
Copyright © 1992, by the author(s).

All rights reserved.

Permission to make digital or hard copies of all or part of this work for personal or
classroom use is granted without fee provided that copies are not made or distributed
for profit or commercial advantage and that copies bear this notice and the full citation

on the first page. To copy otherwise, to republish, to post on servers or to redistribute to
lists, requires prior specific permission.

VERIFICATION WITH TIMED AUTOMATA

by

William K.C. Lam and Robert K. Brayton

Memorandum No. UCB/ERL M92/58

28 May 1992

VERIFICATION WITH TIMED AUTOMATA

by

William K.C. Lam and Robert K. Brayton

Memorandum No. UCB/ERL M92/58

28 May 1992

ELECTRONICS RESEARCH LABORATORY

College of Engineering
University of California, Berkeley

94720

VERIFICATION WITH TIMED AUTOMATA

by

William K.C. Lam and Robert K. Brayton

Memorandum No. UCB/ERL M92/58

28 May 1992

ELECTRONICS RESEARCH LABORATORY

Collegeof Engineering
University of California, Berkeley

94720

Verification With Timed Automata*

William K.C. Lam Robert K. Brayton
Department of EECS, University of California, Berkeley

'This project is supported by Fannie and John Hertz Foundation.

Contents

1 Introduction 3

2 Automata 4

3 Verification With Timed Automata 6

4 Preliminaries 8

5 Homomorphic Reduction 9
5.1 Untimed Reachability Reduction 9
5.2 Quotient DAG Reduction 10

6 Degrees of Timed Automata 12
6.1 LRQ 12

7 Closed Cycle Timed Automata: Timed Automaton of Degree 1 13
7.1 A Graphical Sufficient Condition For CCTA 13
7.2 Satisfiability of A* For CCTA 15
7.3 Language Homomorphism . 16
7.4 Language Emptiness For Muller CCTA 17

8 Alternating RQ Timed Automata: Timed Automata of Degree 0 20
8.1 Simple Path Properties of Alternating RQ Automata 21
8.2 Language Homomorphism 22
8.3 Language Emptiness For Alternating Muller Timed Automaton 22

9 Linear Inequality Satisfiability 22

10 Conclusion 23

Abstract

In this research, we investigate three aspects in verification with timed automata.
First, we present two homomorphic reduction techniques that eliminate certain states
and transitions of the timed automata while preserving their language emptiness. The
first technique can potentially reduce the state space of the timed automata when tim
ing constraints are sparse. The second technique takes advantage of the relationship
between the acceptance conditions and the structural properties of the timed automata
and may eliminate timing constraints to create additional opportunity for further re
duction via the first technique. Then, we define the degrees of timed automata as
a measure of complexity for decisions in timed automata, and present two classes of
timed automata, closed cycle timed automata and alternating RQ timed automata,
of degree 1 and 0 respectively. These two classes of timed automata have relatively
simple time-constant-independent language emptiness algorithms, and allow arbitrary
linear timing constraints in real numbers. We give language emptiness algorithms for
closed cycle Muller timed automata, closed cycle pseudo-Muller timed L-automata,
and alternating Muller timed automata. Finally, we discuss how to decide satisfiability
of linear inequalities, which is used extensively in deciding language emptiness for the
above two classes of timed automata.

1 Introduction

Asthe goal for designing digital systems moves towardevengreater speeds, the search domain
for optimal designs should extend to include specific timing relations between component
systems. To include timing relations, system models must capture the notion of time. In
finite state machine design, conventional finite automata need to be augmented with timing
constraints. Most conventional approaches for including time in modeling use either the dis
crete time model or the fictitious clock model. In the discrete time model, time is quantized;
so, all timing relations are expressed in terms of the quantum, blurring the accuracy of the
original timing specifications. In the fictitious clock model, a global clock is used to keep
track of events. Timing relations are expressed in terms of clock "ticks". Thus, a fractional
timing specification like 3.33 seconds can only be approximated. These two models lack the
notion of "dense" time.

Recently, the "timed automaton" model witha flavor of dense time was proposed [AD90].
A timed automaton is an u>-automaton with an auxiliary finite set of clocks which record
the passage of time. The clocks can be reset during any state transition of the automaton.
The timing constraints are expressed by including, with the transitions enabling conditions,
additional conditions which compare clock values with time constants. When coupled with
acceptance criteria, such as Buchi acceptance, timed automata accept timed traces, sequences
in which every event has an associated real-valued time.

In applications with timed automata, a basic operation is to find the set of reachable
states in one or n transitions. Forexample, the core computation of COSPAN, a verification
program for interacting subsystems, is to compute the set of reachable states in the next
transition. However, there is noknown algorithm for computing the set ofreachable states for
timed automata with arbitrary linear timing constraints. For restricted timing constraints,
there aresuch algorithms. For instance, [AD90] restricts theenabling conditions to theforms
x < k or x > k, where x is a clock, and k is a non-negative integer. Under these conditions,
timed automata can be converted into ordinary automata. Hence, algorithms for computing
reachable states for ordinary automata apply. However, the complexity of the algorithm in
[AD90] depends on the time constants.

In this paper, we propose the "degrees" of timed automata as a measure for their com
plexities for traversal, and give time-constant-independent algorithms for computing the set
of reachable states in two classes of timed automata, degree 1 and 0, in which arbitrary
linear timing constraints are allowed. We apply the reachable-state algorithms to deciding
language emptiness in Muller automata and pseudo-Muller L-automata.

An example of a timed automaton is shown in figure 1

Example 1 In figure 1, the automaton over the alphabet {a, ft, $} models a communication
receiver using a majority error detection technique. This timed automaton accepts input
sequences that satisfy the following properties: each symbol e {a,ft} is repeated three times
within 1 unit of time; a message is preceded and ended by a special symbols "$"; the in
terval between messages is at least 100 units of time. The timed input sequence { ($,0),
(atS0)t(at20.S)f(at£l)t(bfSl)t(bt3L2)t (b,31.4),($,59),($,200),(b,210.2), (b,210.5), (b211.1),
($,232)} is acceptable to the automaton, where the first component is in the alphabet, the
second component is the time (real valued) at which the first component occurs. There are
three clocks Xa,XbiXs which are reset (e.g. Xa = 0) or queried (e.g. Xa < I).

From here on, we call the enabling conditions queries. Denote xa < 1 by Q(xa), a query
for clock xa, reset statement xa = 0 by R(xa).

2 Automata

In this section, we review some terminology for automata.
Afinite state automaton is a 5-tuple (Q, E,6,fy0,F), where Q is a finite set ofstates, E is

a finite set of input alphabets, q0 is a set of initial states, F C Q is a set of final states, and
S is the transition function mapping from Qx(EU{c}) to 2E.

When a finite state automaton reads an input string, the state(s) changes in response to
the input string. The traversed sequence of states is called a run over the input string. A
finite string is accepted if there is a run whose last state is in F.

An ^-automaton is similar toafinite state automaton, except that the accepting condition
is modified to handle infinite input strings. Different acceptance conditions give different

0

b,Xb<l

Figure 1: Real-time Communication Receiver modeled by a Timmed Automaton

types of w-automata. A Buchi automaton is an w-automaton which accepts an infinite
string if the set of infinitely occurring states in its run has a non-empty intersection with F.
Instead of having F as a set of states, Muller automata have F as a set of sets of states. A
infinite string is accepted, if the set of infinitely occurring states is one of the sets of F. An
L-automaton is a 4-tuple

r = (Mr,/(r),i?(r),z(r))

where Mr is thetransition matrix of T, </> ^ 7(r) C V(Mr), theinitial states, R(T) C E(Mr),
the recurring edges of Vand Z(T), the cycle sets of T. Asequence ofstates v = (v0,vu...) G
V(r)u; is accepted if for some integer N and some CG Z(T), v> £ C for all i > N, or if
{i\\(vi,vi+i) G R(T)} is unbounded.

Atimed automaton is an w-automaton with timing elements added [AD90]. To construct
a timed automaton from an w-automaton, we introduce a set of resetable clocks. After a
clock is reset, it records the elapsed time. To an edge of an u>-automaton, we may add a
set of resets of clocks and a set of inequalities (enabling conditions or queries) on the times
recorded by the clocks. If an edge has a reset for clock x, then after a transition along the
edge is completed, the value of clock x becomes zero (reset). If an edge has inequalities
involving clocks xi, ...,£n, then a transition along the edge is enabled if the inequalities are
satisfied by the present values of a?i, ...,xn; the present values of xi is the timeelapsed since
ites last reset. In contrast to [AD90], we allow the queries to be expressions constructed
from any linear inequalities with Boolean connectives.

An input string for a timed automaton is a sequence of 2-component elements. The first
component is an element of the alphabet, the second is the real time the element occurs.
Time is referenced from the moment the timed automaton starts to read the input string.
Input strings for timed automata are called timed sequences.

3 Verification With Timed Automata

Here we look at the problem of verification with timed automata. Briefly, verification checks
whether a system, S, characterized by a finite state machine (possibly nondeterministic),
fulfills a given task or property, T, characterized by an automaton. This amounts to de
ciding whether the language of S is contained in the language of T, i.e. L(S) C L(T), or
equivalently, whether L(S®TC) = </>, where Tc denotes the complement of T. Therefore,
deciding language emptiness plays a central role in verification.

To verify systems expressed by timed FSM, we want an algorithm to decide language
emptiness. If FSM has a non-empty language, then there is a possible timed sequence
generated by the process that is not accepted by the task; hence the property that we want
for our design does not hold.

To find an accepting timed sequence for a timed automaton, we proceed in two steps.
First, find a sequence ofalphabets that is accepted by the timed automaton if the queries are
ignored. Then, for each element in each accepted sequence, starting from the first element,
we attach a time component, such that these time components satisfy the queries along the
accepting path in the timed automaton. Therefore, traversal in a timed automaton amounts
to the usual traversal of a graph and deciding whether a set of inequalities induced along
the traversed path is satisfiable.

Hence, to prove language emptiness of a timed automaton, we need to search for all
timed sequences, the number of which is infinite due to the denseness of time. However,
by restricting queries to forms of x < k and x > k, and time constants k to integers, as
in [AD90], timed sequences can be divided into equivalent classes. Timed sequences in the
same equivalent classes behave similarly; that is, if one of the timed sequences in a class
is accepted (rejected) by the timed automaton, then all timed sequences in the class are
accepted (rejected). Intuitively, this is because comparisons in queries look only at integral
times; so, two timed sequences differing by fractions can not be distinguished by the queries.
Hence, only finitely many equivalent classes need to be checked instead of infinitely many
timed sequences.

As a result, with the restrictions on queries and time constants, deciding satisfiability
of inequalities can be transformed into a problem of traversal on ordinary graphs. To do
this transformation for a timed automaton M, an untimed automaton, M', is constructed,
an ordinary state graph whose states are Cartesian products of the original states with the
equivalent classes of time. Then, all queries can be represented by connections between these

new states. This untimed automaton has the property that a sequence of alphabets {/?,} is
accepted by M' if and only if there is a time sequence {r,} such that the timed sequence
{(piiTi)} is accepted by M. As a result, deciding language emptiness of a timed automaton
is equivalent to deciding language emptiness of the constructed untimed automaton.

There are several drawbacks in this approach. First, the complexity of the algorithm
is proportional to the maximum time constant. Thus, a simple timed automaton with a
large time constant will have a large state space. For instance, the automaton in figure
1 has at least 1000 states. Second, inequalities are restricted to the forms x < k or x >
k, where x is a clock, and k, a constant. Third, the size of the untimed automaton is
°(\\C\\]-' {\\S\\ +1|£||) -2W), where ||£|| is the total number ofbits used in the binary encoding
of the time constants; ||C||, the number of clocks; ||5|| and \\E\\, the number of states and
edges in the timed automaton, respectively.

In this study, we extend the set of allowable inequalities to any linear inequalities, we
relax the integral restriction on time constants and allow real numbers , and we develop a
language emptiness algorithm that is independent of the time constants. However, this is
not possible for all timed automata, as illustrated by the example in Figure 2.

&

Reset(xl)

Reset(x2)

x1=0?
Reset(x3)

Figure 2: Time Constant Dependent Traversal In Timed Graph

Example 2 In this timed automaton, the only way to get from the initial state Si to the
final state S4 is to go around the loop K times, where K is a time constant. This means
that the number of states in this timed automaton is dependent on the time constant K; thus,
checking for language emptiness will depend on K.

Therefore, we restrict our investigation to a special class of timed automata for which a
time constant independent language emptiness algorithm exists.

4 Preliminaries

Definition 1 1. Given a timed sequence {(/>,-, t,),2 > 1}, the interarrival interval \i{ is
defined as: fi{ = rt- —tv_! , fi0 = t\.

2. Along the path ofstates traced by an input sequence, the resets and queries encountered
form a sequence, we call this the RQ sequence and denote it by T(7c).

3. Given an RQ sequence a, each query induces a set of inequalities on interarrival in
tervals, fii 's. Denote the set of inequalities induced by this RQ sequence by 0(a).

4- Given a RQ sequence a, the RQ sequence with respect to clock x, denoted a\x, is
obtained from a by deleting all R's and Q's that do not involve x.

5. An RQ sequence a is alternating, if, for each clock x, a\x has R(x) and Q(x) alternating
and R(x) is before Q(x).

6. A RQ sequence is closed, if, for every clock x in the sequence, a reset(x) precedes all
queries involving x. For example, R(x)Qi(x)Q2(x) is closed, while Qi(x)R(x)Q2(x) is
not.

7. A separation state if> for a cycle of states is a state such that the RQ sequence around
the cycle, starting and ending at ifr, is closed.

8. A path is closed if its induced RQ sequence is closed.

To illustrate the above definitions, consider the following example.

Example 3 Run timed sequence <r={(a,Ti),(b,T2),(a,Ti): 3<i<9} on the automaton in fig
ure 3. The traversed path it = s0 -> si -> s0 -> si -> s2 -> s3 -> si -• s2 -> s3 -• si. The in
duced RQ sequence T(*) = R(x)\R(x)\R(y)*1Q(x)\Q(y)*,R(y)',Q{x)7,Q{y)*. T(w)\x =
R(x)\R(x)2, Q(.t)4, Q(.t)6, which is closed and not alternating. T(n)\y = R(y)3, Q(yf, R(yf, Q(y)8,
which is closed and alternating. T(ir) is closed, and is not alternating because T(ir)\x is not
alternating. State St is the separation state for the cycle Si -)• S2 -> 53 -* Si. The
inequalities induced by T(ir) are:

1- H + Ms < 3; induced by Q(x)4.

2. /i5 + fi6 > 1; induced by Q(y)5.

Figure 3: An Example to Illustrate Definitions

3. fi4 + ... -f ^8 < 3; induced by Q(x)6.

4- n% + fig > 1; induced by Q(y)8.

If an input sequence {(a,Ti): i> 1} is run on the above automaton, the induced RQ
sequence is R(x)1{R(y),Q(x)iQ(y)}w. There are infinitely many Q(x)'s involving clock x
which is last reset in Rfe)1.

5 Homomorphic Reduction

Before deciding a timed automaton's language emptiness, the timed automaton can be re
duced. We present two reduction techniques.

5.1 Untimed Reachability Reduction

For timed automata with sparse timing constraints, this technique reduces the state space
by eliminating transitions without timing elements. And the language emptiness decision
is not affected. Assume that the input timed automaton is represented by a graph M, let
G(V,E) be a subgraph of M which involves no timing elements. If every in-edge to G can
reach every out-edge out of G, then G functions like a single node; hence G can be shrunk
to a node. Graph M may have several such subgraphs, each of which can be shrunk into a
node. Define "entry states", I, of G, and "exit states", O, of G as follows:

I = {v e V : e = (w,v) <£ E},0 = {v e V :e = (v,w) <£ E}

If G(V,E) has the property that for all i 6 I, o G0, o is reachable from i through a path
in G, then G behaves like a node; hence, G can be shrunk into a state without affecting M's

language emptiness. If V ofG(V,E) involves accepting states, variants of this technique can
be used according to the acceptance condition.

Example 4 Figure 4 is an example ofuntimed reachability reduction technique. The dashed
enclosures are the graph G to be reduced to a node.

Figure 4: Untimed Reachability Reduction

5.2 Quotient DAG Reduction

In this reduction technique, edges with timing constraints may be removed, creating more
opportunities for further untimed reachability reduction. The graph representing timed
automaton M is first transformed into a quotient DAG as follows: find all maximal strongly
connected components, and map each maximal SCC into a supernode. The resulting graph
is a DAG.

Let I and F be the set of initial and accepting states of M(). A node in the DAG is
an initial node if the state(s) in the node has non-empty intersection with the set of initial
state(s) ofM; an accepting node in the DAG is defined similarly. Reduce the DAG by deleting
all nodes that can not reach an accepting node, and all nodes that can not be reached by
the initial nodes. Remove those reset(x)'s whose x's are not involved in any query. Repeat
untimed reachability reduction, if new "untimed edges" are created.

Example 5 Figure 5 shows how a directed graph is converted to a quotient DAG and is then
reduced. The Enclosures in the top graph are strongly connected components.

10

^k\

1

Quotient DAG

1 w Initial state, node

®r-—N
V

^P Accepting state, node

Reduced DAG V ^»

Figure 5: An Example of Quotient DAG And Reduction

11

6 Degrees of Timed Automata

6.1 Lrq

To decide whether a timed automaton has an empty language, we need to traverse the
timed automaton. To decide whether we can reach state Sa from Si via a path in a timed
automaton, we need to decide whether the queries induced along the path are satisfiable. If
Sa is reachable from Si by ignoring all the queries, but is not reachable when all queries are
effective, then all RQ sequences from Si to Sa are not satisfiable. The set ofall RQ sequences
from Si to Sa can be derived by treating R's and Q's on each edge as input alphabets, then
the set of all RQ sequences from Si to Sa is the regular language accepted by the finite state
automaton with initial state Si and final state Sa. Denote this language as Lrq. If both
resets and queries are present on an edge, queries precede resets.

Q1(x1)
Reset(xl)

s1 Reset(xl) s2 Q2(x1) s3

Figure 6: RQ Language For A Timed Automaton

Example 6 In Figure 6, Lrq from Sx to S3 is R{xi){Qi(xi)R(xi)}mQ2{xi), where A* is
the Kleen closure defined below:

Let A = {ai,a2,...}, the Kleen closure, A*, is:

A* = {e} U|J A^A1 = xi •x2 •... •*,-,*,• e AJ = 1, ...,i.
i=i

where, e is the null string, • is the concatenation operation.

In general, deciding whether a Lrq is satisfiable is very complicated; because there are
infinitely many RQ sequences in a Lrq with Kleen closures. Therefore, if Kleen closures of
a Lrq can be decided satisfiable in finite time, then Lrq can be decided satisfiable in finite
time.

12

Here, we define the degree of a timed automaton as a measure of the complexity for
deciding its language emptiness.

Definition 2 Given an Lrq, let LRQ be derived from Lrq by replacing each Kleen closure
A* in Lrq with U%: a set of RQ sequences, each of which is a polynomial of degree at most
n in a{ GA. For example, A = {<z1,a2}; then U\ = {ai,a2,aia2,a2ai}. We say that

1. An Lrq is of degree n if n is the minimum integer such that Lrq is satisfiable if and
only if Lrq is satisfiable.

2. A timed automaton is of degree n if it has a Lrq of degree n.

Therefore, an Lrq can be decided satisfiable in finite time if it is of finite degree. The
complexity of satisfiability increases with the degree of Lrq. Here, we will study two classes
of timed automata, degree 1 and 0.

7 Closed Cycle Timed Automata: Timed Automaton
of Degree 1

Aclosed cycle timed automaton (CCTA) is a timed automaton which has a A*-closed Lrq,
i.e. all RQ sequence in Kleen closures in Lrq are closed. We show that a CCTA is of degree
1.

First given a timed automaton represented in a graph, what are the graphical character
istics of a CCTA?

7.1 A Graphical Sufficient Condition For CCTA

To construct the Lrq from a timed automaton, we use the Hopcroff-Ullman algorithm,
[JU79]. First, all states are labeled with distinct integers, starting from 1. Let R^ denote
the set of all strings that take the finite automaton from state i to state j without going
through any state > k. Then,

Rkij = Rk-1ik(Rk-1kkrRk-1kj\jRk-1ij

no _ j {a:S(q,a) = qj} if i ^ j
Kij-\ {a:6(q,a) =qj}[j{e} if i=j

where S(.) is the transition function. If the finite state automaton has n states, then J2£ is
the set of all strings that take the automaton from state i to state j.

Now, we show that a timed automaton satisfying a graphical sufficient condition can be
labeled such that the Lrq constructed with Hopcroff-Ullman algorithm is A*-closed. An
ordering graph is used in the process of labeling the states.

13

Construct a ordering graphfor a timedautomaton as follows. Let fa and fa be separation
states of simple cycles, connect fa and fa by an arrow —> from fa to fa, if all simple paths
from fa to fa are closed. Connect fa and fa bya double arrow, <-+, if fa —• fa and ^2 —»• Vi-
Otherwise, connect ^>i and ^2 by .

Now, order theseparation states by assigning a number to each separation state, n(^), ac
cording to theordering graph. Iffa -> fa, then n(fa) > n{fa). Iffa <-> fa, then n(^i) >or<
n(fa). If fa fa, then n(^i) >or< n(fa) and for every cycle n{fa,fa)Tr(fa,fa), where
*"(^i> ^2) and n(fa,fa) are simple paths, there is a separation state fa in the cycle such that
n(fa) > n(fa) and n(fa) > n(fa).

Definition 3 A set ofseparation states are orderable if there exists an assignment satisfying
the above constraints.

Theorem 1 A timed automaton satisfying the following conditions is a closed cycle timed
automaton.

1. every simple cycle has a separation state.

2. the set of separation statesfor all the simple cycles is orderable.

Proof. Need to label the states of the timed automaton in such a way that the resulting
Lrq is >l*-closed. Label all non-separation states lower than separation states, then label
the separation states according to their ordering graph. From Hopcrof-Ullman algorithm,
the set in Kleen closure is i?*"1*,*. So, need to show every RQ sequence in R1"'1^ is closed.
With the above labeling scheme, if the state with label k is not a separation state, and
R'_1kk # <t>- Let r eRk~1kk be an RQ sequence. The path traversed by r is a cycle which
has a separation state i\>. Because ip is labeled higher than k, and Rk~1kk consists ofonly the
paths with state labels less than or equal to k-1, so r ^Rk~1kk, a contradiction. Therefore,
Rk~1kk = <l>, and is closed by definition.

If state V>jt is a separation state, we do induction on the number of simple cycles along
the paths in Rk~1kk- Let r eRk~1kk and 7rr =fa, ...,fa be the path traversed by r. Note that
all the states along the path are labeled lower than k, by the definition of Rk~1kk-

Basis case: 7rr is a simple cycle, if fa is the the separation state for the cycle, then irr is
closed. If </>A. is not the separation state for the cycle, let fa(p < k) be the loop's separation
state. Then, the simple path from fa to ipk is closed. So fa —• ^k or fa <-> ipk- Because p
< k, the above labeling scheme implies fa <-• fa. Therefore, the simple path from fa to fa
, part of the simple loop, is closed. Thus, the simpleloop irr is closed.

Assume xr has n simple cycles, and irr is closed. Now if irT has n+1 loops, then
^k,...,^1),...,^,...,!^2),^...,*, where V^,...,^,..., V™ is the first simple cycle and
fa is the separation state for the cycle. 7r'r=k,...,VJ1\ Vb,..., k has n loops; by induction hy
pothesis, the RQ sequence induced by 7r'r is closed. Let the label of fa be a < k. There are

14

only two cases where a separation state is labeled less than k. The first case is when fa —•
or <r+ fa. In this case, the RQ sequence for the simple path fa,.., V^\ ...,fa is closed. The
other case is when fa fa. For this case, make the sub-path of 7rr from fa to fa simple
by deleting all loops along the path. This simple path together with the simplepath form fa
to fa forms a cycle, C. However, by the labeling scheme for fa fa, there is a separation
state x in C labeled higher than k and a. Of course, state x is also present in path irr,
implying that irr £ Rk~1k,k, a contradiction. Therefore, fa can not be fa. Hence, ^Jt —•
or *-> fa, and path fa,..,V^l\...,il)a is closed. Thus, fa,...,VJ1\...,fa,Vb,...,k is closed.
Further, because fa is the separation state for the simple cycle V^\..., fa,..., V^2), the RQ
sequence for fa,...,V^ is closed. Thus, k,...,V^\...,fa,...,V^2\Vh,...,k = ?rr is closed.
Therefore, every sequence in i?*"1*,* is closed, Lrq is A*-closed, the timed automaton is a
closed cycled timed automaton. •

7.2 Satisfiability of A* For CCTA

Definition 4 1. A set of RQ sequences is closed if every RQsequence in the set is closed.

2. Let Vi,V2,Vz be sets of RQsequences, V2 is redundant if, for any RQ sequences Xi and
X2, satisfiability of Xi Vx V2 V3X2 implies satisfiability of Xi Vi V3X2 .

3. A RQ sequence is prime if it has no redundant RQ subsequence.

4. Let

A={ai},P(A) = \JUiab<r{i)
a

where a is a permutation, &€ {0,1} and a° = e,a} = a.

5. P'(A) = {x € P(A) : x is prime]

Theorem 2 If A is closed, then, for any set of RQ sequences Xi and X2, XiA*X2 is
satisfiable if and only if XiP'(A)X2 is satisfiable.

Proof. Letr e A*,ype Asuch that yp appears more than once in r. Then r=RiyMpR2yWpR3
where i??, a concatenation of closed elements of A, is closed. Let xi € Xi,x2 € X2. Con
sider .rira:2 = XiRiy^pR2y^pR3x2 and Xir'x2 = XiRiR2yWpR3x2. xxrx2 has inequalities
from xi,Ri,R2,R3,yMp,yWp,x2, while xxr'x2 has inequalities from xx,RuR2,R3,yWp,x2.
Inequalities from Xi are the same in xxrx2 and in Xir'x2. Because R{ and yp are closed, the
inequalities from R{, and yWp are the same in Xirx2 and in Xir'x2. The clocks in x2 may
have the closest resets in xi,Ri,yMp. Because y^2\ is between y^l\ and x2, all resets in
y^l\ are screened by the same resets in y^2\. So, none of the reset in y^p is effective in x2.
Therefore, a satisfying solution to the inequalities from xirx2 is also a satisfying solution

15

to the inequalities from xxr'x2. Hence, satisfiability of xxrx2 implies satisfiability of xxr'x2,
which implies satisfiability of xiprime(r')x2. Therefore, if yr appears n times in r, the first
n-1 t/p's can be removed without affecting the satisfiability of r.

Now construct the set B from A* as follows. Take r € A*, for each y € A, and y e r,
if y appears n > 1 times in r, remove the first n-1 y's from r and all the redundant RQ
subsequences; put the resulting r in B. By above discussion, satisfiability ofXXA*X2 implies
satisfiability of XiBX2. However, a member of B has a member of A appearing at most
once and is prime, so B=P'(A).

Because P'(A) C A*, satisfiability of P'(A) implies satisfiability of A*. D

7.3 Language Homomorphism

Define language homomorphism $ as follows:

$(A-B) = ${A)'<!>(B)
$(A + B) = $(A) + $(£)
$(A*) = P'($(A))
$(a) = a

where a is a RQ sequence or e.

Theorem 3 Lrq is satisfiable if and only if $(Lrq) is satisfiable.

Proof. We will prove a slightly more general result: letXx and X2 besets ofRQ sequences,
then XiLrqX2 is satisfiable if and only if Xi$(LRQ)X2 is satisfiable. Do induction on the
number of operators.

Basis case. LRQ = e or a RQ sequence. Then Xi$(Lrq)X2 = XxLrqX2.
Assume that the claim holds for n operators. For the n+1 th operator, there are three

cases. For convenience, we will write Lrq to mean "satisfiability of Lrq".
Case 1: the operator is concatenation.

XXA'BX2 & Xi$(A)BX2
& Xi(A)(B)X2
& Xi$(A-B)X2

Case 2: the operator is +.

X1(A + B)X2 <* XiAX2 + XiBX2
& Xi$(A)X2 + Xi$(B)X2
& Xi$(A + B)X2

16

Case 3: the operator is Kleen closure *.

X1AiX2 & Xi($(A)YX2
XiA*X2 & Xi(Q(A)yX2
XiA*X2 <* XiP'{$(A))X2

<* Xi${A*)X2

By letting Xi and X2 be e, the claim follows. D
Comment:

1. The size of $(Lrq) is finite.

2. P'(A) is a set of polynomials of degree at most 1 in a,- G A, therefore, closed cycle
timed automata are of degree 1.

Example 7

Lrq = R(x3){R(xux2)Qi(xi,x2) + R(x3)Q2(x3)}*Q3(xi).

Then

${LRQ) = R(x3){R(xi,x2)Qi(xu x2) + R(x3)Q2{x3) + R(xux2)Qi(xi,x2)R(x3)Q2(x3)
+R(x3)Q2(x3)R(xi,x2)Qi(xi,x2)}Q3(xi).

Example 8 The timed automaton in Figured, taken from [AD90], is a closed cycle timed au
tomaton, with the state labeling shown. This timed automaton accepts the language {((a6)w,r)
3i,j > i: r2j+2 < t2j+i + 2}.

7.4 Language Emptiness For Muller CCTA

Here we apply the above theory of closed cycle timed automaton to the problem of deciding
language emptiness for a Muller closed timed automaton.

Let the acceptance conditions be given as F= {/,}, where /, is a set of states. For each
/,-, we want to find the RQ set such that the RQ set is satisfiable if and only if there is a
string whose set of infinitely occurring states is /,-. Thus, the Muller CCTA's language is
empty if and only if the RQ set for each /, is unsatisfiable.

The RQ set can be found in two steps. Label all separation states according to their
ordering graph. Let p G /,-, such that p has the highest label among the states in /,-. First,
find the RQ set from the initial states to p, denoted as Lrq(i —»• p). Second, remove all states
^ /,- and all edges connected to them. Find the RQ set from p to p in this simplified graph,
denoted as Lrq(p —• p). Because p is labeled highest in this reduced graph, Lrq(p —> p)
= R?~lpv, which is closed. If Lrq(i —» p) is satisfiable, then there is a path from the initial
states to p. If Lrq(p —> p) is satisfiable, then there is a cycle from p to p. And LRQ(i —> p)

17

©

a,reset(x)

c

b,x>2?

'

b,x<=2?
'

a,reset(x) a.reset(x)

Figure 7: An Example of Closed Cycle Timed Automaton

is satisfiable if and only if $(LRQ(i -» p)), denoted as Lx. But for Muller automaton, we
want the infinitely occurring set to be fi. So, delete all RQ sequences in $(Lrq(p -> p))
that do not traverse all the states in fi. This can be done for the set $(LRQ(p —> p)) is
finite. Denote this simplified RQ set as L2.

Theorem 4 The language ofa Muller CCTA with acceptance set /,- is not empty if and only
if Li and L2 are satisfiable.

Proof. Because L2 is closed, Li and L2 have disjoint variables. So, LiL2 is satisfiable if and
only if Li and L2 are satisfiable separately. IfLi and L2 are satisfiable, then the path iriw2"
that is accepted by the Muller CCTA, where ^ is a path from an initial state to p, 7r2 is
a path from p to p. Note that 7r2 is closed, thus, satisfiability of the RQ sequence induced
by 7r2 implies satisfiability of the RQ sequence induced by 7r2w. That is, tt2 is traversable
if and only if tt2w is traversable. Therefore, satisfiability of Lx and L2 implies language's
non-emptiness.

If Li is unsatisfiable, there is no path from an initial state to p. So, the set of infinitely
occurring states ^ /,-, implying the language is empty. If L2 is unsatisfiable, want to show
that there is no run whose infinitely occurring set is /,-. Ifsuch a run exists, p, then at some
point of time t, all states traversed from t on are only the states in /,. The first cycle from
p to p that traverse all states in /,- induces a RQ sequence in Lrq(p —• p). But LRQ(p —• p).
is unsatisfiable, so p can not possibly exists. Therefore, the set of infinitely occurring set is
not /,-.

18

Thus, unsatisfiability of L2 implies language emptiness of the Muller CCTA.
Putting above argument together, the claim follows. •
As a summary, to decide whether a Muller closed cycle timed automaton has empty

language, decide satisfiabilities of Li and L2 for each /,- of the acceptance set. If all Li's and
L2's are unsatisfiable, then the Muller closed cycle timedautomaton has an emptylanguage.

A language emptiness algorithm for Muller CCTA: Input: a Muller CCTA with accep
tance set F = {/,}, fi C 2s.

Output: determine whether the Muller CCTA has an empty language.

1. Compute the ordering graph for the timed automaton.

2. Label states according to the ordering graph.

3. For each initial state i, do the following:

(a) For each /, € F, let p € fi be the highest labeled state in /,-. Compute the RQ
set from the initial state i to p, Lrq(i —> p).

(b) Remove all states £ /,-, and compute the RQ set from p to p in this simplified
graph, LRQ(p -> p).

(c) Compute Lx = ^(LRQ(i -• p)) and Lp = $(LRQ(p -> p)). Note that both sets
are finite. Remove RQ sequences from Lp that do not traverse all states in /,-,
denote this simplified Lp by L2.

(d) The Muller CCTA has a non-empty language if and only if Li and L2 are satisfi
able.

A language emptiness algorithm for closed cycle pseudo-Muller L-automaton: Input: a
closed cycle pseudo-Muller L-automaton with cycle set Z = {/,}, /,- C 2s.

Output: determine whether the timed automaton has an empty language.

1. Compute the ordering graph for the timed automaton.

2. Label states according to the ordering graph.

3. For each initial state i, do the following:

(a) For each /,- € F, let p € fi be the highest labeled state in fi. Compute the RQ
set from the initial state i to p, Lrq(i —» p).

(b) Remove all states g /,-, and compute the RQ set from p to p in this simplified
graph, LRQ(p->p).

(c) Compute La = $(LRQ(i -» p)) and L2 = $(LRQ(p -+ p)).
(d) The closed cycle pseudo-Muller L-automaton has a non-empty language if and

only if Li and L2 are satisfiable.

19

8 Alternating RQ Timed Automata: Timed Automata
of Degree 0

Based on the intuition that if we want to inquire about a timing status via a query, we
should have reset the clocks involved in the query beforehand, and if we want to inquire
about it twice we can use different clocks for each inquiry. Hence, we consider a class of
timed automaton such that along any path, the R's and Q's alternate. As will be seen later,
alternating RQ timed automata are of degree 0.

An alternating RQ timed automaton has the following two properties:

1. For each clock x{, there is only one pair R(zt) and Q(...,xf,...). That is, distinct clocks
should be used in measuring events.

2. For any path t starting from an initial state, T(7r) is alternating, e.g, r(7r)|x. is alter
nating for each Xi.

Now we want to examine how restricted this class of timed automaton is. Unfortunately,
not all timed automata with multiple resets for each clock can be transformed to satisfy
condition 1 above. However, all timed automata with a single reset for each clock can be
transformed to satisfy condition 1 as stated in the following lemma.

Lemma 1 Every timed automaton with a single reset for each clock can be transformed to
satisfy the alternating RQ condition 1.

Proof. Let x be a clock in a timed automaton Msuch that there is only one reset for x, R(x)
and there m Q,(x)'s on edges qi,...,qm. The transforming procedure is as follows. Replace
R(x) by {R(xi), ...,R(xm)}, and Qi(x) on q{, by Qi(xi). Now there is only one pair of R(z,)
and Qi(xi). Repeat above transformation for all clocks with multiple Q's.

Now it remains to show that the transformed automaton accept the same language as the
original one. Denote the transformed automaton by M'. Since the transformation changes
only the resets and queries, we need only to show that the set of inequalities induced by
any input timed sequence a on M' is satisfiable iff the corresponding set on Mis satisfyable.
We proceed by showing that the set of inequalities induced by Qi(x{) on edge q{ of M' is
the same as the set induced by Q{(x) on qt of M. This is true, because the only difference
between Q/(.Tt) in M' and <3,(:r) in M is the renaming of variables. D

Now we try to transform a timed automaton satisfying condition 1 to satisfy condition 2.
This may not always be possible. The reason that an automaton may satisfy condition 1 but
not 2 is that there is a path -k and a clock x that r(?r)|x is not alternating. More specifically,
there is a loop such that only R(x) or Q(x) is in the loop. In the case where only Q(x) is
in the loop and Q(x) involves comparisons with time constants only, we can eliminate the
loop and convert the automaton to satisfy both conditions. This is because, in real system,

20

a transition takes a finite amount of time to complete. Each time the loop is traversed, the
value of the clock x is increased by a finite amount. So, after a finite number of transitions,
x is larger than the maximum time constant in Q(x), making Q(x) settle to a constant value,
1 or 0. This means that we can model the loop with Q(x) in the timing specification with
a finite number of new states and clocks, and get rid of the loop. Then, we can apply the
transforming procedure to convert it to satisfy condition 1. Hence, with proper modeling, an
automaton satisfying condition 1 and having cycles with only Q(x)'s can be made to meet
condition 2. In the case of only R(x) in a loop, it is not always possible to transform the
automaton to satisfy condition 2 without losing some timing specifications. In this case, the
designer need to rearrange the R's and Q's while retaining his intended specifications.

8.1 Simple Path Properties of Alternating RQ Automata

Theorem 5 In alternating RQ timed automata, state v is reachable from state u if and only
if state v is reachable from state u by a simple path.

Proof. Assume traversable path n from v to u has a loop, i.e. ir=v,...,v?-,...,v\2,Vk,...,u.
Let n'=v,...,vt1iVk>...iu., without the loop. Let us consider the sets of inequalities induced
by 7r and ir\ The set of inequalities induced by n consists of three subsets of inequalities,
0i, 02, and 0/oop. 0i is induced by Q's on path v,...^1; 0/oop, by path v/V..,v/2; 02, by
path vi2,...,u. Similarly, the set of inequalities induced by 7r' consists of two subsets of
inequalities, 0i' and 02'. 0i' is induced by Q's on path v,...^/1; 02', by path v/1,...^. It
can be seen that 0i becomes 0i' if we replace interarrival variables {p} in 0i by {p'}. Let
fiik be the interarrival variable from v/1 to Vk on ir, pik\ from v/1 to Vk on tt\ Because of the
alternating RQ condition, if every Q(x) that induces inequalities in 02 has its corresponding
R(x) not in the loop, but before the loop. Thus, the variables of 02 are {p} between v and
vi1, mk, and {p} between Vk and u. The variables of 02' are {//} between v and v/1, pik\
and {ft'} between vk and u. Again, 02 becomes 02' if {//} is replaced by {//}.

Since path n is traversable, let n be a solution satisfying 0i,02, and 0/oop. Then rj is
also a solution for 0X' and 02'. This implies path 7r' is also traversable. •

Theorem 6 In alternating RQ timed automata, a cycle is traversable infinitely often if and
only if it is traversable once.

Proof. If R(x) is in the loop, then Q(x) must appear after R(x) in the loop. Because,
otherwise, a path going through the loop twice will violate alternating RQ condition. Hence,
the set of inequalities induced by going through the loop involves only interarrival variables
within the loop. So, the set of inequalities induced by going through the loop twice consists
of two identical subsets of inequalities, the subset being those induced by going through the
loop once. If the subset is satisfiable, the set made of the subset is also satisfiable. Therefore,
once-traversability implies infinite-traversability. D

21

8.2 Language Homomorphism

With these special features, alternating RQ timed automata have a much simpler language
homomorphism that preserves language emptiness. Because ifXiA*X2 GLrq, then theorem
6 claims that XiA*X2 is satisfiable if and only if XXX2 is satisfiable. Hence, the following is
a homomorphism that preserves language emptiness.

${A-B) = $(A)-$(B)
*(A + B) = $(A) + $(B)
*(Am) = e
$(a) = a

Therefore, alternating RQ automata are of degree 0.

8.3 Language Emptiness For Alternating Muller Timed Automa
ton

We apply above simple path properties to the language emptiness problem in alternating
Muller timed automaton. This algorithm can be modified for alternating pseudo-Muller
timed L-automata.

Input: an alternating Muller timed automaton, (S,Z,6,I,F).
Output: decide whether it has an empty language.
For each i G /, do the following:

1. For a state p G fi G F, determine whether there is a simple path from i to p that
satisfies all timing constraints along the path. If there is no such a state for all /,- GF,
the language is empty.

2. For the reachable state p of /,-, determine whether there is a simple cycle from p to p
that traverse all states in some fi and satisfies all timing constraints along the simple
cycle. If there is not such path for all /t's reachable states, the language is empty.

Otherwise, the language is non-empty.

9 Linear Inequality Satisfiability

Deciding $(LrqYs satisfiability involves checking whether a set of linear inequalities are
satisfiable. Linear programming can be used to perform this task. However, [Smi68] shows
that, for some cases, linear programming can take long computational time. In this section,
we give the quadratic algorithm by [NK74] for deciding satisfiability of a class of linear
inequalities, which are frequently encountered in timing specifications.

22

Notation: || • || denotes the inner product norm. \x\ =A (|zi|,..., |x„|)',a: > y «-> Xj >
S/j,Vj,whereas x > y *-> Xj > yj for at least one j.

The problem is to determine whether there is a vector x such that

A-x>e>0

where A is a mxn matrix, e is a constant vector. It can be shown that the set Ce =
{x\Ax > e} is a polyhedral convex set for every e > 0; for e = 0, Ce will be a convex cone,
C say. If above inequalities are satisfiable, then Ce is nonempty; if not, then Ce is empty.

Above decision problem can formulated as an optimization problem, as follows. Find x
such that

f(x)=*\\(Ax-e)-\Ax-e\\\2
is minimum. If Ax > e is satisfiable, then Ce will be nonempty and f(x) = 0 for all x G Ce
and > 0 for all x £ Ce. If Ax > e is not satisfiable, then Ce will be empty and f(x) > 0
for all x GRn. And it can be seen that in the unsatisfiable case, f(x) is strictly convex and
therefore, its minimum is global and unique. Strict convexity is clear by considering the
function

<t>{^) = f(x + pd).

For arbitrary x and arbitrary d, (j>(p) is a strictly convex function of p.
Therefore, to solve the inequalities is equivalent to optimize f(x). The optimization can

be done by using the Fletcher-Reeves conjugate gradient algorithm [RC64] with periodic
restarting along the gradient direction. It is shown in [NK74] that

1. The algorithm converges in finite number of steps in both the satisfiable and unsatis
fiable cases.

2. It is faster than the accelerated relaxation algorithm and the Ho-Kashyap algorithm,
which is superior than linear programming for the case m >• n.

3. The complexity is 0(m(m+n)).

10 Conclusion

In this research, we investigate three aspects in verification with timed automata. First, we
present two homomorphic reduction techniques that eliminate certain states and transitions
of the timed automata while preserving their language emptiness. The first technique can
potentially reducedrastically the state spaceof the timed automata when timing constraints
are sparse. The second technique takes advantage of the relationship betweenthe acceptance
conditions and the structural properties of the timed automata and may eliminate timing
constraints to create additional opportunity for further reduction via the first technique.

23

Then, we define the degrees of timed automata as a measure of complexity for decisions in
timed automata, and present two classes of timed automata, closed cycle timed automata
and alternating RQ timed automata, of degree 1 and 0 respectively. These two classes
of timed automata have relatively simple time-constant-independent language emptiness
algorithms, and allow arbitrary linear timing constraints in real numbers. We give language
emptiness algorithms for closed cycle Muller timed automata, closed cycle pseudo-Muller
timed L-automata, and alternating Muller timed automata. Finally, we discuss how to
decide satisfiability of linear inequalities, which is used extensively in deciding language
emptiness for the above two classes of timed automata.

24

References

[AD90] Rajeev Alur and David Dill. Automata for modeling real-time systems. 1990
ACM International Workshop on Timing Issues In the Specification and Synthesis
of Digital Systems, 1990.

[CES86] E. Clarke, E. Emerson, and P. Sistla. Automatic verificationof finite-state concur
rent system using temporal logicspecifications. ACM Transactins on Programming
Language Systems, 1986.

[CGK89] E. Clarke, 0. Grumberg, and R. Kurshan. A synthesis of two approaches for
verifying finite state concurrent systems. Workshop on Automatic Verification
Methods for Finite State Systems, 1989.

[Dil89] David Dill. Timingassumptions and verification of finite-state concurrent systems.
Workshop on Automatic Verification Methods for Finite State Systems, 1989.

[E.M89] R.P.Kurshan E.M.Clarke, I.A.Draghicescu. A unified approach for showing lan
guage containment and equivalence between various types of w-automata. Tech.
report, CMU„ 1989.

[HK90] Z. Har'El and R. Kurshan. Software for analyticaldevelopment of communications
protocols. ATT Technical Journal, Jan. 1990.

[JU79] J.E.Hopcroft and J.D. Ullman. Introduction to Automata, Languages and Compu
tation. Addison-Wesley, 1979.

[NK74] G. Nagaraja and G. Krishna. An algorithm for the solution of linear inequalities.
IEEE Trans. Comput., C-23:421-427, Apr. 1974.

[RC64] R.Fletcherand C.M.Reeves. Function minimizatin by conjuage gradients. Comput.
J., 7:149-154, July 1964.

[Smi68] F.W. Smith. Pattern classifier design by linear programming. IEEE Trans. Corn-
put, C-17:367-372, Apr. 1968.

[TBK91] H. Touati, R. Brayton, and R. Kurshan. Testing language containment for w-
automata using bdd's. International Workshop on Formal Methods in VLSI De
sign, 1991.

25

