
Copyright © 1992, by the author(s).
All rights reserved.

Permission to make digital or hard copies of all or part of this work for personal or
classroom use is granted without fee provided that copies are not made or distributed
for profit or commercial advantage and that copies bear this notice and the full citation

on the first page. To copy otherwise, to republish, to post on servers or to redistribute to
lists, requires prior specific permission.

AUTOMATIC REDUCTION IN CTL

COMPOSITIONAL MODEL CHECKING

by

Massimiliano Chiodo, Thomas R. Shiple,
Alberto Sangiovanni-Vincentelli, and Robert K. Brayton

Memorandum No. UCB/ERL M92/55

3 January 1992

AUTOMATIC REDUCTION IN CTL

COMPOSITIONAL MODEL CHECKING

by

Massimiliano Chiodo, Thomas R. Shiple,
Alberto Sangiovanni-Vincentelli, and Robert K. Brayton

Memorandum No. UCB/ERL M92/55

3 January 1992

ELECTRONICS RESEARCH LABORATORY

College of Engineering
University of California, Berkeley

94720

AUTOMATIC REDUCTION IN CTL

COMPOSITIONAL MODEL CHECKING

by

Massimiliano Chiodo, Thomas R. Shiple,
Alberto Sangiovanni-Vincentelli, and Robert K. Brayton

Memorandum No. UCB/ERL M92/55

3 January 1992

ELECTRONICS RESEARCH LABORATORY

College of Engineering
University of California, Berkeley

94720

Automatic Reduction

in CTL Compositional Model Checking

Massimiliano Chiodo

Magneti Marelli
Pavia, Italy

Thomas R. Shiple, Alberto Sangiovanni-Vincentelli, Robert K. Brayton
Department of Electrical Engineering and Computer Science

University of Californa, Berkeley, California

Abstract

In this project, we develop a method to reduce the complexity of verifying an arbitrary CTL
formula on a set of communicating FSMs. We have proven that our method yields the correct
result. It remains to determine the practical usefulness of our approach.

1 Introduction

Temporal model checking procedures are potentially a powerful verification tool for finite state
systems. However, when the system under examination consists of several communicating parallel
machines, the problem of explosion in the size of the representation arises. That is, the repre
sentation of the parallel composition of a number of relatively small FSMs may grow extremely
large.

To avoid the representation explosion, one may try to verify the machines individually and then
piece the results together to conclude that the entire system is correct. Unfortunately, it is easy
to come up with examples where a critical property of some machine is not preserved when this
machine is composed with other machines.

The compositional model checking algorithm proposed by Clarke et al. [5] is a technique that
allows verification of a property on a single machine, by composing it with reduced versions of the
other machines in the system. Here the reduction is based on output variable observability and it
is property independent.

Our approach is to extract from the component machines the information relevant to the veri
fication of a given property, and use only this to build the representation of a reduced system that
preserves all of the behavior needed to verify the property. To verify a property on a system of
interacting finite state machines with the technique described here, we first reduce every machine

with respect to the property and with respect to the interaction with the other machines, compose
the machines together, and finally check this reduced composition. This reduction is property de
pendent. The aim of this work is to show that in some cases the size of the representation of these
reduced machines is smaller than the size of the representation of the entire system, thus increasing
the potential to cope with otherwise intractable systems.

In this work we represent Boolean relations as characteristic functions implemented by BDDs [1].
Our ultimate target is to verify an arbitrary CTL formula on a complex system of interacting finite
state machines without going through the computation of the full composition machine which could
be much too big as a BDD. We do not give any guarantee that our reduction technique will achieve
this goal. However, we apply a number of BDD manipulation heuristics (namely projection cofactor
and smoothing) that give good results in many cases.

This report is organized as follows: In section 2 and 3 we present some basic concepts on
transition relations and paths. In section 4 we present the CTL logic. In section 5 we describe in
detail the CTL verification algorithms for a single machine. In section 6 we introduce the concepts
of automatic reduction and CTL verification of a system of interacting machines. In section 7 we
apply our technique to a simple example. In sections 8 and 9 we present a discussion of the work
and its potential developments. Detailed proofs of the theorems in the body of the paper are given
in the appendix.

In the sequel of this paper, we use the following notation:

1. SXT - existential quantification of the variable x on the relation T. That is,

Ox-*- ~ -*-X~ I -*-X'

This is equivalent to projecting T onto the subspace orthogonal to x.

2. [TJa^a;/ - substitution of each occurrence of the variable x in T by the variable x'.

3. The symbol "•" will be used for Boolean AND, and the symbol "+" will be used for Boolean
OR.

2 Transition Relations

Transition relations are at the core of our approach.

Definition 1 A finite state machine with states X and inputs J, is uniquely specified by the
transition relation T C X x I x X. For computational purposes, we represent the set T as. a
characteristic function. Note that if T has n binary inputs, then the input alphabet J consists of
2n elements. •

Definition 2 Each (Xyi^x') 6 T is a transition from present state a€Xto next state x' € X. A
transition is a single minterm in the space X x I x X (see Figure 1). •

Definition 3 An edge (x,x') is a subset ofT such that each transition in (a:,x;) has present state
x and next state x'. In other words, an edge (x,x') is the union of all transitions (xiitxt) in T.
Formally, (x, x') = T •x •x' (see Figure 1). •

s a b S' T

X 0 0 X' 1

X 0 1 X' 0

X 1 0 X' 1

X 1 1 X* 1

a + b
x J >t X'

00

&^ M tf

Figure 1: Edges and Transitions

< x, x >

(x, 00, x')

(X.11.X')

(x,10,x*)

3 Paths

In Section 5, we use the notion of path to define the output of the model checker computations.

Definition 4 A path 7r(xo» £*) in T, of length &, is a finite sequence of edges

(zo,zi), (a?i, rr2),..., (a*-i>£*).

A path is defined inductively as follows:

1. An edge (x,y) C T is a path n(x,y) in T.

2. If ir(x,y) is a path in T and {y,z) C T, then the union 7r(z,y) + (j/,z) is a path n(x,z) in
T. •

This definition requires that a path have a unique starting vertex and a unique terminal vertex.
Otherwise, a path may have cycles. In other words, from the start vertex, you should be able to
traverse all edges of a path without "lifting your pencil" (see Figure 2.)

Notice that edges, paths, and transition relations are all sets of transitions, that is sets of
minterms in the space X x I x X. Thus, we use the following notation:

(x,i,x')e {x,y)CirCT.

Definition 5 An infinite path tt(io» ^k) is a path such that k = i, for 0 < i < k. That is, a path
that terminates in a cycle, (see Figure 3) •

4 Computation Tree Logic

Computation Tree Logic (CTL) can be used to assert properties about FSMs. The CTL formula
syntax is outlined as follows. There are two path quantifiers:

1. V - for all computation paths, and

This is a path This is not a path

Figure 2: Paths

Figure 3: Infinite Path

2. 3 - for some computation path.

There are four forward-time operators:

1. G - globally or invariantly,

2. F - sometime in the future,

3. X - nexttime,

4. U - until.

Thus, there are eight different combinations of path quantifiers and forward-time operators,
which are listed below. In each case, the formula holds at a particular state s [2]. In our approach,
we actually compute the set of states at which a formula holds, and then check to see if the set
contains s.

In each of the following, / and g are propositions, or Boolean functions, of the state variables
(i.e. / : X —• {0,1}). If / is a function of present states, it will be written as /(a;), and if a function
of next states, it will be written as f(x').

CTL formulas can be nested. That is, the propositions (/ and g) of a CTL formula can be
CTL formulas themselves. We will refer to non-nested formulas as simple formulas. This point is
expanded in section 6.2.

1. s |= 3Xf - s has a successor s' such that / is true at s'.

2. s |= 3Gf - There is an infinite path starting at s such that / holds at each state on the path.

3. s \= 3[fUg] - There exists a path of length zero or more starting at s such that / is true until
g is true.

4. s ^= VX/ - / holds at all successor states of 5 (/ must hold at the next state).

5. s ^ 3-F/ - For some path starting at $, there exists a state on the path at which / holds (/
is possible in the future).

6. s |= VF/ - For every path starting at 5, there exists a state on the path at which / holds (/
is inevitable in the future).

7. s |= VC?/ - For every infinite path starting at s, at every node on each path, / holds (/ holds
globally or invariantly along all paths).

8. s ^= V[fUg] - For every path of length zero or more starting at s, / holds until g holds.

Normally, all eight CTL formulas would be expressed in terms of formulas 1 through 3. However,
because we define the output of our model checker as a set of transitions, and not as a set of states,
this is not convenient. Specifically, formula 3 does not fit cleanly into our formulation of the model
checker. Thus, we introduce the following formula which does fit nicely into our definitions, and
then show how we can express formula 3 in terms of this formula.

9. s |= S[fR g] - There exists a path of length one or more starting at s such that / is repeatedly
true until g is true; that is, / •g cannot be true at state s.

Keep in mind that formula 9 is used only for computational purposes.

Definition 6 Formulas 1, 2, and 9 are the base CTL formulas. •

Proposition 7 CTL formulas 3 through 8 can be expressed in terms of a Boolean combination of
the base CTL formulas and propositions of the state variables.

5 Model Checker

The input to our model checker is a transition relation 21 and a base CTL formula F. The output
is a set of transitions T* such that F holds at the present state of each transition. Thus, to produce
the set of states in T for which F holds, we simply smooth away the input and next state variables
from T*.

As shown in Proposition 7, we can express formulas of type 3 through 8 in terms of the base
formulas. Thus for any CTL formula, we can produce the set of states at which the formula holds
by smoothing the input variables and the next state variables from the output of the model checker.

Formally, let F be the set of possible base CTL formulas, and let (X x I x X) be the set
of possible transition relations. In the definitions and propositions that follow, T(x,i,x') is any
transition relation, and F is any CTL formula in !F.

5.1 Model Checker Computations

Definition 8 The model checker implements a function mc : (X x I x X) x T —>• (X x I x X).
We denote the output of the model checker as T*, that is, T* = mc(T, F). •

We next precisely define the output of the model checker, and show how to compute the output,
for each of the three base formulas.

Definition 9 (BXf) The transition relation T* = mc(T,3Xf) contains all transitions (»,f,a:') £
T such that f(x') = 1. That is,

T* = {(x,i,x')€T\f(x')=l}.

Or equivalently, T* is the union of all paths [(a;, a:')] of length one such that f(x') = 1 (i.e. T* =
U[(x,x'>] s.t. /(*') = 1) (see Figure 4).

T* is computed as follows:
r* = f(x') •T m

Definition 10 (BGf) A WQ^ypath is an infinite path such that for all (a,a:') C ^G(f)i

/(*)•/(*') = 1.

Then, the transition relation T* = mc(T, 3C?/) contains all transitions (x,iyx') £ T such that
(ar, i, x') € *"(?(/) for some 7Tc^)-path. That is,

T* = {(*,!>') € T|3 jt0(/) s.t. (ar,t>') <= xG(/)}.

Or equivalently, T* is the union of all Tr^^-paths (i.e. T* = U7rG(/) (see Figure 4).
T* is found by the following greatest fixed point computation. The initial set To is all edges

from and to states where / is true. To is finite. At each iteration, edges in Tn that go to present
states not in Tn are removed from Tn to produce Tn+i- The iteration terminates when Tn+i = Tn.
This iterative process must terminate because at each iteration we either remove at least one edge,
or we have reached the fixed point.

To = T-f(x).f(x')
Tn+i = Tn •(SiSx'(Tn))x-,x>

T* = Tn, s.t. rn+i = T„ •

Definition 11 (B[fR g]) A itjiy^ypath is a path ir(xo,Xk) such that for all (arj_i,a;j), where
1 < j < k

/(*,•_!)./(*,-) = 1,

and such that for (xk-i,Xk)
f(xk-i)-g(xk) = l.

Then, the transition relation T* = mc(T,3[fRg]) contains all transitions (x^i^x') € T such that
(x,i,x') € ^R(/,g) for some KR{f,gy That is,

T* = {{x,i,x') GT|3 7rR(/,5) s.t. (a:,i>') € nR{fig)}.

6

Base CTL formulas

1. 3xi O—©

2. =lGf 0 ^f)

3- 3[fRg] 0—*(T)—*©—-<g)
Figure 4: Base CTL Formulas

Or equivalently, T* is the union ofall 7T/j(yt5j-paths (i.e. T* = \J^R(jtg)) (see Figure 4).
T* is found by the following least fixed point computation. The initial set To is all edges from

states where f is true to states where g is true. At each iteration, edges from states where / holds
to present states in Tn are added to Tn to produce Tn+i- The iteration terminates when Tn+i = Tn.
This iterative process must terminate because at each iteration we either add a edge from the finite
set T, or we have reached the fixed point.

f = T-f(x).f(xf)
To = T-f(x).g(x')

Tn+i = T • (SiSxi(Tn))x-+xi + T„

T* = Tn, s.t. Tn = Tn+i •

Our formulation of the model checkeris slightly different than that of the CMU model checker [4].
Whereas the sets in our intermediate fixed point computations are transition relations, in CMU's
computations, they are states. We choose this strategy because when we work on a system of many
machines, we want to maintain precise control over which transitions are needed, and which can
be discarded, for subsequent calculations (see Section 6). If we only maintain the set of states
that satisfy the formula, then to retrieve a transition relation, we must take the product of this set
with the original transition relation. However, for a given state satisfying the formula, we may not
need all the transitions emanating from this state, and thus we would be stuck with unnecessary
transitions.

5.2 Model Checker Input and Output Relations

In this section, we prove two properties on the relation between the input and output of the model
checker.

Proposition 12 Let T* = mc(T,F). Then T* C T, for any base CTL formula F.

Figure 5: Property of Model Checker

This result simply says that the output of the model checker T* is contained in the input T.
This follows since the model checker only removes transitions from T\ it never adds transitions.
As a consequence, the transition relation returned by the model checker generally describes an
incompletely specified machine.

Proposition 13 Let T* = mc(T, F). If M is another transition relation such that T* C M C T,
then mc(M, F) = T*. (see Figure 5.)

This is a powerful result. Think of T as the full transition relation for a machine. As usual, T*
is the output of the model checker when T is the input. Proposition 13 tells us that we can use
as input to the model checker any transition relation M that is contained in T and contains T*,
and still get T* as output. Intuitively, this follows since the model checker only removes transitions
from the input.

6 Automatic Reduction

Our goal is to apply the model checker to a system of interacting machines. However, to use the
model checker, we need a single transition relation representing the composition of the component
machines. Ifwe take the composition of the full component machines, there is a danger that the size
of the resulting BDD will be prohibitively large. To avoid this danger, we wish to apply reductions
to the component machines before forming the composition.

Consider a system of n interacting machines, A\, ^ •••>An. The global state of the system is
X = [&i,...,sn]. Each machine A,- has present state variable X{ and next state variable a?{, and
takes as input X# = [x\, •••, a?t-i» art+i, •••, xn]t the present state variables of the other machines.
We assume that all external inputs to the system have been smoothed out. Thus, we represent Ai
by the transition relation Ai(xi9X^x\) = A{(X,&(•).

As suggested above, the naive method to verify a formula F on the system is to apply the model
checker to the complete product

M=f[A{
t=i

function cmc(array[Aj, type, /, g) {

1 for i = 1 to n { /* project / on a;,- and run mc on A{ */
2 A? = mc{Ai,type,Sx^f(X),Sx¥ig(X));
3 }

4 J2 = IK^x'. *A*); /* reducing term */
5 for i = 1to n { /* find lower bound of onset of A,- */
6 A? = rdt(A?,R);
7 }

8 for i = 1 to n { /* use don't cares to minimize BDD for At- */
9 A,- = minJ>dd(Ai, A*);
10 }

11 M = mc(YlAi,type,f(X)yg(X)); /* run mc on reduced product */
12 Q(X) = Sx;iM; /* states that satisfy jP */
13 return Q{X);

}

Figure 6: Compositional Model Checker

We denote the output of this procedure as M*, that is, M* = mc(M,F).
We seek to exploit the power of Proposition 13 by finding a transition relation M such that

M* C M C M. Furthermore, we want to choose an M with a small BDD representation. To
achieve this, we reduce each A,- as much as possible to yield A,-, and then take the product of the
Ai to produce M.

6.1 Compositional Model Checker

We have developed a procedure cmc (CompositionalModelChecker) to checka simple (non-nested)
CTL formula F on a system of machines. The inputs to cmc are F and an array of the component
machines array[Ai]. The output is Q, the set of states of the system that satisfy F. A CTL formula
F is actually a structure composed of a type specifying the type of formula (3G, 3[R], 3X, etc.)
and two Boolean functions f(X) and g(X) on the states of the total system. Note that g will be
ignored for all types but 3[R]. For example, if we have JP = 3<7(a;i + £2), we use type = 3G,
/ = x\ +X2, g = 0, and call Q = cmc(array[Ai],type, f,g).

The cmc procedure consists of four phases (see Figure 6). In phase 1 (lines 1-3), the model
checker is used to extract a subset of each component machine that satisfies the formula F when
F is projected onto each component. Phase 2 (lines 4-7) further reduces each machine by finding
a smaller subset of each machine that covers the entire system. Phase 3 (lines 8-10) uses the

don't care transitions derived for each machine to find a cover for each machine with a small BDD

representation. Finally, phase 4 (lines 11-13) applies the model checker to the composition of the
reduced machines. Below, we describe each phase in detail, and then prove the correctness of this
procedure.

6.1.1 Phase 1

For a formula F with proposition f(X) to hold at a state [x\ = &i,X2 = &2>« ••>£„ = 6n] of the
product machine, the projection of F onto each machine A,-, that is F with proposition f(xi) =
Sx¥if(X), must hold at state (x, = &;) of Ai. To find the states of Ai which satisfy F, we simply
apply the model checker to the single machine A,- using /(a;,) as the proposition for F to yield the
output A*.

In applying the model checker to A,-, we ignore the inputs to At- from the other machines Aj
in the system. This can be thought of as replacing each Aj by an abstract version of Aj which
can non-deterministically produce all the outputs which Aj can produce. This is equivalent to the
COSPAN concept of "freeing" Aj [6]. Thus, the interaction between At- and the other machines
is totally disregarded in this phase. The behavior of A,-, when it is part of the larger system, is
contained by the behavior of A, when it is independent of the other machines. Therefore any state
that satisfies F in the whole system will still satisfy F when projected onto At-. Conversely, if
a state (a;,- = &,-) in Ai fails to satisfy the projection of F onto A,-, then no state of the product
machine with an i-th component equal to 6t- will satisfy F.

Thus, the purpose of this phase is to identify transitions of Aj which do not belong to paths
which are specified by F. These "bad" transitions are removed from A,- by the model checker to
yield A*. Actually, these transitions are don't cares; if we do not remove them now, then they will
be implicitly removed in phase 4 when the model checker is applied to the reduced product.

It should be emphasized that this is the only phase where we apply "abstraction" techniques.
In this case, we apply a trivial form of abstraction: in simplifying Aj, each of the other machines
is replaced by a one state machine that non-deterministically selects all possible outputs that the
full component machine can produce.

As an example of phase 1, consider a system of two machines A and B, and a formula F —3Gf
where / is a function of the present state of A. The projection of / onto A is still /, and thus
mc(A, F) extracts the infinite paths of A where / always holds. On the other hand, the projection
of / onto B is the tautology, and thus mc(B, F) simply extracts all the infinite paths of B. This
makes sense since an infinite path in A • B is the product of infinite paths in A and B.

6.1.2 Phase 2

The product M = \[A* contains all the transitions specified by a formula F. As we show below, if
the model checker is applied to M, the output will be M*. However, there are still more transitions
that we can remove from each A* without affecting the overall computation. Consider a machine
A*. In the space of X x X', A* D M. If this containment is strict, then there will be some
transitions of A* that "disappear" when A* is composed with the other machines. This occurs
when the present state-input pair of a transition in A* has an empty intersection with all other
present state-input pairs of the other machines.

We can identify the transitions of A* that will disappear in the product M without explicitly
forming the product. A* is interested in the present state variables of the other machines, because

10

these are the inputs to A*; and A* is interested in the inputs to the other machines because these
determine the possible transitions in M. On the other hand, machine A* is notinterested in the next
state variables of the other machines. Thus, to remove the transitions of A* that will disappear, we
smooth out the next state variables from the other machines, and then take the product of these
reduced machines with A*. The result of this operation is A* .

Proposition 14 Consider a system of interacting machines composed of A\, A2,..., A„. Let

R(X) =YKSj.Aj)
3

Then A* = rdt(Ai, R) = Ai-R is the smallest subset ofA,- which contains Ylj Aj and is independent

In lines 4-7 of cmc, we apply Proposition 14 with the Aj of Proposition 14 replaced by the A* of
cmc.

A* is a lower bound on the onset of A,- which satisfies the conditions in Proposition 14. That
is, it contains the minimum number of transitions of At- needed to represent the relevant behavior
of A,-, with respect to F, in the larger system. As shown below, the model checker applied to the
product of the A*' still gives us M*.

To reiterate, there is no "abstraction" taking place in phase 2. We are simply identifying
transitions of the component machines that do not survive when the product of the machines is
taken.

What have we achieved at this point? If we were using an explicit representation for the tran
sition relations, then the A*' would be exactly what we desire. Namely, by minimizing the number
of transitions in each component machine, we would be minimizing the size of their corresponding
representations. Consequently, we would have minimized the size of the relevant part of the product
machine needed to verify F.

However, we are not using an explicit representation. Instead, we are using BDDs, an implicit
representation, where the size of a BDD representing a relation does not directly correspond to the
number of elements in the relation. Is all lost? No. We can think of the difference A,- - A* as a
don't care set, and try to find a function between A,- and A* with a small BDD representation.
Thus, phases 1 and 2 can be seen as an attempt to maximize the size of the don't care set of each
component machine.

6.1.3 Phase 3

From phase 2, we have the minimum onset A*' for each machine Aj. Also, we have the maximum
onset, namely A,-. The hypothetical procedure minJbdd in phase 3 finds a function between A* and
Ai with a minimum BDD representation. Such a procedure for BDDs is analogous to ESPRESSO
for the sum of products representation.

The function minJbdd in line 9 is implemented using the projection cofactor. The projection
cofactor, termed the generalized cofactor in Touati et. ai [3], is a heuristic to find a cover with a
small BDD for an incompletely specified function. In the following discussion, let A be any machine
A,-. For our application, we apply the projection cofactor to each machine, using the don't care set

11

A —AM derived from phase 2. Thus, we cofactor the minimum onset A* by the care set A-\- A*
to yield A. That is,

A-A*',-

Actually, since A* C A, A can also be calculated as

A= A(j4,<+2)

We must keep in mind that the projection cofactor is just a heuristic. According to Touati,
"...in most cases, the BDD representation of fc is smaller than the BDD representation of /." If
a better method is found to find a small cover of an incompletely specified function, then we can
apply the method directly in our technique in place of the call to minJbdd.

6.1.4 Phase 4 and Proof of Correctness

The final phase of the procedure cmc is to apply the model checker to the product of the A,- and
the original formula F, to determine the states of the product machine that satisfy F. Even though
many transitions of each component machine have been stripped away by phases 1 and 2, the model
checker output of line 11 gives us the same result as if we had taken the naive approach and applied
the model checker to the full product machine. This result is stated in the following theorem and
proved rigorously in the appendix.

Theorem 15 Consider a system of interacting machines composed of A\, A2,..., An. Let F be
any CTL formula. Then

cmc(Y[Ai,F) =cmc(Y[Ai,F).

6.2 Nested Formulas

As mentioned in section 4, CTL formulas can be nested, that is the propositions can either be
explicit sets of states or formulas to be computed. For example, the following CTL formula

F = VG(req -* VF{ack + reset))

is a 4-level nested formula (see Figure 7.)
Computing nested CTL formulas in our compositional approach is handled in exactly the same

way it is handled in other techniques where the full product machine is computed [2] [4]. We
traverse the formula from the bottom up (from the leaves to the root.) At each level of nesting we
compute one or more simple CTL formulas whose propositions are either given or computed from
the previous level. In the example above, the atomic propositions req(X), ack(X), and reset(X)
are given as BDDs. The formula is then verified as follows.

Let M = array[Ai]. The formula F = VG(req -*• VF(ack -f reset)) is satisfied by the set Q(X)
of states of M given by

Qo(X) = cmc(M,ack{X)-\-reset(X)) (1)

Qi(X) = cmc(M,VFQo(X)) (2)

Q2{X) = cmc(M,req(X)^Q1(X)) (3)
Q(X) = cmc(M,VGQ2(X)) (4)

12

level 0. ack reset

level 1.

level 2. req Vf

level 3.

level 4 Yq

Figure 7: Nested CTL Formula as a Tree

To compute an arbitrary nested formula F, we embed the cmc function, which verifies a simple
CTL formula, in a recursive procedure rcmc(Recursive Compositional Model Checker) that explores
the tree of the formula F from the leaves to the root (see Figure 8.)

7 Example

The simple example in this section shows how a system of two interacting machines is verified by
our compositional technique. The main purpose of the example is to demonstrate how we handle
a property defined on multiple machines.

The two components A and B are

A(xi ,32,2/1,2/2,4 •>X2) B(xx,32,2/1 ,2/2,2/i,2/2)
X\X2 3/12/2 X-yX2 2/'i2/2 X\X2 2/12/2 *i®2 2/i2/2
01 00 10 — — 00 — 11

01 01 11 — 11 00 — 10

01 10 11 — -0 10 — 11

01 11 01 — -1 10 — 00

10 0- 01 — 10 11 — 11

10 10 01 — 0- 11 — 10

10 10 10 — 11 11 — 10

10 11 11 —

11 0- 11 —

11 1- 10 —

13

function rcmc(array[A,], type, f, g) {

1 if (NESTED(f)){ /* if / is nested, apply Rcmc */
2 / = rcmc(array[A,], f.type, f.f, f.g);
3 }

4 if (NESTED(g)){ /* if g is nested, apply Rcmc */
5 / = rcmc(array[Aj], g.type, g.f, g.g);
6 }

7 Q —cmc(array [A,], type, f, g); /* run cmc on root formula */
8 return Q\

}

Figure 8: Recursive Compositional Model Checker

The product machine is
A-B

xix2 yty2 x[x'2 y[y2
01 00 10 11

01 10 11 00

01 11 01

10 00 01

10 10 01

10 10 10

10 11 11

11 00 11

11 00 11

11 10 10 00

11 11 10 10

We want to verify the formula

F(x,y) = 3[(xia;2 + x1x-2y1y2)U(xix2(yiy2 + 2/12/2))]

The projection of F onto A is

FA(x) = 3[(XiX2 + X\X2)U(X\X2)]

The projection of F onto B is

FB(y) = 3[IU(M2 + 2/12/2)]

14

We verify the two components obtaining the following results

A* B*

X\X2 2/12/2 X-\X<y 2/12/2 X\X2 2/12/2 x^x2 2/i2/2

10 10 10 — — 00 — 11

11 0- 11 — 11 00 — 10

11 1- 10 — -0 10 — 11

-1 10 — 00

10 11 — 11

0- 11 — 10

11 11 10

Finally, we check (A* • B*) and obtain

(A* • B*)* = (A • By
X\X2 2/12/2 xxx2 2/i2/2

10 10 10 11

10 11 11 11

11 00 11 11

11 00 11 10

11 10 10 00

11 11 10 10

Figure 9 illustrates the transformations on the two FSMs and on the product machine.

8 Future Work

8.1 Theoretical

Below are some theoretical issues which deserve future attention.

1. We could use the rdt reduction on the initial components of the system we are to verify.
Would this enhance the performance of the fixed point computations?

2. Can we apply FSM state minimization algorithms (like Hopcroft's) to achieve further degrees
of reduction?

3. Are there further property dependent reductions that can be made? Proposition 14 seems to
rule out any further property independent reductions, such as a "ping-pong" procedure.

4. Is it effective to repartition the transition relations to better suit a system to the verification
of a given property or type of property.

5. Are there reductions that can be made just knowing the type of CTL formula, without
knowing the specific propositions in the formula? For example, we can verify the formula
3G true with the tautology in place of the proposition / and find the set of infinite paths in
a system.

15

6. What are the time and space complexities of our methods? The model checking algorithms
are linear in the number of transitions. However, building a BDD can be exponential in the
number of nodes.

7. We can consider extending our approach to other verification logics like w-regular properties
and ECTL. Can these formalisms fit in our compositional scheme in a natural way, or do we
need to change something?

8. Coudert talks about the difference between backward traversal and forward traversal of transi

tion relations. We need to understand this difference and see if we observe it in real examples.
If so, can we formulate the model checker to use forward traversal?

8.2 Experimental

1. Develop a "real-world" example of a complex system of interacting finite state machines.

2. Develop a software system implementing our ideas. The single machine model checker is
finished. We need to complete the compositional part.

3. Develop a counterexample facility to help the designer understand the results returned by the
verification system.

Only by developing a working system will we know if our techniques produce practical benefits.

9 Conclusions

Our spring '91 290H project [8] planted the seed forour current work. In that project, we formulated
a technique to verify a simple CTL formula with propositions on one machine, in a system of two
machines. Besides these limitations on the properties that we could verify and on the number of
machines, the technique could not handle nested formulas. We left open the following questions:

• Can we prove the correctness of our technique?

• Can we verify properties defined on more than one machine?

• Can we verify arbitrary (nested) formulas?

• Can we write a program implementing our technique?

• Can we demonstrate that this technique gives useful results in some meaningful benchmark?

Significant progress has been made this semester. We have overcome all the limitations we had
and we have given a positive answer to all but one of the questions above. The only (and very
important!) aspect we still we need to work out is the practical utility of our technique. To do this,
we need to find some real examples that show some serious improvement by using this compositional
technique.

In our spring report, we were particularly pessimistic about verifying nested formulas. As it
turned out, this issue reduced to the problem of verifying formulas with propositions on multiple
machines. This problem was solved by projecting the propositions on the component machines,

16

reducing each machine independently, and then verifying the original formula on the reduced prod
uct. In this way, each level of nesting is handled in a natural way and the computation of a nested
formula reduces to a straightforward recursive procedure that traverses the formula from the leaves
to the root. With this technique, we can handle arbitrary CTL formulas, such as

F = VG(req -> VF(ack + reset)).

17

References

[1] R. E. Bryant. "Graph-based algorithms for boolean function manipulation." IEEE Trans.
Comput., C-35(8), 1986.

[2] E. M. Clarke, E. A. Emerson, and P. Sistla. "Automatic Verification of Finite-State Concurrent
Systems using Temporal Logic Specifications." ACM Trans. Prog. Lang. Syst., 8(2):244-263,
1986.

[3] H. J. Touati, Hamid Savoj, B. Lin, R. K. Brayton, and Alberto Sangiovanni-Vincentelli. "Im
plicit State Enumeration of Finite State Machines using BDDs." In ICCAD'90, November,
1990.

[4] J. Burch, E. Clarke, K. McMillan, David Dill. "Sequential circuit verification using symbolic
model checking", DAC 1990.

[5] E. M. Clarke, D. E. Long, K. L. McMillan, "Compositional Model Checking," Proc. of the 4th
IEEE Symposium on Logic in Computer Science, June, 1989, Asilomar, CA.

[6] Z. Har'El, R. P. Kurshan, "COSPAN User's Guide," AT&T Bell Laboratories, 1987.

[7] J. E. Hopcroft, "An nlogn Algorithm for Minimizing the States in a Finite Automaton," In
The Theory of Machines and Computation, New York: Academic Press, pp. 189-196, 1971.

[8] M. Chiodo, K. Kodandapani, T. Shiple, "New Ideas on Compositional Model Checking," Term
Project, EE290H, Spring 1991.

18

A Set Properties

In the following proofs we make use of some general properties of sets.

Let A, B and C be subsets of S.

1. A-BCA

2. If A C C and B C C, then A + B C C

3. If A C B, then AC C BC

4. If A-C C B, then A CCBC

5. If A C £ C A, then A = £

B Proofs

Proposition 7 CTL formulas 3 through 8 can be expressed in terms of a Boolean combination of
the base CTL formulas and propositions of the state variables.
Proof (by construction)

4. 3[fUg] = 3[fRg) + g

5. VX/ = 3Xf

6. 3Ff = 3[trueRf] + /

7. VF/ = 3Gf

8. VG/ = 3Ff

9- V[/tf</] = (3[(g)R(f • S)] + (/ • 9)) ' 3<ft. -

We seek to prove that the output T* of the model checker is contained in the input T. Each of
Lemmas 16, 17 and 18 establish the principal result needed for each of the 3 base CTL formulas,
respectively, and then Proposition 12 states the property we seek.

Lemma 16 Let T* = mc(T, 3Xf). Then T* C T.
Proof By construction, T* is a restriction of T. The lemma follows from the first set property
above. •

Lemma 17 In the model checker computation mc(T,3Gf), at each iteration of the greatest fixed
point computation, Tn C T.
Proof (by induction)
Basis step: To is a restriction of T,and thus TqCT.
Induction hypothesis: Suppose TnCT for some n > 0.
Induction step: Recall from Definition 10 that

Tn+i = Tn -(SiSxi(Tn))x-+xi

Tn+i is a restriction of T„, and thus Tn+i C Tn. Then by the induction hypothesis, Tn+\ CT. •

19

Lemma 18 In the model checker computation mc(T, 3[fRg]), at each iteration of the least fixed
point computation, Tn C T.
Proof (by induction)
Basis step: Since To is a restriction of T, then To C T.
Induction hypothesis: Suppose TnCT for some n > 0.
Induction step: Recall from Definition 11 that

f = r./(*)./(*')
Tn+i = T •(SiSxi(Tn))x-+xi + Tn

f • (Sx>(Tn))x-+x, C T, since f C T. Also, by the induction hypothesis, Tn C T. Thus, by the
second set property, Tn+i CT. •

Proposition 12 Let T* = mc(T,F). Then T* C T, for any base CTL formula F.
Proof (by cases)
Case F = 3Xf: This is just Lemma 16.
Case F = 3Gf: From Lemma 17, Tn C T holds for any n, and thus at the fixed point, it holds for
Tn = T*.
Case F = 3[fRg): From Lemma 18, Tn C T holds for any n, and thus at the fixed point, it holds
forTn = r\ -
Proposition 13 Let T* = mc(T, F). If M is another transition relation such that T'CMCT,
then mc(M,F) = T*.
Proof (by cases)
Case F = 3Xf:

T* C M C r

f(x')>T* C /(*')• M c /(x')-r (Set Prop. 4)
T* C mc(M,F) C Tm (Definition 9)
T* = mc(M, F) (Set Prop. 5)

Case F = 3(7/:
By definition 10, T* is the union ofall ^(^-paths inT such that for all (x,x') C ^g(/)? f(x)'f(x') —
1. That is, T* = U^Gf/)*71^/) ^ ^r'- Likewise, let M* = mc(M, F) = U'rG(/)>7rG(/) ^ -^- By the
hypothesis, T* C Af. Since mc(M, F) extracts all the 7rG(yj-paths from M, it follows that T* C M*
(see figure).

On the other hand, also by the hypothesis, M CT. Thus, all 7ro(/)-paths in M must exist in
T; that is, M* C T*. Since M* D T* and M* C T*, it Mows that M* = T* (see figure).
Alternate Proof of case F = 3Gf:
Let p = f(x) •/(a:'). Let f = T -p. Likewise, let M = M -p. The proof proceeds by the following
series of implications:

T'CMCT (1)
=> rcicr (2)
=» mc(M,F) = T* (3)
=> mc(Af,F) = T* (4)

20

(1) => (2): From Definition 10 and by a simple inductive argument, T* >p = T*. Thus, intersecting
the terms in (1) with p gives (2).
(2) =*• (3): Recall that by Definition 10, T* = \J^G(f)^G{f) C T and M* = \J*G(f)>*G(f) QM.
For sake of contradiction, suppose that T* ^ M* = mc(M, F). Then one of the following must be
true:

1. 3tcg(j) C M* such that ^g(J) &21*. If ^g(J) iS m M*, then it must exist in M. On the other
hand, if ^G(f) 1S not m ^*» then it must n°t be in T, since the model checker extracts from
T all infinite paths. Since ttg(S) 1S mMbut not m^>then M%T, which contradicts (2).

2. 37TG(y) CT* such that *"g(/) 2 -W"*- If*G(f) 18 not m ^T*» then it must not be in M, since
the model checker extracts from M all infinite paths. Since kg(j) 1S m T* but not m Af>then
T* g M, which contradicts (2).

In both cases, we derive a contradiction, and thus, T* = M*.
(3) => (4): From Definition 10, the first step in the computation mc(M, F) is to remove transitions
not in p from M, to yield M. Thus, the computation produces the same result whether we start
from M or from M.

Case F = 3[fRg]:
The proofs proceeds exactly as that for the case 3Gf, except that "^(/j-paths" is replaced by
"^(/.sj-pat*18"- •
Proposition 14 Consider a system of interacting machines composed of A\,A2,..., An. Let

R(X) =JKS^.Aj)

Then Aj = rdt(Ai,R) = Ai • R is the smallest subset of Ai which is independent of XL{ and
contains fl Aj.
Proof Clearly, the smallest subset of A,- that contains f] Aj is J] 4?- However, n Aj is not indepen
dent ofXL^ By smoothing [J 4; w*th resPect to <X#> that is 5^' (J]Aj), we obtain the smallest
subset of Ai which contains n Aj and is independent of XL{ (by the properties of the smoothing
operator). Since A,- is already independent of XL{, we have

= flltfy**))-*-*-!*

= #At-

Lastly, AJ- C A,- since AJ is a restriction of A,-. •

Lemma 19 Consider a system of two interacting finite state machines A and B. Let F be a simple
CTL formula with propositions defined on both A and B, and let A* = mc(A, F). Then

A*D(A-B)*

21

Proof (by cases)
Case F = 3Xf:
Using Definition 9,

A* = A- Sy,f(x',yf)DA-B. f(x', y') = (A •By
Case F = 3Gf:
The proof is by induction on the number of iterations in the greatest fixed point computation.
Basis step: A0 = A- Syf(x, y). Sy,f(x', y')DA-B- f(x, y) •f(x', y') = (A . B)0.
Induction hypothesis: Suppose (A •B)n C An for some n > 0.
Induction step: Recall from Definition 10 that

An+l = An *[ii>y,x'AnJa;_Kr'

Since An is independent ofy', we can smooth An with respect to y' without any effect. Furthermore,
since (SySx'An) is independent of y, we can substitute y' for y without any effect. Thus,

•An+l = An • [bytX',y' A-nlx—ix',y—*y'

Using the induction hypothesis and substituting (A •B)n for An

An+1 2 (A •B)n •[SytXiiy>(A •B)n]x-.x',y^y'
3 (A •B)n -[Sx\y'(A •BJiJx-wt'.y-.y'

But, by Definition 10

(A •B)n •[5x/,y'(A •£)n]»-»a?',y-»y' = (A •5)n+i

Thus, An+i 3 (A •2?)n+i. Since the greatest fixed point computation must terminate, there exists
an n such that An = A* and (A •£)n = (A •B)*, then (A •B)m C A*.
Case f = 3G[fRg):
The proof is by induction on the number of iterations in the least fixed point computation.
Basis step: (A •B)0 = A •B •/(x, y) •g(x',y')CA- Syf(x, y) •Sy*g(x, y)) = A0
Induction hypothesis: Suppose (A •B)n C An for some n > 0
Induction step: Recall from definition 11 that

An+i = A •5j,/(x, y) •Sy'$(x', s/')[5y,*"4n]x-*' + An

Since An is independent of y', we can smooth An with respect to y; without any effect. Furthermore,
since (SySx'An) is independent of y, we can substitute y' for y without any effect. Thus,

An+i = A •Syf(x,y)' Sytg(x,,y,)[Sy>xtiyiAn]x^xtty^yi + A„

Using the induction hypothesis and substituting (A •B)n for An

An+i 2 4 •5y/(x, y) •Sy^a?', y,)[5yt«'(A •B)„]x_x',y-j,' + (A •£)„
2 A •£ •/(*, y) •$(*', y')•[S^{A •£)»W,,-^ + (A •£)„

But, by Definition 11

A•5 •/(*, y) •g(x', y') •[5x,y(A •B)n]y^y,^x, + (A•B)n = (A•£)n+i

Thus, An+i 2 (A •£)„+i • Since the least fixed point computation must terminate, there exists an
n such that An = A* and (A •B)n = (A •B)*, then (A •B)* C A*. •

22

Proposition 20 Consider a system of interacting finite state machines A\,A2,..., An. Let F be
a simple CTL formula, and let A* = mc(A, F). Then

dl^rsn^*
Proof (by induction)
Basis step: By Lemma 19, (A\ •A2)m C AJ and (Ai •A2)* C AJ, and thus (Ai •A2)* C AJ •A2.
Induction hypothesis: Suppose (J[k A,)* C f[* A* for some k > 0
Induction step: First consider that (I]*+1 ^i)* = (-^fc+i *11* -^»)*- By observing that JJ* ^« is
itself a transition relation, and applying lemma 19, we have (Ak+i •11* Ai)* £= A*.+1 •(11* ^i)"«
Then, applying the induction hypothesis we have A£+1 •fll* Ai)* CAJ+1 •J]* A* = II*+1 -A* •

Proposition 21 Let Aj = A,- •R, where iE(X) = U(Sx'Aj). Then

n*=n4
Proof

n 4 = n(4 •*) =ai*) •* =ai*) •n(^j*) =n(* •*<*) =n * •

Theorem 15 Consider a system of interacting machines Ai, A2,..., An. Let .F be any simple CTL
formula. Then

mc(HAi,F) = mc([[Ai,F)

Proof By Proposition 13, to prove the theorem we must show that (J| Ai)* C JJA C n^t*
This can be done by proving the following three steps:

(1) (UAi)*CY[A*i (By Proposition 20)
(2) nAJ = n^?' (By Proposition 21)
(3) n^cnAciM,-

To prove step (3), recall that A is the projection cofactor of A* with respect to (A + A*), that
is A = A*-j ,.. From the general properties of the projection cofactor, for each A,- we have

A* C Ai C Ai. Combining the A,- machines, we have HA* C flAi C nA{ •

23

00,01,10

10,11

00,01

01,11 00,01,11

jj„, (AB)

00,01

01,11 00.01,11

Figure 9: Two machine example

24

