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Abstract

The AdaTron algorithm is able to find the so called perceptron ofoptimal stability.
Although if one imposes constraints on the weights or considers gray scale patterns it
is sensible to distinguish different kinds of robustness (stability). We show that in any
case the AdaTron algorithm is able to find a perceptron (or attractor network) of optimal
robustness, just taking actual constraints into account and apply these results to Cellular
Neural Networks (CNN).

1 Introduction

Over the years various algorithm have been developed to solve the so called perceptron, problem
e.g. Perceptron algorithm [20, 17], Adaline [24, 25], MinOver [13] and AdaTron [2]. For an
excellent review on Perceptron like algorithms we refer the reader to Biehl, Anlauf and Kinzel
[4]. Their importance is not only due to the perceptron problem itself, but they are also
applicable to the learning problem ofattractor networks, provided the transient ofthe neural
network is specified explicitly.

The AdaTron (Adaptive Perception) algorithm is a very interesting one since it combines
fast convergence and yields the so called perceptron of optimal stability [9]. In this paper our
main concern is to extend the AdaTron algorithm to the case, when not all the parameters
of the weight vector are actually independent. This kind of situation arises rather frequently
for attractor networks, ifone imposes some symmetry constraints on the weights. This is for
example the case for the Hopfield model [12], Little model [14], the Cellular Neural Network
(CNN) [6] and the Discrete-Time Cellular Neural Network (DTCNN) [11].

Moreover we are going to relate the notion of stability to the one of robustness [8, 22] in
the weight and parameter space which is most important for actual circuit design. It turns out
that all three notions coincide, if one considers binary patterns and does not impose symmetry
constraints on the weights. In the last section we apply this theory to the CNN learning
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problem with rotationally invariant r-neighbourhood templates on a square grid [18] and give
some preliminary simulation results.

2 The AdaTron algorithm with symmetry constraints

The perceptron learning problem can be viewed as the problem of solving a set of affine
inequalities [20, 17]. It is always possible to reduce this to a linear standard form: given P
vectors f £ Rn ,v = 1,•••,P we are looking for a weight vector W £ Rn such that W*C > 0
for 1 < v < P, where the superscript t denotes the transpose operator. The set ofsolutions, if
not empty, is an unbounded open convex set. More precisely: if W\ and W2 are solutions so is
\W\ and \lW\ + (1 - /x)W2 for each A>0and0</*<1. Following Anlauf and Biehl [2] let
us define the field strength of the pattern f by Ev := Wl£v. We can now define the stability
of a solution W of the perceptron problem [9].
Definition:

is called the stability of the weight vector W, if it solves the perceptron problem given by the
patterns £" , u = 1, •• •, P.

This definition is reasonable, since it is just the minimal euclidean distance from the pat
tern to the plane determined by the weight vector W.
Definition: If the perceptron problem is solvable, the solution W* of the following optimiza
tion problem is called the perceptron of optimal stability. [9]

A := max A(W) subject to W2 = 1. (2)

It can be shown [4, 2] that this problem is equivalent to

minW2 subject to Ev > 1 for 1 < u < P .

Hence the problem is reduced to a quadratic convex programming problem. Since, if the
problem is solvable, the solution is unique, we can conclude that the perceptron of optimal
stability is uniquely defined.

For our following application of the AdaTron algorithm to the CNNs and the DTCNNs
an extension of this theorem is necessary, since one usually has to impose some symmetry
constraints on the template coefficients [26, 15, 11].
Definition: A weight vector W 6 Rn satisfies the linear symmetry constraint S : Rm —• Rn
iff there is a vector V € Rm such that W = SV.

The perceptron problem with a (linear) symmetry constraint is now defined in an obvious
way.

Theorem 1 Let S : Rm —* Rn be a linear map such that SlS is non-singular. If the percep
tronproblem with a symmetry constraint S is solvable, thefollowing is equivalent:

• Finding the perceptron W* of optimal stability with symmetry S i.e. the solution of

max (min Ev) subject to W2 =1and
3V £Rm:W = SV



• Solving the convex quadratic programming problem given by

min V2 subject to V'f > 1 v = 1,•••, P

where £" := D-^'^UtStiv and Uis an orthogonal matrix such that Ut(StS)U = D; where
D is a diagonal matrix.

IfV* is a solution of the second problem the solution of the initial problem W* is given by
W* = A•SUD~°'5V* for an appropriate A> 0 to ensure the normalization.

Observe that since therealways exist a particular realization ofthe linear symmetry 5', namely
SUy such that S'tS' is diagonal, it is usually useful to look for such a parametrization right
away. Although for some applications of this theorem to circuit design (see corollary 2) this
isn't appropriate. For the examples worked out in section 4 we choose the hnear map 5 such
that S*S is diagonal right away.
Proof: Notice that by assumption (3*8) is symmetrical and positive defined, so all the above
notions are well definite. Let us define F(W,£) := min^W'^ and analogously F(V,() :=
min„ V*C". For brevity sake let us further define A := SUD'0-5 and since UD-°'5 is non-
singular we have to prove that the following is equivalent:

I minF(W,£) subject to W2 = 1 and 3V : W = AV.

II min V2 subject to F(V, () > 1 .

Using this notation the (v are given by A'? and one easily deduces that A*A = 1TO where lm
is the mx midentity matrix. From this we get two properties which we will use frequently
without any further notice: \\AV\\ = \\V\\ and F(V,() = F(AV,(). The same applies for the
homogeneity of Fwith respect to the first factor, i.e. if F(W,£) >0then P(AW,£) = AP(W,£)
for each A> 0. The analogue is true for P(V,C)-

Let us first prove that (I) implies (II). Let W* = AV be a solution of (I). Since S'S is
non-singular, the vector V is uniquely defined and we claim that

F*:= *
*(V,()

is a solution of (II). By assumption 0 < F(AV^) = F(Vt() and using the homogeneity we
see that F(V*,() = 1. Hence V* satisfies the constraints. Now let Vbe arbitrary such that it
satisfies the constraints of (II). We have

since W* is a solution of (I). Carrying on we get

1 <F(AVi{)_F(V1() 1
II^H " 11^11 ||F|| " ||F*||

in view of the definition of V*. This completes the proof of the first part. Now let V* be a
solution of (II) and we claim that

w. AV AV
\\V\\ \\AV\\



is a solution of (I). By construction W* satisfies the constraints and it is also related to V* as
claimed in the theorem. Since 1< F(V,Q = F(AV*,$) implies that

and again we can again use the homogeneity of F. Let Wbe arbitrary such that it satisfies the
constraints of (I) and let V be the unique vector such that W = AV. Since

KF(Wt()>U F(AV,0~
and since V* is a solution of (II), we have the relation

F(W,() -" " '
This relation allows us to complete the proof:

i = \m\ = iiv-ii > ,,„.,, 3. urn _ i
F(W,() F{W,() F(W,() ~ "K "" F(V',Q ~ F(W',()

where the last equality follows from Eq. (3). •
Reconsidering the definition ofthe perceptron ofoptimal stability (Eq. (2)), one sees that

only the constraint W2 = 1 is necessary to ensure the uniqueness of the solution (if the
perceptron problem is solvable). Therefore, it is possible to give a slightly different version of
theorem 1.

Corollary 1 With the notation and assumptions oftheorem 1 the following are equivalent:

I maxWrminI/(VTt£,')/||W|| subject to 3V e Rm : W = SV.

II minV2 subject to V'C > 1 for all v.

Let V* be a solution of(II) then for arbitrary A> 0 W* = \SUD~0AV* is a solution of(I).
The norm || • || is the standard euclidean norm ofRn.

To avoid unnecessary confusions, note that the two problems are different. However, given
a solution of either of them, one finds a solution of the other. We omit the proof since it is
straight forward using theorem 1. We would like to note that given a perceptron problem with
symmetry constraint 5 we can use the above idea to map the pattern f to (" := 5'f. We
then end up with an ordinary perceptron problem for the pattern (v involving only the actually
free variables. IfV is a solution ofthis problem we recover a solution ofthe original problem
Wby W- SV. It was pointed out to us by T. Kozek that the original problem is generally a
more computer intensive min-max problem, compared to the convex quadratic programming
problem we ended up with. For possible future extensions of this theorem we have kept the
proof abstract.

The AdaTron algorithm offers one possibility for solving the above quadratic programming
problem. The calculation and numerical experiments in [2, 4, 3] indicate that this algorithm is
very efficient. Let us now sketch thebasic underlying ideas. First ofall since any component of



the weight vector W orthogonal to all patterns f wouldjust increase the length of W without
modifying the field strengths Eu', the weight vector W has to be of the form

1 P
W = -Hx^ . CeRn . (4)

The xv are called the embedding strength of the patterns £". Furthermore since the optimal
solution W* lies inside the cone generated by the £v, it follows from Farkas' Lemma [19]
that all the xu can be chosen positive. The algorithm starts with arbitrary positive xv and
a corresponding weight vector W defined by Eq. (4). Then the weights and the embedding
strengths are updated in a serial or in a parallel manner, via the rule

Wn+l = Wn + 8xvp and xn+l = ^ + ^ ?Qr

Wn+1 = Wn + Y/6xW/ and x?+1 = x? + 6xv
v

with 6xv given by:
6xv := max(—xutj(l - Eu)) .

Hence, the Adatron algorithm can be viewed as an adaptive perceptron algorithm which takes
into account the information furnished by Farkas* Lemma. For the serial version convergence
wasproved for 0 < 7 < 2. Going through the proofin [4, 2], one notices that the proofincludes
a more general formulation

2n

0<7<^F^"€Ji"- (5)
which suite our purpose. Since the parallel version essentially performs a gradient descent,
7 has to be sufficiently small in order to ensure convergence. For more details and proofs of
convergence we refer the reader to the original papers ofAnlauf, Biehl andKinzel [2, 3,4]. Our
numerical studies with binary patterns showed that one gets satisfactory results for 7 = 1.3
for the serial version, and 7 = 0.3 for the parallel one. If theproblem is solvable the algorithm
converges and all 6xv are zero. Even if the problem is not solvable, the 6xv will not be zero
but the weight vector will not change further. This is mainly due to thefact the the algorithm
minimizes the convex function £,,(1 - Ev)26(l - Ev) over the convex set xv > 0 [4, 3].

Finally we are going to relate the notion of stability to the notion of robustness as used in
statistical design bynorm-body inscription [8, 22]. The robustness can be defined for arbitrary
norms on vector spaces. We will give the definition onlyfor the euclidean norm, since it is the
only one we will consider. Fora more thorough treatment ofthis concept as applied to neural
networks, we refer the reader to the paper ofSeiler, Schuler and Nossek [23].
Definition: For any solution of the perceptron problem W with symmetry constraints

• the (relative) robustness inweight space rw(W) isdefined as the solution ofthe following
optimization problem

max r subject to VAW : ||AW|| = r||W|| implies (W+ AW)^" > 0 .

• the relative robustness in pattern space rp(W) is defined as the solution ofthe following
optimization problem

max r subject to VA£" : ||Af|| = r||f|| implies W<(f + A^) > 0 .



• the absolute robustness in pattern space Rp(W) is defined as the solution of the following
optimization problem

max R subject to VAf : ||Af|| = # implies W\^v + Af) > 0 .

We will usually omit the term relative when referring to the robustness in weight space, since
it is the only one ofinterest for our purposes. The following Lemma provides us with a more
explicit formulation of robustness and links it to the previously defined stability (Eq. (1)).

Lemma 1 For any solution of the perceptron problem W with constraints

• the absolute robustness in pattern space (or optimal stability, see Eq.( 1)) is given by:

uw) =W\\^wti"•
• the relative robustness in pattern and weight space is given by:

Proof: We will just prove the claim for the robustness in weight space, since the proofs are
almost identical. Let us first check that the above denned rw(W) satisfies the constraints given
by the definition of robustness. Let AW be arbitrary such that ||AW|| = min(W*£,7l|{,'||).
For any pattern £" we obtain:

(w+Awye =we+\\*w\\^l >w^ _|,AW1, |r,| >̂ _Smi =o.
Let us denote by r* the solution ofthe defining optimization problem and we have just shown
that rw(W) < r*. We have yet to prove the opposite. To this end let f be the pattern for
which W*f7||f|| is minimal. Let us define AW := -r*||W||fM/||fM|| and check the defining
property.

(W +AW)'? =W'e - r'Sl^H2 >0
which shows that r* < rw(W), and thereby completing the proof. •

We used the notion Wand £and were referring tothe weight and pattern space respectively.
The analogous definitions can be given for the parameters Vand the "new" pattern £; in this
case the lemma remains valid. We will only use the notion of (relative) robustness in the
parameter space r^V). It seems that the other notions are of minor importance. Combining
the above lemma with the theorem we get the following corollary.

Corollary 2 Within the notation of theorem 1 set (% := aD-°'sUtSt?/, (% := CiVllf|| and
Cs•:= a5*£7||S'HI for arbitrary a > 0. Let Vf forj = 1,2,3 be the solution of

min V2 subject to V'(j > 1, v- 1, •••,P.

Then within an arbitrary scale factor the perceptron W* of



• optimal absolute robustness in pattern space (or optimal stability see Eq. (2)) is given by
W* = SUD-°*V{.

• optimal robustness in weight space is given by W* = 5i7.D~0'5V'2*.

• optimal robustness in parameter space is given by W* = SV£.

Proof: Due to lemma 1 the perceptron of optimalrobustness in pattern space is given by the
solution of

max r—r min Wl£v subject to 3V € Rm : W= SV. (6)

This in turn is, due to corollary 1, equivalent to

minF2 subject to -V1? > 1 . (7)
a v '

A solution of Eq. 6 is given by W* = \SUD-°'SV{ if V? is a solution of Eq. (7) for arbitrary
A> 0. It is easily verified that Eq. (7) is equivalent to

min V2 subject to V'C > 1 . (8)

The solution V{ and the solution F2* of Eq. (8), are related by V{ = aF2*, which proves the
claim. The proofs of the remaining claims are almost identical and we will omit them. •

We have just proved, that we are free to introduce an overall scale factor for the "new"
pattern £j (j = 1,2,3). Hence the perceptron of optimal robustness in weight space and
optimal robustness (relative or absolute) in pattern space coincide for pattern £u of equal
length (e.g. binary patterns). But there are gray scale image processing tasks [7, 10] for which
Neural Networks have proved useful and wehave to make a choice. For the problemof circuit
design the robustness in weight space is probably the most important one. In order to be
able to employ the AdaTron algorithm, we have yet to establish an upper bound for (%*(%
(Eq. (5)). Depending onthe details ofthe realization it might bethat we aremainly interested
in the robustness in parameter space. By an appropriate scaling of the Q {\\C3W = V™ m
the dimension of parameter space) we can guarantee, independent of the dimension, that 7
(see Eq. (5)) can be chosen according to 0 < 7 < 2. If we are interested in processing gray
scale images and are really simulating the network, it might prove useful to design a network
with the greatest absolute robustness in the pattern space (figure 1). In anycase the AdaTron
algorithm is able to solve the problem by just taking the actual constraints into account.

3 Application to attractor networks

Let us first of all consider spin-glass like models [1, 16] with a (zero-temperature) parallel
dynamics [14, 1, 11] and arbitrary symmetry constraints on the weight matrix W 6 Rnxn i.e.

S(t + 1) = sgn(W5(*)) t£N0,Se {-l,+l}n,3V eRm:W = SV

Our goal is to prescribe transients given by pairs of patterns (pv,^/)i i.e. we are looking for
a weight matrix such that pv = sgn(W£") which in turn is equivalent to Pi(W£u)i > 0 for



all patterns f" and sites i. This isn't yet quite the perceptron problem we were considering.
Hower by extending the patterns £v and the matrix W we have;

^ := (0,-.-,0,/9rrS0,---,0)eJrn (at the i-th place) and
Wl := (Wf,..., WZ) <E Rnn , Wi the (column) vector ofthe i-th row ofW.

The above problem is now inexactly the form discussed in the last section (with (vi) considered
as the pattern index). Again by choosing the proper normalization ofthe patterns p" one can
define the appropriate optimization problem for the different notions of robustness. Since
the absolute robustness in pattern space is the most convenient one to choose, we will use it
thereafter. With the above notation the attractor network of optimal absolute robustness in
the pattern space is given by solving:

max min Wtpn subject to W2 = 1 and W = SV
W ™

for some V. Actually this could have been written as well in the original matrix notation.
But now it has exactly the form used in the last section and the notations are consistent.
Notice that the lengths of the patterns I"* of the constrained perceptron problem are given by:
ll^ll2 = /^llfll2- They are needed for the formulation of optimal robustness in the weight
space (corollary 2). Due to theorem 1, assuming S*S is non-singular, the above problem is
equivalent to

minV2 subject to V'C"* > 1, Vi/,» (9)
where the new patterns are computed according to p" = D~°'sUtStp/ii and the solution ofthe
original problem is given by W* = A•SUD-°SV*. Actually these equation can be simplified
if one takes into account the special structure of the extended patterns p". Writing down the
constraints in matrix notation

w< = (Wj, •••,Wln) = V*{&\ •••,5"') = vlsl

we immediately deduce that S'S = £t(5**5»). The 5* are the symmetry constraints of the
weight vector Wi of the i-th neuron. Using this notation the new patterns are given by
fui = n-o-sutsi'p?? ^d the optimal weights by W? = A•5iCTZ>-°-57*. The orthogonal
transformation U is such that Ul E(5**5')17 = D is diagonal. Considering the robustness
in the parameter space we can even drop the factor 2?-°«5l7t and UD'05 in the preceding
equations. Further the ( still have to be scaled according to which kind of robustness we are
interested in (see corollary 2). In any case we have to solve a perceptron problem of reduced
dimension m = dimV.

For some constraints the dimension of the parameter space can be quite large, which is
for example the case for the Hopfield or Little model [12, 14] with a symmetric weight matrix
W. If we consider constrains of the form W» = 5»V;, where the parameters can be different
for each neuron, the learning problem can be solved in parallel. We used lower indices to
distinguish this case from the one previously considered. This situation arises for example
if we give up the translation invariance of the templates, yielding a generalized DTCNN (or
CNN). The symmetry matrix 5 now has a diagonal block form with entries Si. The problem
then basically decouples for each site i, and we have to consider n perceptron problems of
reduced dimensions m» = dirnVJ.

8



Before we work out explicitly an example we would like to discuss to what extend this
learning approach is applicable to neural networks other than those previously mentioned.
If we just prescribe the fixed points of an neural network, i.e. pu = p* this is valid in a
strict sense for spin-glass like neural networks with a zero-temperature Monte-Carlo dynamics
[1, 16], for time continuous neural networks with a piece-wise linear output function [6], or for
more generally sigmoid output function with saturation. Even if the output function is just
a sigmoid (e.g. tanh) it seems that if the weights are scaled properly we can still proceed as
indicated. It is worthwhile remarking that, at least for binary patterns, we should exclude
selfcouplings [4]. Briefly, if the number ofpatterns to be stored is sufficiently large, then the
weight vectors W,; = (0, •••,1, •••,0) are the optimal ones. But since they stabilize any pattern,
no information is stored. Let us finally briefly consider the case when a transient is explicitly
prescribed. Our experiences with CNN [26, 21] indicate, that for the time continuous networks
mentioned above, this learning approach is still applicable. Although to our knowledge a proof
of this has not yet been given.

4 Application to rotationally invariant CNNs

We are now going to apply the above theory to the problem offinding the most stable rota
tionally invariant r-neighbourhood [6, 18] templates and bias current for a CNN, or DTCNN
on a square grid. By rotationally invariant we mean that any rotation of k •90° with k € N
around the center ofthe template and any reflection along the diagonals, as well as horizontal
or vertical lines through the center, leaves the template invariant (Eq. (12)). These kind of
templates have proved useful for image processing tasks [26, 15, 11], as for example the one
considered at the end ofthis section, which are independent ofthe image's orientation.

The learning problem for CNNs and DTCNNs is given by a triple of patterns (puip/iov)
where pv is the desired output, p* is the initial state, and a" is the input pattern. In a yet
abstract notation, not taking into account the grid structure, the CNN ofoptimal robustness
in pattern space is obtained by solving

f§^I^Pk(M1/+B(Tv+I)k subject to A2-rB2-rI2 = 1, and A= SiV1; B=S2V2\ I = S3V3

where we have yet to specify the symmetries Sj. A is the feedback matrix, B the control
matrix and I is the bias current (vector) [6]. The important point is that the constraints are
separate for each entity. Using the notation of the last section let us define

^r:=(^,..-X,Bj,...,5i,ii,.",4)
and the parameters Vas V* := (Vf, VJ, V£). The symmetry matrix is then block diagonal with
entries Sj for j = 1,2,3. The square of the lengths of the so called extended patterns is given
bv Pk (C2 + <rv2 +!)• As noted (see the previous section) they are needed for the formulation
ofoptimal robustness in weight space. Hence, the original problem is equivalent to

min(V2 +V2 +Vf) subject to Vftf +Vjff +Vfg >1, Vi/, *, (10)

where (f =p?Dj0'5UtjSjtP' fori = 1,2,3, and Uj is the orthogonal matrix which diagonalizes
SjlSj to Dj. In turn the optimal "weights" are given by A* = \SiUiD-°-5V? (A > 0) and



analogously for B and J. Again, a proper normalization ofthe patternaccording to corollary 2
is necessary and we can drop the factor UjDj0-5 when considering the robustness in parameter
space. Note that each symmetry Sj is given by 5j = (5)', •••, Sf), where 5} is the rotational
symmetry of each site i (see the last section).

With this at hand let us make the notions more explicit so we can define the symmetries.
Let each pattern of the above triple (pv,p/iov) be an (m + 2r) x (n + 2r) matrix afa for
-l + r<k<m + r and -1 + r < I < n + r. With m and n we denote the size of the CNN
lattice, and by r the size ofthe neighbourhood. The field strength at site (i,j) ofpattern v is
given by

Eii'=f* £ USffi +^«)+^ for l<i<m,l<i<n.
-l+r<fc<m+r

-l+r<Kn+r

AtJ is the feedback operator, J9*J the control operator and J*J the bias current [6] ofcell (ij)
yet without any symmetry constraints.

Let us first of all consider the symmetries Si and 52 in the above notation. They certainly
are equal and from now on we will just write 5 for either of them. In order to be able to
specify the rotational symmetry 5*J for each site (ij) let us define

„ i ^ in the 5-th row and t-th column
otherwise<•-{;:

for 0 < |s|, \t\ < r as a basis of the vector space ofr-neighbourhood templates. For the space
of rotationally invariant templates we choose as a basis the matrices

B":=;ra Jl£*'for0-p-9-r (11)
where {s,t} = {p,q} iff |s| = p and \t\ = q, or |s| = qand |i| = p. And \{p,q}\ denotes the
size of the set {(s\t) e Z2 : {s,t} = {p,q}} which can be 1,4 or 8. Hence, any rotationally
invariant template can be written as

T= £ a"B„.
0<p<q<r

An explicit example for a 2-neighbourhood template ofthis kind is provided below

/ a22/2 a12/V8 a02/2 a12/y/S a22/2 \
a12/y/8 an/2 a01/2 an/2 a12/V8
a02/2 a01/2 a00 a01/2 a02/2 (12)

a12/y/S an/2 a01/2 au/2 a12/y/S
\ a22/2 a12/y/S a02/2 a12/V* a22/2 /

As already noted, the explicit parametrization used is important if we considers robustness in
the parameter space. The above choice might not be the most practical one, but it simplifies
the computation since, by construction, we have

£ T2t = a**2 for 0<p<q<r. (13)
{j,t}={p,g}

10



We are now in a position to define the rotational symmetry 5*J* (1 < x< m; 1 < j < n)

wij ._ /ctiT\ , ._ / Tk_u_j if \k - i\ <r and |{ - j\ <rwkl .- ^ i )kl._ | Q otherwise

for -1 + r < k < m+ r ; -l + r<Z<n + randTas defined in Eq. (4). Let us compute

T^i^S^T = Ei<y(^T)*(5«r) =Ei<ilJE-i+r<,,z(5^)2/
= E-i+r<M Ea.M<, T2 = (m + 2r)(7i+2r)£0< < <ra*92

*.l*l<r

where we have used Eq.(13) to show that X)5ljt5ii is (m + 2r)(n + 2r) times the identity
matrix. By a slight abuse ofnotation we still used the transpose notation for the template T,
and for the symmetry 5. This transpose notation does not refer to the matrix structure of the
template but solely considers it as a vector. This certainly could have also been achieved by
an arbitrary enumeration ofthe coefficients. Still we feel, since we are only using the defining
properties of the transposition of vectors and Hnear maps and the relationship between the
(euclidean) scalar product and the transposition, that this notation is well suited and will not
cause errors.

The symmetry matrix 53, which ensures the cell independence ofthe bias current is given
by: J" = (Sl33I) := J" for all i and j. We can immediately deduce that J^iji^S^) is equal to
m •n times the identity matrix. Hence we can choose the identity matrix for each orthogonal
transformation Uj (j = 1,2,3). Since we are free to choose an overall scale factor for the
patterns (corollary 2), we choose y/(m + 2r)(n + 2r) which just cancels the factor provided by
D^°'s and .DJ0*5. We are left with the task to compute the "new" pattern. For the "new"
pattern p"* generated by the input pattern f weget:

2V* = P&T^'f) = tW&TW = ^E-r+i<w(^T)Hf&
= Pij 2-*;\»\<r Tatg+it+j = Y,0<a<t<ra* Cat

tt\t\<r

Hence the "new" patterns (^ (actually (?3 would be more consistent with Eq. (10)) axe given
by

^J = VTTTTiT ^ ^+pi+9 for0-5-*-r>1-i^m>1^^n- (14)VII > J I —r<p,q<r
{p,q}={a,t}

The "new" input patterns €"* are computed in the same manner by replacing £by a in Eq. (14).
With the above definition of 53 the "new" patterns for the bias current, temporarily named
of"3, are given by:

y m' n y m • n %3

Putting the pieces together and considering that some applications of CNN involve gray scale
images, we obtain.

Lemma 2 Let M := r2 + 3r + r be the dimension ofthe parameter space. In order to obtain
the rotationally invariant r-neighbourhood CNN on a square lattice with
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• the optimal absolute robustness in the pattern space, let

mm

V m • n
2M

Tmax —
M - 1 + G2 '

• the optimal (relative) robustness in the weight space, let

p••- ^ -r Am +2r)(n +2r) 2M
"" v/KOHIieiP +lklP +l}' V m-n ;7max_M-l +G2

iritt F defined as F := min, ({||̂ ||2 +||̂ ||2 +^min^^)2), and ||£"||2 = £&2
where the sum is taken over all -1 + r < k <m + r and —1 + r < I <n + r.

• the optimal (relative) robustness in the parameter space (for the parametrization of the
templates as defined below), let

*vij = / ; G = 1 ; 7!^ = 2
Vnrjii2 + ii€^ii2+c?2

with Wp"' 112 = E (%q where the sum is taken over all 0 < p < q< r.

And solve the following convex quadratic optimization problem:

o<p<g<r

subject to FtVXJ

_0<p<g<r
£ (<**£?+ps?)+ /<?,.« > 1

Vi/, 1 < i < m, 1 < j < n

The serial AdaTron algorithm yields a solution for 0< 7 < 7max in all cases ifpf-,/?- and o*-
are from the interval [-1,1] for all v,itj. The (*' (resp., e**) are the "new" initial (resp.,
input) patterns defined by Eq. (14). Within an arbitrary overall scale factor, the feedback
template a, the control template b, and bias current I are given by:

«= E °>*pqBpq-b= J2 b^Bn and I = G-P .
°<P<Q<r o<p<q<r

The matrices Bpq are defined in Eq. (11) and a*«, b*™ and I* are the solutions of the above
optimization problem.

In most practical cases m,n » r and we can set G = 1, which simplifies the formulas
considerably. Furthermore often (e.g. binary images) the lengths of the so called extended
patterns (/>%)2{||C||2 + \\<f\\2 + 1} are equal for all v,i,j and the first two cases coincide. As
already mentioned, the above formulas only apply for a CNN on a square grid. Reconsidering
the calculation we see that the vector structure of the templates was the only one crucially
used. We just employed the matrix notation to avoid an explicit numbering of the parameters
used. So it should be possible to derive similar equations for CNNs on any regular grid. Even
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the dimension of the grid seems to be of minor importance.
Proof: Let us first of all compute the norm ofthe "new" patterns P/ij:

vij\\2
lie = E er

0<s,t<r o<5<. !{'•*>!
n?2

T 2

E ««+pj+g <2(r+l)(r +2),
-r<V,<i<r

.{p,ql={*,t}

The last inequality is due to the assumption, that each fy,/>jy € [-1,1]. Hence ||C**J'||2 +
He^H2 + G2 < M- 1+ G2 where M is the dimension ofthe parameter space as defined above.
The factors F^j are chosen in accordance with corollary 2 within an arbitrary scale factor. We
have yet to ensure the proper range of7 according to Eq. (5). Since F^j < 1 for the first two
cases and it follows from theabove calculation, that M-l+G2 isanupper bound on the lengths
ofthe "new" patterns (including the factor F^j). This ensures the range for 7 as claimed. In
thethird case thenumerator is chosen so that thesquare ofthelengths ofthe "new" patterns is
equal to M, the dimension of the parameter space. Hence the range for 7 is as claimed (Eq. (5)).
We have shown that inany case the orthogonal transformations Uj can betaken as the identity
matrix. The "weights" are calculated according to Eq. (10) and the remarks thereafter. For
the first two cases the templates and bias currents are given by y/(m + 2r)(n -f- 2r)D~0'5 times
the appropriate entity. Since D1 and D2 are equal to (m+2r)(n+2r) times the identity matrix
and D3 is given by m •n times the identity matrix, the result follows. In the third case no
adjustments are necessary and Gis set to one (corollary 2 and Eq. (10)).

4.1 Simulation results

For ourpreliminary simulations we used a 16 X16 grid with a 1-neighbourhood. We determined
the optimal templates and bias currents for some classical binary image processing tasks, such
as the edge detector, and the convex corner detector [5]. We will refer to the pattern values
with indices higher than 16 or lower than 0 as border pattern values. We were experimenting
with border pattern values equal to 0 or -1, the value of the background. For larger grids we
expect, that the effect of these zeros on the template values decreases, which might result in
a slight change of the template coefficients compared to our results. For both tasks the input
pattern ov were equal to the initial pattern f for the transients we trained. Since we also
want to ensure that the desired output isa fixed point, we trained each output pattern />" with
the original input pattern av to be afixpoint. So for each training pattern (see figures 2-3) we
obtained two patterns to belearned: (/>", av, a") and (/d", p", a"). The template values and bias
currents are collected in table 1 for border pattern values equal to -1 and 0, and the optimal
robustness in the weight and the parameter spaces. Since the patterns have equal length the
notions of absolute robustness in pattern space and robustness in weight space coincide. The
templates are recovered as shown in Eq. (12) not taking the coefficients into account.

Actually we used more patterns than the above mentioned to train the network. The
patterns in figures 2-3 were just the first ones. In order to obtain templates that are not only
optimal with respect to the training patterns, but also to the task itself we have employed the
following procedure. We started out with one training pattern and kept adding new patterns
while monitoring the optimal template values (figure 4). Since the optimal values changed by
less than 0.1 percent, after 4patterns were presented we are confident that the template values
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are optimal with respect to the task. As already noted the template values still can be scaled
arbitrarily. The values given in table1 are chosen, so that the embedding strength E*"* ofeach
pattern p* at site (i,j) is greater than or equal to two. We think that this value is appropriate
for CNNs since it is well inside the region of saturation. We made several simulations with
trained as well as untrained patterns, and in all cases the CNN performed the desired task
with this scaling.

5 Conclusion

Wehave shown that if one considers grayscale patterns, or imposes constraints on the weights,
it is sensible to distinguish three different kind of robustness; namely, the absolute robustness
in the pattern space (also called optimal stability), the robustness in the weight space, and the
robustness in the parameter space. Depending on the application, any of these notions can be
the appropriate choice (see the remarks after corollary 2). If the patterns are binary (ormore
general of equal length) the first two notions coincide. In any case, the problem of finding
the most robust weights, just taking actual constraints into account, is equivalent to a convex
quadratic programming problem. This problem can be solved very efficiently by the AdaTron
algorithm, which shows an exponential decay of errors. Even if not solvable, the algorithm
terminates and finds a reasonable partial solution [2, 4]. We have applied this algorithm to
twoclassical binary image processing task for CNNs and have calculated the optimal template
coefficients and bias currents under various assumptions.

Actually if we consider the problem of learning transients of an attractor network, the
above approach is rigorous only for spin-glass like networks with a (zero-temperature) parallel
dynamics [14,11,1]. However ourexperience with CNN [26,21,23] andoursimulations indicate
that it is probably also applicable to time continuous networks with an output function that
exhibits saturation. This point certainly deserves a deeper investigation. In any case one of
our crucial assumptions in the statement of the learning problem is that the transients are
prescribed explicitly, step by step. This obviously is a drawback since different possibilities
exist, while still performing the same overall task, and not all of them admit a solution.
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Figure 1: Relative and absolute robustness in pattern space

border pattem value —1 border pattern value 0
weight sp. param. sp. weight sp. param. sp.

edge detector

floo 4 5.52967 4 5.53504

aoi -2 -2.72245 -2 -2.72429

an 0 -0.134687 0 -0.13947

&oo 4 5.33429 4 5.33771

&oi -2 -3.11322 -2 -3.11895

hi 0 0.565003 0 0.570453

I -2 -3.31133 -2 -3.31734

convex corner detector

aoo 7 5.81904 7 5.82013

a0i -4 -3.13878 -4 -3.13962

an -2 -1.47737 -2 -1.47757

&00 7 5.78939 7 5.7905

&01 -4 -3.16843 -4 -3.16925

hi -2 -1.52184 -2 -1.52203

I -12 -10.2994 -12 -10.3013

Table 1: Optimal template values



Figure 2: Training pattern for the edge detector (input pattern, output pattern)

V

Figure 3: Training pattern for the convex comer detector (input pattern, output pattern)
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Figure 4: The optimal template values as a function ofthe number oftraining images
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