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Abstract

In this paper, we will compare different types of control, like nonlinear control, motion plan
ning, fuzzy control, neural control, rule-based incremental control; we take robot motion as a

comparative field, and more specifically motion of car-like robots.

We will compare the different approaches on twomain points: their theoretical basis (control
lability, stability, robustness for a given application) andtheir conviviality (easyand user-friendly
implementation of the control, application of artificial intelligence methods to improve control
when faced with unknown situations). Very often, control techniques of the first type are called
"classical control", while methods of the second type are called "intelligent control". We do not
find these appellations are very relevant, as they tend to classify the first methods as guaranteed
to work but impracticable and the second methods as easy to implement but magical; we will try

to see in each method the advantages and the drawbacks rather than going on with the useless
dialectic between Moderns and Ancients. It is much more interesting to look for a technique
that integrates both the theoretical basis and the conviviality: one solution could be rule-based
incremental control or other similar hybrid approaches.

Autonomousrobotsare nowadays very popular, for instance in industry,in space technologies,
in surgery or even in house keeping facilities. Concerning robots, two main problems arise,which
are of course directly related to the tasks the robots have to perform: motion and grasping. We
will only discuss in the next parts the motion problem.

This work has been done at the Department of Electrical Engineering and Computer Science
at the University of California, Berkeley. The author is on leave from the Department Systemes
de Perception at the Centre de Recherche et d'Etudes d'Arcueil, France.



Chapter 1

Robot motion planning

Motion planning can be loosely stated as: how can a robot decide what motions to perform in

order to achieve some goal in a physical space? This assumes the robot has some perception of

the real world and interacts with its environment. We will not deal with the perception problem,

but the interaction with the real world is the key point: how to avoid obstacles while performing

a task? In order to simplify, we will not consider movable obstacles; however we will consider

holonomic and nonholonomic robots.

Some basic definitions follow, then different techniques are discussed. These techniques try

to solve the robot motion problem by finding a trajectory between an initial and a final situation

that avoids all obstacles; whether a given robot can or cannot follow this trajectory is not taken

into consideration; as the generic name of these methods tells us, we are dealing here with

planning and not with control

1.1 Some useful definitions

For a survey of different problems and algorithms of robot motion planning, see [Lat91]. The
notations which follow are taken from this reference.

Let us call A the robot, moving in a physical world W (represented as RN) and let B{ be
some fixed rigid objects called obstacles. A is assumed compact and the B% are assumed closed

but not necessarily bounded. The robot is determined by its position and its orientation in the

euclidian space R^; a configuration q of A is a specification of the position and the orientation
of A with respect to a reference frame. The configuration space C is the set of all configurations
of the robot. The subset occupied by A at configuration q is denoted by «4(q).

A path of A from an initial configuration q^% to a goal configuration qg0al is a continuous
map t : [0,1] -*• Cwith r(0) =9^ and r(l) =qgoal •



CHAPTER 1. ROBOT MOTION PLANNING

Every obstacle B{ maps in C to a region called a C-obstacle:

CBi = {qeC\A(q)nBi^0}

The complement of the union of such regions is called the free space Cf,.ee . Any configuration in

this space is a free configuration. A free path stays always in Cf^ . It is then obvious that two

configurations are connected by a free path if and only if both configurations belong to the same

connected component of Cf^ . A semi-free path stays in the closure of Cfree .

It may be shown that C is a smooth manifold, meaning it is locally diffeomorphic to a power

of R (any configuration may be mapped to a vector in RN x SO(N); it is then obvious to define
local coordinates [Ave83]). Other interesting results are: CB is closed, CB is compact if B is

compact and CB is connected if both A and B are connected.

Contact space is the subset of all configurations at which A touches any obstacle without

overlapping any obstacle; the union of free space and contact space is valid space. A valid path

is a path that stays of course in valid space.

1.2 Roadmap methods

The roadmap approach finds the connected components of a high dimensional set, like Cfjee ,

by computing a one dimensional curve, the roadmap H\ furthermore, this skeleton is connected

within each connected component of the set. Path planning reduces to connecting q^t and

qgoalto this roadmap. Various methods have been proposed to construct such roadmaps: visi
bility graphs, Voronoi diagrams and silhouette method [Can87].

The visibility graph is obtained by joining every two vertices of all obstacles if the resulting

segment does not intersect the interior of an obstacle; this method applies to two dimensional

configuration spaces with polygonal C-obstacles. To find a path between two configurations

reduces to connect both configurations to the path and to follow a sequence of straight lines
included in the visibility graph.

A Voronoi diagram is the set of all free configurations whose minimal distance to the C-

obstacle region is achieved with at least two points in the boundary of the C-obstacle region; it
maximizes the clearance between the robot and obstacles. Finding a path between two configu
rations reduces then to connect both configurations to the Voronoi diagram.

The silhouette method generates semi-free paths, i.e. contact with the obstacles is allowed. It

consists of sweeping a hyperplane P across free space by following a given direction. The locus

of all extremal points of PriCf^ is a set of curves, called the silhouette. During the sweeping
process (let us say, the hyperplane was following the x axis) the numberof connected components
of the silhouette has changed at a finite number of critical points X{. For these points, curves
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contained in the intersection of the sweeping hyperplane and the free space are built in the

following way: a plane with one less dimension is swept across each of these intersections by

following a new direction and the method is applied recursively, until no new critical points

appear. The silhouette method obviously converges as for each step a (m —1) dimensional plane

is swept across a m dimensional space, and m decreases by 1 from one step to the other. This

method has a high complexity and some improvements exist [CL90].

1.3 Cell decomposition

We give only here the general sketch of the method. Further references are to be found in [Lat91].

The principle is to decompose the robot's free space into a collection of non-overlapping

regions, called cells, and to build a connectivity graph which represents the adjacency between

the cells. The purpose of the algorithms is to find then a sequence of cells connecting the cell

containing q^it with the cell containing qgoa]. Of course the cells must have a nice shape in
order to compute easily a path between any two configurations inside a cell, and it must be an

easy task too to test the adjacency of two cells. If these conditions are fulfilled, finding a path is

reduced to searching through a graph, which is not a trivial problem for computer applications.

The shapes of the cells are usually triangles, rectangles or slices. Algorithmic complexity is one

of the main drawbacks of this method.

1.4 Nonholonomic constraints

1.4.1 Definitions

In the basic problem, the robot is assumed to be a free-flying object, it may move in any

direction and any orientation, the only constraints are due to the obstacles. In many problems,

such a situation is not realistic: for example, a usual car cannot translate sideways. Additional

kinematic constraints are then to be considered; they may be divided into two classes: holonomic

and nonholonomic constraints.

Let us assume the configuration space is minimal (the right number of parameters has been

found to describe accurately the robot); a holonomic constraint is an equality relation among
these parameters which can be solved for one of these parameters: the general expression is

-F(<1> t) = 0 where F is a smooth function with non-zero derivative. Such a relation reduces the
dimension of the configuration space by one; holonomic constraints affect the definition of the

robot's configuration space and therefore its topological properties (connectedness may be lost).
A nonholonomic constraint is a non-integrable equation involving the configuration parameters

and their derivatives (velocity parameters): the general expression is <j?(q,q,t) = 0 where G
is a smooth function. Such a constraint does not reduce the dimension of the configuration
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space, but reduces the dimension of the space of differential motions (the tangent space) at any

configuration. By replacing the equality sign by an inequality, it is obvious to define holonomic

and nonholonomic inequality constraints.

Solving the robot motion problem with nonholonomic constraints is an interesting challenge

and the previous methods have to be modified in order to adapt to this new problem.

Let A be a robot subject to nonholonomic constraints; a path r is feasible if it is piecewise f

class C1 and satisfies the constraints (if G(q, q) = 0 is a nonholonomic constraint, then r must
dr

satisfy G?(r(s), -p($)) = 0 for all s € [0,1]). A robot is fully controllable if for any distribution
as

of obstacles, if there exists a free path between any two configurations, then there also exists a

feasible path between these two configurations.

1.4.2 Car-like robot with trailers: equations

We give in this section the general equations of the car-like robots with trailers, which will be

used in some applications.

Let us consider a multi-body system constituted by a car (body 0) and n trailers (bodies

1, •••, n). The midpoint between the rear wheels is taken as the reference point for each body;
its coordinates are (a:,-, yi) in a given fixed reference frame and the orientation is given by 0j, the
angle between the main axis of the body and the x-axis. The space of all different placements is

then 3(n + 1) dimensional.

In order to form a convoy (the car pulls all the other trailers which are hooked up to the next),
each trailer is assumed to be hooked up to the midpoint between the rear wheels of the preceding

body (this hooking system simplifies the next equations; other hooking systems introduce new

variables for each trailer which do not cancel); the distance between the hitch and the wheels of
the 2-th trailer is d{. This yields the In holonomic equalities:

{
Xi —Xi-i = —d{ cos 0i

Vi-Vi-i = -<*;sin0t-

The configuration space of this multi-body system is a submanifold of dimension 3(n +1) —2ra =
n + 3 in the placement space. A possible parametrization is (a?o,3fo>0(h0i> ••*>^n) which yields
the space R2 x (5'1)n+1.

Each body is rolling on the ground without sliding; it is thus submitted to the following
nonholonomic equality:

x\ sin 0i —y\ cos 0{ = 0

This equation tells that the speed vector is always parallel to the direction of the body. The multi-

body system has n+1 nonholonomic constraints. The number of degrees (difference between the
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dimension of the configuration space and the nonholonomic links) is therefore (n+3) —(n+1) = 2

(obviously the two degrees of freedom of the leading car).

The equations of the multi-body system are:

Xo = a cos do

2/o = a sin 0o

<?o = P

01 = £sin(0o-0i)
02 = Jsin^-^cos^o -0i)

n-l

0n = ^sin(0n_1-0n)ncos(^_1-^)

a and (3 are any two reals. Other parametrizations lead to similar equations. We see that the

two inputs are the speed of the rear axis of the lead car and its angular velocity, which is related

to the steering angle as we will see now.

Let us study now the car (body 0); we call R the midpoint of the rear axis with coordinates

(so> 3/o»0o)- We write now the equations of F, the midpoint of the front axis. Its coordinates are

(xfi Vf)i let us call <j> the steering angle, it is the angle between the main axis of the.car and the
velocity vector of F (as the car does not shde, it happens to be the angle between the wheels

and the axis of the car). Let us call v the speed of F. L will be the distance between the front
axis and the rear axis. We have:

{
Xf = xo + L cos0o

Vf = V0 + L sin 0O

As the robot has a front-wheel drive and the front wheels do not slide, we have:

{
if = v cos(0o + <f>)
yf = vsin(0o + <£)

The rear wheels do not slide either, as we saw previously:

x'o sin 0o = y'o cos 60

By derivating the first two equations and using the three next, we have:

0o = v
sin0

x'o = v cos 0ocos (j>

y0 = v sin 0q cos <f>
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If 0 is constant, we may integrate the various equations and find that F describes a circle with

radius ——- while R describes a circle with radius -.
sm <p tan q>

In a real car, mechanical stops in the steering gear constrain the steering angle in such a way
71"

that \4>\ < <£max < —. It is easy to see that this constraint can be rewritten as:

Xo2 +2/02 - />min20O2 >0

where p^^ =
tan^>max

1.5 Potential fields

The previous planning path methods tried to summarize the connectivity of the free space into

a graph which is then searched for a path. The potential fields methods proceed differently: the

robot represented as a point in configuration space is considered as a particle under the influence

of a potential field whose local variations reflect the free space: the potential function is the sum

of an attractive potential, which pulls the robot towards the goal, and a repulsive potential,

which pushes the robot away from the obstacles. The gradient of the potential is interpreted as

an artificial force which shows the most promising direction to follow. The potential field method

acts essentially as a fastest descent optimization procedure.

One of the main drawbacks of potential functions is the existence of local minima which can

catch the robot-particle; hence dealing with local minima is the major issue of these methods.

Several solutions have been found [BL89, Lat91]: designing potential fields with no or very few

local minima and designing techniques for escaping from local minima by a series of random
motions.



Chapter 2

Robot motion and control

We will now address a slightly different problem, namely the control of a car-like robot: the

problem is not to find a trajectory between two situations, but to steer the robot between these
two situations.

We sawpreviously that all paths were not feasible, because a robot is not a free-flying object
and has therefore limitationson its movement capacities. We dealin this part with the feasibility.
More precisely, we will first see how we may steer a robot in a space without obstacles, and then
we will consider the problem with obstacles. A way to solve this last problem is, for instance,
to find a trajectory by one of the motion planning techniques, and then to track this trajectory;
we must then prove that this tracking is possible for any trajectory. Let us recall that most
trajectories found by the motion planning techniques are in free space and therefore there exists

some neighborhood of the trajectory which is safe from obstacles; if there is some way to stay
as close as possible to the trajectory, then the robot will be steered between the initial and final
situations and stay clear of obstacles.

2.1 Non linear control

2.1.1 Lie algebras

There has been some work on the application of Lie algebras, one of the powerful tools of non
linear control theory, to the car parking problem [Lau90, Mur90, RM91]: when a car tries to
park, usually it first backs up and turns right, then it drives forward and turns left; the second
maneuver does not undo the first as is well known! The reason is that forward-backward motion

and left-right motion do not commute; actually, the resulting drift (useful for parking!) is the
Lie bracket of these two motions.

11
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More formally, given 2 smooth vector fields (a smooth vector field is a C°° map1 from U, an
open set of a Banach space E, into 2?), the Lie bracket of these vector fields X and Y is the

vector field [X,Y] = DY • X - DX • Y and if <f>x is the flow of X (<f>x : R x U -»- f/ is a flow of

X if for any x € Z7, * «-»• ^(*,ar) is the maximal solution of -j;<f>x(t,x) = X(<£x(*>s)) such that
<frx(Q*x) = x), it can be shown that:

dt

Urn
<-+o

0_y (<, -)^-jr(t, .)fr(*>-)fa(t, .)(g0)
t2 = [X,Y](*0)

which relates Lie brackets to the compositionof non commutative motions thus leading to a drift.
By taking Lie brackets of higher order (such as [J£, [A", Y]]) a motion in almost any direction may
be intuitively obtained. Such considerations have led to applying Lie algebras to the multi-body
problem.

Connections between robot motion and control theory can be found in Chow's theorem: for

systems of the form x = YaLi 9i(x)ui, where the g\ are smooth and the itt- are the control inputs,
if the closure under Lie bracketing of A, the subspace of the tangent space spanned by the </,-,

is equal to the tangent space at all x in a neighborhood of a?o, then the problem is small-time

locally controllable at xo, i.e. any point in a neighborhood of xo can be reached in arbitrarily

small amounts of time by remaining in the neighborhood. Intuitively this theorem states that a

sufficient condition for controllability is that any differential motion is obtained by some high-
order Lie bracket.

It has been shown that car-like systems with n trailers are controllable and bases spanning
the control Lie algebras have been generated. Let us show how all this works for a truck with a

trailer (multi-body system with n = 1). The equations of this 2-body system are:

a cos 0q

a sin 0o

P

£sin(0o-0i)
This can be rewritten as:

/*\
Vo

Xo

yo

0o

01

COS do

sin#o

0

^ isin^o-01)^

<* +
0

1
P = 9i<* + g2fi

Let us compute the Lie bracket [01,02] (let us recall that if X is a vector field with coordinates
dx-

Xi, then DX is in £(£,£(£,£)) and can be seen as a matrixwith coordinates -£-*•):
dXj

[9u92]T =( sin do -cos0o 0 -^-cos(0o - 0i) )
1Usually only smooth vector fields axe considered in applications but the definition holds for a Cr map
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If we compute then [<7i,[#i,<72]]> we have [01, [01,02]]T = (0 0 0 —̂ ). It is now easy to
check that R4 is spannedby <?i, p2» [<7i» <72]> [<7i5 [<7i> #2]] (the determinant of these 4 vectors is equal
to —t4-). We conclude, using Chow's theorem, that the 1-body system is controllable. This
is really comforting if we consider the number of trucks on highways ... The last Lie bracket

with the nested in Lie bracket tells us something interesting about infinitesimal motions of this

1-body system: as gi corresponds to a straight motion and g2 to a right forward turn, [<ft, [</i,#2]]
corresponds to this complex maneuver: forward, forward left, backward, backward left, backward,

backward left, forward, forward right. This maneuver allows to reorient the trailer while keeping
the orientation of the truck invariant. We will see in the next section some other maneuvers

that translate a car truck or reorient it; a combination of all these maneuvers leads to a way to

control a 1-body system in a complex environment; this is however highly impractical as many

infinitesimal motions are needed to produce an appreciable motion, but it is a nice application
of Chow's theorem.

The system of differential equations that models a rc-body system is part of a large family
of systems, which are called chained systems. Based on the Lie algebras formalism, algorithms
have been developed which use either integrally-related sinusoids [Mur90] or high-frequency si
nusoids [TLM+92] in order to control such systems.

2.1.2 Tracking trajectories

Once a feasible path is found, perhaps one that was generated by an open-loop path planner,
and a sequence of inputs generating this path is known, there are linear time-varying feedback
laws which locally exponentially stabilize a large class of systems (x = f(x) + g(x)u) to the
desired trajectory [WTS+92]. This approach starts from a linearization of the system about the
nominal trajectory and assumes then the linear time-varying system thus obtained is uniformly
completely controllable.

It has been applied to car-like robots and is another way to solve the control problem.

2.2 Rule-based incremental control

Manysystemslack a mathematical model or are ill-modeled; however human experts can control
them rather well. The knowledge generated by these experts seems to be stored in a declarative
(if-then rules), symbolic way (no exact values on parameters are considered, but rather ranges)
and the control actions are basically incremental (at each time, an input is either incremented,
decremented by a given amount or left untouched).

Rule-based incremental control has been first introduced in [ZFG84, BFHZ85] as a concept
and an experimental realization and in [FL89, Fou90] almost under its current form; theoret
ical results are stated concerning stability in [LZ90b, Luz91]. This type of control relies on



14 CHAPTER 2. ROBOT MOTION AND CONTROL

input/output relationships and is well adapted to robots, where sensors give informations which

have to be treated quickly in order to perform an action if necessary. Experimental robustness

has been shown and the sensors may be programmed so as to change their symbolic interpretation

if necessary (sudden defect of one of the sensors or new knowledge given to one of them) [BF89].
A theoretical frame has been given for symbolic sensors and symbolic reasoning [LZ91] allowing
some precomputing in the sensors in order to speed-up the control process. Furthermore, as we

will see in detail in the next part, some learning techniques may be used to write such rule-based

controllers and CANDIDE is a learning program which writes such controllers starting from no a

priori knowledge of the system to control [Bur88, BLZ89b, BLZ89a, LZ89, BLZ89c, LZ90a].

We give the general form of rule-based incremental controllers in the next paragraphs, state

some theoretical results and discuss their use in robot motion and parking.

2.2.1 Theoretical results

A rule-based incremental controller is a finite set of rules which have the following form:
If output in this range

then increase, decrease or leave the input
This is obviously discrete control and at each sampling time, the left part (the condition) of

every rule is evaluated; once this is done for all rules, one of the rules with satisfactory condition

is fired (it may be the first found rule, or the last, or if a weight is attached to each rule, it can

be the most promising ...) and the corresponding right part (the action) is executed.

The input Uk at time k is related to the input Uk-i at time k —1 by the equation:

Uk = uk-i + <%ul + €?kA'

uk = *i-i+4tt*

•r1 = "Ci+c^s
= A

where: Vz G{0, •••,n—1}, Vfc € N*, €k € {—1,0,1}, ^k € {-"*> •••»w»}» and A, A' aretwo positive
real numbers. The coefficients e\ and €^ will be called signsand the set of their values at time

k is the sign policy. Such control laws are called (n, m) incremental control laws.

This equation may be rewritten as: Uk = tijt-i + Vk + €fcA'. The real number A' is a given

increment and the integer c^ (bounded by m) tells the amount of the action at time k. This part
of the equation models the "increase, decrease or leave the input". The term Vk allows more

elaborate actions as: I know my input is not enough and I cannot increase it enough, so let us

increase the increment too. As can easily be seen, Vk is solution of a n-th order recurrent system

and the integer €k tells us whether the i-th order increment has to be increased, decreased or

cancelled.
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The strength of such formulation appears when one considers for instance a maximal sign

policy, i.e. all the various ek and the c^ take their maximum value (respectively +1 and +ra):
the €JJ. introduce a linear behavior for the input while the ej. generate an exponential behavior.
This is very interesting when considering for instance Unear systems: the exponential part of the

control law may be used to follow the dynamics of the system, while the linear part allows some

finer tuning. The next propositions are the justification of this intuitive informal remark.

Let us consider a stationary discrete linear SISO system given by the equation (uk is the

input, yk is the output, Xk is the state vector, k is time; j4,2?,C are matrices):

{
Xk+i = AXk + Buk

Vk = CXk

We have the next following propositions (for detailed proof, see [Luz91]):

Proposition 1 Let us consider a linear system with 1 <|| A ||< 2m + 1. Then:

3MUM2 Vk 3«) Vi < k || Xi ||< Mi + M2i

For a naturally divergent system, it is always possible to find a sign policy such that the
divergence of the system is in the worst case Unear.

Proposition 2 Let us consider a linear system with 1 <|| A \\< 2m + 1. Then:

a \x m us wl i(J\ / V« < fc || Xi ||< Mi + M2i

Furthermore the system may be brought back to the origin on any finite time interval.

Proposition 3 Let us consider a linear system with 1 <|| A \\< 2m+ 1. Then:

V,'\||Xo||<>?=H|Jr*||<a

In fact the system can be brought arbitrarily close to the origin. As can be seen in [Luz91], the
proofs of all these propositions show that the sign poUcy only depends on the initial state and k.
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Proposition 4 Let us now considera linearsystem with || A ||< 1. Then for i smaller or equal
to n, a reference signal of form k *-+ k% (k is time) may be followed with null asymptotic error
by a (n,0) control law (i.e. all the efk are null)

For naturally stable systems, this proposition impUes for instance that a step or a ramp reference

signal may be followed asymptotically by a (1,0) incremental control law, which is the easiest

law: the only admissible actions are either to increase, to decrease by an increment or to leave

unchanged the last input.

The next result will concern tracking trajectories for a stationary discrete Unear SISO system.

Let us assume we have a desired trajectory (X£ ')k and some sequence of inputs (uk ')k that
yield this trajectory, i.e. XJ^1 =AXk ' +Buk KLet ebe apositive real. Tracking the desired
trajectory (with error uniformly bounded by c) means finding an incremental control law such

that, if Xk+i = AXk + Buki then:

iix*-4^ii<^ii**+i-*I+iII<<
We will look for a (0, m) incremental controllaw, therefore Uk —Uk-i is bounded by (2m +1)A';
in order to track the desired reference, we wiU actually try to stay close to the sequence of inputs

that yields the desired trajectory. It appears then that we can only consider systems where

uk ' —ukix is bounded too.

Proposition 5 For a linear SISO system (Xk+i = AXk + Huk), a given desired trajectory
(Xk )jfcgN and a sequence of inputs (uk )ker* yielding this trajectory (X^^ = AXk ' + buk')
such that {u\ ' —uk_x )k&* is bounded, then, for any positive real e, there exists an incremental
control law tracking the trajectory with an error smaller than c.

Proof: Let us write [x] for the integral part of x. Assume the linear system is under controUable

canonical form (the state vector is n-dimensional):

0 1 0

0 0 1

-Xfc+i =

i

0 0 0

—a„ — an_i —an_2 • •

Let us define Vk and Uk by (A is a non null positive real):

vk = [-(B^)-B^t-^^)Wt-»]A +(J?Tg)-i BrA{Xk _x^ _%W
uk = -(BTB)-1BTA(Xk-XJ?) + ull? +vk

0 0

0 0

; xk + :

1 0

-at 1

Uk
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We notice that \vk\ < A. A straightforward computation yields:

Xk+i - 4+i = J(*k ~ Xid)) + Bvk

where J is a n x n Jordan matrix2. We conclude that for any k:

II *W - *& II = HaJ-'Bvm
< (DU II •>"-' II) IIB || A

Take A such that (]C?=i II «Jn~* II) II B || A < e and the error on the trajectory is smaller than e.

Let us now verify that (uk) is an incremental control law:

Uk = uk-i +

{-(BTB)~1BTA{Xk - 4d)) +«J° +vk} +{(BTBy1BTA(Xk-1 - JT« )- «« - ^_a}

Both terms inside braces are, by construction, multiples of A. Furthermore:

hb-«fc-i| <l4d)-4-il +W+k-il+ II(P1"^)-1^^ || (||xk-xid) || +1|Xk-i-xi^ ||)

which is uniformly bounded in k. There exists thus aninteger m such that for all Jfe, there exists
an integer €* with |e*| < m verifying Uk = w*-i + €jtA. •

If we take uj^ =0and -X£ Jequal to the nuU vector for all k, we have the next proposition.

Proposition 6 Let usconsider a linear SISO system. Then foralle, there exists a state feedback
incremental control law such that for the controlled system:

3M Vfc || Xk \\< M

If the increment A is chosen small enough, we have:

II Xk \\< e

In the first propositions 1, 2, 3, we had found open loop incremental control laws which
yielded stabiUty or asymptotic stabiUty if the increment A was chosen small enough, on any
finite horizon; this last proposition guarantees stabiUty and asymptotic stabiUty for aclosed loop
incremental control law.

2 t _ fci,i+lI = (&ij )»,i€[i.n]> where 6 is the Kronecker symbol
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2.2.2 Car-like robot with trailers: full controllability

Let us return to the car-Uke robot as described eariier, without trailers. This robot is modeled

as a rectangle in W = R2; the configuration space is R2 x 51. A configuration is represented as
(x,y,0) where (x,y) are the coordinates of the midpoint between the two rear-wheels and 0 is

the angle between the x-axis of the reference frame. Furthermore the robot is not sliding. The

equations are the same as in the case of the multi-body problem.

Let us work now in configuration space: the car is represented as a point and the obstacles are

mapped into C-obstacles. We wiU now show that any possibly non-feasible free path between two

configurations which are in the same connected component of the free space can be transformed
into a feasible path that can be found by an rule-based incremental controUer. This proof is
constructive and uses arguments similar to Laumond's proof of fuU controUabiUty of a car-Uke

robot without constraints on the control inputs [LTJ90].

Let us represent a configuration (x,y,0) by a vector with origin at point (x,y) and making
an angle 0 with the x-axis. We define two basic maneuvers, which combine turns with minimal
turning radius (i.e. maximal steering angle) and straight segments.

Figure 2.1: Maneuver 1

Maneuver 1 consists of a left turn, foUowed by a straight reversal and a right turn; the first

turn brings the car from (x0,3fo, #o) to (xi,yu0q + 0)\ the reversal brings it to (x2,2/2,00 + 0)', the
last turn brings it finally to (X3, #3,0o). This maneuver allows the robot to perform a sidewise
motion. The final and the initial orientations are the same.

Figure 2.1 shows the keypoints of this maneuver: A is the starting point, the car turns to the
left and reaches By then it backs up to C and finally turns to the right and reaches D. The initial
and final orientations are perpendicular to the straight line AD; the turns are performed on a

circle with radius p^ and each turn corresponds to an angle 0. We have: AB=CD= p^^ 0,
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BC = 2/^ tan 0 and AD = 2pmin (

which has BC as a diameter.
cos0

1). This maneuver is obviously included in a circle

Figure 2.2: Maneuver 2

Maneuver 2 consists of a left turn, foUowed by a straight reversal and another left turn. The

first turn brings the car from (x0,3fo, 0o) to (xi, 3/1,0o+0)\ the reversal brings it to (x2, y2i 0q4-0);
the last turn brings it finally to (x0, yorfo + 20). This maneuver allows the car to perform a
rotation around the midpoint of its rear axis.

Figure2.2 shows the key points of this maneuver: A is the starting point, the car turns to the
left and reaches 2?, then it backs up to C and finally turns to the left and reaches A. The initial

and final orientations are tangent respectively to circle 1 and circle 2. The turns are performed
on a circle with radius /^n^ and each turn corresponds to an angle 0. The difference between
the initial and the final orientations is 20. We have: AB=CA= p^ 0, BC = 2pmjn sin0 and

AB = 2/Omin sin -. This maneuver is obviously included in a circle which has A as center and

AB as a radius.

These maneuvers may be performed by a rule-based incremental controUer: for instance, the
left turn of the first maneuver is completed by: if the current angle of the car is in [0O, 0o+0] then
increase v and increase <j> by twice the increment. The reversal straight line is then completed
by decreasing v and decreasing <f> by once the increment. The speed increment is 2vmax and
the steering angle increment is ^max- With these increments, the possible values for {v,<j>) are
{""%axj—Vmax} X {—0maxjO,#naax}'

Although both maneuvers can be done with a rule-based incremental controUer, one has to
keep in mind that this type of control is a discrete control: a rule is fired at each time sampUng.
This means that the turns and the back ups aremultiples of a smallest turn and a smallest back

up. It means too that the car may not exactly reach D in maneuver 1 and may not go back
exactly to A in maneuver 1. Let us see more precisely the drift error. In maneuver 1, the car
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wiU make a 60 error while turning with angle 0; it wiU make an error 61 while backing up and
wiU then make the same error 60 during the last turn (although the car does not reach C and is
not even on the straight line BC because of the 60 error, we do not want it to turn more or less

in order to try to cancel these errors; the last turn is assumed to be with same magnitude as the
first turn, in order to keep sort of symmetry in the whole maneuver). It is easy to see that the

different values AJB, CD— pn^n 0, BC and AD behave continuously with 0 and converge to 0
when 0 converges to 0. Let us recall from the equations of the car-Uke robot (the speed of the
rear point R is taken to be constant in norm to vmax ) that:

L . • sin^max COS^max
Pmin = 1 a-fld V= v = v-

tan <^max L Pmin

This shows that the angular velocity behaves continuously with vmax and converges to 0 when

Vmax converges to 0. Of course the error 61 is bounded by vmax T where T is the sampUng

period, thus it behaves continuously with vmax too. The same remarks hold for the second

maneuver.

All this shows that if the speed vmax is taken small enough, maneuver 1 brings the car

from A to a point in any arbitrarily neighborhood of D with same initial and final orientations

and maneuver 2 brings the car from A to a point in any arbitrarily neighborhood of A with

a difference between the final and the initial orientations in any arbitrarily neighborhood of 0.

Furthermore any maneuver can be performed in an arbitrarily smaU circle.

We can now proof the full controllability of the car-Uke robot.

Proposition 7 Let q and q' be two configurations in the same component of C^^ . For any

neighborhood of q'; there exists a feasible free path between q and a configuration in this neigh

borhood, that can be obtained by a rule-based incremental controller.

Proof: For (x,y,0) in Cfree we call C(x,y,0,»7,€) = Dv x {0 —€,0 + e) the open cyUnder
with radius rj, of height 2e parallel to the 0-axis, centered at (x,y,0). Let C be such a cyUnder
included in the free space Cfree .

• We state that if </j is any point of C, a feasible path can be found starting at (x, y, 0)
and ending in any arbitrarily small neighborhood of q\. Proof: it is obvious that we can take

x = y = 0 = 0 (by changing the referenceframe in an isometric way, i.e. taking a new set of local

coordinates [Ave83]). Let us represent a configuration (x',3/,0') as an arrow at point (x', y')
with an angle 0' with the x-axis for sake of simpUcity. If (x', 3/,0*) is in C(0,0,0,77, c), a feasible
path can be found that starts from the origin and reaches any neighborhood of (x', y',6'): make
a finite number of maneuvers 1 in order to join the origin and (0, y', 0) (side-ways motion along
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the y-axis), then do a straight Une between (0,y', 0) and (x', y\ 0), then make a finite number of
maneuvers 2 in order to reach (x'jy',0') (reorienting the car). As we saw previously, the path
given by the incremental rule-based controUer wiU drift, but this drift behaves continuously with

^max and the speed can be adjusted in order to reach any neighborhood of (x', y;,0'); furthermore

by choosing vmax small enough, the path wiU remain in C.
• Let us proof now the proposition. As both configurations q and q' are in the same connected

component of Cfrgg , there exists a free path r between them. Since r is a compact subset of

Cfree 5ft can be covered by a finite number of open cyUnders Uke C (it is obvious that the family
of all cyUnders C is a generating family of neighborhoods for configuration space). Hence, r can

be transformed into a feasible path by introducing a finite number of maneuvers 1 and maneuvers

2 contained in these cyUnders (these cyUnders intersect r at a finite number of points; build a

sequence (qp) with qo = q and qn = q', and $ is the furthest point on r which is in the cyUnder

centered at <j,_i; join then two successive elements of the sequence by using the statement given
at the beginning of this proof). As the whole number of maneuvers is finite, the final eventual

drift can be chosen arbitrarily small by choosing adequately vmax . D

Webased the proofon the fact that all the distances occurring in the maneuvers were behaving
continuously on vmax . If we assume now that the speed vmax is given (Uke $max ), we can then
notice that all the distances behave continuously with T too, which is the sampling period (in
fact, the errors 60 and 61 behave Uke 0T and vmax T). We see then that the path needed in
the previous proof can be approximated by a feasible path tt and the same proof can be used,
mutatis mutandis, for the foUowing proposition.

Proposition 8 Let q and q' be two configurations in the same component ofC^ and letT be
the time period of the discrete sampling. If T is small enough, there exists a feasible free path
between q and q' that can be obtained by a rule-based incremental controller.

We have proved that a rule-based incremental controUer could bring a car-Uke robotfrom any
initial configuration to any final configuration if these configurations are in the same connected
component of Cf^ . Of course this constructive proof is not efficient in practice because of the
very high number of maneuvers involved. This is why we have to look for rule-based incremental
controUers which wiU lead to much less maneuvers.

2.2.3 Car parking

We give in this section two rule-based incremental controUers which have been used to park a
car.
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Let us give a fixed reference frame (i,j) and a frame attached to the car (n,fi) where Ti
has the same orientation as the car. The car starts from a given distance of the parking place,
oriented parallelly to the parking place. The steering angle is bounded by phimax. The length
of the car place is L and its width is 2e; the parking place is a box [0,6] x [-a, a].

In the controllers, there are several mathematical expressions: Yr —e cos 9, Yr —Xr tan 0 and

Yj + (b —Xj)taxL0; they correspond respectively to the y coordinate of the rear right corner of
the car, to the y coordinate of the intersection between the straight line directed by z\) and the
rear of the parking place (straight line x = 0), and finally to the y coordinate of the intersection

between the straight line directed by T\ and the front of the parking place (straight line x = b).

The controller in one maneuver reverses the car tiD its rear arrives at the height of the parking

place (rule rO), then the car turns right till its right rear is inside the parking place (rule rl), and

then the car makes a left turn (rule r2). We give here the controller in Common Lisp syntax:

(

)

(rO (> Xr b) (setq v(min v(- v)))2)
(rl (and(< v 0)(> (- Yr(* e(cos theta))) a))

(setq phi(in-bounds phimax(- phi incr)))l)
(r2 (and(< v 0)(<= (- Yr(* e(cos theta))) a))

(setq phi(in-bounds phimax(+ phi incr)))l)
(dummy T T 0)

Figure 2.3: Parking: one maneuver and several maneuvers

The controller in several maneuvers is an improved version of the previous controller, as

sometimes several maneuvers are needed. Several strategies have to be chained: enter the parking
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place and orient the car in the right way. We give its Common Lisp expression and an explanation

of the different rules.

rO reverses the car tiU the rear of the car arrives at the height of the parking place, rl et r2 are

fired during the first maneuver: the right rear of the car has to reach the right rear part of the

parking place (the goal is to have most of the car in the parking place) r3, r4, rb and 7*6 reorient
the car inside the parking place: rZ and rA align the rear of the car with the rear middle of the

parking place, r5 and r6 align the front of the car with the front middle of the parking place, rl

is fired when the distance between the car and the obstacles is smaller than a given range (for

instance v dt — where dt is the time sampUng — which is the maximal distance the car makes

in a time period) and this rules inverts all the commands (turn in the other direction and go

in the other direction), and this action is maintained as long as the car stays too near from the

obstacle. rS and r9 bring the car back to the parking place in case some odd succession of rules

had generated a trajectory leaving the neighborhood of the parking place. The task is finished

as soon as the four wheels of the car are inside the parking place.

;; initializing some variables
(setq n-dummy 0 init t end () action ())

(rO (>= Xr b) (setq d-last d-min v(min v(- v))) 0.5)
(rl (and init (<= v 0)« Xr b)(>=(- Yr(*(tan theta)Xr))(- a)))

(setq d-last d-min action '(setq phi(in-bounds phimax(- phi incr))
(r2 (and init (<= v 0)(< Xr b)(<(- Yr(*(tan theta)Xr))(- a)))

(setq d-last d-min action '(setq phi(in-bounds phimax(+ phi incr))
(r3 (and end(<= v 0)« Xr b)(>=(- Yr(*(tan theta)Xr))0))

(setq d-last d-min action '(setq phi(in-bounds phimax(- phi incr))
(r4 (and end(<= v 0)« Xr b)(<(- Yr(*(tan theta)Xr))0))

(setq d-last d-min action '(setq phi(in-bounds phimax(+ phi incr))
(r5 (and end(> v 0)(< Yf a)(< Xf b)(>=(+(*(tan theta)(- b Xf))Yf)0))

(setq d-last d-min action '(setq phi(in-bounds phimax(- phi incr))
(r6 (and end(> v 0)(< Yf a)(< Xf b)«(+(*(tan theta)(- b Xf))Yf)0))

(setq d-last d-min action '(setq phi(in-bounds phimax(+ phi incr))
(r7 (or(< d-front d-min)(< d-left d-min)(< d-rear d-min)(< d-right d-min))

(setq v (if(<= d d-last)(- v)v)
init ()
end (if(or(and(< Ya a)(< Yb a)(< Xa b)(< Xb b)(< v 0))

(and(< Yc a)(< Yd a)(< Xc b)(< Xd b)(> v 0))) t ())
action
(if«= d d-last)

(cond((equal action '(setq phi(in-bounds phimax(+ phi incr))))
'(setq phi (in-bounds phimax(- phi incr))))
((equal action '(setq phi(in-bounds phimax(- phi incr))))
'(setq phi (in-bounds phimax(+ phi incr)))))

action)
v d-last d

) 1)
(r8 (and(>= v 0)(or(> Xa b)(> Xb b)))

(setq d-last d-min v(- v)
action '(setq phi(in-bounds phimax(- phi incr)))) 0.9)

(r9 (and(>= v 0)(> Yf a))
(setq d-last d-min action '(setq phi(in-bounds phimax(- phi incr)))) 0.8)

(dummy T (progn
(setq d-last d-min)

)) 0.5)

)) 0.5)

)) 0.5)

)) 0.5)

)) 0.5)

)) 0.5)
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(setq n-dummy(1+ n-dummy))
(if(= n-dummy 100)(setq n-dummy 0 v(min v(- v)))T))

0)
)

2.2.4 Parking of a car-like robot with 1 trailer

The equations of the 2-body car-Uke robot are:

xo = v cos <f> cos 0o

yo = vcosc6sin0o

0O = j^v sin<j>
0\ = j-vcos <f> sin(0o - 0\)

Let us recall (xo, yo) is the middle of the rear axis of the first body, 0o is its angle with a reference

straight Une and 0\ the angle of the second body with the same reference straight Une; <f> is the

steering angle, L the length of the first body, d\ the distance between the midpoint of the rear

axis of the first body and the midpoint of the rear axis of the second body, and v the speed of

the midpoint of the front axis of the first body. We assume that \v\ is constant.

In all practical appUcations, <f> is takenin the interval ] —§»§[• If 0 = #i - 0o» it is obvious
that we have, for non zero <j>:

This differential equation can be integrated for constant </>(</> ^ 0) by using the following formulas:

Ja a+fcsin* = V^-a2 otanf+b+Vb2-a2*a ' >a )
= [-^arcta*^!^ (if **<*')

Xfl+Sfc = [-*3Sfl8 (ife€{-l,+l})

If <f> = 0, we go back to the original equation yielding 0i, and as 0q is constant, we have:

0X = ^-vsin(0o —#i) which is easily integrated between time ta and time tj, into:

A qualitative study of this equation shows:

• 0X = 0o is a stable equilibrium for v > 0

• 0! = 0Q is an unstable equiUbrium for w< 0

• 0i —0o = v is a stable equiUbrium for v < 0
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Furthermore the rates of convergence towards the stable equilibria is exponential in time (be

cause of the form of the general solution and arctanx x~ x) and the smaller d\ the faster the
convergence.

If <f> t£ 0 and <f> constant, we wiU undertake a qualitative study of equation 2.1. There are two

different cases:

•Ida tan<£I - *
During a forward or a backward maneuver, 0 has always the same sign (as <f> and v are constant,

0o is constant too). If \d t^J = 1,0 may be nuU for some values of0but is non nuU in some open
neighborhood of these values and has a constant sign on this neighborhood. It is thus obvious

that there are no equiUbria for \d ^J < 1, and for \d t^,| = 1 (resp. —1) the equiUbrium
0 = —\ (resp. 0 = |) is unstable. The behavior around 0 = 0 is interesting (let us call s(x) the
sign of x): as s(0) = s(—0o) = s(-v<f>), we have:

- during a right forward turn, 0 increases

- during a left forward turn, 0 decreases

- during a right backward turn, 0 decreases

- during a left backward turn, 0 increases

This yields a way to "controP 0 around 0 by backing up while turning either to the right or to
the left: if 0 > 0 (resp. 0 < 0), a right (resp. left) backward turn brings 0 to negative (resp.
positive) values. Of course, with forward turns the same "control" is also possible.

•Iditan^l > *
In this case, 0 wiU not have a constant sign and when studying the behavior around 0 = 0, this
wiU break the symmetry between forward and backward movements, as we wiU see. The solution

of 2.1 shows there is a stable equiUbrium for any maneuver and it is reached exponentially in
time. For v > 0, the equiUbrium for either a right or a left turn is such that |0eg| < J. But for
v < 0, the equiUbrium is such that body 1 is almost folded on body 0; as we restrict our study
to angles 0 smaller than § in norm (the trailer must not crash into the truck!), we see that there
is no stable position in this case for v < 0. The behavior of 0 around 0 is more complex in this
case:

- if |0| <|arcsin(^p£)| we have s(0) =s(0o) = s(-v<j>) and the behavior is the same as in
the other case

- if |0| > |arcsin(^^)| we have 5(0) = s(-0o<£0) = s(-v0), which means that backward
maneuvers do not change the sign of 0 (in fact, they increase the absolute value of 0 tiU
the corresponding equiUbrium is reached).
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For small 0 it is then possible to "control" 0 around 0 by backing up and turning, but not for
large 0.

This qualitative study of the car-Uke robot with 1 trailer has shown that the behavior of the

trailer depends on the ratio -i4gs£. For constant <f> and X, this means that a truck with along
trailer and a car with a small trailer cannot be driven in the same way: the truck can reach 0 = 0

from any initial position by backing up and turning in the appropriate way, while the car can

do it only for some initial positions (0 must be smaU). On the other hand, when the car rides

forward, it can turn to the left or to the right as long as desired, while the truck cannot (the
trailer would crash into the truck).

We wiU now try to solve the parking problem for a truck with a trailer, using the quaUtative

knowledge we have just acquired.

We assume \d t^<| < 1. We wiU now study the foUowing maneuver: a forward right turn
and then a forward left turn, both turns lasting the same time. In order to simpUfy the next

equations, we will now consider only absolute values for 0o and <j>. This means a right turn is

characterized by —<f> and a left turn by <f>; in the same way, a forward left turn corresponds to 0o

and a forward right turn to —0o. We rewrite equation 2.1 as:

d0 = (1 —d t^, sin 0)0o dt (forward right turn)
d0 = -(1 - 2j^ sin 0)0O dt (forward left turn)

Integrating the first equation between time 0 and t yields: f(0(t)) —/(0(O)) = 0t where:

2 tan I - j *V .
/(0) = arctan 2 ^^

/i &2 /i I?
y-1 djtan2^ \jX Sftartan3 0

Integrating the second equation between time t and 2t yields: g(0(2t)) - g(0(t)) = -0t where:

2 tan ? + j .L .g(0) = . l arctan ^H^I
y1 dfUn*7 y1 df^tan2<£

A straight use of trigonometric formulas transforms then f(0(t))—f(0(O)) = —(g(0(2t))—g(0(t)))
into:

, 0(2t) 0(O)W1I 20(*K 21 , 0(2t) 0(0) 20(*K
(tan -+-1 - tan -^r-Yl + tan2-^) = -; -(tan-^tan -^ - tan2 -^)
v 2 2 /v 2 ' ditan<£v 2 2 2 }

But we have seen that for a forward turn to the right, 0 is increasing and for a forward left turn, 0

is decreasing; thus 0(0) < 0(t) and 0(2t) < 0(t). As we aredealing with angles inside the interval

]- f, f [, the same inequalities hold for tan0(0), tan0(t) and tan0(22). The right member of the
previous equaUty is thus negative, which impUes 0(2$) < 0(0). As this maneuver consisting in
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two turns with same length does not change the orientation of the truck, we conclude that the

trailer rotates clockwise.

After this maneuver, the truck has its original orientation but it has advanced. Let us

assume 0 > 0. In order to correct this advance, we can either backup or perform first a backward

turn to the right during time t' and then a backward turn to the left during the same time f.

In both cases, it is easy to see that 0 increases (in the first case, 0 is initially positive, thus

0j = 0 which varies Uke —v0 is positive; in the second case, the equations are very similar to the

previous study but this time 0 first decreases and then increases); therefore, as 0o wiU be the

same at the beginning and at the end of either maneuver, we conclude that the trailer rotates

counterclockwise.

In the second case, the truck translates sideways and parking thus needs less maneuvers.

However the trailer slowly leaves the parking place. On the contrary, backing up ensures the
trailer remains in the parking place.

Figure 2.4: Two ways of parking a truck with 1 trailer

The previous maneuvers can obviously be performed by a rule-based incremental controUer
and theircombination allows to park a truck with 1trailer. On thefigures the initial andthe final
positions are drawn as weU as the position of(x0, yo) during the parking maneuver. Thefirst two
figures start from anintermediate position (0O = 0,0\ > 0) where therear ofthe trailer is already
in the rear corner of the parking place; the figure on the left uses forward right turns, forward
left turns and backups, while the figure on theright uses forward right turns, forward left turns,
backward right turns and backward left turns. It is easy to reach a position (theta0 = 0,0i > 0)
with the rear of the trailer inside the rear corner of the parking place: starting from an initial
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position parallel to the parking place, the truck first turns backward to the left during time t\,
then backs up, turns backward to the right during time t\ and eventually goes on backing up.
The whole parking process is shown in the next figure.

Figure 2.5: Parking a truck with 1 trailer



Chapter 3

Practice oriented techniques:

towards learning

We now deal with another aspect of robot motion: instead of focusing on the theoretical proofs
that guarantee the controUabiUty of a robot, or that ensure the robot wiU be able to move amidst

obstacles whatever the initial conditions, we wiU try to find some practical waysto solvethe robot
motion problem. By practical, we mean easy to implement on real-world systems, easy to find;
instead of looking for theoretical often complex solutions, we wiU look for "natural" solutions.

Of course, this is not - and cannot be - formalized, and therefore attracts many critics. These
critics are only justified if practice oriented techniques claim their ability to solve the general
problem of robot motion, unless they prove it of course.

In order to achieve some universality in solving the robot motion problem (what we could
formalize by perturbation and model robustness, or stabiUty), most of these techniques see in
learning a way to paUiate their lack of formal proof. But the word learning must be used with
caution too, as we wiU see: the different techniques are not concerned with the same level of

learning and thismustbe stated very clearly. Furthermore, learning is useful if there is something
to learn and some hope to learn it! This leads us back to theory, but this time the subject is
learnabiUty and convergence of the learning process.

3.1 Neural networks

Let us begin with a quick introduction of neural networks: they are made of an interconnection
of devices, called neurons, and local external inputs. The input/output characteristics of a
neuron can be modeled by a continuous monotonicaHy increasing function taking its values in
[0,1], usually called a sigmoidal function (in order to have a saturating behavior instead of a
mere one or zero behavior). The inputs to the neurons consist of weighted sums of the neuron

29



30 CHAPTER 3. PRACTICE ORIENTED TECHNIQUES: TOWARDS LEARNING

outputs. The goal is to choose the weights of the network to achieve a desired input/output
relationship; this process is known as training or learning. One of the strengths of the neural
networks reUes in the flexibiUty of the connections between neurons: the "learning power" of a
neural net, e.g. the functions it may learn, depend on the connections between neurons. Many
such connection topologies may be considered; examples are fuUy interconnected networks, multi-
layered networks, feedforward networks (the input of the i-th layer has the output of the i —1-th
layer as a subset), networks with local feedback interconnections.

3.1.1 Truck backer-upper

The next section deals with the "truck backer-upper", a neural network controUer steering a

trailer truck while backing up (no forward movement aUowed) to a loading dock [NW90].

For this appUcation, the neurons used are Adalinesand they are connected together to form a

two-layer feedforward network. An Adaline has n+1 inputs (the n inputs of the network and one

additional input set to +1 which adds a constant bias to the weighted sum) and a single output.

The output equals the sum of all inputs multipUed by the weights and passed through a sigmoid

(tanh in this case). The network is trained by back propagation, which aims at minimizing the

mean-square error between the desired output and the actual one (this error is propagated from
the last layer of neurons to the first layer, hence the name of the algorithm, and the weights are

then updated by a proportion of the computed propagated error).

In order to solve the problem of the truck backer-upper, two stages are involved: first a

network (25 Adalines on the first layer and 4 on the second) is trained in order to simulate the
dynamics of the truck and its trailer, and then another network with a similar topology (25
Adalines on the first layer and 1 on the second) is trained to perform the task.

The first stage may be seen as identification: the inputs of the network are ^trailer* ^trailer*
fyruck> ^trailer an(^ *ne s*eermg signal Uk] the outputs are the new state representing position
and orientation of the truck and the trailer when the steering signal is appUed to the previous

state. The training process starts with the truck and the trailer in any configuration; the neural

net is trained to predict the next state.

The second stage is the control learning part: the goal is to bring the trailer in front of the

dock with a nuU angle, however the truck may have any final orientation. A lesson goes on

for a given time or as soon as the truck or the trailer crashes into the dock; the error fed to

the network is a combination of the various position and orientation errors. The input of the

network is a state and the output a steering signal; this signal is given to the truck and trailer

emulator in order to compute the resulting state; the necessity of the emulator is obvious: in

order to learn something, the neural controUer needs to compute an error which wiU then be

propagated. But the error on the steering signal is not available, only the error in the final state
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is available; the emulator is used to compute by back propagation this steering error which is
then back propagated through the neural controUer.

About 20000 backups were needed to train the neural controUer and the experimental results

are good: starting from non trivial initial states, a satisfactory path using only back-ups is found.
Furthermore by changing the performancefunction (the error to minimize), some more complex
goals can be achieved Uke backing up while minimizing control energy.

3.1.2 Mobile robots

In this section we see another neural network which is trained to control mobile robots moving

in a confined space with obstacles whUe achieving a given goal [NSA90].

The mobile robots considered here have four wheels aligned in the same direction and two

motors which can be used independently. The robot can move freely in direction and position;

however there is a torsion Umit constraining the right and left turns. Up to 12 sensors are placed
on the robot: ultrasonic sensors, infrared sensors, tactile sensors and torsion Umit sensors. The

neural network used to control the robot is a combination of two networks called a reason and

an instinctnetwork. The reason network has 3 layers with 13 units on the input layer, 9 units on

the hidden layer and 7 units on the output layer, whUe the instinct network has only 5 units on
each of its three layers. Both are highly interconnected. The instinct network receives as input
the right and the left torsion limit and twosignals from the reason network, called excitatory and
inhibitory signals. The five other outputs of both networks are controls for the motors: forward,
backward, right, left motion as weU as a buzzer signal.

The particularity of this architecture is its hierarchical structure: the reason network de

termines the correspondence between the sensory input and the behavior pattern (like "move
forward when the infrared sensor on the head detects Ught") and the instinct network determines
the correspondence between sensory input and some critical behavior patterns that should be
taken over for a certain period of time; this instinct network is activated when torsion Umit is

reached or when there is an obstacle which has to be avoided. This decomposition into two
networks decreases the number of training lessons and necessary connections.

Instead of using back propagation, another algorithm (pseudo impedance control) is used in
order to avoid localminima. The learning is divided in three stages: in the first stage, there is a
robot behaviorsimulator; in the second stage, the actual robot is used but it is always connected
to the network. In the last stage, the network is stored in the robot in ROM and the learning is
considered finished if the robot behaves weU.

In order to test the methodology, several robots are used and divided in twocategories: robots
trackingother robots emittinginfrared raysand robots that escape when they sense infraredrays.
For the first class of robots, the reason network has been taught 62 patterns and the instinct
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network 9 patterns; learning was completed in 500 lessons. The robots have proved to be able
of determining their motion in response to the other robots. It is important to note that the
patterns used for training are weU chosen and already encode the action to perform in such or
such situation; in this appUcation, the neural nets are a convenient way to control the mobile
robots and allow some distributed control.

3.1.3 Connectionist robot motion planning: MURPHY

This section describes Murphy [Mel90], a robot-camera system associated with a connectionist

architecture; the problem is to guide a multi-Unk arm to visual targets in a cluttered workspace.

No a priori model of the arm kinematics and of the characteristics of the vision system is assumed.

Usually, when given a robot, one writes down kinematic equations which map joint angles

into the workspace coordinates of the control points of the arm; then an inverse-kinematic model

is computed, which computes the joint angles necessary to bring the robot to a given position.

The major difficulty with inverse kinematics is that there are usually many settings of the joint

angles that put the gripper of a robot arm at a given point in workspace. One of the aims of

Murphy is to achieve its task without computing the inverse kinematics map by using only a

forward model: the robot will change randomly its joint angles and see where it goes and compare

this position to the goal. Of course these movements must not be done by the real robot; it is

why Murphy will build an inner model of itself and simulate these movements with this model

before it appUes, this time in real world, the chosen movement.

The connectionist architecture consists in several interconnected neural nets: a visual-field

net (24 x 24 units which respond when a visual feature falls into the receptive field), a hand-
velocity net (24 units which respond to the visual image of the hand and are selective for the

direction and ampUtude of the hand motion), a joint-angle net (273 units which encode static
joint angles) and a joint-velocity net (24 units which encode the velocity for every joint). AU

these nets are single-layered and the units are grouped into clusters; the output is a weighted

sum of contributions from a set of multiplicative clusters of input weights (y = Y^j wj lit vijx*i
hence the name sigma-pi learning for such nets).

Murphy builds its forward kinematic model by stepping its arm through a relatively small

uniform sample (17000) of the 3.3 billion legal arm configurations; the relationships between joint

angles and states are learned. Once the robot has learned to picture its arm in an arbitrarily

joint configuration, it can use heuristic search to guide "mentally" (this term wiU be used for all
actions that are not made in real world but are computed by using the learned inner model) its

arm to a visually-specified target. If the mental image of the hand falls in superposition with

the target, the robot has found a path joining the initial and the goal configuration. However

this path is not always feasible (the arm becomes tangled up in its own joints or with obstacles)
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and in this case the arm has to be backed up and other ways of performing the task have to be

found. This is done by a search procedure which first labels the target and any visible obstacles;

the distance between hand and target is computed, taking in account visible obstacles; the arm

is sent mentally in a random direction and if the new distance is shorter than the previous,

this is the new state; if not, the state is stored on the stack of things to try later and another

direction is chosen; if none are available, the state computed one step earUer is taken and the

next most promising move stored in the stack is tried. If this depth first search leads to the final

configuration, the arm is moved physically foUowing the mentally computed path dispensing with

all backtracking dead-ends. If no path is found, the robot has to give up.

Experience shows the robot copes weU with its task; however the paths involve sometimes

some useless and complex motions (although all the dead-ends found during the mental comput

ing of the path are now skipped, depth-first search does not find the shortest path, it only gives

the first available solution). In order to smooth its movements and to speed up the research of

a new motion, the inverse differential map is computed, which takes joint angles and a desired
workspace perturbation into a set of joint-angle perturbations.

The methodology used by Murphy is interesting because it is a learning system where the
injected knowledge is not too important; however the strategy used to bring the hand towards
the goal foUows a steepest gradient method, which is a simple algorithm but nevertheless a

definite help for the learning system. The interesting part Ues in the identification stage when
the robot learns by doing and acquires an internal model of its kinematics map which is then
used internally to simulate the motion. The difference with the previous neural nets is that the

examples needed to compute the weighting coefficients inside the neuralnet are not given by an
external teacher, but they are acquired by the robot using its own visual system and foUowing
some initial exploring motions.

3.2 Fuzzy control

We give some elementary definitions and then we show how fuzzy control deals with car-like
robots. Let us call J the interval [0,1] and let X be a set; then a fuzzy set on X is a function
from X to I. The set of all fuzzy subsets on X is denoted Ix. Given p € Ix and x € X, the
value p(x) can be interpreted as the "degree membership" of x to p and therefore p is often
called a membership function.

Fuzzy sets have been intensively used in situations in which impreciseness is not apparently
of a probabilistic nature. One of the basic ideas in fuzzy theory is to associate real numbers to
certain objects; other theories have the same goal, such as metric spaces or probabiUty theory.
An extended theoretical study of fuzzy sets can be found in [Low85], where topological and
probabilistic considerations are taken into account.
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Fuzzy theory can be used to model input/output relationships and this is the key for fuzzy
control. A fuzzy controUer is basically a set of fuzzy if-then rules Uke: if A and B then C, where

A, B are fuzzy outputs of the system to control and C is a fuzzy input. Of course, in order

to control a system, you need real inputs and you observe real outputs; translating real data
into fuzzy sets is called fuzzification while the converse operation is defuzzification. Different
ways of performing either of these two operations have been presented in fuzzy Uterature. The

general scheme of fuzzy control is then: first fuzzify the outputs, then scan through the fuzzy

rule-base, in order to obtain a bunch of fuzzy inputs (this stage is often called fuzzy inference),
and defuzzify in order to have a real input.

One of the advantages of fuzzy control is the "natural" way of expressing things: fuzzy rules

look often like "if error on position is small then the input has to be large". Of course, the

fuzzy values "small" or "large" depend on the given membership functions, and although most
appUcations claim they have some sort of robustness concerning the local shape of the membership

functions, the global shape (width, grade of incline) depends heavUy on every appUcation, as we

wiU see for instance in the next section. This is one of the main drawbacks when dealing with

learning systems used for automatic acquisition of a fuzzy controUer for a given system.

3.2.1 Truck Backer-upper

The fuzzy controUer presented here [Kos92] backs up a simulated truck, with and without trailer,
to a loading dock; it has been compared to the neural truck backer-upper described before, and

an adaptive fuzzy controUer is presented too, that merges these two approaches, and allows to
learn parts of the fuzzy controUer from a set of data.

The truck has three state variables x,y and 0 which determine its position (x and y are the

coordinates of the rear center of the truck) and its angle with the horizontal. The goal is to

make the truck arrive at the loading dock (aUgn the position (x,y) of the truck with the desired
(x/, yf)) at a right angle. Enough clearancebetween the initial position and the dock is assumed,
so the y coordinate may be ignored; the loading zone where the truck moves corresponds to the

square [0,100] X[0,100] and (x/, yj) = (50,100); <f> is smaller than 30 degrees in norm.

To each of the variables is associated a set of Unguistic variables (5 for x: LE, LC, CE, RC,
Rl standing for left, left center, center, right center, right; 7 for 0: RB, RU, RV, VE, LV, LU, LB

standing for right below, right upper, right vertical, vertical, left vertical, left upper, left below; 7

for <f>: NB, NM, NS, ZE, PS, PM, PB standing for negative big, negative medium, negative small,
zero, positive small, positive medium, positive big) and fuzzy membership functions (triangular
shape); there are 35 fuzzy rules (<f> as a function of x and 0):
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0\x LE LC CE RC Rl

RB PS PM PM PB PB

RU NS PS PM PB PB

RV NM NS PS PM PB

VE NM NM ZE PM PM

LV NB NM NS PS PM

LU NB NB NM NS PS

LB NB NB NM NM NS

35

Each fuzzy rule produces a fuzzy output (the output fuzzy set is cUpped at the degree of

membership determined by the input conditions and the rule); to defuzzify this output and obtain

a real output, centroid defuzzification is used (sum of the products of angle times membership

value over sum of membership values), which yields the inertia center of the fuzzy sets produced

by the fuzzy rules.

Comparison with the neural backer-upper described previously shows that the fuzzy controUer

is computationally Ughter than the neural controUer: most operations for the neural controUer

involve multipUcation and addition, whUe the fuzzy controUer involves comparison and addition

of two real numbers. Furthermore some trajectories found by the neural controUer are far more

complex than the trajectories found by the fuzzy controUer for same initial conditions.

Of course, neural nets offer a way to infer a controUer starting from raw data (these data are
the samples chosen - mostly carefuUy - for the learning stage), whUe the fuzzy controUer has

been written by encoding some common-sense knowledge. It could be interesting to merge both
methodologies in order to write a fuzzy controUer starting from the raw data; this is called the

"adaptive fuzzy truck backer-upper".

The 3 variables are divided respectively into 5, 7 and 7 fuzzy-set values Uke previously, which

gives 5x5x7 = 245 cells; then 2230 truck samples from seven different initial conditions and

varying angles are generated. By finding clusters among the data, 35 fuzzy rules can then be

found. These fuzzy rules produce nearly equivalent truck-backing behavior. Of course, one
should notice that much a priori knowledge is needed to "learn" such fuzzy rules: the number

of fuzzy Unguistic values is known and their size is given; for instance, uniform partitions of the
product space give poor results.

If a trailer is added to the truck, a fuzzy controUer can be found too (7 fuzzy variables for
the angle of the trailer with horizontal, 3 fuzzy variables for the relative angle of the cab with

the trailer and always 5 fuzzy variables for x and 7 for <f>). The adaptive fuzzy controUer needed
this time 6250 data and found a set of fuzzy rules yielding comparable performance. The same

remarks apply of course, concerning the a priori knowledge.
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3.3 Rule-based incremental control

We have already seen this type of control when deaUng with robot motion and control. We
wiU now see how learning techniques may be used to write such controUers. We describe briefly
the learning program Candide which learns to control a process without a priori knowledge
about this process; it observes random initial evolutions of the process and acquires a qualitative
model: monotonous and derivative relationships betweeninputs and outputs are lookedfor; then
a rule-based incremental controUer is deduced from this model.

This learning program has been appUed to the car driving problem, and we give here the

results obtained by Candide. These may be compared advantageously to other rule-based

incremental controUers written manually [Fou90].

3.3.1 Acquisition of a qualitative model

Let us come back now to the learning program CANDIDE which will learn to write such rule-based

incremental controUers as described in a previous part for a given process starting from no initial

knowledge about this process. This process is assumed controUable and observable; this means

we suppose we have the right sensors to observe it, or at least among our sensors we have the

right sensors (there may be redundant data or even useless data available, this will only slow the

learning program) and we have the right commands (we can control the process).

Initially the only available thing is the process; we wiU proceed by random perturbation of

the process in order to control it later. Random initial values are given to the inputs and all

inputs are maintained constant except one which is either decreased or increased; this is done

several times for all different inputs, and at each sampling time and for each trial, the values

of all inputs and outputs are stored in an experimental data base (edb). The aim of this step is

to explore the evolution space as much as possible. The obtained edb is given to the learning

program which wiU first acquire a quaUtative model and then find a controUer C\. This controUer

is then appUed to the process, random initial values are always given to the inputs but this time

the process is controUed by C\ and in the same way all values of inputs and outputs are stored in

an edb, which is given to Candide, yielding then a controUer C2. This recurrent learning stops

as soon as the controUer is satisfactory. We do not give in this paper any results on convergence

of this learning, we are currently working on it with E. Martin (thesis to appear). We wiU now
explain more precisely how Candide works.

Let us assume the physical process we are studying is measurable via a given number of

sensors. Every sensor may be considered as a real-valued parameter with values sampled in

time.

The aim of the quaUtative model is to express easUy relationships between these parameters.
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If one does not want to be bUnded by the huge amount of data, it is necessary to find an
appropriate representation, much more concise while keeping a maximal information on the
evolution of the parameters: grammars[ASU86]. As we are studying parameters through a time
sampUng, the problem is a multivariable problem with a privUeged dimension. Regular grammars

are very appropriate in this case. We have to find a mapping between the numerical level and

the grammatical formalism; this is done in two steps: a coding step and a grammatical inference

step.

The coding step will transform the numerical data into strings written on a reduced alphabet.

Then we use very efficient algorithms derived from[Fu82], which extract a regular grammar from
a given set of strings written on a finite alphabet. The particularity of the resulting grammar is

to accept the given strings and to optimize a criterion, so that we can assume the found grammar

is one of the best we could obtain[LZ89].

In the next subsections, we wiU explain how we code the evolutions of all parameters and we
wiU then show how we obtain a grammar modeling these evolutions.

How evolutions may be coded

The variations of each parameter wiU be coded by three expUcit signs, |, j and 0, meaning
respectively increasing, decreasing and constant.

For a given time sampUng (<i)«€/,|/|<oo» eacn parameter x can be understood as a Ust:

The quaUtative evolution of each parameter is given by derivated lists:

{<f>[xtl -xtQ],(j>[xt2 - xtl], •••)

The appUcation <j> is defined by:

<t>[y] = <

t if 2/> 0

i if y < 0

0 if# = 0

An expression written on the 3-letter alphabet is an image of the temporal evolution of the
parameter, it may be seen as a sentence.

We wiU try to find a regular grammar modeling these sentences. We chose regular grammars
because they are the adequatetool to describe repetitions and succession ofpatterns: we want to
have for a given parametera symboUc representation which teUs us for instance that the param
eter is first increasing, then decreasing and then constant; this representation is easUy performed
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by regular grammars. To each parameterwe wiU then assign its grammatical representation and
the interval of validity (maximum and minimum values).

The foUowing subsection describes the process leading to a regular grammar from a set of
strings.

Robust grammatical inference

We are now concerned with inductive inference related to regular grammars: regular grammatical

inference is a way of inferring a continuous description (a regular grammar) from a discrete
description (a finite set of strings). More formaUy, it can be expressed as: let si, •••, sn be n
strings, find a regular grammar G accepting the n strings.

Such a problem has many solutions, many being uninteresting because of their excessive

generalization (the universal grammars which accepts everything is always a solution). The
"right" grammars should then be chosen so as to verify a given criterion.

As we saw in the previous section, a string models the variations of a parameter during one

experiment; we would Uke to identify some underlying structures in this string and these struc

tures have to be long enough in order to bring relevant information, and should appear frequently,

or they could be interpreted as sheer random. These considerations have been formalized into

the foUowing criterion: maximize the product of the length of a substring by its number of

contiguous occurrencies. This leads to robust grammatical inference (for formal proof of what
foUows, see [LZ89]). Robustness has to be understood in the foUowing sense: let us consider a

given set of strings and let G be the grammar inferred from these strings; let us now change the

strings a Uttle (deleting some letters, substituting some letters by others, adding some letters)
and let us infer a grammar G' from this new set of strings; then it is very easy to change G'
into G. In other words, a small variation on the initial strings does not dramatically change the

inferred grammar. This is very important as the strings we wiU be working on are symboUzing

the variations of real parameters measured by sensors and some errors on these measurements

(hence on the strings) are Ukely. The inferred grammar can then be seen as sort of invariant.

The transformation used to deduce G from G' is called filtering methodas it consists in deleting

the isolated substrings at the top level in G', as appears in the next examples.

We give now some examples to see how this grammatical inference works. Let us recall

at this point some basics on regular grammars. Given an alphabet T (a finite set of elements
called letters), we define the three foUowing operators: concatenation, a binary operator, written

multipUcatively, which builds the word xy from the two words x and y, union, a binary operator,

written additively with its usual set theory meaning, and power, a unary operator, which is

defined by x+ = {x, xx, •••, xn, •••}. The class of regular languages is the smallest set closed for
these three operators; a regular grammar is then defined recursively by:
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• Vx € T , x is a regular grammar

• If Ri and R2 are regular grammars, so are R\ + i?2» R\ and ifcii^

Let us consider for example the foUowing set of strings: {aaaaaaababababab , aaaaaaaaaa ,
aaaaaaaabab}; we infer the regular grammar a+ + a+(ab)+, i.e. all the words containing only
a's and the words starting with a's and ending with succession of the pattern ab. If we add

to the previous set of strings the noisy string aaaaaaeaaaaa, we infer the regular grammar

a+ + a+(a6)+ + a+ea+; applying the filtering method on this grammar, we transform a+ea+ into
a+ which is the grammar we would have obtained if the letter e (a 1-order noise) had not been
present in the sample string.

Let us take now a real-world example used whUe applying Candide to the car driving prob

lem. We wiU give more details on the car simulation later; let us just give here one small part of

the edb, where two parameters are considered during one experiment: speed and acceleration.

(SPEED

(0.5 1.12 1.768 2.423 3.08 3.736 4.391 5.045 5.698 6.349

6.999 7.647 8.317 9.302 9.999 11.106 11.752 13.227 13.716))

(ACCELERATION

(2.5 3.099 3.243 3.275 3.281 3.28 3.276 3.271 3.264 3.257

3.249 3.241 3.346 4.925 3.488 5.535 3.229 7.377 2.444))

The variations of these parameters are then computed: however due to sensor reUance mar

gins, when computing these variations, two elements are declared equal if their relative difference

if smaller than 1%; the first element is greater (resp. smaller) than the second if the relative
difference is greater (resp. smaller) than 1% (resp. -1%). Then the grammatical inference with
the filtering method is appUed and the results are:

(SPEED (t+))

(acceleration (0+(TI)+))

Extracting causal dependencies

For each parameter we have now after the coding step and the inference step a regular grammar
which describes its quaUtative evolution. AquaUtative behavior model wiU befound byextracting
relations of monotony and derivative between the parameters.

Let us call R(x) the regular grammar inferred from the variations of the parameter x and
R(x) the regular grammar deduced from R(x) if uparrows are changed into downarrows and
conversely. We introduce for each x the new parameter x' computed with x{. = xti+1 —xtr
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Monotony and derivative relations are based upon the mathematical ones, more exactly the
quaUtative definitions are defined so as to cover the quantitative definitions.

The relationship between two physical parameters x and y is monotonically increasing if the

regular grammar R{x) and R(y) modeUng the variations of both parameters are equal. If R(x)
and R(y) are equal, the relationship is monotonically decreasing. In the first case, we write
M+(x,y) and in the second case M~(x,y).

The notion of derivatives is based upon the mean values theorem (J,-, tj are consecutive time
steps):

\\fM-f(ts)-(ti-tj)f(U)\\<lU-ij)3 sup /"(*)
<€]i;,t<[

If we suppose the parameters behave as continuous differential functions of time with uniformly

bounded derivatives, which is the case in most encountered physical processes, we may consider

that the right term of this equation is very small (it is in fact true in the Umit, cf. Taylor-Young

theorem). Wesay y is a quaUtative positive (resp. negative) derivative of x if R(x') = R(y) (resp.
-ft(x') = R(y)). We write in the first case D+(x,y) and in the second case D~(x,y).

This notion of quaUtative derivative has to be handled with care; we keep the name because it

relates the variations of one parameter with the variations of the variations of another parameter,

but it should not be interpreted as an exact derivative. AU these relations express trends, they

show how one parameter acts on another. We want to make another point: delays are not

taken into account; if y(k) = x(k —ko), the evolutions of x and y are modeled by the same
grammatical grammar, hence x is monotonically increasing with y. If x is the input and y an

output, this means that any action on x will in fact influence y after a delay ko (for instance in

a shower: turning the tap does not affect immediately the temperature). This is not a drawback

in our approach, as incremental control deals well with this kind of situations: when an input is

incremented, the effect is not immediate, but may well take place some moments later. During

these few moments, the input wiU keep increasing and the effect wiU be reinforced (however this

may yield overshooting).

If we consider again the real-world given before, by computing the regular grammar inferred

from the variations of the variations of SPEED, we see it is equal to the regular grammar inferred

from ACCELERATION which allows us to state that ACCELERATION is a positive derivative of SPEED.

3.3.2 How to write rule-based incremental controllers

For each parameter x, let us compute the minimal and the maximal values taken during the

various experiments. We introducethen bm^IL(x) and &max(a0 as being respectively the maximum
of all minimal values and the minimum of all maximal values. Let us introduce too b'm*m(x) and
6max(x) as respectively the minimum of all minimal values and the maximum of all maximal

values.
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The interval [6mjn(x), frmaxfa)] gives strong constraints on x and we may have &min(aj) >
&max(aO- On the contrary, [b,m-m(x),b'mdlX(x)) is always ordered in this way, and gives weak
constraints on x.

The general scheme in order to write rule-based incremental controUers is to constrain x

between 6min(x) and 6max(^)> while keeping x (it is a safety measure in the case of 6min(x) >
&max(aO) between b''(x) and &max(x). For instance, for the driving car appUcation, if x is
the distance between the car and the middle of the road, b'm-m(x) and bm3X(x) give the width of
the road, while bm^R(x) and &max(aO only g*ve intermediate values, usually very near to 0; thus
x wiU be constrained between these two small values whUe being kept between the boundaries

of the road (it is important to see that nowhere the car is told to foUow as a reference signal

the middle of the road; this is an immediate consequence of the definition of these four extremal

bounds).

It is then easy to write the control rules: we look at the parameters which are related to an

input through some quaUtative relation and we constrain these parameters between the associated

boundary values, by acting on the input (let u be the input and x the current parameter):

• M+(x,u) -*• "if x > frmaxfa) then decrease w"
"if x < &min(x) then increase un

"if x > 6max(x) then decrease un
"if x < b'm-m(x) then increase it"

• D+(u,x) -• "if x > &max(aO then decrease u"
"if x < 6m|n(x) then increase un

"if x > &max(x) then decrease uv
"if x < ^min(a?) then increase uv

The rules for M~(x,u) and D~{x,u) are deduced from the previous rules, by replacing
increase with decrease and conversely.

The rules corresponding to derivative relationships have to be distinguished from the other
rules: these rules do not imply an immediate reaction, their action wiU be fulfilled after some
delay. By decreasing u, the aim is to have it negative; by increasing u, we want it in fact to
become positive.

The rules corresponding to quaUtative derivative relations seem to be the same as the other

rules corresponding to monotonous relations. The previous remark shows it is not in fact the

same thing, but however we concede that some ameUorations could be made in order to draw

much more information from the quaUtative model.
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3.3.3 CANDIDE and car driving

The previous methodology has been applied to a car driving on a circuit. The model of the
car used in the simulation is rather complete; the inputs are the steering angle (ANGLE) and the
power of the engine (POWER, positive to accelerate and negative to decelerate); the outputs are
the speed of the car (SPEED), the sliding speed (SLIDE), the acceleration (ACCELERATION), the
distance of the car with the middle of the road (VISION-POS-CAR), the angle between the axis of
the car and the middle of the road (VISION-ANG-CAR), the reaction force between the road and
the wheels and the instantaneous curvature radius.
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Figure 3.1: Candide drives a car

The controller found by Candide is:

(rule 1 «

(rule 2 (<

(rule 3 (>

(rule 4 (>

(rule 5 «

SPEED 0.5)(increase-ANGLE))

SPEED 0.5)(increase-P0WER))

SPEED 12.387)(decrease-POWER))

SPEED 31.454)(decrease-ANGLE))

SLIDE 0.0)(decrease-ANGLE))
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(rule 6 (< SLIDE -0.269)(deerease-ANGLE))

(rule 7 (> SLIDE 1.153)(increase-ANGLE))

(rule 8 (> SLIDE 12.353)(increase-ANGLE))

(rule 9 (< ACCELERATION -0.0)(increase-POWER))

(rule 10 (> ACCELERATION 3.281)(decrease-POWER))

(rule 11 (< VISION-POS-CAR-1.647)(increase-ANGLE))

(rule 12 (< VISION-POS-CAR-8.341)(increase-ANGLE))

(rule 13 (> VISION-POS-CAR 1.647)(decrease-ANGLE))

(rule 14 (> VISION-POS-CAR 7.542)(decrease-ANGLE))

(rule 15 (< VISION-ANG-CAR 0.0)(increase-ANGLE))

(rule 16 (< VISION-ANG-CAR -0.74)(increase-ANGLE))

(rule 17 (> VISION-ANG-CAR 0.0)(decrease-ANGLE))

(rule 18 (> VISION-ANG-CAR 0.919)(decrease-ANGLE))

)

The first experiments have been done by giving first random initial values to the power and
the steering wheel angle and then by increasing or decreasing the steering wheel angle till the
car leaves the road. This yields a first half of the edb. Then starting always with random initial
values for both commands, this time the power is increased or decreased; this yields the second
half of the edb. Candide works then on this edb, finds a qualitative model of the car and writes
a rule-based incremental controller. On the circuit shown on the figure, the learning loop has
converged after the first learning loop.

3.3.4 Learnability and convergence of the learning process

We will not develop these points here, as they are currently under research and all the results will
appear in EricMartin's thesis (around June 92). This is the first formalization of the application
of learning techniques to control problems and a theoretical basis will be given based on the
theory of recursive functions; learnability and reducibility between learning problems are then
developed.

3.4 Miscellaneous

The word learning is often used in a too broad meaning; one should distinguish real learning
(acquisition ofnew structures) from mere modification ofcoefficients. In [FT87] a cell decompo
sition ofthe configuration space is given; probabiUties ofentry ofeach cell aregiven and they are
updated while moving the robot. Many neural networks are trained to perform adaptive control
laws and this is tuning of coefficients rather than learning. In the same way, expert systems
used to control robots like path planners, which follow a given strategy in order to adapt local
techniques, should not be considered as learning systems. In the same way as it is important
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to distinguish between techniques which have theoretical ability to solve the problem of robot
motion and techniques which do not have it, it is necessary to separate techniques with real
learning abihty from the others.



Chapter 4

Conclusion

We have seen in this paper several ways to solve the robot motion problem; instead of considering

these different methods as competing solutions to the same problem, we have looked for some

common motivation in order to classify them and see the advantages of each separately, rather

than emphasizing the drawbacks.

We have seen that the robot motion problem could be understood as a geometrical problem,

a control problem or an artificial intelligence problem; it is thus related to many different fields

like algebraic geometry, graph theory, non linear control, differential geometry, learning, among
others. The various methods focus on different issues: either finding a geometricalsolution when

the movement constraints of the robot are not taken into account, or proving the existence of
a solution with a given robot, or designing a way to find such a solution. Different goals imply

different tools ranging from explicit resolution of equations and formal reasoning to application
of machine learning techniques.

Robot motion has to be considered in its whole and cooperation between the different ex

isting methods could yield an efficient way to solve it. Already some small-scale cooperation is
available, like mixing neural nets and fuzzy rule-based control [Kos92], rule-based reasoning and
neural nets [HLG91], or geometrical motion planning and non linear control. We have discussed
incremental rule-based control too, where a theoretical approach proving the existence of a so

lution copes well with a learning program. These are only first steps and with the rising use of
robots, further research is necessary if one wants to have a robot that can find its way in a very
short time in a clustered and changing environment ... Reliability and algorithmic complexity
have never managed too well together and no particular method should be discarded to achieve

this ultimate goal.

Back to more short-term considerations: further work on rule-based incremental control

includes the study of the rule-based controllers themselves. It has been shown, for instance for
linear systems, that an incremental control could be found to achieve such or such goal; but it
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would be useful to show that these incremental control laws can be expressed in an easy way

by a finite set of rules, hke the rules found by the learning program Candide. This would be

another step toward proving the theoretical convergence of the learning process.

But this is another story ...
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