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Abstract

In this paper, we consider an infinite-dimensional extension of Chua's circuit (Fig.l)

obtained by replacing the left portion of the circuit composed of the capacitance C2

and the inductance L by a lossless transmission line as shown in Fig.2. As we shall see,

if the remaining capacitance C\ is equal to zero, the dynamics of this so-called time-

delayed Chua's circuit can be reduced to that of a scalar nonlinear difference equation.

After deriving the corresponding 1-D map, it will be possible to determine without any

approximation the analytical equation of the stability boundaries of cycles of every

period n. Since the stability region is non-empty for each n, this proves rigorously that

the time-delayed Chua's circuit exhibits the "'period-adding " phenomenon where every

two consecutive cycles are separated by a chaotic region.

This work has been supported in part by the Office of Naval research under grant N0014-89-J-1402 and
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1 Introduction

Our starting point is the Chua's circuit shown in figure 1. Let us first add a dc bias voltage
source in series with the Chua diode 1. Next, let us replace the left part of Chua's circuit,
composed of a capacitance and an inductance in parallel, by a lossless transmission line

where a short circuit is connected accross the left terminal pair. Since the transmission

line introduces a time delay to the signal originating from the right, the resulting Chua's
transmission line circuit, shown is Fig.2, will henceforth be referred to the time-delayed
Chua's circuit

To study this new dynamical system, we shall use the approach of "dry" turbulence

developed by Alexander Sharkovsky 2. Indeed, the system exhibits characteristics similar to
those present in turbulence, such as intermittency, formation of coherent structures, and the

emergence of vortices of decreasing sizes via a cascade process. The term "dry" refers to a

system where there is no viscosity, where arbitrarily high harmonics are present. Since all

of these phenomena are infinite-dimensional in nature, it follows that in order to carry out

a realistic study of the time-delayed Chua's circuit, we cannot make any finite-dimensional

approximations.

This is a difficult mathematical problem. It is thus remarkable that our system can be

reduced to a difference or differential-difference equation. In the first case (C\ = 0), we
obtain a nonlinear scalar difference equation. After deriving the corresponding map and its
invariant interval, it will be possible to study the dynamics of the system. In particular,

under certain conditions, we shall be able to find the analytical equation in the parameter

space of the windows of stability corresponding to limit cycles of any period.

The second case (C\ ^ 0) leads to a nonlinear differential-difference equation. Very few
mathematical tools are currently available for studying such systems. Fortunately, for small

values of Ci, computer simulations show that the qualitative behaviors are in most cases
similar to the behaviors reported in this paper, when C\ = 0.

2 The circuit and its equations

2.1 The time-delayed Chua's circuit

The time-delayed Chua's circuit is shown in Fig.2, where the v —i characteristic of Chun's
diode Nr is shown in Fig.3. The capacitance C2 and the inductance L from the original
Chua's circuit, have been replaced by a transmission line. From a physical point of view,
this is a logical extension to the infinite-dimensional case obtained by adding infinitely many



inductors in series and capacitors in parallel. The resulting series inductance and the par
allel capacitance per unit length of the line are denoted by L and C, respectively. The
characteristic impedance of the line is denoted by Z = (^)5.

-AAAr
R

+ +

VC2 VCt
C2 C1

Figure 1: Chua's circuit
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Figure 2: Time-delayed Chua's circuit
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The right part Cright of the time delayed Chua's circuit can be interpreted as a generator
of chaotic signals. The resulting waves will propagate, without loss along the transmission
line. The wave is reflected at the end of the line (x = 0) with a phase shift of tt and returns



Figure 3: v-i characteristic ir = G{vr) of Chua's diode

towards x = I. This phenomenon occurs as long as there is an impedance mismatch between

the characteristic impedance Z of the transmission line and the small-signal impedance of

the right part of the circuit CTight. One may notice that an impedance match makes sense
only for small signals, when Nr is linear.

At dc, the time-delayed Chua's circuit is equivalent to the circuit shown in fig.4. From

now on, we shall assume that the two slopes mi and m2 are equal. The characteristics

of the Chua's diode and the load line are given in the VR-iR plane in fig.4. The dc bias
voltage breaks the symmetry of the system. In the case m0 < 0 and m2 > 0 , there may
be one or three operating points, depending on the value of the resistance R in the circuit.
If m0 = mi and m2 were positive, the system would remain stable and is therefore not
particularly interesting. If they were both negative, the system may become unbounded. In
this paper, we have m0 = mi < 0 and m2 > 0.

2.2 Equations for the lossless transmission line

Assuming that there are no losses in the transmission line, the relation between the voltage
v(x,t) and the current i(x,t) at time t and at a distance x from the left origin is given by :

dv(x,t) _ r di(x,t)
dx ~ L ai

8i(x,t) _ ndv(x,t)
dx ~ ° at

(1)
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Figure 4: Simplified time-delayed Chua's circuit at equilibrium

where L and C denote the inductance and capacitance per unit length of the transmission
line. By eliminating i or v , from these two equations, we obtain :

d2v(x,t) _ rr,d2v(x,t)
dx* - ^ dt*

The general solution of equation (2) is of the form:

v(x,t) =ait - -J +b(t +- J

(2)

(3)

where the two scattering variables a and b represent the incident and the reflected waves,
respectively, at the velocity v = (LC)~*.

From (2) and (3) it immediately follows that

i(x>t) = z :('-;)-»('+3] W

where Z = (^)z is the characteristic impedance of the transmission line.

2.3 Boundary conditions

There are two boundary conditions, one at each end of the transmission line. First, the line
is shorted at x = 0. Second, at x = /, the line is connected to the right portion of the Chua's
circuit, denoted by Crigh,t. These two boundary conditions can be expressed in the form:



v(0,t) = 0
i(l,t) = F(v(l,i),i(l,t),S^i,S!^) W

The first boundary condition implies that

•K)—('-;)"K) <•>
where we have introduced the new symbol $, in place of the incident wave a(-) since both

incident and reflected waves are derived from the same function.

Hence, in term of the incident wave $(z,£), the solution of (1) is of the form :

v(x,t) = «rt-s)_#(j +a)
i(x,t) = $[♦(*_«)+«(* +;)] (7)

The second boundary condition is determined by the terminating nonlinear subcircuit

Cright- By expressing the current i(x,l) as the sum of the current in the Chua's diode and
that in the capacitor Ci, we obtain :

i(M) =f(v(M),z(M),^,^) s)
=G(v{l,t) -E-Ri(l,t)) +dWW-WW [)

Where G(-) is the v —i characteristic of the Chua's diode. Given the initial conditions

at t=0, i.e. the value of y(x,0),i(x,0),£$^l and 5%21 for x € [0,/], equations (1) and (5)
completely determine the behavior of the system.

2.4 Form of the solutions

Considering equation (1) and the boundary condition (5) at x = 0, we have shown that
i(x,i) and u(x,i) can be expressed as a function of one of the scattering variables, namely
the incident wavea = $. The problem consists of determining this function $ from the initial
condition, i.e. the function $ on [ —£,£ ]. Physically, this initial condition corresponds to
the current and the voltage in the transmission line at t = 0, since v(x, 0) and i(x, 0) are
uniquely defined for 0 < x < I upon substituing $(-y) and $(y) into (7) at t = 0. As we
shall see, the evolution of $ will depend crucially on the boundary conditions at x=/.



3 Analysis of the system without the capacitance C\

3.1 Introduction

In this section, we shall consider the idealizedtime-delayedChua's circuit without the capac
itance C\. As explained above the problem consists of determining the scattering variable
$. In the case C\ = 0, the function F which represents the boundary condition at x = /
becomes:

F («(/, t),»(/, *)) = O {v(l, t) - Ri(l, t) - E) (9)

where G is the equation of the characteristic of the Chua's diode. As we shall see, from

this equation it will be possible to derive a map M such that 3 :

*H)=m(*H)) (io)
In order to study this difference equation, the dynamics of the map M will be first

examined. As we shall see this very simple 1-D map exhibits rather complicated dynamics

from which it will be easy to determine that of $.

3.2 Construction of the map M

In order to derive the map M, let us first examine the boundary condition at x = I:

i(l,t) = G{v(l,t)-Ri(l,t)-E) (11)

Substituing (7) into (11), we obtain :

i[«(*-i) +«(t+i)] =
a ($(< _ i) _ «(* +1) _ !(*(* _ i) +«(* +1)) _ e)

(12)
where ^ = ^. By introducing the function <j>(t) = $ it —tH, (12) becomes :

4,(t) +4>{t +T) =ZG ((l - |)m- (l +I) ttt +T)-E) (13)
If we define :

U = £[»(»,*)-K(M)J = ^((l-f)^)- (l +#)W +T))
[V = fj(l,t) = j-i^ +W+T)) K>



Then equation (13) can be recast into the form

Z
n = —G(V2(-E) (15)

Inverting the system (14), we obtain:

: 4- I> + (\ + 5U1
(16)*W = 7^+(1 +l)"

W + T) = % -f+O-iH
where 7/ and £ are linked by the equation (15). In order to simplify the notation, let us
introduce the function g :

9(0 =̂ (V2£) (17)
Our aim is now to find a direct relation between <j>{t) and <f>(t + T). Let us denote by B

the basis (^, 77). In the basis Bo(£',tj') where {' = £—-^ and r\ = 77 (see Fig 5) :

V = </«') (18)

Let us consider first the case R=0. In this case (16) becomes :

W + T) = ft-t + vi) =Y
This corresponds to a rotation through an angle ~. Therefore let us consider the new

basis i?i(X,Y), which is the basis B0 rotated by J as shown in Fig.5. In this basis B\, if
R = 0, the abscissa and the ordinate correspond to (f>(t) and <j>(t + T), respectively.

In the basis i?i(X,Y), it is now easier to examine the case R ^ 0. We look for a basis
£?2(x,y) where <£(t+T) and <j>(t) will fall directly on the new set of x —y axis. Therefore,
the equation of the new x-axis of B2 in Bx is <£(t+T) = 0 and that of the y-axis is <j>(t) = 0.
Thus :

y= ° ~ Y= -Bkzx (20)
x=y <-• r=(i +|)x

The transformation from the basis Bi to B2 is a rotation matrix :

1

^/1+ *2 l "^
(21)

(R+2Z)* \ R+2Z



As shown in Fig.5, in £2, it is possible to calculate <£(t+nT) from <j>(t)

X, = <t>(t)
X2 = ^(i + T)

X3 = <t>(t + 2T)
(22)

Xn+i = </>(t + nT)

We now have to find the equation of Chua's diode in the basis B2. It will allow us to

Wn Wr\

Figure 5: Characteristic of Chua's diode in the bases B, jB0, #l and B2

study the map M directly. The fact that the equation of this diode is piecewise-linear will
considerably simplify our work. The three-segment function is determined by the four points

Pi> P2,Pz and P4 (see Fig.6). P2 and P3 are the two break points. Pi and P4 provide a second
point to determine the outer segments at Vr = —2 and Vr = 2, respectively..

The coordinates of these points will be given successively in the basis i?o, B\ and B2.



Figure 6: Determination of the characteristic of Chua's diode by the four points Pi, P2, P3
and P4

In Boitrf):

where E' = -^
In Bi (X,Y):

' Pi = (-2 + E\ -mo - m2)
P2 = (-l + £',-m0)
P3 = (l + £',m0)
P4 = (2 -f i?, m0 + m2)

Pi = (—2 + .E —m0 —m2,2 —E' —m0 —m2) = (z^yj)
P2 = (-l + £'-m0,l-£'-m0) = (x2,y'2)
P3 = (l + £r + mo,-l-^, + mo) = (x3,y3)

kP4 = (2 + J5' + mo + m2,-2-jE' + mo + m2) = (x49y4)
In £2 (x,y)

D 1 / R ' • ' ' . R '\ / " "\pie{i.A} = I R [r+mXj + y,- , -*,• + TEjby,-) = K-,y,-)
V +(«+2Z)2

(23)

(24)

(25)

The four points Pi, P2,P3 and P4 determine the equation of the Chua's diode character
istic in the basis B2. As it is shown in fig.7,the resulting map M may be multivalued. In

10



order to determine </> via (10), M has to be single-valued. Therefore we have to determine the
condition on the parameters of the system that lead to this case. Provided that Pi and P4
remains symmetricwith respect to the middle of the segment [P2, P3], there are four possible
cases, as shown in Figure 7:

v // /* // //

a\x-i ^ x2 ^ x3 ^ Xa

b)x1 < x3 < x2 < x4
x // // // //

CjX4 ^. X2 \ X3 \ X-t
,v // // // II

a)x4 < x3 < x2 < Xj

(26)

Figure 7: Single-valued and multivalued map M

In the cases a and d, the map is single-valued and it is possible to write its equation

explicitly as follows.

g{X) = nrn2X-r \(nmo —nm2)(\ X —x3 \ —\ X —x2 \) in case a
1 g(X) — nm2X + \{nmo —nm2)(\ X —x2 \ —\ X —x3 |) in case d

where nmQ and nm2 are the slopes of the characteristic of Chua's diode in the basis B2

nrriQ — (y"rA) — -z+(Z-R)mQV- =(a?I'—x») Z+(Z+R)mo

nm2 ~ JxJ^xf) ~ Z+(Z+R)m2

11

(27)

(28)



3.3 Dynamics of the map M

In the previous section, we have found an explicit equation of the map M leading to a
difference equation which determines the function <^.We now examine the dynamics of the
1-D map M. In other words, given Xu what will $(Xi + nT) = Mn(X1) be ? To study this
map, we first need to determine its invariant interval I.

3.3.1 Determination of the invariant interval I

As we did in deriving the equation for M, let us first consider the case R=0. If E' = 0, the
map M is symmetric as shown in Fig.8. In this case the invariant interval I is :

/ =
1 —mo 1 —mo

(29)

<t>(UT)

Figure 8: Map in the case R=0 and E=0

When E = 0 the system is symmetric with respect to the origin, let us denote by
Mo the corresponding map. For the same parameters m0,m2 and R, if we introduce a dc
bias voltage, the characteristics of Chua's diode will be translated along the short vector
(exE',eyE'), parallel to the axis £, and indicated by E in Fig.5. Let us denote by MEi the
corresponding map and by x a point:

MEi(x) = M0(x - exE') + tyE'
M_E>(-x) = M0(-x + exE') - eyE' = -MEi(x)

12

(30)



It is clear that if we usean opposite dc bias voltage, the behavior of the systemis identical
up to symmetry with respect to the y axis. Therefore we can limit our study to E' > 0.
In this case, the presence of the dc bias voltage E' is equivalent to a translation of the
characteristic of Chua's diode to the right. Depending on the value of E\ two cases must be
considered as shown in Fig.9.

Figure 9: Three-segment and two-segment map M in the case R=0 and E ^ 0

a) E < —mo then / =

b) -m0 < E' < 1 then / =

In the case R ^ 0, we obtain

if 0 < | E' | < Z. | m0 | ,

-l+mn+E 1-mn+E
' 2

•1+3wiq)j
2(l+m0)

2 ' 2

1-mo . (-l+3m0)E' 1-mn+E
1 ' 2f14.mnl > 1

/ =
-1 + E' + {Z- R)m0 1+ E' - (Z + R)m0

if Z | m0 | < | E' | < 1+R| m0 | ,

/ =
-1 + E' + (Z - R)m0 (\ + E' + Rm0)(l - (Z - R)m0)

2 l + (Z + £)m0

1+ E' - (Z - R)m0 (1 + E' -{• Rm0)(l - (Z - R)m0)
l + (Z + R)m0

Let the invariant interval of the map :

M : X -> g(X)

13
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(32)

(33)

(34)



be equal to I = [a,/?], where a and ft (a < /?) can be determined from (31)-(33). In order
to simplify the calculations, let us change the variable X into X' so that the interval / is
transformed into [0,1]. This corresponds to the change of variable :

X = (0- a)X' + a (35)

then, the map

M':X'^g'(X') =-L-g(-L-(X'-a)ya (36)
has an invariant interval [0,1]. The graphs of the functions g(X) and g\X') are similar: the
first one can be obtained by multiplicating the second one by (/? —a) and by translating it
by a. The slopes are obviously conserved by such a transformation.

3.3.2 Stability windows for the piecewise linear map M'

In this part we shall study the dynamics of the map M' defined in (36), assuming that :

\E\
|mo| < M < 1- R\mQ\ (37)

In this case, the map M' has two linear sections as shown in Fig.9b and can be represented
as follows :

f-X \hX-h, if* g[4,1] {)
where /0 and /i denote the slopes of the left and the right segments, respectively, and where
the parameters a and 6 are given by :

The map M' has one break point at X = 6, where M(X) is equal to 1. Theslope isequal to /0
in the interval [0, b) and to h in (6,1]. As it has been shown in the study of the time-delayed
circuit, the map must be studied in the region of the (/0, /i)-plane:

7T : { , (40)( -co < h < -1 y J
The two inequalities (40) are equivalent to: 0<l-6<a<l

Note that the slope /0 and /i can be obtained directly from the parameters of the time-
delayed Chua's circuit:

/ -Z+(Z-R)mQ
10 Z+(Z+R)m0 /A1 v
/ _ -Z+{Z-R)m2 l41i
11 ~ Z+{Z+R)m2

14



Figure 10: Map M'

(see formulas (28)).

Stable cycle of period 2 The inequalities (40) imply the existence of a single cycle of
period 2:

(x0=^ , Xl='°';f(i:,'>>r) (42)
The stability condition of this cycle is loli > —1. Therefore the condition for the existence

and stability of a limit cycle of period 2 is :

-ra < h < -i
0 < lo < 1

(43)

Stable cycle of period 3 The map M' has a period-3 cycle if the first iteration of the

point X = 0 is less than 6, i.e. a < b. In terms of the parameters Iq and /i, this is equivallent

to Zi < —1 —•jk In this case the condition for the stability is /q/i > —1. Therefore the
condition of existence and stability of a limit cycle of period 3 is :

0

i < 'i < -i-i
-lW5

2< k <
(44)

Stable cycle of period n The condition for the existence of a limit cycle of period n:
{A'i,A'2,...,A'n}, where :

Xi < X{+i

f(Xi) = Xi+i ,for i = 1, ...n - 1

15
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is that the (n —2)th iteration of the point X = 0 is less than 6, i.e.

/o(.../o(/oa + a) -ra + ..) + a < b (46)

which can also be expressed by the inequality:

/. <-l - f -... - -I* (47)
*o *o

The condition for the stability of this period-n cycle is : /J"1^ > —1. Therefore the
condition for the existence and stability of a limit cycle of period n is :

- j^r </i <-l - f -... - »!* (48)
*o *o *o

The curves h = —1 —j- —... —75=7 and /i = —r^r are both monotone increasing and have
0 '0 '0

one intersection point On = (/o,n,/i,n) in the region r defined in (40). The value of / = /0)„
is determined as a solution of the algebraic equation:

P"1 + ln~2 + ... + / = 1 (49)

which is equivallent to /n —2/ + 1 =0 and has one root in [|, 1]. {/o.n}^ is monotone
decreasing and has a limit equal to \. Assuming that /in = —m=T (see (48)), it is obvious

' l0,n
that {/i,n}2° is also monotone decreasing and tends towards —00. The points On, n = 1,2...
lie on the hyperbola:

h=J2-2(2ih) (50)
The regions of the existence and stability of cycles of period 1,2,3,4 and 5 are shown in

Fig.11 where the following notations are used :

(A,n) — curve of emergence of a period-n cycle
(5, n) — curve of loss of stability for a period-n cycle
7rn — region of existence and stability of a period-n limit cycle

Observe from Fig. 11 that chaos occurs in the area between every two consecutive stable
regions. Moreover, since limit cycles of all periods occur consecutively, the time delayed
Chua's circuit exhibits the period-adding phenomenon 4, which has so far been observed only
in non-autonomous electronic circuits.

16



3.3.3 Histograms

As we shall see, the histogram gives us valuable informations on the dynamics of the map
M. It gives the probability that Mn has a certain value within the invariant interval, for

n large. In order to build this histogram, let us first divide the invariant interval I into N
equal sub-intervals /«e[o.jv-i]. Schematically, a histogram could be generated as follows: We
choose an initial point X0 in I, we calculate Mn(X0) for n € [0, K] where K is a large integer
and we count how many times Mn(X0) visits each interval /,-. This can easily be interpreted
as the history of the dynamics. However, if we consider only one initial point X0, it might

for example belong to a limit cycle and we might miss the rest of the dynamics. Therefore

we shall iterate this process starting from the N points zt-, defined as the midpoint of the

sub-intervals /,-. In order to give a rigorous definition of the histogram, let us now define the

functions hi for i€ [0,N —1] as follows :

• hr. R -+ {0,1}

x —• 1 if x € /,-

K
x -+ 0 if x £ /,-

The histogram is the function H:

(51)

H: {0,1..JV-1} -> AT
sirE^MM-^)) (52)

1 ~* N(n2-ni+l)

where n\ and n2 are two integers with ni < n2. ni is the value of n for which we start

considering the values of Mn. n\ iterations are omitted from the sum while the transient

settles. The next n2 —n^ iterations are taken into account. Of course, the larger n2 is , the

more accurate the value of H will be. One advantage of this histogram is its rapid calculation;

in practice n\ = 50 and n2 = 500 give good results. The smaller ni and n2 are, the larger

N can be chosen for the same CPU time, leading to smaller intervals /,- and therefore better

precision.

Examples of histograms related to our study of periodic windows are given in Figs. 12a-

12/. In Figs.l2a-12k, /i is fixed at /i = -18 and /0 varies from /0 = 0.04 to /0 = 0.49. In

Fig.l2-a and 12-b, one can recognize a stable limit cycle of period 2 and 3, respectively.

However in these two cases, the situation is different. In the first one all the points, except

the fixed point, belong to the basin of attraction of the period-two limit cycle, but in the

second case there is an uncoutable set of chaotic points which does not belong to the basin

of attraction of the period-three limit cycle. The Lebegue measure of this set is zero and

therefore it cannot be detected in the histogram.

17



Except for zero-measure sets, histograms constitute a robust and useful tool to under

stand the dynamics of a system. Their evolution is also essential for studying bifurcation

phenomena. An example is given in Figs.l2c-12g where one can find histograms correspond

ing to a bifurcation from a period-3 to a period-4 cycle. During these bifurcation phenomena,

the system remains chaotic. At Iq = .28, we reach the period-4 cycle. If we go beyond (5,4),

at /o = 0.48, the histogram suggests the existence of chaotic oscillations between five inter

vals. Eventually, we are able to find in the map (38) cycles of arbitrarily high period. As an

example, in Fig. 12-/, we give a period-10 cycle obtained for /0 = 0.4787 and l\ = —720.

4 Conclusion

Starting from an infinite-dimensional extension of Chua's circuit where Ci = 0,we have first

reduced the dynamics of the system to that of a two or three-segment continuous 1-D map.
E\In the case of a 2-segment map ( i.e. \m0\ < LJ < |1 —#|m0| ), we have found analytically

the equation of the boundaries of the stability regions of any period n. These regions are

all non-empty. Since limit cycles of all periods occur consecutively, the time-delayed Chua '$

circuitexhibits the "period-adding" phenomenon, for the first time in an autonomous circuit.

18



Figure captions

1 Chua's circuit

2 Time-delayed Chua's circuit

3 v-i characteristic ir = G(vr) of Chua's diode
4 Simplified time-delayed Chua's circuit at equilibrium
5 Characteristic of Chua's diode in the bases B, #o, #i and B2
6 Determination of the characteristic of Chua's diode by the four points Pi, P2, P3

and P4

7 Single-valued and multivalued map M

8 Map in the case R=0 and E=0

9 Three-segment and two-segment map M in the case R=0 and E ^ 0
10 Map M'

11 Existence and stability regions of cycles of period 2,3,4 and 5

12 Examples of histogram for the two-segment map M'
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Figure 11: Existence and stability regions of cycles of period 2,3,4 and 5
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Figure 12: Examples of histogram for the two-segment map M'
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