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Delay Models and Sensitization Criteria in the False Path Problem

Robert K. Brayton

University of California - Berkeley

Patrick C. McGeer Alexander Saldanha Paul R. Stephan
Alberto L. Sangiovanni-Vincentelli

Abstract

We consider anew the false path problem in timing verifi
cation. We demonstrate that any solution to the false path
problem inherently incorporatesa delay model, and the an
swer is given in the context of the delay model. We make
explicit the delay model underlying both the "floating" and
"transition" sensitization computations, and give the basic
assumption underlying gate sensitization. We extend sen
sitization theory on the delay model underlying the "float
ing mode" sensitization computation to general, asymmetric
gates, and give a new delay model for transition-mode com
putations under bounded delay. We show that for every
bounded delay model there is a natural time quantum such
that every signal is a constant over every integer-multiple
bounded interval of the quantum.

1 Introduction

Sensitization theory has classically been bound up with
the combinational false path problem in timing verifica
tion. Early attempts[2, 3] were path-based, and derived
to some extent from testing criteria. Broadly, such algo
rithms assumed networks were composed of simple gates,
and asserted "non-controlling" (or identity) values on each
off-path, or "side" input to each gate on the path. This ap
proachhad the difficulty that it was easy to exhibitcircuits on
which it reported true paths to be false. Brand and Iyengar[3]
recognized this, and showed that a blind approach of only
asserting identity values on some side inputs avoided this
difficulty; however, the approach remained an approxima
tion.

1989 marked a shift in approaches to sensitization in com
binational timing verification. Working independently, two
groups[12,13, 8] demonstrated that the classic approaches
were incomplete descriptions of the problem, in that values
were asserted on circuit wires independent of time, and that
by including temporal information an algorithm could obtain
a tighter bound on the delay ofa combinational logic circuit
without underestimating the delay of the circuit.

In [12,13], it was observed that sensitization algorithms
asserted identity values on the off-path inputs in order to
propagate changes in value, or events, down paths in the
circuit. However, the identity values on the side inputs to a

"This research supportedby FujitsuLaboratories Ltd.

gate only needed to be asserted at the instant at which the
event was to propagate through the gate. Merely asserting
valuesat the propertime, however, was not enough. It was
observed [12, 13, 10, 14], that each delay in a circuit was
merely the representative of a rangeof delays - in fact, the
maximum of the range - and the delay estimate returned
by an algorithmoperating on a circuit had to be valid over
any selection of actual delays within the range. This prop
erty,known as the monotonespeedup orrobustnessproperty,
came to be regardedas an essential featureof any proposed
algorithm. The solutionproposed in [12,13,10,14] became
known as the viability theory. It was demonstrated that via
bility was robust on networks composed of symmetric gates;
however, it was not demonstrated that viability was an exact
estimate of the delay. In fact, little attention was paid to the
semantics of the delay model underlying viability.

In [5], H-C Chen and D. H-C Du considered the false
path problem on networks of simple gates, and modified the
viability theory by incorporating the value of the on-path, as
well as the off-path signals, into the sensitization conditions.
This reduced the number of paths reported as true by their
algorithm as compared with viability; however, it could be
shown that it returned the same delay estimate as viability.
As a theory it was weakened somewhat by its reliance on a
simple gate structure.

An important idea in the Chen-Du paper was the intro
duction of the concept of the stable time ofa signal. Though
the Chen-Du paper (again) did not make explicit their de
lay model, the concept of computing a signal's stable time
explicitly marked a turn away from the path-based concepts
that dominated earlier research. In [6], this idea was taken a
step further: rather than computing the sensitization condi
tions of a path at a time, these authors instead computed the
sensitization conditions of sets of paths, of length > some
delay of interest d. This key idea was rapidly adopted by
[11], in which the characteristic function of the stable time

of a signal was computed explicitly.
In all this research, however, the delay model used by

every author was the monotone speedup model defined in
[12, 13, 10, 14], and the premises underlying the model
were neither considered nor made explicit.

In the world of asynchronous circuits, race analysis is an
active topic of research. This problem has some similarities
to path sensitization; in particular, designers wish to know
whether an asynchronous circuit with delays and feedback,
in response to an excitation from the external environment,



settled in a stable or unstable condition. It is well known that
suchanalysis requiresdetailedand sophisticated knowledge
of internal circuitdelays; hence these researchers paidgreat
attention to the delay models in their circuits,attempting to
ensure that the models were realistic and conservative. An

excellentcompendium of such models is described by C-J.
Seger and J. Brzozowski [17].

Despite the sophisticatedmodelinganalysisof Segerand
Brzozowski, little attention was paid to the problem of sensi
tization analysis; rather, exhaustive simulation was the vehi
cle of choice. Given the generally small circuits of concern
to asynchronous designers and theorists, this was not an issue
for these authors. However, timing verification of combi
national circuits is typically run on very large circuits, and
sophisticated sensitization analysis is required.

It is the goal of this paper to unify these two research
approaches. Specifically, our goal is to develop a unified
theory, encompassing both delay and logical information in
a single mathematical framework, and use this information
to devise sensitization algorithms under a number of delay
models. The idea of incorporating delay and logical infor
mation in the same framework is not new: in [9], delay
operators were added to the standard Boolean Algebra; their
effect was to shift logical signals forward in time. In [18],
a four-tuple (v, a, A, V); was stored at each node; a repre
sented the minimum time that the node would switch, v the
value before that time, A the maximum time at which the
node would switch and V the value thereafter. However,
these attempts modeled only some aspect of timing behavior
or were delay-model specific. The model of [18], for exam
ple, failed to capture islands of stability within the interval
(a, .4). The model of [9] was valid only for a pure binary
delay model. A more suitable formalism is the waveform
algebra introduced by Augustin [1] to analyze timing models
in hardware description languages. Augustih's model is a
mapping from the integers onto {0,1}. Weextend this to a
mapping from the real line to {0,1, X }.

In this paper, we introduce an algebraic model of a signal
waveform and delay models, analogous in the static domain
to the switching algebra over Booleans and Boolean opera
tors. In this framework, the primitiveobjects are waveforms,
which are total functions from the real line onto the ternary
set {0,1, X). In this framework, a gate delay model and its
functional model combine as does a gate in a logic network:
it takes as input some input signal waveforms, and produces
an output signal waveform. Since the waveforms are static
(though infinite) objects, algebraic operations over wave
forms are well-defined; since the gate delay model plays the
role in this algebra ofan operator, it is an algebra effectively
parameterized by the delay model; hence it can be used with
a variety of delay models.

The remainder of this paper is organized as follows. In
section 2, we introduce the waveform calculus as an exten

sion to ternary simulation, and discuss efficient methods of
representing input waveforms. In section 3 we give exam
ples of four common delay models. In section 4 we give
exact sensitization algorithms over two of these models, us

ing the waveform calculus.

2 Ternary Delay Simulation and the
Waveform Calculus

Ternary Boolean Algebras have been a feature of the analysis
and synthesis of asynchronous circuits for many years; they
have recently received increased attention due to Seger[16],
and the derivative review work ofSegerand Brzozowski[17J.
Informally, the ternary model can be stated as follows. A
third value, generally denoted A', is added to the Boolean
Algebra. X is regarded as representing an unstable value.

The X value is generally regarded as modeling two phe
nomena:

1. Purely binary devices switch from the '0' to the' r state
instantly; however, if we build devices out of physical
components there are intermediate values, and it takes
time for the physical device to transit those intermediate
values. For example, in most modern mos processes,
a voltage level between 4 and 5 volts represents the
T value and a voltage level between 0 and 1 volt
represents the '0' value; voltages between 1and 4 volts
do not represent any logical values, and as a result are
modeled as an X.

2. The "delay" of a gate is not an independent variable;
rather, it is a measure of the amount of time required for
a switching event to occur. As a result, it is a complex
function of a variety of factors, some static (operat
ing temperature,process variation),and some dynamic
(crosstalk,activity on neighboring transistors, slope of
the input waveform, etc). There is some uncertainty
in each of these variables, and as a result some uncer
tainty in the delay of a gate. When the value of a gate
is unknown, it is modeled as an A'.

X therefore represents every case where the value of a
gatecannot be preciselymeasured as a pure Boolean value.
It is straightforwardto extend the standard binary algebra to
ternarycomputation,and is given in the following table:

a b a AND b a OR 6 NOT a

0 0 0 0 1

0 X 0 X 1

0 1 0 1 1

X 0 0 X X

X X X X X

X 1 X 1 X

1 0 0 1 0

1 X X 1 0

1 1 1 1 0

The algebra is easily extended to general gates by func
tionalcomposition. Weadapt the terminologyof Seger[15].
A Ternary Variable ranges overthe set T = {0,1, A); a
Ternary function g is a mapping:

g:Tn~T



A containment relation C is defined over T: t C t for
each t e T, and, further, 0 Q X, 1 Q X. C extends
naturally to vectors. Let xi,..., xn, j/i,..., y„ be vectors over
Tn; X!,..., xn C yi,.... y„ iff x< C y,- for each i.

The ternary space Tn is easily related to the underlying
binary space Bn through the following. A vector xi,..., x„
overTn is said to be a vertex if each x, e {0,1}. It is easy
to see, through simple functional composition, that if x is a
vertex then g(xi,.... x„) e {0,1}. Wedefine the following
evaluation rule for g over an arbitrary vector X],..., xn e T:

f 1 0(j/i,-,2/n) = l Vyu~>,ynQxi,-
g(xi,...,xn)=< 0 p(yi,...,yn) = 0 Vy!,...,ynCxi,.

[ X otherwise
The correspondence between vectors of the ternary space

and cubes of the binary space is evident. For this reason, if
g(x\,..., xn) = 1, xi,..., x„ is said to be an implicantof g;
a maximal such implicant is said to be a prime of g.

In the sequel, one lemma will be of principal importance,
and we state it here.

Lemma 2.1 Let g be an arbitraryfunction of xu..., xm,
where each xj ranges over the set {0,1, X). Letpi,..., pn
be the primes of g, qi,—,qr the primes of g. Then
g(xi,...,xm) — X if and only if there is no prime pi
such that Pi(xi,...,xm) = 1 and no prime qj such that
qj(xi,...,xm) = 1.

Proof: Immediate from the evaluation rule. •

A delay model augments this algebra by associating a time
t with each value of a gate or wire; the value of a gate at
time t, g{t), becomesa (generallycomplex)functionof the
valuesof thegateand its inputsat over someinterval(to,11),
where t\<t. Occasionally the interval is closed, and in this
case<i < t.

This discussion is necessarily somewhat vague, since we
are attempting to capture the semantics of a broad range of
models. However, it is fairly easy to formalize.

Definition 2.1 Given a gate g, an associated waveformfor
g, ft9, is a map:

ft9 :$>->{0,l,X}

such that,for every t, every e > 0, ifft9(t + c) ^ ft9(t) and
ft9(t + c) andft9{t) both contained in {0,1}, then there is
somet <t\ <t + c such that ft9{i\) = X.

Byconvention, eachsuchmap ft9 is total:for eacht e$t,
ft9(t) is defined.

The definition of a waveform is designed to model our
intuition of a logic signal varying over time; the restriction
that any change in signal force a transition through X cap
tures our intuition that the modeled physical waveform is a
continuous map, and that the 0 and 1 values are physically
separated.

Given a waveform ft, and a real interval I, the partial
waveform ft\ is the waveform ft restricted to the domain
I. fti is referred to as the partial waveform of interval I.
With this in hand, we can define a delay model formally:

Definition 2.2 Amap Mfora gate G,inputs f\,..., fr:

M:ftfc>t) x ft[*t) x... xfl£f) xflgit) ~ ftG(t)
is a delay model if there is some subset S of the inputs ofg
such that ftfct) is aconstantfunctionfor each s € S, and,
further, cis the cube Y\s€S fs = ftfo t), and Gc isaconstant,
then ftG{i) = Gc.

Broadly, the definition is designedto encapsulate our in
tuition about the transitions on a gate. The output waveform

•ixn of a gate at t is determined by the input waveforms, and
•> xn thegate waveform, occurring between 0 and some time i'

preceding t. By convention, 0 is chosen as the base time;
choosing a fixed base time for all model mappings enforces
our intuitive notion that any delay model should be gauge
symmetric upon the time axis, i.e. the value of the mapping
specified by the delay model is independent of the base time.

The two conditions required for a mapping to be a delay
model deserve some attention. The first simply enforces our
common sense notion of causality; the output waveform of
a gate between times U and h cannot depend upon inputpin
activity, or the state of the gate, after time tz. The second
condition is the basic assumption required for sensitization
theory to have any real meaning. It states that the gate will
not glitch or undergo any transient if the value of the gate is
statically determined by its stable inputs.

2.1 Characteristic Functions

Consider a Boolean Algebra; this consists of a set of vari
ables,each of whichcan takeon a value in {0,1}; a combi
national network, evaluated statically, is the realization of a
function over its input variables. A delay model, a network
of gates and wires, a set of input variables, and a set of pos
sible waveforms for each input variable, yields a Waveform
Algebra. An assignment of one waveform to each input
gives a waveform vector. The set of all waveform vectors
forms a wave space, which (for n inputs) is denoted Wn.
A waveform vector is the analog, in wave space, to an input
vertex in Boolean space. The analog to the gate in Boolean
space is the pair (gate, delay model) in wave space; this
product takes an input wave and produces an output wave.

The analogy between values of variables (in a Boolean
Algebra) and waveforms of variables (in a waveform alge
bra) can be exploited to incorporate the idea ofcharacteristic
functions. In particular, we define:

Definition 23 A characteristic function overa waveform
space is a mappingoftheform:

X:Wn~{0,l}

Conventionally, x is associated with some set S C Wn:
X(«>) = Uffu>€ S.

Characteristic functions will be a feature of the timing ver
ification algorithms to be developed in the sequel. In
particular, we will be calculating functions of the form*.



X = t «'Iw is a waveform vector producing
ft9asthe waveform onsignal g}

2.2 Representation of Characteristics

Characteristic functions represent waveform vectors. A
waveform, of course, is an infinite (in fact, uncountable)
sequence of symbols from the set {0,1, AT}, representing
the values of the wave at each (real) point in time, t. How
ever, we do not toggle inputs infinitely often, and as a result,
there are relatively few waveform vectors, and these are
easily encoded. For example, in the most common combi
national timing verification problems, we toggle the inputs
once, at t = 0. In this case, the waveform space on n vec
tors Wn maybe represented as the space Bn x Bn, where
(v\, V2) represents the(constant) binaryinputvectors applied
at t = -00 and t = 0, respectively. Under these circum
stances, the wave characteristic function may be thought of
as a function:

X:Bn xBn^{0,l}.

and is most conveniently represented as a standard Boolean
function over Bn x Bn

Delay models do not, of course, typically give an enumer
ation of such waveform maps. Typically, the models give
rules for computing the output waveform, from which the
waveform map is deduced.

3 Delay Models

Here, we briefly review some common delay models, and
discuss them in the context of a timed ternary algebra. Most
of these are taken from [15].

• The Fixed Binary Pure Delay (FBPD) Model This
model is the most naive of the common delay models.
Under this model, there is a fixed delay d, from each
gate input /, to the gate output g; the instant value of
ft9(t) is obtained by the static evaluation:

ft9(t) = g(ftf>{t-dl),ftJ>(t-d2),...,ftHt-dm)).

The difficulty with this model is twofold:

1. As mentioned above, delays are typically uncer
tain; the pure delay model assumes delays are
fixed, constant, and known.

2. The model, as stated, does not explicitly introduce
an X state into the computation of ft9', rather,
it relies upon the input waveforms to provide
the required transient state. As a result, the X
state in this model effectively reduces to mod
eling the transition region, rather than modeling
both the transition region and uncertainty in the
actual value of a signal at a given time.

• The Fixed Binary Pure Delay With Static Variation
(FBPD-SV) Model This model is simply the FBPD
model, save that the constants d, are treated as inde
pendent variables, whose actual values lie in the range
[df", dfax], with their actual values dependent upon
static factors [process variation, circuit age, operating
temperature (a static value on the time scales of inter
est), and so forth]. This model underlies the "transi
tion delay" computation of [7]. The FBPD-SV model
neglects dynamic factors such as crosstalk, degraded
signals, slope factors and the like. This model is appro
priate if such dynamic factors can be regarded as trivial,
and if all uncertainty in delay and waveform value can
be ascribed to static factors.

• The Extended Bounded Delay (XBD) Model Under
the XBD model, the ranges [df"1, dfax] represent un
certainties due to dynamic as well as static factors, and
represent a transition region of uncertain width. As a
result, pure transport of the input waveform to the out
put waveformat a specifiedtime within the range is not
permitted by the model. The computation of ft9{t) is
given as a two-step process:

Fi(t) =I n(l-*r.t-*i ftu
otherwise

is a constant

The values F((t) form the effective values of the in
put waves, as presented to the output, at time t. If
^ft-rfp-.i-rf*) is a constant» then input /, has not
changed over the interval (t - dfax,< - df"); since
any change in state of fi can only propagate to the
output g at t if that change in state occurred be
tween (t - dfax,t - off"1), it follows that the pre
sented state of input fi is simply the constant state
(t - dfax, t - df"). If,on theother hand, /, changed
state between (t - df8*,* - df1"), then thepresented
valueof the inputmightbe any stateof fi between the
intervals, or a transient; the only reasonable value to
choose in such circumstances is X. The value of ft9(t)
is then easily found:

a'(t) = g(Fi(t),...,Fn(t))

i.e.,as thestatic(ternary) evaluation of g on the Fi(t).

• The Extended Bounded Delay-O (XBDO) Model This
is the XBDmodel, with df" = 0 for all pins fi of all
gates g in the network. The XBDO model is of partic
ular interest, since it is the model underlying viability,
and,in general, all the so-called 4tfloating mode" sen
sitization calculations. Indeed, the monotone speedup
property introduced in [12,13,14] may be viewed as
an (incomplete) admission of the uncertainties in the
XBDO model.

For the remainder of this paper, we discuss sensitization
in the context of the XBDO and XBD delay models. We



give a new sensitization procedure for these models, and
demonstrate that this procedure reports the exact minimum
delay in the XBDO and XBD models. We show that this
procedure gives the same delay estimate as the Chen-Du
procedure on networks of simplegates,and as the viability
procedure on networks of complex, symmetric gates; the
Chen-Du and viability procedures can thus be regarded as
exact algorithms for the XBDO model on their respective
special-case networks.

Othger delay models are possible. In recent work, Burch
has introducedthe binary chaos delay model [4]. This model
is not treated here, although it is presently under considera
tion.

4 Sensitization and The Combinational

Timing Verification Problem

Given a delay model M, the combinationaltiming verifica
tionproblem for a circuit C under M is the following: given
a family of possible waveforms on the combinational inputs
of the circuit, such that each such waveform is a constant
binaryvalueon the intervals(—oo, 0) and (U, oo)(i.e.,each
input changes state only within a fixed interval of 0), find
the least positive t such that, for any possible combinationof
inputwaveforms, &?it0Q) is abinary constant for each circuit
output g.

We consider this problem under the XBDOand XBD cir
cuit models. In order to do this, we introducea new construct,
the characteristicfunction on an interval.

4.1 Combinational Timing Verification Under
the XBDO Model

Under the XBDO model, an input wave for input a is one of
two forms:

fta = l X(-(—00,00)

*(-0O,0]^(<M«)£[<„,Oo)
or

for some x € {0,1}

where ta is a positiveconstant associated with the variable a
in the circuit. This permits us to derive an immediate result
concerning the properties of circuit waveforms.

Lemma 4.1 Let g be any gate in a logic circuit. Under the
XBDO model, under anywaveform vector, we have ft9(t) €
{1,0}for anyt > 0 implies ft9(U) = ft9(t)forallty > t.

Proof: The proof is by induction on the level of gate g. By
definition the result holds for the primary inputs. Suppose it
is true for all gates oflevel < N. Consider some g at level N,
and some arbitrary input waveform w. Let ft9 be induced
by w with ft9(t) = 1. We have g(h, ••, fn), and by the
XBDO evaluation model, 1 = ft9{t) = ^(t),...,^*)),
where

W) -{
ftfl
X

ftfi

otherwise

is a constant

since g{Fx{t),...,Fn{t)) € {0,1}. By lemma 2.1 there is
some prime p of g, of g such thatp{F\(<),..., Fn(i)) = 1.
Consider an arbitrary t\ > t. Since each input to g is of
level < N, if ft!'{t) £ {0,1], then by induction ftft (U) G
{0,l},and hence F,(<) € {0,1} => Fi(tx) e {0,1}; hence
p(Fx{tx),...}Fn(tx)) = 1, andby lemma 2.1, ft9(tx) = 1.
•

This lemma immediately permits a characterization of the
waves givenby theXBDO model, as an immediate corollary.

Theorem 4.1 Letg be anygate in a logic circuit. Underthe
XBDO model,underany waveform vector, we have:

( ^(-oo.oo) _ or
ft9 = I a?(-eo1o]*(o,t,)*[i„oo) or for some xe {0,1}

I x(-<x>,0]X(Q,tg)X[tgiOo)
(1)

Proof: Immediate consequence of the preceding lemma.
•

Since we have a characterization of the waveforms of any
gate g, we can immediatelyproceed to the timing analysis
problem. Recall:

Xn° = {w\w induces ft9 on gate g}

Now consider:
nf, .€{0,1}y l«,oo) l ' *

which is the set of all waveforms such that g is a binary
constanton the interval [t,00). Under the XBDO model, the
delay of a circuit with primaryoutputs ox,..., o„, under input
waveform vector w, is:

maxminwGx i«-~>e* 'l'
t t

And hence the delay over all waveform vectors may be writ
ten:

maxminxl2i',~)€{0,1) #0
it

We are faced with the calculation ofx |,,oo)6 • Now, we
have:

From lemma 4.1,

xnv.oo)=° = x«9(0=o
xrtft.oo)=1 = xa»(0=i

We must calculate xn'(t)ss0 andxfl*(l)ssl.

Lemma 4.2 Let g be a gate with inputs fi,--.,fr. Let
Pii—tPn be all the primes of g, and qi,...,qm be all the
primes ofg. Then:

Jfc = l1= 1

x*'(t)=o = ^.(F, Fr) =l)Hxfl/l(^)EFt

(2)

»=i Jb=l



Proof: w e xfl,(t)=1. Hence ft9(t) = 1 when w is
applied as the input waveform vector. Hence there is
some prime pi such that Pi(FXi...,Fr) = 1, and, further,
Fk 3 nfk(t - djj?"), i.e., w 6 x^fc(«-dT)cn Con.
versely, let we ^'M'-Ocn for ^j ^ and) further> let
P,-(Fi,..., Fr) = l.^Then /2*(/) = 1by the evaluation rule,
andhence w e xfi'(^=1. •

The equations (2) suggest a simple recursive scheme for
the computation of the exact true path delay under the Ex
tended Bounded Delay-0 model.

4.2 The Chen-Du Model

Before leaving the XBDO model we prove the speculated
exactnessof the Chen-Du and viability criteria for this model
on the subset of gates over which they were defined. The
Chen-Ducriteria is defined over simple gates; viability,over
simple and complex symmetric gates. Here we prove only
exactness of Chen-Du over simple gates. This also serves
to prove exactness of viability over those gates. The Chen-
Du criterion is stated as: Given a network of simple gates
(arbitrary input and and or gates, and not gates), and vector
v, gate g:

1. If g(v) is equal to flf's controlled value, then the stable
time of g under v, s(g, v) is defined as the minimum
t, over all inputs / such that f(v) is at a controlling
value for g,t = s(f, v) + <Fjj*f, where cfjy isthe delay
model's maximum delay between / and g.

2. If g{v) is equal to g's non-controlledvalue, then s(g, v)
is equal to the maximum,over all inputs /ofg,s(/, v)+

9, J

We analyze the Chen-Du method as follows. Consider the
function

u9'1 = {v\t > stable time ofg under v by Chen-Du model)

Lemma 4.3 Ifc(g) is the controlled valuefor g, nc(g) the
non-controlled valuefor g, we have:

»'* = <9) £ ((/ =<9)W-^)
f€FI(g)

+ nc(g) J] w/,t_<W
JeFI(g)

Proof: Immediate from the Chen-Du evaluation rules •

We can now prove equality of the Chen-Du criterion and
the exact analysis procedure on networks of simple gates.
We have:

Theorem 4.2 Let u e w*'*. Then (u\u) e x^9(*)€{o,i}
where u* denotes the binary vector opposite u on the
n—cube.

Proof: The proof is by induction on the level of g in the
network. Trivial for primary inputs, so suppose it is true for
the level of g < N. If the level of g is = N, then without
loss of generality suppose g is an OR gate. We have two
cases to consider:

1. g{u) = 0. Then w*' = YljeFiig)"1'*'^* and
xn>(t)=o = n/€J,/(,)Xfl/(|-^)=0. By induction
uGu^-'C/ iff („•,„) <= xfl'(i-«*r,>=o.

2. g{u) = 1. Then w" = E/€f/(,)(/ = 1)^''"^),
and Xn9(t)=l E/€F/(f) Xfl/(t-^)=1. By induction,
u e w/,'"dT/(/ = 1) if and only if («*,«) €
xnf(t-cf^s)=it

This shows equality of the criteria on networks of simple
gates, and hence the exactness of the Chen-Du procedure on
such networks. Similar reasoning illustrates the exactness
of viability on complex, symmetric gates. However, it is
trivial to demonstrate that on networks of complex gates
(symmetric and asymmetric) the Chen-Du procedure can be
arbitrarily far from the minimum. In contrast, viability is
only inexact on complex asymmetric gates.

4.3 Delay Calculation under the Extended
Bounded Delay Model

Computation on the XBDO model was greatly aided by the
fact that each waveform was either constant on the positive
half-plane or changed exactly once, from A* to 0 or 1, on the
half-plane. Since that was the case, as mentioned earlier, we
could reduce our representation of the waveform vector to a
single Boolean vector, and trim our search space accordingly.
Under the XBD model, no such trimming is possible. Each
gate changes potentially many times, from 1 to A' to 0 and
back again; further, such islands of stability are of great
interest in some applications. As a result, we must track each
waveform over every time of interest on the positive half-
plane. Fortunately, bounded delay models have a property
which makes this computation far more tractable.

4.4 A Theory of Quantum Time

At first glance, the requirement of symbolic ternary simula
tion at all time points can seem daunting. However, it may
be demonstrated that, associated with each bounded delay
model there is a fundamental time quantum, such that every
waveform is a constant on each open interval bounded by
integer multiples of the time quantum.

A bounded delay model M may be thought of as being
fully described bya collection ofconstants: (dfax, df11) for
each connection i. (We model variations in the rise time of
inputs by such a pair of constants, as well). Since wecan, and
do, write these constants as finite strings of digits, each such
constant is a rational number. Let hM denote the greatest
common divisor of the set of constants associated with a

bounded delay model M. We call/ia/ the time quantum of
the model M. We have:

Theorem 4.3 Let g be any gate in a circuit, M an XBD
bounded delay model, t\M the associated time quantum.
Then, ftf^ (n+i*M) *5 aconstantfor each integer n> 0.



Proof: The proof is by induction on the level of gate g.
Each primary inputchanges statetoX at df* forsome delay
constant df11, and changes state away from X at rffax; by
definition, dffa anddfax arebothinteger multiples of^m,and
hence so is their difference, giving the result. Suppose true
for all gates of level < N. Consider some g at level N, and
somearbitrary input waveform w. gisa gate g(fx,..., /r),
and each /, is of level < N. Choose Hmti < t0 < tx <
Hi(n +1); the resultholds iff ft9(t0) = ft9{tx). ft9(t0) =
giF^.^Frito)), and ft9(tx) = g(Fx(tx),...,Fr(tx)).

Now, Fjito) = tf/i-d-^-d*) if nfc-jnB^-jfn) is a
constant, X otherwise, and similarly for Fj(tx). By the
construction of/ia/, dj1" = mfcjvf forsome positive integer
m, and so:

h\jn <to <t\ <^m(" + 1) =*•

hMn-dJax < t0-djax < tx-djn <hM(n+l)-0jax =>
hMn-(rrhM) < to-dfax < tx-ajax <hM{n+l)-(mnM) •
hM{n - tn) <t0- dfax < tx - djax < hM(n + 1- m)

and hence to - dfax and tx —dfax are contained on the
open interval (^m(w - "i),^A/(rc + 1 - m)), and by in
duction ft*>(to - d?*x) = ftSi (t\ - dfax). By exactly the
same reasoning, ft*> (t0 - df*) = ft** (tx - df11). Hence if
Q{tQ-o^,t0-cP^)is aconstant, ft'^^^^ is the same
constant, and so Fj(to) = Fj(tx). If #//0_d»»i<0_,pfo) is not
a constant, then Fj(t0) = X. But then "^-ep^^-o^)
is not a constant, and so Fj(tx) = X. In either case
Fj(t0) = Fj(tx), and, since j was chosen arbitrarily,
Fjlto) = Fj(<i) for all 1 < j < r. Therefore, ft9{t0) =
g{Fi(io)t ...,Fr(t0)) = g(Fx(tx),...,Fr(tx)) = fl'(*,),
giving the result. •

This theorem gives a simple algorithm to compute the
state of a network, its delay and hazard properties, given an
XBD Model. Once again we use a method ofcharacteristics.
In particular, for each integer multiple of fta/, h^m, and for
eachgate g we computethreefunctions from Wn •—*• {0,1}

a*8 = Mfl?*,.<.+1*,)<») =°J
J*' = H^c-h^W = •}

x£x = Hi%»„.c,.+ifc,)(») =*>
The equations for each of the characteristics are easily com
puted, as in the case for the XBDO model. We have imme
diately:

Lemma 4.4 Let g be a gate with inputs f\,~-,fr- Let
P\,...,pn be the enumeration of the primes of g, and
qi,—,qmbe the primes ofg. Then:

X'n'1 = £(Pi(Fu-.,Fr) =l)t[&°L/llM(Fk3Gk)
1=1 *=1

XS* = t^(v(Fu^Fr) =l)f[xi^JFk3Gk)
(3)

fc=i»=i

X9nX = (Xfr° + X*!)

Proof: w e x9nA- ForallftA/n < i <hM(n + l), ft9{t) = 1
when w is applied as the input waveform vector. Hence
there is some primep, such that Pi(FX)...,Fr) = 1, and,
further, Fk 3 ftl*{t - d%ax), i.e., w e x{k'Gk(Gk QFk)
for / < t - d%ax < I + 1; it is easy to see / = n - d^ax/hM.
Conversely, let we xi-JL/a^t and Pi(Fx,...,Fr) = 1;
thence Fk = ft^k (t - d%ax) forall nftM < t < {n + I^a/
Then ft9{t) = 1, for all rfoM <t <(n + iyiM, and hence
w £ xi'1 • fh6 same proofholds for X£-°, and the expression
for xgnX 's adirect productoftheobservation that these three
functions must partition the waveform space. •

(3) yields an obvious algorithm for computing temporal
properties on a bounded delay model; we simply construct a
matrix, whose columns correspond to integer multiples of the
associatedmodel quantum/ia/, and whose rows correspond
to circuit gates. We call this matrix the Matrix of Time.
The matrix has D columnsand \V\ rows, where |K| is the
number of gates in the logic circuit and D is the maximum
path lengthof thecircuit in termsof thequantumhm. Three
functions need be stored at each node, and it is easy to see
that each function is of size linear in the number of primes
of the gate function and its complement.

Direct computation of the critical delay is relatively
straightforward on the Matrix of Time. It is fairly easy
to see that:

and, similarly:

As before,

,fi?oo=•= n x?'1
i={.tfliM\

.rtf„=0
D

= n «
*=1«/»mJ

9,0

xflf.oo€{0,l} _ X«?,oo=0 + Xrt?.oo=l

Efficiency of computation on the Matrix ofTime is clearly
dependent upon the number of columns of the matrix; which
is to say, in terms of the static depth (relative to the time
quantum) of the network. Recall that the constants of the
model form the boundaries of the uncertainties in delay;
arbitrary precision in these constants seems unlikely. Our
experience with current industrial delay models suggest that
these constants are on the rough order ofa few percent of the
standard gate delay; in this case, a quantum size of roughly
five percent of a gate delay is probably a conservative esti
mate. Network depths in our experience are rarely deeper
than 30-40 gates, and are often less than that; as a result, we
expect that the Matrix of Time will have at most a few hun
dred columns; in this case, neither storage size nor current
constraint-satisfaction techniques will be unduly strained by
matrix computations. Still, this is very much a matter for
experimental observation.

As with the XBDOdelay model, the waveform vectors can
be represented by a short sequence of input vectors; in this
case, the restriction to two vectors is unnecessary. In some



applications (verification of wave-pipelined circuits, inputs
whichstrobe at some multiple of the rate of other inputs, etc.),
it is desirable to compose an input waveform vector from a
sequence of Boolean input vectors; all that is required in this
case is that one specify a separate max/min arrival time for
each vector. Further, if some input is not changing between
vectors, one simply specifies that its value is unchanged.
However, asynchronous applications where an input can be
generated by an output will pose more difficulties.

5 Conclusions

We have presented a unified approach to solving the false
path problem under a variety of delay models. We have
presented an exact sensitization criterion for networks of
complex asymmetric gates under the XBDO delay model
(or "floating mode"), and XBD delay model. The practi
cal efficiency of the technique remains to be determined,
although an implementation of delay estimation under the
XBDO model has yielded impressive results [11]. The re
sults described apply to combinational logic circuits as well
as synchronous (edge-triggered) sequential circuits. The
application of this formulation of delay models and sensiti
zation criteria to hazard analysis and asynchronous timing
verification is presently being explored.
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