
Copyright © 1992, by the author(s).
All rights reserved.

Permission to make digital or hard copies of all or part of this work for personal or
classroom use is granted without fee provided that copies are not made or distributed
for profit or commercial advantage and that copies bear this notice and the full citation

on the first page. To copy otherwise, to republish, to post on servers or to redistribute to
lists, requires prior specific permission.



RAPID-PROTOTYPING OF HARDWARE AND

SOFTWARE IN A UNIFIED FRAMEWORK

by

Mani Bhushan Srivastava

Memorandum No. UCB/ERL M92/67

15 June 1992



RAPID-PROTOTYPING OF HARDWARE AND

SOFTWARE IN A UNIFIED FRAMEWORK

by

Mani Bhushan Srivastava

Memorandum No. UCB/ERL M92/67

15 June 1992

ELECTRONICS RESEARCH LABORATORY

College of Engineering
University of California, Berkeley

94720



Rapid-Prototyping of Hardware
and Software in a Unified

Framework

by

Pn-D- Mani Bhushan Srivastava Department ofEECS

Abstract

Modern electronic systems contain a mix of software running on

general-purpose programmable processors, algorithms hardwired into dedicated

hardware such as custom boards and chips, electromechanical components, and

mechanical interconnect and packaging. Therefore a systems perspective of the design

process is essential, as opposed to the conventional "chip-focussed" approach. A design

framework for application-specific systems is described in which higher level aspects of

system design, including software, multi-chip design issues present at the board level,

and hardware-software integration are addressed, in addition to the design of individual

custom chips. A high-level description of the system as a network of processes is

mapped to a system architecture template consisting of multiple boards using dedicated

hardware modules and ASICs as well as software processes running on programmable

hardware modules. Use of the framework to applications in multi-sensory robotics and

real-time speech recognition is also described.

Robert W. Brodersen

Chairman of Committee



To Mom and Dad.

\1: -«iii'



1U

Table of Contents

INTRODUCTION 1

1.1 Motivation and Objective 1

1.2 Problem Formulation 3
1.2.1 System Examples 3
1.2.2 Problems in System Design 9

1.3 Previous Work 10
1.3.1 Computer Aids forHardware Development 11
1.3.2 Computer Aids forSoftware Development 12
1.3.3 Computer Aids forConcurrent Development ofHardware andSoftware 13

1.4 Summary 18

SIERA SYSTEM DESIGN FRAMEWORK 19

2.1 Overview of SIERA 20
2.1.1 System Design Methodology in SIERA 23

2.2 The Philosophy Behind SIERA 32

2.3 Summary 34

GENERATION OF HARDWARE MODULES 37

3.1 Overview of Hardware Module Generation Environment 38

3.2 Design Management Framework 39
3.2.1 OCT Database 40
3.2.2 Policies for Design Representation in OCT 41
3.2.3 Design Manager DMoct 47

3.3 Board Layout Generation Tools 50
3.3.1 psg: Package Symbol Generator 51
3.3.2 pfp: PCB Floor-Planner 51
3.3.3 oct2rinf: Interface toForeign Router 55

3.4 Module Generation from Behavioral Specifications 56
3.4.1 Mapping Random Logic toPLDs and FPGAs 57
3.4.2 Generation of ASICs from Behavioral Description 62
3.4.3 Synthesis of Interface Logic 63



IV

3.5 Libraries 65
3.5.1 Package Library 65
3.5.2 Primitive Component Library 66
3.5.3 Subsystem Module Library 69

3.6 Simulation and NetlistChecking 80

3.7 Board Example 83
3.7.1 DSP Multiprocessor Board 84

3.8 Summary 87

SOFTWARE MODULES 89

4.1 Software Issues in Application-SpecificSystems 90

4.2 Software Module Organization 91
4.2.1 Existing Control Mechanisms for Software Modules 92
4.2.2 Using Processes as Software Modules 96
4.2.3 Implementation of Process Modules 97

4.3 Communication and Synchronization of Software Modules 101

4.4 Run-Time and Development Environment 103
4.4.1 Software Module Loaders and Initialization Utilities 103
4.4.2Client-Server Model Using RPC 105
4.4.3 File andTerminal I/O,andOther System Services 107

4.5 Generation of Software Modules Ill

4.6 Summary 112

SYSTEM REPRESENTATION AND SIMULATION 113

•5.1 High-Level System Modelling 114
5.1.1 Alternative Models of Inter-Process Communication 116
5.1.2 Model Used in this work 118

5.2 VHDL-based High-Level System Simulation 122
5.2.1 VHDL Package for Simulating theProcess Network Model 123
5.2.2 Modelling Continuous-Time Subsystems using VHDL 135

5.3 Summary 140

ARCHITECTURE GENERATION 143

6.1 Approaches to Architecture Generation 144
6.1.1 Manually Specified Architecture 145



6.1.2 Fixed Architecture 145
6.1.3 Architecture Template 147
6.1.4 Automatic Architecture Generation 149

6.2 Co-Design of Hardware andSoftware : 150

6.3 Template Mapping BasedApproach to Architecture Definition 152

6.4 The Layered System Architecture Template 154
6.4.1 Alternative Models of System Architecture 154
6.4.2 Details of the Layered Architecture Template 160

6.5 Communication and Synchronization Mechanisms for the Layered
Architecture Template 162
6.5.1 Communication and Synchronization inSoftware 164
6.5.2Applicability of Communication and Synchronization Techniques in

Software to Dedicated Hardware 166
6.5.3 Implementation ofthe Channels in the Architecture Template 168

6.6 Partitioning of the System Specification 176
6.6.1 Manual Partitioning 176
6.6.2 AStrategy for Automated Partitioning 180
6.6.3 Role of Process Network Transformation in Partitioning 181

6.7 Implementation of the Architecture Template 183
6.7.1 Implementation Restrictions and Guidelines 184

6.8 Summary 189

USING SIERA FOR DESIGNING SYSTEMS 191

7.1 The Three Entry Points to SIERA 191

7.2 Designing a Custom Board with Dedicated Hardware 192

7.3 Designing a Custom Board with Dedicated Hardware and
Software Programmable Processors 193

7.4 Designing a System According to the Architecture Template 195

7.5 Summary 200

MULTI-SENSORY ROBOT CONTROL SYSTEM 201

8.1 SystemRequirements 201
8.1.1 Environmental Constraints 202
8.1.2 Goal 205

8.2 Algorithms 205



VI

8.3 System Architecture 207

8.4 Hardware Organization 210
8.4.1 Controller Board 210
8.4.2 Peripheral Board 215

8.5 Software Organization 218

8.6 User's View of the Robot System 219

8.7 Summary 220

GRAMMAR SUBSYSTEM FOR SPEECH RECOGNITION 221

9.1 Global Functionality of the Speech System 221

9.2 Old Implementation of the Speech System 225

9.3 Re-Implementation of Front-End Processing, Successor
Computation, and Back-Track Processing 228

9.4 Board Requirements and Constraints 229
9.4.1 Front-End Processing 229
9.4.2 Successor Computation 232
9.4.3 Back-Track Processing 234

9.5 Hardware Architecture and Implementation 234

9.6 Software Implementation 240

9.7 Summary 240

CONCLUSIONS AND FUTURE WORK ......241

10.1 Conclusions from this Work 241

10.2 Open and Unsolved Problems 243

10.3Future Directions in Systems Design 243

BIBLIOGRAPHY 247

APPENDIX A: VHDL PROCESS N/W PACKAGE 253

APPENDIX B: THE ASSYS SOFTWARE UTILITIES 265

APPENDIX C: SIERA SOFTWARE ORGANIZATION 267



Vll

List of Figures

Figure 1-1: Block Diagram of a CD-I System 4

Figure 1-2: Architecture of CMU Direct Drive Arm II Controller 6

Figure 1-3 : System Architecture Model ofVulcan-II (Figure 3 of [Gupta92a]) 15

Figure 2-1: Simplified Top Level Views ofLAGER and SIERA 22

Figure 2-2 : System Design Using SIERA 24

Figure 2-3 : Multi-Layered Architecture Template for System Architecture Generation 28

Figure 2-4 : User's View of System Design in SIERA 31

Figure 3-1: Design Flow using DMoct 48

Figure 3-2 : Board-Level Module Generation Using FPGAs 60

Figure 3-3 : Board-Level Module Generation Using PALs and PLDs 61

Figure 3-4 : Interconnect Module Generation Using ALOHA [Sun92a] 64

Figure 3-5 : Sample SDL File for a xxOO (7400) Chip 67

Figure 3-6: Layout of an Instance of procC30, a TMS320C30 based processor module 73

Figure 3-7 : Architecture of the TMS320C30 based procC30 Processor Module 74

Figure 3-8 : Hierarchy of SDL files for the procC30Module 76

Figure 3-9: Black-Box Pictureof the opticalR Module 78

Figure 3-10: Event Graphs for opticalR Sub-system Module 81

Figure 3-11: Event Graph for opticalR Module in afl Text Format 82

Figure 3-12: Board Architecture of the MC96002 Based Shared Memory Multi-Processor

with Ordered Memory Access [Sriram92] 85

Figure 3-13 : SDL Hierarchy for the MC96002 Based Shared Memory Multi-Processor with

Ordered Memory Access [Sriram92] 86

Figure 3-14: Physical Layout of the MC96002 Based OrderedMemory Access Shared

Memory Multi-Processor Board 88

Figure 4-1: Organization of a Simple System Using Off-Shelf Hardware and

Module Generators and Libraries from Chapter3 90

Figure 4-2: Control Mechanisms for Software Modules 92

Figure 4-3: Implementation of Process Modules by Multiple Autonomous Kernels 99

Figure 4-4 : Similarity between Organization of Hardware and Software Modules in a

System 101

Figure 4-5 : The Pseudo-Code for Boot-Strapping a Processor Module 105

Figure 4-6 : The SQ Package for Simple Low-Level Message Passing 106

Figure4-7 : Client-Server Model for User-Interface to a Dedicated System 108

Figure 4-8: Implementation ofUNIX-like File andTerminal I/O for Programmable



VIU

Processor Modules on Custom Boards 110

Figure 5-1: Simple Example Systems Described asProcess Networks 121

Figure 5-2: VHDL Implementations of Channels forthe Process Network Model 125

Figure5-3 : A Simple Example Demonstrating the Use of the SHM and SEM VHDL

Packages 134
Figure5-5 : A Simple Example of a Mixed-Mode System 140

Figure5-4: Modelling a D. C. Motor in VHDL Using the Continuous-Time LTI Entity 141

Figure 6-1: Typical System Basedon General-Purpose Multi-Processor Architecture 146

Figure 6-2 : System ArchitectureUsing Application-Specific Boards 148

Figure6-3 : Template Based Approach to System ArchitectureDefinition 153

Figure 6-4: A Layered ArchitectureTemplate for Systems 155

Figure 6-5 : Synchronization Techniques in Software Systems andTheir Relationships 166

Figure 6-6 : Required Functionality of the Layer 2 <=> Layer 3 Memory Mapped

Communication and Synchronization Interface 171

Figure 6-7 : Abstract View of the Communication and Synchronization Interface

between Processing Modules on Layers 3 and4 175

Figure 6-8 : A Hypothetical System Using the Architecture Tbmplate to Demonstrate the

Syntax of a SAIL File 178

Figure6-9: Coalescing a Server Process into a Client Process, andvice versa 182

Figure 6-10: Currently Available Implementation Choices for the System Architecture

Template 183

Figure 6-11: Reference Implementation of the Interface between Layer 2 and Layer 3 187

Figure 7-1: Currently Implemented Design Flow for a Custom Board with Dedicated

Architecture without using the System ArchitectureTemplate 194

Figure7-2 : Using SIERA for the EntireTop-Dowh Designof a System 196

Figure 7-3: Top-Level SDL File for a Custom Board in a System following the Architecture

Template 199

Figure 8-1: Functional Decomposition of the Robot Control System 208

Figure 8-2 : Architecture of the Multi-Sensory Robot Control System following the

Architecture Template of Chapter6 209

Figure 8-3: Architecture of the Robot Controller Board 211

Figure 8-4 : Photograph of the Robot Controller Board 215

Figure 8-5 : Block Diagram and Photographof the Custom Robot Peripheral Board 217

Figure 9-1: Functional Decomposition of the Speech Recognition System 222

Figure 9-2: Old Implementation of the Speech Recognition System 226

Figure 9-3: The Speech System Using the New Custom Board for Front-End Processing,

Back-Track Processing, and Successor Computation 229

Figure 9-4: Front-End Processing Block 230



K

Figure 9-5 : Architecture of the Custom Board for Front-End Processing, Back-TVack
Processing, andSuccessor Computation 236

Figure 9-7 : SDL Hierarchy forthe CustomBoard 237

Figure 9-6 : Alternate Ways of Structuring Successor Computation Using the Flexible
Custom Interface to the HMM Board 238

Figure 9-8 : Photograph of the Custom Board 239





Table 3-1

Table 3-2

Table 3-3

Table 3-4

Table 4-1

Table 5-1

Table 8-1

Table 8-2

Table 9-1

n

List of Tables

A Partial List of Reserved Attributes in structure_master Policy

Relevant to Board Level HardwareDesign 44

Partial Listingof the Board Level Primitive ComponentLibrary 68
Partial Listing of the Board Level Sub-system Module Library 70

Main Features of the MC96002 Multi-Processor Board 87

Currently SupportedProcessor Modules and Associated Kernels 99

Examples of Emulating Various IPC Modelswith the MSG Package 125
Main Features of the Robot Controller Board 214

Main Features of the Robot Peripheral Board 216

Salient Features of the Custom Board 239



XII



Acknowledgments

The encouragement and contributions of friends, colleagues, and mentors is essential to most

human endeavors, and this research was no exception. First of all I would like express my sincere

appreciation to my advisor Bob Brodersen for his constant encouragement, help, advice, resources,

and for plenty of disk space! Most importantly though I would like to thank him for giving me the

freedom to explore whatever projects I wanted to - the result of which is that I found my years at

Berkeley to be the most enjoyable and satisfying ofmy life.

Next I would like to thank everybody who contributed to my research work one way or the other.

Without Bill Baringer and Gautam Doshi's immense help and energy the robot system, which was

much more than just an example for this work - it really provided the motivation behind this

research - would never have come up. Later Manish Arya and Trevor Blumenau wrote system and

application software respectively for the first generation hardware to help make the robot do

something more dramatic than just smashing into the table. In particularTrevor helped define what

the second generation robot system described in this thesis ought to do, in addition to helping me

debug the hardware as well as software. In fact, most of the credit for section 8.2 should go to

Trevor. Tony StOlzle, although initially skeptical, graciously volunteered to be the guinea pig and

try out the approachespoused in this thesis for the speech recognition example. Sriram, from Prof.

Ed Lee's group, was my other guinea pig who cheerfully struggled with the ever-changing tools

and designed the ordered-memory access multi-processor board example in Chapter 3.1 thank

both Tony and Sriram for providing me with invaluable feedback. Most of the hardware module

generators and libraries would not have been feasible without Brian Richard's help in

incorporating my quite dynamic feature wish-list into DMoct and also for explaining the mysteries

of LAGER to me.

The theme of asynchrony that underlies the hardware and software module implementations in this

thesis owes a lot to Jane Sun who helped clarify many aspects of the literature in this area. The

subtleties of the formal techniques for designing asynchronous logic, which I picked up from

discussions with Jane, definitely made me a better hardware designer - something I will always be

Xlll



XIV

reminded of whenever I wear my hardware designer's hat in the future. Sam Sheng deserves

special thanks for cheerfully explaining to me, even late at night, the subtleties of using

Macintosh. Without his help the actual writing of this thesis would definitely have taken much

longer. Of course, the games he gave me for the Mac also provided me with nice breaks from those

long writing sessions in FrameMaker.

All the members of bjgroup, but most of all my cubicle mates Anantha Chandrakasan, Jane Sun

and Kevin Komegay, made it fun to be in Cory Hall for all these years. Thanks Anantha, Jane and

Kevin for being such nice friends, and for bearing with my mood swings and messy desk!

I am grateful to the other members of my thesis and qualifying examination committee besides my

advisor - Professors Ron Fearing, David Culler, and Charles Stone - for providing me with

valuable feedback during my qualifying examination and later. In particular I would like to thank

Ron Fearing for explaining many aspects of robotics at various times. In addition Professor Jan

Rabaey, although officially not on my committee, provided valuable feedback on numerous

occasions - in fact he has been like a second advisorto me whenever Bob was away.

Finally, I would like to thank Mom and Dad for their love, encouragement, and patience while I

stayed away from the real world - without which I would not be where I am today. I would also

like to thank my sister Mukta and brother-in-law Gyanesh for making my transition to the

American culture smooth, and for providing ahome-away-from-home.



CHAPTER 1

Introduction

Computer systems areubiquitous in the modem society, however most of these computers arenot

general-purpose computers such as PCs or the workstations. These specialized computer systems

are embedded in communication devices, consumer electronics and appliances, industrial process

controllers and automobiles. They perform dedicated tasks while interacting with the user and the

physical world in real-time using a variety of sensors and actuators. Such application-specific

computer systems are being applied to increasingly diverse and complex applications. Unlike

general-purpose computer systems, the computational and I/O architecture of these application-

specific computer systems are tailored specifically for the task to be performed. Further more,

these application-specificcomputer systems areoften very sensitive to non-recurringdesign cost

and time. All this makes the design of such systems complex, and necessitates design methods that

are different from those used for general-purpose computer systems.

1.1 Motivation and Objective

This thesis explores computer-aided methodologies for the design of these application-specific



computer systems (from now on the word system will be assumed to imply a computer system).

Computer-aided design (CAD) tools are essential to making it costeffective for adesigner to tailor

the computational and I/O structure by easilyexploring the design space, and for this reason much

research has been done developing such tools, and design-methodologies based on them.

However, this work has been concentratedon the design of individual application-specific ICs, or

ASICs. Although these ASICs - or chips with dedicated architectures - are important, they

neverthelessrarely constitute acomplete system by themselves. Real-life systems arecomposed of

a mix of software running on general-purpose programmable hardware, ASICs and other

dedicated hardware, electromechanical components, and mechanical interconnect and packaging.

They are distributed acrossmultiple packaging levels including chips, MCMs, PCBs, backplanes,

and even networks.

This "chip focussed" research in CAD has largely ignored taking a systems perspective of the

design process. While the CAD,tools for ASIC designs are in a fairly mature state - in some

application domains it is even possible to completely synthesize an ASIC from a high-level

behavioral description in a matter of hours [Rabaey91][Micheli90][Shung91] - CAD

methodologies for dedicated systems have not kept pace.

A unified approach that encompasses these three key aspects of system design - software,

hardware, and, mechanical - is essential. What makes this problem interesting is that these three

domains are not isolated - design trade-offs need to be made across these domains. For example, a

computation can be performed either by software running on programmable hardware or directly

by dedicated hardware, dedicated hardware components require system software drivers to

communicate and synchronize with them, and mechanical properties of interconnect affect the

system partitioning and communication protocols.

Thus a need arises for tools that will enable a designer to explore this complex design space, and to

rapidly prototype an application-specific system.



This thesis investigates one partof this problem by describing a unified CAD framework for the

rapid-prototyping of software and hardware for application-specific systems that span multiple

printed-circuit boards and are composed of off-the-shelf as well as custom, programmable as well

as dedicated components. Instead of addressingthe ASIC design problem (which we will consider

"solved"), the higher level aspects of system design such as multi-chip design issues present at the

board level, system software, representation and simulation of mixed software-hardware-

mechanical systems, are investigated.

1.2 Problem Formulation

The word system is not a very precise term - one person's system is another person's component

This makes it difficult to state the exact scope of this thesis. This linguistic difficulty is bypassed

here by describing some existing systems to exemplify the class of systems which are being

targeted. These examples are then used to identify and abstract the key problems in rapid

prototyping of such systems.

1.2.1 System Examples

Philips Compact Disc-Interactive System

The first-generation Compact Disk-Interactive (CD-I) player introduced by Philips in late 1991 is

a good indicator of the type of devices people would routinely interact with in the near future. The

CD-I integratescompact disk quality audiowith full-motion video, still pictures, text, graphics and

animation to create a multi-media environment through which a user can navigate using a remote

control or a mouse. The required data and program is stored on a compact disk (CD).

Figure 1-1 shows a block diagram of the hardware specified by the CD-I standard. The system is

based around Motorola's 68000 family of microprocessors (the first CD-I player uses MC68070

and the future players will use MC68340 micro-controller which is based around a MC68020 core)



CD
CONTROLLER

CD
DRIVE

NVRAM &
CLOCK

CALENDAR

AUDIO
DAC

AUDIO AUDIO
LEFT RIGHT

MC68340or

MC68070

PROCESSOR

+ CD-RTOS

FULL MOTION
VIDEO

CONTROLLER

EPROM

VIDEO
SYSTEM

CONTROLLER

DRAM DRAM DRAM

VIDEO
SYNTHESIZER

VIDEO
DAC

«.....................

RGBOUT

USER I/O
PERIPHERAL
INTERFACE

Figure 1-1: Block Diagram of a CD-I System

running CD-RTOS (Compact Disc Real-Time Operating System), a special real-time operating

system derived from OS-9 real-time operating system. The microprocessor is the data manager

that controls the data flow around the system and interprets CD-I commands in real time.
»

Surrounding themicroprocessor are dedicated hardware modules, each handling adifferent task. A

CD driver interface andcontrol module runs the CDmechanism and recognizes the differenttypes

ofdata from the disk. The control information is separated from the data information(audio, video

and text), and the latter is routed to the audio and video modules. This is done under the control of

the CD-RTOS which handles tasks such as the synchronization of the audio and video data. The

audio module doesdata decompression and othersignal processing beforeoutputting it to anaudio

amplifier and speaker system.The video moduleis composed of two sub-modules. The first sub-



module (not available yet) produces full motion video from MPEG compressed video data. The

second sub-module handles still pictures, text, graphics, and animation. The video output from the

two sub-modules is combined in a video DAC before being sent to a display. The audio and video

modules are based around ASICs. The last module handles user interaction through a variety of

peripherals, such as infra-red remote controls, joysticks, and keyboards.

The CD-I system is characterized by a heterogeneity of computation models in the different parts

of the system, with a variety of real-time constraints. At the top level the system is reactive, or

event-driven, in nature. The software running on the microprocessor responds to user input and to

the datacoming from the disk. The interaction with the user has soft constraints on the latency of

the response, whereas the interactionwith the disk has hard constraints on latency and throughput.

The audio and the video modules on the other hand do primarily signal processing computation

and arebest modelled in a data flow fashion with hardthroughput and latency constraints, and high

data rates requiring dedicated hardware.

The CD-I player currently marketed by Philips does not include the full motion video MPEG

decompression unit. It is otherwise a complete implementation of the functionality described

above, although the interactive response time of the playeris distinctly slow. This version makes

extensive use of off-shelf general-purpose chips resulting in a machine that is quite bulky. A set of

ASICs for implementing the various modules in the CD-I standard architecture in a more efficient

manner is said to be now under development. This suggests that a design philosophy was used

where the board level design was done separately from the chip design, probably because of time

to market reasons. Essentially, the current implementation appears to be a prototype using

off-the-shelf components of the eventual implementation. The use of a system design environment

where the board and chip level design are tightly coupled can result in a smaller and higher

performance design while minimizing design time.

A goal forthe work described in this thesis is to be able to rapidly design systems with sucha mix



of software programmable and dedicated hardware, heterogenous computation models, and real

time constraints.

CMU Direct Drive Arm II Control System

The second example describes a research oriented robot control system from CMU for their

Direct Drive Arm II project. The system, shown in Figure 1-2, is characterized by a reliance on

SUN 3/260
Workstation

with
VME bus
Backplane

I
TMS 320C2X

Joint
Controller

#1

VME-to-VME
Adapter

Ironies
MC68020
Processor

Parallel
I/O Port
Board

VME-to-Multibus
Adapter

I
TMS 320C2X

Joint
Controller

#2

T T
To/from Robot To/from Robot

Joint 1 Joint 2

Androx
Image

Processor 7KNI
Camera

oq 6DOF
Joystick

Tactile Sensor

o
Force Sensor

I
TMS320C2X

Joint
Controller

#6

T
To/from Robot

Joint 6

Figure 1-2: Architecture of CMU Direct Drive Arm II Controller

off-the-shelf commercial boards. A VME bus based SUN 3/260 is the host with a VME-to-VME

bus adapter to isolate the timesharing host from the real-time system. Multiple Ironies MC68020

boards reside on the second VME busand are controlled by Chimer II, a real-time multiprocessing

operating-system. A Mercury 3200 Floating Point Unit with a peak performance of 20 MFLOPS

also resides on the second VME bus. Six cards based on Texas Instruments TMS320CX DSP



processor reside on a Multibus backplane, each controlling one joint of the CMU Direct Driver

Arm II. The Multibus is connected to the VME bus through a VME-to-Multibus adapter. Multiple

sensors are connected to corresponding I/O ports: a tactile sensor to an Ironies serial port, a six

axes force sensor to a parallel I/O board, and a camera with monitor to a Androx Image Processing

board. A six degree of freedom joystick is also connected to an Ironies serial port.

Although much more complex, this system has attributes similar to the previous example -

heterogenous computation models and many real-time constraints. However, the emphasis on off-

shelf hardware has resulted in an inelegant and complicated implementation. For example, both

VME and Multibus backplanes are used because of the limitations imposed by the commercial

boards when a single VME backplane would have sufficed. This results in an unnecessarily

complicated electrical and mechanical hardwareorganization. The disadvantage of reliance on off-

shelf boards is furtherdemonstrated by the fact that an entire board is devoted to a simple function

such as I/O port for the force sensor. On a custom board this functionality can be implemented in

less than a few square inches. The use of off-the-shelf boards for I/O also results in a much looser

coupling of I/O devices with the processors where the I/O data is consumed or produced, which of

course has a negative effect on the performance besides complicating the software for controlling

the I/O.

Other System Examples: Speech Recognition and Robot Control

Two other example systems which demonstrate the types of systems of interest in this thesis are a

real-time speaker-independent continuous speech recognition system [Stolzle91] and a multi-

sensory robot control system [Doshi89][Srivastava92]. Both these systems are complex real-time

systems whose performance requirements precluded the use of off-shelf general-purpose

computers.

The speech recognition system models speech generation as a hidden Markov model, and

formulates the recognition process as a search for the most likely sequence of states of the Markov



model in a trellis of states using the Viterbi algorithm. Forreal-time recognition of a 60,000 word

vocabulary this requires 200,000 states to be evaluated every 10 ms. This task is beyond the

capability of general-purpose processors as demonstrated by the fact that the best available

implementations using general-purpose processors are able to achieve speaker independent,

continuous speech recognition in real-time forvocabularies of around 1000 words. As a result, the

implementation of the system makes extensive use of custom boards as well as custom chips, with

the overall system being coordinated by control software running on a general-purpose computer

under the control of a real-time operating system.

The multi-sensory robot control system is required to control in real-time a six degree of freedom

robot arm using data from a variety of sensors, such as position/velocity sensor, force/torque

sensor, proximity sensor etc. Both the position of the robot arm, and the forces it applies to the

physical environment, have to be controlled using hybrid force-position control algorithms. As

evident from the example of the CMU robot controller presented earlier, the use of general-

purpose hardware results in an unwieldy and inefficient design. A goal in this robot controller was

to implement the entire controllerand sensor I/O in just one or two boards making use of custom

chips and boards. Given the complex event-driven natureof the controllermany of the tasks need

to be carried out in software whereas custom hardware is helpful in efficient interfacing to the

diverse sensors and actuators.

The design of both these systems could be aided immensely by a methodology that encompassed

the design of chips, boards, and software. In fact, a versionof the robot control system, and a part

of the speech recognition system were successfully implemented using the design framework

described in this thesis. Both these designs are much more compact and higher performance than

the existing designs that had been implemented using off-the-shelf boards and chips. Chapters 8

and 9 will describe these systems and theirdesignusing the tools presented in this thesis.



1.2.2 Problems in System Design

The above examples are representative of the application-specific systems that are the focus of

this work. In the following discussionthe primary characteristics of such systems are abstracted so

as to define the key problems that occur in their design.

These systems continually interact with their environment - they are reactive systems. The

environment can be a human user, an I/O device, a mechanical system such as the robot etc. This

interaction is usually subject to timing constraints defined by the environment which requiresreal

time responses. These timing constraints can be either on the latency of a response or on the

throughput. A heterogeneity of computation models is also exhibited by these systems. For

example, at the top level they are to a large extent event-driven, continuously having to react to

external and internal stimuli. But on the other hand they often contain signal processing

subsystems that are best described in a dataflow model. Similarly parts of the system may have

real-time constraints, while the other partsmay be non-real-time. Being able to specify, simulate,

implement, verify, and test such systems is the key issue in the design process. Some of these

problems are studied in this thesis in an attempt to automate as much of the design process as

possible using CAD tools, and as will become evident, modularity and reusability also play an

important role.

Most of these systems can naturally be decomposed into communicating asynchronous and

concurrent components. The system architecture - both hardware and software - also reflects this

decomposition. Therefore issues related to concurrency, communication, and synchronization,

play an important role in system design at all levels from specification to hardware and software

implementation.

Except for high performance systems where they do not have a choice, the designers of such

systems shy away from the use of dedicated hardwarein favor of general-purpose processors. The

system is thus reduced to a software system - the CMU robot control system described above



10

being an example. However experience at chip level has amply demonstrated that ASICs with

dedicated architecture often simplify the implementation of an algorithm, as opposed to software

running on a processor, because they make it easier to meet real-time constraints on latency and

throughput, as well as constraints on area and power. For example, real-time I/O interaction with

the environment, which usually complicates the design of software systems, is often simplified

with the use of dedicated hardware. Chip-level CAD tools such as LAGER [Shung91] have made

ASIC implementations of algorithms competitive to software implementations in terms of design

time. However tools to give system level designersa similarability to easily explore and prototype

alternative system implementations with different mixes of dedicated and general purpose

hardware are not available. The problems that need to be solved for this include partitioning the

functionality between software and dedicated hardware, generating the required hardware and

software modules, and interconnecting the hardware and software modules.

Another set of problems in the design of these systems are related to their robustness and

manufacturability. Problems in design for noise, mechanical packaging and interconnection,

thermal analysis etc. fall under this category. Althoughthis thesis makes no attempt to automate

these aspects of the design process because they are stilllargely anart, theseissuesare discussed at

various places in the thesis. Run-time environment and user-interface present some of the other

problems in the design process of these systems.

1.3 Previous Work

This work draws on a rich history of separate work for computer aids for design of ICs and for

software engineering (CASE). The previous work in these two distinct areas are presented in an

attempt to isolate techniques that will also be useful at the system level. In additionresults from

the current research in the nascent area of Hardware-Software Co-Design will alsobe given.



11

1.3,1 Computer Aids for Hardware Development

Most of the work in computer aids for hardware design has been done at the chip level where

CAD tools are available at all levels ofdesign - layout tools for physical design, silicon assemblers

and compilers for structural and register-transfer level (RTL) design, and synthesis tools for

behavioral level design. In contrast board level design is still almost exclusively done in terms of

low-level structure (schematic of chips) and physical layers.

MICON

One board-level CAD tool described in the literature that allows design at a higher level is the

microprocessor "configurer", or Micon, system from CMU [Birmingham89][Birmingham92]. It is

a CAD environment that uses an AI expert system to generate a single-board computer. The

computers designed by Micon consist of a microprocessor, ROM, SRAM or DRAM, cache

memory if supported by the processor, serial and parallel I/O, standard bus interface, and circuitry

for support functions such as address decoding,clock generation etc. The user specifies the type of

the microprocessor, amount and type of memory, and the number and type of I/O devices. The

knowledge about the components and the microprocessor system structure in the rule base is then

used to generate a design satisfying requirements on board size, cost, and system reliability.

Although Micon raises the level of design, its use is restricted to single-board computers with a

restricted architecture.

CAD Systems for ASIC Design

At the chip level many university as well as commercial integrated CAD systems are available

that allow ASICs to be generated starting from high-level structural, RTL, or behavioral

descriptions. LAGER [Brodersen92][Rabaey86][Shung89][Shung91], CATHEDRAL

[Rabaey88], Bit Serial Silicon Compiler [Jassica85], System Architects' Workbench (SAW), BLIS

[Whitcomb92] and Olympus [Micheli90] are some such CAD environments.Among these the

LAGER CAD environment is one of the most versatile. The board-level hardware generation



12

aspects of this thesis are in fact based on LAGER. The core of LAGER is a silicon assembler that

allows a high-level structural specification of an ASIC in terms of parameterized functional

modules and modules specified behaviorally as a set of boolean equations. Such a structural

specification is usually needed for very high data rate applications and for I/O interfacing

applications. On top of this silicon assembly core several behavioral synthesis and mapping tools

are built. HYPER [Rabaey91] takes a dataflow description of an algorithm in a language called

Silage and uses datapath and control synthesis techniques to generate an ASIC with hardwired

control. It is suited for medium data rate applications with simple control and low resource

sharing. Many DSP applications fall in this category. C-to-Silicon [Thon92] is a behavioral

mapper which takes a procedural description of an algorithm in a C-like language called RL and

generates an ASIC with microprogram control using an architecture template (called KAPPA)

with user specified datapath and a retargetable compiler. It is suited for control dominated, low

data rate applications. Another tool built on top of the silicon assembler is a FIR filter generator

called FIRGEN [Jain91]. It generates a FIR filter structure from a frequency domain specification.

There are other such special-purpose behavioral mappers built on top of the LAGER silicon

assembler. This notion of separating the ASIC design into two phases - one that generates an

architecture (high-level structural description) from a behavioral specification, and the other that

generates the physical layout from the architecture - with the two phases communicating via a

well-defined structural description interface is a key feature of LAGER. The parameterized

module libraryand the design managerarethe other important features of LAGER. Some of these

prove to be applicable at the board level too.

1.3.2 Computer Aids for Software Development

On the software side, many computer aids are available that enable structured development of a

complex software system. Traditionally these computer-aided software engineering (CASE) tools

automate structured or object oriented techniques, use diagrams and textual specifications to

specify system requirements, and specify the architecture of the software implementation. While



13

some of these are just environments for structured code development and documentation, others

allow the system to be specified using a formal textual or visual/graphical language according to

an abstract computation model and then generate code for a programmable general-purpose

uniprocessor or a homogeneous multi-processor computer. Examples of commercially available

CASE packages include StateMate from i-Logix, Matrixx/SystemBuild from Integrated Systems

Inc., SES/workbench from Scientific & Engineering Software Inc.

Some recent research work, such as GRAPE [Lauwereins90], GABRIEL [Lee89], and McDAS

[Hoang92], has extended CASE to real-time applications in digital signal processing (DSP).

Starting from a block diagram or language based description, software is generated for a

homogeneous multiprocessor. Real-time constraints are met by using computation models and

scheduling strategies that take advantage of the synchronous dataflow characteristic of DSP

algorithms. The special characteristics of DSP algorithms allow these CASE tools to provide a

much more vertically integrated and automated environment than general purpose CASE tools.

GABRIEL and GRAPE use a library of primitive code segments whereas McDAS relies on

translating data flow graph segments to C during the code generation process.

Some of the recent CASE tools have started to integrate hardware modelling and specification by

trying to establish a link between tools that help automate software development to those that

automate hardware development. This is typicallybeing done by allowingmodelling of hardware

components, and by generating VHDL or other HDL code for simulation and/or synthesis.

StateMate from i-Logix and SES/workbench 2.0 from Scientific andEngineering Software Inc. are

commercial tools with such capabilities. Ptolemy, which is the successor to GABRIEL and

discussed in the next section, also allows simulation of hardware components together with

specification for the rest of the system.

1.3.3 Computer Aids for Concurrent Development of Hardware



14

and Software

As mentioned in the previous section some of the CASE tools provide a loose coupling between

the development of hardware and software components of a system. However some recent

research has attempted to explicitly address the problem of concurrent development of the

hardware and software, although in a more limited context than in this thesis.

Ptolemy

Ptolemy [Ptolemy91] is a multi-paradigm simulator framework that uses object oriented software

techniques to allow simulators with radically different computation models (such as synchronous

dataflow, dynamic dataflow, discrete event) to be tightly coupled. This allows different parts of a

system to be simulated according to computation models that are best suited for the respective

pan. These parts can then be connected or one hierarchically embedded in the other.

One of the supported computation models, called domain in Ptolemy, is the THOR domain which

provides the ability to model digital hardware. This allows low level hardware implementation of

partof the system to be simulated with rest of the system which may be modelled at a higher level

of abstraction in a different domain for later mapping into software. Further more, the THOR

model library contains interfacesto cycle-by-cycle simulators providedby manufacturers of some

processors (such as MC5600 and MC96002 from Motorola). These simulators allow the

*simulation of actual execution of programs onhardware using those processors.

These features of Ptolemy provideanexcellent framework forsupporting the simulationphaseof a

system design that may contain both hardware and software components. Although in its present

form it is still not versatile enough to handle all scenarios of mixed hardware and software

simulation, some recent work has reported using Ptolemy for the simulation of an echo canceller

where the execution of software running on a MC5600 based hardwareis simulated together with

an A/D converter [Kalavade92].



15

Although Ptolemy provides acode generation facility for parts of the system modelled in the

Synchronous Dataflow domain, it neither supports real-time software asencountered in event-

driven reactive systems, nordoes it have any capability to support the actual implementation ofthe

hardware.

Vulcan-II

This is a CAD tool which is currently underdevelopment at Stanford [Gupta92a][Gupta92b] and

provides the ability to map an algorithm described in Hardware-C to multiple ASICs and one

microprocessor such that part of the functionality is implemented in software. It uses the

architecture model shown in Figure 1-3.The architecture model in Vulcan-II is based around one

software programmable processor and multiple ASICs, all of which are masters on a shared bus

which also has a common memory. The system is implemented by partitioning it into dedicated

hardware on the ASICs anddynamically scheduled program fragments, or threads, executing on

MEMORY

ML Program

User Data

MICRO

PROCESSOR

Reprogrammable
Component

Interface Buffer

** •( ASIC J

Application-Specific
Components

Figure 1-3 : System Architecture Model of Vulcan-II (Figure 3 of [Gupta92a])



16

the processor. The common memory not only contains the program and data memory for the

processor but also an interface buffer memory using which the ASICs communicate with the

software programmable processor. The interface buffer has two parts: a FIFO buffer for storing

tags for scheduling the threads and an associative memory based data buffer for storing the actual

data being transferred from the ASICs to the processor with the data being keyed according to the

tag.

Instead of addressing the problem of implementing a complete system, Vulcan-II primarily

addresses the problem of partitioning the control and data flow graph corresponding to the

Hardware-C description on to this architecture model while meeting bus bandwidth constraints.

The existing Olympus ASIC design system [Micheli90] can be used to implement the ASICs, and

C code is generated for the software component. However many important problems that will

occur in a real implementation of the architecture model have been ignored in Vulcan-II. These

unaddressed problems include:

a. implementation of the multi-master bus protocol and logic

b. generation of ASICs which have the required bus-master interface logic

c. implementation of the microprocessor sub-system hardware

d. implementation of the communication memory sub-system which is required by the
architecture model to have a complicated tagmatching capability

o. generation of the board to actually realize the multi-chipsystem
»

The architecture model itself is quite restrictive as it allows only one microprocessor, requires the

ASICs to be clock synchronous, and does not allow any interaction between the software

executing on the microprocessor with the rest of the world. A key weakness of the Vulcan-II

architecture model is the existence of a single shared bususednot only forcommunication with

the ASICs but also forprogram and memoryaccess for the software running on the programmable

processor which results in a severe bottle-neck. In addition, the architecture requires the processor

as well as allthe ASICs to be bus masters. Although [Gupta92a] and [Gupta92b] do not mention

the implementation details, suchmulti-master busses invariably havecomplex protocols and



17

require complicated interface logic. Such multi-master busses also have access arbitration

overhead which not only makes effective bandwidth low but also difficult to estimate. The

interface buffer memory is alsoa shared resource and a bottle-neck. The implementation also

requires an expensive associative memory based data buffer. All these factors appear to make the

architecture model not only not scalable but also difficult to implement

The Vulcan-II model also only allows for one programmable processor. While this makes the

partitioning problem amenable to automation, it restricts the flexibility of the software

programmable part of the system. Software programmable processors range from simple micro

controllers to general-purpose microprocessors to specialized digital signal processors, and they

are suited for different kinds of applications. A single system might use general-purpose

microprocessors to handle software for user interface, networking etc., signal processors for

numerically intensive computation, and microcontrollers for control intensive software. An

architecture model that allows a single software programmable processor does not allow the

system to take advantage of these specialized programmable processors. In addition, the single

programmable processoris shared between all the ASICs, and can easily become the performance

bottle-neck.

This restrictive architecturemodel is needed for the partitioning algorithm used by Vulcan-II to

work. The architecture model appears to be driven by the need to make an automatedpartitioning

algorithm feasible asopposedto requirements of real systems. The partitioning algorithmitself is a

greedy algorithm that first maps all nodes with data-dependent delays, sucb as a data-dependent

for loop, into software and then greedily moves nodes from hardware to software until the bus

bandwidth is exceeded. The nodes mapped in software are then implemented as a finite-state

machine driven by data arrival from the ASICs. The bodies of nodes, such as the data-dependent

for loop, are required to have statically known delays, and are scheduled cyclically. Using the

statically known delays a maximum bound is found for the rate of invocation of each node from

which the bus bandwidth required is calculated, Unfortunately, this algorithm will perform poorly



18

if the nodes are unbalanced in terms of the amount of data they produce per invocation. Further,

the partitioning ignores the effect of synchronization delays on the available bus bandwidth, In a

multi-master bus these delays can consume a large fraction of the bus bandwidth.

In summary, Vulcan-II models the system design problem as primarily one of partitioning, and

uses a restrictedsimple system architecture model to make the partitioning problem tractable.

1.4 Summary

From the discussion in the previous section it is clear that little work has been directed towards

treating custom hardware and software in an integrated fashion for system design. This is

surprising in view of the obvious conceptual symmetries between hardware and software. For

example, the notions of modularity, reusable parameterized libraries are presentin both hardware

and software. The behavior specification paradigms used in the two domains demonstrate

remarkable similarities. Further, many techniques caneasily be extended from one domain to the

other. Forexample, techniques for inter-process communication and synchronization in software

operating-systemsprove to be applicable in hardware domain as well.

The following chapters describe a computer-aided design framework for dedicated board-level

systems whichuses a unified view for hardware and software components that makeup a system.

'Chapter 2 gives an overview ofthe design framework. Chapters 3and 4 describe the generation of

hardware and software modules respectively. The techniques and tools presented in these two

chapters are not specific to any particular application domain. Chapters 5 and 6 describe

techniques for architecture mapping that while notbeing universally applicable provide acomplete

vertical trajectory for designing a large class of systems. Chapter 7 gives a view of the tools,

libraries, and models described in theearlier chapters from the perspective of auser Chapter 8 and

9 describe thedesign of a robot control system and a part of a speech recognition system using the

design framework described in the earlier chapters. Chapter 10 concludes the thesis by presenting

ideas for future research in this area of systemdesign that is still youngand not very well defined.



CHAPTER 2

SIERA System Design

Framework

A system design can be represented according to three main views or levels of abstraction -

behavioral, structural, and physical. The behavioral representation specifies the system

functionality in some suitable textual or visual formalism, the structural representation specifies

the system architecture in terms of the hardware/software modules and their logical connectivity,

and the physical representation specifies the actual physical implementation as a spatial

relationship between the component themselves and the environment. These levels of abstraction

are also valid at the chip level where efficient design environments are available for transforming a

behavioral or structural representation to a physical one. However, as discussed in the previous

chapter, this is not true at the system level where CAD aids are relatively primitive.

A system design environment would allow a user to represent the behavior or structure of a

system, together with constraints, and transform the initial representation to generate a physical

implementation. For such a design environment to be realized the problems of how to represent a

system at each of the three levels of abstraction, and how to transform a higher level representation

to a lower one need to be solved. Simulation at each level of abstraction, and verification of one

19



20

level against another are also very important problems. These problems are explored in this thesis

in context of the class of real-time reactive systems described in the previous chapter. As this

thesis will show, solutions to some of these problems exist or are easily extrapolated from

experience at chip level, others require new techniques, and still others remain to be solved. The

results of this investigation have been integrated in a system design environment called SIERA

which embodies a true system design methodology. SEERA also encompasses work done by co-

researchers who are looking into other aspects of the system design problem. An overview of

SIERA is presented in this chapter, and the specific contributions of this thesis are detailed in the

following chapters.

Note that there is nothing fundamental about dividing the design process into the two phases of

behavioral-to-structural and structural-to-physical transformation. The system design process is

really one of continuous refinement from higher level representations to lower level ones. The

particular division described here was found to be very useful in the LAGER chip design

environment because of the relative independence of the two phases, and it appearsto be useful at

the system level too. It is possible to subdivide each of these phases further. For example the

structural-to-physical transformation at the chip level is often viewed as a two step process of

going from high-level structure (architecture or RTL description) to low-level-structure (gatelevel

description) and then to physical.

»

2.1 Overview of SIERA

The overall organization of SIERA reflects its roots in LAGER

[Rabaey86][Shung91][Brodersen92] - the custom chip design environment developed over the

last six years. One of the key features of the organization of LAGER was the separationof the

behavioral-to-structural transformation phase from the structural-to-physical transformation

phase. Since the behavioral-to-structural transformation is a difficult problem even at the chip

level, this decoupling allowed several special purpose tools to be developed for it while providing



21

a general-purpose silicon assembler for doing the structural-to-physical transformation. A

structural interface, described in detail in Chapter 3, wasestablished in which the architecture of a

chip can be generated from ahigh-level tool orcan bemanually specified. SIERA has asimilar top

level organization with distinct subsystems for the behavioral-to-structural transformation,

structural-to-physical transformation, and system testing. The scope of this thesis is restricted to

the first two aspects of SIERA, and the reader is referred to [Kornegay91] for information on how

support for system testing is integrated into SIERA. In addition [Sun92a] describes ALOHA, a

specialized module generator available in SIERA for the synthesis of interface logic between the

hardware modules in a system. Figure 2-1 shows the top-level view of SIERA and contrasts it to

that of LAGER.

Basedon Figure 2-1 one can identify several problems thatneed to be considered in SIERA:

a. Behavioral representation of systems

b. Simulation of behavioral representation

c. Structural representation of systems

d. Simulation of structural representation

e. Physical representation of systems

f. Physical simulation of systems

g. Behavioral-to-structural transformation

h. Structural-to-physical transformation

These problems in system design are set apart from the corresponding problemsin chip designby

two factors. First, systems arecapable of exhibiting much more complex functional behaviorthan

an ASIC. Second, the implementation medium is much more heterogeneous in case of systems

than in the case of chips. For example, one has to trade-off between dedicated hardware and

software programmable hardware, and betweenoff-shelf chips and custom chips.

As a result of these differences, solutions to many of the above problems for chip design just do

not apply or scale to system design. At the behavioral level the complexity and heterogeneity



Behavioral
(chip functionality

in Silage, RL)

i
HYPER &

C-to-Silicon

J
Structural

(chip architecture
in SDL)

Physical
(chip layout

inCIF)

Fabrication
&

Debugging

~1
Working Chip

Test Vector

&TestH/W
Generation

J
Test Vectors

LAGER

Behavioral
(system functionality

as process n/w)

i
Architecture

Mapping

J
Structural

(system architecture
in SDL, C)

i
System-Level

Module
Generation

Physical
(s/w + board layout

in gerber)

*

Fabrication
&

Debugging

Working System

SIERA

Scope of
this Thesis

Test Vector

&TestH/W
Generation

J
Test Vectors

22

Figure 2-1 : Simplified Top Level Views of LAGER and SIERA

present in systems make it difficult and unnatural to represent and simulate an entire system

according to a single computation model as is usually done in the case of chips. The simple

architecture model of a single controllerand a datapath as used for chips is not adequate for most

board level systems. Hardware implementation that is synchronized to a single clock is usually



23

adequate for a single chip but not for an entire system. The software issues are not present in a chip

design as ASICs mostly have hardwired controllers. These and some other similar issues are

addressed later in the thesis.

On the other hand some of the system design problems can be adequately solved using techniques

that are prevalent at the chip level. For example, as shown in chapter 3, the concept of a reusable

parameterized module library together with a suite of module generators as originally used in

LAGER for ASIC generation works well for board designs too.

Finally, some system design problems, such as physical representation, extraction and simulation,

are not addressed here. This is not because adequate solutions to them always exist - in fact

physical representation of boards and simulation using that information are in a primitive state

compared to those for chips due to the prevalenceof the use of prototyping as the typical strategy

for system debugging.

2.1.1 System Design Methodology in SIERA

The research presentedhere describes the solutions providedin SIERA to the various problems in

system design that were outlined above.The overall goalof the work was to develop within the

SIERA framework a vertically integrated design methodology that supports all stages involvedin

the development of real application-specific systems from high level description to board and

software generation. It was decided to adopt an"application-driven" approach for this, asopposed

to the "tool-driven" approach adopted by many researchers, such as the Vulcan-II system

described in Chapter 1. Critical importance was attached to the usability of the design

methodology to actual applications. This necessitated an approach based on studying real-life

example systems, developing an initial design methodology, and then gradually refining and

automating the design methodology throughexperience obtainedby actually implementing these

example systems. By contrast, a "tool-driven** approach attacks the problem from the other end -



24

emphasis is placed on initially developing a set of automated tools, and then developing a design

methodology around it.

Figure 2-2 shows a more detailed block diagram of the SIERA environment, emphasizing the

design methodology provided by it for designing application-specific systems. The design of a

system is divided into two distinct phases - ModuleGeneration and Architecture Generation.

System Specification
Network of Concurrent Processes

(parameterized textual or graphical)

jBehavior

Simulation
(VHDL)

u Partitioning and
Mapping to

Arch. Template

Parameterized H/W
& S/W Module Library

/
Hardware

Module

Generation

Netlist for Boards

Board Layout
Generation

Boards

j
System Structure
and Parameters

Real-Time Kernels

& IPC Libraries

i
System

Software

Generation

Software

1

Compilation

—I
Executable Code

Figure 2-2: System Design Using SIERA



25

Module Generation

Module Generation refers to the physical implementation of a system given its architecture as a

composition of hardware and software modules. The sub-problems of Hardware Module

Generation and Software Module Generation are addressed separately. In hardware module

generation the focus here is on generation of multi-chip board level hardware modules - the

corresponding problem at the level of a single chip is considered solved. As detailed in Chapter 3,

a structure description language, database policies, and a design manager same as those in

LAGER are used to provide a seamless integration of board and chip level hardware module

generation. A variety of module generators are provided for automatically generating hardware

modules from mixed structure/behavior descriptions, and for automatic placement according to

several different strategies such as abutment and simulated annealing. A key component of the

hardware module generation strategy is a library of reusable parameterized board-level sub

system modules. Such sub-system modules include complete software-programmable processor

modules that can be embedded on a custom board, and modules for communication, signal

processing, and data acquisition. These modules can be customized for a given application

through parameters provided by the module designer. For example, processor modules typically

allow the amounts of different types of memories to be set through parameters. The sub-system

library together with the hardware module generators provides a environment that is much more

sophisticated and versatile than commercially availabletools for board design.

The output of the hardware module generation phase are netlists and placement information

describing the custom boards in the system. A bit-level simulation of the hardware can be done

from this netlist using the THOR simulator and the behavioral models for each chip on a board.

Finally a commercial router is currently used to do the routing. The output is a set of files in the

GERBER format that are used for the board fabrication.

Unlike hardware module generation, the problem of software module generation is not present at



26

the chip level. Initial effort was devoted towards defining an appropriate form of software

modules. As discussed in Chapter 4, the process construct was chosen as the form of software

modules that minimizes inter-module dependencies while exploiting the inherent concurrence

provided by the ability of the hardware module generators to create boards with multiple

heterogenous software-programmable processormodules embedded in them.

Instead of addressing the problem of automatically generating the code implementing a software

process from a high level description of its functionality, effort was directed towards developing

the underlying system software substrate that is needed to support processes. An approach where

an autonomous real-time kernel is run on each of the software programmable processor module

was chosen. One or more software modules - processes - are mapped to each of these processor

modules, and are then managed by the corresponding kernel. Each kernel thus allows a single

processor, capable of a single thread of execution, to be shared between multiple software

modules, each with its own thread of execution. A set of software libraries has been developed to

let the software modules communicate with each other, and with dedicated hardware modules

attached to the software programmable processors.

In addition to the development of the system software itself, effort has alsobeen directed towards

providing various kinds of run-time services for the software modules. These include initialization

and down-loading of the software modules, terminal and file I/O to a host workstation, and

remote-procedure call based communication. Together these services provide a consistent and

powerful software environment for custom boards developedusing this design methodology.

Architecture Generation

ArchitectureGeneration refers to the process of generating a suitable architecture for the system

starting from a high level description. As mentioned earlier these problems aredifficult to solve in

the general case - experience with chip design suggests that a multiplicity of co-existing solutions



27

is desirable. In order to provide a vertically integrated design path for systems of most interest, a

limited solution to the architecture level problemsis currentlyprovided in SIERA.

There are two sets of problems at the architecture level. The first problem is the representation

used to describe thesystemfunctionality, and thesimulation of thisrepresentation. As discussed in

Chapter 5, the system is described here as a network of concurrent processes that communicate

using single-reader and single-writer FIFO channels that connect input and output ports of

processes. The ports are characterized by a protocol that specifies the behavior if the

corresponding channel is not ready for communication, and the channels are characterized by an

associated buffer depth. No unified language hasbeen developed to describe the functionality of

the processes themselves. Instead, a multiplicity of languages such asVHDL and C can be used

for this purpose. This is done because of two reasons. First, a unified language, capable of

capturing the diversecomputation models found in typical systems, appears to not be the desirable

solution from a designer's standpoint (thoughadvantageous for the tool developer). Second, it was

decided to concentrate primarily on the problem of communication and synchronization between

the processes in a system, andnot on the problem of synthesizing an architecture forimplementing

the processes.

A key feature of the processnetwork model is that the notion of processes is equally applicable to

hardware and software modules that constitutea system. In addition,the physical environment of a

system can also be modelled by processesthat run on their own dedicated hardware.

A set of VHDL packages is provided to allow the process network for a system to be simulated

using standard VHDL simulators. In addition to emulating the channel based communication

between processes, these packages also provide the capability to simulate continuous-time

modules described by differential equations.This is useful for modelling the sensors, actuatorsand

mechanical sub-systems found in the physical environment of most systems.

The second problem at the architecture is level is that of generating a suitable architecture to



28

realize a system described using the process network model. An architecture template based

approach is used for this where a process network description is partitioned onto an instance of the

template. The architecture template defines a scalable and parameterized organization of hardware

and software modules in a system. In accordance with the "application-driven" philosophy, the

emphasis is placed on arriving at a suitable model for the architecture template. The problem of

partitioning is not addressed - it is handled manually.

The architecture template specifies the organization of the dedicated hardware modules and

software-programmable processormodules in a system in a multi-layered hierarchy of busses, as

shown in Figure 2-3. The layering in the architecturetemplate reflects the fact that systems have

processes with different real-time requirements. Software processes that requireuser interaction

and sophisticated a software environment are mapped to a workstation that constitutes the top

layer. Other software processes with increasing real-time requirements are mapped to a single-

board computerin layer2, andto layer 3 processor moduleson customboards. All these software-

Software Processes Go Here I

System Bus

BUS 1Standard Board

LAYERS

Slave #1 Slave # n

LAYER 4

Workstation
LAYER 1

t

i

LANoirBus

Single-Board
Computer LAYER 2

+

in »

jol
Custom

Boards

LAYERS3&4

Application-Specific Hardware
Modules Go Here !

Figure 2-3: Multi-Layered Architecture Template for SystemArchitecture Generation



29

programmable processors run real-time kernels to allow easy mapping of multiple software

modules (processes), as described earlier in this section. Dedicated hardware processes, on the

other hand, aremapped to hardware modules in layer 4 that are memory-mapped slaves to layer 3

processor modules. At each level in the template the processor in the upper layer acts as a master

to the processor in the layer below.

In addition to specifying the overall organization of the system architecture, the template also

specifies the interfaces between the processors to implement communication and synchronization

between processes mapped to different processes. This is accomplished by relying on two

important concepts - asynchrony and layering. The processors run asynchronously, and are not

required to have a global timing reference or clock. This simplifies the hardware implementation

as problems such as clock skew areminimized. Any synchronization that is required between two

processors is established, when needed, usingthe interface module linking them. Layering is used

to implementthe channel based inter-process communication in the process network description

by using simpler communication and synchronization primitives to construct the channel objects.

A suitable set of these simple communication and synchronization primitives have been defined

for all possible cases of inter-processor communication in the architecture template. Chapter 6

investigates these issues in detail, and also describes reference implementations of interface

modules for inter-processor communication.

The layered architecture template, while not universal, has proven applicable to a diverse set of

applications. In general it is applicable where the coarse granularity flow of information in the

system follows a hierarchical organization with the required bandwidth and real-time

requirements decreasing and the functional/logical complexity increasing as one goes up in the

hierarchy. Systems that interact with a userwhile controlling a device or processing a signalin

real-time often reflect such an organization.

Thus a complete, though not fully automated, methodology for designing application-specific



30

systems is provided in SIERA. The work here focuses on board level hardware module generation,

development of the system software substrate, high-level representation and simulation of the

system behavior, development of a formal model for the system architecture, and techniques for

inter-module communication and synchronization. The problems of automatically generating the

code for software modules from a high-level description, and automatically partitioning the

process network description onto an instance of the architecture template have been left for future

research.

User's View of the System Design Process

Figure 2-4 shows the system design process in SIERA from the perspective of a user The entry

point is a description of the system as a network of processes. The system is viewed to be

composed of concurrent processes that communicate using FIFO channels with appropriate

protocols. Such a description can currently be written in VHDL, using the packages described in

Chapter5. At this stage all the processes are equal- no decisionis made aboutwhether the process

will be implemented in hardware or software.

Next this process network description in VHDL is manually partitionedonto an instance oflayered

the architecture template. The outputof this step is a file describing the system architecture in the

SAIL (System Architecture Intermediate Language) format. The syntax of the SAIL file is

•described in detail in chapter6. Its primarypurpose is to store information about processorsin the

layered architecturemodel, their interconnection topology, the parameters of the inter-processor

interconnect links, and a many-to-one mapping of processes in the process networkdescription to

processors.

In effect the SAIL file views the system to be made up of two types of entities: processes and

processors. The processes are connected arbitrarily, although the interconnections follow the

channel mechanism specified by the process network model. The processors are connected

according the interconnection topology and interface modules allowed by the layered architecture



31

Process Network Description
of the System in VHDL

Manual Partitioning

SAIL File describing the
Processors and their
interconnection, and
Processes and their
mapping to Processors

SDL Files describing

Jd^SSS. Ccode for s/w processes
"Software Netlist" and

processors

DMoct Linker

Boards Object Files

Run the assys Software^
Environmentc

Working System!

Figure 2-4: User's View of System Design in SIERA



32

template. Theprocessors can either be dedicated hardware modules, orsoftware-programmable

hardware modules. A dedicated hardware module can implement only one specific process. A

software-programmable module, on the other hand, can simultaneously implement multiple

processes. The processes are mapped to the processors taking thisconstraint into account.

Once the SAIL file is generated, the system design process splits into two parallel paths. The

information about the processors in the system, and their interconnection, is extracted from the

SAIL file. From this the SDL files describing the hardware organization of each of the custom

board in the system are generated. Then various module generators and libraries are used to

physically implement eachcustom board. Simultaneously, the mapping ofprocessesto software-

programmable processors in the SAIL file, together with information about the processors and

their interconnection links, is used to configure the real-time operating-system kernels and

software modules to be loaded into each of the software programmable processor This process is

essentiallyone oflinking the code for implementing the softwareprocesses to that ofthe kernel for

each processor. The output of this process is a set of object files, one for each software

programmable processor, that can either reside in a PROM or be loaded at the run time.

After the boards have been fabricated, the run-time utilities provided by the software environment

described in Chapter 4 areused to initialize the system, down-load object files into the processors,

and interact with the system through terminal and file I/O from the workstation in layer 1 of the
»

architecture template.

2.2 The Philosophy Behind SIERA

The previous section gave a global picture of the SIERA design environment and the following

chapters will address some of its components in depth. However an understanding of the

philosophy behind SIERA is essential in order to appreciate these details. The primary goal in

SIERA to aid the designer in developing the board-level hardware and software in a very short



33

time. Together with the chip-level design tools and board and chip fabrication facilities with a

short turn-around time this implies that a complete multi-board system can potentially be

developed in a few months by a single designer. The strategy adopted to accomplish this goal is in

de-emphasizing low-level design optimizations, such as board area or code size, in favor of

optimizations at the architectural or the behavioral level. The various tools and libraries that

constitute SIERA are targeted towards easy exploration of the design-space at such high levels.

Throughout SIERA the emphasis is on facilitating the management of the system design

complexity by discouraging the designer from adopting ad hoc low-level approaches, and

supporting the following principles [Strom91]:

a. Modularity: viewing the system to be composed of smaller, interacting modules with well
defined interfaces. The modules may be hardwaremodules or software modules.

b. Reusability: the reuse of same modules in different systems.

c. Uniformity: modules interact in a uniform way using a small number of well-defined
mechanisms independent of whether the module is in hardware or software, local or remote.
Besides the conceptualelegance,this uniformity alsomakes it practical to have CAD tools that
automate the interfacing of modules.

d. Abstraction: hiding the underlying implementation detail. Performance transparency, or the
ability to estimate the cost of and to optimize the underlying implementation, is given up in
favor of abstraction.

One of the key techniques adopted to enforce the above principles is the extensive use of libraries

which serve as repositories of optimized and reusable modules. These include a library of board

level modules that arecomposed of multiple chips and implement sub-system level functionality,

anda library of softwaremodules.The policies associated with eachlibrary enforcethe uniformity

of its member modules. In order to minimize the size of these libraries extensive use is made of

parameterization. For example board-level hardware modules such as processor modules are

designed so that the memory size, I/O interface and other attributes can be varied by passing

appropriate parameters when the module is used.

Another idea that has proven useful in enforcing the above principles is that of asynchrony - the



34

modules execute asynchronously with no global timing reference (clock), and synchronize when

needed using handshaking. This theme underlies the hardware and software architectures used in

SIERA. Asynchrony naturally encourages modularity by making a module independent of the

speed of computation in another module. In addition it simplifies hardware and software

implementation by avoiding global timing references. This is particularly important because the

target systems are physically distributed over multiple boards making global synchronization

difficult.

Since ASICs are an important part of most systems, seamless integration of the board level

hardware design with that at the chip level is also considered important in SIERA. This is

accomplished by using the same database mechanism and policies as in LAGER. As a result the

structure description language SDL and the design management tool DMoct that were used in

LAGER for ASIC design are also usable for structural design in SIERA, and an identical design

environment is presented to a designer atthe board and chiplevels.

SIERA is an open system in that new modules can be added to libraries and new tools can be

added to manipulate the design. This is intended to be doneby expertusers who are familiar with

the low-level design issues in hardware or software design, the design constraints, and the

underlying database policies for tool integration.

2.3 Summary

The main problems in the design of multi-board systems were identified and an overview of a

system design environmentcalled SIERA was presented whichhas its roots in the LAGER chip

design environment. The design of a system in SIERA begins with a high-level description of the

system as a network of asynchronous processes thatcommunicate using FIFO channels. After the

high-level functionality of the system has been verified using a process network simulator, the

description is mapped to a parameterized layered architecture template thatcontains dedicated



35

hardware modules as well as software programmable processor modules connected using a

hierarchy of busses. The result of this step is a SAIL file that describes the architecture of the

system as an interconnection of processors and a mapping of processes to the processors. The

physical implementation of the system hardware (boards) and software (object files) is then

accomplished by parallel steps of hardware module generation and software module generation

using information contained in the SAIL file together with hardware and software modules

contained in various libraries.



36



CHAPTER 3

Generation Of Hardware

Modules

ModuleGeneration refers to the taskof converting the description of the system architecture in to

a physical implementation. In the case of ASICs Module Generation is often called Silicon

Assembly (note that we use the term 'Module Generation' in a much looser sense than is

conventionally used at the chip level). At the system level, particularly the type of multi-board

systems that are the focus of thiswork, there are two aspects to the modulegeneration problem -

hardware and software - which is due to the duality in the term system architecture. From a

hardware perspective the term architecture refers to a set of hardware modules (processors)

interconnected in a specific topology. From the software perspective the term architecture refers to

a set of software modules (processes) that communicate in a specific topology, and are usually

mapped many-to-one to the hardware modules. A complete physical implementation of a system

means that both the hardware and software view of system architecture be implemented. This

gives rise to the problems of hardware module generation and software modulegeneration. These

two problems cannot be completely isolated because the software implementation will at some

level invariablydepend on the hardware implementation, but for the sake of organization the

37



38

present chapter deals primarily with the hardware module generation problem, and the following

chapter with the generation of software modules. The connection between these is covered in

Chapter 6.

An important pointthatneedsto be emphasized is the separation of the module generation phase

from the architecture generation (i.e. the interconnection of the modules). The former problem is

easierin many ways, and one expects the design aids and methodologies for it to be relatively

general-purpose. This separation of the two phases allows the module generation aids to be used

directly by the user, or as aback-end by other higher-level tools for architecture generation.

3,1 Overview of Hardware Module Generation
Environment

A majorgoal in the development of the hardware module generation environment was to handle

arbitrary hardware architectures implemented ascustom boards using both off-shelf as well as

custom chips, while providing an environment for quick generation of alternative

implementations. Since boards can in turn becomposed of chips, the hardware module generation

problem spans these two levels of packaging - board, and chip. Many mature design environments

are available for the generation of application-specific chips. Therefore, thisworkconcentrates on

themodule generation issues that are present onlyattheboard level. However, as discussed below,
»

the structure description language, database and design management framework used by the

LAGER Silicon Assembler are also being used for this board-level hardware module generation

environment. As a result the chip level module generators in LAGER, as well as chip level

behavioral tools that are built on topof LAGER are available to theboard designer in a seamless

fashion.

One question that arises is that since board design tools are already available commercially, is

there really a need for the hardware module generation environment described here? Existing



39

board design tools typically provide the abilityto place and route a netlist of chips. However

hardware design at such alow level is not sufficient, as is indicated by the experience atthe chip

level. Describing acomplex board asahierarchical netlist of chips is extremely cumbersome - it is

equivalent to designing a chip using a library of primitive gates such as NAND, OR etc. The

answer at thechiplevel has been to raise thelevelof abstraction, and view achipto be composed

of high-level modules that either come from alibrary of parameterized reusable modules (adders,

multipliers, RAMs etc.), or are synthesized from a behavioral description (FSM controllers,

decoders etc.). This two-pronged strategy has proven very successful for the design of ASICs

because it raises the design abstract to a sufficiently high level whileproviding the benefits of

reusable and possibly hand-optimized library modules, as well as the use of synthesis where

appropriate.

Board level design tools have lagged behindthis use of higherlevels of abstraction. The rest of

this chapter isadescription of how these lessons learned atthe chip level have been applied to the

board level hardware module generation problem. Ofcourse, different layout and synthesis tools,

and libraries are needed at the board level, but the underlying philosophy is the same as that

adopted in LAGER for the chip level.

The key requirements for realizing the above design philosophy are an extensive module library, a

variety of layout and synthesis tools, and a design management framework. Oursolution to this

consists of concentrating on the first two requirements flibrary and tools), and adapting the

existing chip-level design management framework provided by LAGER.

3.2 Design Management Framework

The design management framework hasthree key components:

- a database with a procedural interface for information access by the tools
- standard policies to represent varioustypes ofdesign informationin the database



40

- a design manager to provide orderly access to the database by the user and the tools

In the following subsections these three components are described with emphasis on the board-

level aspect, which is an extension of the chip design approachused in LAGER [Brodersen92].

3.2.1 OCT Database

OCT is an object-oriented database for electronic CAD applications which offers a simple

mechanism for storing persistent as well as transient information about the various aspects of an

evolving design. With appropriate policies it has proven capableofhandling designs ranging from

a single transistor to multi-board systems and of representing information ranging from low-level

physical information to high-level structural and even behavioral information. It provides

procedural interfaces in various programming languages, such as C and C++, using which a

program can store and retrieve design information. The actual storage mechanism is hidden from

the program.

OCT is based on object-oriented principles. The basic unit in a design is a cell which can, for

example, represent a chip or a board. A cell canhave multipleviews which are used to represent

different aspectsof a cell. Forexample, one may have a physical view of a board which would

specify the layers and the coppergeometry on them. Similarly one may have a schematic view of

the board which would contain information about its netliststructure. OCT doesnot specify what
•

views a cell may have and what is contained in those views - these issues are decided by an

appropriate design representation policy chosen by the tools. A view can have multiplefacets

which represent different abstractions of its contents. The contents of a view are defined by a

required facet named 'contents'. Finally, therecanbe multipleversions of a facet.

Cells in OCT may be hierarchical - they cancontain instances ofothercells. For example, the cell

corresponding to a boardmay containinstances ofcells corresponding to the chips on the board.

The basic unitin OCTthat is edited by a program is a facet It contains acollection ofother objects



41

which can be classified into geometric objects (layer, point, box, circle, path, polygon, edge and

label), interconnectionobjects (terminal and net), annotation objects (property and bag), hierarchy

objects (instance) and change list objects (change list and change record). Geometric objects can

be used to represent physical geometry. Nets and terminals can be used to represent

interconnections - a very important aspect of electronic designs. Terminals provide a means to

represent information flow between different levels of design hierarchy. A terminal is associated

with either a view or an instance. In the former case they are called formal terminals and in the

lattercase they are called actual terminals. The actual terminals are automatically createdalong

with the instance. The formal terminals are created in the contents facet of the view - the other

facets only refer to them. A common policy for representing connectivity is by attachingthe

interconnected terminals to a net which can thenbe viewed as a node in anelectrical design. The

annotation objectsbagsand properties are usedto specify new types of composite data objectsthat

arenot directly supported by OCT.This is particularly useful because the object structureof OCT

is otherwise static. In fact the design representation policies make extensive use of properties and

bags.

Relationsbetween these objects canbe defined by attaching one object to another. An OCT facet

is essentially a directed graph of these objects. Through its procedural interface OCT provides

mechanisms for storing and navigating such a directed graph, for creating, modifying, deleting,

and accessing the component objects, and for creating or destroying attachments betweenobjects.

However, it doesnot say whatsuchadirected graph means - this is defined by the policies.

3.2.2 Policies for Design Representation in OCT

An OCT policy specifies what directed graph structures of OCT objects are legal and more

importantly what are the semantics of these legal structures. A view following a particular policy

must be defined by a collection of OCT objects whose attachments are correct according to the

policy. A standard set of policies is provided with OCT - schematic, symbolic and physical. The



42

schematic policy [Octtools91] represents the design in an abstract way showing the subcells of a

cell and their connectivity. The symbolic policy [Octtools91] adds information about subcell size

and shape, placement and the implementation of the interconnection. The physical policy

[Octtools91] represents the design exclusively in terms of geometric shapes with no connectivity

information. Every view has an associated policy and it is often the case that the view name is the

same as the policy name. In addition, the policies are independent of the implementation

technology. The technology details are encapsulated in a separate technology database which is

actually just another OCT cell. Every view usually also has an associatedtechnology.

These standard policies were developed for non-parameterized chip design and proved inadequate

for parameterized chip design in LAGER. New policies that were extensions to the standard

policies were developed in LAGER to represent the design of a parameterized chip at different

stages of the design flow. However, even these policies required further extensions to handle

system level issues as described in the following sub-sections.

The structurejnaster Policy

This policy is used to represent the design as a parameterized structural hierarchy.

Parameterization is anefficientway for representing a class of modules in a well-defined manner

and enhances the reusability of designs. For example, a memorymodulecanhave the word width

•andmemory size as parameters. When a parameterized module is instantiated, each parameter is

bound to a specific value.

A hierarchy of OCT views following the structurejnaster policyis the initial representation ofthe

design in OCT. As a result this policyis closelyrelated to the textual and graphical languages used

by the designer to represent the design. In fact this policy almost hasa one-to-one correspondence

to the language SDL (Structure Description Language) whichis atextuallanguage forrepresenting

the structure of a parameterized design. The OCTview of a cell following thestructurejnaster

policy is usually named ,structure_master' and is created from a corresponding graphical



43

schematic or a SDL file. If the cell nameis mycell then the SDL file is calledmycellsdl.

The purpose of the structurejnaster policy is to represent parameterized structure. A cell has

terminals for communicating with the outside world - these terminals arecalledformal terminals.

In addition a cell can contain subcells with the structure of the cell being defined by the

interconnection of these subcells. The subcells are actually instances of other master cells. These

instances automatically have terminals attached to them that correspond to the formal terminals

defined in the corresponding master cell - these terminals are called actual terminals. A set of

formal and actual terminals can be attached to a net to indicate that those terminals are connected.

The structurejnaster view of a cell can have parameters defined for it. These parameters are

called formal parameters and are represented in the OCT viewby defining a property object with

the same name as the parameter inside abag named FORMAL_PARAMETERS contained by the

facet. The value of each property is an optional string containing a lisp expression. The value if

present represents the default value of the parameter which can be overridden by binding a

different value to the parameter when the cell is instantiated at a higher level in the design

hierarchy. The order of definition of the parameters is important because the value of aparameter

canbe defined in terms of thevalues of parameters defined earlier. When acell is instantiated asa

subcell in another cell which is higherup in the design hierarchy, values can be bound to its

parameters by attaching a string valued property with the same name asthe parameter to a bag

named ACTUAL_PARAMETERS which is in turn attached to the instance object. The string

valueof the property is a lisp expression defined in terms of the parameters of the container cell.

There are several special parameter names that are used for uniform module interface and for

passing information to tools operating on the design. For example, cells which have a physical

package at the board level (such as a 74F00) also have a parameter called PACKAGENAME to

specify whichof the available packages should be used for a particular instance.

Attributes canbe attached to the facet of acell, to its formal parameters, to its formal terminals and



44

to nets and instances contained in the facet. These attributes can in general be tree structured with

intermediate nodes being bag objects and the leaf nodes being either bag objects or property

objects. The optional value of each of these property objects is a string representing a lisp

expression in terms of the parameters of the cell. There are several reserved attribute names which

have special meaning to various tools. Table 3-1 shows a list of attributes relevant for board level

NAME VALUE TYPE8 COMMENT

H
ID
U

PACKAGECLASS constant string package hierarchy, e.g. PCB

CELLCLASS constant string e.g. MODULE, LEAFCELL

w
u

CO

S

X numeric X translation

Y numeric Y translation

T string orientation, e.g. R90, MXR90 etc.

POSITION list of two numbers (X translation, Y translation)

ROTATION numeric multiple of 90

OFFSETX numeric offset in X in absolute units

OFFSETY numeric offset in Y in absolute units

<

M

[2

DIRECTION string e.g. INPUT, OUTPUT, BIPUT

TERMTYPE string e.g. SIGNAL, SUPPLY etc.

PINNUMBER integer pin number on the package

Table 3-1: A Partial Listof Reserved Attributes instructurejnasterPolicy Relevant to
Board Level Hardware Design

a. Unless indicated asa constant the value ofanattribute isa string representing a lisps-expression
which candepend ontheparameters of the cell and which must evaluate to thedata type indicated.

module generation.

Besides the values of the attributes parameters of a cell can also be used to affect several other

aspects of the design. For example, parameterized indexed sets of instances can be created

allowing a single description to describe a class of circuits. One and two dimensional arrays are



45

trivial examples of such indexed sets. Similarly, parameterized indexed sets of nets and formal

terminals can be defined with a bus whose width is parameterized being a trivial example.

Generation of selected partsof the structure, including instances, nets and formal terminals, can be

turned off conditionally. A description of how these are represented in OCT is too detailed to be

presented here and is anyway peripheral to this thesis. Interested readers can refer to

[Brodersen92] for a detailed description as well as the corresponding SDL syntax.

A key partof the structurejnaster policy is that the connectivity specified in the view can also be

parameterized. The name of a net or a terminal really represents the root name of an indexed set

instead of representing a singleton.The connectivity is represented by attachinga terminal to anet

and defining a mapping between the indices of the associated index sets. The mapping is defined

by four optional properties attached to a bag called MAP that is in turn attached to the net as well

as the terminal. The WIDTH property is astringrepresenting aninteger-valued lisp expressionthat

defines the number of net and terminal pairs that are connected. For each of these connections the

indices of theterminal and thenetbeing connected are calculated by evaluating thelisp expression

contained in the string-valued NETJNDEX andTERMJNDEX properties after successively

incrementing a lisp variable _i from 0 through WIDTH-1. For each of these connections a fourth

optional property named CONDITIONAL is evaluated. If this boolean valuedproperty evaluates

to false the particular connection is not made.The terminal and net indices arein general lists of

scalar elements such as integer, float, string etc. This mapping scheme allows arbitrarily complex

mapping of terminal indices to net indices. The SDL language provides several syntactic

mechanisms for expressing this mapping.

The heavy reliance on usinglisp expressions asvalues is essential to representing parameterized

structure using the structurejnaster policy. An approximate subset of Common Lisp calledLight

Lisp [Octtools91] is used forthis purpose. The standard LightLispenvironmenthasbeen extended

by a set of functions useful for expressing parameterized hardware structure and this set of

functions is designer extensible.



46

In addition to the structure of the cell, the structurejnaster policy also allows the view to be

annotated with the namesof tools thatwouldgenerate animplementation of the cell.There aretwo

types of tools: tools thatmodify or even create the structure of a cell and tools that generate the

physical implementation. The former are specified by a string valued attribute named

STRUCTURE.PROCESSOR and the latter by another string value attribute named

LAYOUTJ3ENERATOR1.

The structureJnstance Policy

This policy is used to represent a non-parameterized design hierarchy. It is obtained from a

parameterized design hierarchy following the structurejnaster policy by evaluating all the

parameters and all attributes and also expanding all theterminal and netmappings. This is done by

making use of a LightLisp evaluator. The resulting structureJnstance hierarchy represents non-

parameterized structure with all thebusnets fully expanded. This policy is similar to the standard

OCT symbolic policy except for some minorextensions to reflect the fact that it is evaluated from

a structurejnaster hierarchy. In particular, theevaluated parameters are copied into abagcalled

FORMAL.TERMINALS attached to the facet and the STRUCTURE.PROCESSOR and

LAYOUT_GENERATOR attributes are also copied. The structureJnstance hierarchy of adesign

contains all the information needed to generate itsphysical implementation.

.The physical Policy

This is the simplest of the three policies - its purpose istorepresent the physical implementation

of the design as ageometrical structure. AnOCT view following the physical policy primarily

contains terminal, layerand instance objects. Geometric objects such as boxes, circles etc. are

attached tothe layers. The terminal objects define ports through which information is passed to the

1. The name LAYOUT_GENERATOR isan unfortunate legacy ofthe root ofthis policy inASIC design.



47

next higher level in the design hierarchy. They are implemented by attaching geometric objects

(which are also attached to layers) to them.

The layers provide a mechanism to group geometric objects in a technology specific way. The

names ofavailable layers and associateddesign rules arespecified by the technology. The meaning

attached to layers is technology dependent. For chip and board layouts the layers usually

correspond to the masks required for fabrication and the geometries attached to the layers

correspond to the two-dimensional shapes drawn on the masks.

A pure geometric representation is often not sufficient because the design may be only partially

implemented even after a layout-generator has been run. For example, in a hierarchical design the

placement might be done hierarchically but the routing may be done in one shot on the whole

design after flattening the hierarchy. As a result retaining connectivity information for

unimplemented nets is desirable. This is done in a mannersimilarto that in the structureJnstance

policy by attaching terminals to nets. This policy extension was made specifically for boards

where this approach of doing hierarchical placement but one-shot routing gives good

implementations.

3.2.3 Design Manager DMoct

The central design manager is DMoct which manages access to the design databaseby the user as

well as the tools. It automates the generation of a hierarchical design which may require different

tools to create different parts of the hierarchy. It calls the required tools in the correct order while

making use of time-stamp checking and parametercomparison techniques to avoid regeneration.

Most importantly, it presents the designer with a common frontend to all the tools.

Figure 3-1 shows the design flow as orchestrated by DMoct. It transforms the initial hierarchical

textual representationof the parameterizeddesign in SDL to a hierarchy of structure.master views

in OCT. Next, with the aid of a built-in lisp interpreter and a set of tools called structure-



SDL Description

_J
Parsing

Schematic

OCT structure master view

1
Parameter
Evaluation

7
OCT structure instance view

i
Layout

Generation

>sLOCT physical view

48

Figure 3-1: Design Flow usingDMoct

processors, it creates a hierarchy of structureJnstance views.This is done by passing parameter

values down the structure_master hierarchy and creating the structureJnstance views in a bottom-

up fashion by expanding subcell arrays and composite netsor busses. At each stage of the

hierarchy after creating the structureJnstance view DMoct calls special tools, referred to as

structure-processors, to modify that view or the structureJnstance sub-tree rooted at that view.

Often these tools are synthesis tools that use abehavioral description to generate a net-list that

implements the functionality. Section 3.4 discusses some such tools that are available for board-

level designs. Optionally DMoct can also flatten the structureJnstance hierarchy at any given

point. Finally DMoct traverses the resulting structureJnstance hierarchy in a bottom-up fashion

and calls special tools, referred to as layout-generators, at each stage to generate a physical

implementation. In case of boards these tools do the placement and routing to create the photo-

plotter files required for board fabrication. DMoct provides hooks to let the designer force the



49

generation of or ignore the generation of a selected partof the hierarchy, thus by-passing its built-

in time-stamp checkingand parameter comparison mechanism. A sophisticated search mechanism

is used by DMoct and othertools to access files from libraries. The search space is partitioned

according to keys thatindicate the typeof file and alibrary search path is associated with eachkey.

Handling of Packaging Hierarchy by DMoct

DMoctalso handles some special design management issues thatarise when designing systemsas

opposed to single chips. A key distinction between systemsand chips is the existence of multiple

types of packaging in systems. A chip package, for example a PGA (pin-grid array) package, is

usually the lowestlevel of packaging - it contains a silicon die and usesbonding wires and pins to

connect pads on the die to copper traces on a board. For improved electrical performance, spatial

efficiency and economic reasons complex systems make use of a variety of packaging levels

organized in a packaging hierarchy. According to the industry standard jargon, the chipdie is the

level 0 packaging. The level 1 packaging is formed by the packages for single chips and discrete

parts. MCMs composed of multiple silicon dies that are mechanically and electrically bonded on a

substrate using a variety of emerging technologies form what is informally referred to as the

level 1.5 of the system packaging hierarchy. Level 2 of the packaging hierarchy is formed by

printed circuit boards (or other substrates) which use copper traces in an epoxy laminate to

electrically connect lower level packages that are soldered to the boards. Level3 packaging,

usually the toplevelof the system packaging hierarchy, is the card-cage with a backplane busor

cables to interconnectmultiple boards.

Different tools treat a design with a multi-level packaging hierarchy differently. A board

placement tool treats MCMs and chips as primitives. This requires that thedesign hierarchy below

these packaging levels flevels 1and 2)be truncated. Similarly achiprouter tool connects modules

inside achip package - this requires that the design hierarchy above thechip level packages (level

1) be ignored. A simulator on theother hand is notconcerned withthe packaging hierarchy atall-



50

it is concerned only with the functional hierarchy. This suggests that in addition to super-imposing

a packaging hierarchy on top of a design hierarchy, one also needs the ability to extract parts of a

design hierarchy that are below, or above, or between, certain packaging levels.

DMoct provides support for handling of packaginghierarchies by following a similar standard for

expressing levels of packaging as described above. Design cells that correspond to mechanically

packaged entities are required to have an attribute called PACKAGECLASS and an optional

parameter called PACKAGENAME. The value of the PACKAGECLASS attribute indicates the

level of packaging hierarchy whereas the value of the parameter PACKAGENAME is used to

select a specific package. For example, the PACKAGECLASS may be PCB to indicate that the

package is meant to be contained by a board and the PACKAGENAME may be DIP20 to indicate

a particular package. The existence of a PACKAGECLASS attribute indicates that the cell is a

mechanical primitive at the level above and that the contents of the cell are encapsulated in that

mechanical primitive. Using the PACKAGECLASS attribute DMoctcan be forced to ignorethe

design hierarchy below acertain packaging level.This is doneby ignoring the substructures inside

cells that have PACKAGECLASS attributes belonging to a specified set of values. Similarly,

selected portions of the design hierarchy canbe flattened down to a certain packaging level. For

example, a multi-board system can be flattened to the level of gates. This is the opposite of

partitioning - synthesis and partitioning toolscreate these packaging hierarchies.

•

3.3 Board Layout Generation Tools

The term layoutgeneration tool at the board level is used to referto tools thatgiven a net list of

chips or macro modules, do the placement and/or routing. The open architecture of the design

management framework provided by DMoct allows different layout-generators supporting

different layout styles to be easily integrated. Just as at the chip level, different placement and

routing algorithms are appropriate for different types of modules. For example, amemorymodule

is very regular, and a tiling based placement based on abutment of subcells might be appropriate



51

for it. On the other hand, at higher levels of the hierarchy one typically has a collection of

polygonal macro blocks, for which a more general-purposeplacement strategy is needed.

The set of layout generation tools currently available in this system is small but nevertheless

provides capabilities superior to most existing tools. The current set of tools supports a

hierarchical placement of the design together with one-shot routing of the flattened and placed

design hierarchy. This is accomplished using two tools for placement and a foreign (commercial)

router.

3.3.1 psg: Package Symbol Generator

Psg is the layout generator used forboard-level modules that have their own package. Examples

of such modules are individual chips, discrete parts, MCMs, SIMMs etc.The functionality ofpsg

is very simple. It first looks for a package name specification in the module by searching a

sequence of attributes.Then it uses the packagename to search for physical information about that

package in a package library. As described later, for each package this library has the physical

geometry information, such as the copper shapes on the various board layers, pin locations,

package bounding box and package height. This package information is copied into the OCT

structure_instance view of the module. Inaddition the geometry foreachpin is also attached to the

formal terminal of the module that corresponds to that pin.

The rationale behindpsg is to encapsulate the physical information about packages in a separate

library. Many different chips may use the same package so that a separate package library makes

management of the package information easier.

3.3.2 pfp: PCB Floor-Planner

The board floor-planner pfp is the most importantof the available layout-generators. It is meant

for use withmodules that are composed of sub-cells. In cooperation withthe design manager, pfp



52

allows the sub-modules within a module to be placed according to a variety of methods. The

placement can be done in one of several modes:

a. User Specified Absolute Placement
In this mode the position of each sub-cell is specified by the user in absolute coordinates
(physical units). This is done by attaching attributescalled X and Y to the sub-cells in the SDL
file for the module. In addition an attribute named T is used specify the orientation. The
attributes POSITION and ROTATION provide an alternative interface for specifying the
absolute placement.

b. User Specified Relative Placement
This is similar to the previous mode except that values of X and Y are now treated as relative
coordinates. The subcells are then tiled in a row-major or a column-major fashion in as compact
a fashion as allowed by their bounding boxes.

c. Automatic Placement

In this mode the placement is done automatically by calling a simulated annealing based
placement program called Puppy [Octtools91]. Due to the nature of the algorithm the resulting
placement may have overlaps and the parts may not be on routing grid. Consequently this mode
is meant to get a good initial placement which is then modified interactively.

d. Interactive Placement

In this mode VEM which is the graphical editor for the OCT database is used to let the user
interactively do the placement. A starting placementcan be obtained by using one of the other
non-interactive modes.

e. Placement Using Previously Saved Floorplan
In this mode a previously saved floorplan file is used to do the placement. This is useful to save
and reuse floorplans that arecreated or modified interactively.

The real powerofpfp comes from the fact that the attributes X, Y andT for specifying the subcell

placement can be arbitrary lisp expressions thatcanuse the parameters of the module.These lisp

^expressions are evaluated by the design manager DMoct using a lisp interpreter. Using this

mechanism sophisticated parameterized absolute as well as tiling based placement can be

achieved. In effect this allows custom placement algorithms for a module to be embedded in its

SDL file.

In addition pfp provides options to 'flip* the resulting floorplan horizontally or vertically.

'Flipping' is different from a simple 'mirroring' transformation in that it ensures that the subcells

are not mirrored because that is not meaningful on a board, pfp has some other options that are

concerned with the routerconstraints, such as ensuringthat the pins of the parts lie on the routing



53

grid.Following is the functionality ofpfp in pseudo-code:

/*
* X, Y, and T refer to the horizontal translation, vertical
* translation, and rotation/mirroring transformation respectively
*/

pfp(cell) <
sourceFacet = cell:structure_instance;
outputFacet = cell:physical;

copy sourceFacet to outputFacet;

foreach s = subcell of outputFacet {
change master of instance s from a structure_instance
view to a physical view;

>

if (placement_mode == use_floorplan__file) {
foreach s = subcell of outputFacet {

get X, Y, and T of s from floorplan_file;
>

} else if (placement_mode = do_tiling) {
L = list of all subcells of cell;
if (tiling_mode = rowjmajor) {

sort L according to Y attribute of subcells in L
breaking ties based on X attribute;

} else {

sort L according to X attribute of subcells in L
breaking ties based on Y attribute;

)
foreach s = subcell from sorted list L {

if (a = first element of list L) {
cursor.x =0;

cursor.y =0;
next_cursor.x = 0;
next_cursor.y = 0;
col = attribute X of s;

row = attribute Y of s;

>
if (tiling_mode = row_major && row != attribute Y of s) {

cursor = next_cursor;
row = attribute Y of s;

}
if (tiling_mode = column_major && col != attribute X of s) {

cursor = next_cursor;
column = attribute X of s;

)

/* translate s so that its lower-left corner is at the cursor */
let bbox = bounding box of s;
translate s in x-direction by (cursor.x - bbox.lowerleft.x) ;
translate s in y-direction by (cursor.y - bbox.lowerleft.y);

/* apply offsets */
translate s in x-direction by OFFSETX attribute of s;



>

54

translate s in y-direction by OFFSETY attribute of s;

/* update the cursors */
if (tiling__mode = row_major) {

cursor.x += attribute OFFSETX of s + width of s;

if (next__cursor.y < cursor.y + attribute
OFFSETY of s + height of s) {

next_cursor.y = cursor.y + attribute OFFSETY
of s + height of s;

)
} else {

cursor.y += attribute OFFSETY of s + height of s;
if (next_cursor.x < cursor.x + attribute
OFFSETX of S + width of s) {

next_cursor.x = cursor.x + attribute OFFSETX
of s + width of s;

)

>

)
else if (placement_mode = automatic_placement) {
prepare input for PUPPY simulated annealing based placement tool;
run PUPPY;

else {

foreach s = subcell of outputFacet (
get POSITION and ROTATION attributes of s if they exist;
default values are (0,0) and 0 respectively;
convert values into OCT units, and then translate and rotate s;

)

if (horizontal flip flag =1) {
/*
* flip cells horizontally about the vertical axis
* without mirroring the cells
*/

let v = x-ccordinate of the vertical axis of cell;
foreach s = subcell of outputFacet (

let llx = lower left x-coordinate of s;
let width = width of s;

translate s in x-direction by -2*(llx - v)-width;
>

>

if (vertical flip flag =1) (
/*
* flip cells vertically about the horizontal axis
* without mirroring the cells
*/

let h = y-ccordinate of the horizontal axis of cell;
foreach s = subcell of outputFacet {

let lly = lower left y-coordinate of s;
let height = width of s;
translate s in y-direction by -2*(lly - h)-height;

)



>

}

close outputFacet;

if (interactive__mode_flag =1) {
run VEM to let the user do interactive placement;
foreach s = subcell of outputFacet {

save (s, X, Y, T) in floorplan_file;
)

}

if (cell = design_root) {
dump placed netlist for foreign router;

)

55

3.3,3 oct2rinf: Interface to Foreign Router

At present there is no built-in board router available in the framework. Instead commercial

routers are interfaced for routing. At this time only the router from Racal-Redac has been

integrated through aninterface provided by octlrinfwhichcanbe used as a layoutgenerator on its

own, or can be accessed via a special flag to pfp. Since the commercial router cannot do

hierarchical routing2, octlrinf first flattens the design hierarchy and then converts the resulting

flattened OCT netlist into an ascii file format called rin/that is used as input by the commercial

router. Besides this format translation, oct2rinfalso produces part list information and detects

some types of errors in the netlist.

A one-way interface to commercial routers is by no means sufficient - one also needsthe ability to

obtain physical information generated by the router and put in the standard OCT database so that

tools such as extractors can access it in a uniform fashion. This task is made difficult because there

is no standard interchange format or database that is used by the commercial routers. There are

four approaches to solve this problem:

a. Routers that use the same database as the other tools (OCT in our case)

2. This seems to be typical of all available PCBrouters.



56

This approach is idealistic because it would be difficult to make the vendors to adopt a common
database. The alternative would be to write our own board router, which is not trivial due to the
complex nature of the design rules for board fabrication technologies.

b. Routers that can read and write a commoninterchangeformat for board physical information

This too is idealistic but probably more palatable to the commercial vendors - after all common
interchange formats are already used elsewhere, for example CEF for chip physical information
and EDIF for netlist information.

c. Extract physical information from GERBERfiles

Most commercial routers can generate a set of GERBER format files which contain the drawing
commands for the plotter that generates the photo masks for the various layers of the board.
Although this appears analogous to the CIF files used to describe the layer geometry in case of
chips, there is a key difference. Chips do not have a packaging hierarchy and therefore the
information contained in a CIF file is sufficient to completely create a chip. Boards, on the
other hand, have a packaging hierarchy. The GERBER files only contain information required
to create the copper interconnect patternson the various layers of the board, and no information
on the packages or partsbeing used and their electricalconnectivity with the copper patternson
the various layers. In theory the information containedby the GERBER files together with the
net-list describing the board,the partplacementinformation,andthe physical descriptionof the
packages, is sufficient for a complete physical characterization of the board. In practice this
would require a complicated matching of the pin locations on each package with the copper
pattern specified in the GERBER files.

d. Dedicated toolsfor every router to convert thephysical outputto OCT

This appears to be the most pragmatic approach, although it too is not easy. For every
commercial router that is to be integrated into SIERA, a special tool needs to be written to
convert its output into an OCT physical view. The task is complicated by the fact that the
database policies and file formats at the physical level are poorly documented, and often not
disclosed publicly. Therefore, substantial "reverse engineering" may be required to writesucha
translation tool.This is the approach used to convertthe outputof the router from Racal-Redac
into OCT.

3.4 Module Generation from Behavioral Specifications

Even though the layout-generator tools described in the previous section together with a suitable

sub-system module library provide an environment which is superiorto those provided by most

board design tools, it is possibleto raise the level of abstraction higher. Many modules in the top-

level architecture are more conveniently described behaviorally and it is often possible to

synthesize efficient hardware for them. This is particularly true formodules such as random logic,



57

memory address decodes, bus-interface logic etc. for which special-purpose synthesis tools can be

used to transform the behavioral representation into a netlist of chips at the board level. Several

existing as well as new tools are available as module generators in the framework. These tools are

typically used as structure_processorswhich synthesize the structure of a design entity.

The system synthesis process can be viewed as a top-down recursive process. The behavioral

specification of the system is transformed during synthesis to a network of entities that are either

available as primitives or are specified behaviorally using a different (and usually simpler) abstract

model of computation. The synthesis process is then repeated on each of these behaviorally

specified entities. This process is recursively repeated until the entire system is specified

structurally in terms of known primitive components. Therefore there is a hierarchy of behavioral

synthesis tools that are used at different levels of the structural hierarchy of the system. According

to this view the tools described in this sectionare lower-level synthesis tools in the sense that they

areused at lower levels of the structural hierarchy of the system. While they cannot synthesize the

system hardware as a whole, they can certainly synthesize parts of the system from a suitable

behavioral description. In fact the output of some of the tools described below are input for the

other tools.

3.4.1 Mapping Random Logic to PLDs and FPGAs

Many modules at the boardlevel areoften best implemented on field programmabledevices such

as PALs, PLDs and FPGAs (for example the ones from Actel and Xilinx). Modules such as

address decoders, bus control logic, glue logic, interface logic etc. fall in this category.

Implementing such modules using SSI parts is too inefficient in board area while implementing

them as ASICs is usually not cost effective. Field programmable devices provide a nice

compromise and the ability to map a behavioral level description to a net-list of these devices is

very desirable.

A set of tools called PLDS [Yu91] is integrated in this module generation framework and provides



58

the ability to map a block described in a mixed behavioral and high-level structural fashion to a

net-list of homogeneous field-programmable devices together with suitable information for

programming each of those devices. The mixed behavioraland high-level structuraldescription is

basically a hierarchical parameterized net-list (in SDL) where the leaf nodes come either firom a

macro library or are specified using the language BDS for describing combinational logic. The

macro library contains a variety of abstractand often parameterized macro blocks for which the

structural decomposition into the primitive building blocks is known. This description can be

mapped to a variety of programmable devices which roughly fall into two classes. The first class

consists of devices like PALs (e.g. PAL16L8) and PLDs (e.g. Altera EP610) which are small

devices with a few large basic blocks. The second class of devices are FPGA devices (Field

Programmable Gate Arrays) like Xilinx and Actel FPGAs which consist of a large number of

simple basic blocks. This distinction is made because different strategies for synthesis and

partitioning are needed for these two class of devices. However a single set of tools accessed as

structure-processors and layout-generators provide a common interface to these variety of devices.

Mapping to FPGA Devices [Yu91]

Currently two types of FPGA devices are supported - Xilinx and Actel. As mentioned earlierthese

FPGAs are characterizedby a largenumber of simple homogeneous basic blocks. Therefore logic

synthesis techniques basedon technology mappingto a library as well as newly proposedspecial-

purpose synthesis techniques can be used to map the combinational logic described behaviorally in

the BDS language to a net-list of these basic blocks. This is done using the built-in utilities in the

misll logic synthesis system. This is done for all the modules in the initial description that were

specified behaviorally. The synthesized net-lists of basic blocks are then merged with the

structurally specified part of the initial description. The resulting hierarchical net-list is then

flattened and partitioned to a network of identical FPGA devices. The output is a board-level net-

list of the FPGA devices together with specifications for each of the individual FPGAs in an

appropriate format (for example, Xilinx's XNF format and Actel's ADF format) for use with the



59

low-level tools provided by the FPGA manufacturer. Figure 3-2 shows this process as a block

diagram.

Some of the FPGA devices also provide a small number of complex or special purpose basic

blocks - such as the decoder blocks on Xilinx's XC4000 series FPGAs. The mixed behavioral and

structural description allows these special blocks to be used structurally through the macro block

library.

Mapping to PALs and PLDs [Yu91][Stone91]

These devices are characterized by a small number of large basic blocks. In FPGAs the basic

blocks typically have 4-6 inputs and they are able to implement a large fraction of functions

possible from these inputs. In contrast the basic blocks in PALs and PLDs are like PLAs with a

large number of inputs (20-30) and a relatively small number of minterms (<10). As a result

library basedtechnology mappingtechniques available in logic-synthesis systems such as misll do

not suffice for implementing the logic as a multi-level network of such large basic blocks. The

reason for this is that the large number of inputs results in an exponential explosion in the size of

the library. Such devices are therefore handled by a two step partitioning process. In the first step

the booleandescription is partitioned into a networkof these large basic blocks. This is done via

special procedures added to misll. This can be viewed as a special-purpose technology mapper.

Next this network of large basic blocks is partitioned into a board-level network of chips, just like

in the case of FPGAs. Figure 3-3 depicts this mapping process. Tbgether with a suitable macro

library for using special resources such as registers that areprovided in these PALs and PLDs, this

approach works extremely well for the most common uses of these devices where the depth of

logic is not very high.



Mixed Structure + Combinational Behavior Description

DMoct

SDL BDS

Netlist of
FPGA Library Blocks

Netlist of
FPGA Library Blocks

Netlist of
FPGA Basic Blocks

Netlist of Library/Basic Blocks in OCT

OCT Netlist for FPGA 1 inimiiiiiiiiiiiiiu OCT Netlist for FPGA n

/
Netlist Translators

Netlists for each FPGA in Manufacturer's Format (Xilinx, Actel)

Figure 3-2 : Board-Level Module Generation Using FPGAs

60



Mixed Structure + Combinational Behavior Description

SDL

Netlist of
PLD Library Blocks

BDS

Netlist of
PAL/PLD Macro Blocks

Netlist of Library/Macro Blocks in OCT

I
Chip Partitioner

OCT Netlist for PLD/PAL 1 i roiimiirfiDCT Netlist for PLD/PAL n

/
ABEL Translator

ABEL Description for each PAL/PLDs

DMoct

Figure 3-3 : Board-Level Module Generation Using PALs and PLDs

61



62

3.4.2 Generation of ASICs from Behavioral Description

Despite the emphasis on system level issues in this thesis, ASICs play an important role in the

design of modern systems. Many system level functions are best implemented as ASICs because

of performance and cost reasons. This is particularly true for applications like high-speed digital

signal processing and complex high-speed controllers.Therefore it is very important that a system

or board level hardware module generation framework provides the ability to implement board-

level modules as ASICs. Due to the commonality of the database and the design manager used in

the board-level hardware module generation framework described here with those used in the

LAGER environment for ASIC design, the various ASIC design tools that are partof LAGER can

be used as board-level module generators that generate modules consisting of a single ASIC.

These tools include:

a. LAGER Silicon Assembler:

It implements an ASIC from the structural description of its architecture. The buildingblocks
can be parameterized modules from the various libraries, user designed modules or
behaviorally specified combinational modules.This approach is suitable forvery high datarate
applications.

b. C-to-Silicon Compiler
This compilertakerthe description of the algorithm in aC-like sequential imperative language,
and generates an ASIC with microprogram control usinganarchitecture template which allows
the datapath architecture to be specified by the user. The code generator in the compiler is
retargeted to the datapath structure. The architecture templateitself is a parameterized structural
description of the micro-programmed processor, the parameters for which are generated as a
result of the compilation process. This approach is good for controldominated, low data rate
applications.

c. HYPER Behavioral Synthesis System:
This is a behavioral synthesis system on top of the LAGER Silicon Assembler. It takes the
algorithm described in an applicative data-flow language called SILAGE andgenerates the net-
list for an ASIC with hardwired control using datapath synthesis.This approach is good for
medium data rateapplications with simple control.

These ASICs can be simulated together with the other modules on the board for a complete

system-level simulation.



63

3.4.3 Synthesis of Interface Logic

A very important class of board-level hardware module is that of Interconnect Modules as

distinguished from the Data ProcessingModuleson which most of this chapter is focussed. These

interconnect modules are the glue logic that physically link the data processing modules while

meeting I/O protocol and timing constraints. Due to the wide variety of I/O protocols encountered

at the system level, a libraryof interconnect modules is of limited scope. The ability to synthesize

these interconnect modules from a high-level description is the key to having a library of reusable

sub-system level data processing modules. It eliminates the need to design multiple versions of

these sub-systems that have the same computational ability but satisfy different I/O protocol

constraints. Forexample, instead ofhaving several versions of a processormodule - say one with a

VME interface, anotherwith a Multibus interface, and yet another with a SBUS interface - one can

have only one processor module in the library and synthesize the appropriatebus-interface when

needed. This ability to synthesize interconnect modules is particularly desirableat the system level

because off-shelf components play a very important role and unfortunately there is little control

over their I/O interface protocols.

The module generation environment described here uses the ALOHA interconnect module

synthesis system that is being developed by Jane Sun at Berkeley. [Sun92a] gives a detailed

description of the ALOHA synthesis system, a pictorial overview of which is presented in

Figure 3-4.The interconnect module is specified atahigh-levelin a language calledIDL(Interface

Description Language) in which only the data flow in the interconnect module is expressed

together with the appropriate protocol names. The IDL description essentially specifies the

temporal and spatial mapping of the source data streams to the destination data streams in a

protocol and technology independentmanner. The details about the I/O protocols of the modules

being interconnected aredescribed separately and stored in the module library. An example ofthis

is given in section 3.5.3. The event graphs (also called signal transition graphs or STGs)

correspondingto the I/O protocols for the variousmodules are merged according to the data-flow



M
o

d
u

le
L

ib
ra

ry

1
H

ig
h

-l
ev

el
sp

e
c

""
"

S
yn

th
es

is
on

fl
o

w
g

ra
p

h
G

e
n

e
r
a

te

e
v
e
n

t
g

ra
p

h

M
em

/w
ri

te
m

.A
<

10
:l

>
=

P
ro

c/
w

ri
te

p.
ad

dr
<

10
:l

>
;

M
em

/w
ri

te
m

.I
O

<
7:

0>
=

P
ro

c/
w

ri
te

p.
da

ta
<

7:
0;

M
e
m

J
O

<
7

:0
>

M
e
m

/w
ri

te
m

P
ro

c
.d

a
ta

<
7

:0
>

P
ro

c/
w

ri
te

p

I
l**

»

*
h

cs
-

jf "f
D

o
n

e t
D

o
n

e
-

G
e
n

e
r
a

te

s
tr

u
c
tu

r
e

R
e
a

-

A
c
k

-

F
ig

ur
e

3
-4

:
In

te
rc

on
ne

ct
M

od
ul

e
G

en
er

at
io

n
U

si
ng

A
L

O
H

A
[S

un
92

a]

G
a

te
-l

e
v
e
l

N
e
tl

is
t

4
t



65

described in the IDL description to produce a STG for the entire interconnect module. Then lower-

level foreign tools, such as Async [Jones91] for synthesizing asynchronous finite-state machines

(FSMs) from the STG description, are used by ALOHA to produce a gate level net-list together

with timing constraints. The gate level net-list can then be implemented as an ASIC or as FPGAs

or PLDs using the tools described earlier.

3.5 Libraries

A key aspect of the hardware module generation strategy is the library of reusable components.

The purpose is to encourage reuse of design effort, and modularity.The library members can use

the same layout generators and synthesis tools as described in the previous subsection. However,

in order to make them reusable, the modules areusually parameterized and can be customized with

suitable values of the parameters.

There are three distinct types of libraries that are needed corresponding to three different types of

reusable elements. The following subsections describe the three libraries.

3,5.1 Package Library

The packagelibrary contains the physical information about the various board level packages.

There is no analogue to the package library at the chip level. The reason is that at the chip level

every primitive component, for example a leafcell such as a NAND gate, has a distinct physical

layout. On the other hand, at the board level many different primitive components may be housed

in packages with the same physical characteristics. From a data management perspective it is

better to keep such shared information centralized in a single copy.

The library includes a variety of packages including DIP and SIP packages, PGA packages,

packages for discrete parts, surface-mount packages such as SOIC, PLCC etc. Each package is

specified by a physical view in the OCT database. The physical view contains all the geometry



66

corresponding to the package in the various layers of the board. In addition, a special placement

layer is used to specify a placement boundary. Some of the physical geometry is attached to a

formal terminal that indicate the pins, using which the package connects to the signal traces on the

board.

The library also has information about translating the package name and pin number information

to that of commercial package databases - this is used by tools like oct2rinf for generating net-lists

for foreign routers.

The policy for this library is still in its infancy and a more elaborate policy is planned to

incorporate additional physical information such as 3D information about the package height,

capacitances and inductances on the pin leads, etc.

3.5.2 Primitive Component Library

The primitive library is akin to a leafcell library at the chip level. It contains information about

board level primitivecomponents- chips, connectors, discrete componentsetc. The distinguishing

characteristic of these primitive components is thata package namemust be specified foreachof

them in order forthe toolsto access the physical information about the component.

Table 3-2 shows a partial listing of contents of the primitive component library. Each primitive

component in the library requires a SDL file written according to a specific policy, and additional

optional files forsimulation model, I/O protocol and documentation.

Figure 3-5 shows the SDL file for aTTL xxOO part. The file gives a black-box description of a

generic7400 series part. Since the partis available as a primitive, there areno subcells instantiated

in the SDL file. The file lists all the formal terminals of the device. The attributes TERMTYPE and

DIRECTION are defined for all formal terminals to facilitate checking the final design for

electrical problems suchasopeninputsand shorted outputs. The attribute PACKAGECLASS with



(parent-cell xxOO (PACKAGECLASS PCB) (CELLCLASS LEAF))

sel_pkg is a lisp function that returns its argument
which is in the same position as the position of the
PACKAGETYPE in the list of packages PACKAGELIST.
This is used to select a value appropriate for the
package being used.

(parameters
; pre-defined local variable - list of allowed packages
(PACKAGELIST M"DIP" "SOIC" "PLCC") (local))

; user parameter - the package type
(PACKAGETYPE "SOIC"

(assert (memql PACKAGETYPE PACKAGELIST)))

; other parameters - usually not altered by the user
(PARTNAME "xxOO")
(PARTTYPE "DIGITAL")
(PACKAGENAME (sel_pkg "DIP14" "SOIC14" "PLCC20"))

)

(layout-generator psg)

; PINNUMBER, TERMTYPE, and DIRECTION are attributes
; required to be attached to each formal terminal

sel_pkg 1
(DIRECTION
sel_pkg 4
(DIRECTION

sel_pkg 9
(DIRECTION

sel_pkg 12
(DIRECTION
sel_pkg 2
(DIRECTION

sel_pkg 5
(DIRECTION

sel_pkg 10
(DIRECTION

sel__pkg 13
(DIRECTION

sel_pkg 3
(DIRECTION

sel__pkg 6
(DIRECTION
sel_pkg 8
(DIRECTION

sel_pkg 11
(DIRECTION

(sel_pkg 1

(term Al (PINNUMBER (
(TERMTYPE SIGNAL)

(term A2 (PINNUMBER (
(TERMTYPE SIGNAL)

(term A3 (PINNUMBER (
(TERMTYPE SIGNAL)

(term A4 (PINNUMBER (
(TERMTYPE SIGNAL)

(term Bl (PINNUMBER (
(TERMTYPE SIGNAL)

(term B2 (PINNUMBER (
(TERMTYPE SIGNAL)

(term B3 (PINNUMBER (
(TERMTYPE SIGNAL)

(term B4 (PINNUMBER (
(TERMTYPE SIGNAL)

(term Yl (PINNUMBER (
(TERMTYPE SIGNAL)

(term Y2 (PINNUMBER (
(TERMTYPE SIGNAL)

(term Y3 (PINNUMBER (
(TERMTYPE SIGNAL)

(term Y4 (PINNUMBER (
(TERMTYPE SIGNAL)

(term VCC (PINNUMBER
(TERMTYPE SUPPLY))

(term GND (PINNUMBER
(TERMTYPE GROUND))

(end-sdl)

1 2))
INPUT))

4 6))
INPUT))

9 13))
INPUT))
12 18))
INPUT))

2 3))
INPUT))

5 8))
INPUT))

10 14))
INPUT))

13 19))
INPUT))

3 4))
OUTPUT))

6 9))
OUTPUT))
8 12))
OUTPUT))
11 16))
OUTPUT))
4 14 20))

(sel_pkg 7 7 10) )

Figure 3-5 : Sample SDL File for a xxOO (7400) Chip

67



68

PART CATEGORY PART NAMES

SSI Logic TTL parts such as xxOO, xx04, xx240, xx241, xx646 etc.

Memory CYM1621, CYM1641, CYM1831, CYM1841, IDT7025 etc.

Processors DSP32C, TMS320C30, MC96002

Programmable Logic PALs (16L8,20L8 etc.), PLDs (610,910,1810 etc.)

FPGA Actel (ACT1010, ACT1020), Xilinx (XC3090, XC4005)

I/O Devices VME interface (VME2000, VME3000, VME1220A,
VME1220B), UARTS (SCN2681, Am7968, Am7969)

Miscellaneous TTL Oscillator, ECL-TTL converter MC10H350, clock divider
MC74HC4040, opto-isolator HCPL2631, RS232 driver
(MAX233) etc.

Analog Discrete parts (capacitors, resistors, inductors, pots, leds),
Opamps (TL082, TL084, AD711), A/D (AD7870), D/A
(AD558, DAC811), Optical driver and receiver (Am79hl000T,
Am79hl000R), Transistor arrays (MC1411, MC1413), Delay
Lines, LM555, voltage regulators (LM79xx, LM78xx) etc.

Packaging Variety of headers, connectors, switches, terminal blocks etc.

Table 3-2 : Partial Listing of the BoardLevelPrimitive ComponentLibrary

valuePCB for xxOO is used to indicatethat it is packaged so as to be contained by a printed-circuit

board.The cell is parameterized so as to let the user specify the package name. The parameter

PACKAGENAME is used by tools as a key to access the package database. The parameters

*PARTNAME and PARTTYPE are used for annotation and for generating apart list The other two

parameters PACKAGELIST and PACKAGETYPE together with the lisp function selj)kg

facilitate handling of multiple packages. The function sel_pkg selects its i-th argument if

PACKAGETYPE is the i-th member of PACKAGELIST. This file also shows some other features

of SDL. Parameters such as PACKAGELIST with the attribute local are not stored in the database

afterevaluation andare hencenot visible to othertools - theyare like temporary or localvariables.

Also the parameter PACKAGETYPE has an attribute named assert whose value is a string

representing a lisp s-expression which on evaluation must return a non-nil value. This provides a



69

mechanism for ensuring that the parameter values is an acceptable one. In the example this

mechanism is used to ensure that the value of PACKAGETYPE is one of the packages listed in

PACKAGELIST - the lisp function memql returns true only if PACKAGETYPE is contained in

the list PACKAGELIST. Finally the attribute CELLCLASS for the cell xOO is used to indicate the

type of cell. The value LEAF indicates that it is a primitive cell with no substructure. It further

indicates that the black-box behaviorof the cell is independentof the parameters. This information

is used to optimize the database storage by sharing the samestructureJnstance andphysicalview

between different instances of xxOO.

3.5.3 Subsystem Module Library

This library is analogous to a macrocell library at the chip level. At the chip level such a library

may contain adders, multipliers, RAMs, FSMs etc. At the boardlevel an adderor a multiplier is

functionally at too low a level - in fact a single chip is usually far more complex. Complete sub

systems, such as embedded programmable computers, I/O interfaces, signal processing sub

systems etc., are more appropriate modules for representing hardware architecture of boards.

An extensive library of such reusable sub-system level modules has been created using the tools

described earlier in this chapter. Table 3-3 is a partial list of the sub-system modules available in

the library. Many modules in the library areparameterized so that they really representa class of

sub-systems from which a particular module that is tailored to the needs of the application can be

instantiated. As shown in the table, the libraryhas a variety of memory sub-systems, complete

embedded computer modules based arounddifferent processor chips, bus-interface modules, data

acquisitionmodules etc. The library has been developed over the course of several boarddesigns

and continues to grow as more systems in diverse application areas are being designed. For

example, some of the modules contributed by other on-going design projects include SBUS

interface module,video frame-buffer module,JTAGtest controller module etc.This library of sub

systems is a major contributorto the goalof reusability.



70

MODULE NAME DESCRIPTION

O

sram64Kx32 64Kx32 static ram with multiple area/speed/cost/loading
choices

sram256Kx32 256Kx32 static ram with multiple area/speed/cost/loading
choices

*
dpram8Kx32 8Kx32 true dual-ported static ram with h/w semaphores and

mail-box interrupts

CO

1
8
OS
O
CO
CO

8
o

Dm

a
S
o

procC30 an extensively parameterized TMS320C30 based processor
module with multiple types of SRAM local memory banks,
optional host interface based on multiple 32 Kbyte dual-port
ram banks, and I/O interface for attaching a parameterized
number of memory mapped I/O slave devices. The memory
and I/O address map and the memory sizes are also config
urable.

procsimple32C a simple DSP32C based processor module with one bank of
256 Kbyte 0-wait state local memory, optional 32 Kbyte
dual-port RAM based host interface, bus-control/glue logic
and I/O interface for attaching a parameterized number of
memory mapped I/O slave devices

procsimple96K a simple MC96002 based processor module with one bank of
1 Mbyte 0-wait state local memory, host interface and bus-
control/glue logic

CO

1
Q
O

outport8 digital output port <= 8 bits with load, and, or and xor bit-
mask operations

a2d analog to digital converter for <= 12 bits, <= 100 KHz

d2a digital to analog converter for <= 12 bits, <= 100 KHz

rs232dual 1/2 channel RS232/432 serial I/O module

opticalT/opticalR Transmitter and receiver modules for 8/9/10 bit parallel I/O
over a serial fiber-optic link up to 125 Mbits/sec (10 Mword/
sec) with serial-parallel conversion and error-detection.

u
CO

vmeslave module to interface an arbitrary number of memory-mapped
slave and interrupter devices to VME bus

brdreset generation of multiple power-up/switch/host controlled resets

Table 3-3 : Partial Listing of the Board Level Sub-system ModuleLibrary



71

These sub-system modules are usually composed of othermodules and/or primitive components.

As such a sub-system module is usually specified by a hierarchy of SDL files describing the

structural interface between its building blocks which may be available as an off-shelf primitive

component or may be behaviorally specified using one of the tools described in section 3.4. The

SDL files also contain floorplanning information using one of the strategies listed in section 3.3.2.

In addition optional files for the simulation model, I/O protocol and documentation are also

present in the library for each sub-system module. The I/O protocol information is particularly

important for many sub-systems. It describes the timing diagrams relating the events on the

various formal terminals of the sub-system when it interacts with other sub-systems. Several

different protocolscorresponding to different types of transactions may be defined for a given sub

system. The timing diagram is represented by an eventgraph that describes the signalling protocol

in terms of events or transitions on the I/O signals. The causality relationships and timing

constraints between these events are represented by directed edges in the event graph with the

events themselves being represented by the nodes. The event graph is represented in the library by

a text file in aft format as described in [Sun92b].

Example 1: A TMS320C30 Based Processor Module

As an example the TMS320C30 based uniprocessor module procCSO provides a complete

microcomputer based around a powerful32-bitdigital signal processor. It can be used wherevera

powerful, software programmable, embedded computation core is required on the board. The

configuration of the module in term of its memory organization, I/O devices etc. is specified

through parameters. All the blocks for making a self-sufficient computer, such as the memory,

addressdecoder, clock generator, wait-stategenerator, host interface, I/O device controller etc., are

included. Some of these building blocks make use of field-programmable devices such as PALs

and PLDs. The implementation information for these devices is also generated as part of the

module generation process. The address and data buffers are also tailoredaccording to the amount



72

of the memory and I/O devices. The module is also placed giving a fairly good first-cut placement.

Figure 3-6 shows an example instance of this processor module.

Figure 3-7 shows the basic architecture of the processor module. It has the following major

components:

a. TMS320C30 processor chip

b. clock generator (TTL oscillator)

c. parameterized wait-state generator

d. parameterized address decoder

e. data and address bus buffers

f. OEN generator

g. dual-port memory bank for host communication

h. three different kinds of SRAM banks with different speed/area/cost trade-offs

The TMS320C30 processor has two busses - a main memory bus, and an extension bus. In the

design the extension bus is left untouched, and brought out for use outside the module. All the

memory bank inside the module reside on the main memorybus. In addition, the main memory

bus is also brought out of the moduleso that other devices can be attached to it. To simplify this

task, the processor modulecanalso generate interface signals needed for attaching external slave

devices to the main memory bus. This is done using the parameterized wait-state generator and

parameterized address decoder modules that are already being used for the internal memorybanks.

'The design is optimized for speed and ease of software. For example, the wait-state generation is

handled completely in hardware and can support devices ranging from 0 wait-states to 2 wait-

states. This makes software manipulation of wait-states unnecessary thus enormously simplifying

the code.

Following are the parameters that canbe specified for the module:

a. NDPRAM8C=numberof 8Kx32 dual-port banksin thehost interface.
It should be >0 (default=2). If NDPRAM8C == 0 then nohostinterface is present.



SLOW SRAM

FAST SRAM

TMS320C30

73

ADDRESS
DECODERS

HOST
INTERFACE

Figure 3-6 : Layout of an Instance ofprocC30, a TMS320C30 based processor module



NSRAM64C
64Kx32

Fast/Big SRAM
Modules

Address
Decoder

Wait-State
Generator

Oe:

Clock

NSRAM64M
64Kx32

Slow/Compact
SRAM Modules

TMS320C30

c
O

o

NSRAM256M
256Kx32

Slow/Compact
SRAM Modules

74

NDPRAM8C
8Kx32

Dual-Port RAM
Modules

CO

D
CO

£r
o

E
CD

C

*o
to

O

Figure 3-7 : Architecture of the TMS320C30 basedprocC30 Processor Module



75

b. NSRAM64C = number of fast but big 64Kx32 SRAM modules composed of 64Kx4 chips. It
should be > 0 (default=l).

c. NSRAM64M = number of slow but compact 64Kx32 SRAM modules composed of 64Kx32
MCMs. It should be £ 0 (default=0).

d. NSRAM256M = number of slow but compact 256Kx32 SRAM modules composed of
256Kx32 MCMs. It should be > 0 (default=3).

e. SRAM_BASE_ADDR = base of address of the internal SRAM modules. It should be a
multiple of 0x040000 (default=0x040000). The modules are mapped in the following order,
starting from this address: NSRAM256M 256Kx32 SRAM modules, NSRAM64M 64Kx32
modules, and NSRAM64C 64Kx32 modules.

f. NEEDEMU e {0, 1}. If NEEDEMU==1 then a special interface to TMS320C30 in-circuit
emulator is also included. Its default value is 1.

g. PROCNAME is a string giving the name of the processor. Its default value is "TMS".

h. FLAGTHIN e {t, nil}. If FLAGTHIN=t then the aspect ration of the placed module is made
tall and thin. Its default value is t.

I. NEXTRDBUF is the number of externalRDBUF signalsneeded for attachingslave devices to
the main memory bus. A RDBUF signal is useful for attaching tri-state buffer chips as input
ports. It should be > 0 and has a default value of 0.

j. NEXTWRREG is the numberofexternal WRREG signalsneeded for attaching slave devices to
the main memory bus. A WRREG signal is useful for attaching positive edge-triggered flip-
flops or negative level-sensitive transparent latches as output ports. It should be > 0 and has a
default value of 0.

k. NEXTOEN is the number of extemal OEN signals needed for attaching external slave devices
to the main memory bus. An OEN signal is useful for active low output enablesof SRAM-like
devices. It should be > 0 and has a default value of 0.

I. NEXTWEN is the numberof external WEN signals needed forattaching extemal slavedevices
to the main memory bus. A WEN signal is useful for active low write enables of SRAM-like
devices. It should be > 0 and has a default value of 0.

m. NEXTCSN is the number of external CSN signalsneeded for attaching extemal slave devices
to the main memory bus. A CSN signal is useful for active low chip-selects. It should be £ 0
and has a default value of 0.

n. SEL_EXTJ)WS, SELJEXTJ WS, SEL_EXT_2WS are strings indicating the wait-state map
for memorylocations on themainbusthat are usedby the extemal slave devices. These strings
are in the form of boolean (0,1) valued functions of the variables Address, and PAGE4KW.
These variables areidentical and correspond to the bits A12..A23 of the memory address. The
boolean functions are in ABEL syntax. Every external device on the main memory bus is
required to either generate a handshake signal which results in the TMS_RDY_L input to be
pulled low, or should result in one, and only one, of the above three functions evaluating to 1
when the device is being addressed.



76

Figure 3-8 : Hierarchy of SDL files for the procC30 Module

o. EXTCSN_COND is a list of NEXTCSN elements where each elements is a string
corresponding to a boolean valued function of Address and PAGE4KW that evaluate to 1 when
the correspondingCSN signal needs to be asserted.

V EXTRDBUF.COND and EXTWRREG.COND are similar to EXTCSN_COND except that
theyindicate theaddress selection conditions associated with theRDBUF and WRREGsignals.

The SDL file for the module is far too complex (> 900 lines of SDL code) to present here.

Therefore only thehierarchy of SDL files used in designing the module is shown in Figure 3-8.

AppendixC contains information on accessing the on-line copies of the SDL files forthis module

as well as for the othermodules in the library. Several differentinstances of this module have been

fabricated and tested. Themodule operates flawlessly atthe maximum speed of 33MHz.



77

Example 2: An Asynchronous Bit-Parallel Fiber Optic Receiver Module

This example is a complete bit-parallel optical receiver section. Together with its dual opticalT it

provides the ability to send a multi-bit word at one end of an optical communication link and

receive it at the other end. Dataratesup to 125 Mbits/sec can be achieved together with a bit-error

detection capability. The module is based around commercial parts. The two main parts are

Am79hl000R and Am7969. The first part is a optical data link receiver which converts the optical

signal received through an optical fiber with a ST connector to anelectrical signal. The optical

signal is assumed to be 0-1 intensity modulated and the output is a bit-stream on a pseudo-ECL

differential signal pair. The second part, popularly known as theTAXI receiver, is ahigh-speed

serial-to-parallel receiver. It asynchronously decodes the serialbit-stream that has been encoded

by its sister chip Am7968 TAXI transmitter that is used in the opticalT module. The remaining

parts in this module are there for noise considerations. Sincethe optical data link receiver deals

with very small currents (nano amperes) to distinguish between 0 and 1 bits, noise is a major

consideration. Themodule uses ferrite bead filters atstrategic locations and in addition decouples

theoptical data linkreceiver from therest of thesystem by optionally using a. c. coupling which is

selected through a parameter. Encapsulating these details about design for noise into a robust

module makes a high-speed point-to-point optical communication link sub-system easily

accessible to asystem designer. The robot peripheral board example described later in thischapter

uses such a communication link to communicate with a remote robot controller using a custom

packet protocol.

Figure 3-9 shows theblack-box picture of this module while theSDL file describing themodule in

a purely structural fashion is shown following this paragraph. All the subcells in the SDL file are

primitive components except forthe linecoupler subcell which is a separate module thatprovides

a.c. or d.c. coupling.

File: opticalR.sdl

A complete bit-parallel optical receiver section using Am79hl000R



78

; optical data link receiver and Am7969 TAXIchip receiver

(parent-cell opticalR)
(parameters
; number of data bits - should be 8 or 9 or 10

; sets TAXI in 8 or 9 or 10 bit mode
(DBITS 10 (assert (memql DBITS M8 9 10))))
; 1 ==> use ferrite beads

(use_ferrite 1 (assert (memql use_ferrite MO 1))))
; o ==> dc coupling, 1 ==> ac coupling + separate ODL and TAXI planes
(ac_coupling 1 (assert (memql ac_coupling MO 1))))

/local variables

(CBITS (- 12 DBITS) (local))
(dc_coupling (= ac_coupling 0) (local))
(no_ferrite (= use_ferrite 0) (local))

)

; use pfp for placement
(layout-generator "pfp -B -a")

; declare the subcells and their placement attributes
(subcells
; ODL receiver chip
(Am79hl000R ((inst odlR (ROTATION *270.0) (POSITION M0.8 2.6)))))
; taxi receiver chip

Optical Signal
(TAXIAm7968 Protocol)

RESETn

opticalR

parameters:

DBITS = 8/9/10 (number of data bit)
; parametersfor low-noise design
use_ferrite = 1 (use ferrite beads)
ac_coupling = 1 (use ac-coupling)

CLKOUT

CLKIN

DBTTS^^ 12-DBTTS

t T T T
SD VLTN DSTRB CSTRB DO CO

Interface to Higher-Level Protocol Processor

Figure 3-9: Black-Box Picture of the opticalR Module



79

(Am7969 ((inst taxiR (ROTATION *90.0) (POSITION Ml.l 0.0))))
((DBITS DBITS)))

; PECL to TTL converter to generate SD (Signal Detect)
(MC10H350 ((inst pecl2ttl (ROTATION *270.0) (POSITION MO.O 0.8)))))

; 2.7 uH inductors to connect TAXI and ODL planes
; note the use of CONDITIONAL so that the inductors are

; included only if ac_coupling is specified to be 1
(inductor (
(inst II (ROTATION *0.0) (POSITION MO.6 1.4)))
(inst 12 (ROTATION *0.0) (POSITION MO.5 1.4)))
) ((CONDITIONAL ac_coupling)))

... declaration of other components ...

)

; declare the connectivity in a pin-list fashion

; these are the terminals coming out of this module
(inst parent (
(DSTRB DSTRB)
(CSTRB CSTRB)
(VLTN VLTN)

(DO DO (width DBITS)) ; bus with parameterized width ...
(CO CO (width CBITS))
(CLKIN CLKIN)
(CLKOUT CLKOUT)
(SD SD) ; signal detect
(RESETn RESETn)
(ODLGND ODLGND)
(TAXIGND TAXIGND)
(ODLVCC ODLVCC)
(TAXIVCC TAXIVCC)

))

; these are the subcells
(inst odlR (
(VEE1 ODLGND)
(VEE2 ODLGND)
(VEE3 ODLGND)
(SD+ SDpos)
(SD- SDneg)
(VEE4 ODLGND)
(VEE5 ODLGND)
(VEE6 ODLGND)
(Vccl ODLVCC)
(Vcc2 ODLVCC)
(Rx- Rxpos)
(Rx+ Rxneg)

))

(inst taxiR (
(DO DO (width DBITS))
(DSTRB DSTRB)
(CO CO (width CBITS))
(CSTRB CSTRB)
(VLTN VLTN)
(SERIN+ cRxpos)
(SERIN- cRxneg)
(CNB CLKOUT) ; TAXI in local mode



80

(IGM IGM) ; it really is unused
(DMS TAXIGND (CONDITIONAL (= DBITS 8))) ; conditional connection
(DMS TAXIVCC (CONDITIONAL (= DBITS 9)))
(DMS DMS_FLOAT (CONDITIONAL (= DBITS 10)))
(CLK CLKOUT)

(XI CLKIN)
(X2 TAXIGND)
(RESET_L RESETn)
(VCC1_TTL TAXIVCC) ; TTL power plane
(VCC2_CML TAXIVCC (CONDITIONAL no_ferrite)) ; logic and analog
(VCC2_CML fTAXIVCC (CONDITIONAL use_ferrite)) ; logic and analog
(GND1_TTL TAXIGND) ; TTL
(GND2_CML TAXIGND) ; logic and analog

))

... connections to other subcells .. .

(end-sdl)

This module interfaces electrically with the rest of the system through a set of signals over which

two types of transactions are defined. The two types of transactions correspond to the arrivalof a

data word and the arrival of a control word - the communication link implemented by the module

has the provision for a 8/9/10-bitdata channel anda 4/3/2-bitcontrol sub-channel. The signalling

protocols for the two types of transactions are pictorially represented in Figure 3-10 from which it

is clearthat the transactions aredistinguished by the strobe that is asserted by the module - DSTRB

or CSTRB. These event graphs are stored in the library in the afl text format mentioned earlier.

Figure 3-11 shows the afl description for the event graph corresponding to the arrival of a data

word.

3.6 Simulation and Netlist Checking

Although the process of board hardware generation is quite automated, the integrity of the

resulting implementation is neverquiteguaranteed because ofthe inevitable presence of"bugs" in

themodulegenerators and libraries. Therefore it is desirable thatoneneedsto be able to verify that

the resulting implementation has the required functionality, and that it is free of electrical

problems.

Two tools are provided in SIERA for this purpose. The first is SIVcheck which does a static



pO

nO:
DSTRB +"

/ V

p4

DSTRB-

p3

n3:
Dos

n2:
Dox

pl

port: parallel D bus

protocol: RCVD

port: parallel C bus

protocol: RCVC

81

precedence between precedence between
control signals control and info signal

Figure 3-10 : Event Graphs for opticalR Sub-system Module

analysis of a flattened structureJnstance view of the board, and tries to check for electrical

correctness. It discovers problems such as multiple outputs driving the same net, or a floating

input. It accomplishes this by using the DIRECTION andTERMTYPE attributes attached to the

formal terminals of the individual chips. Experience has shown that such a staticanalysis of the

final netiist catches a vast majority of design problems - and should be done before costlier

dynamic techniques such as simulation areattempted.

Staticanalysis tools such asSIVcheck are usually not powerfulenoughto detect logicalandtiming

problemsin the design. In the absence of formal verification techniques, such problems arebest

detected by doing a bit-level simulation of the entire board. Support for such simulation is

provided in SIERA using the THOR simulator from Stanford [THOR]. THOR is an event-driven

simulator for modelling digital system at a functional level using bit and bit-vector data types.



/* Event graph for
* module : opticalR
* port : parallel D bus
* protocol: receive cycle
*/
(GRAPH

(NAME rcvD)

(CLASS MODULE)
(MODEL ( (model_name masterp) ))
(ARGUMENTS ( (port taxircvr_dbus) (timeunit ns)
(parameter CBITS) (parameter DBITS) ))
(NODELIST

(NODE

(NAME nO) (CLASS event) (MASTER event)
(ARGUMENTS ( (signal DSTRB) (value r) (direction out)

(valid DO) (phase set) ))
(IN_CONTROL (p3 p4) ) (OUT_CONTROL (pO) )

)
(NODE

(NAME nl) (CLASS event) (MASTER event)
(ARGUMENTS ( (signal DSTRB) (value f) (direction out)

(invalid DO) (phase reset) ))
(IN_CONTROL (pO) ) (OUT_CONTROL (pi p4) )

)
(NODE

(NAME n2) (CLASS event) (MASTER event)
(ARGUMENTS ( (signal DO) (bitvectwidth DBITS)

(bitvectbase 0) (value x) (direction out)) )
(IN_CONTROL (pi) ) (OUT CONTROL (p2) )

)
(NODE

(NAME n3) (CLASS event) (MASTER event)
(ARGUMENTS ( (signal DO) (bitvectwidth DBITS)

(bitvectbase 0) (value s) (direction out) ))
(IN_CONTROL (p2) ) (OUT_CONTROL (p3) )

)

)

(CONTROLLIST
(EDGE

(NAME pO) (CLASS control)
(ARGUMENTS ( (min "3*period/(CBITS+2)") ))
(IN_NODES (nO) ) (OUT_NODES (nl) )

)
(EDGE

(NAME pi) (CLASS control)
(IN_NODES (nl) ) (OUT_NODES (n2) )

)

Figure 3-11: Event Graph for opticalR Module in aflText Format

82



83

THOR views a system to be hierarchically composed of modules that are modelled using the C

language with some extensions.

The tool MakeThorSim from LAGER is used to convert the structureJnstance view of the board

into the netiist format accepted by THOR. The details of this process are described in

[Brodersen92]. However, briefly, MakeThorSim traversesthe structureJnstance view hierarchy of

the board in a depth-first fashion until it hits a sub-cell containing the attribute THOR.MODEL.

All the modules in the board level primitive component library have associated THOR models in a

.THOR file. These models are stored in the THOR_MODEL attribute in the corresponding

structurejnaster view during the process of library installation, and later on the THOR_MODEL

attribute is copied into the corresponding structureJnstance view by DMoct. This process

guarantees that MakeThorSim will always find the THOR_MODEL attribute in the leaf nodes of

the design hierarchy. The output of MakeThorSim is a netiist in THOR format, together with the C

models for each of the sub-modules. These are then used by THOR to simulate the entire board at

the bit level.

Although THOR is the simulator that is currently used, the library organization and tool policies

aremodular enough that other simulators, such as VHDL, can be used in a similar fashion. Adding

a new simulator requires a tool similar to MakeThorSim for generating input for the simulator, and

simulation models for the various modules in the primitive component library.

3.7 Board Example

So far only the hardware module generation partof the SIERA environment has been discussed.

Just these hardware module generators can often be used fruitfully in isolation from the software

and architecture generation utilities available in SIERA that are described in the following

chapters.

A good example of such a board whose design used only the hardware module generators is the



84

robot peripheral board that is part of the robot control system presented in Chapter 8. Here we

present another board that made such stand-alone use of the hardwaremodule-generators.

3.7.1 DSP Multiprocessor Board

This example is an interesting one because it was done in less than three months by a graduate

student researcher from the DSP group at Berkeley who had no previous board or system design

background. The three month time period included the learning curve associated with getting

familiar with the various tools. The board is partof a multi-processor system with a special shared

memory architecture called Ordered Memory Access described in [Lee90]. The system being

developed by the DSP groups is made up of one or more identical interconnected boards. The key

feature of the architecture is that the access to the shared memory is granted to the processors by a

central controller (called MOMA) according to a static schedule. This is in contrast to

conventional shared memory architectures where the processors request access to the shared

memory. Once access to the shared memory is grantedto a processor, it is not released until the

processor has completed a shared memory transaction. The order of accesses to the shared

memory is determined by a fully static scheduler and loaded into the central controller as a list of

memory transactions. An advantageof such fully static scheduling is that no hardwareor software

semaphores based synchronization is required. Such fully static scheduling is possible for a

subclassof dataflow graphscalledSynchronous Dataflow Graphsthat lack datadependency. Many

important algorithms, particularly in digital signal processing, belong to this category. The ordered

memory access architecture offers an efficient and low-cost architecture for such applications.

Figure 3-12 shows a block diagram of the board and Figure 3-13 shows the corresponding

hierarchy of SDL files. It consists of four processor modules using the MC96002 32-bit digital

signal processor as the CPU. Each processormodule contains 1 Mbyte of fast SRAM and some

glue logic for initializing the CPU mode. This particular CPUhas two identical memory ports,one

of which is used for the localSRAM mentioned aboveandthe otheris broughtout ofthe processor



Shared RAM
(512K 32-bit words)

MC96002
Processor Module # 2

MC96002
Processor Module # 3

Clock, Debugger
Control, & Reset

Module

MC96002
DSP

Ordered Memory
Access Controller

MC96002
Processor Module # 1

MC96002
Processor Module # 0

Local RAM
(256K 32-bit words)

•

—. . .—. . «

Figure 3-12 : Board Architecture of the MC96002 Based Shared Memory Multi-
Processor with OrderedMemory Access [Sriram92]

85



86

(sram256Kx32

Figure 3-13 : SDL Hierarchy for the MC96002 Based Shared Memory Multi-
Processor with Ordered Memory Access [Sriram92]

module as a global bus. The global busses of each of the four processor modules are tied together

and connected to 2 Mbytes of shared SRAM. A Xilinx XC3090 FPGA is used to implement the

memory access controller which controls the bus grant lines of each of the processor modules. An

extemal 16Kx8 SRAM module is used to store the memory access schedule which is loaded from

a workstation host. The Xilinx FPGA is also connected to the global bus for loading the program

code into the processor modules on initialization. The host interface is also mapped to the Xilinx

FPGA. Finally, multiple boards can be connected in a chain by modifying the logic in the Xilinx



87

FPGAs so that they act as gateways.

This design project made use of some of the existing memory modules and in turn contributed the

MC96002 based processor module which is easily reusable in other designs. More importantly,

variations of the board with different numbers of processors can be generated in a very short time.

The physical layout of the board is shown in Figure 3-14. As is evident from the figure an

extensive use of tiling-based placement was made in the design of this board. Further, the four

processor modules have horizontally and/or vertically flipped versions of the same floorplan,

resulting in a very compact and efficient layout. Table 3-4 summarizes the characteristics of the

board.

Dimensions 13.6" x IT

Number of Layers 10

Number of Components 230 parts + 170 bypass capacitors

Design Time 3 man-months, including time for learning the tools

Amount of SDL Code 2800 lines

Table 3-4: Main Features of the MC96002 Multi-Processor Board

3.8 Summary

The board level hardwaremodule generation framework presented in this chapter is now quite

mature at the structural level, and in doing placementand routing. However, a key component that

is missing is the extraction of physical information from the final placed and routed board for

doing accurate performance analysis. Due to increasing clock frequencies, transmission line

effects have become importantso that the ability to extract capacitance, inductance and resistance

to do a transmission line analysis is very important.



88

MC96002
Processor

Module

MOMA
Controller
mplementec

Using
Xilinx

Figure 3-14 : Physical Layout of the MC96002 Based OrderedMemoryAccess
Shared Memory Multi-Processor Board



CHAPTER 4

Software Modules

The use of parameterized hardware modules has played a major role in enabling automatic

generation of chips as well as boards. Modularity brings with it the advantages of reusability and

standardized interfacing to simplify the taskof composing complexmodules from simplerones. It

is similarly important in software as demonstrated by the efforts towards modular programming

styles, objectoriented languages, and reusable software libraries. However, achieving modularity

has arguably been less successful in the software domain - reusable software libraries as well as

automatic code generation (software modulegeneration) are formost purposes still not available.

This is a result of two factors. First, software is an inherently more flexible medium than

hardware, and hence more prone to ad hoc approaches. Second, software systems usually have a

much higher logical complexity.

In light of the above, the goal of the work described in this chapter is not to solve the problems of

general purpose software module generation and reusable libraries. Instead, the focus is on the

software modules and techniques needed to design systems using the hardwaremodules described

in the previous section.This includesthe system andapplication softwarethat actually runson the

89



90

software programmable processor modules constituting the system, as well as the support and

development software needed for developing the system.

4.1 Software Issues in Application-Specific Systems

In order to study what are the software issues relevant in the context of application specific

systems being investigated in this thesis, Figure 4-1 shows the hardware organization of a typical

system that can be built using the hardware module generators and libraries described in the

previous chapter, together with some off-shelf hardware.

The example system is characterized by being composed of a number of heterogenous

programmable processors that are spread over a workstation, an off-shelf board, and two custom

boards. The processors are connected using some suitable interconnect hardware. The custom

boards also have ASICs and other dedicated hardware coupled to the programmable processor

USER Single-Boar
Computer

Figure 4-1: Organizationof a Simple System Using Off-Shelf Hardware and
Module Generators and Libraries from Chapter 3



91

modules on those boards.

The logical functionality of the system is implemented by the dedicated hardware on the custom

boards together with software executing on each of the processor modules. It is the problems

relating to the development and modular organization of this software that are being addressed

here. Following are the important problems that were identified:

a. SoftwareModules Organization
- what is an appropriate form of software module?
- what is a suitable model of software organization?
- how can multiple software modules be mapped to a single processor?
- how are the software modules distributed across multiple processors?

b. Communication

- how do the software modules communicate with each other?

- how do the software modules communicate with the dedicated hardware modules?

c. Run-Time and Development Environment
- how does the user interface with the software modules?

- how arethe software modules developed, down-loaded,monitored, and debugged?

d. Generation ofSoftware Modules from High-Level Description
- is it feasible to have some form of automated software module generators?

It is highly desirable that the solutions to the above problems be applicable to parameterized

processor modules, and encourage reusability, In particular, one would like to identify software

modulesand othersupport software that, withappropriate configuration, is reusable across designs

and then encapsulate them in libraries just like hardwaremodule libraries. The solutions to the

above problems arediscussed in detail in the following sections.

4.2 Software Module Organization

Software, unlike hardware, is a flexible and abstract medium, as a result of which many different

ways of organizingsoftware systems exist It is therefore not obvious as to what is an appropriate

form of software module. This problem is not present in the case of hardwarewhere modules are

naturally defined to be concurrently operating parts of a hardware system that interact using

electrical wires. In the case of software multiple modules may be mapped to a single physical



92

processor which is an inherently serial device. Therefore concurrency alone is not a sufficient

criterion for defining a software module. The nature and organization of software modules

depends on the control mechanism used to orchestrate them. This section explores the alternate

control mechanisms, and tries to determine a suitable form of software module.

4.2.1 Existing Control Mechanisms for Software Modules

There are three fundamental module control mechanisms thatare commonly used in softwareand

relevant to this work - subroutines, coroutines, andprocesses. As shown in Figure 4-2, these

mechanisms differ in how the control is transferred between the modules.

module
A

module
B

SUBROUTINES

Hierarchical

Sequential
(single threadof control)

Modularity

Complexity

module
A

resume B

resume

module
B

resume A

esumeA

COROUTINES

Symmetric

Sequential
(single thread of control)

module
A

module
B

PROCESSES

Symmetric

Concurrent
(multiple threads of control)

Figure 4-2: Control Mechanisms for Software Modules



93

Subroutines

In subroutines the modules have a hierarchical master-slave relationship: the master module

invokes the slave module using a call statement, and the control is always returned to the master

by the slave using a return statement after the slave has done its job. This mechanism leads to

efficiencies by allowing several masters to share a single slave, and is considered so useful that it is

built into the instruction sets of most processors. Subroutines encourage hierarchical

decomposition of the system leading to many dependencies among the modules. Further,

subroutines are an inherently serial control mechanism - a master module is idle while the slave

module is doing its task. This is true even if the two modules are mapped to different processors,

such as in the case of remote procedure calls (RPC). Both these attributes - hierarchical

decomposition and inherently serial control - not only detract from modularity but also render

subroutines unsuitable in the case ofmultiple processors where true concurrency is available.

Nevertheless, it certainly is possible to fake concurrency and avoid hierarchical decomposition

using subroutineswhen multiple modules share a processor - a supervisormodule is designatedas

the master to all the application modules which are then repeatedly invoked as subroutines by the

supervisor module. This is an acceptable way of organizing concurrent modules if the order in

which they need to be invoked can be statically determined, and is cyclic. For example, this is the

case with systems composed of Synchronous Data Flow modules [Lee87]. This is also extensible

to the case of multiple processors. However if a good static schedule of invocation cannot be

statically determined then this scheme can lead to poorutilization ofthe processors. This is usually

the case in the presence of event-driven reactive modules which exhibit asynchrony and non-

determinacy, such as modules interacting with external I/O devices.

Coroutines

Coroutines [Andrews83] are a generalization of subroutines where the control is transferred

between modules in a symmetric rather than a strictly hierarchical fashion. Control is transferred



94

between modules by the resume statement, the execution of which transfers control to the named

module. When control returns to a module, it starts executing at the instruction following the last

resumeexecuted by it. If multiple modules sharea processorthen enough state information about a

module executing resume needs to be stored so as to enable control to be returned to the instruction

following the resume. This makes coroutines moreexpensive thansubroutines.

Although a fundamental concept, coroutines are a relatively non-standard control mechanism and

most computer programming languages do not support them directly. They form a conceptual

bridge between subroutines and processes. Coroutines are particularly useful to handle properly

modules that retain state information between successive invocations. It is worth noting that

subroutines caneasilybe implemented usingcoroutines although it may not be efficientto do this,

but the reverse is difficult and inelegant to implement. Also, conceptually there is nothing that

prohibitscalling a subroutine type module from within a coroutinemodule.

The symmetriccontrol transfer of coroutines make theirorganization more egalitarian thanthe

stricthierarchical relationship imposed betweenmodulesby a subroutine structure. As a result

coroutines canbe usedeasily and efficiently to organize multiple concurrent modules that share a

single processor. This, for example, is the case with the architecture model used by theVulcan-H

hardware-software co-design system (see Chapter 1and [Gupta92a][Gupta92b]) where only one

software programmable processor is allowed.
»

However, coroutines are not a suitable control structure in the presence of multiple processors.

Their semantics allow foronly one thread of control. In otherwords, only one modulehas the

control and is executing at any given instant. The single thread of control that is inherentto the

semantics of coroutines make them unsuitable as a solution to software organization for systems

designed using the hardware module generation techniques presented in the previous chapter.

Using those techniques it is extremely easy to build systems that have multiple programmable

processor modules. These systems therefore are inherently capable of supporting multiple threads



95

of control which a coroutine based software organization will not be able to exploit

Processes

Processes are a generalization of coroutines, and are the most powerful of the three control

mechanisms. A process module has its own thread of control and is scheduled independently and

separately from other process modules. This makes them extremely attractive conceptually when

multiple processors are present to provide true concurrency. The concept of processes is useful

even when multiple process modules aremapped to a single processor as their independent threads

of control lead to more modularity than provided by coroutines and subroutines. Although in the

single processor case only one process module can have the control at any given instant, because

of the inherently serial processor, it is certainly possible to simulate concurrency by using a kernel

to multiplex the modules onto the single processor. As a result the multiple process modules

sharing a processor appear to run concurrently. The kernel implements the transfer of control

between the process modules, and also uses some policy to schedule these transfers, called context

switches. In other words the kernel helps in interleaving the execution ofmultiple process modules

on a single processor to give the appearance of concurrency. Information about the state of the

process module needs to be saved, just like in the case of coroutines, in order to resume execution

when the control is transferred back to the processmodule.

Process is a very fundamental and widely used concept. Multitasking operating systems, for

example UNIX, support this concept as do languages like ADA and OCCAM. Further, some

processors support the notion of processes, providing support for process scheduling and context

switching. Examples of such processors are INMOS Transputers and Intel i960 series. It is easy to

implement coroutines using processes. In fact coroutines can be viewed as concurrent processes

mapped to a uniprocessor where the context switching is completely specified rather than being

done by the kernel. Also, conceptually nothing prohibits the use of multiple coroutines and

subroutines inside a process.



96

While processes are the most versatile, elegant, and modular of the three control mechanisms

discussed, they are also the most expensive to implement. Their independent and concurrent

threads of control require that either every process module be mapped to its own dedicated

processor, or a kernel be used to do scheduling and context-switching of multiple process modules

sharing a processor.

Finally, while processes have independent concurrent threads of control, it is not very useful if the

processes are isolated. Most meaningful systems will require that the processes co-operate so that

their composite behavior implements the desired system functionality. Co-operation may require

that the processes communicate, share data, and synchronize.

4.2.2 Using Processes as Software Modules

From the discussion in the previous sub-section it should be clear that when multiple processors

are available, thus making true concurrency available, processes provide the only control

mechanism that makes sense. This makes a strong case for using processes as the software

modules. However, one can argue against this on grounds of efficiency. It is possible to use

coroutinesor subroutinesas modules within each individual processor, and then viewing all the

coroutines or subroutines on a processor to together constitute a single process. This gives a

process view at the top level while retainingcoroutinesor subroutines underneath.
•

Despite these valid efficiency concerns the model used for organization of software modules in

this work is that of processes at both levels - within a processor and acrossmultiple processors.

There are several reasons for this, as listed below:

a. It is conceptually elegant as processes provide the maximum modularity and concurrency. It
forces much less inter-module interaction than subroutines or coroutines because the control

structuresof the modules are completely separated. This often results in less stringent timing
constraints.

b. It is easier and more efficient to migrate a process across processors than is it to migrate
subroutines or coroutines.



97

c. The notion of processes with their independent threads of control provide a unifying theme
between hardware modules and software modules. The hardware modules are inherently
concurrent being a separate physical entity co-existing with other hardware modules. In fact
one can view a dedicated hardware module to be a process running on its own dedicated
processor. In fact hardware modelling languages, such as VHDL, Verilog, and Hardware-C,
have adopted this process view of hardware. This point is important in this work because both
software programmable processors and dedicated hardware modules form an integral part of
the systems that are of interest to us.

d. Dedicated hardware modules that interface to a software programmable processor often require
interrupt handlers. These interrupt handlers can also be viewed as processes except that they are
scheduled outside the control of the scheduler in the kernel managing the process modules.
These interrupt handlers appear to execute concurrently with the process modules, and share
similar problems and attributes.

e. Implementation of kernels for many processors are available, thus simplifying the task of
demonstrating these ideas.

f. The notion of processes is also very useful in describing the behavior of systems. Processes
very nicely capture the coarse granularity concurrency present in the real-time reactive systems
that are the focus of this work, as described in Chapter 1. For example, the robot control system
described in Chapter 1 can naturally be structured as a number of processes which all
apparently run in parallel.

The formalism chosen for specifying the high level behavior of systems in this work is that of a

network of processes. This formalism is described in detail in Chapter 5. An important point to be

noted is that the processes used to specify a system need not have a one-to-one relationship with

the process modules, hardware or software, in the implementation. Still, having the notion of

processes for specification as well as implementation certainly simplifies the implementation.

Of course nothing comes for free - a drawback of the process approach when compared to

subroutines and coroutines is that it is much more difficult to estimate and evaluate its

performance. This is due to the loose coupling between the multiple threads of control which

makes it extremely hard to predict the actual order of various events during execution of the

system.

4.2.3 Implementation of Process Modules

The arguments in the previous section should convince one that processes are indeed a desirable

form for structuring software modules. The implementation of this approach is however not



98

straightforward. Unlike subroutines, very few processors support thenotion of processes directly

in hardware. Therefore supporting software is needed to implement the processes. Usually in real

time systems this is oftendone in an ad hoc fashion withlittle sharing of efforts across different

projects. To avoid this repeated re-invention of the wheel, and to also make theimplementation of

processes easier, it is desirable if anoperating systemwith amulti-tasking kernelis used.

There are two possibleapproaches to using multi-tasking operating system kernels in a system

composed of multiple processor modules generated using techniques of Chapter 3. The first

approach wouldbe to use adistributed kernel thatcansimultaneously handle processes mappedto

all software programmable processor modules in the system. Unfortunately the technology of

distributed kernels is not very mature, and the design of adistributed kernelis further complicated

in our case by the fact that the processor modules can be heterogenous, and be connected in

arbitrary topologies.

The second approach, which is the one used in this work, is that of using multiple autonomous

kernels with one kernel being associated with each processor module. The kernel on each

processormodule manages only the processes that aremapped to it. lb accomplish this the kernels

need to be able to create separate processes, schedule their execution, handle communication

between processes, and synchronize processes with each other and with external events.

*Figure 4-3 illustrates the organizationof software. The disadvantages of this approachover the

distributedkernel approach include underutilizationof processors, and a lack of handling of inter

process communication when two processes areon different processors.

A configurable real-time multi-tasking operating system kernel has been associated with each

processor module in the hardware module library described in Chapter 3. Ideally one would like to

have identical kernels on each processor module - this would have the advantage of identical

semantics. However currently a mix of existing commercialor home brewed kernels is being used

in order to demonstrate the concept. Table 4-1 lists the various processor modules and kernels



99

PROCESSOR KERNEL COMMENTS

TMS320C30 SPOX Priority Driven Preemptive Multi-Tasking Kernel

DSP32C VDI Locally Developed Foreground-Background Kernel

MC96002 (SPOX) (not available yet)

MC68020/30 VxWorks Priority Driven Preemptive Multi-Tasking Kernel

SPARC LWP Priority Driven Preemptive Multi-Tasking Kernel

Table 4-1 : Currently Supported Processor Modules and Associated Kernels

associated with them.

These kemels provide the ability to map multiple process modules to a single processor Most of

these kernels - SPOX, VxWorks and LWP - are true multitasking kernels which can manage an

P P P
R R R

0 0 0
C

.............

C C
E E E

S S S
S S S

I i ii

—r
shareiidata \

KERNEL

PROCESSOR MODULE # a
(hardware)

P

R

0
C
E

S
S

P

R

0
C
E

S
S

P

R

0
C
E

S
S

I i ia

'. share*idata :

KERNEL

PROCESSOR MODULE # b
(hardware)

Figure 4-3 : Implementation of Process Modules by Multiple Autonomous Kernels



100

arbitrary number of process modules. All these kemels provide support for real-time behavior by

supporting pre-emptive, priority driven scheduling of the process modules. Basically, a priority is

associated with each process module. At any given instant the highest priority process module that

is ready to execute is given control of the processor by pre-empting the currently executing process

module. The thread of control associatedwith a process module is blocked if it has to wait for a

synchronizing event from another process within the processor, or from a source external to the

processor.

In some instances, like VDI for DSP32C, the kernels are foreground-background kernels. These

are essentially multi-tasking kernels with only two priority levels. Multiple process modules are

allowed at the higher priority level while a single low priority process module executes in the

background. The higher priority processes areimplemented as interrupt handlers.

These kemels typically provide a subroutine interface to let the processes access the various

services provided by the kemel. Because of our decision to use a mix of different kernels there are

different subroutine interfaces associated with each kernel. Further there are subtle as well as not

so subtle differences in the semantics across the kernels. To mitigate the situation somewhat a

common extralayerof subroutines is usedon top ofeachkemel atthe cost of performance penalty.

This is however not the best solution- the real solution to these problems is to develop a common

and simple kemel that canbe ported across the different processor modules.

In the previous sub-section it was mentioned that the notionof processes is equallyapplicable to

hardware as well as software, thus providing a commonthread betweenthe two for purposes of

representation and simulation. This uniformity can be taken one step further. The hardware

modules usually plug in a bus structure which has specific electrical, functional, and

synchronization requirements. Similarly the software modules (processes) pluginto asoftware bus

thatis defined by the interface to the kemel beingused to manage the processes. The kernel is like

the bus controller and imposes data, functional, and synchronization requirements on the software



Software Module
(process)

Software Bus

Software Module
(process)

Operating System Kernel

Programmable Processor

Hardware Bus

Dedicated
Hardware Module

Dedicated
Hardware Module

101

Figure 4-4 : Similarity between Organization of Hardware and Software
Modules in a System

bus defined by it. Figure 4-4 illustrates this interesting similarity between hardware and software.

This analogy provides much of the motivation behind a layered template based approach to

generation of system architecture that will be presented in Chapter 6.

4.3 Communication and Synchronization of Software
Modules

Earlier in this chapter it was suggested that processes executing in isolation are not useful for

most systems of interest to us. This cooperation takes the form of communication and

synchronization between processes that are in general mapped in a many-to-one fashion onto one



102

or more software programmable processors. Further, as already mentioned, dedicated hardware

modules can also be viewed as processes which happen to be running on their own dedicated

processors. These facts suggest the following three classes of communication and synchronization

problems:

a. Between software processes on the same processor

b. Between software processes on different processors

c. Between a software process and a hardware process

The solution adopted for these problems is to provide the following using a mix of hardware

support and software layered on top of each kernel:

a. Standard inter-process communication primitives built in software on top of each kemel for
communication between software processesmanaged by it on the corresponding processor.

b. Parameterized hardware modules for connecting processor modules together with software
drivers for them. They are then used to implement a library of standard primitives for
communication and synchronization between software processes mapped to different
processors.

c. Interface specification forconnecting dedicated hardware modules as slaves to programmable
processor modules, and software drivers for them. Communication and synchronization
primitives are then built on top of this to let a software process interact with the dedicated
hardware module as if the hardware modulewasanother software process.

The basic approach in implementing the above three is to first provide a lowest layer of

synchronization and communication primitives using a mix of hardware and software best suited

for the processor and the kernel. The desired standard primitives are then implemented on topof
»

this low-level layer, somewhat akin to the conventional layered approach to computer

communication and networking.

The choice of the standard communication and synchronization primitives depends on the

architecture model being used forthe system. It is not meaningfulto talk aboutthe implementation

without describing the system architecture.Therefore the discussion on the hardware and software

implementation of thecommunication and synchronization primitives is being deferred to Chapter

6 after themodelof system architecture used here has been presented.



103

4.4 Run-Time and Development Environment

One feature that distinguishes software modules from hardware modules is the importance ofuser

interface modules, and the need for a run-time environment for developing, down-loading, and

monitoring the software modules. Interaction with the user as well as with a host computer are

much more important in software. On the positive side the implementation of this supporting

software is considerably eased in our process based organization of software. Special software

processes are run on the various programmable processors under the same kernel as the software

process modules implementing the system. These special processes provide a consistent run-time

environment for user interface, file input andoutput, program loading etc. This is thus a trivial by

product of our use of multi-tasking kernels, and results in a considerable saving in time often

wasted in ad hoc implementations for custom hardwaresystems.

Following subsections describe the implementation of the three main classes of services that are

currently provided as partof the run-time environment A full appreciation of these services may

require reading about the system architecture model in Chapter6.

4.4.1 Software Module Loaders and Initialization Utilities

A standard set of utilities have been implemented to initialize and bootstrap the software

programmable processors on the custom board, and to download the software modules and

kernels. One of the processors in the entire system is required to be the workstation where the

softwaremodules aredeveloped and the kernels configured using appropriate cross-development

tools. This processoris treatedas the root, and then all the software programmable processors are

initialized by a depth-first traversal of the system interconnectgraph.

There are two distinct parts to these utilities. First is a loader which understands the object-file

format for all the supported processor and then uses a lower level bootstrap mechanism to

download the memory image to each processor.



104

The second is the utility to bootstrap each processor. The current implementation requires that

every processor either has a self-contained bootstrapROM using which it goes to a ready state on

reset, or that it has a sharedmemory area with the processorthat is its master in the tree formed by

the depth first traversal such that the processor goes to a location in the shared memory on reset.

The bootstrapping is done in two phases using the shared memory. A tiny bootstrap program is

downloaded into the shared memory and the processor is reset. This bootstrap program then

communicates with the downloader process on the master processor (which has already been

initialized) using message queues implemented on the shared memory. A simple and portable

message queue package, called SQ, has been implemented for this. The queues implemented by

SQ are created in the shared memory with an arbitrary size buffer area, and a header. The access

routines to the queue allow arbitrary sized messages to be sent back an forth. If the message size is

larger than the buffer area, then it is automatically broken up into smaller packets, and then re

assembled on the other end. This allows complete contiguous sections of the object file of the boot

image to be downloaded with one message passing call. The functions to send and receive

messages allow the process making the call to either block (using busy-waiting) or return

immediately in case the queue is not ready. Although meant for the bootstrap process, the SQ

package is useful for other purposes too. Figures 4-5 and 4-6 respectively show the boot-strap

process, and the functions available in the SQ package.

•Since the processor modules are parameterized, the amountof resources (for example, memory)

available to them can vary from instance to instance. Td avoid making these parametershard-

coded into the software, a set of parameters describing a processor module are also downloaded

into an area in its memory during the boot-strapping process. These parameters includethe sizes

and addresses of the various types of memories, information about processors that are adjacentto

this processor, and specification about the inter-processor hardware such as the address of the

shared memory and hardware semaphores if any. These parameters are then accessibleat run-time

for the software to be configured appropriately.



105

Master Processor Module Processor Module being Initialized

initialize child processor {
r
bootstrapper {

halt child processor; for ever do {

load bootstrapper in shared RAM; receive msg using assSQMsgRcv;

establish SQs to and from in if (msg == done) {

shared RAM; go to kernel entry point;

start child processor; } else {

for each section in object file { load msg as a section;

send section using assSQMsgSnd; }

)

send done message;

)

i

I J I
Figure 4-5 : The Pseudo-Code for Boot-Strapping a Processor Module

4.4.2 Client-Server Model Using RPC

Low level communication primitives such as message passing, as mentioned in the previous

section and described in detail in Chapters 5 and 6, areuseful as a general-purpose mechanism.

However, at a higher level it is often useful to abstract them even further by imposing a structure

on the way the processes communicate using message passing. Remote Procedure Call is one such

mechanism that is widely used in general-purpose networked computing. In the case of systems

using custom hardware it is often very naturalto structure the user-interface as if the system was a

server providing certain services. Forexample, in the case of a robot controller the high-level user-

interface and planner process runs on a workstation and sends motion commands to the robot

controller hardware. One way of looking at it is as if the robot control system is a motion server

that receives requests from the planner and carries them out. Structuring such user-interface



106

/* functions to access a SQ queue */

/*

* send a packet containing data from d with tag tag to queue sq and a timeout

* timeout. The packet size n must be less than the buffer size of sq.

*/

extern assStatus assSQPckSend(assSQ sq, uint32 tag, int n, void *d, int timeout);

/*

* receive a packet from queue sq storing the data, tag, and size of the received

* packet in d, *ptag, and *pn respectively. The timeoutspecifies the behavior

* when the queue does not have a packet ready, room is the room available in

* the data buffer pointed to by d. A packet largerthan size room is truncated.

*/

extern assStatus assSQPckRecv(assSQ sq, uint32 *ptag, int *pn, void *d, int room, int

timeout);

/*

* send an arbitrary sized messagewith data d, tag tag, and size n.The message

* is broken up into smallerpackets if needed.

*/

extern assStatus assSQMsgSend(assSQ sq, uint32 tag, int n, void *d);

/*

* receive an arbitrary sized packetinto a bufferof size room pointed to by d.

* The tagand actual message size are returned mptag andpn. The message

* is assembled from smaller packets if needed.

*/

extern assStatusassSQMsgRecv(assSQ sq, uint32*ptag, int *pn, void *d, int room);

Figure4-6 :The SQ Package for Simple Low-Level Message Passing



107

software in a Client-Server fashion is therefore very natural. The Remote Procedure Call model

provides such an abstraction.

In order to allow rapid development of interactiveuser-interfaces for systems generated using the

hardware and software module generation techniquesof this chapter, a framework based on SUN's

RPC has been developed. The user-interface process runs on a SUN workstation and is based on a

commercial interactive C interpreter. This allows the user to access the system functionality by

calling C functions and using the control structures of C - thus giving an extremely powerful

programmatic interface. This user-interface process acts as an RPC client that generates requests

for the dedicated system. A base protocol for controlling the system, such as initialization and

bootstrapping, has been defined and the corresponding library is linked into the C interpreter. The

protocol is extended for a specific system together with wrapper functions for executing

application-specific tasks. Forexample, in the caseof a robotsystem the protocolis extended with

requests for moving the robot, initializing the robot, controlling its gripper etc. An RPC server for

carrying out the tasks specified in theserequests is then executedon one of the processor nodesin

the system, whichin turn passes the requests to appropriate processors. Currently implementation

of suchanRPCserver existsonly forthe MC68020 modulerunning VxWorks.The serveruses the

communication mechanisms discussed later in Chapter 6 to send messagesto processors in the

system that actuallycarryout the specified task.

Figure 4-7 shows an abstract view of anuser-interface organized according to this client-server

model,and a good example of anuserinterface based on this is givenlaterin this thesisas part of

the robot control system example.

4.4.3 File and Terminal I/O, and Other System Services

Real-time software modules executing on a processor module embedded on a custom board

typicallydo not need to do any file and terminal I/Obecause such I/O is inherently non-real-time.

However the capability to do such I/O even from these embedded processormodules is desirable



108

for two reasons. First, even for software modules with real-time constraints, such I/O is extremely

useful during the debugging phase. A simple sprinkling ofprintfO in a C program is often enough

to debug or monitor what is going on. Second, having such I/O allows simple user interface

processes to be run on the embedded processors that exchange data with the user or a file. Given

REST OF THE
DEDICATED
SYSTEM

(custom boards
with programmable

processor and
dedicated hardware

modules)

Systerfi Bus

Figure4-7 : Client-Server Model for User-Interface to a Dedicated System



109

our ability to do multi-tasking on every processor, such user-interface processes can easily be run

in the background at a low priority.

This service is implemented using the RPC (remote procedure call) model except that unlike the

previous subsection the embedded processor modules on the custom boards are the clients and not

the servers. Figure 4-8 shows the basic organization of the implementation. There are three key

components in the implementation.

First, one or more server processes are run on a workstation connected to the system, or any other

processor that is part of the system and whose kernel has the ability to do file I/O. Each of these

server processes waits for a request to arrive on a port, services the request, and then sends an

answer back. At present such servers have been implemented for the UNIX workstation, and for

the VxWorks kemel running on the MC68020 processormodule.

The second part of the implementation is the protocolthat is understood by the servers providing

the file and terminal I/O services. The protocol defines a set of request and reply packets, and the

contents of their fields. The protocol is modelled after the low-level UNIX file I/O calls, and has

provisions for opening and closing files, file descriptors, reading and writing from file descriptors

etc. The request packets correspondto the different subroutines and their arguments. The reply

packets correspond to the return value or status.The protocol is synchronous in the sense that a

reply packet is generated for every request packet - just like in the pure RPC model. How the

packets are actually transmitted is immaterial, the only thing that is required is that there be an

underlying communication librarythat allows a packet based communication in a reliable fashion

(i.e., no re-transmission or packet re-ordering is needed).The protocol itself is easily extensible -

in fact, the current implementation also uses the same protocol to provide services like getting the

current time from the clock residing on a UNIX workstation, and the ability to execute arbitrary

commands on a UNIX workstation by making a system() call. This ability of remote execution of

UNIX processes is a powerful utility similar to the rsh command in UNIX.



Intermediary Process
Running on a

Processor Module
whose Kernel supports

SUN's RPC and has
an ethernet connection

UNIX-like

subroutine

calls

110

Host Services
Protocol Packets
Wrapped as
RPC Requests

MWW8WM8M

a-**rocesson
Module on
a Custom

Board

Figure 4-8 : Implementation ofUNIX-like File and Terminal I/O for Programmable
Processor Modules on Custom Boards



Ill

The third partof the implementation is a UNIX-like standard I/O library that is layered on top of

each kernel. This subroutines in the library then accomplish the task by sending one or more

requests to an I/O server running on a workstation or some other processing node.

In order to incorporate a new kernel and processor two things need to be done: provide a

communication link to an existing processor module, and layer the UNIX style standard I/O

library on top of the new kernel.

Lastly, the conceptual similarities between this implementation and that of the X window system is

worth noting. The UNIX-like standard I/O library layered on top of each kernel is like the Xlib in

the case of X. It serves to hide the underlying protocol from the application code. The protocol

used for I/O has its analogue to the X protocol. A key difference is that the X protocol is inherently

asynchronous - a request may not generate any reply at all, or may generate it in the future. The

protocol we use for file I/O is however fully synchronous. The reason for this is that the UNIX

standard I/O library itself has fully synchronous semantics. In addition, it also simplifies the

implementation. Finally, the I/O server is similar to the C server, except that instead of managing

the screen and the mouse it manages I/O to files and terminal emulator windows that provide a

terminal console to every embedded processormodule.

4,5 Generation of Software Modules

At present there is no automated method to generate the code for the software modules from a

high level description. The modules are manually implemented in C, or even assembly, while

using the routines provided by the kernel for inter-process communication and synchronization.

This approach has the disadvantage that the implementation needs to be tweaked individually for

each processor module. Further, the C implementation is not useful for simulation as it is too low-

level.



112

A more desirable approach would be one where the C or assembly code is generated from a

common high level specification language just like the description languages used for hardware

module generation. This high-level specification can provide a common entry point for module

generation as well as for modelling and simulation. This approach has not been investigated at all

in this work. However it is worth mentioning that there exist tools that provide this capability in

certaindomains. For example, there exists a tool called S2C that provides the ability to generate C

code from a description of a DSP algorithm in the SILAGE language, which was also mentioned

in the context of hardwaremodule generationin Chapter3. Thus it is possible to have a library of

modules described in SILAGE that can be mapped to software or hardware. The combination of

Vulcan-II and Olympus synthesis systems provide a similar ability for control oriented modules

described in Hardware-C.

4.6 Summary

This chapter presented processes as the preferred form of modules in software. The notion of

processes provides a common thread between softwareand hardware parts of a system because a

dedicated hardware module can also be viewed as a software process running on a processor

dedicated to it. This helps in unifying the description and simulation of mixed hardware and

software systems. The next two chapters will further explore this theme in the context of

'representation and simulation,and architecture generation.

The ideas described in this chapter have been implemented as a set of software libraries and

programs that are collectively called assys. Using the facilities provided by assys, a user

configures, programs, andinteracts with a systemdesigned in SIERA. Appendix D describes the

organization and the use ofassys.



CHAPTER 5

System Representation

And Simulation

The problems of what a system does (algorithm or behavior), how to describe it (representation),

and how to simulate the representation are closely related. The formalism used to represent a

system intrinsically restricts the behaviorthat can be exhibited by it. It is also very important to be

able to simulate the representation in order to get an unambiguous description of the intended

behavior under certain stimuli. In Chapter 1 we alreadyknow the type and complexity of systems

that are of interest was defined - namely real-time reactive systems that are implemented as

multiple custom boards. This chapter investigates the related problems of representation and

simulation, i.e. the problem of formally specifying the functionality of these systems at a high

level, and the problem of simulating the description.

Different approaches to these problems are needed for system design than used for a single ASIC

design. The techniques used at the chip level lead to an explosion of details when used to represent

and simulate complex systems, and the computation models used by these chip level formalisms

do not reflect the heterogenous and distributed natureof the architectureat the system level.

113



114

5.1 High-Level System Modelling

A model of a system is used to specify and express its behavior by abstracting its salient

properties. Models can be used for design, simulation, analysis, verification etc. Even within the

domain of systems doing digital computation there is a plethora of diverse models that have been

used by researchers in fields such as CAD of ICs, CASE, DSP etc. The diversity of these models

stems primarily from one or more of the following factors:

a. Application Domain
e.g., general-purpose software systems, ASICs, DSP systems etc.

b. Goal ofthe Model
e.g., rapid-prototyping, verification and validation, analysis, simulation etc.

c. Underlying Model ofComputation
e.g., sequential imperative, functional multiprogramming, communicating processes
formalisms etc.

Associated with a model is also some form of syntactic representation, usually a textual or

graphical language, using which systems are modelled.

There is no one single model that is suited for all applications. For example, digital signal

processing applications are usually best modelled as signal-flow graphs, whereas control

dominated applications, such as communication protocol processors, are usuallybest described as

communicating finite state machines. Consequently, the choice of a particular system model

, inevitably restricts the type of systems that canbe expressedin it in a natural fashion.

Most systems belonging to the classof systems that is of interestto us, namely,dedicated real-time

systems that continually interact with the environment, arenaturallyexpressed at the top level as a

set of processes that operate concurrently and communicate with each other and the environment.

For example, the architecture of many major robot systems is one of communicating sequential

processes. This was also the case with the first-generation implementation of our driver robot

controller example where the system softwareturned out to be a specialized,distributed, real-time,

message-passing operating system [Arya89]. Further, the underlying hardware in such systems is



115

inherently concurrent. It has multiple general-purpose software-programmable processors together

with dedicated hardware devices that are used as computation accelerators or as I/O peripherals.

These hardware devices operate in parallel with the software-programmable processors, and

communicate and synchronize with them. The representation of these hardware devices at the

software level is also facilitated by treating them as separate processes running on their own

dedicated processors.

The utility of describing a system as a set of co-operating processes has been realized by many

researchers over time, and has resulted in the proposal of many models for structured specification

and implementation of such systems. These models can all be loosely classified as viewing a

system like a graph, where nodes represent concurrent computing agents orprocesses, and edges

represent paths along which the processes communicate. These models mostly differ in the inter

process communication (IPC) mechanism used, the allowable behavior of the individual

processes, and whether the set of processes is static or dynamic.

The underlying model used by VHDL also belongs to the above category. In VHDL a system is

viewed as a static set of sequential processes that communicate and synchronize via signals that

have very well defined semantics. Unfortunately, as pointedout by others previously [Hubbard90],

the VHDL signal is not a suitable IPC primitive for high-level specification and modelling of

systems. Message-passing channels, events, and shared-data structures are the more commonly

used IPC and synchronization primitives. The reason the VHDL signal is not suitable for high-

level modelling is two-fold. First, VHDL allows only static resolution in case of multiple drivers

whereas a last-driven resolution is very useful for high level modelling. Second, modelling of

asynchronous communication using a VHDL signal is difficult. For example, although VHDL

signals can have memory (by using guarded signalof the kind register), they do not easily provide

queue buffer type memory that is needed for high-level modelling of asynchronous

communication. The complexity of doing high-level modelling in VHDL is also indicated by the

techniques presented in other recent publications [Hubbard90][Aylor91][Narayan911. For



116

example, Aylor et. al. [Aylor91] describe an elaborate VHDL technique for high-level system

modelling based on extended Petri nets. The token passing mechanism is implemented by a

handshake protocol built on top ofVHDL signals.

5.1.1 Alternative Models of Inter-Process Communication

As mentioned earlier, many models for system specification have been proposed over the years

that view the system as a set of concurrent processes that communicate with each other. A

classification of the various such models can be done along the following dimensions:

a. Process Set:

- is it static or dynamicl
- is it bounded or unbounded!

b. Behavior of Processes:

- do the processes have state!
- can the processes exhibit indeterminate behavior? (e.g., can it wait for 1 of 2 inputs,
whichever arrives first?)

c. IPC mechanism:

- is it sharedmemory ormessagepassing based?
- is the message passingsynchronous (unbuffered) or asynchronous (buffered)?
- is the buffer depth bounded or unbounded!
- is the information flow unidirectional or bidirectional
- if bidirectional, is it simultaneous or delayed!
- is the communication control symmetric or asymmetricl
- is the message channel FIFO ordered?
- can the channel have multiple readersor writers'!

•Using the above dimensions as a guideline, some of the popular system specification models are

described below. While some of the following are languages with independently defined

semantics, the rest aredefined indirectly by an associated simulator or synthesis tool.

• CS/>[Hoare85]

It models the system as a static set of possibly non-deterministic sequential processes which

communicate with each other via unidirectional unbuffered (synchronous) communication

channels with single reader and single writer.

• Functional Multiprogramming [Kahn74]



117

It models the system as a staticnetwork of deterministic sequential processes which communi

cate with each other via unidirectionalFIFOs with infinite buffering and single writer and mul

tiple readers. The network can have unbounded recursive parallelism. The processes cannot

wait forinput on more thanone channel simultaneously. Mathematically, such a sequential pro

cess is equivalent to a continuous function from the sequences on input channels to sequences

on its output channels. This model is a progenitor of the various dataflow models. It can model

only determinate computation wherethe resultdoes not depend on the orderof computation.

Static Dataflow [Dennis74]]

This is a subset of Functional Programming where the set of processes is bounded, the FIFO

channels are restricted to single readers, and are non-buffered. Asynchronous hardware tech

niques, such as the one used in [Jacobs91], also follow the static dataflow model.

Dynamic Dataflow

This too is a subset of Functional Programming similar to static dataflow except that unlike

static dataflow it allows the FIFO channels to be buffered. CAPSIM, a popularblock diagram

simulator forDSPsystems [Messerschmitt84] usesdynamicdataflow as its computation model.

SynchronousDataflow [Lee87]

This is a subsetof Functional Programming where a process repeatedly consumes a statically

knownnumber of data items from each input channel, and produces a statically knownnumber

of data items on each output channel. This is a generalization of the notion of well-behaved

dataflow graphs. Modelling datadependentcomputationis inefficient in this model. However, a

big advantage of this model is thata cyclic schedule forthe executionof processes canbe stati

cally determined.

Hardware-C [Ku90]

Proposed by researchers at Stanford for behavioral specification of clock synchronous ASICs

for synthesis, it allows a static set of processes that communicate through unbuffered channels

like in CSP, as well as through a shared medium.

CSIM [Schwetman86]

It is a process-oriented discrete event simulator thatmodels a system as a dynamic set of pro-



118

cesses that communicate through events and message queues that can have multiple readers and

writers. The events are like buffered channels of depth one where the writer overwrites if the

buffer is full. Message queues are infinitely buffered FIFO channels.

• SILAGE [EDC90]

It is a popular language for specification of DSP systems. The metaphor used by it is that ofsig

nal-flowgraphs used in signal processing. It is distinctive principally for syntactic reasons - it is

otherwise isomorphic to static dataflow.

5.1.2 Model Used in this work

Our choice for a high-level model for application-specific systems was driven by the following

requirements. First, it should be able to naturally express the kind of application-specific system

we are most interested in, namely embedded systems that continually interact with their

environment in real-time. Second, it should be suitable for rapid-prototyping of the application-

specific system as a mix of dedicated and general-purpose hardware and software. Third, the

model should be easy to simulate. Last, its behavior should be easily analyzable so that the

specification may be manipulated and transformed by CAD tools for synthesis. Since our initial

goalis to create a verticallyintegrated framework for rapid-prototyping, most attention was given

to the first three requirements. The model itself should encourage modular composition of the

system, reusability of system level modules, unified treatment of hardware and software modules,

'and uniform communication between the modules.

The model adopted forour rapid-prototyping framework views anapplication-specific system asa

static, hierarchical, network of processes that execute concurrently, and interact using a well-

defined communication mechanism based on FIFO channels. Each process has several input and

output ports, and a channel connects an output port to an input port A process can send data

samplesat anoutput port, receive samples at aninputport, or waitnon-deterministically forone of

a set of ports to become ready for communication.The processes make these port operations in a

sequential fashion, but otherwise may have finer granularity parallelism. In fact the model does



119

not specify any particular language to be used for describing the functionality of the processes

themselves. Since no unified language exists for describing all the different types of processes, nor

is such a language likely to be availablein the near future, allowing a multitude oflanguages to be

used for this purpose is a reasonable choice. Any reasonable language, or set of languages, with

appropriate extensions to access the ports may be used for this purpose - this may include

imperative languages like C, VHDL, and Hardware-C, or applicative languages like SILAGE.

Channels are characterized by a buffer depth and a data type. A buffer depth of zero indicates

synchronous or unbuffered communication. A buffer depth larger than zero indicates

asynchronous communication. Infinite buffer depth is allowed for simulation purposes.

The ports are characterized by a data type and a port protocol. The port protocols specify the

behavior when a channel is full or empty. For an output port it can be block on full, overwrite on

full, and ignoreonfull. Foran input port it canbe block on empty,previous on empty,and ignoreon

empty. The port protocols are fixed, and cannot change dynamically. The overwrite on full and

previous on empty protocols have been included to handle many low-level hardware interfaces.

Such a processnetwork can be viewed as a parameterized block diagram which is a very natural

paradigm for thinking about the class of systems of interest to us. There are two facets to such a

block diagram or processnetwork: the description of the blocks themselves, and the descriptionof

block interconnection. This can be viewed as a netiist with the blocks coming from a library. Each

block may have multiple implementations, each with the same port interface. This is similar to the

approach used in GABRIEL [Lee89] and Ptolemy [Ptolemy911, except that underlying

computation semantics are quite different. In GABRIEL the computation model is that of

synchronous dataflow, where, as described in the previous sub-section, each block repeatedly

consumes a statically known number of data items on each input, and produces a statically known

number of data items on each output. Such a system is capable of doing only determinate

computation. For example, it is not possible to describe a system that waits for data items on



120

multiple asynchronous inputs and services them in the order they arrive. Such non-determinism or

asynchrony is easily expressed in the process network model. Unlike GABRIEL, Ptolemy is

designed to support multiple computation models so that, in theory, it can subsume the process

network model. However, at present, no such computation model is supported in Ptolemy.

Figure 5-1 shows two simple example systems described in the process network formalism, with

the process behavior described in pseudo-C. The first example demonstrates CSP-like

synchronous (unbuffered or handshaked) communication between a producer process and a

consumer process. The blocking protocol together with a channel buffer depth of zero result in the

two processes rendezvousing in time for data transfer to occur. The second example illustrates the

use of overwrite onfull and previous on empty port protocols to allow safe updating of parameters

used in P2 accordingto user input received by PI. Forexample, P2 may be a processcontrolling a

motor using PID control, and the parametertherefore is a structure with three coefficients for the P,

I, and D parts of the controller. The process network shown ensures that the entire parameter

structure is updated atomically and asynchronously. The computation in P2 is never delayed, and

uses the latest availableset of parameters.

An attractive feature of the process networkmodel is thatis doesnot make any distinction between

hardware and software. As mentioned in Chapter 4, thenotionof processes is equally applicable to

software processes running on a programmable processor, and to dedicated hardware modulesthat

canbe viewed as processes running on theirown processors. Therefore the process networkmodel

can not only be used to model abstract behavior, but alsothe architecture of the system in terms of

its hardware and software organization.

Another advantageof this model is that the sensors, actuators and mechanical subsystems using

which the system interacts with the physical world can be viewed as pre-existing processes

executing on theirown dedicated electrical or mechanical hardware in parallel with the restof the

system. This Process Network model thus provides anabstract representation for the entiresystem



PRODUCER
^

for(;;){

produce(d);

msgSend(OUT, d);

channel

depth - 0

CONSUMER

far GO {

msgRecv(IN, d);

consume(d);

output port inPut P°rt
protocol = block onfull protocol = block on empty

(i) Process Network for a Producer-Consumer System with
CSP-like Synchronous (Unbuffered) Communication

PI

for(;;){

get parameters p

from user,

msgSend(OUT, p);

P2

for(;;){

msgRecv(IN, p);

compute(p);

}

output port inPut P°rt
protocol = overwrite onfull protocol = block on empty

(ii) Process Network for a System with a User-Interface Process P1
Asynchronously and Atomically Updating Computation

Parameters for a Process P2.

Figure 5-1 : Simple Example Systems Described as Process Networks

121



122

together with its environment.

Not only is this model powerful enough to express the type of systems that we are interested in

rapid-prototyping, it also in fact subsumes many of the models mentioned previously under the

constraint of static process set, and single reader and writer.

5.2 VHDL-based High-Level System Simulation

A model for specification of application-specific systems is not particularly useful without a

simulator to execute it. One strategy for doing this would be to use a dedicated simulator or a

simulation language specialized for high-level simulation. This has the disadvantage that

selectively modelling parts of the system at lower levels of detail is ruled out a priori. We instead

decided to simulate our model of high-level system specification on top of a VHDL substrate,

thereby providing an integrated multi-level simulation environment as part of our rapid-

prototyping framework. This has been done by writing a set of VHDL packages that provide

primitives suitable for high-level system simulation. There are two distinct sets of packages. The

first set provides support for modelling the inter-process communication mechanism used by our

Process Network model discussed in the previous section. In addition, it also provides support for

shared memory based inter-process communication, and for stochastic modelling. Both of these

features are often quite useful in high-level modelling. The second set of packages provides

support for modelling continuous-time sub-systems such as the sensors and the actuators. As

discussed earlier, these are modelled as pre-existing processes running on their own dedicated

hardware that is usually continuous-time in nature. VHDL does not provideany direct support for

describing the behavior of such sub-systems, anda set ofVHDL packageswere written to simplify

this task.

In the following discussion we often refer to template packages. This refers to a preprocessing

based strategy that we haveused to bypassthe limitations imposedby the lack ofgeneric packages



123

(packages parameterized by a data type) andfunction pointer type. Actual instances of these

template packages are generated using a simple preprocessorthat customizes the package for a

particular user-defined data type or function using simple text substitution. We have so far found

this to be the most clean way to overcome these problems.

5.2.1 VHDL Package for Simulating the Process Network
Model

A VHDL package template called MSGPACK_rype has been written that provides primitives to

support modelling a system according to the Process Network model presented earlier. It allows

VHDL processes to communicate using special signals that implement the FIFO channel based

communication mechanism. The packagetemplate is parameterized by the data type type carried

by the channel, and aninstance of the package needs to be generated for each channel data type.

The channels are implemented as a separate VHDL entity that connects with ports in the source

and the destination processes using signals of a special data type called MSGjype. One such

channelentity needs to be used forevery channel in the process network. In our frameworkthis is

done automatically on the process network which is entered by the usereitherschematically orby

using a special parameterized structure description language. The channel entity is parameterized

by a single VHDL generic for specifying the bufferdepth. The channel entity has a third port

where it outputs data about the channel state. This is used for collecting statistics about the data

traffic through the channel.

The VHDL processes that model the computationnodes in the process network model access the

channel through msgSendf) and msgRecvf) operations on the corresponding VHDL ports of type

MSG^type. These operations can be done in one of several modes corresponding to the port

protocol as discussed in section 5.1.2. For writing to an output port, the permissible modes are

blockonfull (BMODE), overwrite onfull (OMODE), ignore onfull (IMODE), anderroronfull

(EMODE). Forreading from an input port, the permissible modes areblock on empty (BMODE),



124

previouson empty (PMODE), ignore on empty (IMODE), and error on empty (EMODE). The

error on full/empty mode is provided only for simulation purposes. Two other important

procedures are waitAnyf) andwaitAll(). They take a list of input or output ports, and return only

when any or allof them are ready for communication. In addition, several otherutility routines are

provided that enable monitoring of the channel state from these processes. These utility routines

are meant strictly for simulation purposes.

The key issue in the implementation of this packagewas the implementation of the channel, as

defined by the process network model, using VHDL signals. As already indicated earlier, a

separate VHDL entity is used to model the buffering in the channel.This buffer is connected to

user processesusing VHDL signalsof type MSGjype. This datatype is really a composite type,

and can be viewed as a bundle of primitive VHDL signals. Besides the signal to carry the data

sample, there are signals to implement a 4-phase handshaking between the buffer process and the

senderor receiver process. In addition,therearesignalsto transmitchannel information datato the

sender or the receiver.The ports of type MSGjype must be of mode inout.The reason for this is

that some of the control signals that implement the handshake move in a direction opposite to that

of the data. Every signal of type MSGjype therefore has two ports of mode inout connected to it -

one from the buffer side, the other from the side of the sender or receiver process. A complex

resolution function is required to implement the handshaking. The complexity comes because

'there of the need to disambiguate inside the resolution function as to which driver is connected to

the buffer, and which to the sender or the receiver. This connection may be through a series of port-

signal associations, which complicates things even further. We use an algorithm based on

maintaining information about how far a signal is from the ports in the buffer process and the

sender or receiver processes. This information is used to identify the drivers inside the resolution

function. Figure5-2 shows a simplified picture of the primitive signals that constitute a signal of

type MSGjype, and lists the various functions availableto the sender and the receiver processes.

Although this package is meant to simulate the process network model used in our rapid-



125

prototyping framework, using an appropriate combination of channel type, write mode, and read

mode, it can also be used to simulate many other similar system models, some of which were

discussed in section 5.1.1. This is of course under the constraint of a static set of processes, and

channels with single reader and writer. Table 5-1 shows some examples of this.

Channel Type Write Mode Read Mode Comments

Unbuffered Block on Full Block on Empty Same as CSP

[Hoare85]

Unbuffered-FIFO Any Mode Block on Empty Similar to Kahn's

Model [Kahn74]

Unbuffered Overwrite on Full Previous on Empty Like a Wire or VHDL

Signal

FIFO of depth 1 Overwrite on Full Block on Empty Like CSIM [Schwet-
man86] event

Unbuffered Any Mode Block on Empty Like CSIM message

Table 5-1: Examples of Emulating Various IPC Models with the MSGPackage

' P_sender '

statistics

P_receiver

^.

msglnitportO
msgSendO
waitAnyO
waitAIIO

message
buffer

Req
-•

Ack

Mode

Status

•^
misc

-•

data

M Req
Ack ^

^ Mode
Status ^

^ misc
-•

msglnitportO
msgRecvO

waitAnyO
waitAIIO

Figure 5-2: VHDL Implementations of Channels for the Process Network Model



126

Support for Shared Memory based IPC

In many modelling situations using shared memory as a form of IPC is a quick and dirty, but

efficient, solution. Although sharedmemory can be expressed in the framework described above, it

is not very efficient. Therefore, a special VHDL package template, called SHMPACK_ry/?e, has

been written that allows modelling of shared dataobjects. The sharedmemory is implemented as a

special VHDL signal of type SUMjype, where type represents the data type of the shared

memory. A preprocessor is used to generate an instance of the package for a specific data type.

Readers and writers of a shared memory can access it either as a global signal, or using signals

connecting ports. The shared memory behaves like a true multi-port memory with one object of

the specified data type. A VHDL process uses procedures shmReadO and shmWritef) to do atomic

read and write on the shared data object. These atomic reads and writes take zero physical time,

and simultaneous reads or writes by more than one process result in them being arbitrarily

interleaved.

Following is the VHDL code for the header of the package. Basically a VHDL signal of type

SHM_type has a time-stamp attached to it in order to achieve a last-driven value resolution. In

other words such a signal always has the latest value driven on it, thus effectively giving an atomic

register [Lamport] containing a datum of type type. A true multi-ported memory containing

multiple atomic registers is easily constructed by using an array of VHDL signals of type
•

SHMjype.

— File: shm_<type>.vhd

— This is a package to implement shared memory (pools) of type <type>
— for my process network. Multiple readers and writers are allowed
— with atomic read and write capability to the entire <type> data
— structure. In case of simultaneous writes (even if to
— different fields of the shared memory), only one (undefined)
— will take effect. No built-in mutual-exclusion capability is
— provided for critical sections - a separate process needs
— to be created with the desired arbitration scheme. This

— decision was taken to allow arbitrary schemes.



127

package SHM_<type> is
subtype SHM_DATA is <type>;
type SHM_DATA_VECTOR is array(NATURAL range <>) of SHM_DATA;
type SHM_PORT_<type>_l is record

D : SHM_DATA;
T : TIME;

end record;

type SHM_PORT_<type>_l_ARRAY is array (NATURAL range <>) of SHM_-
P0RT_<type>_l;

function srf(v: SHM_PORT_<type>_l_ARRAY) return SHM_PORT_<type>_l;
subtype SHM_PORT__<type> is srf SHMJ?0RT_<type>_l;
procedure shmWrite(d: in <type>; signal p: out SHM_P0RT_<type>);
procedure shmRead(d: out <type>; signal p: in SHM_PORT_<type>);

end SHM_<type>;

package body SHM__<type> is
— resoltion function that uses the time-stamp field T to
— achieve last-driven resolution

function srf(v: SHM_PORT_<type>_l_ARRAY) return SHM_PORT_<type>_l is
variable result : SHM_PORT_<type>__l;
variable newest_i : NATURAL;

begin
for i in v'RANGE loop

if v(i).t >= v(newest_i).t then
newest_i := i;

end if;

end loop;
return v(newest_i);

end srf;

— procedure to write to the memory
procedure shmWrite(d: in <type>; signal p: out SHM_PORT_<type>) is

begin
p.d <= d;
p.t <= NOW;

end shmWrite;

— procedure to read the memory
procedure shmRead(d: out <type>; signal p: in SHM_PORT_<type>) is
begin

d := p.d;
end shmRead;

end SHM_<type>;

Shared memory inevitably leads to the problem of resourcecontention, and a low-level solution to

this problem is using binary semaphores. A VHDL package called SEMPACK has been written

that implements a restricted form of binary semaphores. The restriction is that the semaphore must

be given by the same process as has taken it. Such a semaphore can only be used for mutual

exclusion purposes, and not for signalling. When used together with the SUM jype package, it can



128

implement shared protected data structures. Two types of semaphores are provided:

SEMAPHORE_PRIO and SEMAPHORE.FCFS. These are VHDL data types, and a semaphore

object is a VHDL signal of one of these types visible to all interested VHDL processes.

SEMAPHORE_PRIO implements a priority scheme for waking-up waiting processes.

SEMAPHORE_FCFS uses a first-come-first-served scheme for waking-up processes. The

processes operate on semaphore objects using procedures semTakef) and semGiveQ which

implement the acquisition and release of a semaphore by a process. The semTake() procedure also

allows modelling a time-out capability.

The VHDL code implementingthe SEMPACK package is presented in the following paragraph.

The package headerdeclares VHDL data types corresponding to the two types of semaphores,

SEMAPHORE.PRIO and SEMAPHORE.FCFS. Boththese data typesare record data types with

fields to store thevalue of thesemaphore, thepriority of theprocess accessing thesemaphore, and,

in the caseof SEMAPHORE_FCFS, a field to store a time-stamp. The resolution functions srfl

and srfl implementthe priority-based and first-come-first-served policies respectively for waking

up the processes waiting to take a semaphore. This is accomplished by selecting the process with

thehighest priority (in thecase of srfl) orwith the oldest time-stamp (inthecase of srfZ). Finally a

set of over-loaded functions (multiple functions with the same name) to give and take the

semaphores are defined. Two versions of the function semGive are defined corresponding to the

•two typesof semaphores. Four versions of the function semTake are defined - two for each type of

semaphore. Foreach semaphore type, one version of semTake is a "blocking" versionwherethe

process waits until the semaphore becomes available. The second version takes an additional

parameter specifying a time-out period corresponding to themaximum time forwhichthe process

waits while trying to acquire asemaphore - thesuccess in acquiring the semaphore is indicated by

the boolean flag/returned by this"non-blocking" version of semTake.

— File: sem.vhd



129

— binary semaphore package

— semaphores are useful primitives for concurrent programming

— The intent in this package is that semaphore objects are
— statically declared as signals visible to all the interested
— processes. Various useful operations are defined on the
— semaphore object to allow synchronization of concurrent
— processes. Together with the SHM package, one can implement
— inter-process communication, although using the MSG package
— is cleaner. The main use foreseen for the SEM package is
— for critical section (resource contention) problems.

— The semaphores are binary semaphores. When a process takes
— a semaphore that is empty, that process will suspend until
— the semaphore is full again. Any number of processes may be
— waiting on the same semaphore. At most one process may acquire
— the semaphore at one time. When the semaphore becomes full,
— the highest priority process is given the semaphore.

— Two types of semaphores are defined:

— SEMAPHORE_PRIO:
— the highest priority process is run
— SEMAPHORE_FCFS:
— the process with longest wait time is run
— priority is used to break ties.

— Caution: only a process that has the semaphore should give it back.
— A semaphore is initially full. Unlike SHM and MSG objects,
— SEM cannot be ports. The reason is that if they are made
— ports then there is actually a hierarchy of interconnected
— SEMAPHORE objects and the arbitration algorithm fails in such
— a distributed case.

package sem is
subtype PRIORITY is NATURAL;
type SEMVALUE is range 1 downto 0;
type SEMAPHORE_PRIO_l is record

V: SEMVALUE;

P: PRIORITY;

end record;

type SEMAPHORE_FCFS_l is record
V: SEMVALUE;

P: PRIORITY;

T: TIME;

end record;

type SEMAPHORE_PRIO_l_ARRAY is array(NATURAL range <>)
Of SEMAPHORE_PRIO_l;

type SEMAPHOREJFCFS_1_ARRAY is array (NATURAL range <>)
Of SEMAPHORE_FCFS_l;

function srfl(v: SEMAPHORE_PRIO_l_ARRAY) return SEMAPHORE_PRIO_l;
function srf2(v: SEMAPHORE_FCFS_l_ARRAY) return SEMAPHORE_FCFS_l;
subtype SEMAPHORE__PRIO is srfl SEMAPHORE_PRIO_l;
subtype SEMAPHORE_FCFS is srf2 SEMAPHORE_FCFS_l;



130

— take a semaphore
procedure semTake(signal s: inout SEMAPHORE_PRIO; p: in PRIORITY);
— take a semaphore if available within a timeout period
procedure semTake(signal s: inout SEMAPH0RE_PRI0; p: in PRIORITY;

t: TIME; f: out BOOLEAN);
— give a semaphore
procedure semGive(signal s: inout SEMAPHORE_PRIO);

— take a semaphore
procedure semTake(signal s: inout SEMAPHORE_FCFS; p: in PRIORITY);
— take a semaphore if available within a timeout period
procedure semTake(signal s: inout SEMAPHORE_FCFS; p: in PRIORITY;

t: TIME; f: out BOOLEAN);

— give a semaphore
procedure semGive(signal s: inout SEMAPHORE_FCFS);

end sem;

package body sem is
function srfl(v: SEMAPHORE_PRIO_l_ARRAY) return SEMAPHORE_PRIO_l is

variable f : BOOLEAN := false;
variable i_sel : NATURAL;

begin
— resolution function to implement a priority policy

— find the maximum priority process
for i in v'RANGE loop

next when v(i).p=0;
if f=false then

i__sel := i;
f := true;

else

next when v(i) .p<v(i_sel) .p;
assert v(i).p/=v(i_sel) .p

report "SEM error: simultaneous equal priority accesses!"
severity FAILURE;

if v(i).p>v(i_sel).p then
i_sel := i;

end if;

, end if;
end loop;
if f=false then

return SEMAPHORE_PRIO'(1, 0) ;
else

return SEMAPHORE_PRIO' (0,v(i_sel) .p) ;
end if;

end srfl;

function srf2(v: SEMAPHORE_FCFS_l_ARRAY) return SEMAPHORE_FCFS_l is
variable f : BOOLEAN := false;
variable i_sel : NATURAL;

begin
— resolution function to implement a first-come-first-serve
— policy

— find the oldest request with non-zero priority



131

— break ties according to priority
for i in v'RANGE loop

next when v(i).p=0;
if f=false then

i__sel := i;
f := true;

else

assert not(v(i) .p=v(i_sel) .p and v(i) ,t=v(i_sel) .t)
— cannot resolve a tie

report "SEM error: simultaneous equal priority accesses!'
severity FAILURE;

if (v(i) .t<v(i_sel) .t) or (v(i) .t=v(i_sel) .t and
v(i).p>v(i_sel).p) then

i_sel := i;
end if;

end if;

end loop;
if f=false then

return SEMAPHORE_FCFS'(1,0,NOW);
else

return SEMAPHORE_FCFS' (0,v(i__sel) .p,v(i_sel) .t);
end if;

end srf2;

procedure semTake(signal s: inout SEMAPHORE_PRIO; p: in PRIORITY) is
begin

if (s.p=p) then
— semaphore is already taken by the current process
assert false

report "semTake: bad priority or repeated takes"
severity FAILURE;

elsif (p=0) then
assert false

report "semTake: bad priority 0"
severity FAILURE;

else

while true loop
if (s.p/=0) then wait until s.p=0; end if;
s.p <= p;

wait until s.p/=0; — this will take 0 time
exit when s.p=p;
s.p <= 0;

end loop;
end if;

end semTake;

procedure semTake(signal s: inout SEMAPHORE_PRIO; p: in PRIORITY;
t: TIME; f: out BOOLEAN) is

variable timeout : TIME;
begin

if (s.p=p) then
— semaphore is already taken by the current process
assert false

report "semTake: bad priority or repeated takes"
severity FAILURE;

elsif (p=0) then



132

assert false

report "semTake: bad priority 0"
severity FAILURE;

else

timeout := NOW + t;

while true loop
if (s.p/=0) then wait until s.p=0; end if;
wait until s.p=0 or NOW=timeout;
exit when s.p/=0;
s.p <= p;
wait until s.p/=0; — this will take 0 time
exit when s.p=p or NOW=timeout;
s.p <= 0;

end loop;
end if;

f := (s.p=p);
end semTake;

procedure semGive(signal s: inout SEMAPHORE_PRIO) is
variable p : PRIORITY;

begin
if (s.v=l) then

— semaphore is already full
assert false

report "semGive: semaphore is already full"
severity FAILURE;

elsif (s.p=0) then
— semaphore priority is bad
assert false

report "semGive: semaphore already has 0 priority"
severity FAILURE;

else

s.p <= 0;
wait until s.p=0; — this will take 0 time

end if;

end semGive;

procedure semTake(signal s: inout SEMAPHORE_FCFS; p: in PRIORITY) is
begin

if (s.p=p) then
— semaphore is already taken by the current process
assert false

report "semTake: bad priority or repeated takes"
severity FAILURE;

elsif (p=0) then
assert false

report "semTake: bad priority 0"
severity FAILURE;

else

s.p <= p;
s.t <= NOW;

wait until s.p=p and s.v=0;
end if;

end semTake;

procedure semTake(signal s: inout SEMAPHORE_FCFS; p: in PRIORITY;



133

t: TIME; f: out BOOLEAN) is
begin

if (s.p=p) then
— semaphore is already taken by the current process
assert false

report "semTake: bad priority or repeated takes"
severity FAILURE;

elsif (p=0) then
assert false

report "semTake: bad priority 0"
severity FAILURE;

else

s.p <= p;
s.t <= NOW;

wait until s.p=p and s.v=0 for t;
if (s.p=p and s.v=0) then

f := true;

else

f := false;

end if;

end if;

end semTake;

procedure semGive(signal s: inout SEMAPHORE_FCFS) is
variable p : PRIORITY;

begin
if (s.v=l) then

— semaphore is already full
assert false

report "semGive: semaphore is already full"
severity FAILURE;

elsif (s.p=0) then
— semaphore priority is bad
assert false

report "semGive: semaphore already has 0 priority"
severity FAILURE;

else

p := s.p;

s.p <= 0;
s.t <= NOW;

wait until s.p/=p;
end if;

end semGive;
end sem;

The SHMjype and SEMPACK packages together let the user express most shared memory

situations. Figure 5-3 shows a simple example of using the two packages to model two processes

accessing a shared resource.



signal S: SEMJCFS r

Pi P2

V. signal M : array (1 to 10) of SHM_REAL; \_

PI: process begin

semTake(S);
— use the shared resource

shmWrite(data,M(addr)) ;
semGive(S);

end process;

P2: process begin

semTake(S);
— use the shared resource

shmWrite(data,M(addr));
semGive(S);

end process;

134

Figure 5-3 : A Simple Example Demonstrating the Use of the
SHMand SEM VHDL Packages

Support for Stochastic Models

Modelling stochastic behavior is often very important in high-levelmodelling.VHDL does not

provide a built-in set of random number generators. The lackof a good VHDL mathlibrary made

doing this entirely in VHDL not a very attractive option. Instead, the C interface capability of the

>MCC VHDL simulator [MCC91] was used to provide a package with a set of random number

generators for a varietyof commonly used distributions, such asnormal, poisson, uniform, erlang,

hyperexponential etc. The functions provided by the package have been modelled after those

provided in CSIM [Schwetman86]. Following is the VHDL code for the headerof the package.

The body of the package as currently implemented uses non-standard constructs provided by the

MCCVHDL simulator foraccessing foreign functions in C, and is therefore not of general validity

and is not presented here.

package random is
—erlang - return random from Erlang(u,v)



135

function erlang(u,v : in REAL) return REAL;
—expntl - return random from Exp(x)
function expntl(x : in REAL) return REAL;
—hyperx(u,v) - hyperexponential with mean u, variance v
function hyperac(u,v : in REAL) return REAL;
—normal (u,s) - normal with mean u, standard dev. s
function normal(u,s : in REAL) return REAL;
—prob - return random from Uniform[0,1)
function prob return REAL;
—random - return integer random from Equiprob(il,i2)
function random(il,i2 : INTEGER) return INTEGER;
—uniform - return random from Uniform[ acl, x2 )
function uniform(xl,x2 : in REAL) return REAL
—srandom - set the seed of the random number generator
function srandom(s : INTEGER) return INTEGER;

end random;

5.2.2 Modelling Continuous-Time Subsystems using VHDL

As already mentioned sensors, actuators, electromechanical components, and analog electronic

subsystems are integral partsof many application-specific systems. These are all continuous-time

dynamical systems. In most cases the environment with which the system interacts is also

continuous-time in nature. Forexample, in orderto do a meaningful high-level simulationof the

robot controller, one needs to simulate its operation together with the servo-amplifiers, the robot

arm and the physical world. Further, the sensory subsystems of the controller itself are internally

requiremodelling of continuous time parts. In short, the ability to model continuous-time sub

systems together with rest of the application-specific system is extremely important for realistic

high-level simulation. Unfortunately VHDL does not provide any built-in support for such

modelling.

There has been some recentwork done in doing SPICE-likelow-level simulationof analog circuits

within VHDL [Zhou91]. This is however not very useful for high-level system modelling. Our

requirements are for a high-level behavioral modellingof commonly encounteredcontinuous-time

sub-systems. A set of coupled, non-linear, time-varying ordinary differential equations (ODEs)

can easily express such behavior. In many cases, such as the robot arm mechanics and the electric

motors driving them, it is also the most natural representation. In other cases, such as for analog

electronic subsystems, it is sufficiently user friendly for expressing the overall high-level



136

functionality.

There are two possible approachesto solving this problem. One would be to link a simulator, such

as SIMNON [Astr0m82], that iscapable of simulating dynamical systems expressed as ODEs toa

VHDL simulator. Multi-simulator integration environments such as Ptolemy [Ptolemy91] together

with foreign-simulator interface provided by VHDL simulators, such as MCC VHDL Simulator

[MCC91], may make this an attractive solution in the future. The approach taken in our

environment is a more traditional one. SinceVHDL is also a programming language, one canjust

write dynamical system simulators within VHDL for the continuous-time partsof the overall

system. In other words, a simulator for continuous-time dynamical systems described using ODEs

is embedded in the discrete-event VHDL simulator.

Algorithm for Continuous-Time Simulation in VHDL

The conventional method for simulation of continuous-time systems is basedon treating the

various interconnected continuous-time blocks together asone system described by a single setof

coupled ODEs. This set of ODEs is then solved usingnumerical integration techniques with

adaptive time-steps. Unfortunately this method is not feasible inside VHDL because of two

problems. First, there is no easy and portable way to collapse the various interconnected

continuous-time blocks into a single setof ODEs. This is aresult of the striamodularity imposed

•by VHDL as well asthe lackof anycontrol overthesimulator itself. Second, usingadaptive time

steps may require the ability to roll backthe timeif the error is toolarge. This too is not possible

from inside a VHDL model.

Inlightof the above constraints, theonly practical alternative is to useanalgorithm that will solve

the continuous-time dynamical system in a distributed fashion. The basic strategy is that

corresponding to eachcontinuous-time subsystem there is a VHDL process that implements a

dedicated simulator for simulating the dynamics of just that subsystem, and a special

synchronization mechanism is used so thatthe network of these VHDL processes effectively



137

solves the continuous-time dynamical system.

The dynamics of each continuous-time subsystem is represented in the state-space formalism:

jt=fls,u,t) (EQ1)

v = g(s,u,t) (EQ2)

where s is the state vector, u is the input vector, and v is the output vector.

Each such subsystem is modelled by a VHDL process that solves the above equations numerically.

This is done using two distinct steps that are performed repeatedly. Using (EQ 1), standard

numerical techniques, the state vector at time AT into the future is calculated. A series of small,

adaptive, time steps may be taken to accomplish this. AT itself depends on the dynamics of the

model as well as the dynamics of the inputs. After advancing the time, the output vectors are

recalculatedusing the new state vector, and the current input vector. This step is not as simple as it

appears to be. The problem is that the different continuous-time blocks update their outputs

asynchronously. These outputs may form inputs to other such blocks in the coupled system. It is

essential to make sure that all these signals get settled at a given time step before the time is

advanced. We use the following algorithm to accomplish this: each subsystem re-evaluates its

outputs every time any of its inputs changes at a given time step. If there areno algebraic loops in

the interconnected system, then the data flow graph formed by (EQ 2) of all the subsystems taken

together is acyclic, and this process is guaranteed to terminate. In fact, if the VHDL simulator

maintains the processes in a topologically sortedorder, then there will not be any unnecessary re-

evaluations. If there are algebraic loops, then the above process is equivalent to a distributed

relaxation algorithm for solving a non-linear fixed-point problem, and convergence is no longer

guaranteed. The presence of such algebraic loops is usually an indication of poor modelling. The

following simplified pseudo-code demonstrates the above algorithm. The procedure odesolve()

uses the derivative function/0 to calculate the state at the next time step.



138

t := NOW; tnext := t + deltaT;

LI: while TRUE loop
— solve for output vector u at the
— current time instant t using a
— distributed iterative algorithm
L2: while TRUE loop

v <= g(s, u, t);
usave := u;

wait on u for deltaT;

exit L2 when NOW>t;

end loop L2;
— calculate state at tnext

odesolve(s, s, t, tnext, ...);
if NOW<tnext then

wait for tnext-NOW;
end if;

t := tnext;

tnext := NOW;

end loop LI;

The only remaining problem now is that of calculating the state vector at time AT in to the future.

Many numerical techniques are available in the literature for this. We use a fifth-order Runge-

Kutta method with the monitoring of local truncation errorto adapt the step size. The method is a

good and robust method applicable in a wide class of problems. It keeps the error within a certain

bound by taking a series of steps of appropriate sizes.

Implementation of VHDL Packages for Continuous-Time Modelling

The strategy outlinedin the previous section hasbeenimplemented in VHDL. The lack ofgeneric

or template packages as well as function pointers in VHDL make an elegant implementation

, difficult. As shown by (EQ 1), the ODE solver routine inherently depends on the derivative

function/0. This makes it impossible to write a singleVHDL package that works everywhere.The

package itself needs to be customized accordingto the derivative function/f). To overcome this

problem a template package has been written from which a particular instant of the package is

generated for a given/0 using a simple preprocessor program.

The package implements in VHDL the Runge-Kutta subroutines described in [Press88]. The

template package is called ode_<derivs> where <derivs> is replaced by the name of the actual

derivative function during the process of instantiation. The package makes available two functions



139

to the user:

a. odesolvejkdumb_<derivs>
This function uses fourth-order Runge-Kutta method to advance in nstep equal increments from
tl to t2.

b. odesolvejksmart_<derivs>
This function advances from tl to t2 with accuracy eps using as series of fifth-order Runge-
Kutta steps.

Using one of these functions a continuous-time model is written according to the pseudo-code

presented in the previous sub-section. Following is the VHDL code for the header of the

odt_<derivs> package template:

— File: ode_<derivs>.vhd

— template package
library util; use util.types.all;
package ode_<derivs> is

— routines to solve ODE of the form dy/dx = f(x,y
— the user supplied procedure
— <derivs>(x: in REAL; y: in REALVEC; dydx: out REALVEC; par: in

REALVEC);

— evaluates the derivative function f () . par is a vector of reals
— used to pass arbitrary parameters to <derivs>()

— Given yl at x=xl calculate y2 at x=x2 using 4-th order Runge-Kutta
— method to advance x in nsteps equal increments from xl to x2
— yl and y2 may be bound to the same array.

procedure odesolve_rkdumb_<derivs>(yl: in REALVEC; y2: out REALVEC;
xl,x2: in REAL; par: in REALVEC; nstep: in POSITIVE := 1);

— Given yl at x=xl calculate y2 at x=x2 with accuracy eps using
— 5-th order Runge-Kutta method with adaptive step-size control
— based on monitoring of local truncation error, hi is the guessed
— first step size, and hmin is the minimum step size (>=0)
— yl and y2 may be bound to the same array.

procedure odesolve__rksmart__<derivs>(yl: in REALVEC; y2: out REALVEC;
xl,x2: in REAL; par: in REALVEC; eps,hi,hmin: in REAL);

end ode_<derivs>;

In order to simplify using the package even further, the special case of linear (but possibly time-

varying) systems is already implemented. In such a case the derivative function f() can be

represented by an array of coefficients so that a general purposeVHDL procedurecan be written.



140

Planner Trajectory Generator Controller DAC + AMP DC Motor Single Joint
(.discrete) (discrete) (discrete) (hybrid) (continuous) (continuous)

Front End
(discrete)

Optical Encoder
(hybrid)

Figure 5-5 : A Simple Example of a Mixed-Mode System

For linear systems:

ds
— = As + Bu (EQ3)
dt

v = Cs + Du (EQ4)

The package ode_linderiv provides functions odesolve_rkdumb_linderiv and

odesolve_rksmart_linderiv. Using these functions a VHDL entity called LTI has also been

provided. It implements a generic continuous-time Linear Time-Invariant block. The constant

coefficient matricesA,B, C,and D, are passedas generics to the entity. Figure 5-4 shows the use of

the LTI entity in modelling a DC motor.

5.3 Summary

In order to illustrate how the various packages discussed above are used in a complete high-level

system simulation, Figure 5-5 presents a very simplified high-level block diagram of a robot

controller. The intent is to show that evensucha simple system is composed of blocks that require

dramatically different modelling techniques. The DC motor is modelled as a linear time-invariant



R,

r^^-AA/V

Va

a a

la

entity DCMOTOR is
generic( Ra, La, Ka, Kb: REAL;

deltaT : TIME);
port( Va, Omega: in REAL;

la, Tau: out REAL);
end;

library CONT;
architecture STRUCTURAL of DCMOTOR is

use CONT.lti_hdr.all;
begin
M: LTI

generic xnap( deltaT => deltaT,
M => 2, N => 1, P => 2,
A => (1=> (1=> -Ra/La)),
B => (1=> (1=> 1.0/La, 2=> -Kb/La)),
C => (1=> (1=> 1.0), 2=> (1=> Kb)),
D => (1=> (1=> 0.0, 2=> 0.0),

2=> (1=> 0.0, 2=> 0.0)),
SO => (1=> 0.0) )

port map( u(l) => Va, u(2) => Omega,
v(l) => la, v(2) => Tau );

end;

141

Figure 5-4: Modelling a D. C. Motor in VHDL Using the
Continuous-Time LTI Entity

continuous-time system, whereas the robot arm is described by a set of non-linear time-varying

differential equations. On the other extreme, the planner, the trajectory generator, the front-end,

and the controller represent blocks that arenaturallydescribed in terms of processes and inter

process communication channels. The optical encoder, and the digital-to-analog converter and

amplifier are hybrids because they interface between the discrete event and the continuous-time

parts of the system.



142

Using the packages described previously, a high-level simulation of such a system is very easily

accomplished. In addition, using the native capability of VHDL for low-level digital hardware

simulation, it is very easy to model parts of the system at the level of the actual hardware.

One conclusion that can be drawn from the discussion in the preceding sections is that VHDL

presents many syntactic as well as semantic obstacles to doing such high-level system simulation

elegantly. Nevertheless doing such simulation on top of a VHDL substrate offers the tremendous

advantage of being able to mix high-level simulation with low-level simulation - something which

is not feasible with dedicated high-level simulators. This provides a very powerful multi-level

mixed-mode simulation environment. The various packages described in this paper demonstrate

one way of accomplishing this goal.



CHAPTER 6

Architecture

Generation

The architecture of a system is its decomposition into hardware and software building blocks or

modules, the specification of the behavior of these modules and the structural interfaces between

them. Architecture generation refers to the process of producing a suitable architecture for the

system starting from the specification of its behavior. In the framework presented here it would

referto the task of finding the best, according to some metric, hardware and software architecture

for the process network description.

Architecture generation is largely an unsolved problem even for single chip designs, and it is a

much more difficult problem at the system level. There is no formalized theory to relate the

behavioral description of a system to its structure and therefore approaches used for logic and

behavioral synthesis for chip designs are not directly applicable to system-level design. Formal

hardware description languages and boolean equations based descriptions that suffice for chip-

level hardware designs result in too much detail in case of a system design and render the task of

realizing the system hopelessly complex.

143



144

However, a more important reason appears to be that the design of system architecture is still

largely an art.There are few architecture models, or styles of hardware and software organization,

for application-specific systems that are formalized enough so that they can be transformed and

optimized by CAD tools. In contrast, in case of ASICs the architecturemodels are relatively well-

understood as are the techniques to optimize them and the associated performance and cost

metrics.

It is not very worthwhile to try automating the architecture generation process without first

developing a model of system architecture that is both realistic and amenable to computer-aided

module generation techniques. Therefore a major part of the research effort was devoted to

studying and developing a system level hardwareand software architecture model which is useful

in a broad range of real systems. The architecture model is such that the process network

description of the system can be easily mapped and hopefully automatically, and the model itself

can be physically generated using the module generation techniques presented in the earlier

chapters.

6.1 Approaches to Architecture Generation

Onecanclassifythe various approaches to architecture generation along two primary dimensions.

The first dimension is the restriction on the architecture search space. This distinguishes the

various approaches on the basis of factors such as computation and timing model of the input

specification (e.g. data-flowversus event-drivenmodels) andimplementationstyle (e.g. hardwired

implementation versus software for programmable components versus a mix of the two, single

chip versus MCM versus board, synchronous versus asynchronous etc.). The second dimension is

the degree of automation of the search mechanismwhich can range from fully manual to fully

automated. The usefulness of an architecture generation approach depends not only on the efficacy

of its search mechanism but alsoon the restrictions placed on the search space. Highly automated



145

approaches with too restrictivean architecture model - such as the behavioralsynthesis approaches

used for single chip designs - arenot sufficient formost systems.

As mentioned in Chapter 1, this thesis is targeted at real-time reactive systems implemented as a

mix of hardwired and software programmable components at the board level. This naturally

restricts the search space somewhat - but the problem remains far more complex than for ASIC or

pure software designs. Since not much previous work exists on architecture definition for such

board-level systems, it would useful to look at the architecture generation approaches adopted

when the search space is different, such as for ASICs or for pure software implementations.The

following discussion is therefore organized according to the degree of automation of the

architecture generation process, and within each category examples are presented for not just

board-level systems but also for chip and software domains.

6*1.1 Manually Specified Architecture

This is almost the universal approach currently used fordefining the system architecture. Even in

caseof singlechips, despite the availability of siliconcompilers andbehavioral synthesis systems,

manually specified architectures are still widely used, particularly for high-performance or area-

sensitive chips such as general-purpose microprocessors. A system designer using this approach

can nevertheless use the hardware and software module generation aids described earlier.

Considerable time is required for this approach, andis therefore not satisfactory from a rapid-

prototyping perspective.

6.1.2 Fixed Architecture

Perhaps the simplest approach to automating the process of architecture definition is to use a fixed

architecture. This approach has been used for ASIC design in early silicon compilers, such as

LAGER-I [Rabaey86], where the behavioral description of the algorithm was mapped to a

processor with a fixed architecture consisting of a fixed datapath and a microcoded controller. The



146

problem of silicon compilation is thereby reducedto that of generating the controller - a problem

which is equivalent to that of software compilation. The fixed architecture approach is often used

for high-performance implementations of ASICs for narrowly defined application domains where

the optimal architectures areknown. FIRGEN [Jain91], a compiler for FIR filters built on top of

LAGER siliconassembler, is a case in point. Starting from the frequency domain specification it

generates a FIR filter with a fixed architecture. Implementation of an algorithm in software on a

programmable signal processor is also a trivialexample of this approach.

The fixed architecture approach is also very common at the system level. Any system based on a

general-purpose computer belongs to this category, at least from the perspective of hardware

organization. A widelyused approach to implementing areal-time reactive system is as a software

system running on multiple single-board computers connected using a standard bus, such as the

VME bus, together with off-shelf I/O cards. There are other similar multi-processors with

different, and often software configurable, interconnect topologies. Figure 6-1 shows organization

HOST

rzzi ,, System Bus

Sensors and Actuators

Figure 6-1 :Typical SystemBased onGeneral-Purpose Multi-Processor Architecture



147

of a typical system based on such a general-purpose multiprocessor architecture. With a fixed

hardwareorganization the problem of system architecturedefinition reduces to that of a distributed

software system. There are tools which can partition the system specification to software for each

of the processors. One suchtool is McDAS [Hoang92] which can map a DSP algorithm described

in the dataflow language SILAGE to multiprocessors with a wide variety of interconnect

topologies. Other similar tools areGRAPE [Lauwereins90] and GABRIEL [Lee89].

This approach is quite restrictive since it is typically based on general-purpose off-shelf

processors/computers. The efficiencies of a more customized solution are thus not available.

6.1.3 Architecture Template

Architecture template based approaches are a compromise between the inflexibility of the fixed

architecture approach of the previous section and thedifficulty of the synthesis approach described

in the following section. The basic feature of this approach is that while the global architecture is

fixed, many of the individual modules are allowed to be synthesized or userspecified. The fixed

global architecture simplifies the synthesis process while the flexibility in the architectures of the

individual modules allows customization for performance. An example of this approach is the C-

to-Silicon Compiler which is part of LAGER [Shung91]. All the ASICs generated by it havethe

same top-level architecture based around amicrocoded FSMcontroller, anarithmetic datapath, an

address generation datapath, a boolean condition flag FSM and an I/O unit. However, the structure

of the two datapaths can be user specified, or generated by an even higher level tool, and the

compiler retargets the microcode generator according to the structure of the datapaths. Cathedral-H

[Rabaey88] is another silicon assembler which follows a similar architecture template philosophy.

The architecture template approach is attractive atthe system level aswell. As shownin Figure 6-

2 the system hardware organization follows a template based on multiple application-specific

boards which are individually customized. The software is then mapped onto the hardware

template. The details of the architecture template - hardware and software organization - are



148

Sensors and Actuators

Figure 6-2: System Architecture Using Application-Specific Boards

described later in this chapter.

The approaches taken by MICON and Vulcan-II, discussed in Chapter 1,can also be classified as

an approach based on architecture templates. MICON uses an expert system to generate single-

aboard computers based around commercial microprocessors. The computers designed by MICON

consist of a microprocessor, ROM, SRAM or DRAM, cache memory if supported by the

processor, serial and parallel I/O ports, standard bus interface, and support circuits such as address

decoding, clockgeneration etc.The search space is organized asa tree or alattice which reflects

the top-down structural decomposition and the implementation choices available at any stage - in

effect this lattice structure defines an overall parameterized architectural template. Given user

input, such as the choice of processor, amount and type of memory, number and type of I/O ports

etc., and constraints on performance, such as the clock speed, reliability etc., the expert system



149

traverses the search space (the architecture template) using rules entered by experts to come up

with a solution that satisfies the design constraints. The search strategy in MICON is fully

automated although the architecture space is restricted. Similarly Vulcan-II uses an architecture

template consisting of a single microprocessor and multiple ASICs, and then uses an automatic

partitioning approachto generate the precise hardwareand software organization. The architecture

model of Vulcan-II deserves particular attention because, as is the case here, Vulcan-II is also

targeted at a mixed hardware-software implementation. The architecture model of Vulcan-II was

studied in depth in Chapter 1.

6.1.4 Automatic Architecture Generation

Fully automatic architecture generation has proven feasible only in cases wherethe search space

is sufficiently restricted - there are no examples of this approach at the system level. Forexample,

there are architecture synthesis tools for single ASIC design. However, none of these tools can

claim to give the optimum architecture because invariably these tools place further restrictions on

the ASIC design by having a certain model of architecture which is reflected in the synthesized

architecture. Example of such architecture models are the clock synchronous hardware model

based on multiple communicating finite state machine controllers used by OLYMPUS

[Micheli90], and the clock synchronous architecture model of a single finite state machine

controllerand a datapath consistingof one or more heterogeneous functional units with register

files atinputs and theoutputs feeding the register files that is usedby HYPER [Rabaey91].

Experience at chip level suggests that automatic architecture generation works best in a well

defined application domain with a representation language and architecture model suited for that

domain. A unified language and architecture model that works for all domains appear infeasible,

and is not a worthwhile strategy to pursue for achieving automatic architecture generationat the

system level becausemost systems are characterized by multiple heterogeneousdomains. Instead,

divide-and-conquer approaches similarto that adopted by Ptolemy (see Chapter 1) for simulation



150

appear more likely to succeed. Effort should be directed towards defining a small set of

computation models, or domains, that together suffice to describe most systems, developing

automatic architecture generation techniques for each of these domains, and, most importantly,

rigorously defining the interface between two different domains at the specification level as well as

the architecture level. In Ptolemy "worm-holes" provide the unified simulation interface

mechanism between parts of a system ("universes") that belong to different domains. The process

network representation described in the previous chapter provides a similar, rigorously defined,

interface between partsof a system using the notion ofchannels. The processes themselves may be

defined in languages best suited for naturally expressing the respective computations - in fact the

process network representation does not define any language for this. Research should be directed

towards developing a small set of languages to represent the computation within the processes, and

automatic architecture generation or synthesis tools for each one of them. Together with the

techniques described in this chapter for implementing the channels for inter-process

communication and synchronization, such research can provide a solution to the problem of

system-level automatic architecture generation.

6.2 Co-Design of Hardware and Software

A distinctive characteristic of system level design is the use of a mix of dedicated hardware as

'well as software programmable hardware. Although it is certainly possible to realize the

functionality of a system either purely as software running on programmable components suchas

microprocessors, or purely by imbedding the algorithms in dedicated hardware as done in some

ASICs, the most cost-effective solution usually lies between the two extremes. The example

systems in Chapter 1 amply demonstrate this point. This mix of dedicated and software

programmablehardware is dictated not just by cost-effectiveness but also by the sheer ability to

realize the functionality in current technology. Logically complex controloriented tasks such as



151

protocol processing are often feasible only in software whereas real-time signal processing and

sensor I/O are often possible only in hardware.

A key problem in the architecture definition of systems using a mix of dedicated and software

programmable component is that of Hardware-Software Co-Design. Given the system

specification one has to:

• decompose the system functionality into parts implemented using dedicated hardware compo

nents and parts implemented as software for programmable hardware components.

• the organization and implementation of the dedicated as well as programmable hardware mod

ules, and of the software running on the programmable hardware modules.

• communication and synchronization between the various parts of the system whether imple

mented as dedicated hardware or as software.

The first problem is that of partitioning. It involves transformingthe system specification such that

a good partitioning into hardware and software components can be obtained and then actually

partitioning it. The second problem involves finding out a good model or template according to

which the system hardware and software shouldbe organized. Chapters 3 and4 have already dealt

with the related low level module generation issues. The third problem involves finding out the

appropriate mechanism for communication andsynchronization between the different parts of the

system. These three problemsare actually closely related. Forexample the partitioning depends on

the architecture model and the cost of the available communication and synchronization

mechanisms. The solutions to these problems is described later in the chapter in the form of an

architecture template, the communication mechanism,anda methodology for partitioning which is

currently manual but can be made automatic.

The distinction between what constitutes a software implementation and what constitutes a

dedicatedhardware implementation is not alwaysclear. The strictdefinition of software is that it is

the information needed to program a general-purpose computing device to do a specific task.



152

According to this the bit pattern stored in the memory locations of a Xilinx FPGA to implement,

say, a FIR filter could be regarded as software. However, in this thesis, the term software

implementation is being used only for traditional processors that are programmed using assembly

language instructions that are stored in RAM or ROM. Computation structures programmed into

FPGAs using bit patterns stored in memory locations are considered as configured hardware.

Core-processors with fixed on-chip micro-code arealsoconsidered to be hardwarebecause despite

the use of a compiler to generate the micro-code, the entire processorneeds to be fabricated again

in order to alter the program.

6.3 Template Mapping Based Approach to Architecture
Definition

The approach used here is basedon mappingthe system specification in the form of a network of

processesas described in Chapter5 to an architecture template. This approach was chosen because

a majorgoal of this work was to have a complete top-down system design methodology and a

template based approach appeared to be the best compromise between practicality and degree of

automation.

Figure 6-3 shows anoverview of the architecture definition approach, andthe main focus of this

chapter is on the template used to realize the system architecture. As elaborated in the following
•

subsections, the system represented as a network of processes as described in Chapter 5 is

partitioned on to a parameterized architecture template to produce a structure of the system in

terms of specifications for hardware and software modules, and the communication and

synchronization betweenthem. Each process in the process network description is mapped either

to a software process running on a programmable processor module, or to a hardware process

running on a dedicated hardware module. The system is thus partitioned according to the coarse

grained parallelism explicit in the process network description.



P
a

r
a

m
e
te

r
iz

e
d

N
e
tw

o
r
k

o
f

C
o

n
c
u

r
r
e
n

t
P

ro
c
e
ss

e
s

(S
D

L
te

xt
or

bl
oc

k
di

ag
ra

m
)

i

V
H

D
L

S
u

p
p

o
rt

L
ib

ra
ry

H
fe8

**
H

ig
h

-L
ev

el
S

im
u

la
ti

o
n

(u
si

n
g

V
H

D
L

)

D
es

ig
n

M
a

n
a

g
e
r

T

B
lo

ck
L

ib
ra

ry
(V

H
D

L
M

o
d

el
s*

H
/W

an
d/

or
S

/W
Im

pl
em

en
ta

tio
ns

)

P
r
o

c
e
s
s

N
e
tw

o
r
k

R
ep

re
se

n
ta

ti
o

n
in

O
C

T

i
_«

**
S

ys
te

m
A

rc
h

it
ec

tu
re

**®
®"

m
Te

m
pl

at
e

P
ar

ti
ti

on
in

g
&

M
a

p
p

in
g

T
S

ys
te

m
h

/w
st

ru
ct

ur
e,

pa
ra

m
et

er
s

&
so

ft
w

a
re

pr
oc

es
s

st
ru

ct
ur

e

F
ig

ur
e

6-
3

:T
em

pl
at

e
B

as
ed

A
pp

ro
ac

h
to

Sy
st

em
A

rc
hi

te
ct

ur
e

D
ef

in
it

io
n



154

The following sections describe in detail the architecture template and the rationale behind its

choice, the partitioning methodology, and mechanisms for communication and synchronization

between the hardware processes and softwareprocesses.

6.4 The Layered System Architecture Template

Based on an analysis of the architecture of many existing real-time reactive systems a

parameterized template for the architecture of such systems was chosen as the basis for the

architecture definition approach presented here. As shown in Figure 6-4, the architecture template

chosen has a layered, distributed hardware structure with a hierarchical bus organization for

increased bandwidth. However before going into the specifics of this architecture a study of

various alternatives for system architecture is done below in orderto justify the choice of this

particular architecture.

6.4.1 Alternative Models of System Architecture

The goal in defining the architecture template was to come up with a scalable family of

architectures that allows for a systematic interconnection of an arbitrary number of heterogenous

processing nodesthat can be based on dedicated hardware as well as software programmable

hardware modules. Of course the architecture template needsto be able to provide sufficient

^computation and I/O capability for systems of interest such as described inChapter 1. Allowing

heterogenous processing modules which can be dedicated hardware as well as software

programmable will allow the resulting architectures to take advantage of the extensive suite of

module generation tools and libraries presented in Chapters 3 and 4. The capability to

systematically connect these processing modules is needed to both simplify the problem of

communication and synchronization between these modules and the problem of exploring this

family of architectures to selecta goodone.



S
o

ft
w

a
re

P
ro

ce
ss

es
G

o
H

er
e

I

S
y
st

e
m

B
u

s

L
a

ye
r

2
<

->
3

In
te

r
fa

c
e

M
o

d
u

le

P
r
o

c
e
s
s
o

r

M
o

d
u

le
#

i

♦

K
e
rn

e
l

H

L
a

m
L

m
l

C
tm

m
m

nc
itt

io
*

^
A

&
)n

cl
m

iu
xa

ti
»n

P
r
im

it
iv

a

\
L

«
yc

r3
<

->
3

In
te

rf
a

c
e

M
o

d
u

le

L
A

Y
E

R
S

L
a

ye
r

2
<

->
3

In
te

r
fa

c
e

M
o

d
u

le

H
P

r
o

c
e
s
s
o

r

M
o

d
u

le
#)

+

K
e
rn

e
l

M
em

o
ry

M
a

p
p

ed
S

la
v
e

#
1

M
em

or
y

M
a

p
p

ed
S

la
v
e

#
n

M
em

o
ry

M
a

p
p

ed
S

la
v
e

#
1

M
em

or
y

M
a

p
p

ed
S

la
v
e

#
n

L
A

Y
E

R
4

L
A

Y
E

R
4

L
A

Y
E

R
1

*
N

. X
.

I
A

>

I
*5

3
CI

C
u

s
to

m

B
o

a
r
d

s

/L
A

Y
E

R
S

3
&

4

A
p

p
li

ca
ti

o
n

-S
p

ec
if

ic
H

a
rd

w
a

re
M

o
d

u
le

s
G

o
H

e
r
e

!

F
ig

ur
e

6
-4

:
A

L
ay

er
ed

A
rc

hi
te

ct
ur

e
T

em
pl

at
e

fo
r

Sy
st

em
s

=
•

n

2 s IT
.

9
>

B
<

o
% S

.
B

g;
•g

.
n

S.
f

«?
9*

o

9

e S

\

i
n

e
n



156

Existing Architecture Models for Purely Software-Based Systems

Most system level architecture models in literature deal only with the homogeneous software

programmable processing nodes. Although such architecture models are not applicable to the

problem in this thesis, nevertheless they can provide examples ofuseful interconnect topologies as

well software organization.

An interconnect network lets any two processors communicate whenever they need to. Of course

providing full connectivity for N processors will require N(N-1) point-to-point connections which

is too costly. Therefore a variety of interconnect topologies with varying mix of partial

connectivity and multi-access (as opposed to point-to-point) links have been used in existing

systems based on multiple software programmable processors. The key metrics to evaluate a

interconnect topology are its diameter d (the maximum distance between two processors using the

shortest path), its connectivity k (the minimum number of different paths between two nodes), its

flexibility, and its communication delay.The total communication delay (TD) is itself composed of

the computation time required to set up and consume the data (Jproc)* the time spent while

waiting to be sent due to contention or synchronization (Tqueue)* m& me transmission time

^transmit)' Ofthese three components TPR0C depends on speed of the processors, Tqtj£tj£ isa

function of the access protocol (e.g., point-to-point versus multi-access), and Tjransmit depends

strongly on the spatial topology and the communication bandwidth and protocol. It is desirable to

have a topology that has a small diameter, a high connectivity, a high flexibility, a small

communication delay, and a low cost.

Although the generic term processor interconnect network is being used in this discussion, the

issues remain substantiallythe same whether the processor is an active computation device or an 1/

0 device or even a storagememory device.

a. Point-to-Point Interconnect Networks

These networks are characterized by being composed of a number of point-to-point



157

communication links between pairs of processors. A fully connected network would

be characterized by N(N-l) links for N devices or processors and is very costly for

large N. Therefore partially connected topologies such as arrays (1-D, 2-D and 3-D)

and hypercubes are commonly used. If the pattern of data flow in the system directly

maps on to the actual topology of the network then such point-to-point networks

provide very efficient solutions. These networks are easy to implement because the

communication links are point-to-point, although sophisticated routing algorithms

may be required if connectivity k>l. For topologies such as hypercube the network

interface of any individual processor has to change as the number of processors

changes which can be an impediment to modularity.

b. Switching Networks

These interconnect networks are characterized by a multi-access switching structure

that handles routing of data between processors. The switching structure itself is

characterized by the bandwidth and number of simultaneous communication links it

can support. The switch needs to be able to provide an adequate bandwidth so as to

avoid becoming a bottleneck. A very high speed switch with sophisticated data

routing algorithm may be required if the number of processors is large. Examples of

switching networks include:

- Star Switch which uses O(N) switches while allowing any one pair of processors to

communicate simultaneously with a 0(1) delay.

- Crossbar Switch which uses 0(N2) switches while allowing any disjoint N/2

processor pairs to communicate simultaneously with a 0(1) delay.

- Butterfly Switch which uses 0(N * log N) switches while allowing a restricted set

of N/2 processor pairs to communicate simultaneously with 0(log N) delay.

c. Single Shared Bus

This is the simplest and probably the most widely used topology. Simple multi

processors based on multiple single-board computers on a standard bus such as the

VME bus are very commonly used for embedded real-time software systems. All the



158

processors communicate by time-sharing the common multi-access bus which is a

broadcast medium that is accessed according to some arbitration protocol. The bus

bandwidth is shared between all the active communication links, some fraction of

which is wasted due to the inevitable protocol overhead. The shared bus topology is

characterized by a diameter d=l, connectivity Jfc=7, a high flexibility, and a high TD

because of a high TqUEUE which increases as the number of processors that can

initiate bus transactions. The bus interface for any individual processor is

independent of the number or type of other processors on the bus - a certain level of

uniformity and modularity is implicit in the bus structure.

One of the key design consideration for a shared bus architecture is the arbitration

protocol used to allow orderly access to the bus by multiple processors. It has a

direct impact on TquEUE and therefore on the utilization of bus bandwidth. Many

bus arbitration strategies are available that provide different trade-offs between

implementation complexity and waiting time TqUEUE. The various bus arbitration

strategies can be classified into two categories: single-master andmultiple-master.

In the case of single-master bus-arbitration strategies only one device on the bus is

allowed to initiate a bus transaction, the other devices are slave devices that wait for

the master to service them. This has the advantage that no bus arbitration is needed

because only one device can initiate transactions. However some strategy is

required to minimize the time a slave has to wait before being serviced. There are

two aspects to this problem - one is how to indicate to the master that a slave needs

servicing, and second is the policy according to which the master should service

slaves that are ready. Polling and interrupts are two techniques for solving the first

problem. Least recently serviced, first come first served, priority servicing (daisy

chaining), round robin are some of the common servicing policies.

In the case of multiple-master bus arbitration more than one device can initiate a

transaction and therefore a policy is needed according to which the bus is granted to



159

devices that need to initiate a bus transaction. Round robin, priority based (daisy

chaining) and first come first served are common arbitration policies. Note that in

the case of multiple-masters there may in addition be multiple slave devices with

each master possibly servicing multiple slave devices and, though less common,

each slave device being serviced by more than one master. Techniques similar to

those in the case of single-master case can be used to service the slaves even in the

multiple-master case.

d. Hybrid Networks

The three approaches discussed above have different sets of positive and negative

features and work well in different situations. Therefore network topologies that are

variations on the above themes or combinations of these themes are often used to

get improved performance. For example, a hypercube topology might be combined

with a 2-D mesh in orderto obtain good performance on a wider class of algorithms.

Similarly, processors might use a global hypercubeinterconnection topology but use

a local bus structure to communicate with I/O and memory devices. In general the

interconnection network may have different structures at different levels of

granularity. The layered architecture template used in this thesis also belongs to this

category of hybrid networks.

Existing Architecture Models for Mixed Hardware-Software Systems

There are few formal architecture models described in literature for systems that contain both

dedicated hardware and software programmable hardware. Oneexample is the architecture model

of the Vulcan-II system for hardware-software co-design that was discussed in detail in Chapter 1.

The model inVulcan-II, based onasingle processor and multiple-ASICs that communicate using a

shared memoryon a multi-master bus,is targeted atmuchsmaller scale systemsthanthosethatare

of interest here, and appears to be motivated primarily towards automating the partitioning

problem. An unfortunate effect of this is that the architecture model has many weaknesses,



160

outlined in Chapter 1, that make it difficult to implement. Indeed, the architecture model of

Vulcan-II remains to be proven on any real design.

However, an advantage of the Vulcan-II architecture model is that it is extremely simple, and

therefore allows an automated partitioningapproach. This probably just reflects a different design

decision than from the one made here - the usability of the architecture model for actual

applications was deemed critical.

6.4.2 Details of the Layered Architecture Template

As already mentioned the chosen architecture template shown in Figure 6-4, has a layered,

distributed hardware structure with a hierarchy of busses for increased bandwidth while retaining

the simplicity anduniformity of module interfacing provided by busses.

There are four layers in the architecture template. The bottom two layers of the hierarchy are

spanned by custom boards. Eachcustom board has one or more software programmable processor

modules based around programmable microprocessors or digital signal processors. Eachof these

processor modules runs a real-time multi-tasking OS kernel that is configured according to the

hardware resources. This provides the ability to dynamically schedule in anevent-driven fashion

the tasks mapped to a given processor module. Each processor module in turn coordinates a

^number of application-specific slave modules which can be either software programmable or

dedicated hardware modules. These slave modules in the lowestlayerof the hierarchy are the only

place where dedicated custom hardware modulescan appear. The custom boards spanning the

bottom two layers of the hierarchy in turn sit on a back-plane bus such as the VME bus, and are

slaves to another processing modulewhichis the bus master. This processing modulebelongs to

the second layer of the hierarchy and also runs under the control of a real-time OS kernel.

Typically this processor module is an off-shelf single-board computer using a standard real-time

OS kernel such as VxWorks. The layer3 processing modules on the customboards interact with

the master processing moduleon layer2 through a bus interface modulethatis required to support



161

the hardware and software communication and synchronization primitives discussed in the

previous section. For example, one such interface module is a dual-port RAM based VME

interface that provides the layer 3 processor with a block of memory that is also accessible to the

layer 2 processor. In addition, the module also provides mail-box interrupts and hardware

semaphoresusing which the required higher level communication and synchronization primitives

are implemented in software. The layer 2 processor module is in turn slave to a conventional

workstation (for example, a SPARCstation) which constitutes the topmost layer in the hierarchy.

The communication between layer 1 and layer 2 is typically over a network such as ethemet or

FDDI that supports high-level protocols such as TCP/IPC.

According to the taxonomy of interconnect networks presented in the previous section, the

topology of the layered architecture model can be classified to be a hybrid interconnect topology

having features of both a point-to-point tree network, and a sharedbus network. The hierarchical

bus organization is actually a tree-like structure where the nodes of the tree are clusters of

programmable and dedicated processors. Within eachclusterthe processors areconnectedusing a

single shared bus architecture. Some of these processors act as gateways between clusters at

different levels of the tree. The processors on the bus within a clustercan in general be eitherbus

masters or bus slaves. Typically the processor that connects to a higher level cluster is the bus

master and the other processors are busslaves. Thesebus slaveprocessors may in turnbe gateway

processors that are bus masters in a lower level cluster.

An advantage of such a tree structured hierarchy of busses is that the peak bandwidth is much

greater than that for a single bus while much of the simplicity anduniformity of the single shared

bus architecture is retained. Many real-time reactive systems follow a multi-level hierarchical

control strategy with a high communication bandwidth requirement between tasks at the same

level and a relatively lower communication bandwidth requirement between levels. The

hierarchical busorganization naturally supports such hierarchical control strategies. For example,

the standard hierarchical control architecture for integrating multiple sensors in a multi-robot



162

environment called the NASA/NBS Standard Reference Model for Telerobot Control System

Architecture (NASREM) [Albus89] can be implemented efficiently as a hierarchy of busses.

One feature of the architecture template omitted from the above description is that the layer 3

processor modules are also allowed to have direct point-to-point communication links between

them. This allows the layer 3 processors to communicate with each other with a high bandwidth

without making the single layer 2 processor a bottleneck. A result of this is that the topology of the

architecture template is not strictly a tree. Further, the topology of these point-to-point links in

layer 3 can be arbitrary and is application dependent. However, in the current implementation, a

maximum of two such links is allowed for each processor. This means that the topology of this

layer 3 network is such that the processors are clustered into independent groups where the

processors within the group are connected in a ring or a linear array using these point-to-point

links. These clusters are defined according to the needs of the application. Another point to

observe is that with this enhancement the communication path between two processors is no

longer unique - a property which is true for a pure tree structure. For example, two layer 3

processors on the same cluster can communicate either using the layer 2 processor as an

intermediary, or can communicate using a path that is routed through other processors in the

cluster. It is not obvious which pathis betteras it depends on the implementation and the relative

lengths of the two paths.This further complicates the partitioning problem, but was considered

*desirable for performance reasons. If the clusters are small in size, as will be the casejust because

of board technology limitations, then it is almost always better to use these dedicated point-to-

point links.

6.5 Communication and Synchronization Mechanisms
for the Layered Architecture Template

The architecture template described in the previous section specifies only the organization of the

dedicated and software programmable processors to which the processes in the process network



163

description of the system are mapped. The other crucial aspect of this problem is the

communication and synchronization between these processes that are mapped to an instance ofthe

layered architecture template. The processes in the process network are connected using the FIFO

channel mechanism as described in Chapter 5, and the channel interconnect pattern in the process

network can be arbitrary. This arbitrarychannel interconnect pattern needs to be embedded in the

tree-like physical interconnect network of the layered architecture template.

There are two problems that occur in this embedding. First, two processes that are adjacent in the

process network (i.e. connected using a channel) may not be mapped to processors that are

adjacent (i.e. having a physical communication link) in the layered architecture template. The

channels between such processes therefore need to be routed using a path going through other

intermediate processors. As mentioned in the previous section this problem gets complicated by

the point-to-point links between the layer 3 processorsbecause the path is no longer unique. One

way to make the path unique is to always give preference to a path which stays within layer 3

insteadof the one that gets routed through the layer2 processor. It should alsobe noted that layer4

processor modules can never be intermediate processors on a path because they are the leaf nodes

of the architecture template. Therefore the intermediate processors through which a

communication path is routed is always a software programmable processor. Given this the

implementation strategy is very simple - since each software programmable processor runs a

multi-tasking kernel, special routing tasks are created on these processors, one for each pathbeing

routed through the processor. These routing tasks just help move data from one neighboring

processor to another. One implication of this is that routing a path through an intermediate

processor may require substantial computational resources in addition to the I/O bandwidth.

Careful partitioning and intelligent use of dedicated point-to-point links is therefore extremely

important

The second problem relatedto embedding the channelsof the process network in an instance ofthe

architecture template is that of the actual implementation of the required channel behavior. This



164

important issue is the focus of the rest of this section. Its importance is due to the fact that the

protocol behavior of the FIFO channels and ports in the process network, as described in Chapter

5, is defined at an abstractlevel to simplify descriptionof the system. However, this behavior is at

too high a level to be directly implemented in hardware. Implementing the channels themselves

requires a judicious use of low-level communication and synchronization primitives, both

hardware and software. Deciding what are the appropriate low-level primitives for efficient

implementation of the channels in the process network,in the context of the architecture template

defined earlier, is the problem being addressed in this section.

There are two aspects to the problem of implementing the channel abstraction of process

interaction - Communication and Synchronization. Communication deals with the physical

transferof data. Synchronization is required to accomplish the data transferwhile meeting the

protocol constraints - it is the mechanism through which constraints are placedon the actions

beingtakenby the two communicating processes to perform the data transfer For example, it is

through the synchronization mechanism that the port protocols discussed in Chapter 5 can be

enforced.

6.5.1 Communication and Synchronization in Software

Thereis a very richliterature dealing with the issues of communication and synchronization, and

many formal techniques have been developed and used in distributed software systems and

operating systems. These ideas equally applicable to hardware as well, although traditionally

hardware designers havenot treated the problem in as formal a fashion asthe software designers.

Hardware implementations often makeassumptions about the relative speed of the interacting

processes, or theirsynchronization to aglobal clock.This may suffice forthe designof a particular

system but the inherent lack of modularity of such approaches make them difficult to use in a

system design environment based on reusable libraries.

Communication can be accomplished by one of the two basic techniques - by using shared



165

memory accessible by the sender and the receiver,or by sending a message from the sender to the

receiverover a network. The natureof the underlyinghardware has a major role in deciding which

of the two techniques is better suited in an application. If the processors on which the

communicating processes arerunning are tightly coupled, such as on a VME bus, or arethe same

processor, then shared memory is usually better suited because the hardware itself provides

memory that is accessibleby both the processes involved in a communication. On the other hand,

if the two processors are separated by a network suchasethemet, thenmessage passing is usually

bettersuited becausethe hardware itself is intrinsically messageoriented. It is usually inefficientto

simulate shared memory when there is none.

The two basic mechanisms of communication have their own distinct synchronization

requirements. In the case of shared memory based communication two types of synchronization

are required - mutual exclusion and condition synchronization. Mutual exclusion type

synchronization is needed to enable the processes to perform atomic operations on a shared object,

for example operations on adata structure stored in theshared memory. Condition synchronization

is needed to coordinate the actions of the communicating processes when the state of a shared

object is inappropriate for a particular operation. A process attempting that operation needs to be

delayed until the state of the shared object changes to an acceptable one as a result of actions by

theother process. For example, aprocess writing data into abuffer area in theshared memory may

have to be delayed if the buffer is full.

In the case of message-passing-based communication, synchronizationis a natural outcome of the

act of communication - a messagecan be received only afterit has been sent This lets the receiver

make some assertion about the state of the sender. In addition, if the message passing is

synchronous (unbuffered) then it represents a point in time where the execution of the sender and

the receiverare synchronized. The messagereceived therefore corresponds to the current stateof

the sender, and the sender can also make assertions about the state of the receiver.



166

Busy Waiting on Shared Variable

Semaphore using Busy Waiting

;inSemaphoreusihg KernelCalls

Monitors Message Passing

Figure 6-5 : SynchronizationTechniques in Software Systems
and Their Relationships

Many primitives have been developed for implementingsynchronization in software systems.

Figure 6-5 shows the relationship between some of these primitives. These techniques include

simple busy waiting or spin-lock based synchronization, semaphore using busy waiting,

semaphore based on system calls to a kernel which schedules processes, monitors, message

passing, remote procedure call, etc. A good discussion of the details and relativemerits of these

techniques can be found in [Andrews83][Ben-Ari90].

'6.5.2 Applicability of Communication and Synchronization
Techniques in Software to Dedicated Hardware

The techniques for communication and synchronization in software systems provide a good

conceptual framework in whichto implement thechannels in thearchitecture template. However it

is not possible to use the same implementation techniques because the software techniques were

mostly developed with general-purpose computers in mind. Their implementations make

assumptions that are valid for general-purpose computers butmay beinefficient for an application

specific system.



167

For example, the implementation of the techniques presented in the previous section usually

require the shared memory to satisfy certain properties.The most common model of the memory is

that of a collection of atomic registers or locations. Overlapping reads and writes to such memory

locations by two processes are equivalent to an arbitrary interleaving of the two accesses. The

hardware implementation of a memory with such atomically accessible locations is done using an

external hardware arbiter. This does not matter in general purpose MIMD computers with large

shared memories implemented using single-ported RAMs - the single access port or bus to the

memory requires arbitration anyway, and therefore all accesses to the memory are inherently

atomic irrespective of the address. However, in the case of dedicated communication interfaces

true multi-ported memories may be used. In such cases, the accesses on the multiple ports are

completely asynchronous and can proceed simultaneously in time. An arbiter is required to resolve

access contention only when the locations being simultaneously accessed on the different ports

have the same addresses. This not only adds to the hardware complexity but also has an adverse

effect on all memory access times because the arbiter has to check for simultaneous access to the

same location even when the two processors are accessing different locations in the same memory.

Thus for hardwaresimplicity it is desirable that the communication and synchronization primitives

be implemented using strategies that can directly work with such multi-port memories. There do

exist communication and synchronization algorithms that can work with weaker models of

memory such as Lamport's bakery algorithm for mutual exclusion which can work with a memory

composed of safe registers. A safe register is one where in the case of a overlapping read and write

accesses, the write executes correctly and the read is allowed to return any value in its allowed

range. A write-write contention is not allowed. However common multi-port memories without an

external arbiter, such as the IDT7025 dual-port memory, are an even more permissive form of

shared memory - they are not even safe. In the case of overlapping access to the same memory

location from two ports, both accesses may fail. A write may result in corrupt data being written,

and a read may return any value. This is too weak a memory model to implement communication



168

and synchronization between the two processes and additional hardware support is needed. One of

the examples in the next section will describe a hardware module for low-level inter-processor

communication and synchronization that is based around a true dual-port memory with the above

properties.

6.5.3 Implementation of the Channels in the Architecture
Template

As should be obvious from the discussion in the previous section, the techniques used for

communication and synchronizationdepend heavily on the underlying hardware. In the caseof our

architecture template the interfacesbetween the various layers arequite different, and therefore

need to be treated separately. The following subsections describe the implementation of the

channels depending on where the senderandthe receiver processes are located.

Case 1: Sender and Receiver both on Layer 1 Workstation

At present this case is not being used although an implementation has been done by a co-

researcher [Lee91] using the light-weight process library from SUN. The basic idea is that all

processes from the process network get mapped as light-weight processes, or threads, inside a

single UNIX process (heavy-weight process). Thelight-weight processes are distinguished from

the heavy-weight UNIX processes by the fact that all thelight-weight processes inside aheavy-

weight process share the same address space and system resources such as file descriptors. In

contrast, heavy-weight processes work in separate address spaces. As a result communication,

synchronization, and context-switching are much cheaper in the case of light-weight processes

than in the case of heavy-weight processes - hence the names light-weight and heavy-weight. The

light-weight process library provides several primitives for communication and synchronization

between the light-weight processes. These primitives include monitor and synchronous message

passing. In addition, all the light-weight processes share a common address space. The channel



169

objects for communication between the light-weight threads are then constructed using these

primitives.

A drawback of the current implementation is that whenever any of the light-weight processes

attempts to do an I/O from outside the UNIX process then all the light-weight processes also

block. This problem is really an artifact of the fact that the light-weight processes are not

scheduled by the underlying UNIX operating system, but nevertheless causes inefficiencies. An

alternate implementation is a mix of light-weight processes and heavy-weight UNIX processes, or

the use of an operating system that explicitly supports light-weight processes.

Case 2: Sender on Layer 1 Workstation and Receiver on Layer 2
Processor (and vice versa)

The layer 1 and layer 2 processors communicate over a local area network which is inherently a

message passing based medium. The channel objects need to be implemented using one of the

standard communication protocols such as UDP or TCP, or higher level protocols such as RPC

protocol from Sun Microsystems. For the sake of programming simplicity the current

implementation is based around RPC. The basic idea is that for each channel going between the

two processors (as a result of multiple processes being mapped to them), a buffer is maintained to

store the data on one of the processors.The remote processor then accesses the buffer using RPC

calls corresponding to the channel portoperations.

One variable in the implementation is the processor on which the buffer is maintained. Four

strategies are possible: always on layer 1 processor, always on layer 2 processor, the sender

processor, and on the receiver processor. The choice of the strategy depends on the relative

compute power of the two processors, and on the availablecommunication bandwidth. Currently,

however, all the buffers arelocatedon the layer2 processor becauseof two reasons.First,the layer

2 processor runsa real-time kernel, VxWorks in the current implementation, where allprocesses or

tasks areinherently light-weight, andtherefore cheapandefficient Second, as mentioned earlierin



170

case 1, the current strategy of mapping all layer1 processes aslight-weight processes in a single

UNIX process is not entirely satisfactory. Therefore putting all buffers on the layer 2 processor

allows future modification of the implementation ofcase 1 as the RPC interface allows an inherent

modularity.

Case 3: Sender and Receiver both on Layer 2 Processor

This is similarto case 1 except that the layer2 processor uses a real-time kemel. As a resultall

processes or tasks are inherently light-weightand efficient, and directly scheduled by the kernel.

The basic strategy is similar to that of case 1 - all processes mapped to the layer 2 processorare

mapped as individual tasks scheduled by the real-time kernel. The VxWorks kernel that is

currently used provides many different primitives for inter-process communication and

synchronization, including a variety of semaphores, message queues and pipes. In addition, all

processes share a common address space. The channel object is easily implemented by using a

shared buffer together with appropriate semaphores to arbitrate access to it

Case 4: Sender on Layer 2 Processor and Receiver on a Layer 3
Processor (and vice versa)

This is one of the most interesting cases. Like case 2 the sender and the receiver are on different

processors. However, more importantly, the layer 3 processor resides on an application specific

•board. This means that unlike case 2 one has control over both the hardware and the software

driving the communication link between the two processors. This feature can be exploited to

provideexplicit hardware support for efficient implementationof the channel objects.

In the architecture template the layer 2 processor, which is typically an off-the-shelf single board

computer, is a master capable of initiating transactions on a backplane bus such as the VME bus.

Since it is off-shelf, the layer 2 processorcan not be modified in hardware. Therefore the hardware

support for implementing the channels between the layer 2 processor and a layer 3 processor is

integrated with the layer 3 processor. This also provides scalability as the number of layer 3



171

lgyer 2 Processor Laver 3 Processor

data_bus_to_L2 ^.
address bus to L2 —

read(address)
write(address. data)

take(semaphore)
give(semaphore)
read(semaphore)
set(interruptJo_L3)
resetdnterrupt to 12)
readdnterruptjo 13)
read(intemjpt_ to_L2)

interrupt_to_L2 -^-

Shared Memory
for

Data Transfer

Set of Binary
Mutual-Exclusion

Spin-Lock
Semaphores

Interrupt
Module

_• data_bus_to_L2
— address_bus_to_L2

read(address)
write(address, data)

take(semaphore)
give(semaphore)
read($emaphore)
set(interruptJo_L2)
resetdnterruptjo L3)
read(interruptJo_L3)
read(interruptJo_L2)

interrupt__to_L3

Figure 6-6 : Required Functionality of the Layer2 <=* Layer 3
Memory MappedCommunication and Synchronization Interface

processors changes - each layer 3 processor comes with its own support for the channel objects.

This support hardware together with driver software essentially provides the lowest layer of

communication and synchronization between thetwo processors. In order to efficiently layer the

channel objects on topof it this lowest communication and synchronization layer is required to

exhibit certain behavior.

Figure 6-6 shows the abstract functionality that must be provided by the communication and

synchronization module in the layer 3 processor for interaction withthe layer 2 processor This

black box is capable of supporting more than one channel between the two processors. It has two

facets: a setof internal resources using which multiple channel objects are maintained, and a setof

required operations available to both processors through accesses to memory mapped locations.

The exact implementation of this black box is immaterial, and can be a mix of hardware and

software, as long as it provides the following features:



172

a. A block of shared data transfer memory resource which is used to actually buffer the databeing
transferred over the channels. There are two operations defined on this memory for both
processors: read(address) and write(address,data). These operations from the two processors
are allowed to be executed in an overlapped fashion, and the behavior when the operations to
the same address overlap is undefined.

This is a very permissive memory model (it is not even safe) and is implementable very
cheaply. It may be implemented by a true dual-ported memory or by sharingaccess to a single
ported memory.

b. A memory mapped block that implements a set of spin-lock binary semaphores (busy-waiting
binary semaphores based on a shared variable) for mutually exclusive access to data structures
stored in the shared data transfer memory. This resource is required to support the following
abstract operationson each mutual exclusion spin-lock binary semaphore: take a semaphore,
give a semaphore, and read a semaphore. Note that these semaphores areused only for mutual
exclusion between the two processors which means that the same processor takes and gives the
semaphore.

There are two obvious ways of implementing this. One is to have a memory composed ofsafe
binary registers and use Lamport's algorithm for mutual exclusion [Ben-Ari90], or have a
memory composed of atomic registers and use Peterson'sor Dekker's algorithm [Ben-Ari90]
for mutual exclusion.

The second approach is to provide hardware assistance to simplify this process. This may be
done by using a shared memory that allows atomic read-modify accesses. However the best
approach probably is to have a true dual-ported memorywhose locations are special mutual-
exclusion elements, also called hardware semaphores. Somemodemmulti-port RAMs include
a small, separately addressable, setof such hardware semaphores. Thesehardware semaphores
provide three operations: read, clear, and request to set. The requests to set the hardware
semaphores are internally handled in a first-come first-served fashion by a fair arbiter. Using
these operations on the hardware semaphores it is trivial to implement mutual-exclusion spin-
lock binary semaphores.

c. An interrupt block which is used to send interrupts from one processor to the another. The
* interrupts are essentially binary flags that are setby thesender processor, reset by the receiver

processor, and readable by both the processors. This allows one processor to asynchronously
indicate achange in its state to the other processor. The processors themselves are responsible
forhandlingthese interrupts. This allows channel communicationto be done in an event-driven
fashion without busy-waiting. The following abstract operations are supported by this block:
setthe interrupt flag of the other processor, reset the interrupt flag to self, read interrupt flag of
the other processor, and read interrupt flag to self. In addition, it is guaranteed thatthe set and
reset operations on aninterrupt flag will notoverlap. This can easily be implemented by using
shared boolean registers together with tri-state buffers.

Many implementations of this black-box behavior are possible. An example implementation for

such a communication and synchronization interface between layer 2 and layer 3 is described in

section 6.7.1. Given such a black box an efficient implementation of the channel objects is done



173

with the aid interrupthandlers and special I/O tasks running under the multi-tasking kemels on the

two processors.

Case 5: Sender and Receiver both on the same Layer 3 Processor

This is a pure software case like cases 1 and 3. The built-in features of the particular real-time

kernel running on the layer 3 processor areused to implement a channel object and the routines to

access it. At presentthe only implementation available is that for the SPOX kernel running on the

TMS320C30. Since the VDI kernel forthe DSP32C module is not a multi-taskingkernel, this case

is meaningless for it

The implementation strategy under SPOX is similar to that under VxWorks in case 3. The only

difference is that SPOX provides a different set of inter-process communication and

synchronization primitives. The primitives in SPOX are monitors, conditions, and software

interrupts. In addition, all processes share the address space. The channel object is efficiently

implemented usingthe monitorand the condition variables together with a shared memory buffer.

Case 6: Sender and Receiver on different Layer 3 Processors

There are twosub-cases of this case., If thetwolayer 3 processors that are involved donotbelong

to the same cluster of layer 3 point-to-point links, then the channel is routed through the layer2

processor using the technique of case 5 above.

If the two layer 3 processors involved in the communication have a direct link then explicit

hardware support similar to case 4 is used to implement the channel objects - in fact the same

interface blockdescribed in case 4 is used in thiscase too withmultipleinstances of it organized in

a ring or a linear array.



174

Case 7: Sender on a Layer 3 Processor and Receiver on a Layer 4
Processor (and vice versa)

This too is an interesting case because it involves two different processors, one of which - the

layer 3 processor - is a programmable processor running a real time kemel, whereas the other

processor - the layer 4 processor - is a dedicated processor. The dedicated layer 4 processor can be

a hardwired processor,or a software programmable processorexecuting just one fixed program.

The main consideration in the implementation ofchannels for this interface was to keep the design

of dedicated hardware modules and ASICs simple. This rules out requiring these modules to have

a complex microprocessor-like bus interface capable of initiating read and write transactions with

an external memory. In fact most ASICs have memory mapped slave interface ports using which

an external host processor initializes them and communicates with them. Such memory mapped

slave interface precludes using a shared memory based hardware module for implementing the

channel objects for communication with the layer 3 processor - this would require an intervening

DMA like device with (or inside) every layer 4 module.

The solution adopted is to maintain the channel object in software inside the layer 3 processor. A

special I/O task or/and interrupt handler (which is basically another task scheduled without the

control of the kernel) is associated with each layer 4 module for moving data between it and the

channel objects stored in the layer 3 processor. In effect, these special I/O tasks and interrupt
•

handlers are a software wrapper around the raw memory mapped slave modules to make them

appearto have multiple distinct ports each of which can communicate using the channels.

Figure 6-7 shows an abstract view of the implementation. The precise nature of the slave interface

ports on each layer 4 module is also defined as partof the architecturetemplate, and is presented in

detail in section 6.7.1.



175

Case 8: Sender and Receiver both on the same Layer 4 Processor

This case is not allowed because each layer 4 processor module is a dedicated module so that only

one process can be mapped to it. This is obviously true in the case of a dedicated hardware module,

and is required to be true if a programmable processor module is used as a layer 4 processor.

Case 9: Sender and Receiver on different Layer 4 Processors

In this case the channel is routed through the layer 3 processors that are masters to these layer 4

processors. If the masters are different and do not belong to the same cluster, then the channel

needs to be routed through the layer 2 processor.

As is obvious, this can be extremely inefficient, particularly if the sender and the receiver do not

have the same master. For high-speed communication the layer 4 slaves may want to communicate

directly using their own hardwired link with custom protocol. An example of this might be a link

Layer 4 Processor
with

Memory-Mapped
Slave Interface

Port

Layer 4 Processor
with

Memory-Mapped
Slave Interface

Port

Figure 6-7 : Abstract View of the Communication and Synchronization
Interface between Processing Modules on Layers 3 and 4



176

carrying high speed video data.

6.6 Partitioning of the System Specification

Given the system architecturetemplate, and a descriptionof the system as a process network, the

following mutually dependent sub-tasks need to be performedduring partitioning:

a. Findingan instanceof the architecture templatesuited for the system. This involves finding the
number and types of processors in layers 3 and 4.

b. Finding a mapping of the processes in the process network to the chosen instance of the
architecture template.

These two sub-tasks have to be accomplished with the goal of a minimal cost solution that meets

the computation and communicationrequirements. Implementation constraints alsoneed to be

taken into account in this process - certain processes in the process networkmay be implementable

only on specific types of processors. For example, a process might be required to be implemented

as a dedicated hardware modulein layer4 because it mightrequire I/O with a sensor. Similarly, a

user interface process using a standard window system such as X mightbe required to be mapped

as a software processon the layer 1 workstation.

As should be obvious thisis averydifficult problem, particularly because good metrics of thecost,

techniques for estimating thecost, and techniques for characterizing the feasibility of asolution (in

.terms of computation and communication requirements) are not available. In light of this, the

currently used solutionto partitioning is a manual approach.

6.6.1 Manual Partitioning

In the current approach to the partitioning problem boththe sub-tasks are performed manually by

the user. As mentioned in Chapter 2, an instance of the architecture template is specified by the

userin aSAIL (System Architecture Intermediate Language) file whichis anintermediate form for

storing thearchitecture information according to the layered architecture template. This file is used



177

as the central repository of all architecture related information, and is also usedby the run-time

software environment to control the hardware. It contains information about allthe processors on

every layer, and the processes mapped to them. The syntax of the SAIL file is lisp-like. An

architecture is a lisp property list - i.e. a list of attribute value pairs - with four special attributes

.layerI, :layer2, :layer3, and :layer4. The value of these attributes are possibly nil lists of

processors in layers 1,2, 3, and 4 respectively. Each processor is in turn described as a property

list, with certain special attributes being required for processors at each layer. Such attributes

include name of the processor (the .name attribute), the type of the processor(the .type attribute),

the hosts of the processor (the list-valued attribute .hosts), the peers of the processor (the list-

valued attribute .peers) etc.

An advantage of this syntax is that the policy is inherently extensible - as the tools mature more

required attributes can be easily defined while retaining the same parser that is currently in use. A

library of routines is available to parse a SAIL file and access various attributes. Also, as the

architecture crystallizes, more and more attributes get defined. This file is also used by the run

time software system is configure the software environment.

Essentially a SAIL file views the system to be composed of two types of entities: processesand

processors.The processes are connected arbitrarily, although the interconnections follow the

channel mechanism specified by the process network model. The processors are connected

according the interconnection topology and interface modules allowed by the layered architecture

template. The processors can eitherbe dedicated hardware modules in layer4, or software-

programmable hardware modules in layers 1,2, or 3. A layer4 dedicated hardware modulecan

implement only one specific process. A software-programmable module in layer 1,2, or 3, on the

other hand, can simultaneously implement multiple processes. Partitioning maps theprocesses to

the processors taking this constraint into account.

Following is a sample SAIL file corresponding to a simple hypothetical systemthat is shown in



178

Figure 6-8. Thesystem follows thearchitecture template, and has asingle custom board containing

twoTMS320C30 processor modules running SPOX kernels in thelayer 3, and nomodules in layer

4. It uses a SPARC-based SUN workstation in layer 1, and a Heurikon HKV30 single board

computer running VxWorks kernel in layer 2. The corresponding SAIL file, as shown below,

defines each of these four processors. The two layer 3 processors are assumed to be connected to

each other, and to the layer 2 processor, through dual-port RAM based communication and

synchronization links. The characteristics of these communication links are described by the

attribute :ipc of the processors in the lists of host or peersof a processor.

; SAIL file for the hypothetical system in Figure 6-8
(

; required header
:header (:format SAIL :comment *speech system")

; layer 1 processor is a SPARC workstation running SunOS
:layerl (

( :name pajaro :type spare sunos )
)

; layer 2 processor is a MC68020 running VxWorks

VME Bus.

Dual-Port
RAM

Interface

pO
[TMS320C30 Processor)

with SPOX kernel

pajaro
SPARC Workstation

with SunOS

vw3
MC68020 Processor

*with VxWorks kernel

Dual-Port
RAM

Interface
-(TMS320C30 Processor)
\jvith SPOXkernel

Dual-Port
RAM

Interface

Pi

Figure 6-8 :A Hypothetical System Using the Architecture Template toDemonstrate
the Syntax of a SAIL File



179

:layer2 (

( :name vw3 :type m68k vw )
)

; layer 3 has two processors - both are TMS320C30 processor modules
; running SPOX kernel. The two processor modules are connected to
; each other, and to the layer 2 processor, using dual-port RAM based
; communication links

:layer3 (
; first processor .. .
(
:name pO :type c30_spox
:vmeaddrjbase 0 :vmeaddr_type 24 ; its VME Bus attributes
:srambase 512K :sramsize 256K ; its local memory
; description of its host - the layer 2 processor
:hosts (

(
:name vw3

; description of the interface to the host
:ipc (:dpram_num 1

:local_view (:dpramport left :intrnum 0)
:remote_view (:dpramport right :intrnum 5)

)
)

)
; description of its peers - other layer 3 processors that
; are connected to it

:peers (

(
:name pi
; description of the interface to the peer
:ipc (:dpram_num 1

:local_view (:dpramport left :intrnum 1)
)

)

)

)
; a similar description for the second layer 3 processor ...
(
:name pi :type c30_spox
:vmeaddr_base (* 12 2KW) :vmeaddr_type 24
rsrambase 512K :sramsize 256K

:hosts (

(
:name vw3

:ipc (:dpram_num 1
:local_view (:dpramport left :intraum 0)
:remote_view (:dpramport right :intrnum 5)

)
)

)
:peers (

(
:name pO
: ipc (: dpramjnum 1

:local__view (rdpramport right rintraum 1)



180

)

)
)

)

; there are no layer 4 modules in this simple example
:layer4 ()

)

6.6.2 A Strategy for Automated Partitioning

The manual approachused currently leaves the partitioningproblem unsolved. A more systematic

approach to partitioning is desirable. Even if it proves impractical to automate the entire

partitioning process, it may be feasible to automatically map the process network given a

particular instance of the architecture template, or to just evaluate the cost of a partitioning

specified by the designer.

Greedy approaches similar that used by Vulcan-II [Gupta92a] for a single processor architecture

may work even for the complicated architecture template used by us. The somewhat simpler

problem of mapping the process network given an instance of the architecture template can be

viewed as a problem of bindingprocesses to processors. One greedy approach wouldbe to start by

assigning all processes to the lowest (highest number) layerthatthey canbe implemented on.This

lowest layer is determined by the following strategy - a process is first assigned to a dedicated

hardware module in layer 4 if it can at all beimplemented inhardware. Otherwise it ismapped to a

layer 3 processor, thelayer 2 processor, and the layer 1processor in that order. Thiswould give, in

somesenses, the fastest solution. Next, processes can be migrated oneby one in a greedy fashion

to ahigher layer as long as the computation and I/O limitations are notexceeded. Thus compute-

bound processes in layer 4 canmigrate to one of the upper layers as software processes. This

greedy process can be continued until no improvement in board area takes place.



181

6.6.3 Role of Process Network Transformation in Partitioning

In the discussion so far it was assumed that thegranularity of the process network description is

unchanged during the partitioning process. In effectthe functional decomposition implied by the

process network description is retained during implementation. This can often result in an

inefficient solution, or may result in no solution being found. Forexample, processes running on a

programmable processor have associated costs of context switch and inter-process

communication. Therefore coalescingsmaller processes that arecommunicating with each other

into a single process may improve performance. Similarly, partof a large process may be carved

out as a separate process that is run on a separate processor.

This notion of decomposition and coalescing of processes in the process network can be

generalized and formalized into the transformation of a process network such that the resulting

process network has the same functionality, and the constituent processes communicate using

FIFO channels with the same restricted set of protocolsas were discussed in Chapter 5.

An example of such a process network transformation is shown in Figure 6-9 where two processes

in a client-server relationship are coalesced into one. This is essentially equivalent to converting a

remote procedure call into a local one. Several other such transformations can be formulated. For

example, anotherpossible transformation is to replace a synchronous (unbuffered) communication

channel by an asynchronous (buffered) channel as the latter is often cheaper to implement.

Currently no mechanism is provided in the framework to do these transformations on the process

network, whether manually or automatically. The reason is that a pre-requisite for doing such

transformations is that the precisecomputationbeing done by each process in the process network

also needs to be modeled. So far we have been concentrating solely on formalizing the black-box

behavior, or the communication behavior, of the processes with a view towards automating the

interfacing between the processes. Unfortunately we still do not have a unified formal

representation of the computation being done inside each process in the process network. The



PROCESS 1

Csend\
61)

r
(RECV\

O 1

(blocking)

'JU-

(blocking)

PROCESS 1

182

-+^I 1

(blocking)

(blocking)

Figure 6-9 :Coalescing a Server Process intoa Client Process, andvice versa

process network only represents the communication pattern, and the processes themselves are

specified interms of their implementations as Ccode (in case of software implementations), oras

astructural orabehavioral description of ahardware implementation. This is really areflection of

the fact that no currently available representation was found tobepowerful enough to handle all

the computation modelsneeded for the systems of interest in this thesis. The search for a unified

representation that can handle all computation models, and from which either hardware or

software can be generated, has been left for future investigation.



VMEBua

VME Bus

Interface

LAYER3

TMS320C30 + SPOX

DSP32C + VDI

MC96002 + (SPOX)
H

4

Slave #1 Slave # n

LAYER 4

SPARC +

SunOS + LWP

LAYER 1

Ethernet

MC68020 +

VxWorks LAYER 2

183

111 >

Custom

Boards HI

...'*' LAYERS 3 &4

..**

Figure 6-10: Currently Available Implementation Choices for the
System Architecture Template

6.7 Implementation of the Architecture Template

In order to be able to implement instances of the architecture template within the CAD

framework several hardware modules and software libraries have been developed that allow

complete systems to be prototyped according to the architecture template. This section describes

the current capabilities of this effort.

Figure 6-10 shows the currently feasible implementations of the architecture template. The only

allowed layer 1 processor is currently a SUN SPARCStation. At layer 2 the supported processor

modules are the HKV2F and HKV30 single board computers both of them running the VxWorks

real-time multi-tasking kernel. At layer 3, which resides on the custom boards, the supported

processor modules are a versatile TMS320C30 based module (discussed in Chapter 3), and



184

simplermodules based on DSP32C and MC96002 processors. The TMS320C30 module is

managed by a customized version of the SPOX real-time multi-tasking kemel, whilethe DSP32C

module uses VDI, a real-time foreground-background kemel. At presentno real-time kernel is

supported on the MC96002 module. At layer 4 a variety of dedicated hardware modules are

available in the library, including A/D, D/A, optical communication module, RS232C module,

optical encoder module for position and velocity sensing. A simple DSP32C based processor

module is also available for use as a layer 4 processor. In addition, the module generators

described in Chapter 4 can be used to develop application-specific modules for layer 4 in a short

time.

The currentphysical interconnectionmedium between layer 1 andlayer 2 processormodules is the

ethernet. Similarly, between layer2 and the layer3 processor modules the currently supported

interconnect medium is the VME bus. Effort is underway to support SBUS asanalternate choice

at this level. The interconnection between a layer3 processor module and the layer4 modules

slave to it is described in terms of a custom bus protocol which is described in detail in the

following subsection.

6.7.1 Implementation Restrictions and Guidelines

As a result of the experience with the development of thecurrent suite of hardware and software

modules for supporting thearchitecture template, several guidelines orrestrictions have also been

developed with which the new modules need to adhere.

Layer 1 Processor Modules

The only restriction on the layer 1processor module is that it should beaprocessor with a32-bit

data type that supports UNIX and X, and be able to communicate with alayer 2 processor using

TCP/IPC and SUN's RPC protocols. The precise physical medium ofcommunication isin theory



185

immaterial - it can be ethernet, FDDI, VME, SBUS etc. - although the current layer 2 modules

support only ethernet.

Layer 2 Processor Modules

A layer 2 processormodule should be a 32-bit processorrunning VxWorks, which is currently the

only supported real-time kernel at layer 2. The processor module should be able to read and write

32-bit memory locations shared with each layer 3 processor over a backplane bus such as the VME

bus. In addition, it should be able to handle interrupts from the layer 3 processors.

Layer 3 Processor Modules

A layer 3 processor should be able to do 32-bit read and write to a memory shared with the layer

2 processor,and also do 32-bit read and write to layer 4 slave processors that are memory mapped

to it It should be able to handle interrupts generatedby the layer 4 processors.

Interface Between Layer 3 and Layer 2 Processor Modules

A layer 3 processor module appears as a memory mapped slave to the layer 2 module across a

backplane bus. The layer 3 processormodule is expected to provide certain basic host interface

functionality over this memory mapped interface. This functionality, which is just a concrete

realization of the abstract black box behavior of the layer 2<=>3 interface described in section

6.5.3, includes:

a. Shared memory area that is visible to both the layer 2 and layer 3 processors. It should be
possible for the layer 3 processor to execute a program stored in this sharedmemory when the
processor is reset

b. Shared memory locations that provide atomic read and write accesses for software
implementation of spin-lock semaphores using Peterson's algorithm. Alternatively, and
preferably, hardware semaphoresmay be provided.

c. Ability to halt and start the layer3 processor from the layer2 processor by writing to a bit in a
memory location.

d. Mail-box interrupt to the layer 3 processor, i.e. a memory location which generates an interrupt
to the layer 3 processoron being accessed by the layer 2 processor.



186

e. Mail-box interrupt to the layer 2 processor, i.e. a memory locationwhich generates an interrupt
to the layer 2 processor on being accessed by the layer 3 processor.

f. Ability to monitor the statusof mail-box interrupts from both the sender, and the receiver.

g. Ability to reset the mail-box interrupt by the receiver.

h. Ability to send and receive at least one single-bit flag in each direction via memory mapped
locations.

A reference implementation of such an interface is provided in the library that can be used with

most 32-bit processors and most backplane busses. The reference implementation, shown in

Figure 6-11, is based around using a 32-bitwide truedual-port RAM which also provides special

memory-mapped hardware semaphore locations. The mail-box interrupts, flags, and reset

functionality is provided by a pair of PLDs. These PLDs, called v2tigen and tZvigen in thelibrary,

canbe used in isolation to implement other such interface modules with different types of shared

memory. For example, a single-ported SRAM may be used together with external arbiter to

provide this capability. Some processors, such as the DSP32C and theMC96002, have special

ports through which ahost is allowed atomic access to the processor memory. These ports can be

used to implement a cheap though slower shared memory.

Interface Between Layer 4 and Layer 3 Processor Modules

A layer 4 processor module appears as amemory mapped slave device to the layer 3 processor

module across aslave bus whose protocol isdefined as part ofthe architecture template. The layer

'3 and layer 4 processor modules are expected to adhere to this protocol. This requires the

following basicfunctionality:

a. Every layer 4 module can have one ormore ports through which it connects to the slave
interface bus of the layer 3 processor modules. Each such slave port can have signals from the
following set of signals:

- a data bus D[0:ND-1] where 0<Nr^32

- an address bus A[0:NA-1] where 0<NA<13

- active low output enable signals OEN[0:NOEN-1] where Nqen^O

- active low write enable signals WEN[0:NWEN-1] where Nwen^0



32-bit Data Bus

o
CO
CO
©
o
o

CM

o

CD Interrupt

\

Implemented by two
custom PLDS t2vigen
and v2tigen

Dual-Ported
Memory

Bank
(8N KWords)

Hardware
Semaphore
Bank(16N)

Mail-Box
Interrupt

Bank (2N)

Interrupt
Controller

Bi-Directional
Communication

Registers

Implemented by an
array of N
dpram8Kx32 modules

32-bit Data Bus
'irnirmiwiiw

\

CD

I
CD

>s
CD

CO

Interrupt

RESETn

*•/

o
o
CD
CO
CO
o

187

Hgure 6-11: Reference Implementation of the Interface between Layer 2 and Layer 3



188

- active low chip select signals CSN[0:Ncsn-1] where NCSn^O

- active low buffer read signal RDBUFN[0:NRDbufN'1] where Nrdbufn^O

- active low register write signal WRREGN[0:Nwrregn-11 where Nwrregn^O

- active low reset signal RESETN

- active low access completion signal RDYN

- active low interrupt INTRN

In the above list the choice of address bus width to be a maximum of 13 may seem

rather arbitrary and restrictive, particularly for applications such as vision and

image processing that deal with large quantities of data. The number was decided

based on what canbe efficiently supported in hardware across commonly available

processors while also being sufficient for typical applications. Further more, image

and vision applications that need to access large quantities of data, for example a

pixel from a single frame, access them according to some address-generation

algorithm, as opposed to true random-access. Therefore such cases can easily be

handled even with a limited address bus by integrating an address-generation unit

into the layer 4 slave module. Hardware module generation techniques of Chapter 4

can often be used to automatically generate such address-generation units from a

high-level specification.

b. Every layer 3 processor module must have aslave bus controller block using which it can
generate the control signals of the types listed above for all the slaves attached to it. The
ALOHA interface synthesis system may be used to synthesize such ablock. A parameterized

* slave bus controller module is also provided in the library which can be used with most
processors. Given suitable parameter values it can generate the OEN, WEN, CSN, RDBUFN,
and WRREGN signal for the layer 4 slaves connected tothe processor.

The basic idea behind this interface is that aslave port is viewed as awindow through which the

layer 3 processor can access memory locations inside the layer 4 slave module. The interface has

been defined with aview to simplify the implementation. The signals are defined to cover three

commonly encountered types ofmemory locations. SRAM-like multi-word memory is accessed

through the appropriate combination ofCSN, OEN and WEN. Positive edge-triggered registers as

commonly found inPLDs and TTLdevices are written through WRREGN. TW-state buffers often



189

used to monitor status signals are read using theRDBUFN signal. CSN,WRREGN and RDBUFN

can be viewed as enable signals associated with blocks of memory with different timing

characteristics. Each signal of the type CSN, RDBUFN, and WRREGN is characterized by the

size of memory block enabled by it, and the access delay for locations in that memory block,

provided the delay is fixed. This delay information is by the slave bus controlled to provide a

sufficient number of wait states. If the access delay to the memoryblock associated with a CSN,

WRREGN, or RDBUFN signal is not fixed then the slave is required to generate a handshake

acknowledge ontheRDYNoutput. Inaddition tothe signals for memory access, aslave port must

contain a signal RESETNto reset it. The signal is guaranteed to be low on power-up and on

system initialization. Finally, the slave port can also contain aninterrupt output to be handled by

the layer 3 processor.

6.8 Summary

The issues in architecture generation at the system level were presented in this chapter, together

with a description of the architecture template-based approach adopted in this thesis. The problem

is not yet well defined, so that the current approach is still based on manual partitioning and

mapping. Instead the research was concentrated on developing a system architecture model that

encompasses dedicated as well as software programmable hardware in a formalized fashion. In

addition, communication and synchronization mechanisms for efficient implementation of the

FIFO channels and the port protocols used in the process network description have been

investigated.



190



CHAPTER 7

Using SIERA For

Designing Systems

This chapter describes the different ways in which the tools and libraries in SIERA that were

described in the previous chapters can be used for designing systems.

7.1 The Three Entry Points to SIERA

Although SIERA provides a complete vertical path for system design, there are several different

ways of using the tools, libraries, and software that is part of SIERA. As is evident from the

discussion so far, different facets of this design framework are automated to different extents.

Lower level hardware module generation utilities are mostly automated and quite general purpose

in applicability. The software module generation is not automatic, but provides a disciplined

framework in which to write modular software together with extensive run-time support software.

The high level specification of a system as a process network, and implementation according to the

architecture template, are not general purpose, although they do have wide applicability as

demonstrated by two system examples in the following chapters.

191



192

Inlight of thevarying degree to which different parts of this framework are automated and are of

general applicability, it is inevitable that different system designs use the framework to different

extents. Moreover, the loosely coupled modularorganization of the framework makes it possible

to only use those tools and libraries that areuseful. On the basis of experience with severalboard-

level system designs the following threedistinct ways of fruitfully using this framework have been

found:

a. As a physical board-level design environment for custom boards with dedicated hardware, and
whose hardware organization is completely known. A good example of using SIERA in such a
fashion is the design of the robot peripheral board mentioned in Chapter 8 (next chapter).
SIERA allows changes in the hardwareorganization to be incorporatedeasily, and also allows
rapid exploration of alternatehardware organizations.

b. As a design environment for concurrent development of hardware and software for custom
boards that have both dedicated hardware modules as well as embedded software

programmable processors. The architecture of the board is arbitrary, but pre-determined. No
example boardsexist yet that were designed using this approach.

c. As a complete system design environment with support for high-level specification and
simulation, architecture generation using manual partitioning onto an architecture template,
hardware module generation, andsoftware organization. The robotsystem presented in the next
chapteris a good example of this approach.

In the following three sectionsa description of the design flow using SIERA in eachof these three

roles is presented.

1.2 Designing a Custom Board with Dedicated
Hardware

In thiscase SIERA is like a silicon assembler for ASICs, exceptthat it is targeted atboard level

hardware. Using techniques described in Chapter 3 boards with architectures customized to a

specificapplication can be generated rapidly.

Even in this limited role SIERA provides a design environment which is more sophisticated than

that provided by commercial board placement and routing tools. In commercial tools, such asthe

ones from Racal-Redac or OrCAD, the board design is done schematically at a low level of



193

abstraction as a hierarchical netlist of individualchips. In contrast, in SIERA there is an extensive

library of parameterized sub-system modules, module generators, and tools for a variety of

placement styles.This enables quick design iteration in caseof changes in the design architecture.

Figure 7-1 shows the design flow in this case. The user expresses the design as a hierarchical

netlist composed of parameterized sub-systems from the central library or personal libraries,

individual chips, and behaviorally specifiedmodules. The netlist is usually expressed by the SDL

language, although a less versatile schematic interface is also available. Next the design manager

DMoct is run on the rootof the design. DMocttraverses the design hierarchy, and runs appropriate

structure-processorsand layout-generatorsas needed. Typically the root of the design has a layout-

generator attached to it that generates input for a foreign router in the form of a flat and fully

placed net-list of individual board-level components. The next step is that of routing for which a

foreign router is used.The outputof this process is a set ofGERBER files describing the geometry

of each layer of the board. A GERBER previewing tool can convert these files into an OCT

physicalview. After a satisfactory set of files is available, they aresent for board fabrication.

7.3 Designing a Custom Board with Dedicated
Hardware and Software Programmable Processors

This is quite similarto the previous caseexceptthatthe custom board may alsouse parameterized

software-programmable processor modules from the library. This allows processormodules to be

embedded together with dedicated hardware in a custom fashion. Together with bus interface

modules, such as the VME or SBUS interface, this also allows the ability to rapidly prototype

relatively general purpose single-board computers.

The process of the design of the board itself is the same as in Figure 7-1. However, in addition, a

variety of software modules areavailable foruse with programmable processormodules that were

used in the boarddesign. As described in Chapter 4, this includes multi-tasking kernels, libraryof



I
Simulate Using

THOR

Architecture for a Custom Board

Parameterized Netlist in SDL

( Run DMoct \
which in turn runs

structure-processors
and layout-generators
such as pfp and PLDS

OR

\
Draw Schematic
Using ViewLogic
and run vb2oct

i
Parameterized Netlist in OCT

(structure__master view)

194

Expanded
-Netlist in OCT
(structurejnstance
view)

iFully Placed Netlist ofChips in RINFformat
for routing by Racal-Redac Router

_L
C

Run Racal-Redac
Router o
}GERBER Mask Files for Board Fabrication

Figure 7-1: Currently Implemented Design Flow for a CustomBoard with Dedicated
Architecture without using the SystemArchitecture Template



195

inter-process communication and synchronization, object-file loaders, and otherrun-time utilities.

However, since the board architecture can be arbitrary, and need not follow the architecture

template described in Chapter 6, the user will still have to provide the interconnectionbetween

these software modules and hardware modules. Nevertheless, the availability of these reusable

software modules, kernels, and tools simplifies the task.

7.4 Designing a System According to the Architecture
Template

In this mode SIERA attempts to provide a completevertical path for designing systems. As is

evident from the discussion in the previous chapters, the entire path is not yet automated and the

approach used for some higher level problems are not universally applicable to all types of

systems. Still, support is provided for all the phases of the system design cycle, as shown in

Figure 7-2.

The first step in the system design process is to specify and model it at a high level using the

process network model of computation. In order to arrive at such a description the system

functionality is decomposed into coarse-grained concurrent entities. These concurrententities

become the processes in the process network description, and communicate using the channel

paradigm discussed in Chapter5. Some of these concurrent entities may correspond to the

environment in whichthe system operates and are not meant to be generated. Thus, forexample,

the robotic mechanism being controlled by a robotcontrol system can be viewed as one such

environmental process.

Next the behaviorof each of these concurrent entities - or processes - is described for simulation

purposes. Currently this can be done using two approaches. The first is to describe the process

behavior in VHDL using the VHDL package described in Chapter 5. An alternative is to use the

process domain that has been added to Ptolemy by a co-researcher [Lee91] and describe the



Simulate
using VHDL
or Ptolemy

Process Network Description
of the System

/
Write VHDL

Descripti
Each Process

Lor C++A f
ion of 1 I
ocess J v.

Restructure the
Process Network

(optional & manual) )

Partition (manual)
to an instance of the

Architecture TemplateD
i

System Hardware &
Software Architecture

as a SAIL File

Write Top Level
SDL File & Generate
Boards using DMoct

BoarcCustom Boards

0

c
Run the assys Software

Environment 5
i

Working System!

Figure 7-2: Using SIERA for the Entire Top-Down Design of a System

196



197

processes using C++. Both these implementations require the process behavior to be strictly

sequential. The VHDL approach allows the environmental processes to be modelled using the

stochastic modelling package and the continuous time modelling package described in Chapter 5.

In the case of Ptolemy the environmental processes can be modelled using any of the other

domains of Ptolemy, thus providing a mixed simulation capability as soon as the process domain is

fully integrated into the Ptolemy framework. The simulation at this level allows the functionality

of the system to be checked without any detailed timing constraints.

After simulation the process network needs to be mapped to an instance of the architecture

template described in Chapter 6. However, as mentioned there, it might be desirable to restructure

the process network first by using transformations such as coalescing a server process into a client

process and sizing the channel butler depths. The process of mapping itself involves choosing an

instance of the architecture template and then annotating each process in the process network

graph to be either a dedicated hardware process or a software process mapped to one of the

processors on the layered architecture template. This process is completely manual, and involves

taking two things into account. First, some of the processes may have implementation restrictions.

For example, a process that involves communicating with sensors or actuators will have to be

mapped as a layer 4 slave. On the other hand a user-interface process involving X window

graphics will require to be run on the layer 1 workstation. As described in Chapter6, a reasonable

strategy for doing the partitioning is to first map all un-constrained processes to the lowest layer

possible, and then greedily move them to higher layers as long as the number oflayer 4 and layer 3

modules continue to decrease (and hence the cost of the custom boards).

The result of this partitioning is the hardware and software architecture of the system encoded as a

SAIL (System Architecture Intermediate Language) file. As elaborated in Chapters 2 and 6, a

SAIL file describes an instance of the architecture template - it contains information about all the

processors on every layer, and the processes mapped to them.



198

The SAIL file contains enough information about the processormodules being used in the various

layers and the parametersof their interconnect links to enable generation of the top-level SDL files

for each of the custom boards in the system. This step remains to be automated, and currently the

designer has to write the top-level SDL file for each board. This, however, is a straight-forward

procedure as the overall structure of all the boards is the same except for the modules in layer 4.

This is accomplished by the fact that three building blocks for boards following the architecture

template are already provided in the module library.

The top-level SDL file for a custom board that follows the architecture template looks like the

example in Figure 7-3. The three building blocks are: brdGen, ipcnw, and slavejnanager. The

brdGenblock is a generic boardthat contains multiple independentprocessor modules attached to

a bus. The number, type, and configuration of each of the processors can be specified using

parameters. The bus connects these processor modules to a layer 2 processor. At present the only

supported bus is the VME bus though, of course, the modular approachbeing taken would allow

otherinterface modules to be designed and integrated. The supported processor modules in this

configuration are the TMS320C30 based module, and the DSP32C based module. The MC96002

module can also easily be incorporated into the brdGen module, although this has not been done

yet. Corresponding to each processor in the brdGenmodule there is a main bus, and a slave bus

'that comes out. The main busses are connected using the ipcnw module. This module allowssets

of processors to be connected in a ring or a linear array - the number of processors is a parameter.

Finally, the slavejnanager module is a parameterized slave bus interface module that generates

the necessary signals to interface layer 4 slave modules conforming to the interface structure

described in Chapter 6.

Using these three building blocks in a fixed configuration alla userhasto do is to write the top

level SDL file that contains the layer 4 slaves. This procedure is being automated so thatthe top

level SDL file is generated automatically from the SAIL file. Note, however, that the SDL files for



VME Bus

brdGen
A Multi-Processor Library Module with VME Interface

Parameters:

1. Number of independent processor modules
2. Type of processors
3. Amount/type of memory for each processor
etc.

1

ipcnw

An Inter-Processor Network Library Module

Parameters:

1. Number of processor ports
2. Type of interconnection Network

(ring, linear array)

N

N

slavejnanager
Parameterized Slave
Bus Interface Module

slavejnanager
Parameterized Slave
Bus Interface Module

Application-Specific
Layer 4 Slaves

for Processor # 1

Application-Specific
Layer 4 Slaves

for Processor # N

Figure 7-3 :Top-Level SDLFile for aCustom Board in a System following the
Architecture Template

199



200

the layer 4 slaves still need to come from the library, or be provided by the user. Once the top level

SDL file for each board has been generated, the boards themselves can be generated by running

DMoct.

The same SAIL file that is used to create the SDL files is also used by the run-time software

described in Chapter 4. Currently the run-time software assumes a SPARC processor on layer 1,

and a MC68020 running the VxWorks OS on layer 2. A special function

assSysInitialize(SAIL_file_name) is executed on the layer 2 processor. This function reads the

SAIL file, recursivelybootstraps and initializes all the slave processor, and starts the various I/O

servers.The application software modules are then loaded and executed by using the command

assL3ProcAppLoadAndRun(processorjiame, objectJUe).

7.5 Summary

This chapter described the use of SIERA in three distinct fashions ranging from a board with

known, dedicated architecture to the design of a complete system following an architecture

template for the organization of hardware and software.



CHAPTER 8

Multi-Sensory Robot

Control System

This chapter presents the first exampleof a system designed using the framework presented in

this thesis. The system is a multi-sensory robot control system, and was the primary driver

application of much of the research in this thesis.The entiredesign cycle of this system as well as

the resulting implementation are described here. Besides being an exercise of a computer-aided

system design methodology, the resulting control system has many interesting architectural

features that are worth presentingon their own merit, like the extensive use of dedicated hardware

in the form of customboards and custom chips. This is largely a result of the easeof prototyping

and fast turnaround time offered by the framework described in earlier chapters for the design of

such custom hardware and the associated software drivers.

8.1 System Requirements

The first task in the designof any system is to decidewhat is required from the system - it is only

then that one can specify the system functionality. Sometimes the requirements themselves arenot

201



202

known, but in most cases the requirements are constrained by the environment surrounding the

system, and the goal for its design.

The requirements for the multi-sensory robot control system were defined primarily by its

environment (robot, sensors, and user), and by a suggestion from my advisor that I should "try to

make the robot do something neat... like play ping-pong !". Based on these a set of requirements

for the robot controller were defined, and are enumerated below.

8.1.1 Environmental Constraints

The environment of the robot controller consists of two things - the robot arm + sensors, and the

human user (or operator) - each of which places certain constraints on what the robot controller is

required to do. The robot controller can be viewed to have two ports. Through one port a user

commands the robot to do a certain task using an interactive or a language-based interface.

Through the other port the controller receives the sensorreadings and drives the actuators (motors

and relays) in the robot.

Robot Arm + Sensors

We view the robot together with the sensors as one black box which communicates with the

controller over a port. However, the black box is really composed of several distinct and

•concurrently operating physicalentities, andthe portcommunication is itself made up of several

logically distinct channels of communication.

There arethree distinct classesof entities that are present in the black box. First is the mechanical

device or the Robotic Mechanism which is being used to carry out the task of physically

manipulating the environment Gike assembling a caror scraping paintetc.). The robotcontroller

drives thismechanical assembly through Actuators, like motors and relays, which form the second

class of entities, The third class of entities areSensors which provide information about the

internal state of the robotic mechanism, and about its interaction with the physical world.



203

The Robotic Mechanism:

The robot mechanism is a six rotational degree-of-freedom commercial robot arm from Panasonic

(model PanaRobo VI). Kinematically this robot is similar to the classic PUMA robot. Each of the

six joints aregearedjoints, and in additionthe joints have brakes. A custom made open-shut two-

pronged pneumatic gripper mechanism is attached at the end of the robot.

The Actuators:

The geared joints of the Panasonic arm aredriven by d. c. motors that are housed in the arm itself.

A servo-amplifierbox that came with the robot (and is therefore considered part if the robot arm)

contains the low-level electronics to drive the motors. The amplifiers are H-bridge amplifiers

whose inputshave to be generated by the controller. Eachset of inputs is composedof four signals

which take on values of 0 V (asserted) or 15 V (disasserted). These inputs together specify the

voltagethatneeds to be applied - one inputis asserted when the voltageis negative, the second is

asserted whenthe voltageis positive, the third is disasserted if the voltageis positiveandis a pulse

width modulated waveform indicating the voltage magnitude if the voltage is negative, and the

fourth inputis similar to the third oneexceptthat it is active whenthe voltage is positive.

The brakes to the joints are driven by relays thatare also part of the servo-amplifier box. The input

to each of the relay is also a one bit active-low signal where low is 0 V and high is 15 V. As

currentlyconfigured, applyingthe brakesto any one of the joints results in brakes being appliedto

all the joint.

The air-flow to the pneumatic gripper is also controlled by a relay which is attached to the arm

itself together with necessary drive electronics.The input to the gripper drive electronics is a

single-bit TTL level signal that needs to be providedby the controller.

The Sensors:



204

Following are the sensors that are available:

a. Joint Position Sensors

These arehighly accurate optical encodersconnectedto the motor end of the geardrive train at
each joint. They allow measurement of the relative position of each joint by outputting TTL
level quadrature waveforms (a pair of square waves phase shifted by +90 degrees or -90
degrees - where the phaseshift indicates the direction of rotation and a certain fixed number of
pulses correspond to one rotation). In addition, a single pulse is generated on a third signal at
the same (but unknown) position in every rotationof the motor.

b. Joint Origin Sensors
These are relatively inaccurate potentiometer based sensors that generate a TTL level signal
that is low on one side of some mechanically fixed absolute origin of the joint, and high on the
other side. The transitions of this signal (modulo gear backlash) are accurate to within one
motor rotation.

c. Joint Limit Sensors

The same potentiometer sensor that generates the absolute origin indicator is also used to
generate two TTL level signals that are asserted low when the joint position exceeds some
mechanically determined limits on the two ends of its range of motion (< 360 degrees).

d. Force/Torque Wrist
This is a strain gauge based wrist that is attached between the gripper and the robot arm to
measure the contact forces and torques between the robot arm and the physical objects being
manipulated by the gripper. This is a commercial sensor that comes with its own signal
processing box. The controller communicates with this box instead of directly to the strain
gauges in the wrist.

The interface has two separate ports. One is a RS232 serial link using which the entire
functionality of the force/torque sensor is accessible. Configuration parameters have to be
down-loaded at the beginning, and then the sensor box supplies a force-torque vector at some
sample rate (100 Hz maximum). There is a second parallel port that allows data to be
transmitted from the sensor box at a higher rate(400 Hz maximum).

e. Proximity Sensor
This is a sensor mounted on the gripper that signals when the gripper is sufficiently close to
some object. This is done by measuring the reflection of a LED from the object surface. The
output is a TTL level single bit signal that is asserted when an object is in close proximity to the
sensor.

f. (Optional) Vision Sensor
A vision system capable of tracking objects in a 2D plane using Radon Transform based
algorithms is available as the result of a co-researcher's work [Baringer91]. The system is based
on a set of identical custom boards that consist of four DSP32C processor modules each, and
conform to the layered architecture template and the low-level communication and
synchronization interface specification discussed in Chapter 6. A software process running on
layer 2 collects data from processes running under VDI on each of the DSP32C modules, and
generates the position of an object in real-time as the object moves through the field of view. A
new position vector (X, Y, ROT) is generated every video frame (30 ms).



205

User Interface

The user interfaces with the controller through a UNIX workstation running X. This allows a mix

of interactive keyboard or mouse or even joy-stick based control, as well as a language based

interface. The user interface is based on RPC following the strategy described in Chapter 4.

Basically the user-interface is composed of one or more UNIX processes that generate RPC calls

for a server processthat needs to be part of the controller. The RPC calls are generated as a result

of interactive user actions or by a program written by him. The high-level (task-level) planning is

considered to be part of the user interface.

8.1.2 Goal

The suggestion given by my advisor was scaled down and it was decided to ignore the high level

task planning needed to make the robot do intelligent things like play ping-pong. Instead the goal

was reformulated to concentrate on the lower level control of the robot. The goal for the system

was defined to be:

Control in real-time the position of the Panasonic robot arm and the forces applied

by it to the physical world incorporating data from the joint encoders, force-torque

wrist, and the proximity sensor. In addition, it should be capable of using the

tracking data generated by the 2-D vision sub-system so that it too can be

incorporated at a later stage.

8.2 Algorithms

There are two distinct phases of operation of the robot: initialization and control. During

initialization the robot is calibrated with respect to its environment, and during control the robot is

made to follow a desired position and force trajectory.

Although initialization is a one time process, it is complicated enough to deserve special attention,



206

andeven dedicated hardware to simplify it. The problem arises due to two reasons: use of relative

position sensors, and the lack of precise knowledge about the robot kinematic parameters.The

optical encodersused to measure the joint anglesaccurately areinherently relative position sensors

- they allow position to be measured with respect to some position, and do not have an absolute

origin. The potentiometer based joint origin sensors, on the other hand, measure the absolute

origin, but are inaccurate. During initialization an elaborate process is used for each joint to

establish an accurate absolute origin. This involves moving each joint slowly in one direction

while monitoring the absolute origin sensor and the index pulse of the optical encoder. The index

pulse immediately before or after the absolute origin can be used to establish an accurate absolute

origin. This still leaves unknown the position of the robot relative to the physical world.

Techniques based on external sensors, such as a camera, may be used to accomplish this

automatically. A simpler technique is used in this system - a tableof joint origin offsets, in terms of

encoder counts, has been built up by manual calibration of the robot arm with respect to its

environment.

The control phaseof operation requires continuous monitoring of the sensors, and generation of

inputs for the actuators (joint motors and pneumatic gripper relay). Robotic control algorithms

have become far morecomplicated than thesimple PD jointcontrollers of the past. State of the art

systems incorporate both force and position controllers (sometimes both running at the sametime

*[Craig79][Khatib87]). Position control is generally used when the links of therobot form an open

kinematic chain, i.e. the robot does not touch anything. When, however, the robot eventually

contacts anobject, the robot forms a closedkinematic chain until the object is lifted or freed.

For tasks in which the robot forms a closed kinematic chain, force control is almost a necessity

[Whitney]. For example, the robotic task of scraping paint from a surface cannotbe easily

performed using a PID controller. Any error in the system would be catastrophic for a PID

controller. If the surface were too far from the robot-held tool, there would be no contact force. On

the otherhand, if the surface were too close, the integral term of the controller wouldapply the



207

absolute maximum force against the surface. The ability to specify as a control input the desired

force against the surface solves this problem.

Many types of force controllers have been proposed [Whitney]. The type chosen for this system is

a form of force control called impedance control [Hogan], in which the force applied by the robot

end-effector is proportional to the displacement from its goal position. This system is similar to a

spring, where F = KAX. The basic advantage of this force control strategy over others is that it

displays some position stability (away from any singularity). Further, this type of controller is well

suited to tasks such as peg-in-hole insertions using a remote center of compliance as proposed by

[Whitney82]. Figure 8-1 shows an extremely simplified process network view of the system.

Linearization of the robot control algorithm is based on the calculation of complicated inertial,

Coriolis, and gravitational terms, and these terms have to be updated at a reasonably high

frequency. There are also numerous frame transformations and unit conversions that must be

performed inside the control loop. At a higher level, the trajectory control process must

continuously monitor the proximity sensor, and update the controller inputs. Certainly, the

hardware architecture must be designed to facilitate all these high bandwidth tasks.

8.3 System Architecture

The resulting architectureof the robot control system is shown in Hgure 8-2. It is an instantiation

of the layered architecture template described in Chapter6. The top layer 1 is based arounda SUN

workstation, and software processes for user interface and high-level path planning are mapped to

it. The next layer 2 is based around a MC68020 based single-board computer running the

VxWorks kernel, and communicates with the workstation across an ethernet It in turn coordinates

two VME bus slave custom boards that form layers 3 and 4. One is the robot controller board, and

the other a vision sensing board. The controller board in turn communicates with a custom

peripheral boardusing a fiber-optic link. This peripheral boardinterfaces with the joint motors and



P
ro

xi
m

it
y

Se
ns

or
D

at
a

'
i

IT
1

F
o

rw
a

rd
K

in
e
m

a
ti

c

Ja
co

bi
an

<
1

|v
h

>
h

'
P

o
si

ti
o

n
&

V
el

oc
it

y
C

om
pu

m
.

In
er

ti
a

l

T
e
rm

s

C
o

ri
o

li
s

T
e
rm

s

G
ra

vi
ta

ti
on

al

T
e
rm

s

V
is

io
n

D
a

ta

2
M

T
'

S
4

.
i
r

A
S

e

R o
V

B O T
B

I
F

L

U
se

r

In
te

rf
a

c
e

h
C

o
m

m
a

n
c

In
te

rp
re

te
i

T
ra

je
ct

or
y

G
e
n

e
ra

to
r

1
1

P
ID

C
o

n
tr

o
l

P
ID

C
o

n
tr

o
l

U
n

e
a

r-
-i

z
a

ti
o

n

P
ID

C
o

n
tr

o
l

<+
>-

+
*

H
)

»
>

f•4
-1

fc

«
\
y

r
\
y

"

i
1

i
i

S
h

u
td

o
w

t\
B

ra
k
e

C
o

n
tr

o
l

U
n

it
C

o
n

v
e
rs

io
i

1
C

o
n

tr
o

l
"

M
o

to
r

C
u

r
r
e
n

t
F

ra
m

e
&

U
n

it
3

o
n

v
e
rs

io
i

i
^

F
or

ce
/T

or
qu

e
D

at
a

L
im

it
S

e
n

so
r

D
a

ta

F
ig

ur
e

8-
1:

F
un

ct
io

na
lD

ec
om

po
si

ti
on

o
ft

he
R

ob
ot

C
on

tr
ol

Sy
st

em

0
0



I
E

t
h

e
r
n

e
t

S
U

N
(l

ay
er

1)

V
M

S
b

u
s

M
C

6
8

0
2

0

C
P

U
b

o
a

r
d

(l
ay

er
2

)

C
u

s
to

m
C

u
s
to

m

C
o

n
tr

o
ll

e
r

V
is

io
n

B
o

a
r
d

B
o

a
r
d

U
N

IX
O

S
+

L
W

P
li

br
ar

y

-f
ro

nt
en

d
p

ro
ce

ss

O
pt

ic
al

F
ib

er
U

n
k

•
C

u
st

o
m

c
o

m
m

u
n

ic
a
ti

o
n

pr
ot

oc
ol

R
o

b
o

tC
ar

d
C

a
g

e

V
M

E
C

a
rd

C
a

g
e

V
x

W
o

rk
s

R
e
a

l-
T

im
e

K
e
rn

e
l

-
hi

gh
-l

ev
el

vi
si

on
•

ru
n-

ti
m

e
su

p
p

o
rt

S
P

O
X

R
e
a

l-
T

im
e

K
e
rn

e
l

-
ap

pl
ic

at
io

n-
sp

ec
if

ic
co

m
pu

ta
ti

on
-

h
a
rd

w
a
re

d
e
v

ic
e

d
ri

v
e
rs

A
pp

li
ca

ti
on

-S
pe

ci
fi

c
C

u
st

o
m

H
/W

•
ap

pl
ic

at
io

n-
sp

ec
if

ic
co

m
pu

ta
ti

on
-

I/
O

in
te

rf
ac

in
g

R
o

b
o

t
A

r
m

F
ig

ur
e

8-
2:

A
rc

hi
te

ct
ur

e
o

ft
he

M
ul

ti
-S

en
so

ry
R

ob
ot

C
on

tr
ol

Sy
st

em
fo

ll
ow

in
g

th
e

A
rc

hi
te

ct
ur

e
T

em
pl

at
e

o
fC

ha
pt

er
6



210

current sensors in the robot arm. The controller board also communicates with force and position

sensors, and the vision board communicates with a camera.

This custom architecture is in sharp contrast to architectures based around a general-purpose

homogeneous shared-memory MIMD multi-processorwith off-shelf I/O boardsthat aretypical of

most state-of-the-art commercial as well as research robot control systems [Chen86][Ish-

Shalom88][Narasimhan88][LYMPH]. The custom architecture approach offers much improved

performance in a more compact package. The tasks in a robot control system not only have high

real-time computation requirements, but also need extensive specialized I/O capabilities. This

restricts the controllers based around general purpose machines with limited I/O capabilities to

simple control mechanisms, or to non-real-time algorithm test benches at best

8.4 Hardware Organization

The two custom boards were generated usingthe board-level module generation tools andlibraries

described earlier. The parameterized library modules and the module generation tools allow

variations of these boards to be generated in a short time with computation and I/O resources

tailored for different algorithms,sensors,or robots.

The controllerandthe peripheral custom boards aredescribed in the following sections.The use of

the various hardware and software module libraries and tools is also illustrated.

8.4.1 Controller Board

This is a custom board to which the processes related to the controllaw, position, velocity, force,

and current sensing, and motor drive are mapped. It spans layers 3 and 4 of the architecture

templatediscussed in Chapter 6. As shown in Figure 8-3, it has two processor modules in layer 3.

Each of these is based around 33 MHz TMS320C30, a powerful floating-point signal processor.

Both the processormodules are instantiated with 1 Mbyte of fast zero wait state SRAM, and use



TMS Module til

., slave bus #1

DSP32C

(50 MHz)

+

VDI OS

SRAM

256 Kbyte

Trajectory
Processor

Inter-Proc.

Commn.

Control

TMS320C30

(33MHz)

+

SPOX OS

I
2-PortRAM

Mailbox &

Semaphore

SRAM

1Mbyte

VME Interface

2-PortRAM

Mailbox &

Semaphore

VME bus

I
2-PortRAM

Mailbox&

Semaphore

SRAM

I Mbyte

lnter-Proc.

Commn.

Control

TMS320C30

(33MHz)

+

SPOX OS

........j

H8>t" M^ftnmmM|mwmMWfVVWAnflMMMAMMMnA**flnAftftAAAAflAArt*rtmMArtrtmflm

Xmt/Rcv

Protocol

Processor

(ASIC)

Optical
Transmitter

& Receiver

rf
Fibre-Optic Link
to Robot Motor

Peripheral Board

Position &

Velocity
Sensing
(ASIC)

*....

Quadrature
Signals from

OpticalEncoders

Limit &

Proximity
Sensing
(FPGA)

Iu7

Signals from
Proximity & Joint

Limit Sensors

Figure 8-3 : Architecture of the Robot Controller Board

Force

Sensor I/O

Processor

(FPGA)

Signals from
ForcefToraue

Sensing Wrist

TMS Module til

slave bus #2

DSP32C

(SO MHz)

+

VDI OS

SRAM

256 Kbyte

Jacobian
Processor

K>



212

true dual-ported RAM together with hardware semaphores and mail-box interrupts to

communicate with the layer 2 processor across the VME bus. In addition, the CPU chip itself

provides on-chip resources like dual-bank SRAM, instructioncache, timers, serialports, and DMA

controller. The two processor modules communicate with each other using another instance of the

dual-ported RAM with hardware semaphores and mail-box interrupts. In addition, an efficient

single-instruction barriersynchronization facility is provided.

The two TMS processing modules are distinguished by the kind of slave modules that they have.

These slave modules reflect the specific requirements of the robot control tasks.

TMS processor module #1 has three slaves. First is a powerful programmable processor module

based around a 50 MHz DSP32C, and has 256Kbyte of zero wait state SRAM. It is a dedicated

processor to which the trajectory calculation process is mapped. The second slave is a fiber-optic

based communication link that utilizes a custom ASIC to implement the protocol processors.This

link is connected to the robot peripheral board at the other end, and serves as an interface to the

robot motors. It is used to apply specific voltages or torques to the motor, to sense the motor

currents, and to apply brakes to the robot. A sophisticated custom protocol is used that utilizes

caching to make the optical-link transparent to the TMS processor - the A/D, D/A and other

resources on the remote peripheral board appear to be local. The ASIC that implements the

protocol processing employs an asynchronous design methodology, and was synthesized using the
»

interface synthesis tools. The third slave attached to TMS processor module #1 is a position-

velocity sensing module. It is based around a pairof custom ASICs that take in signals from the

position sensors in each of the robot armjoints, does noise filtering, and then calculatesthe relative

and absolute positions and instantaneous velocity of each joint. Hardware support for the initial

origining and calibration of the robot arm is also provided. The ASICs for this module were

automatically generated from a parameterized structural description.

The second processor module, TMS processor module #2, has three slaves. The first slave is a



213

DSP32C based processor module, identical to the one attached to TMS processor module #1. This,

however, is dedicated to the process calculating the Forward Kinematics and the Jacobian of the

robot arm. The second slave is the force sensor module that interacts with a strain-gauge based

force-torque sensing wrist. The third module is the position-velocity sensing module, which is in

fact shared with the TMS processor module #1. However, besides the position and velocity

information, the slave module also provides data from the joint limit sensors and the proximity

sensor to this processor module.

The architecture of the board demonstrates the ease with which two different types of processor

modules - TMS320C30 and DSP32 - can be integrated. This heterogeneity is a result of choosing

the processor module most appropriate for the task. Although TMS320C30 is a faster processor

with a higher bus I/O bandwidth than DSP32C, the latter has a flexible host-interface that makes it

possible to interface it to a master processor with little glue logic, and therefore less board area.

Therefore the TMS320C30 processor module was used in layer 3, but the DSP32C module was

considered a better choice as a layer 4 slave module. The compute power of the DSP32C processor

module (25 MFLOPS peak) is sufficient to do the desired calculations on the controller board at a

fast throughput - for example, the jacobian and inverse kinematics calculations for the six joint

PanaRobo robot armcanbe done at betterthana 1 KHz sample rate, which is more than sufficient

for this system.

The hierarchy of busses provided by the layered architecture template results in a much improved

I/O throughput than would be possible in the case of a single bus architecture, such as the one used

by Vulcan-II system mentioned in Chapter 1. This is because the total available bandwidth,

assuming good partitioning of system functionality, is the sum of the bandwidths of the individual

busses. In the controller board each of the two layer-4 slave busses can support up to 16.5 million

32-bit transactions per second for a peak I/O throughput of 66 Mbytes/sec. Of course, the

sustained rate depends on the I/O bandwidth of the individual slaves as well as the computation

being done by the layer 3 processor module between transactions. Similarly, the point-to-point link



214

between the two layer 3 TMS320C30 modules canoperate at a peak rateof about 11 million 32-bit

transactions per second for a peak I/O throughput of 44 Mbytes/sec. The actual rate that is

obtained also depends on the synchronization overhead and the computation being done - in

practice rates as high as 10 Mbytes/sec have been obtained. The VME slave interface is capable of

I/O rates in excess of 24 Mbytes/second. However, in practice the rate is severely limited by the

layer 2 processor that is the VME master.Forexample, with the Heurikon HKV30 processoras the

layer 2 processor, peak I/O rates do not exceed 10 Mbytes/sec. When the synchronization

overhead is taken into account, the actual achievable rate through the channels between layers 2

and 3 is less than 2-3 Mbytes/second. The total system I/O bandwidth, which is the sum of these

individual bandwidths, is much higher than what would be possible with a single bus as in the

Vulcan-II model. This fact, together with the high computation capabilities of the processors (33

MFLOPS for each TMS320C30, 25 MFLOPS for each DSP32C - for a total of 116 MFLOPS),

results in a dedicated multi-processor system with high compute power and a balanced I/O system.

The board was fabricated as a 9U VME slave board, and is fully functional. Figure 8-4 shows a

photograph of the board. Primarily as a result of the module-generators available, and the sub

system level library,this complex 500+component 12" x 14" boardhad a design cycle of less than

two months. Further, since it follows the architecture template, the system softwarewas configured

for it in very little time. Table 8-1 summarizes the salient features of the board:

Dimensions 14" x 14" 9U-VME Board

Number of Layers 12

Number of Components 310 parts+ 330 bypass capacitors

Design Time 2 man-months, including ASICs & some library parts

Amount of SDL Code 1375 lines of SDL code

Table 8-1 : Main Features of the Robot Controller Board



215

Figure 8-4 : Photograph of the Robot Controller Board

8.4.2 Peripheral Board

This board is really part of the robot in that it provides interface to the robot joint motors and

brakes. Its task is to receive voltage or current values from the controller board and apply them to

the robot motors, to sense the motor current, and to apply the brakes in case of stalls or when

commanded. It is a mixed analog-digital board. For reasons of electrical noise isolation, and to

avoid mechanical problems with thick cables forcarrying signals to the controller, a duplex optical

fiber with a custom communication protocol is used as the system-level interconnect between this

board and the controller board.The optical fibers carry the data serially and the high bandwidth

(125 Mbits/sec) allows protocols with low latency which is important in this case because the



216

optical fibers are part of the controller feedback loop.

Figure 8-5 shows a block diagram and photograph of the board. The intent is to demonstrate that

the board-level hardware module generation tools provided by our framework can be used

fruitfully for a custom board that is not part of the layered architecture template.

The board uses A/D, D/A, and optical communication modules from the sub-system module

library. The protocol processors for implementing the custom packet communication protocol over

the fiber-optic links are synthesized using the ALOHA tool and implemented using two Actel 10x0

FPGAs. The six-channel digital pulse-width modulators are also implemented using Actel FPGAs

from a mixed structural and combinational behavioral description. Only a small analog portion of

the board (opamp based filters) had to be custom designed for this board - the rest was either

automatically generated or instantiated from the reusable parameterized sub-system module

library. As a resultof this level of automation the entiredevelopment cycle from input description

to the working board was less than two months. Similar boards for robots with different numbers

of joints or different amplifier interfacescan be generated in a very short time. Table 8-2 lists the

salient features of the board:

Dimensions 14"x 10"

Number of Layers 8 (4 signal + 4 split-planes)

Number of Components 464 parts+ 110 bypass capacitors (Note: the board has
many discrete parts for its analog, A/D, and D/A functions.

Design Time 3 man-months, including ACTEL FPGAs etc.

Amount of SDL Code 2000 lines approximately

Table 8-2 : Main Features of the Robot Peripheral Board



Fiber Optic
Asynchronous

Transmitter

Fiber Optic
Links with

the Robot

Controller

Board

Fiber Optic
Asynchronous

Receiver

Transmitting
Protocol

Processor

Receiving
Protocol

Processor

Input Port *

AJD

Converters

D/A

Converters

Digital
PWM

Generators

Ouput
Port

Current Overload

Monitoring

Analog Filters
and

PID Circuits

Analog PWM
Generators

Multiplexing
and

Protection Circuits

Interlace

with

ServoAmps
and Brakes

217

Figure 8-5 : Block Diagram and Photograph of the Custom Robot Peripheral Board



218

8.5 Software Organization

Due to the inherent large-grained parallelism present in the robot control system, it is easily

decomposed into a network of processes. Some of these processes arehardwareprocesses in that

they runon theirown dedicated hardware. Others however are implemented assoftware processes,

and get mapped to one of the several software-programmable processors availablein the top three

layers of the architecture, and where they rununder the controlof a kemel.

The SUN workstation in the top layer runs a user-interface process that provides a powerful

language-based environment for interacting with the robot. Since the user-interface is what makes

the system usable, we have described it in more detail in a later section.

The MC68020 based processorin the second layer runs under the VxWorks real-time OS, and the

only process mapped to it is the one responsible for calculating position values from the data

obtained from the vision board.

As described earlier, there are two layer3 processing modules on the robot controller board. Both

of these processor modules run under the SPOX real-time kemel. The TMS processor module #1

hasthe following processes mapped to it:

a. server process that interprets commands from the user-interface process on layer 1. These
include sophisticated trajectory control commands that automatically change the goal-frame or
commanded joint rotations incrementally over time etc.

b. process forcomputing the desired end-effector force to apply, by comparing the tool frame of
the robot arm with the goal frame (F = KAX).

c. process adjusting the amountof voltageapplied to the robot motorsusing the current sensor
data obtained from the robotperipheral board.

The DSP32C slave module attached to this processor runs thetrajectory calculation process.

The TMS processor module #2 has the following processes mapped to it:

a. processto find the currenttool-framethrough forward kinematics.

b. processto compute the errorin applied force/torque using the data from the sensor.



219

c. process to compute the desired joint torque using the force/torque error information, the
inertial, Coriolis, and gravitational terms, as well as the Jacobian transform.

The DSP32C slave module attached to this processor runs the Forward Kinematics and the

Jacobian calculation process.

In addition to the user processes mentioned above, all the processing modules also run system

processes in the background to provide run-time I/O services, and to handle data-routing.

8.6 User's View of the Robot System

The user interacts with a user-interface process that is mapped to a SUN workstation on layer 1.

This communicates with the processes running on the controller boards using channels with the

single-boardcomputer on layer 2 acting as a gateway. This user-interface process provides two

services. First it provides a console for processor modules on the custom boards, allowing

programs to do C standard I/O calls.This is meant primarily for debugging purposes.The second

and moreimportant functionality is to provide aninteractive robot programming environment

The interactiveenvironment is based on top of a C interpreter together with a library of robot

specific C routines to provide an interface to the lower-levels of the control system.These routines

caneitherbe called from the interpreter command line, or canbe embedded in othercode making

full use of the C language. These routines use the communication channels to make the lower

layers of the robotcontrolsystem appear as arobotmotion server.These routines allow the user to

update control law parameters, switch between impedance control and position control modes,

calibrate the robot vis-a-vis its environment, read sensordata, update the goal state of the robot

(position, force, and gripper status), specify motion trajectory etc.

This user interface has been used to perform several robot tasks, includingtesting algorithms for

doing peg-in-hole insertion [Whitney82].



220

8.7 Summary

Although the robot is still far from being able to "play ping-pong" as my advisor wanted, it

nevertheless provides a set-up for robotics experiments in force-position control algorithms while

operating in real-time. More importantly though this system provided a very nice driver

application for the CAD framework described earlierin this thesis. Although the system proved

too complex to design completely automatically, or even to simulate in its entirety, it nevertheless

helped in identifying the problems and defining the goals for this research.



CHAPTER 9

Grammar Subsystem For

Speech Recognition

This second example is on the design of part of a speech recognition system, specifically the

front-end and grammar processing parts of a Hidden-Markov Model based speech recognition

system. This example is somewhat unusual because the overall system architecture had already

been decided, and the hardwareas well as software for the rest of the system implemented when it

was decided to re-implement the front-end and grammarprocessing sub-systems as custom boards

following the architecture template paradigm in orderto improve the overall system performance.

As a result there were many implementation constraints, particularly on the hardware

implementation. Due to these constraints the architecture template was not used in its entirety -

only layers 3 and 4 of the template were used in this sub-system.

9.1 Global Functionality of the Speech System

A detailed description of the speech recognition system can be found in [Stolzle91], here only a

brief description is being presented. Figure 9-1 shown a block diagram depicting the system

functionality. The system is targeted at real-time recognition of a large vocabulary (60,000 words),

221



F
R

O
N

T
-E

N
D

P
R

O
C

E
S

S
IN

G

F
ea

tu
re

V
ec

to
rs

C
O

N
T

R
O

L
&

.S
Y

N
C

H
R

O
N

IZ
A

T
IO

N

A
c
ti

v
a

te
S

u
cc

es
so

r

P
H

O
N

E

P
R

O
C

E
S

S
IN

G

R
e-

ac
ti

va
te

.

Li
st

of
A

ct
iv

e
P

h
n

n
rr

n
p

In
't

in
n

cc
*

S
U

C
C

E
S

S
O

R

C
O

M
P

U
T

A
T

IO
N

I
A

C
T

IV
E

P
H

O
N

E
M

E

P
R

O
C

E
S

S
IN

G

33
ac

k-
T

ra
ck

\
T

ag
s

N
A

T
U

R
A

L

L
A

N
G

U
A

G
E

P
R

O
C

E
S

S
IN

G

S
en

te
n

ce

B
A

C
K

-T
R

A
C

K

P
R

O
C

E
S

S
IN

G

G
R

A
M

M
A

R

P
R

O
C

E
S

S
IN

G

F
ig

ur
e

9-
1

:F
un

ct
io

na
l

D
ec

om
po

si
ti

on
o

f
th

e
S

pe
ec

h
R

ec
og

ni
ti

on
S

ys
te

m



223

continuous time, speaker independent speech input using the popular Hidden Markov Model

(HMM) approach. The basic idea behind the HMM approach is that the speech is modelled to be

generated by a probabilistic function of a discrete time Markov random process. A state transition

takes place in the Markov process tvtry frame (typically about 10-20 ms), based on what is being

spoken, at which time a speech segment (e.g., part of a phoneme), encoded as a feature vector, is

output using a probabilistic output function associated with the state (or the state transition). The

recognition problem is the inverse problem where given the speech in the form of a sequence of

feature vectors at the frame rate, the task is to determine the most likely sequence of state

transitions in the underlying (hidden) Markov process that would have caused the particular

sequence of feature vectors to have been emitted. Knowing this sequence of states one can

determine what is being spoken. An efficient way of organizing this search is by using a dynamic

programming algorithm called the Viterbi algorithm. The knowledge about the language

vocabulary is encoded in the topology of the state graph associated with Markovian random

process, transition probabilities,and the probabilistic output functions.

As shown in the block diagram the task of speech recognition is decomposed into several sub-

tasks. First, the incoming speech signal from a microphone is converted into a digital format, and

then undergoes some signal processing to producea vector of features at the frame rate. This task

is called the Front-End Processing. The task of determining the most likely sequence of states

itself has been divided into two by a hierarchical decomposition of the Markov model into

phonemeand grammarlevel models. This decompositionallowed reduction in hardwareas well as

introduced a coarse-level parallelism. The phoneme level models describe the Markov models for

individual phonemes, of which only a limited number are required in any given language even

when variations in pronunciations are taken into account. These phoneme models form the basis

set, or the building blocks, of the language. The grammarlevel model describes the language by

composing instances of these phonemes to form words, and composing the words to form

sequences of words. Transition probabilities are associated with transitions between phoneme



224

instances within a word, and also with transitions between words. As a result of this two-level

decomposition the search for the most likely state sequence using the Viterbi algorithm also needs

to be done simultaneously at two levels. The Phone Processing block carries out this search within

a phoneme instance only considering the local transitions between states inside the Markov model

associated with the phoneme. The result of these computations, together with transition

probabilities between phoneme instances, areused by the Grammar Processing block to compute

the probabilities of paths to the successor phoneme instances.

A list of phoneme instances to be processed by the Phone Processing block is maintained, and is

called the list of active phoneme instances. During a frame the Phone Processing block works its

way through the current list, while the Grammar Processing block builds up the list of active

phonemes for the next frame using the information generated by the Phone Processing block. A

phoneme instance gets inserted into the active phoneme list for the next frame if it was either on

the current active list and has at leastone state whose probability exceeds a certain threshold, or if

it is a successor to a phoneme instance that has a high enough probability for starting. The

Grammar Processing block can therefore in turn be decomposed into two sub-blocks. The first

sub-block is the SuccessorComputation block which finds the successor phoneme instances for

those phoneme instances that have a high probability of having reached their end, and also

calculates the starting probabilities of the successor phoneme instances using the Viterbi

*algorithm. The second sub-block is the Active Phoneme Processing block is responsible for

building the list of active phoneme instances to be processed in the next frame. It adds or updates

phoneme instances as requested by the Phone Processing block or by the Successor Computation

block.

The Back-Track Processing block is fired whenever there is a long enough pause in the incoming

speech, thus indicating the end of a sentence. It then traverses the Markov model graph in reverse

using back-track pointers that are set during the Viterbi search conducted by the Grammar

Processing block. The output of this block is the most likely sequence of words spoken since the



225

last time the back-tracking was done.

The final block in the functional decomposition of the speech recognition system is the Natural

Language Processing block which takes the sequence of words produced by the Back-Track

Processing block, and uses contextual information and semantic models to understand what is

being said by the speaker.

9.2 Old Implementation of the Speech System

Before the board described later in this chapter was made, a version of the speech system was

implemented as shown in Figure 9-2. During that initialimplementation it was rationalized that the

Phone Processing block was the most time-critical, being in the inner-loop of the computation.

Every state in every active phoneme instance needs to be processed within a frame of 10 ms,

whereas at the grammar level only transitions betweenphoneme instances need to be processed. In

addition, the Viterbi search is simpler for phonemelevel models as the topology of the associated

Markov model is very regular - it is left-to-right with a few local transitions. In contrast, the

Viterbi search is not so simple at the grammar level because the topology of the Markov model,

while simple left-to-right inside a word, is quite irregular and dense between words - at word

boundaries a transition can occurbetween any two phoneme instances.

This combination of factors: high throughput and regular computation inside the Phone

Processing block, and lowerthroughput and irregular computation insidethe Grammar Processing

block motivated the use of dedicated hardware for the Phone Processing block. In addition, the

Active Phoneme Processing sub-block of the Grammar Processingblock wa s also consideredto

have computational requirements deserving a dedicated hardware implementation. The result, as

shown in the figure, was thatthe Phone Processing block, andthe ActivePhoneme Processing sub-

block were implemented using ASICs on a custom VME board, called the HMM Board. A custom

memory board, called the Distribution Board which uses the VME bus, was also made to store the



H
I

er
a'

c H C
D • o 3 a
.

o 9 G
O

n> n> o s
r

?
o

m o o 3 O 3 G
O

^
< 3

^
o

8
?

7»
-

C
o

m

m
^

(D 3

C
D

3
CD

<
^U

+
C

D
H

-

8
"

o
o >

S
O

u
^

52
.

Q
a

ID
3?

&
°-



227

phoneme topologies, transition probabilities,output probability functions, and other information

needed for phoneme level processing.

The restof the system, including the Front-End Processing block, the Successor Computation

block, the Back-Track Processing block, and the Natural Language Processing block were

considered suitable for off-shelf boards and computers. The result,unfortunately, is an inelegant

and inefficient system solution as well demonstrated by the figure. The system spans three

backplanes - a VME bus controlled by a Heurikon HKV2F single-board computeron which the

two custom boards are plugged, anotherVME bus associated with a SUN 3 system on which a

commercial DSPboard (from SKY computers) with two TMS320C30 processors is plugged, and

an IBM PC-ATbus in which another commercial DSPboard basedon TMS3202x processor is

plugged.

Notonly was this implementation mechanically inelegant and unwieldy, its loosely coupled nature

- a result of the reliance on off-shelfboards - resulted in atremendous penalty on I/O performance.

For example, the Successor Computation block, and the Back-Track Processing block are

implemented on the SKY board. In addition to being computationally in-adequate, the I/O

interface between the SKY board and the HMM board proved unreliable, complicated to use,and

to have inadequate bandwidth. One reason for this is that the data being transferred between the

two boards is inherently 96-bit wide, but had to be packetized and depacketized usinga special

interface chipjust because the SKY board had only a 32-bit connector even though it hastwo 32-

bit processors. This resulted in a wastage of precious cycles on the DSP processors on the SKY

board. In a similar vein, anentire IBM PCwasneeded just as to be ableto implement theFront-

End Processing block.

The net result of this implementation was that the system was unreliable, and because of the I/O

bottleneck between the custom HMM board, and the off-shelf SKY board, was able to perform in

real-time only for a 1000 word vocabulary even though the custom HMM board is capableof



228

supporting a 60,000 word vocabulary.

9.3 Re-Implementation of Front-End Processing,
Successor Computation, and Back-Track Processing

In order to alleviate the problems associated with the implementation of the speech system, as

outlined in the previous section, it was decided to re-implement parts of the system, originally

relegated to off-shelf boards, by a custom VME board built using the tools and ideas outlined in

this thesis. This single custom VME board had to implement the Front-EndProcessing block, the

Back-Track Processing block, and the Successor Computation sub-block of the Grammar

Processing block. In addition to providing sufficient computation power, the board also had to

provide a high throughput interface to the HMM boardwhile meeting the signalling, electrical, and

mechanical constraints already imposed by the HMM board.

Such a custom VME board was successfully implemented and also served as a driver for the work

in this thesis. Figure9-3 shows how the new speech system, based aroundthis custom board. As is

immediately obvious the new system is much more compact as the two backplanes are made

redundant. In addition, the increased I/O bandwidth between the custom board and the HMM

board, together with increased computation power, makes it possible to achieve more than 5000-

6000 word vocabulary with one custom board. Since the architecture is linearly scalable, higher

vocabularies can be achieved by using multiple copies of the board. In addition, use of surface

mount technology for the board would also increase the computation power that can be packed on

each board.



229

9.4 Board Requirements and Constraints

This section describes the computational and I/O requirements on the board, and the

implementation constraints on hardware and software imposed by the fact that it needs to be

plugged in an existing system.

9.4.1 Front-End Processing

The Front-End Processing block is required to take the incoming speech from a microphone,and

to produce a feature vector every frame of 10 ms. Figure 9-4 shows a block diagram of the

processing that needs to be done by this block. The approach used in this system belongs to the

Figure 9-3 :The Speech System Using the New Custom Board forFront-End
Processing, Back-Track Processing, andSuccessorComputation



GO

•s
CO
O

09

E
2
3

U

M=160^

N=5l7

Vector Quant

cepstrum

1 Analog Speech Signal

A/D Conversion

asamsasBSBBBBsaa

x„= Digital Speech Signal at 16KHz, 16bits

yn= xn - A . xn.j where A = 0.95Pre-Emphasize

yn at 16 KHz rate

Hamming
Windowing

hi = »»i •ykM-i
mi = 0.54 - 0.46. cos(2nil(N-l))
i = 0..N-l

511 every 10 ms frameI ht i=o..
256-Point FFT

I fk k =0.. 255 every 10ms frame

25 Band-Pass
Mel Filters

i bj j =0..24 every 10 ms frame

lj = log(bj) forj = 0..24Logarithm

lj j =0.. 24 every 10 ms frame

Cosine Transform

Ck k = 0..12 every 10ms frame

CkN=(Ckm)h)l<Sk fork = 0..12Cepstrum
Normalization

230

I cjcn k = 0..12 every 10ms frame

|CN'=[c1N..C12N] |CNXt+5)-CN'(t-8) |C0N""
^ CoN(t+8)
>CpN<t-S)

Vector Quant Vector Quant Vector Quant

delta cepstrum energy delta energy

Figure 9-4: Front-End Processing Block



231

class of non-parametricalgorithms for speech analysis as it directly measures certain features of

the speech.

a

In the currentimplementation it was decided that the analogspeech signal from the microphone be

sampled and converted into a digital format using a commercial A/D converter box. The

commercial box is configured at run-time to anti-alias filter the analog signal and sample it signal

at 16 KHz, linearly quantize it to 16 bits, and then transmit it using a serial communication

protocol that is standardin the TMS320xx signal processing chips produced by Texas Instruments.

In addition certain control signals are also required by the converter box, and are used to configure

it at start-up.

The partofthe functionality of this block that needs to be implemented on the custom board is also

shown in the figure. The input is the speech sampled at 16 KHz and linearly quantized at 16 bits,

being transmitted using Texas Instruments' standard serial protocol. This incoming speech is first

pre-emphasized, and then blocked into frames of N=512 samples such that the frames are spaced

M=160 samples (10 ms) apart. In effect consecutive frames have an overlap of 352 samples. Each

frame is then smoothed by a Hamming Window. A 256-point FFT is then calculated from each

windowed frame. The FFT spectrum is then integrated through a bank of L=25 bandpass Mel

filters which are filters that are linearly spaced on the Mel frequency scale - a scale modelled on

human auditory system such that the scale is linear below 1 KHz and logarithmic above 1 KHz.

The energy of each of the bandpass filter output is then converted into the logarithm domain.

Using cosine transform a vector of 13 cepstral coefficients is then calculated from the logarithmic

energy values, and then the cepstral coefficients are normalized using mean and variance data

obtained from a speech database. Using the normalized cepstral coefficients four features are

calculated by vector quantization of the cepstral coefficient vector (cepstrum), the difference of

cepstral coefficient vectors (delta cepstrum), the signal energy (energy), and the difference energy

(delta energy). The output is a vector of four 8-bit codes, obtained by vector quantization, every

10 ms frame.



232

Since the input speech signal is available in Texas Instrument's serial protocol, it is natural for the

front-end processing to be done on a signal processor from Texas Instruments, thus simplifying the

hardware tremendously. This .makes the TMS320C30 processor module described in Chapter 3 a

natural choice. Software in C that implements the front-end signal processing outlined above is

still under development [Lu92] for the TMS320C30 processor module running under the SPOX

kernel.

The existing implementation of the system requires that the output feature vector produced every

frame should somehow be transmitted to a control process running on the single-boardcomputer

that is the VME bus-master. The control process ships this data over to the Distribution Board

when needed. In addition it also performs silence detection using the feature vectors.

9.4.2 Successor Computation

The Successor Computation sub-block is part of theGrammar Processing block. It receives input

from the Phone Processing block implemented on the HMM board. The inputconsists of requests

to activate successors of a phoneme instance. Each request is a structure that consists of three

fields:

a. D: the 20-bit phoneme instance id of the phonemewhose successors need to be activatedin the
next frame.

,b. P(D): the 16-bitprobability that the most probable path at the current frame terminates at the
end of the phoneme instance.

c. TAG(D): the 20-bitback-track tag associated with the phoneme instance.

The requests are transmitted by the HMM board over a parallel bus using an asynchronous

handshake protocol. In addition to a 56-bit data bus needed for the above three fields, there are

control signals.Two signals Req and Ack are used to implement a two-wire four-phase handshake

for transmission of the56-bit data. A control signal Active is sentby theHMM board, and itshigh-

to-low transition indicates that the Phone Processing blockhasgenerated all the requests for this

frame. Another signalStall can be sent to the HMM board in orderto temporarily stop new



233

requests from being generated. This is required to avoid buffer overflows if the PhoneProcessing

block on the HMM board produces requests at too fast a rate.

Foreach such request the SuccessorComputation sub-block has to do the following task using the

grammar model. The grammar model is stored locally and defines the phoneme instances by

referring to their unique phoneme id (the id of the master phoneme) and topology address, and it

specifies the successors of a phoneme instance and the transition probabilities A(i j) to these

successors.

For every phoneme instance S that is successor to phoneme instance D
{

P(S) = P(D) * A(D, S);
Store the structure (D, TAG(D)) in a Back-Track Memory

and let TAG(S) be the 20-bit address at which it gets stored
if (P{S)>threshold) {

update threshold;
send the following to the HMM Board:

PI (20-bit) : phoneme instance id of S
UniqueAdd (16-bit) : the unique phoneme id of S
TopoAdd (4-bit) : address of the topology associated with S
P(S) (16-bit) : probability of the source node of S
TAG(S) (20-bit) : back-track tag to be associated with S

)
)

The data is sent to the HMM board using another parallel data bus with two-wire four-phase

handshake. In addition, a special signal EndFlag to the HMM board needs to be asserted by the

Successor Computation blockonceit has finished processing allthe requests.

The above task canbe extremely computationally demanding if the average number of successors

for each phoneme instance is large - such grammar models are said to have high perplexity. The

grammar model is usually quite irregular and a phoneme instance can have an arbitrary numberof

successors. This makes a hardwired implementation inefficient. Also, it is often desirable to

dynamically update the grammar model using input from a natural language. Both these facts

suggest that a software implementation is desirable. Further, no single programmable processor

can meet the computational demands of high perplexity grammars, multiple software

programmable processors will be needed and the computation needs to be somehow partitioned



234

among them.

9.4.3 Back-Track Processing

This is probably the simplest block in the entire system. The control process running on the VME

master single-board computer generates a message for the Back-TrackProcessing block whenever

a pause is detected, typically indicating the end of a sentence. The message content is the back

track tag of the phoneme instance that has the highest probabilityin the last frame at the end of the

Viterbi search (which indicates that the most likely sequence of phoneme instances ends at that

phoneme instance).

A carefullook at the Successor Computation task described in the previous sub-sectionshows that

the process of calculating the back-track tag for the successor phoneme instance results in multiple

linked listsbeing builtin theback-track memory. Each lists corresponds to potential paths through

the Markov model. The back-track tag sent by the control process to theBack-Track Processing

block is anaddress for the back-track memory,and indicates the start of oneof the linked lists. All

the Back-Track Processing block has to do is to traverse this list by following the pointers, and

generate a sequenceof phoneme instances, or work, andsend it to the control process running on

the single-board computer.

^Asisobvious this task isnot computationally intensive, and can easily be done insoftware.

9.5 Hardware Architecture and Implementation

From the discussion in the previous section onecan summarize the following characteristics for

the three tasks that need to be carried out:

a. The Front-End Processing blockneeds aTexas Instrument's digital signal processor for ease of
hardware interfacing. Computationally it is not demanding enough to require dedicated
hardware, and caneasilybe implemented in software on a digital signal processor



235

b. The Successor Computation block can be computationally very demanding for high perplexity
grammars. However its irregular nature of computation suggests that a software
implementation using multiple processors is desirable. It also requires a very specialized and
high-bandwidth I/O interface to the HMM board.

c. The Back-Track Processing block is not computationally demanding and can easily be
implemented in software. Further, it shares the Back-Track memory with the Successor
Computation block in a tightly coupled fashion.

In light of the above an extensible board architecture based around multiple TMS320C30

processor modules was chosen, together with a high-performance ASIC based I/O interface to the

HMM board. A global view of the boardarchitecture is shown in Figure 9-5. As is readily apparent

this architecture follows the architecture template outlined in Chapter 6. The board contains three

identical TMS320C30 processor modules at layer 3 in the architecture template. Each module

supports 8 Mbytes of 1 wait state SRAM. Each module also uses the dual-port RAM based

interfaceto layer 2 that was described in Chapter 6. The interfaceis configured for 32 Kilobyte of

true dual-ported shared memory, 16hardware semaphores, and interrupts in either directions.

Each of the three layer3 processor module is also connected to the othertwo, again usingthe dual-

port RAM based interface. Effectively the three processors are fully connected on a ring.

One of the processors has a simple layer4 slave attached to it in orderto control the external A/D

converter connected to the microphone. The serial data line from the converter is connected

directly to the serial port of the processor.

There is a secondlayer4 slave thathas three almostidentical ports - one connected to eachof the

layer 3 processor modules. This slave implements a high bandwidth interface to the HMM board

that is flexible enough to allow the partitioning of the Successor Computation task on to the

multiple processors in a variety of fashion and simplifies load balancing. The implementation is

done using ASICs and PLDS. The slave module uses token passing mechanism to distribute the

requests coming from the HMM board to the processors, andto gather the repliesgenerated by the

processors and send them to the HMM board. This input distribution and output gatheringcan be



D
u

a
l-

P
o

ii

R
A

M
&

>
em

ap
ho

r

±
±

.
n

»
c

jo
n

tr
o

C P u

D
u

a
l-

P
o

r
t

R
A

M
&

>
em

ap
ho

r<
t

c
J
*

—

o

s R A M
D

u
a

l-
P

o
r
t

R
A

M
&

Se
m

ap
ho

n

£
V

M
E

B
U

S

V
M

E
IN

T
E

R
F

A
C

E
)

lo
c
a

l
V

M
E

sl
a

v
e

b
u

s

±
±

T
M

S
3

2
0

C
3

0

P
R

O
C

E
S

S
O

R

M
O

D
U

L
E

(p
ar

am
et

er
iz

ed
li

br
ar

y
m

o
d

u
le

D
u

a
l-

F
o

r
t

R
A

M
&

Se
m

ap
ho

n

T
M

S
3

2
0

C
3

0

P
R

O
C

E
S

S
O

R

M
O

D
U

L
E

(p
ar

am
et

er
iz

ed
li

br
ar

y
m

od
ul

e)

C
3l

E
E

j
L

—
—

- E
A

/D

In
te

rf
a

c
e

I/
O

C
o

n
tr

o
l

E
:

"
t

r
H

F
O

I/
O

C
o

n
tr

o
l

^
r
~

^

T
d

ig
it

iz
ed

sp
ee

ch
r

n
T

k

H
F

O

(A
S

IC
)

I
Pa

ra
lle

lI
/O

bu
s

to
Ph

on
e

Pr
oc

es
sin

g
Su

bs
ys

te
m

F
ig

ur
e

9-
5

:A
rc

hi
te

ct
ur

e
o

ft
he

C
us

to
m

B
oa

rd
fo

r
F

ro
nt

-E
nd

P
ro

ce
ss

in
g,

B
ac

k-
T

ra
ck

P
ro

ce
ss

in
g,

an
d

Su
cc

es
so

r
C

om
pu

ta
tio

n

I/
O

C
o

n
tr

o
l

j

O
N



237

SDL files written
exclusively for
this design

Figure9-7 : SDL Hierarchy for the Custom Board

done in aparallel mode, or in a bit-slicemode as shownin Figure 9-6.

The reader is referred to Chapter 8 of [Su31zle91] for details of the hardware implementation,

particularly the custom interface to the HMM board. Figure 9-7 showsthe SDL file hierarchy in

terms ofmodules as seen by the designer- in otherwords, reusable librarymodules areconsidered

primitives. As one can see most of the complex parts of the board were taken care of by

parameterized library modules thus tremendously simplifying the design task. Table 9-1 lists the



input )utpui

dspl

input output

from
HMM board

to

HMM board

(i) Layer 3 Processors Operating in Parallel

interfaces

(ii) Layer 3 Processors Operating in Bit-Sliced Fashion

Figure 9-6: AlternateWays of Structuring Successor Computation Using
the Flexible Custom Interface to the HMM Board

238



239

Dimensions 14" x 16" 9U-VME Board

Number of Layers 12

Number of Components 350 parts + 400 bypass capacitors

Design Time 2.5 man-months, including time for reusable library parts

Amount of SDL Code 1800 lines excluding re-usable library parts and ASICs

Table 9-1 : Salient Features of the Custom Board

Figure 9-8 : Photograph of the Custom Board

salient features of the board, and Figure 9-8 shows a photograph of the board.

Variations of the board, for example with different processor configurations or even with different

number of processors can be generated in a matter of hours, most of which are spent on routing.

The parameterized module libraries were a critical element in making possible such a short



240

iteration time.

9.6 Software Implementation

The application software modules are still under development by the researchers associated with

the speech recognition project. However all the system software, including the kernels on the

processor modules, the UNIX-like I/O libraries, and the initialization software is fully functional.

Thus a powerful and scalable, but use-friendly, multiprocessor tailored for the speech recognition

system is functional with a multi-tasking kernel at each processingnode.

9.7 Summary

The architecture templateandmodule generation utilitieshavebeen applied to a sub-system of an

existingspeech recognition system.The custom board relies on a mix of software forcomputation

and dedicated hardware for high-bandwidth flexible I/O, and demonstrates the utility of

customizing the architecture at the board level.



CHAPTER 10

Conclusions And Future

Work

This thesis presented a computer-aided methodology and framework for the design of

application-specific systems. The framework emphasizes higherlevel aspects of system design,of

which chip level design is one component.

10.1 Conclusions from this Work

It is clear from the discussion and examples presented earlier in this thesisthat rapid-prototyping

of multi-board application-specific real-time reactive systems presents many new problems that

are not present at the chip level. This work took a systems view of the design process in order to

identify the real problems thatneed to be addressed. The primary problem in the design of these

systemswas found to be oneof concurrent development of the hardware and software aspects of a

system. This Hardware-Software Co-design problem is present at all stages of the design of a

system - specification, simulation, architecture generation, module generation, and physical

implementation. Based on this the thesis addressed the problems of generation of board-level

hardware modules and softwaremodules, high level specification of the system behavior that may

241



242

be implemented in a mix of hardware and software, the simulation of the high level specification,

and generation of appropriate system level architecturescomposed ofboth hardware and software.

Techniques from CAD for chips and software continue to be applicable to some aspects of these

problems. For example, the notion of parameterized libraries and module generators proved

successful in board level hardware module generation as well.

On the other hand some of the system level problemsrequired new solutions. Narrowing the scope

of the design problem by developing a target architecture that is not so restrictive as to not be

useful for many applications was one such problem, as was the specification of the system in a

fashion that does not discriminate between the hardware andthe software components. The notion

of process was used to provide the needed unifying thread between hardware and software. Its

symmetric treatment of hardware and software facilitates migration of functionality across

software and dedicated hardware. The concept of a layered architecture model was useful in

providing a target architecture on which the system functionality is mapped. Processes with

different computation and I/O requirements are mapped to layers with different characteristics.

Communication and synchronization between the hardware as well as software modules was

identified to be another key problem. The solution to this problem is intimately linked to the

layered architecture modelbeing used. The concept of layering is also usefulin implementing the

• communication and synchronization. Higher level communication and synchronization primitives

- like thechannel object from Chapter 5 - are implemented on thetopof lower-level primitives.

At the lowest level, the problem of communication and synchronization between hardware or

software processesthat aremapped to different physical hardware modules manifests itself as the

problem of generating the interconnect logic between two hardware modules.This problem is the

primary subject of a co-researchers thesis [Sun92a].



243

10.2 Open and Unsolved Problems

Although a complete, vertically integrated, design methodology was adopted and presented in

this thesis, there are several problems which were left unsolved and for which manual techniques

were adopted. These problems, which arelisted below, can serve as a map for additional near-term

research.

a. Restructuring of the process network description using behavior preserving transformations
like process coalescing to achieve a more efficient implementation. Other transformations
include process splitting, changing the channel protocol, sizing the channel buffer depth etc.

b. A single or a set of languages forunified expressionof the behavior of each of the processes in
the process network.

c. Automatic partitioning of the possibly restructured process network to an instance of the
architecture template. The suitable instance of the architecture template also needs to be found
in the process.

d. Characterization of the computation and I/O performance of the software programmable
processor modules. This is useful in performance estimation as well as in doing a good job at
the automatic partitioning mentioned above.

e. Automatic code generation for softwaremodules from the high level specification;

f. Extraction of performance characteristics from the physical output of board level hardware
module generators, and simulation using these performance characteristics.

10.3 Future Directions in Systems Design

The long-term research in this nascent areaof design methodology for complex systems will

inevitably have to track the directions takenby the systems themselves. Over the past year or two

several interesting trends have emerged in the types of computing systems being designed, and a

look at these trends can provide a charter for future research efforts in the area of computer-aided

methodologies for system design.

Much of the evolution of presentday computing systems can be characterized as occurring along

two main directions which include:

a. Systems that are devices with which a user directly interacts. Examples of such systems are
personal communication systems, multi-media terminals, smart appliances, home robots etc.



244

b. Systems that provide the infrastructure for supporting the devices. Such systems include the
communication networks that may connect the devices, compute and control servers, multi
media databases, signal-processing servers etc.

These two classes of systems - devices and infrastructure - have many unique requirements that

need to be addressed during their design.

Forone (devices) type of systems two very important problem areas aredesignfor portability and

mechanical design. For example low-power is a key aspectof design for portability, and requires

power to be explicitly incorporated in the cost metrics at all levels of system design - architecture

generation, module generation, hardware-software partitioning, physical design etc. Further,

design for portabilitymakes efficient packaging and interconnect important. This makes a proper

mechanical design of the system extremely importantand requires addressing problems of 3D

mechanical analysis, interconnect and packaging. A new significantproblem is that of the role

played by mechanical packaging andinterconnect constraints on the design and partitioning of the

system at the level of software and electrical hardware.

Systemsthat are classified as infrastructure are distributed in nature, andthus issuesof large-scale

distributed computation and database management become important. Data storage and

compression technologies are required as well ashardware forhigh-speed compute, control, and

signal-processing. These infrastructure systems have speed as the primary performance metric as

, opposed to power and size in the case ofdevices.

These two classes of systems also share many common attributes, and this requires a set of

enabling technologies that are useful for the design of boththese classes of systems. Some of the

important problems that need to be addressed are:

a. portablemicro-kernels for efficient softwareorganization

b. meeting real-time constraints in the design of mixed hardware-software systems

c. interconnect protocols fora varietyof physical medium

d. unified language for specifying and representing the software, hardware and mechanical
behavior of systems



245

e. re-usable sub-system libraries for software, hardware and (electro)mechanical domains

f. integrated simulation of software, hardware, and (electro)mechanical components of a system

g. partitioning system hardware and software taking into accounts constraints imposed by
mechanical interconnect and packaging

The common theme that emerges from the above discussion is that systems have three types of

components - software, hardware, and mechanical. All these components interacts, and therefore

system design necessarily requires a concurrent design of these three aspects of a system. This

suggests that research is needed so that the work described in this thesis evolves into a CAD

framework for

"Software-Hardware-Mechanical Co-Design"



246



Bibliography

1. [Albus89] J. S. Albus, H. G. McCain, andR. Lumia. NASA/NBS Standard Referemce Modelfor Telerobot
Control SystemArchitecture(NASREM). NIST Technical Note 1235,1989 Edition, National Bureau of
Standards, April 1989.

2. [Andrew83] Gregory R. Andrewsand Fred B. Schneider. Concepts andNotations for Concurrent Pro
gramming. Computing Surveys, vol. 15, no. 1, March 1983.

3. [Arya89] Manish Arya.A Standard Software Platform for Shared Memory Multiprocessor Signal Pro
cessing Systems. M. S. Report, EECS Department, U. C. Berkeley, 1989.

4. [Astrom82] Karl Johan Astrom. ASIMNON Tutorial. Technical Report, Lund Institute ofTechnology,
1982.

5. [Azim88a] S. K. Azim. Application of Silcon Compilation Techniques to a Robot Controller Design. Ph.
D. Thesis, EECS Department, U. C. Berkeley, 1988(UCB/ERL M88/35).

6. [Azim88b] S. K. Azim, C-S Shung and R. W. Brodersen. Automatic Generation ofa Custom Digital Sig
nal Processor for an Adaptive RobotArm Controller. Proceedings of ICASSP, vol. 4, pp. 2021-2024,
1988.

7. [Azim88c] S. K. Azim andR. W. Brodersen. A Custom DSPChip to Implement a RobotMotion Control
ler. Proceedings of CICC, May 1988.

8. [Baringer91] W. B. Baringer. ARadon Transform Image Processing System. Ph. D.Thesis, EECS Depart
ment, U. C. Berkeley, 1991.

9. [Ben-Ari90] M. Ben-Ari.Pronciples of Concurrent Programming. Prentice-Hall International, 1990.
10. [Bennett88] Stuart Bennett. Design ofReal-Time Systems. Chapter 5 of Real-TuneComputer Control:

An Introduction, Prentice-Hall, 1988.
11. [Bier89] J.C. Bier,andE. A. Lee. Frigg: A Simulation Environmentfor Multiple-Processor DSPSystem

Development. Proceedings of International Conference on ComputerDesign,October 1989.
12. [Birmingham89] W. P. Birmingham, A. P. Gupta and D.P. Siewioiek. The MICON System for Computer

Design. IEEE Micro, vol 9, no. 5, October 1989.
13. [Birmingham92] W. P. Birmingham, A. P. Gupta and D. P. Siewiorek. Automating theDesign of Com

puter Systems: TheMicon Project. Jonesand BarlettPublishers, February 1992.

247



248

14. [Brady82l Michael Brady,John M. Hollerbach,TimothyL. Johnson, Tomas Lozano-Perez, and Matthew
T. Mason. Robot Motion, Planningand Control.The MIT Press, 1982.

15. [Brady89] Michael Brady (ed.). TheProblems ofRobotics. Chapter 1 of Robotics Science, The MIT
Press, 1989.

16. [Brodersen92] R. W. Brodersen (ed.). Anatomy ofa Silicon Compiler. Kluwer Academic Publishers,
1992.

17. [Chen861 J. B. Chen, et. al. NYMPH: A Multiprocessor for Manipulator Applications. IEEE Interna
tionalConferenceon Roboticsand Automation, April 1986.

18. [Chu871 Tam-Anh Chu. Synthesis of Self-Timed VLSI Circuits from Graph-Theoretic Specifications.
IEEE InternationalConference on Computer Design, 1987.

19. [Chu89] C. M. Chu, M. Polkonjak,M. Thaler,andJ. Rabaey. HYPER: AnInteractive Synthesis Environ
mentfor RealTime Applications. Proceedings of ICCD1989, October 1989,pp. 432-435.

20. [Craig79] J. Craig andM. Raibert. A Systematic Methodfor Hybrid Position/Force Control of a Manip
ulator. IEEE ComputerSoftwareApplication Conference; November1979.

21. [Craig86] JohnJ. Craig. Introduction toRobotics. Addison-Wesley, 1986.
22. [Dennis74] J. B. Dennis. First Version of a DataFlowProcedure Language. Proceedings, Colloque sur

la Programmation, LectureNotes, in ComputerScience, Springer-Verlag, 1974.
23. [Doshi891 Gautam Doshi. Design andImplementation of a Six-Axis Robot Controller. M. S. Report,

EECS Department, U. C. Berkeley, 1989.
24. [EDC90] European DevelopmentCenter. EDCIDSP Station, SILAGE Language Reference Manual.

EDC Document Number DSP_SIL_2.0-C0A-00, March 1990.
25. [Fu87] K. S.Fu, R. C. Gonzalez, and C. S. G. Lee.Robotics Control, Sensing, Vision andIntellingence.

McGraw Hill, 1987.
26. [Gomaa84] H.Gomaa. ASoftware Design MethodforReal-Time Systems. Communications of theACM,

September 1984.
27. [Gupta92a] Rajesh K. Gupta, andGiovanni DeMicheli. System-Level Synthesis Using Re-Programma

ble Components. Proceedings of European Design Auotmation Conference, March 1992.
28. [Gupta92b] Rajesh K.Gupta, Claudionor N.Coelho, andGiovanni DeMicheli. Synthesis and Simula

tion ofDigital Systems Containing Interacting Hardware and Software Components. Pre-print of paper
to be presentedat the Design Automation Conference, June 1992.

29. [Harrison86] D. S. Harrison, P. Moore, R. L. Spickelmier, andA.R. Newton. Data Management and
Graphics Editing in the Berkeley Design Environment. Proceedings of ICCAD, 1986, pp. 24-27.

30. [Hoang92] P. Hoang, and J. Rabaey. A Compiler for Multiprocessor DSP Implementations. ICASSP,
March 1992.

31. [Hoare85] C. A.R. Hoare. Communicating Sequential Processes. Prentice Hall, 1985.
32. [Hogan] N. Hogan. Impedance Control: An Approach toManipulation: Parts I, II&III. ASMEJournal

of Dynamic Systems, Measurementand Control, vol 107:1-24.
33. [Hubbard90] P. Hubbard, and J. Torres. Using VHDL forHigh-Level and Stochastic System Modelling.

Fall 1990VHDL Users' GroupMeeting.
34.[Ish-Shalom88] J. Ish-Shalom, and P. Kazanzides. SPARTA: Multiple Signal ProcessorsforHigh-Perfor-

mance Robotics Control. IEEE International Conference onRobotics andAutomation, April 1988.
35. [Jain91] R. Jain, P. T. Yang, and T.Yoshino. FIRGEN - AComputer-Aided Design System forHigh Per

formance FIR Filter Integrated Circuits. IEEE Transactions onSignal Processing, July 1991.
36. [Jassica85] J. R. Jassica, S. Noujaim, R. Hartley, andM.J. Hartman. ABit-Serial Silcon Compiler. Pro

ceedings of ICCD 85, October 1985.
37. [Jones90] G.Jones. ASYNC Man Page. EECS Department, U.C. Berkeley, 1990.
38. [Kahn74] G. Kahn. TheSemantics ofa simple language forParallel Programming. Information Process

ing, 74, North Holland, Amsterdam, 1974.
39. [Kalavade92] Asawari Kalavade. Hardware-Software Co-Design in Ptolemy. DSPSeminar, EECS

Department, University of California at Berkeley, March 1992.
40. [Khatib871 O. Khatib. A Unified Approachfor Motion and Force Control ofRobot Manipulators: The



249

OperationalSpace Formulation. IEEE Journal of Robotics and Automation, vol RA-3, No. 1,1987.
41. [Klafter89] Richard D. Klafter, Thomas A. Chmielewski, and MichaelNegin.Robotic Engineering: An

IntegratedApproach. Prentice-Hall International, 1989.
42. [Kornegay91] K. T. Komegay and R. W. Brodersen. A VME Based TestController Board. Presented at

die International Test Conference, October 1991.
43. [Ku90] DavidKu, and Giovanni De Micheli. HardwareC - ALanguagefor Hardware Design, Version

2.0. Technical Report CSL-TR-90-419, Stanford University.
44. [Lauwereins90] Rudy Lauwereins, Marc Engels, Jean Peperstratete, Eric Steegmans, and Johan Van

Ginderdeuren. GRAPE: ACASE ToolforDigital Signal Parallel Processing. IEEEASPMagazine, April
1990.

45. [Lee87] Edward A. Lee and David G. Messerschmitt. Static Scheduling ofSynchronous Data Flow Pro
gramsfor DigitalSignal Processing. IEEETransactions on Computers, January 1987.

46. [Lee89]E. A. Lee, E. Goei, H. Heine, W. Ho, S. Bhattacharyya, J. Bier, and E. GuntvedLGABRIEL: A
Design Environmentfor Programmable DSPs. IEEEDesign Automation Conference, Las Vegas, June
1989.

47. [Lee901 E. A. Lee, and J. C. Bier.Architecturesfor Statically Scheduled Dataflow. Journal of Parallel
and Distributed Computing, Academic Press Inc., vol 10,1990.

48. [Lee91] S. Lee.Implementation ofProcess Domain inPtolemy. PrivateCommunications, EECS Depart
ment, U. C. Berkeley.

49. [Ling87] Y. L. C. Ling, K. W.Olson, P. Sadayappan, and D. E. Orin. A Layered Restructurable VLSI
Architecturefor Robotic Control. IEEE International Conference on Computer Design, 1987.

50. [Lu92] Kathy Lu.Softwarefor Front-End Processingfor Speech Recognition. M.S.workin progress -
privatecommunications, EECS Department, U. C. Berkeley.

51. [LWP] SUN Microsystems. Light Weight ProcessLibrary Manual.
52. [LYMPH] BerkeleyRoboticsGroup.LYMPH Multiprocessor Architecturefor Robot Control. Private

communication.

53. [MacDougall75] M. H. MacDougall. System Level Simulation. Digital System Design Automation: Lan
guages, Simulation,and Data Base, ComputerSciencePress, 1975.

54. [MCC91] VHDL System Release 3.2.2 Documentation. Microelectronics and Computer Technology
Corporation, 1990.

55. [Messerschmitt84] David G. Messerschmitt A Toolfor Structured Functional Simulation. IEEEJournal
on Selected Areas in Communications, January 1984.

56. [Micheli90] G.DeMicheli, D. Ku,F. Mailhot, and T. Truong. The Olympus Synthesis System. IEEE
Design & Test of Computers,October 1990.

57. [Narasimhan88] S. Narasimhan, D. Siegel, andJ. M. Hollerbach. Condor: ARevised Architecturefor
Controlling the Utah-MIT Hand. IEEE International Conference on Robotics and Automation, April
1988.

58. [Press88] W. H.Press,B. P. Flannery, S. A.Teukolsky andW. T.VetterUng. Numerical Recipes in C:The
Art of Scientific Computing (chapter 15).Cambridge University Press, 1988.

59. [Ocuools91] Berkeley CAD Group. OCTTOOLS Reference Manuals. EECS Department, U. C. Berke
ley, 1991.

60. [Ptolemy91] Almagest: Ptolemy User's Manual. Electronics Research Laboratory, University of Califor
nia, Berkeley.

61. [Rabaey86l J. Rabaey, S. Pope, and R. W. Brodersen. An Integrated Automatic Layout Generation Sys
temfor DSPCirsuits. IEEETransactions on CAD,July 1985.

62. [Rabaey88] J. Rabaey, H. De Man, J. Vanhoof, G. Goossens, and F. Cathoor.. Cathedralll: A Synthesis
Systemfor Multiprocessor DSPSystems. Silicon Compilation, Adison Wesley, 1988.

63. [Rabaey91] J. M. Rabaey, C. Chu,P. Hoang, andM.Potkonjak. FastPrototyping of Datapath-Intensive
Architectures. IEEE Design & Test of Computers,June 1991.

64. [Racal] Racal-Redac Inc. VISULA-PLUSUser's Guide.
65. [Richards] Brian Richards. SDL Language Syntax. LAGER-IV Manuals, U. C. Berkeley.



250

66. [Schwetman86] H. D. Schwetman. CSIM:A C-based, Process-Oriented SimulationLanguage. Proceed
ings of the 1986 Winter Simulation Conference.

67. [Shung89] C. S. Shung, R. Jain, K. Rimey, E. Wang, M. B. Srivastava,E. Lettang, S. K. Azim, L. Thon,
P.N. Hilfinger,J. M. Rabaey, and R. W. Brodersen.AnIntegratedCAD Systemfor Algorithm-Specific IC
Design. IEEE Transactionson CAD of Integrated Circuitsand Systems, April 1991.

68. [Shung91] C. S. Shung, R. Jain, K. Rimey, E. Wang, M. B. Srivastava, B. C. Richards, E. Lettang, S. K.
Azim, P. N. Hilfinger, J. M. Rabaey, and R. W. Brodersen.AnIntegrated CAD Systemfor Algorithm-Spe
cific IC Design. Proceedings of die 22nd Hawaii International Conference on System Science, January
1989.

69. [Ruetz86] P. A. Ruetz, R. Jain,C-S Shung, J. M. Rabaey,G. M. Jacobs,and R. W. Brodersen.Automatic
Layout Generation ofReal-TimeDigital Image ProcessingCircuits. Proceedings ofCICC, May 1986.

70. [SPOX] Spectron Microsystems. SPOX User's Guide.
71. [Sriram92] S. Sriram. Design ofMulti-Processor Boardfor the Ordered-Memory Access Architecture.

PrivateCommunications,EECS Department, U. C. Berkeley, 1992.
72. [Srivastava91a] M. B. Srivastava, andR. W. Brodersen. High-Level Mixed-Mode System Simulation in

VHDL. Proceedingsof the VHDL User's Group Spring 1991 Conference, April 1991.
73. [Srivastava91b] M. B. Srivastava, and R. W. Brodersen. Rapid-Prototyping ofHardware and Software in

a UnifiedFramework. Proceedingsof ICCAD, November 1991.
74. [Srivastava92] M. B. Srivastava, T. I. Blumenau, andR. W. Brodersen. DesignandImplementation of a

Robot ControlSystem Using a Unified Hardware-Software Rapid-Prototyping Framework. To be pre
sented at ICCD, October 1992.

75. [Stankovic88] J. A. Stankovic.Real-Time Computing Systems: The Next Generation. In "IEEETutorial
on HardReal-Time Systems", IEEE press, 1988.

76. [St0lzle91] Anton StOlzle. A Real Time LargeVocabulary Speech Recognition System. Ph. D. Thesis,
EECS Department, U. C. Berekeley, December 1991.

77. [Stone91] Kevin Stone. Mapping Combination Logic to PALs Using MIS-II. EE199 Project, EECS
Department,U. C. Berkeley, December 1991.

78. [Strom91] R. E. Strom, D. F. Bacon, A. P. Goldberg, A. Lowry, D. M. Yellin,andS. A. Yemini. HER
MES: A Languagefor Distributed Computing. Prentice-Hall, 1991.

79. [Sun91] J. S. Sun, M. B. Srivastava, andR. W. Brodersen. SIERA: A CAD Environment for Real-Time
Systems. 3rd IEEE/ACM Physical Design Workshop, May 1991.

80. [Sun92a] J. S. Sunand R. W. Brodersen. System Module Interface Design inSIERA. Under preparation.
81. [Sun92b] J. S. Sun.Event Graph Policy forALOHA. EECS Department, U. C. Berkeley.
82. [Sutherland89] Ivan E. Sutherland. Micropipelines. Communications of the ACM, June 1989.
83. [Thomas83] D.E.Thomas, and G. W. Leive. Automating Technology Relative Logic Synthesis andMod

uleSelection. IEEE Transactions onCADof Integrated Circuits and Systems, April 1983.
84. [Thon89] Lars Thon, Ken Rimey, Brian Richards, and Lars Svensson. From C to Silicon with LagerlV.

Presented at the IEEE/ACM Workshop on Silicon Compilation and ModuleGeneration, Long Beach,
May 1989.

85. [Thon92] L. Thon and R. W. Brodersen. From C to Silicon. Custom Integrated Circuit Conference, May
1992.

86. [THOR] THOR Simulator Reference Manual, Electrical Engineering Department, Stanford University.
87. [TMS320C30] Texas Instruments. Third Generation TMS320 User's Guide.
88. [VxWorks] Wind River Systems. VxWorks Programmer's Guide.
89. [Ward85] Paul T.Ward, and Stephen J.Mellor. Structured Developmentfor Real-Time Systems. Youidon

Press, 1985.

90. [Whitcomb92] Gregg Whitcomb. BUS Refernce Manual. EECS Department, University of California,
Berkeley, 1992.

91.[Whitney82] D.E.Whitney. Quasi-Static Assembly ofCompliant Supported Rigid Parts. ASMEJournal
of Dynamic Systems, Measurementand Control,vol 104:65-77,1982.

92. [Whitney] D. E. Whitney. Historical Perspective andState of the Art inRobotForce Control. Interna-



251

tional Journal of Robotics Research, 6(1):3-14.
93. [Yu91] Robert Yu. PLDS: Prototyping in LAGER Using Decomposition and Synthesis. M. S. Report,

EECS Department, U. C. Berkeley, May 1991, ERL Memorandum No. UCB/ERL M91/53.
94. [Zhou91] W. Zhou, and H. Carter. AnaVHDL: Mixed-Mode Simulation Using VHDL. Proceedings of the

VHDL Users' Group Spring 1991 Conference, April 1991.



252



Appendix A: VHDL

Process N/W Package

The MSGPACK_type VHDL package template for the simulation of a system described according

to the process network model of Chapter 5 is described here. The package header as well as the

body are contained in a single file called msg_<type>.vhd. The package defines

MSG_PORT_<type>, which is a resolved VHDL record data type. A process in the process

network description is written in VHDL with ports of type MSG_PORT_<type>, where <type> is

textually substituted by a VHDL native or user-defined data type. A port of this data type has six

sub-fields: D is the actual data of type <type>, C is a record type for doing operations on a queue

using two-wire handshake, S is a recordtype for making queue status visible to a process (useful

for simulation output), and fields T, LO and LI are used by the resolution function mrf. Note that

this structure does not imply anything about the actual implementation of the system - its only

purpose is to emulate the port and channel based communication of the process network in VHDL.

A VHDL entity called MSG_PROC_<type> is defined to implement the FIFO channel - an

instance of this component is made corresponding to every channel. The entity has an input port

and an output port which are connected to the output port of the sender process and the input port

253



254

of the receiver process respectively. The entity also has two generics (VHDL parameters): qtype

for the data type, and qlength for the bufferdepth. The architecture of the MSG_PROC_<type>

entity is based on a single process that asynchronously accepts requests at the two ports and

updates a locally maintained data buffer. The requests specify a data sample to be put into the

buffer, or obtained from the buffer,usingone of the four possible protocols - blocking,overwrite/

previous, ignore, and error - as explained in Chapter 5.

The resolution function mrf implements the actual handshaking needed to realize the channel

based communication. It uses the LO and LI fields of the MSG_PORT_<type> signals to

disambiguate the driver connected to the receiveror senderprocess from the driver connected to

the queue entity. This is complicated by the fact that the connectionmay be through a series of

port-signal associations across a hierarchy.The algorithm is based on maintaining the distances

from the two ends in LO and LI respectively - thus LO indicatesthe distance from the sender end,

and LI from the receiver end.

In addition to the data type MSG_PORT_<type>, the package also defines several access

functions, such as msgsend and msgrecv, using which a VHDL process accesses the ports of type

MSG_PORT_<type>. These access functions encapsulate the details of the underlying handshake

protocol based on VHDL signals.

msg_<type>.vhd

— This Is a package to implement message queues (channels) of data
— type <type> for my process network. Only single reader or writer are
— allowed to allow general arbitration schemes. The queue is modelled
— as a separate process with one input port and one output port.
— To implement multiple readers or multiple writes, appropriate
— multiplexor or demultiplexer processes with the desired
— arbitration schemes need to be written.

— User processes have the following procedures avalable to them:

msgsend(port, data, mode)
mode = MSG_BMODE block on full

MSG_IMODE ignore on full
MSG EMODE error on full



255

MSGjOMODE overwrite on full
msgrecv(port,data,mode)

mode = MSGJBMODE block on empty
MSG_IMODE ignore on empty
MSG_EM0DE error on empty
MSG__LMODE latest on empty

— A queue process has parameters called
qtype = SYNC or ASYNC or INF_ASYNC

SYNC : synchronous (unbuffered) channel
ASYNC : asynchronous (buffered) channel with finite storage

INF_ASYNC : asynchronous (buffered) channel with infinite storage
qlength >=1 (makes sense only if qmode = ASYNC)

package MSG_<type> is
— port protocols
type MSG_MODE is (MSG_BMODE/ MSG_EMODE, MSG_IMODE, MSG_OMODE,

MSG_LMODE);
— channel type
type MSG_TYPE is (SYNC, ASYNC, INF_ASYNC) ;
type MSG_PORT_TYPE is (MSG_NC, MSG_MOPORT, MSGJUPORT, MSG_SIPORT,

MSG_SOPORT);
subtype MSGJDATA is <type>;
type MSG_MODE_VECTOR is array(NATURAL range <>) of MSG_MODE;
type MSGJDATAJVECTOR is array(NATURAL range <>) of MSGJDATA;
type MSGjCONTROL is record

mode: MSG_MODE; — queue operation mode
req: BIT; — request an operation on the queue
ack: BIT; — acknowledgement from the queue

end record;

type MSG_STATUS is record
full: BIT; — is the queue full ?
empty: BIT; — is the queue empty ?
rendezvous: BIT; — is the other side ready ?
count: NATURAL; — number of packets in the queue
capacity: INTEGER; — capacity of the queue

end record;

type MSG_PORT_<type>JL is record
D : MSG_DATA;
C : MSG_CONTROL;
S : MSG_STATUS;
T : MSG_PORT_TYPE;
LO: NATURAL;

LI: NATURAL;

end record;

type MSG_PORT_<type>_l_ARRAY is array (NATURAL range <>)
of MSG_PORT_<type>_l;

— data type of the message ports
function mrf(v:MSG_PORT_<type>_l_ARRAY) return MSG_PORT_<type>JL;
subtype MSG_PORT_<type> is mrf MSGJ?ORT_<type>_l;

— functions to access the ports for channel operations
procedure msgsend(d: in <type>; signal p: inout MSG_PORT_<type>;
f: out BOOLEAN; m: in MSG_M0DE := MSG_BMODE) ;



256

procedure msgrecv(d: out <type>; signal p: inout MSG_PORT__<type>;
f: out BOOLEAN; m: in MSG_M0DE := MSG_BMODE) ;

procedure msg__init_j?ort (signal p: inout MSG__PORT__<type>;
t: MSG_PORT_TYPE; qlength: INTEGER := -1) ;

function msgfull (signal p: in MSG_PORT_<type>) return BOOLEAN;
function msgempty(signal p: in MSG_PORT_<type>) return BOOLEAN;
function msgrendezvous (signal p: in MSG_PORT__<type>) return BOOLEAN;
function msgcount (signal p: in MSG__PORT_<type>) return NATURAL;
function msgcapacity (signal p: in MSG_PORT__<type>) return INTEGER;
procedure print (s: STRING; p:MSG_PORT_<type>);

— component wrapper for entity to be instantiated for every channel
component MSG_PROC_<type>
generic(qtype: MSG_TYPE; constant qlength: NATURAL := 1);
port(iport, oport: inout MSG_PORT__<type>);

end component;
end MSG_<type>;

package body MSG_<type> is

— resolution function for implementing the handshaking
function mrf (v:MSG_PORT_<type>_l_ARRAY) return MSG_PORT_<type>_l is
variable result : MSG_PORT_<type>_l;

begin
— a queue signal must have two ports connected to it
— the allowed combinations are (MSGJMOPORT, MSGJSIPORT) and
— (MSG_SOPORT, MSG_MIPORT)
if v'LENGTH = 1 then

—print("assert: v(0) =",v(0));
result := v(0);
if v(0).lo>0 then result.lo:=v(0).lo+l; end if;
if v(0).li>0 then result.Ii:=v(0).li+1; end if;

elsif V LENGTH = 2 then

—print("assert: v(0) =",v(0));
—print("assert: v(l) =",v(l));
assert (v(0).lo=0 and v(l) .lo=0) or (v(0).li=0 and v(l).li=0)

— guard against a MSG_M0P0RT->MSG_MIP0RT combination
report "bad queue port combination: M0P0RT->MIP0RT"
severity FAILURE;

if (v(0).lo/=0 or v(l).lo/=0) then
— a MO—>SI scenario

if (v(0).lo=0) then
— v(l)->v(0)
result.lo :=v(l).lo+l;
result.d := v(l).d;
result.c := (v(l).c.mode,v(l).c.req,v(0).c.ack);
result.s :=v(0).s;

elsif (v(l).lo=0) then
— v(0)->v(l)
result.lo :=v(0).lo+l;
result.d := v(0) .d;
result.c := (v(0),c.mode,v(0).c.req,v(l).c.ack);
result.s :=v(l).s;

elsif (v(0).lo-v(l).lo=2) then
— v(l)->v(0)
result.lo := v(1).lo+l;



result.d := v(l) .d;
result.c := (v(l).c.mode,v(l).c.req,v(0).c.ack);
result.s := v(0). s;

elsif (v(l).lo-v(O).lo=2) then
— v(0)->v(l)

result.lo := v(0).lo+l;

result.d := v(0).d;
result.c := (v(0).c.mode,v(0).c.req,v(l).c.ack);
result.s :=v(l).s;

else

assert false

report "internal error : bug 1 !"
severity FAILURE;

end if;

elsif (v(0).li/=0 or v(l).li/=0) then
— a SO—>MI scenario

if (v(0).li=0) or (v(0).li-v(l).li=2) then
— v(0)->v(l)
result.Ii := v(l).li+1;

result.d :=v(0).d;
result.c := (v(l).c.mode,v(l).c.req,v(0).c.ack);
result.s := v(0).s;

elsif (v(l).li=0) or (v(l).li-v(O).li=2) then
— v(l)->v(0)
result.Ii := v(0).li+1;
result.d := v(l).d;
result.c := (v(0).c.mode,v(0).c.req,v(l).c.ack);
result.s := v(l).s;

else

assert false

report "internal error : bug 2 !"
severity FAILURE;

end if;

else

— v(0) .lo=0 and v(l) .lo=0 and v(0) .li=0 and v(l) .li=0
assert v(0) .T=MSG_NC and v(l) .T=MSG_NC and NOW=0 ns
— guard against a MSG_SOPORT->MSG_SIPORT combination
report "bad queue port combination: SOPORT->SIPORT"
severity FAILURE;

end if;

else

assert false

report "bad number of ports on a queue : exactly 2 allowed"
severity FAILURE;

end if;

—print("assert: result=",result);
return result;

end mrf;

— send a message on an ouput port
procedure msgsend (d: in <type>; signal p: inout MSG_PORT_<type>;
f: out BOOLEAN; m: in MSG_MODE := MSG_BMODE) is
variable b : BIT;

begin
b := not p.c.req;
case m is

257



when MSG_BMODE | MSGjOMODE =>
p.c.req <= b;
p.d <= d;
p.c.mode <= m;
wait until p.c.ack=b;
f := true;

when MSG_IMODE =>
if (p.s.full = *()') then

assert false

report "queue is full"
severity NOTE;

f := false;

else

p.c.req <= b;
p.d <= d;
p.c.mode <= MSG_BMODE;
wait until p.c.ack=b;
f := true;

end if;

when MSG_EMODE =>
assert (p.s.full = '0')

report "queue is full"
severity ERROR;

p.c.req <= b;
p.d <= d;
p.c.mode <= MSG_BMODE;
wait until p.c.ack=b;
f := true;

when MSG_LMODE =>
assert false

report "bad msgsend mode MSG_LMODE"
severity ERROR;

end case;

end msgsend;

— receive a message on an input port
procedure msgrecv(d: out <type>; signal p: inout MSG_PORT_<type>;
f: out BOOLEAN; m: in MSG_M0DE := MSGJBMODE) is
variable b : BIT;
begin

b := not p.c.req;
case m is

when MSG_BMODE | MSG_LM0DE =>
p.c.req <= b;
p.c.mode <= m;
wait until p.c.ack=b;
d := p.d;
f := true;

when MSG_IM0DE =>
if (p.s.empty = '1') then

assert false

report "queue is full"
severity NOTE;

f := false;

else

p.c.req <= b;

258



p.c.mode <= MSG_BMODE;
wait until p.c.ack=b;
d := p.d;
f := true;

end if;

when MSG_EMODE =>
assert (p.s.empty = *1')

report "queue is full"
severity ERROR;

p.c.req <= b;
p.c.mode <= MSG__BMODE;
wait until p.c.ack=b;
d := p.d;
f := true;

when MSG_OMODE =>
assert false

report "bad msgrecv mode MSGjOMODE"
severity ERROR;

end case;

end msgrecv;

— initialize a port on start-up
procedure msg_init_port (signal p: inout MSG_PORT__<type>;

t: MSG_PORT_TYPE; qlength: INTEGER := -1) is
begin

p.t <= t;
case t is

when MSG_MIPORT =>
p.c.req <= '0' ;
p.li <= 1;

when MSG_MOPORT =>
p.c.req <= *0';
p.lo <= 1;

when MSG_SIPORT | MSG__SOPORT =>
assert qlength >= 0

report "queue depth must be >= 0"
severity error;

p.c.ack <= ^O';
if qlength=0 then

— full as well as empty
p.s <= ('1', *1', *0', 0, qlength);

else

— empty and not full
p.s <= TO', '1', »0', 0, qlength);

end if;

end case;

end msg^init^ort;

— find if the channel is full

function msgfull(signal p: in MSG_PORT_<type>) return BOOLEAN is
begin

return (p.s. full=' 1') ;
end msgfull;

— find if the channel is empty
function msgempty(signal p: in MSG_PORT_<type>) return BOOLEAN is

259



260

begin
return (p.s.empty='1');

end msgempty;

— find if the process on the other side is ready for communication
function msgrendezvous (signal p: in MSG_PORT_<type>) return BOOLEAN is
begin

return (p.s. rendezvous^' 1') ;
end msgrendezvous;

— find the number of data items in the channel

function msgcount(signal p: in MSG_PORT_<type>) return NATURAL is
begin

return p.s.count;
end msgcount;

— find the capacity of the channel
function msgcapacity(signal p: in MSG_PORT_<type>) return INTEGER is
begin

return p.s.capacity;
end msgcapacity;

— debugging function to print a signal of type MSG_PORT_<type>
procedure print(s: STRING;p:MSG__PORT_<type>) is

use std.textio.all;

variable 1: LINE;

type MSG_MODE_TABLE is array(MSG_MODE) of STRING(1 to 9) ;
constant msg_mode__names : MSG__MODE_TABLE := (
"MSG_BMODE", "MSGJEMODE", "MSG__IMODE", "MSG_OMODE", "MSG_LMODE");
type MSG_PORTJTYPE_TABLE is array(MSG_PORT_TYPE) of STRING(1 to 10);
constant msg_j>ort_type_names : MSG_PORT_TYPE_TABLE := ("MSG_NC ",
"MSGJMOPORT", "MSG_MIPORT", "MSG_SIPORT", "MSG_SOPORT") ;

begin
write(1, s);
write(1, " (");
write(1, <type>(p.d));
write(1, ", (");
write (1, msg_mode__names (p. c.mode));
write(1,
write(1,
write(1,
write(1,
write(1,
write(1,
write(1,
write(1,
write(1,
write(1,
write(1,

);
);

V

write(1, p.c.req);
write(1, p.c.ack);

1); write(1, p.s.full);
"); write(1, p.s.empty) ;
"); write{1, p.s.rendezvous);
"); write(1, p.s.count);
"); write(1, p.s.capacity);
,");write(1, msg_port_type_names(p.t));
"); write(1, p.lo);
"); write(1, p.li);

) 6 "); write(1, NOW);
writeline(output, 1);

end print;
end MSG__<type>;

library work; use work.MSG_<type>.all;



261

— the entity to be instantiated for every channel
entity MSG_PROC_<type> is
generic (qtype: MSG_TYPE; constant qlength: NATURAL := 1);
port(iport, oport: inout MSG_PORT_<type>);
subtype QINDEX is INTEGER range 0 to qlength;
type QARRAY is array (QINDEX) of MSG_DATA;
constant qlengthl : POSITIVE := qlength + 1;

begin
end MSG_PROC_<type>;

architecture BEHAVIOR of MSG_PROC_<type> is
begin

process

type MSG_DATA_CELL;
type pMSG__DATA_CELL is access MSG_DATA_CELL;
type MSG_DATA_CELL is record

D : MSGJDATA;
N : pMSG_DATA_CELL;

end record;

variable q : QARRAY;
variable qh, qt : QINDEX := In
variable qtl : QINDEX := 1 mod qlengthl;
variable icount, ocount, qcount : NATURAL := 0;
variable qhp, qtp, tmp : pMSG_DATA_CELL;
variable bl, b2 : BIT;
variable effjqlength : INTEGER;
begin

case qtype is
when ASYNC => eff_qlength := qlength;
when SYNC => eff_qlength := 0;
when INF_ASYNC => eff_qlength := -1;

end case;

msg__init_port (iport,MSG_SIPORT,eff__qlength) ;
msg_init_port(oport,MSG__SOPORT,effjqlength) ;
qhp := new MSGJDATAjCELL;
qhp.n := null;
qtp := qhp;
while true loop

bl := not iport.c.req;
b2 := not oport.c.req;

— wait for a request to come in from the sender or the receiver
wait until iport.c.req=bl or oport.c.req=b2;
if iport.c.req=bl then

assert icount=0

report "protocol violation at queue input"
severity error;

icount := icount+1;

end if;

if oport.c.req=b2 then
assert ocount=0

report "protocol violation at queue output"
severity error;

ocount := ocount+1;

end if;

case qtype is



— infinite asynchronous channel protocol (Kahn's model)
when INF_ASYNC =>

if icount=l and ocount=l then

— request on both iport and oport
— we need not worry about full, empty and count
iport.s.rendezvous <= *0';
oport.s.rendezvous <= *0';
icount := 0;

ocount := 0;

iport.c.ack <= not iport.c.ack;
oport.c.ack <= not oport.c.ack;
if qhp=qtp then

— queue is empty
oport.d <= iport.d;

else

tmp := qhp.n;
qhp := tmp.n;
oport.d <= qhp.d;
qtp.n := tmp;

qtp := tmp;
qtp.d := iport.d;

end if;
elsif icount=l then

— request on iport but not on oport
icount := 0;

iport.c.ack <= not iport.c.ack;
tmp := qtp;
qtp := new MSG_DATAjCELL' (iport.d,null) ;
tmp.n := qtp;
qcount := qcount+1;

else

— request on oport but not on iport
if qcount=0 then

— queue is empty
iport.s.rendezvous <= *1';

else

ocount := 0;

oport.c.ack <= not oport.c.ack;
tmp := qhp;
qhp := qhp.n;
deallocate(tmp);
oport.d <= qhp.d;
qcount := qcount-1;

end if;

end if;

— finite asynchronous channel protocol (real-life)
when ASYNC =>

if icount=l and ocount=l then

— request on both iport and oport
— we need not worry about full, empty and count
iport.s.rendezvous <= *0' ;
oport.s.rendezvous <= *0';
icount := 0;

ocount := 0;

262



263

iport.c.ack <= not iport.c.ack;
oport.c.ack <= not oport.c.ack;
if qh=qt then

— queue is empty
— could have done

oport.d <= iport.d;
— but then qh and qt would have remained stationary
— which would be a hassle to keep track during debugging
— first push
qt := (qt+1) mod qlengthl;
q(qt) := iport.d;
— then pop
qh := (qh+1) mod qlengthl;
oport.d <= q(qh);

else

— the queue may be full, therefore
— first pop to the output
qh := (qh+1) mod qlengthl;
oport.d <= q(qh);
— and then push from the input
qt := (qt+1) mod qlengthl;
q(qt) := iport.d;

end if;

elsif icount-1 then

— request on iport but not on oport
qtl := (qt+1) mod qlengthl;
if qh=qtl and iport.c.mode /= MSGjOMODE then

— queue is full and mode is blocking
— block

oport.s.rendezvous <= *1';
else

— queue is not full or the mode is overwrite
if qh/=qtl then

— queue is not full
qt := qtl;
qcount := qcount+1;

end if;

icount := 0;

iport.c.ack <= not iport.c.ack;
q(qt) := iport.d;

end if;

else

— request on oport but not on iport
if qh=qt and oport.c.mode /= MSG_LMODE then

— queue is empty and mode is blocking
— block

iport.s.rendezvous <= *1';
else

— queue is not empty or the mode is latest
if qh/=qt then

— queue is not empty
qh := (qh+1) mod qlengthl;
qcount := qcount-1;

end is

ocount := 0;

oport.c.ack <= not oport.c.ack;



oport.d <= q(qh);
end if;

end if;

— synchronous channel protocol (rendezvous like ADA/OCCAM)
when SYNC =>

if icount=l and ocount=l then

— we have a rendezvous !

icount := 0;

ocount := 0;

oport.d <= iport.d;
iport.c.ack <= not iport.c.ack;
oport.c.ack <= not oport.c.ack;
iport.s.rendezvous <= >0';
oport.s.rendezvous <= *0';

elsif icount=l then

— producer is ready first
oport.s.rendezvous <= *1';

else

— consumer is ready first
iport.s.rendezvous <= *1';

end if;

end case;

— update the status fields
if (qcount=0) then

— queue is empty
if iport.s.empty/s'1' then iport.s.empty <= *1'; end if;
if oport.s.empty/='1' then oport.s.empty <= *1'; end if;

else

— queue is not empty
if iport.s.empty/='0' then iport.s.empty <= y0r; end if;
if oport.s.empty/='0' then oport. s. empty <= %0'; end if;

end if;

if (qcount=qlength) then
— queue is full
if iport.s.full/='l' then iport.s.full <= *1'; end if;
if oport.s.full/='l' then oport.s.full <= *1'; end if;

else

— queue is not full
if iport.s.full/='0' then iport.s.full <= *0'; end if;
if oport.s. full/=' 0' then oport. s. full <= '0'; end if;

end if;

if iport.s.count/=qcount then iport.s.count <= qcount; end if;
if oport.s.count/=qcount then oport.s.count <= qcount; end if;

end loop;
end process;

end BEHAVIOR;

264



Appendix B: The ASSYS

Software Utilities

Assys is a set of libraries and programs that together provide the run-time software environment

for systems designed in SIERA using the design methodology described here. This appendix

describes the file organization of assys, and also presents an example ofusing it.

The root directory of assys, currentlylocatedin -siera/shared/ass, is organizedas following:

a. cofflib

A low-level library to manipulate COFF object files (used by DSP32C and TMS320C30)

b. coffutil

Wrapper functions for UNIX and VxWorks to load a COFF file section by section.

c. include

Header files common to all processor modules. The two important header files are
assCommon.h and assArch.h which define basic macros and data structures for the system
architecture.

d. subdirectories for indicividual processormodules: L3_c30_spox, L2_m68k_vw
There is one subdirectory for every processor module. The naming convention is
<layer number>_<processor name>_<kernel name>. Thus L3_c30_spox refers to the
TMS320C30 based layer 3 processor module running the SPOX kernel. Inside each of these
directories, subdirectories src, include, lib, obj, and bin contain the sources, headers, library
files, object files, and executable binaries respectively.

265



266

e. frontend

This subdirectory contain various frontend utilities that run on the workstation. This includes
RPC servers, and client stubs, for providing terminal I/O and UNIX-like services.

f. vwutil

This contains extensions to the VxWorks kemel.

Using Assys

Following are the steps involved in using assys with a system made using SIERA. The following

description assumes a MC68020 running VxWorks as the layer 2 processor, and a SPARC based

workstation.

a. Put ~siera/sun4/bin in the UNIX path.

b. Run the following under X on the workstation:

unixEmulationWindow &

ioConsoleServer &

c. Rlogin to the layer 2 VxWorks processor (say vw):

rlogin vw

d. Assuming that the boot parameters are set correctly, the current directory would be ~vwboot.
Type the following:

< vwsiera

iam "your_login_name"
nfsAuthUnixSet("zion", your_user_id, your_group_id, 0)
unixEmulation_init("name of workstationin step b")
ioConsole_init("name of workstation in stepb")
cd "your application directory"

'e. Now the system isinitialized bylaoding the SAIL file (described inChapters 6 and 7).

assSysInit("SAIL file name")

f. Then the object files are loader into each processormodule in layer 3 using the following:

assL3ProcAppLoadAndRun("processor name", "object file name")

g. To restart:

assShutdown(the_system)
asslnitialize(the_system)

and then the same as step f.



Appendix C: SIERA

Software Organization

Most of the tools, libraries, example designs, and software mentioned in this thesis are available

on-line on the BroderSuns workstation clusterin the EECS Department. This appendix is a guide

to all this SIERA related material and describes what is available and where is it located. Before

we delve into the actual details there is a general disclaimer that applies to all the following

description: the SIERA system, and particularly its organization is in a state of continuous

evolvement. Therefore whatever is described here is really a snapshot as of writing this thesis -

things will inevitably continue to change.

Following is a run-down of what is available. In addition, some tools and libraries are also needed

from -lager and -octtools - these include DMoct and MIS-II.

I. ^siera

This directory will be the ultimate repository of all SIERA related packages. At presentit is still

in a nascent state. The files and directories in it that are relevant to the users of siera are

enumerated below:

267



268

a. siera.cshrc

File to be sourced by usersof SIERA - it setsup useful environment variables.

b. sun4/lib/siera

File containing paths forDMoct and other tools using the GetPath mechanism.

c. sun4/bin

Contains the various tools needed by a user of SIERA on a SPARC-basedmachine.

d. shared/cadtools/oct2rinf

Source code for the oct2rinflayout-generator - this is the version that should be used and not
the one available in the LAGER release.

e. shared/cadtools/pcb.tools
Source code for pfp, psg and some other structure-processors/layout-generators for PCB
generation,pfp and psg were described in Chapter3.

f. shared/cellib/hardware/packages
PCB level package library.

g. shared/cellib/hardware/packages-racal
PCB level package library specific to Racal

h. shared/cellib/hardware/leafcells
Library containing SDL and THOR files for individual chips.

i. shared/cellib/hardware/modules

Library containing SDL files for board-level reusable modules.

j. shared/cellib/hardware/boards
Contains files for four example boards mentioned in the thesis - the robot controller board, the
robot peripheral board, the speech grammar and front-end processing board,and the MC96002
multi-processor board. The directories contain all the board-specific SDL files as well as files
for PLDS and the final board design database.

k. ass

Contains run-time software libraries and modules for the various processors supported in
SIERA.

* I. ass/include
Header files describing the basic data structures used in SIERA.

m. ass/L2_m68k_vw
Various packages and software modules for runningon a MC68K processor running VxWorks.

n. ass/L3_c30_spox
Packages and software modules for running on aTMS320C30 processor running SPOX.

o. ass/cofflib

Package for manipulating COFF object files.

p. ass/coffutil
Package for loading COFF format files.

q. ass/frontend
Various packages and utilities for providing front-end support to the SIERA software.



269

r. ass/c30util

TMS320C30 dis-assembler.

II. /usr/tools/commercial/vxworks/vw

This directory contains the latest version of the VxWorks kemel that is needed by the software in

-siera.

in. /usr/tools/commercial/vxworks/vwboot

This directory contains the start-up file that needs to be loaded in to VxWorks for running SIERA

software. The file is called vwsiera and an example of using it is in the file vwmbs.

IV. /usr/tools/commercial/vxworks/vw.vdi

The VDI package for DSP32C module.

V. /usr/tools/commercial/spox

This directory contains the installation of the SPOX kernel for the TMS320C30 modules. The

important directories are include (contains the header files) and lib.

VI./usi7tools/dsp/{dsp32,tms3x4x}

These directories contain the compiler and simulators for use with the DSP32C and TMS320C30

processors respectively.

VII./usr/tools/commercial/mcc-vhdl/vhdl-3.2.2-sun4

The VHDL simulator from MCC

VIII. /usr/tools/commercial/mcc-vhdl/vhdl-lib

Various VHDL packages mentioned in this thesis, and other useful locally developed packages

for work with MCC VHDL.



270


	ERL-92-67 (1 of 3)
	ERL-92-67 (2 of 3)
	ERL-92-67 (3 of 3)

