max_loop_size"))

(AREA (* 50 263 (log "max_loop_size" 2)))
(DELAY 5)
(DATA-TERMINAL (LPCCOUNT NIL))

(POWER-TERMINAL (Vdd GND))
(CTL-IN-TERMINAL ((INC count) (ENA (not RESET))

(PHIl CK1) (PHI2 CK2)))
(CTL-OUT-TERMINAL DETECT)
(COMPLEMENT-OUT LPCCOUNTBAR) (DRIVING-CAP NIL)
(REDUCIBILITY NIL))

("pc" (PARAMETERS (("width" LENGTH) ("initcnt" INIT)))
(AREA (* "width" 50 263))
(DELAY 5)
(DATA-TERMINAL ((COUNTJL COUNTER) NIL))
(POWER-TERMINAL (Vdd GND))
(CTL-IN-TERMINAL ((PHIl CK1) (PHI2 CK2)

(RESET1 RESET)
(RESET2 0) (RESET3 0)))

(CTL-OUT-TERMINAL COUT)
(COMPLEMENT-OUT (COUNT_L_INV COUNT_R_INV))
(DRIVING-CAP NIL)
(REDUCIBILITY NIL)))

(timer ("timer" (PARAMETERS (("width" LENGTH)))
(AREA (* "width" 50 263))
(DELAY 5)
(DATA-TERMINAL((TIMERCOUNTJL TIMERCOUNT_R)

(INITCOUNT)))
(POWER-TERMINAL (Vdd GND))
(CTL-IN-TERMINAL ((RESET1INV (and (not RESET)

CK2))

(RESET2 (and CK2 RESET))))
(CTL-OUT-TERMINAL COUT)

(COMPLEMENT-OUT (TIMERCOUNT_L_INV
TIMERCOUNT_R_INV))

(DRIVING-CAP NIL)
(REDUCIBILITY NIL)))

APPENDIX B. HYPER HARDWARE DATABASE FORMAT 173

B.6 Conclusion

This appendix describes the format of the hardware database in the HYPER syn

thesis system. This format is in the Lisp syntax and forms a hierarchical database. Three

databases, which contain information on data path modules, array modules, and standard

cells respectively, have been built. All the databases have the same structure and the

attributes to specify the area, delay, and wiring information. However, the format is some

what different for various applications. These databases have been proved useful for many

real applications. Nevertheless, more features such as testability and more elaborate delay

information may be needed in the future to cope with various design issues.

174

Appendix C

Flow Graph Format For Hardware

Mapper

C.l Introduction

This document describes the HYPER flow graph format for the hardware map

ping process. This format is a Lisp description of hierarchical control/data flow graphs.

The author would assume that readers have the basic Common Lisp background in read

ing this documentation. The best way to understand the flow graph format is by go

ing through a complete example. An example of this format can be found in Section

10 of this Chapter, which is a 7th order IIR filter. Other examples can be found in

chu/synthesis/graph2sdl/NEW/version-eps/epsl.dfg on the zabriskie cluster, which is the

flow graph description of the epsilon processor, and in chu/synthesis/graph2sdl/vtb/v4/vtb.dfg,

which is the flow graph description of the Viterbi processor.

Five hierarchical constructs are supported in the flow graph format - if, for (it

eration), waitfor, func, and process. The first three are control macros and the other two

are hierarchical nodes to represent a hardware function or a complete Silage description.

The usage of these constructs will be further discussed in the following sections. The mux

statements in Silage are different from the if constructs described here. So are the loop

statements in Silage different from the for constructs. The mux statements in Silage will be

treated as mux nodes in the flow graph format and they are data nodes. Similarly, the loop

statements in Silage will be fully expanded at this level and be treated as data nodes. On

APPENDIX C. FLOW GRAPH FORMAT FOR HARDWARE MAPPER 175

the other hand, if statements and for statements in Silage are treated as control macros at

this level and are associated with control states and subgraphs. Their executions depend

on the input data as well as the states of the Finite State Machine (FSM).

At this level of abstraction, delay nodes in the Silage description have been properly

deleted and replaced by assign nodes (i.e. equal nodes) and control constraints. Control

constraints are handled by the HYPER scheduler and will be discarded by the hardware

mapper. Some other primitive nodes in the HYPER ASCII flow graphs [28], such as cast

nodes, will also be ignored at this level of abstraction.

A transformation process before the hardware mapper not only deletes some im

proper nodes for the hardware mapper, but also allocates some operations which are not

described explicitly in a Silage program but are implied in the program. For example, inside

the subgraph of a for node, the transformation step will put down an index increment node

and some nodes for breaking the iteration. Another example can be described as follows: if

the user writes the following Silage code:

a = a<91 + aQ2;

The transformation program should be able to detect that this statement involves an implicit

register transfer and therefore replace it by the following two statements:

b = a@l;

a = a@l + b;

Notice that timing constraints should also be imposed so that the register transfer and the

addition are performed at the same time. This can be illustrated using Figure C.l.

A flow graph description for the hardware mapper (called the decorated flow

graph) can be divided into six parts - *node-list*, *edge-list*, parent-node, subgraph, in-

edge/out-edge, and control-step. Each of these parts will be described in the following

sections. Several short examples and notes will also be given in this appendix to illustrate

the major ideas. Questions and comments of the flow graph format should be mailed to

chu@zabriskie.berkeley.edu.

C.2 Definition of Graph

A graph contains a node-list and an edge-list. To facilitate the mapping process,

an in-edge-list which consists of the input edges of the graph and an out-edge-list which

APPENDIX C. FLOW GRAPH FORMAT FOR HARDWARE MAPPER

a@1 a@2

-\ X/ \ +)
-v b Y

performed a
simultaneously"

*
V

176

Figure C.l: Major Steps of Data Path Generation

consists of the output edges of the graph are also included in the graph description. The

reason for this structure will become clearer later in the subgraph section of this report.

The ordering of the nodes and the edges in the node-list and edge-list is not important

except that the first node of the node-list has to be a process node which has a subgraph

containing the highest hierarchy of the whole flow graph. Once the nodes and the edges

have been described in the node-list and the edge-list, the order of the nodes and the edges

in the lists will be used to assign the in/out-edge information of a node and the in/out-node

information of an edge.

A node in the flow graph format contains the following information:

node-definition :=

(defstruct node

(name nil)

(width 0)

(in-edge nil)

(out-edge nil)

(function nil)

APPENDIX C. FLOW GRAPH FORMAT FOR HARDWARE MAPPER 177

(implement nil)

(subgraph nil)

(ctl-constraint nil)

(attribute nil)

)

The default value of each attribute is given as the second element of each parenthesis.

Similarly, the definition of an edge can be written as follows:

edge-definition :=

(defstruct edge

(value nil)

(width 1)

(type 'data)

(in-node nil)

(out-node nil)

(attribute nil)

)

The detail usage of each item will be described in the following sections. Bear in

mind that the flow graph description is a Common Lisp program which should be able to

be compiled and loaded in a Common Lisp environment.

The flow graph description uses only Common Lisp functions with one exception.

A function called "my-nth" which accepts two lists as parameters and returns a list is

defined. My-nth works similar to the Lisp function "nth" except that the first argument is

a number list instead of a number. A list of elements of the second argument is returned.

The definition and an example of my-nth are as follows:

(defun my-nth (number-list a-list)

(let ((return-list nil))

(dolist (i number-list)

(if (null i)

(setq return-list (cons 'nil return-list))

(setq return-list (cons (nth i a-list)

return-list))))

APPENDIX C. FLOW GRAPH FORMAT FOR HARDWARE MAPPER 178

(setq return-list (reverse return-list))))

(my-nth '(1 2 4) '(a b c d e f)) = (b c e)

C.3 Node-list Description

This section describes how to specify the node-list in a flow graph description.

A global variable called *node-list* is assigned to contain all the flow graph nodes. Each

node is then given proper information including node-name, node-width, node-function,

node-implement and node-attribute. Not all the information is needed for every node. If

an attribute is not assigned a value, the default value of the attribute is assumed.

C.3.1 Node-name

Node-name of a node is used to designate the execution unit of the node in the

decorated flow graph description. For example, the node-name of an addition node may be

'adderl and the node-name of a read node may be 'RAMI. For nodes that do not need

an execution unit such as control macro nodes, merge/field (bitmerge/bitselect) nodes, and

assign nodes, their node names should not be given. Furthermore, for operations that are

performed in the control path (control slices or finite state machines), their node-name

attribute should not be specified either.

C.3.2 Node-implement

The node-implement field of a node specifies the implementation of the execution

unit of the node. The data type of this field should be a character string to match the

data type of the cell names in the hardware cell library. For more information about the

hardware database library, please see the documentation in Appendix B. If the node-name

of a node is not given, node-implement of this node should not be given either. In HYPER,

node-implement is decided by the hardware selection process. User can also assign the

implementation by using Silage pragma statements.1

'This feature has not been implemented in the current HYPER synthesis system yet.

APPENDIX C. FLOW GRAPH FORMAT FOR HARDWARE MAPPER 179

C.3.3 Node-width

The node-width field specifies the width in bit of a flow graph node. For control

macro nodes, func nodes, and process nodes, no value is needed. For merge/field nodes and

read/write nodes which involvedifferent widths of input edges and output edges, additional

information related to the node widths and the edge widths may be required in the node-

attribute field of this node. If an execution unit is allocated without specifying node-

width, the hardware mapper will try to find out the width of the execution unit from its

input/output edges.

C.3.4 Node-function

The node-function field specifies the function of a node. Table C.l lists all the

functions that are recognized by the hardware mapping program. These functions include

five categories - control functions, I/O functions, assignment, merge/field, and functions

supported in the hardware database library.

C.3.5 Node-attribute

Several functions need to have appropriate attributes to describe the required

parameters. These attributes are organized as Common Lisp associate lists and are created

by the pairlis function of Lisp in the flow graph description. In addition to the function

names, Table C.l also lists the attribute names needed for each function. The data types

of these attributes are described in Table C.2.

C.4 Edge-list Description

A global variable *edge-list* is specified to contain all the edges (in all hierarchies)

in the given flow graph. This is done in the following fashion:

(setq *edge-list*

(list

(make-edge rvalue edge-valuel ;; other attributes)

(make-edge rvalue edge-value2 ;; other attributes)

;; other edges

))

APPENDIX C. FLOW GRAPH FORMAT FOR HARDWARE MAPPER

Description Function Inputs Outputs Attributes

process process (*) (*) none

func func (*) (*) none

waitfor waitfor (Cond *) (*) none

if if (Cond *) (*) none

for(iteration) for (*) (*)• none

merge merge (*) (Out) none

field field (In) (Out) (field)
read read (Adr) (Out) (storage port parval)
write write (In Adr) None (storage port parval)
assign = (In) (Out) none

add + (Inl In2) (Out) none

subtract - (Inl In2) (Out) none

inc ++ (In) (Out) none

cond_ge >= (Inl In2) (Out) none

cond_e == (Inl In2) (Out) none

condJe <= (Inl In2) (Out) none

mux mux (Inl In2 Cond) (Out) none

trist_buf trist-buf1

register reg1
const .decode decode1

and and (Inl In2) (Out) none

or or (Inl In2) (Out) none

not not (In) (Out) none

right_shift >> .(In) (Out) (shift shift-in-num)
left_shift << (In) (Out) (shift shift-in-num)

Table C.l: Node Function Handled by Hardware Mapper.

180

* Variable number of inputs/outputs

1 These functions exist in the hardware database, but they are not used for node functions.

APPENDIX C. FLOW GRAPH FORMAT FOR HARDWARE MAPPER 181

attribute name data type description example

field list (Indexl Index2) (32 18)
storage symbol storage type 'ROM*

port symbol port name 'portl

parval list lists of parval (("width" 32) ("length" 10))1
shift integer No. of bits shifted 4

shift-in-num 0/1/sign No. shifted in 'sign

Table C.2: Node Attribute.

* Should be a function in the array database.

1 A list of (parameter-name parameter-value) pairs. If a value is not given, the hardware

mapper will try to find the default value.

Each edge is a Common Lisp structure containing the following information: value, width,

type, in-node, out-node and attribute. Similar to the node structure, not all the information

is needed for every edge. If certain information is not given, default values are assumed.

C.4.1 Edge-value

Edge-value specifies the value of an edge. It can be a constant or a variable name

(with proper index if necessary). Edge value doesn't need to be unique. Edges with the

same constant value will be allocated as the same constant block if their widths are equal.

Notice that edges with the same value and different widths should not be combined as one

edge since they will be allocated as different constant blocks in the data path.

The same edges at different hierarchies should have the same edge-value with

proper index modification. For example, an input edge of a for node may have an edge-

value a[0] as the initial value of the loop. Inside the subgraph of the for node, this edge

may be called a[i-l] to represent the value of the previous iteration. This correspondence is

established by the ordering of the in-edge of the for node and the ordering of the input edge

list of the subgraph of the for node. This will be further discussed in the following sections.

APPENDIX C. FLOW GRAPH FORMAT FOR HARDWARE MAPPER 182

C.4.2 Edge-width

Edge-width gives the width of an edge. If the value is not specified, the hardware

mapping program will try to decide the width by the widths of the edge's input/output

nodes. If this doesn't work, the program will use some rules to decide the width of the

edge. It is always advisory to specify the edge-width at the flow graph level since the rules

used by the hardware mapper may lead to inconsistent results. These rules are listed below:

(1) For control edges (edge type is 'control), edge-width is 1.

(2) Derive edge-width by its input/output nodes.

(3) A constant edge may get edge-width equal to \log(value)] if none of above rules work.

(4) Take the default value, i.e. 1.

C.4.3 Edge-type

Edge-type gives the type of an edge. Three types of edges are accepted by the

hardware mapper - 'data, 'control, and 'break. A control edge always has edge-width 1. It

is used as the conditions of multiplexers or for the control macro nodes. Control edges will

be handled in the control path; therefore, no hardware allocation is needed. Break edges are

special control edges of which the edge values are the conditions for breaking for loops. Data

edges, unlike the control edges or the break edges, need to be properly allocated a storage

unit such as a register or will otherwise be treated as a variable. The storage information

of the data edges will be further discussed in the edge-attribute section.

C.4.4 Edge-in-node

Edge-in-node specifies the input nodes of an edge. It may be a node, nil, or a

keyword 'parent. If edge-in-node is a node, the Common Lisp function "nth" is used to

designate the node in the *node-list* to be the input node of the edge. When a parameter

is passed from the outside world (i.e. outside of the subgraph), the edge-in-node attribute

of the corresponding edge will be 'parent. That is, the edge-in-node attributes of all the

input edges of a subgraph have the attribute value 'parent, meaning that the inputs of these

edges are from outside of the subgraph. When an edge is not driven by any source node

including the outside world, the value of its edge-in-node is nil. Examples of such edges are

the constant edges.

APPENDIX C. FLOW GRAPH FORMAT FOR HARDWARE MAPPER

attribute name description examples

storage type of storage 'var, 'reg*
allocation storage unit 'regl, 'R0M1
implement implementation "reg2port"1

Table C.3: Edge Attribute.

* Should be a function in the hardware database or the keyword 'var.

1 Should be a module name in the hardware database.

183

C.4.5 Edge-out-node

Edge-out-node of an edge is a list of keywords and/or nodes driven by the edge.

It may also be an empty list. In the latter case, this edge doesn't have any fanout. Unlike

node-in-edge or node-out-edge which will be discussed later, the order of the elements in the

edge-out-node list is not important. The Lisp function "my-nth" is used to assign nodes in

the *node-list* to be in the edge-out-node list. The usage of the keyword 'parent is similar

to the usage of 'parent in the edge-in-node attribute. That is, whenever a value is going to

passed out of the flow graph, it should have 'parent in its edge-out-node list. The keyword

'break may be used in the subgraph of a for node as the edge-out-node value of the break

edge. When the edge-out-node of an edge is 'break, this edge is the condition of breaking

the loop.

Edge-in-node and edge-out-node are duals of node-out-edge and node-in-edge.

They can be derived from each other. We decided to keep both sets of information to

facilitate the flow graph processing.

C.4.6 Edge-attribute

Edge-attribute contains all the information that is not included in the fields de

scribed above. It is organized as a Lisp associate list and the Lisp function "pairlis" is used

to generate the list. Table C3 lists several attributes which are necessary in a flow graph

description.

For control edges and edges with constant values, attributes listed in Table C.3

are not required. For data edges, if the storage attribute of an edge is 'var, no allocation

APPENDIX C. FLOW GRAPH FORMAT FOR HARDWARE MAPPER 184

or implement attribute is needed. Otherwise, all the three attributes are required. These

attributes are decided by the hardware selection, assignment, and allocation processes, and

should be parts of a decorated flow graph.

C.5 Parent-node Description of Edges

This section of the flow graph description specifies the 'parent attributes of edges.

Each edge has a parent node which contains the edge. For example, edges of the highest

hierarchy should have the process node as their parent node. This hierarchy information is

specified in the parent-node description of edges.

The parent attributes can also be derived from the subgraph description which

will be discussed in the next section. But since the hardware mapping process does not

perform the derivation currently, this section of the flow graph description is necessary. To

specify the 'parent attribute, the Lisp function aeons is used. The foDowing example shows

how the assignment of the 'parent attribute of the first edge in the *edge-list* is performed:

(assuming that node 0, i.e. the process node, is the parent node of the edge)

(setf (edge-attribute (nth 1 *edge-list*))

(aeons »parent (nth 0 *node-list*) (edge-attribute (nth 1 *edge-list*))))

Similar assignments should be given for all the edges in the *edge-list*.

C.6 Subgraph Description of Nodes

Four types of nodes should have a subgraph description - process/func nodes, if

nodes, for/iteration nodes, and waitfor nodes. For all the other nodes, this field should be

given nil (the default value). A subgraph (or flow graph) structure is a list containing four

lists - a node list, an edge list, an input-edge list (which is a sublist of the edge list), and

an output-edge list (which is also a sublist of the edge list). The order of the nodes in the

node list and the order of the edges in the edge list are not important; however, the order

of the edges in the input edge list and the output edge list should match respectively to the

order of the edges in the in-edge and out-edge lists of the node.

For a process node or a func node, the subgraph description is simply a flow graph

description. An example is given as follows:

APPENDIX G FLOW GRAPH FORMAT FOR HARDWARE MAPPER 185

(setf (node-subgraph (nth 0 *node-list*))

(list (my-nth '(1 2 3) *node-list*) ;; node list

(my-nth '(0 1 2 3 14 15 22 23) *edge-list*) ;; edge list

(my-nth *(0 14 15) *edge-list*) ;; input edge list

(my-nth '(22 23) *edge-list*))) ;; output edge list

For a waitfor node, node-subgraph is a list consisting of two elements. The first

element is the signal that the node is waiting for. It should be the edge-value of a control

edge which is an input edge of the waitfor node. The second element of the node-subgraph

is a flow graph description. For example, node one of *node-list* is a waitfor node and its

subgraph is described as follows:

(setf (node-subgraph (nth 1 *node-list*))

(list 'reset ;; conditions to be waited for

(list (my-nth '(789 10 11) *node-list*) ;; node list

(my-nth '(26 28 31 32 33 34) *edge-list*) ;; edge list

(my-nth '(26) *edge-list*) ;; input edge list

(my-nth '(31 32 33 34) *edge-list*)))) ;; output edge list

For a for/iteration node, the subgraph description is an associate list containing

the following information: index, min, max, avg, ec, and subgraph. Index is the name of

the loop index. Min, max, and avg are the minimum index value, the maximum index value

and the average index value respectively. Ec is the termination condition of the for node

and it can either be nil or the edge-value of a control edge inside the subgraph of the for

node. Subgraph is a flow graph description. For example, node 2 of *node-list* is a for

node and its subgraph description is given as follows:

(setf (node-subgraph (nth 2 *node-list*))

(pairlis (list 'index 'min 'max 'avg 'ec 'subgraph)

(list 'i 1 5000 1000 nil

(list (my-nth '(12 13 14) *node-list*) ;; node list

(my-nth '(37 38 39 40) *edge-list*) ;; edge list

(my-nth '(37) *edge-list*) ;; input edge list

(my-nth '(39 40) *edge-list*) ;; output edge list

))))

APPENDIX C. FLOW GRAPH FORMAT FOR HARDWARE MAPPER 186

Notice that the Lisp function "pairlis" is used in this description to generate an associate

list for the node-subgraph description. Pairlis generates an associate list by pairing the

corresponding elements of two lists.

For an if node, its subgraph is a list containing 2 or more elements. Each element

is a list consisting of a condition and a subgraph to be executed under the condition. That

is, the format of the subgraph of an if node is:

((conditionl subgraph1) (condition2 subgraph2) ...)

The keyword 'otherwise can be used as the last condition in the above list meaning that

the subgraph following 'otherwise will be executed if none of the previous condition is true.

For example, assuming that node 28 of *node-list* is an if node, its subgraph is given as

follows:

(setf (node-subgraph (nth 28 *node-list*))

(list (list 'eow ;; condition of performing subgraphl.

;; It should be the edge-value of a control

;; edge, which is one of the input edges of node 28.

(list (my-nth '(29) *node-list*)

(my-nth '(59 60 61) *edge-list*)

(append (list nil) (my-nth (list 59 60) *edge-list*))

(my-nth '(61) *edge-list*)))

(list 'otherwise

(list (my-nth '(31) *node-list*)

(my-nth '(57 58) *edge-list*)

(append (my-nth (list 57) *edge-list*) (list nil nil))

(my-nth '(58) *edge-list*)))))

Notice that some nil's are given in the input edge lists of the subgraphs. This is to match

the order of the input edges of the if node and the orders of the input edge lists. Some of

the input edges of the if node are not needed in some of the subgraphs; therefore, nil's are

given to fill out the spaces.

APPENDIX C. FLOW GRAPH FORMAT FOR HARDWARE MAPPER 187

C.7 In/out-edge Description of Nodes

This section of the flow graph specifies the in-edge and out-edge fields of a node.

Since the *edge-list* section comes after the *node-list* section in a flow graph description,

the in-edge and out-edge information of a node can not be specified when the *node-list* is

assigned. In-edge of a node is an ordered list of edges. The order of the list should match

with the proper terminals of a cell in the hardware database which implements the node.

For a control macro node or a func node, the order of the in-edges should match with the

order of the input edges of the subgraph of the node. This order is very important because

the hardware mapping procedure uses this information to trace flow graphs of different

hierarchies.

Out-edge of a node is also an ordered list. For most cases, the out-edge list will

be a single-element list. But for a control macro node, a func node, or a process node, the

out-edge list will be a list of several edges. Again, the order of the out-edge list should

match with the order of the output edges of the subgraph of the node. The following

examples show how the in-edge and out-edge are assigned to node 1 of the *node-list*. In

this example, the in-edge of node 1 is the first edge of the *edge-list* (edge number starts

from 0) and the out-edge of node 1 is a list consisting of edge 1, 2, and 3 of the *edge-list*.

(setf (node-in-edge (nth 1 *node-list*))

(my-nth '(0) *edge-list*))

(setf (node-out-edge (nth 1 *node-list*))

(my-nth '(12 3) *edge-list*))

C.8 Control-step Description of Nodes

In this section of a decorated flow graph description, the control-steps of nodes are

given. If a node is not to be executed by an execution unit, nor is it a hierarchical node, its

control-step should be given nil. Examples of such nodes are merge nodes and field nodes.

For each subgraph, the control-steps of the nodes in the subgraph start from 0. Hierarchies

do not affect this property. However, the meaning of control steps for the lowest hierarchy

of the flow graph is different from that for the other hierarchies of the flow graph. In the

lowest hierarchy, control steps are the relative clock cycles to execute the operations. In the

APPENDIX C. FLOW GRAPH FORMAT FOR HARDWARE MAPPER 188

higher hierarchies, on the other hand, control steps are the relative order of performing the

operations.

The followingstatement specifies that node 1 of *node-list* is performed at control-

step 0.

(setf (node-attribute (nth 1 *node-list*))

(aeons 'order 0 (node-attribute (nth 1 *node-list*))))

From this example, we can see that the control-step of a node is one of the attributes of

the node with the attribute name 'order. Since the attribute of a node is a Common Lisp

associate list, the Lisp function "aeons" is used in this assignment.

C.9 Preprocessing

To interface with the rest of the HYPER synthesis system, the hardware mapper

has incorporated a preprocessing phase to transform the format generated by Flow2Lisp

(the Lisp flow graph generator from the ASCII flow graph) into the format described above.

There are several tasks in the preprocessing phase. The most important ones are the

management of transfer units and the transformation of broadcasting edges.

Transfer units are dummy units generated by the scheduling and allocation process

to handle register transfer operations. Register transfer operations are in fact assign oper

ations with both the input and the output edges decorated as registers. The preprocessing

routine removes the decoration of the assign (or nop) nodes so that no transfer units will

be generated in the hardware.

An edge can be decorated with multiple registers to represent the broadcasting of a

calculated value to the registers. The following description shows an broadcasting example

in which the value from node 1 is stored in both registerA and registerB2.

(make-edge rvalue 'n29_state :width 32 :type 'data

:attribute (pairlis '(storage allocation implement)

'(reg (registerA registerB) "reg2port"))

:in-node (nth 1 *node-list*)

:out-node (my-nth '(2 3) *node-list*))

2These two registers are the inputs to node 2 and node 3 respectively.

APPENDIX C. FLOW GRAPH FORMAT FOR HARDWARE MAPPER 189

+ 1 control step (cs) =1 cs=1(+J
(regA regB regC) variable

cs = 1 cs = 1 cs = 1

regA regB regC

Figure C.2: Transformation to Handle Broadcasting

To handle various broadcasting cases, the flow graph format has been extended. The el

ements in the allocation list of an edge can be a register or nil (representing a variable).

Similarly, the elements in the out-node list of an edge can now be a node, 'parent, or nil.

The only constraint in the format is that the length of the allocation list should be equal

to the length of the out-node list. The correspondence between the allocation list and the

out-node list should be built to guarantee the correctness of the hardware generated. The

only exception to this constraint is when an edge doesn't have any out-node. In this case,

the out-node list can be nil even though the edge is decorated with multiple registers. The

correspondence described above doesn't have to be true for this case either.

The preprocessing program performs a transformation to handle the edges with

multiple-register decoration. This transformation can be illustrated using Figure C.2. The

graph after the transformation becomes much cleaner and easier to process for the hardware

mapper.

APPENDIX C. FLOW GRAPH FORMAT FOR HARDWARE MAPPER

C.IO Flow Graph Example - IIR Filter

(setq *node-list*
(list
(make-node

(make-node

(make-node

(make-node

(make-node

(make-node

(make-node

(make-node

(make-node

(make-node

(make-node

(make-node

(make-node

(make-node

(make-node

(make-node

function 'process)
function '+

name 'al

implement "adder")
function '»

name 'bl

implement "barrelR6Ll"
attribute (pairlis '(shift) '(2)))
function '+

name 'al

implement "adder")
function '»

name 'bl

implement "barrelR6Ll"
attribute (pairlis '(shift) '(2)))
function '+

name 'al

implement "adder")
function '-

name 'si

implement "subtractor")
function '»

name 'bl

implement "barrelR6Ll"
attribute (pairlis '(shift) '(2)))
function '+

name 'al

implement "adder")
function '»

name 'bl

implement "barrelR6Ll"
attribute (pairlis '(shift) '(1)))
function '=)

function '+

name 'al

implement "adder")
function '+

name 'al

implement "adder")
function '»

name 'b2

implement "barrelR6Ll"
attribute (pairlis '(shift) '(2)))
function '+

name 'a2

implement "adder")
function '+

name 'a2

implement "adder")

190

APPENDIX C. FLOW GRAPH FORMAT FOR HARDWARE MAPPER

(make-node

(make-node

(make-node

(make-node

(make-node

(make-node

(make-node

(make-node

(make-node

(make-node

(make-node

(make-node

(make-node

(make-node

(make-node

(make-node

[function '»

:name 'b2

:implement "barrelR6Ll"
attribute (pairlis '(shift) '(2)))
:function '-

:name 's2

implement "subtractor")
function '+

name 'a2

implement "adder")
function '=)

function '»

name 'b2

implement "barrelR6Ll"
attribute (pairlis '(shift) '(4)))
function '+

name 'a2

implement "adder")
function '+

:name 'a2

:implement "adder")
function '»

name 'b3

implement "barrelR6Ll"
attribute (pairlis '(shift) '(2)))
function '+

name 'a3

implement "adder")
function '»

name 'b3

implement "barrelR6Ll"
attribute (pairlis '(shift)
function '-

name 's3

implement "subtractor")
function '>>

name 'b3

implement "barrelR6Ll"
attribute (pairlis '(shift) '(3)))
function '+

name 'a3

implement "adder")
function '+ion

name 'a3name 'a3

implement "adder")
function '+

name 'a3

implement "adder")
function '=)

' (4)))

191

APPENDIX C. FLOW GRAPH FORMAT FOR HARDWARE MAPPER

(make-node

(make-node

(make-node

(make-node

(make-node

(make-node

(make-node

(make-node

(make-node
(make-node

(make-node

))

function '»

name 'b3

implement "barrelR6Ll"
attribute (pairlis '(shift) '(2)))
function '-

name 's3

implement "subtractor")
function '+

name 'a3

implement "adder")
function '»

name 'b4

implement "barrelR6Ll"
attribute (pairlis '(shift) '(3)))
function '+

name 'a4

implement "adder")
function '»

name 'b4

implement "barrelR6Ll"
attribute (pairlis '(shift) '(2)))
function '-

name 's4

implement "subtractor")
function '+

name 'a4

implement "adder")
function '=)

function '+

name 'a4

implement "adder")
function '»

name 'bl

implement "barrelR6Ll"
attribute (pairlis '(shift) '(6)))

(dolist (i *node-list*)
(setf (node-width i) 32))

rrrttittiiriiiifiiritti eQCje USt iiittitiiiriitrttttrtr

(setq *edge-list*
(list
(make-edge :value 'in

:type 'data
:in-node 'parent
:out-node (my-nth '(42) *node-list*)
rattribute (pairlis '(storage)

'(var)))

192

////////

APPENDIX C. FLOW GRAPH FORMAT FOR HARDWARE MAPPER 193

(make-edge :value 'el
:type 'data
:in-node (nth 42 *node-list*)
:out-node (my-nth '(1) *node-list*)
:attribute (pairlis '(storage allocation implement)

'(reg regll "reg2port")))
(make-edge rvalue 'a

:type 'data
:in-node (nth 1 *node-list*)
tout-node (my-nth '(12) *node-list*)
:attribute (pairlis '(storage allocation implement)

'(reg regal "reg2port")))
(make-edge rvalue 'a[n-l]

•type 'data
:in-node nil
:out-node (my-nth '(2 3 5 10 11) *node-list*)
:attribute (pairlis '(storage allocation implement)

'(reg regal "reg2port")))
(make-edge rvalue 'a[n-2]

rtype 'data
rin-node nil

rout-node (my-nth '(11 7 8) *node-list*)
rattribute (pairlis '(storage allocation implement)

'(reg rega2 "reg2port")))
(make-edge rvalue 'e5

rtype 'data
rin-node (nth 10 *node-list*)
rout-node nil
rattribute (pairlis '(storage allocation implement)

'(reg rega2 "reg2port")))
(make-edge rvalue 'e6

rtype 'data
rin-node (nth 2 *node-list*)
rout-node (my-nth '(3) *node-list*)
rattribute (pairlis '(storage)

'(var)))

(make-edge rvalue 'el
rtype 'data
rin-node (nth 3 *node-list*)
rout-node (my-nth '(4) *node-list*)
rattribute (pairlis '(storage allocation implement)

'(reg rega3 "reg2port")))
(make-edge rvalue 'e8

rtype 'data
rin-node (nth 4 *node-list*)
rout-node (my-nth '(5) *node-list*)
rattribute (pairlis '(storage)

'(var)))

APPENDIX C. FLOW GRAPH FORMAT FOR HARDWARE MAPPER 194

(make-edge rvalue 'e9
rtype 'data
rin-node (nth 5 *node-list*)
rout-node (my-nth '(6) *node-list*)
rattribute (pairlis '(storage allocation implement)

'(reg rega3 "reg2port")))
;; 10

(make-edge rvalue 'elO
rtype 'data
rin-node (nth 6 *node-list*)
rout-node (my-nth '(1) *node-list*)
rattribute (pairlis '(storage allocation implement)

'(reg rega3 "reg2port")))
(make-edge rvalue 'ell

rtype 'data
rin-node (nth 7 *node-list*)
rout-node (my-nth '(8) *node-list*)
rattribute (pairlis '(storage)

'(var)))

(make-edge rvalue 'el2
rtype 'data
rin-node (nth 8 *node-list*)
rout-node (my-nth '(9) *node-list*)
rattribute (pairlis '(storage allocation implement)

'(reg rega4 "reg2port")))
(make-edge rvalue 'el3

rtype 'data
rin-node (nth 9 *node-list*)
rout-node (my-nth '(6) *node-list*)
rattribute (pairlis '(storage)

'(var)))

(make-edge rvalue 'el4
rtype 'data
rin-node (nth 11 *node-list*)
rout-node (my-nth '(12) *node-list*)
rattribute (pairlis '(storage allocation implement)

'(reg rega4 "reg2port")))
(make-edge rvalue 'IN2

rtype 'data
rin-node (nth 12 *node-list*)
rout-node (my-nth '(18) *node-list*)
•.attribute (pairlis '(storage allocation implement)

'(reg regl2 "reg2port")))
(make-edge rvalue 'b[n-l]

rtype 'data
rin-node nil

rout-node (my-nth '(13 14 19 20) *node-list*)
rattribute (pairlis '(storage allocation implement)

'(reg regbl "reg2port")))

APPENDIX C. FLOW GRAPH FORMAT FOR HARDWARE MAPPER 195

(make-edge rvalue 'b[n-2]
rtype 'data
rin-node nil

rout-node (my-nth '(16 17 21) *node-list*)
rattribute (pairlis '(storage allocation implement)

'(reg regb2 "reg2port")))
(make-edge rvalue 'el8

rtype 'data
rin-node (nth 19 *node-list*)
rout-node nil

rattribute (pairlis '(storage allocation implement)
'(reg regb2 "reg2port")))

(make-edge rvalue 'el9
rtype 'data
rin-node (nth 13 *node-list*)
rout-node (my-nth '(14) *node-list*)
rattribute (pairlis '(storage)

'(var)))

;; 20
(make-edge rvalue 'e20

rtype 'data
rin-node (nth 14 *node-list*)
rout-node (my-nth '(15) *node-list*)
rattribute (pairlis '(storage allocation implement)

'(reg regb3 "reg2port")))
(make-edge rvalue 'e21

rtype 'data
rin-node (nth 16 *node-list*)
rout-node (my-nth '(17) *node-list*)
:attribute (pairlis '(storage)

'(var)))

(make-edge rvalue 'e22
rtype 'data
rin-node (nth 17 *node-list*)
rout-node (my-nth '(15) *node-list*)
rattribute (pairlis '(storage allocation implement)

'(reg regb4 "reg2port")))
(make-edge rvalue 'e23

rtype 'data
rin-node (nth 15 *node-list*)
rout-node (my-nth '(18) *node-list*)
rattribute (pairlis '(storage allocation implement)

'(reg regb4 "reg2port")))
(make-edge rvalue 'b

rtype 'data
rin-node (nth 18 *node-list*)
rout-node (my-nth '(22) *node-list*)
.•attribute (pairlis '(storage allocation implement)

'(reg regbl "reg2port")))

APPENDIX C. FLOW GRAPH FORMAT FOR HARDWARE MAPPER 196

(make-edge rvalue 'e25
rtype 'data
rin-node (nth 20 *node-list*)
rout-node (my-nth '(21) *node-list*)
rattribute (pairlis '(storage)

'(var)))

(make-edge rvalue 'e26
rtype 'data
rin-node (nth 21 *node-list*)
rout-node (my-nth '(22) *node-list*)
rattribute (pairlis '(storage allocation implement)

'(reg regb3 "reg2port")))
(make-edge rvalue 'IN3

rtype 'data
rin-node (nth 22 *node-list*)
rout-node (my-nth '(30) *node-list*)
rattribute (pairlis '(storage allocation implement)

'(reg regl3 "reg2port")))
(make-edge rvalue 'c[n-l]

rtype 'data
rin-node nil

rout-node (my-nth '(27 28 31 32) *node-list*)
rattribute (pairlis '(storage allocation implement)

'(reg regcl "reg2port")))
(make-edge rvalue 'e29

rtype 'data
rin-node (nth 31 *node-list*)
rout-node nil
.•attribute (pairlis '(storage allocation implement)

'(reg regc2 "reg2port")))
;; 30
(make-edge rvalue 'c(n-2]

rtype 'data
rin-node nil

rout-node (my-nth '(23 24 26 33) *node-list*)
rattribute (pairlis '(storage allocation implement)

'(reg regc2 "reg2port")))
(make-edge rvalue 'e31

rtype 'data
rin-node (nth 32 *node-list*)
rout-node (my-nth '(33) *node-list*)
rattribute (pairlis '(storage)

'(var)))

(make-edge rvalue 'e32
rtype 'data
rin-node (nth 33 *node-list*)
rout-node (my-nth '(34) *node-list*)
rattribute (pairlis '(storage allocation implement)

'(reg regc3 "reg2port")))

APPENDIX C. FLOW GRAPH FORMAT FOR HARDWARE MAPPER 197

(make-edge rvalue 'e33
rtype 'data
rin-node (nth 27 *node-list*)
rout-node (my-nth '(28) *node-list*)
rattribute (pairlis '(storage)

'(var)))

(make-edge rvalue 'e34
rtype 'data
rin-node (nth 28 *node-list*)
rout-node (my-nth '(29) *node-list*)
rattribute (pairlis '(storage allocation implement)

'(reg regc4 "reg2port")))
(make-edge rvalue 'e35

rtype 'data
rin-node (nth 23 *node-list*)
rout-node (my-nth '(24) *node-list*)
rattribute (pairlis '(storage)

'(var)))

(make-edge rvalue 'e36
rtype 'data
rin-node (nth 24 *node-list*)
rout-node (my-nth '(25) *node-list*)
rattribute (pairlis '(storage allocation implement)

'(reg regc4 "reg2port")))
(make-edge rvalue 'e37

rtype 'data
rin-node (nth 25 *node-list*)
rout-node (my-nth '(26) *node-list*)
rattribute (pairlis '(storage)

'(var)))

(make-edge rvalue 'e38
rtype 'data
rin-node (nth 26 *node-list*)
rout-node (my-nth '(29) *node-list*)
rattribute (pairlis '(storage allocation implement)

'(reg regc3 "reg2port")))
(make-edge rvalue 'e39

rtype 'data
rin-node (nth 29 *node-list*)
rout-node (my-nth '(30) *node-list*)
rattribute (pairlis '(storage allocation implement)

'(reg regc4 "reg2port")))

;; 40
(make-edge rvalue 'c

rtype 'data
rin-node (nth 30 *node-list*)
rout-node (my-nth '(34) *node-list*)
rattribute (pairlis '(storage allocation implement)

'(reg regcl "reg2port")))

APPENDIX C. FLOW GRAPH FORMAT FOR HARDWARE MAPPER 198

(make-edge rvalue 'IN4
rtype 'data
rin-node (nth 34 *node-list*)
rout-node (my-nth '(39) *node-list*)
rattribute (pairlis '(storage allocation implement)

'(reg regI4 "reg2port")))
(make-edge rvalue 'dln-1]

rtype 'data
rin-node nil

rout-node (my-nth '(35 36 38 40) *node-list*)
rattribute (pairlis '(storage allocation implement)

'(reg regdl "reg2port")))
(make-edge rvalue 'e43

rtype 'data
rin-node (nth 35 *node-list*)
rout-node (my-nth '(36) *node-list*)
rattribute (pairlis '(storage)

'(var)))
(make-edge rvalue 'e44

rtype 'data
rin-node (nth 36 *node-list*)
rout-node (my-nth '(37) *node-list*)
rattribute (pairlis '(storage allocation implement)

'(reg regd3 "reg2port")))
(make-edge rvalue 'e45

rtype 'data
rin-node (nth 37 *node-list*)
rout-node (my-nth '(38) *node-list*)
rattribute (pairlis '(storage)

'(var)))

(make-edge rvalue 'e46
rtype 'data
rin-node (nth 38 *node-list*)
rout-node (my-nth '(39) *node-list*)
rattribute (pairlis '(storage allocation implement)

'(reg regd3 "reg2port")))
(make-edge rvalue 'd

rtype 'data
rin-node (nth 39 *node-list*)
rout-node (my-nth '(41) *node-list*)
rattribute (pairlis '(storage allocation implement)

'(reg regdl "reg2port")))
(make-edge rvalue 'e48

rtype 'data
rin-node (nth 40 *node-list*)
rout-node (my-nth '(41) *node-list*)
rattribute (pairlis '(storage allocation implement)

'(reg regd2 "reg2port")))

APPENDIX C. FLOW GRAPH FORMAT FOR HARDWARE MAPPER 199

(make-edge rvalue 'out
rtype 'data
rin-node (nth 41 *node-list*)
rout-node '(parent)
rattribute (pairlis '(storage allocation implement)

'(reg regout "reg2port")))
))

;;;;;;;;;;;;;;;;; edge width and parent node ;;;;

(dolist (i *edge-list*)
(setf (edge-width i) 32)
(setf (edge-attribute i)

(aeons 'parent (nth 0 *node-list*)
(edge-attribute i)))

/////////#///////

tiJi777itfrtiitt SUDgrapn iirtriitttttt

(setf (node-subgraph (nth 0 *node-list*
(list (cdr *node-list*)

edge-list
(my-nth '(0) *edge-list*)
(my-nth '(49) *edge-list*))

rrrrt/ttfftf/rri/rtfttt*//

;;;;;;;;;;;;;;;;;;; in-edge of nodes ;

(setf
(my-

(setf

(my-
(setf

(my-
(setf

(my-
(setf

(my-
(setf

(my-
(setf

(my-
(setf

(my-
(setf

(my-
(setf

(my-
(setf
(my

(setf
(my-

(setf

(my-

(node

nth

(node

nth '

(node
nth

(node
•nth '

(node

•nth '

(node

•nth '

(node
•nth

(node

nth

(node

•nth

(node

•nth

(node
•nth '

(node
•nth

(node

•nth

-in-edge (nth 1 *
(1 10) *edge-list
-in-edge (nth 2 *
(3) *edge-list*))
-in-edge (nth 3 *
(3 6) *edge-list*
-in-edge (nth 4 *
(7) *edge-list*))
-in-edge (nth 5 *
(3 8) *edge-list*
-in-edge (nth 6 *
(9 13) *edge-list
-in-edge (nth 7 *
(4) *edge-list*))
-in-edge (nth 8 *
(4 11) *edge-list
-in-edge (nth 9 *
(12) *edge-list*)
-in-edge (nth 10
(3) *edge-list*))
-in-edge (nth 11
(3 4) *edge-list*
-in-edge (nth 12
(2 14) *edge-list
-in-edge (nth 13
(16) *edge-list*)

node-

*))
node-

node-

))
node-

node-

))
node-

*))
node-

node-

*))
node-

)
*node

*node

))
*node

*))
*node

)

list*

list*

list*

list*

list*

list*

list*

list*

list*

-list*

-list*

-list*

-list*

tttttiiiittfittrtttiiitiii

APPENDIX C. FLOW GRAPH FORMAT FOR HARDWARE MAPPER

(setf

(my-
(setf

(my-
(setf

(my-
(setf

(my-
(setf

(my-
(setf

(my-
(setf

(my-
(setf

(my-
(setf

(my-
(setf

(my-
(setf

(my-
(setf

(my-
(setf

(my-
(setf

(my-
(setf

(my-
(setf

(my-
(setf

(my-
(setf

(my-
(setf

(my-
(setf

(my
(setf

(my
(setf

(my-
(setf

(my
(setf

(my
(setf

(my

(node
nth '

(node
nth '

(node
nth

(node
nth '

(node

•nth '

(node
nth '

(node
•nth '

(node
•nth '

(node
•nth '

(node

•nth '

(node
•nth '

(node
•nth '

(node
•nth '

(node

•nth '

(node

•nth '

(node
•nth '

(node

•nth

(node

•nth '

(node

•nth '

(node
•nth '

(node

•nth '

(node
•nth '

(node

•nth '

(node
•nth '

(node
•nth

-in-edge (nth 14 *node-list*
(19 16) *edge-list*))
-in-edge (nth 15 *node-list*
(20 22) *edge-list*))
-in-edge (nth 16 *node-list*
(17) *edge-list*))
-in-edge (nth 17 *node-list*
(21 17) *edge-list*))
-in-edge (nth 18 *node-list*
(15 23) *edge-list*))
-in-edge (nth 19 *node-list*
(16) *edge-list*))
-in-edge (nth 20 *node-list*
(16) *edge-list*))
-in-edge (nth 21 *node-list*
(17 25) *edge-list*))
-in-edge (nth 22 *node-list*
(24 26) *edge-list*))
-in-edge (nth 23 *node-list*
(30) *edge-list*))
-in-edge (nth 24 *node-list*
(35 30) *edge-list*))
-in-edge (nth 25 *node-list*
(36) *edge-list*))
-in-edge (nth 26 *node-list*
(37 30) *edge-list*))
-in-edge (nth 27 *node-list*
(28) *edge-list*))
-in-edge (nth 28 *node-list*
(33 28) *edge-list*))
-in-edge (nth 29 *node-list*
(34 38) *edge-list*))
-in-edge (nth 30 *node-list*
(39 27) *edge-list*))
-in-edge (nth 31 *node-list*
(28) *edge-list*))
-in-edge (nth 32 *node-list*
(28) *edge-list*))
-in-edge (nth 33 *node-list*
(30 31) *edge-list*))
-in-edge (nth 34 *node-list*
(40 32) *edge-list*))
-in-edge (nth 35 *node-list*
(42) *edge-list*))
-in-edge (nth 36 *node-list*
(43 42) *edge-list*))
-in-edge (nth 37 *node-list*
(44) *edge-list*))
-in-edge (nth 38 *node-list*
(42 45) *edge-list*))

200

APPENDIX C. FLOW GRAPH FORMAT FOR HARDWARE MAPPER 201

(setf
(my-

(setf
(my

(setf
(my-

(setf

(my

(node
•nth '

(node
•nth '

(node
•nth '

(node
•nth '

in-edge (nth 39 *node-list*)
41 46) *edge-list*))
in-edge (nth 40 *node-list*)
42) *edge-list*))
in-edge (nth 41 *node-list*)
47 48) *edge-list*))
in-edge (nth 42 *node-list*)
0) *edge-list*))

tttitttttttt //////// out-edge of nodes ;

(setf
(my

(setf
(my-

(setf
(my

(setf
(my-

(setf
(my

(setf
(my

(setf
(my

(setf
(my

(setf
(my-

(setf
(my

(setf
(my

(setf
(my

(setf
(my-

(setf
(my

(setf
(my-

(setf
(my

(setf
(my

(setf
(my

(setf
(my

(setf
(my

out-edge
2) *edge-l
out-edge

nth 1

1st*))
nth 2

6) *edge-list*))

(node
-nth '

(node
-nth '

(node
-nth '

(node
-nth '

(node
-nth '

(node
-nth '

(node
-nth '

(node
-nth

(node
-nth '

(node
-nth '

(node
-nth '

(node
-nth

(node
-nth '

(node
-nth '

(node
-nth '

(node
-nth

(node
-nth '

(node
-nth

(node
-nth

(node
-nth

-out-edge nth 3

node-list)

node-list)

node-list)

node-list)

node-list)

7) *edge-list*))
-out-edge nth 4

8) *edge-list*))
out-edge nth 5

9) *edge-list*))
-out-edge nth 6 *node-list*)

10) *edge-list*))
-out-edge nth 7 *node-list*)
11) *edge-list*))

-out-edge nth 8 *node-list*)

12) *edge-list*))
-out-edge (nth 9 *node-list*)
13) *edge-list*))

-out-edge (nth 10 *node-list*
5) *edge-list*))

-out-edge nth 11 *node-list*

14) *edge-list*))
-out-edge nth 12 *node-list*

15) *edge-list*))
-out-edge nth 13 *node-list*

19) *edge-list*))
out-edge nth 14 *node-list*

20) *edge-list*))
-out-edge nth 15 *node-list*

23) *edge-list*))
-out-edge nth 16 *node-list*

21) *edge-list*))
-out-edge nth 17 *node-list*

22) *edge-list*))
-out-edge nth 18 *node-list*

24) *edge-list*))
-out-edge nth 19 *node-list*

18) *edge-list*))
-out-edge nth 20 *node-list*

25) *edge-list*))

trtttrttiitiirrrttitrtttrt

APPENDDC C. FLOW GRAPH FORMAT FOR HARDWARE MAPPER 202

(setf

(my
(setf

(my-
(setf

(my
(setf

(my
(setf

(my
(setf

(my
(setf

(my
(setf

(my
(setf

(my
(setf

(my
(setf

(my-
(setf

(my
(setf

(my
(setf

(my
(setf

(my
(setf

(my-
(setf

(my
(setf

(my
(setf

(my
(setf

(my
(setf

(my-
(setf

(my-

(node
nth '

(node
nth '

(node
•nth '

(node
nth '

(node

•nth '

(node
•nth '

(node
•nth '

(node
•nth '

(node
nth

(node

nth '

(node
•nth

(node

nth

(node
•nth

(node

•nth '

(node

•nth '

(node
•nth

(node
•nth '

(node
•nth '

(node
•nth '

(node
•nth '

(node

•nth '

(node
•nth

(nth 21

-list*))

(nth 22

-list*))
(nth 23

-list*))
(nth 24

-list*))
(nth 25

-list*))
(nth 26
-list*))
(nth 27
-list*))
(nth 28
-list*))
(nth 29

-list*))
(nth 30

-list*))
(nth 31
-list*))
(nth 32

-list*))
(nth 33

-list*))
(nth 34

-list*))
(nth 35
-list*))
(nth 36

-list*))
(nth 37

-list*))
(nth 38

-list*))
(nth 39

-list*))
(nth 40

-list*))
(nth 41

-list*))
(nth 42

list*))

-out-edge
(26) *edge
-out-edge
(27) *edge
-out-edge
(35) *edge
-out-edge
(36) *edge
-out-edge
(37) *edge
-out-edge
(38) *edge
-out-edge
(33) *edge
-out-edge
(34) *edge
-out-edge
(39) *edge
-out-edge
(40) *edge
-out-edge
(29) *edge
-out-edge
(31) *edge
-out-edge
(32) *edge
-out-edge
(41) *edge
-out-edge
(43) *edge
-out-edge
(44) *edge
-out-edge
(45) *edge
-out-edge
(46) *edge
-out-edge
(47) *edge
-out-edge
(48) *edge
-out-edge
(49) *edge
-out-edge
(1) *edge-

*node-

*node-

*node-

*node-

*node-

*node-

*node-

*node-

*node-

*node-

*node-

*node-

*node-

*node-

*node-

*node-

*node-

*node-

*node-

*node-

*node-

*node-

list*

list*

list*

list*

list*

list*

list*

list*

list*

list*

•list*

•list*

•list*

•list*

•list*

•list*

•list*

•list*

•list*

•list*

•list*

•list*

pititttiitttiitttittitr ordering t / t t r t r

(setf (node-attribute (nth 1 *node-list*i
(aeons 'order 5 (node-attribute (nth 1

(setf (node-attribute (nth 2 *node-list*
(aeons 'order 0 (node-attribute (nth 2 *node-list*))))

itiiitittitt r/rrrtrtt/t

node-list))))

APPENDDC C. FLOW GRAPH FORMAT FOR HARDWARE MAPPER

node-list)

node-list)

node-list)

node-list)

node-list)

node-list)

node-list)

)
node-list

)
node-list

)
node-list

)
node-list

)
node-list

)
node-list

)
node-list

)
node-list

)
node-list

)
node-list

)
node-list

)
node-list

)
node-list

)
node-list

)
node-list

)
node-list

)

node-list

(setf (node-attribute (nth 3 *node-list*)
(aeons 'order 0 (node-attribute (nth 3

(setf (node-attribute (nth 4 *node-list*)
(aeons 'order 1 (node-attribute (nth 4

(setf (node-attribute (nth 5 *node-list*)
(aeons 'order 1 (node-attribute (nth 5

(setf (node-attribute (nth 6 *node-list*)
(aeons 'order 3 (node-attribute (nth 6

(setf (node-attribute (nth 7 *node-list*)
(aeons 'order 2 (node-attribute (nth 7

(setf (node-attribute (nth 8 *node-list*)
(aeons 'order 2 (node-attribute (nth 8

(setf (node-attribute (nth 9 *node-list*)
(aeons 'order 3 (node-attribute (nth 9

(setf (node-attribute (nth 10 *node-list*
(aeons 'order 4 (node-attribute (nth 10

(setf (node-attribute (nth 11 *node-list*

(aeons 'order 4 (node-attribute (nth 11
(setf (node-attribute (nth 12 *node-list*

(aeons 'order 6 (node-attribute (nth 12
(setf (node-attribute (nth 13 *node-list*

(aeons 'order 0 (node-attribute (nth 13
(setf (node-attribute (nth 14 *node-list*

(aeons 'order 0 (node-attribute (nth 14
(setf (node-attribute (nth 15 *node-list*

(aeons 'order 2 (node-attribute (nth 15
(setf (node-attribute (nth 16 *node-list*

(aeons 'order 1 (node-attribute (nth 16
(setf (node-attribute (nth 17 *node-list*

(aeons 'order 1 (node-attribute (nth 17
(setf (node-attribute (nth 18 *node-list*

(aeons 'order 5 (node-attribute (nth 18
(setf (node-attribute (nth 19 *node-list*

(aeons 'order 4 (node-attribute (nth 19
(setf (node-attribute (nth 20 *node-list*

(aeons 'order 3 (node-attribute (nth 20
(setf (node-attribute (nth 21 *node-list*

(aeons 'order 3 (node-attribute (nth 21
(setf (node-attribute (nth 22 *node-list*

(aeons 'order 6 (node-attribute (nth 22
(setf (node-attribute (nth 23 *node-list*

(aeons 'order 0 (node-attribute (nth 23
(setf (node-attribute (nth 24 *node-list*

(aeons 'order 0 (node-attribute (nth 24
(setf (node-attribute (nth 25 *node-list*

(aeons 'order 1 (node-attribute (nth 25
(setf (node-attribute (nth 26 *node-list*

(aeons 'order 1 (node-attribute (nth 26
(setf (node-attribute (nth 27 *node-list*

(aeons 'order 2 (node-attribute (nth 27 *node-list*

203

APPENDDC C. FLOW GRAPH FORMAT FOR HARDWARE MAPPER

(setf (node-attribute (nth 28 *node-list*
(aeons 'order 2 (node-attribute (nth 28

(setf (node-attribute (nth 29 *node-list*
(aeons 'order 3 (node-attribute (nth 29

(setf (node-attribute (nth 30 *node-list*
(aeons 'order 5 (node-attribute (nth 30

(setf (node-attribute (nth 31 *node-list*
(aeons 'order 4 (node-attribute (nth 31

(setf (node-attribute (nth 32 *node-list*

(aeons 'order 4 (node-attribute (nth 32
(setf (node-attribute (nth 33 *node-list*

(aeons 'order 4 (node-attribute (nth 33
(setf (node-attribute (nth 34 *node-list*

(aeons 'order 6 (node-attribute (nth 34
(setf (node-attribute (nth 35 *node-list*

(aeons 'order 0 (node-attribute (nth 35
(setf (node-attribute (nth 36 *node-list*

(aeons 'order 0 (node-attribute (nth 36
(setf (node-attribute (nth 37 *node-list*

(aeons 'order 1 (node-attribute (nth 37
(setf (node-attribute (nth 38 *node-list*

(aeons 'order 1 (node-attribute (nth 38
(setf (node-attribute (nth 39 *node-list*

(aeons 'order 3 (node-attribute (nth 39
(setf (node-attribute (nth 40 *node-list*

(aeons 'order 2 (node-attribute (nth 40
(setf (node-attribute (nth 41 *node-list*

(aeons 'order 4 (node-attribute (nth 41
(setf (node-attribute (nth 42 *node-list*

(aeons 'order 4 (node-attribute (nth 42

)
*node-

)
*node-

)
*node-

)
*node-

)
*node-

)
*node-

)
*node-

)
*node-

)
*node-

)
*node-

)
*node-

)
*node-

)
*node-

)
*node-

)
*node-

list*])))

list*;)))

list*)))

list*])))

list*])))

list*))))

list* •)))

list* >>>>

list*))))

list*))))

list*))))

list*))))

list*))))

list*))))

list*))))

204

APPENDIX C. FLOW GRAPH FORMAT FOR HARDWARE MAPPER 205

C.ll Conclusion

A hierarchical control/data flow graph format in the Common Lisp syntax is de

scribed. Although this format is mainly designed for the input of the HYPER hardware

mapper, it is general enough for many other signal flow graph descriptions. This format con

tains six sections of descriptions - node-list, edge-list parent-node, subgraph, input/output

edge of nodes, and control steps. Each section has been described in detail in this appendix.

Flow graphs of the proposed format have been used to describe a 7th order IIR filter, the

Viterbi processor, the Epsilon processor and many other real examples for synthesis. All

the examples have been run through the hardware mapping process and the required sdl

files and bds files for Lager IV have been generated. More features of the format may be

included in the future as we experiment more application examples. As the format is stand

ing right now, it is general enough to handle most of the applications that DSP designers

are interested in.

	ERL-92-46 (1 of 3)
	ERL-92-46 (2 of 3)
	ERL-92-46 (3 of 3)

