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Abstract

The twist-and-flip circuit contains only three circuit elements: two
linear capacitors connected across the ports of a gyrator characterized
by a nonlinear gyration conductance function p(vi,«2). When driven
by a square-wave voltage source of amplitude "a" and frequency V,
the resulting circuit is described by a system of two non-autonomous
state equations. For almost any choice of nonlinear ^(»i,t^) > 0, and
over a very wide region of the a - u parameter plane, the twist-and-
flip circuit is imbued with the full repertoire of complicated chaotic
dynamics typical of those predicted by the classic KAM theorem from
Ilamiltonian dynamics, and widely observed numerically from plasma
and accelerator dynamics, as well as from celestial mechanics.

The significance of the twist-and-flip circuit is that its associated
non-autonomous state equations have an explicit Poincare map, called
the twist-and-flip map, thereby making it possible to analyze and un
derstand the intricate dynamics of the system, including its many
fractal manifestations.

Although the properties of the twist-and-flip circuit are best un
derstood from an in-depth analysis of its manyelegant mathematical
properties (published elsewhere), this paper will focus on the many
fractals associated with the twist-and-flip circuit, in keeping with the
theme of this special issue. Behind the masks of the colorful fractals,
however, lies an immensely rich variety of chaotic phenomena, whose
unique mathematical tractability is responsible for this circuit's po
tential application as a paradigm for "non-autonomous" chaos.

This work is supported in part by the Office of Naval Research under
grant N00014-89-J-1402 and the National Science Foundation under
grant MIP-8912639
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1 Introduction

£haos is a robust nonlinear phenomenon that permeates all fields of science
and technology, and fractals are butone ofitsmany manifestations. Nowhere
is this phenomenon more easily demonstrated, analyzed, and synthesized
than in simple autonomous nonlinear electronic circuits; namely, circuits
without ac sources and therefore described by an autonomous system

* = /(x) (1)
of ordinary differential equations, where x is a vector in an n-dimensional
Euclidean space Rn. For example, the simplest paradigm of "autonomous"
chaos is given by Chua's circuit [1-3], which contains only one linear resis
tor, one linear inductor, two linear capacitors, and a two-terminal nonlinear
resistor called the Chua diode [4], Because of its mathematical tractability,
more than 50 in-depth analyses ofChua's circuit have been published on all
aspects of this circuit, including the fractal nature of its many bifurcation
diagrams.

But chaos can also occur in non-autonomous systems; namely, systems
driven by time-varying (ac) signals, and therefore described by anon-autonomous
system of ordinary differential equations

* = /(x,*) (2)
Our goal in this paper is to present a new non-autonomous electronic

circuit, henceforth called the twist-and-flip circuit, which is unique in the
sense that it has an explicit mathematical solution. In particular, numerous
fractals associated with this circuit can be painlessly generated via the asso
ciated Poincare map, called the twist-and-flip map, which surprisingly, can
be expressed in explicit analytic form. Since the state equations associated
with the twist-and-flip circuit are the only known non-autonomous system of
ordinary differential equations whose Poincare map can be derived in explicit
analytic form, thereby making it possible to carry out an exhaustive and rig
orous mathematical analysis, we believe that the twist-and-flip circuit will
become thestandard paradigm for "non-autonomous* chaos in second-order
chaotic systems.

An in-depth mathematical analysis of the twist-and-flip map can be found
in [5,6]. In this paper, we will focus our discussion on the various fractals



9(^1 .v2)

vs=s(t)
(a)

a

s(t)

0

-a- - P

p

2
P 2P 3P

2 ~
.

p=^27T '
(0

(b)

Fig. 1



generated from this map. In addition to presenting a gallery of fractals
corresponding to several classes of nonlinear gyration conductance functions
#(vi, v2), an analysis and interpretation of these fractals, especially in the
context of well-known geometric structures (e.g., hyperbolic and elliptic re
gions, island chains, homoclinic tangles, aswellas the evolution and breakup
of cantori's etc.) associated with the KAM theorem will be given. The
fact that the twist-and-flip map is endowed with the same structures is ex
tremely significant because no other nonlinear conservative system is known
to posses an explicit Poincare map. Even the widely-cited standard map [7]
is only a model for mimicking the actual Poincare map of some classes of
Hamiltonian systems. In other words, the standard map is not the Poincare
map of any known non-autonomous system of ordinary differential equations.
In contrast, the explicit twist-and-flip map is the exact Poincaremap of the
twist-and-flip circuit.

Finally, we will present a series of numerical examples, which shows that
in the limit where the gyration conductance function tends to a "Signum
function", the invariant manifolds tend to a fractal. We believe this new dis
covery is highly significant because it represents the first direct link between
the dynamics of the trajectories and the associated fractals.

2 The Twist-and-Flip Circuit

Considerthe circuit shown in Fig. 1henceforth calledthe twist-and-flip circuit.

FIGURE 1

It contains two linear capacitors, C\ and C2l which for simplicity, are
normalized to one Farad each, a voltage source V8 = s(t), where s{t) denotes
a square wave (Fig. 1(b))* of amplitude a and angular frequency w (or period
P —27r/a>), and a gyrator described by

h = g(vuv2)v2 (3a)
*2 = -g(vuv2)vi (36)

where g(vi,v2) is the associated gyration conductance [8]. Note that unlike
the original definition where g(v\,v2) = G is a constant, this parameter is a



nonlinear function of the port voltages t*i, and v2 in the twist-and-flip circuit,
and henceforth will be referred to as the gyration conductance function.
Although a gyrator can be defined by any nonlinear function <jf(i>i, v2) in this
paper, we will assume that

g(v\,v2) > 0, for —oo < Vi,v2 < oo

2.1 State equations of the twist-and-flip circuit

Applying KCL, KVL, and the constitutive relation for the capacitors, we
obtain

• _ ndx dx • n dy dy
11 - ~ClTt ~ ~Tt l2 = -°2Tt = ~Tt

Vl(t) = x(t) - s(t) v2(t) = y(t)

It follows from the above equations and the constitutive relation (Eq.4) of
the gyrator that the dynamics of the twist-and-flip circuit are governed by
the following state equations:

dx-£ = -g(x-s(t),y)y (5a)

where,

* = g(x-s(t),y)(x-s(t)) (56)

s(t) = a, t 6 (n,n+ 1/2)P (positive half cycle)
s(t) = -a, te(n +1/2, n+1)P (negative half cycle)

n = 0,1,2,..., We can divide Eq.(5b) by (5a) to obtain

^ = -(x-a)ly (6a)

over each positive half cycle, and

^ =-(«+«)/» (66)





FIGURE 2

over each negative half cycle. Equation (6) defines a phase portrait [9]
consisting of a family of concentric circles, centered at x = a (Fig. 2(a)) over
each positive half cycle t € (n, n -f 1/2)P, and at x = —a (Fig. 2(b)) over
each negative half cycle t £ (n + 1/2, n + 1)P, n = 0,1,2,.... Observe that
all trajectories traverse around the circles in a counterclockwise direction
because Eqs. (4) and (5a) imply that in the upper half plane where y > 0
(resp., lower half plane where y < 0),

dx(t) n
-r<0

resp.,

dx(t) n

Observe also from Eq.(5a) that the time it takes a trajectory to traverse from
any point (xaiya) to another point (x^yi,) on a circle of radius

r0 = >/(»o¥«)2 +yJ (7)

where the upper sign (resp. lower sign) henceforth pertains to the circles
centered at x = a (resp, x = —a), is given by

tab = h —ia

= / nt* =a„\J* (8)^a g\x^a,y)y

where y in Eq (8) is replaced by

y = yJr*0-(xTa)2 (9)

before performing the integration



2.2 Explicit solution of the twist-and-flip circuit

In general, Eq. (8) can not be integrated explicitly for arbitrary g{y\yv2).
However, in this paper, we will henceforth assume that

g(vi,v2) = f(y/vl + vj) (10)

where /(•) is a single-valued function of only one variable r = Jvl + v2.
Under this standing assumption,

g(x^a,y) = /(r0) (11)

is a constant since r0 is fixed by the initial condition (x0,2fo) via Eq. (7). In
this case, Eq. (8) can be integrated explicitly as follows:

tab = h~ ta
—1 /*» dx

= — /
/(ro) J*** ^-(x^a)2

[arcsin((x6 ^ a)/r0) - arcsin((xa ^ a)/r0))
/(ro)

/(ro) (12)
where 0a denotes the angle (in radians) measured from the right of the hori
zontal axis centered at x = ±a to (xa,y0), and $b denotes the corresponding
angle measured from x = ±a to (x&, yt). It follows from Eq. (12) that the
period P for a trajectory to traverse a circle of radians r once is given by

P =^ =2~ (13)/(r) u

where lj = f(r). Observe that just as in the familiar harmonic oscillator,
the period is equal to 27r/w. There is a crucial difference here, however, in
that the angular frequency u in the twist-and-flip circuit is not a constant,
but is rather determined by the gyration conductance function /(r). We will
see in Section 4 that different choices of f(r) giveriseto drastically different
dynamics. Since the trajectories associated with the stateequations (5) over
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each half period must fall on circles, as shown in Fig. 2(c), it follows from
Eq.(ll) that given any initial condition (x0,yo), Eq.(5) is equivalent to

dx
a = "/(ro)y (14a)

§ =/W(»Ta) (14b)
where the upper sign (resp., lower sign) in Eq. (14b) applies to each positive
(resp. negative) half cycle of the square wave input signal s(t).

The solution of the twist-and-flip circuit in Fig. 1 is therefore given ex
plicitly by:

x(t) = (x0 =F «)cos(/(r0)*) - y0 sin(/(r0)<) + a (15a)
y(t) = (x0 =F a) sin(/(r0)t) + y0 cos(/(r0)<) (156)

The solution in Eq.(15) is in general not periodic in t ,even though the
excitation is periodic with period P. This means that the corresponding
trajectory in the x —y plane is not a closed circle as illustrated by the chaotic
trajectory calculated with /(r) = r, a = 1.0 , u = 7r. (x0,yo) = (0,1.9) , as
shown in Fig. 3.

FIGURE 3

2.3 Poincare map of the twist-and-flip circuit

The chaotic trajectory shown in Fig. 3(a) shows that even though we can
obtain the solution of the twist-and-flip circuit explicitly via Eq.(15), its
asymptotic behavior in the x —y phase plane is nevertheless muddled by
an infinite tangle of intersections of the trajectory upon itself. The standard
method to untangle such a messofpoints and extract someusefulasymptotic
information is to analyze the dynamics of the associated Poincare map p de
fined as follows [10]: Given any point (x0,yo), the Poincare map of (x0, yo) for
the twist-and-flip circuit is a point (xi,yi) which corresponds to the position
of the trajectory from (x0, yo) calculated at t = P = 27r/a>. Let us denote
this map (xi,yi) = p(x0,yo) as follows:



t=f.-2L
2 w

r(-a,r2)

Fig. 4 (c)



(*o,yo) -* (x!,yj) (16)

Let us analyze next the geometrical interpretation of this Poincare map.
Observe first that corresponding to the given initial point (J) (t = 0) on the
outer right circle (centered at x = a) in Fig. 4(a), the trajectory traverses
this circle in a counterclockwise direction until it arrives at the intermediate

point @ half a period (P/2 = 7r/u>) later. Then it instantly switches to the
left family and coasts along the smaller left circle (centered at x = —a),
still in a counterclockwise direction, until it arrives at point ©a full period
(P = 2tt/lj) later. Hence, in the geometrical construction shown in Fig.
4(a), the Poincare map (16) can be denoted geometrically by the action:

p : 1 -• 2 (17)

FIGURE 4

Clearly, we can take point (2) as our next initial point and apply the
Poincare map of this point again to obtain® This process can be iterated
to obtain a sequence of points (x0, y0), (xlt yi), (x2, y2)... (xn,yn),....

The loci of these points can be extracted from the mess of points in
Fig. 3(a) by applying a regular flash of light (as in a stroboscope) of period
P = 2ir/u> to obtain a portrait of this chaotic trajectory (assumed hanged
on the wall of a dark room). The result is shown in Fig. 3(b).

Observethat the loci ofpoints in Fig. 3(b) actually represents a sequence
of points obtained by iterating the Poincare map of the twist-and-flip map p,
from one initial point (x0,yo). To avoid clutter, however, we will often abuse
our terminology by referring to this sequence of points simply as the "orbit
from (x0,yo)". In examining the gallery of Poincare maps in section 4, the
reader is cautioned that while some of the pictures in this gallery correspond
to the orbit of the Poincare map from only one point, others may contain
a union of orbits from the Poincare map from many initial points, specified
in the figure captions. Recall the above Poincare map p of the twist-and-
flip circuit consists of the two operations: 1. Given the initial point (X)
at t = 0, identify the radius of that circle centered at x = a which passes
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through© assuming that the initial time corresponds to the beginning of a
positive half cycle. This circle is denoted by T(a;ri) in Fig. 4(a). Follow
the circle in a counterclockwise direction until we arrive at the point labeled
(S) where t = P/2 = tt/lj (one half of the period of the square wave). We
will henceforth refer to this action as a twist T0 relative to the center x = a
by an angle A#x = 0* —0a. Identify the radians r2 of the circle centered at
x = —a which passes through <2fc where the square wave abruptly switches
to its negative half circle. This circle is denoted by T(—a;r2) in Fig. 4(a).
Follow the circle T(—a;r2) in a counterclockwise direction until we arrive
at the point labelled©in Fig. 4(a) where t = P = 2n/u> is the period of
the square wave. We will henceforth refer to this action as the second twist
T_a relative to the center x = —a by an angle A$2 where A92 is the angle
subtended by the radii from© to<2l centered at x = —a. It follows from the
above geometrical interpretation that the Poincare map p of the twist-and-
flip circuit is made up of two twists Ta and T_0. of angles A0i and A02l
respectively. We denote this Poincare map p by

p = T_aoT8 (18)

where "o" denotes the "composition" operation. In terms of this standard
mathematical notation, we can write

p«D) = T_ooTa«D) = T_a(®) = 0 (19)

For the twist-and-flip circuit, Eq.(19) can be calculated exactly from Eq.(15),
and there seems little advantage to resort to the abovegeometrical construc
tion. However, the same results and phenomena that one finds in the twist-
and-flip circuit also occurred in more complicated situations. The simplest
example of such a generalization is to replace the gyrator in Fig. 1 by a
non-energic two-port resistor [9]. In this case, the two concentric families
of circles in Fig. 4(a) are replaced by the concentric non-circular contours
centered at x = a and x = —a, respectively. These contours can be quite
complicated in shape(e.g., topological contours depicting constant elevations
in a geographic map) and almost certainly does not have an explicitequation
corresponding to Eq.(15). It is in these much more general situations, where
the full power of the twist-and-flip circuit as an analytical and tractable
paradigm for studying non-autonomous chaos becomes evident. It is in this
context that we now make a major conceptual leap forward by showing that



all complicated nonlinear dynamics of the twist-and-flip circuit, as well as its
many non-explicit generalizations, can be fully understood by studying an
even simpler map, called the twist-and-flip map.

2.4 The twist-and-flip map

The "double" twists actions in Eq. (19) which defines the Poincare map of
the twist-and-flip circuit is summarized geometrically in Fig. 4(b). Suppose
we reflect the left circle r(—a; r2) with respect to the y-axis and obtain the
reflected circle T(a; r2) of the same radius r2 but now centered at x = a.
Now instead of going from point© to point®by the twist action T_0, we
"flip" the point @ with respect to the origin to obtain point (6) as shown in
Fig. 4(b). Note that @must necessarily fall on the reflected circle T(a; r2).
Now instead of applying the second twist action T_0 by an angle A62 as in
Fig. 4(a), in order to arrive at our desired destination point® suppose we
repeat the first twist action T0, now centered at x = a, from point©by the
same angle A02> we would obtain point ©as shown in Fig. 4(c). Because
every point on the left circle T(—a; r2) has a corresponding odd-symmetric
image (with respect to the origin), it follows that if we "flip" the point©in
Fig. 4(c) one more time, we should arrive at exactly the same destination
pointOdefinedby the Poincare mapin Eq.(17). If we define this "flip" action
by

*{;)-(-->) (20)

then® = F(®) = -® and@= F(©) = -Q Hence, the above geometrical
analysis proves that the Poincare map (19) for the twist-and-flip circuit is
equivalent to the "double" twist-and-flip actions

p(d» = FoTooFoTo(O)=0 (21)

On first sight, Eq. (21) actually looks more complicated than the original
Poincare map in Eq. (19). Observe, however, that there are two propertiesin
Eq. (21) which we can exploit: First, the flip map F defined by (20) is trivial
either geometrically, or numerically. Second, the two twists actions required
by Eq. (21) pertain now to only one twist map, centered at x = a. If one were
to write a computer program to integrate the state equations (5) in order to
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identify the locations of points @ and(2) a task needed in the general cases
where an explicit solution does not exist, then the algorithm for implementing
Eq.(19) would require integrating Eq.(5) over a full period. In contrast, the
corresponding algorithm for implementing the equivalent Poincare map of
Eq.(21) would require integrating the state equation twice, each time over a
positive half period. The computer program for implementing Eq. (21) is
simpler because the same twist action T0 is called upon twice. Observe that
there is as yet no savings in the numerical integration time needed to go from

<Dto<2> The key advantage of the equivalent Poincare map defined by Eq.
(21) is best seen by first rewriting it in the following abbreviated form

p = FTFT = (FT)2 (22)

where we have dropped the subscript a from T, since we no longer have to
distinguish Ta from T_a, as would be the case in Eq.(19). Hence, we have
simplified the Poincaremap p of the twist-and-flip circuit, or its non-circular
and possibly damped generalizations, to the double action of a single map

$ = FT (23)

henceforth called the twist-and-flip map [3]. Now since all nonlinear dynami
cal phenomena and complexities exhibited by the Poincare map p in Eq.(22)
are also present in the twist-and-flip map and vice-versa, it suffices to study $
in so far as the qualitative behavior of the twist-and-flip circuit is concerned.
This observation has great advantages: In the geometrical interpretation of
Fig. 4(b), this means that we need only analyze the properties of the map
froman initial pointQ)to its single twist-and-flip imagepoint@ For the much
larger class of "generalized" (possibly with damping) twist-and-flip circuits,
having no explicit solutions, this observation allows the construction of a
simplified Poincare map $ which consumes half the computing time required
for the full Poincare map p.

3 Properties of the Twist-and-Flip Map

As noted in section 2 the twist-and-flip map has numerous mathematical
properties that allow an extensive analysis of its complexity and also allow the
possibility of designing circuits with predetermined characteristics. In this
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section we will state without proof some of these properties. Before describing
these properties we present some preliminaries essential to understanding the
properties of the twist-and-flip map and to understanding the fractals and
fractal-like structures presented in the later sections.

3.1 Preliminary Concepts

In this subsection we will describe certain important concepts from Hamil-
tonian dynamics for a mapping $ that have an enormous bearing on the for
mation of fractals in the twist-and-flip circuit. The concepts we will describe
are those of elliptic and hyperbolic fixed points, invariant regions, elliptic
regions, stable and unstable manifolds, homoclinic tangles, and KAM island
chains. Each of these objects plays an interesting role in the complex dy
namics of chaos through the way they contribute to the formation of fractals
and fractal-like structures in the twist-and-flip circuits.

Fixed Points and Periodic Points: A fixed point p of an invertible
and differentiable mapping $ of the plane R2 is one such that $(p) = p. A
period-two point for $ is a point p such that $($(p)) = p. This last line is
usually abbreviated as $2(p) = p. A period-n point of $ is a point p such
that $n(p) = p. Thus a period-n point of $ is a fixed point of $n.

Invariant Regions: Given a map $ of R2, a region or subset of R2, call
it A, is said to be invariant for $ if $(A) = A.

This last condition means that given any point q 6 A, $(?), which need
not be equal to a, remains inside A. Conversely, given any point q 6 A, there
is some point q* G A such that $(o*) = q.

Area Preserving: Give a map $ which is differentiable we denote its
derivative at the point p as D($)(p). If D($)(p) = 1 for all p in the plane,
then $ is called area preserving. When referring to systems, a term often
used for area preserving is nondissipative. Area preserving means that if we
start with a square with area 1, then $ will map this region to another region
(which usually is not another square) having area 1.

Elliptic Points: For an area preserving map $, a fixed point of $ is
called elliptic if the Jacobian derivative matrix, denoted D($) of $ has eigen
values on the unit circle [7], p.305. A fixed point of an area preserving map
$ is called hyperbolic if one eigenvalue of the Jacobian at the fixed point is

12
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greater than one in absolute value and the other is less than one in absolute
value.

FIGURE 5

If we consider a point near an elliptic fixed point, the set of iterates of this
point will, for the mappings we will be considering, seem to trace out a closed
curve if we iterate the point enough times. See Fig. 5(a). The time wave
form of the corresponding differential equation is a quasi-periodic function
in the sense that it behaves much like a function which is a finite sum of

periodic functions having incommensurate frequencies. A sum of continuous
periodic functions having incommensurate frequencies is referred to in the
mathematical literature as "almost periodic".

Stable and Unstable Manifolds: Passing through a hyperbolic fixed
point, sometimes called a saddle point, there are two special curves called
the stable and unstable manifolds respectively [7], p.68. These curves are
invariant in the sense that any iterate of any point on either of these curves
will remain on the respective curve.

The stable manifold is so called because if we start at a point on the
stable manifold and iterate our map $ it will converge, i.e., approach, the
fixed point. For the unstable manifold, this does not happen. In fact, for a
point very near the fixed point and on the unstable manifold, its iterates by $
will move away from the fixed point. Such points may also temporally move
toward the fixed point and then move away, or may from time to time come
near the fixed point. To get around this clumsy explanation of the unstable
manifold in terms of $ we use fc""1 instead, where $_1 denotes the inverse of
the Poincare map which exists because $ is definedby a differential equation.
When we do the definition gets easier: We define the unstable manifold as
the set of points which approach the fixed point under iteration by $-1. So
that the stable manifold for $ is the unstable manifold for $-1 and vice

versa. An important fact about these two curves is that neither curve can
intersect itself. This follows from the uniqueness of solutions of ordinary
differential equations and we do not give the exact argument here. However,
these curves can intersect each other, i.e., the stable and unstable manifolds
can actually intersect. Further, these two curves may coincide completely.

13



When the stable and unstable manifolds intersect by crossing at a single
point the result is chaos.[7], p.165.

The easiest example available to understand these ideas it that of the
2x2 matrix

Its inverse is the matrix

2 0

0 1/2

1/2 0
0 2

(0, 0) is a fixed point of this matrix when the matrix is considered as
a mapping on the plane and points on the y—axis converge to (0, 0) under
forward iteration of this map. Hence, the entire y—axis is the stable manifold.
Points on the x—axis converge to (0, 0) under iteration by the inverse matrix,
and hence the entire x—axis is the unstable manifold. In this instance the

stable and unstable manifold are straight lines. When our maps are nonlinear,
such as the twist-and-flip map, these two special sets are curves that often
wind around in the plane in a most extraordinary manner, as can be seen in
the examples found in [6], pages 406,407. A particularly simple example can
be found on p.410, Fig.5. We will present additional examples in section 4.

The significance of the stable and unstable manifolds is that they may be
used to produce fractals which are Cantor sets. These particular fractals are
of considerable importance in understanding the dynamics of systems that
can be described by differential equations. How this is done can be found
in section 11.5 of [6]. These Cantor set fractals generally cannot be seen on
a computer, but their existence can be proved [7], p.165 and it is this set
of "invisible" fractals that is the source of the most complex form of chaos
produced by fractals. In fact, the only definitive statement that has ever been
made about the level of complexity that can occur in a mapping arising from
a differential equation is about the maps generating these type of fractals
and it is known as the Smale-Birkhoff theorem. The Smale-Birkhoff theorem

does not use the term "fractal" since the Smale-Birkhoff theorem predates
the use of the term "fractal".

The stable and unstable manifolds can be associated to other fractals as

will be seen in a later section.

The conventional symbols used to denote an unstable or stable manifold
are as follows:

14



The Unstable Manifold of a mapping $ at a fixed point p is denoted
Wu(p)\ the stable manifold is denoted as W'(p).

Note that since a period-n point, p, of a mapping $ is a fixed point of $n,
4>n also has a stable and unstable manifold when p is hyperbolic. Further,
when p is hyperbolic for $n, each of the points $*(p), k = 1,2,3... n is
also fixed by $n and has a stable and unstable manifold. Hence there are n
stable and unstable manifolds for a period-n point, each a separate curve.

A fixed point is synonymous with a period-one point.

Homoclinic Tangles: As described in [7], p.165 the stable manifold
and unstable manifold can curve around so extensively they actually become
tangled in one another. Figure 3.32 of [7] on page 165 is a drawing of such
a tangle and Fig.9 of [5], page 248, is an actual picture of such a tangle
from a twist-and-flip map. Such tangles are referred to in the literature as
homoclinic tangles. We do not attempt to explain the genesis of this term.
Wherever there are homoclinic tangles, the Smale-Birkhoff theorem tells you
there is chaos which is related to Cantor set fractals.

Island Chains: Given a map $ which defines a non-dissipative (area
preserving) system, the elliptic and hyperbolic periodic points of $ provide
an organizing structure within which its dynamics may be best understood.
In particular, there is the interesting phenomena known as island chains
where there exist a set of alternating elliptic and hyperbolic periodic points
of the same period that seemto form in a ring. Around the elliptic periodic
points of period-n are regions which are invariant (i.e. a subset of positive
area which is a continuum in which each point defines a quasi-periodic orbit)
for $n. In this sense they are like islands in that if one starts iterating $n
in one of these regions, you will never leave while the intermediate iterates,
$, $2, $3,..., $n_1 will jump from from one region to thenext. Surrounding
these islands are homoclinic tangles of stable and unstable manifolds. A
picture of a set of these islands will show that they form in a circle like
shape, much like a ringofmushrooms sometimes forms in the forrest. Figure
6.18, p.340 of [7] is a highly stylized drawing of such an island chain. Of
course real island chains are not so neat. The circular formation of these
islands has come to be called an island chain due to its similarity to the
shape of a chain. In section 4 we will illustrate these island chains using the
twist-and-flip map and we will see that they are not so neatly formed as the
drawing of [7]. But for now we note only that their complexity is enormous
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and diverse and has a self-similar aspect in that within an island of an island
chain can be found another island chain of smaller scale, and so on, much
the same as occurs in fractals. For this reason we refer to an island chain as
a fractal-like structure.

In summary, we have described the concepts of elliptic and hyperbolic
fixed points, invariant regions, elliptic regions, stable and unstable mani
folds, homoclinic tangles, and island chains. In the following sections we
will see that each of these objects plays an interesting role in the complex
dynamics of chaos through the way they contribute to the formation of frac
tals and fractal-like structures in circuits. In particular, with the addition of
small amounts of damping to the twist-and-flip map as would naturally occur
in actual implementation of the circuit equations, the complexity spawned
by these features of Hamiltonian dynamics actually shape the final form in
which fractals occur as well as their contribution to the formation of chaos

in nonlinear circuits. It is the possibility of utilizing these features in the
design of new generation of systems, neural networks, and computers that
makes their understanding imperative.

3.2 Twist-and-Flip Properties

The matrix form of the twist part of the twist-and-flip map, T, is given by:

T( x\ f cos(/(r)*» -sin(/(r)7r/u>) ]( x-a\ ( a\
\y) [«m(/(r)ir/«) cos(/(r)ir/w) \\ y ) + V° J

which represents a counter clockwise rotation about the center (a,0) by an
angle equal to ir f(r)/u For f(r) = r we have the simple twist-and-flip map.
The matrix representation (matrix form) of the twist-and-flip map$ = FT
is the mapping obtained by multiplying the right hand side of

(;)
above by -1. We often consider the special case where /(r) = r and will
henceforth refer to is as the simple twist-and-flip map

We now list and explain some properties of the twist-and-flip map which
can be found in [5] and [6]:
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Property 1: If /(r) is a strictly increasing function, then FT has an
infinite number of fixed points. Moreover, they all lie on the vertical axis
and approach infinity in both directions. In particular these fixed points lie
on the intersection of the vertical axis and the curves defined parametrically
by [13]:

x(t) = a±tcos(0.57rf(t)/u)
y(i) = :p*sin(0.57r/(t)/a>)

for 0 < t < oo, where the upper (resp. lower) sign pertains to the first (resp.
second) curve, called control manifolds [6]. If f(t) is a positive increasing
function, then these curves are spirals and so must cross the vertical axis
infinitely many times.

Another method of seeing this fact is to set FT(x, y) = (x, y) and solve
this set of equations to get:

cos(tt/(r)/u>)) = 2(<z/r)2-l
sin(fl-/(r)/u>) = 2ay/r2

As r —> oo these equations are:

cos(7r/(r)/u>)) « —1
sin(7r/(r)/w) « 0

and so there may be solutions for which f(r) w 2nw. If /(r) is increasing and
continuous it will actually reach 2nu> for every n and thus also have infinitely
many solutions near 2nw, each solution corresponding to a fixed point of FT.

To see that these solutions must be on the vertical axis we note that the

conditionFT(x, y) = (x, y) requires that the distancefrom (a, 0) to the fixed
point and the distance from (—a,0) to the fixed point must be the same.
This means that (x —a)2 + y2 = (x + a)2 + y2, or that x = 0.

By using an illustration it can be easily seen that some points on the
vertical axis will be fixed by FT. In Fig. 5(b), we show where three points
on the vertical axis are mapped by the simple twist. The highest point on
the vertical axis is (0.0,2.5). Its image under the twist map overshoots the
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vertical axis and arrives at the point (0.816, -2.69) (wehave added the circular
arcs between each point and its image under the simple twist map in Fig. 5(b)
to facilitate the explanation). The flip of this point is (-0.816,2.69) which is
not equal to the starting point. The image under the simple twist of the point
(0.0,1.5) is not carried far enough and arrives at the point (-0.229,-1.31).
The flip of this point is also not equal to the starting point. Note that when
the value of the y-component of the starting point is 2.5 the x-component
is positive, when the value of the y-component of the starting point is 1.5,
the rc-component is negative. Since the gyration conductance function is
continuous, there must be some y-value of a starting point on the vertical
axis between 1.5 and 2.5 where the ^-component of the image of this point
under the simple twist takes on the value 0.0. This value can approximated
either by trial and error, or by using a Newton iteration algorithm, and is
found to be « 1.9551 which is accurate to about six decimals.

Property 2: det(D(FT)) = 1, for all s,y, where D(FT) is the Jacobian
derivative of FT.

Property 3: The trace of D(FT) at a hyperbolic fixed point is given by

tr =2(1 +̂ >)-4(^
rw r

and tr > 2 for y > 2u>/ir. Due to property 2 the product of the eigenvalues
is one and hence all fixed points for which y > 2cj/t along the positive
y-axis are hyperbolic saddle points and therefore have stable and unstable
manifolds.

In order to produce the unstable manifold on a computer we need the
following fact:

Property 4: For a hyperbolic fixed point of FT on the vertical axis the
expanding eigenvector of the unstable manifold has a slope given by

slope = —,
(tr/2) +1

3^(tr/2)-l'

In order to produce the stable manifold on a computer we need the fol
lowing three facts:

Property 5: The flip map F can be factored into two reflections, PR,
where P is reflection about the horizontal axis and R is reflection about the
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vertical axis. Using this notation we have the following property, called the
involution property, of the twist-and-flip map:

PTPT = I. Thus, PT = (PT)-1

Property 6: As a result of the involution property we have the following
fact: RFT = (FT^R.

In mathematical terminology, this means that the twist and flip map is
topologically conjugate [7] to its inverse through reflection about the vertical
axis.

From the above two properties we have the following result that allows us
to easily generate the stable manifold, once the unstable manifold has been
generated:

Property 7: Given a hyperbolic fixed point, p, of FT, let Wa(p) be the
stable manifold, and let Wu(p) be the unstable manifold at this fixed point.
Then R(W£) = W£. This means that if (x,y) is a point on the unstable
manifold, then (—x, y) is a point on the stable manifold and vice versa. Hence
the unstable manifold is identical to the reflection of the stable manifold

about the vertical axis. This includes the possibility that Wu(p) = Wa(p)
a possibility that was mentioned earlier. In this case there are no places
where the stable and unstable manifold intersect in only one point since
they intersect everywhere. In this case there is no chaos caused by these
unstable manifolds since there can be no homoclinic tangles. A necessary
and sufficient condition for the existence of homoclinic tangles is that there
exist at least one place where the stable and unstable manifolds cross at a
single point. When this occurs, there will be many other crossings of this
type and hence a homoclinic tangle will exists. Thus we may clarify our
definition of homoclinic tangles by saying that homoclinic tangles exist when
there exist numerous, (infinitely many will exist, but we do not prove this)
places where the stable manifold and unstable manifold cross at a single
point. This crossing may be tangential so long as an actual crossing occurs.

This definition suggests that it will be useful to have some simple test
for the presence of homoclinic tangles in the twist-and-flip map. This test is
given below as property 8. In the following we use [x] to denote the integer

part of x and use ro to denote 2w[r/2u;].

For a simple twist-and-flip map we have the following test to determine
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the existence of homoclinic tangles, and their associated fractals.
Property 8: Given a hyperbolic fixed point (0,y), with r = yjy2 -f o?

and ro = 2<jj[r/2u], a sufficient condition for the simple twist-and-flip map
to have a homoclinic tangle is that the two circles,

(x-a)2 + y2 = r2

and

{x+ a)2 + y2 = r2
intersect.

Another form of this condition is given by the following inequality:

r < 2a + ro

or

r mod (2u>) < 2a.

4 Gallery of Fractals

In this section we will illustrate a variety of fractals and fractal-like structures
that occur in the twist-and-flip map. We will use an indirect method to
illustrate these fractals similar to the method used to illustrate the l/3r<*
Cantor set [11]

The fractals occurring in the twist-and-flip map are of four types. Those
associated with an attractor, thoseassociated with a homoclinic tangle, those
associated to the boundary of a set of elliptic regions,and cantori. Due to the
extent to which the fractals associated with attractors and homoclinic tangles
have been studied, we will confine our attention to the fractals from bound
aries of elliptic sets and cantori. In addition to fractals, we will also examine
some fractal-like structures. We do this since the role of these fractal-like
structures in creating dynamic complexity is every bit as important as the
dynamic complexity arising from fractals. These fractal-like structures, as
mentioned in subsection 3.1, are referred to KAM island chains and are or
ganized around a remarkable combination of elliptic and hyperbolic periodic
points. What these structures have in common with fractals is that they
occur on all scales and their complexity continues to unfold without appar
ent limit as a given region of the phase plane is subject to ever increasing
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levels of magnification. Island chains differ from fractals in that they are not
known to be self-similar and there is no simple way to associate a fractional
dimension to them.

All of the figures in this section are of the phase plane Poincare map
explained in the previous sections. This sectionis primarily organized around
the gyration conductance function of the twist-and-flip circuit due to its
physical significance as a circuit element.

4.1 Class A: Gyration conductance function f(r) —r

The gyration conductance function, f(r) = r, corresponds to the simple
twist rotation function. We begin with an illustration of the fractal-like
KAM island chains occurring in the twist-and-flip map having this gyration
conductance function. This Hamiltonian type of dynamic phenomena has
been studied for years by the use of the Henon map [12] or the standardmap
[7]. What has only recently been discovered is that this phenomena can be
associated to a circuit. See Fig. 6(a), where a = 1.0, w = •k. The center
point of the yellow, innermost region is (0.0, 6.2031) and is ellipticof period-
two. As seen in this figure, there is a complex invariant set of elliptic regions
(closed curves) and homoclinic tangles (in orange) that represent the array
of possible outputs of the circuit. We pause for a moment here to clarify
the term elliptic region. Elliptic regions are regions around elliptic periodic
points in which, for every point in the region, the solution of the differential
equation or the output of the circuit is quasi-periodic. These regions may
be small or large depending on the particular parameters of the circuit and
gyration conductance function / that appears in the circuit. Hyperbolic re
gions are more difficult to explain. For the purposes of this paper we will
consider a hyperbolic region to be the union of the stable manifold and the
unstable manifold from the same hyperbolic periodic point. The boundary
separating the elliptic and hyperbolic regions (when homoclinic tangles ex
ist) cannot be seen in this figure due to the difficulty of producing it on a
computer. We conjecture that it is a fractal. One way to see this is to note
that the boundary of an elliptic region tries to be quasi-periodic since its
points are very close to points giving rise to quasi-periodic outputs of the
circuit. But such points are equally near to points on a stable or unstable
manifold which produces chaotic outputs of the circuit. Hence the bound
ary points are simultaneously influenced by order (quasi-periodic motion)
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and chaos (the homoclinic tangles). This boundarymust be an invariant set
since the elliptic and hyperbolic regions are both invariant. What we expect
is points on this boundary behave for some period of time like points in the
elliptic region and then for some time like points in the hyperbolic region.
Perhaps some are altogether different. Only a very strange set could support
such diverse behavior and hence we conjecture it must be fractal. If it were
possible to use a point on this fractal boundary as input values to the circuit,
the output would be unpredictable.

The pedagogical value of the twist-and-flip circuit can be readily appre
ciated when one considers that every known form of dynamical complexity,
Hamiltonian or dissipative, that arises in two-dimensional dynamical systems
can be found in the twist-and-flip circuit. As an illustration of this we refer
the work of Henon [12] and others summarized in [7].

For example, Fig.6(a) showsthe twist-and-flip dynamics that corresponds
to Fig.1.40, page 53 of [7] as-well-as p.309 of Henon [12]. Figure 6(b) is an
example of an extensive homoclinic tangle in green. We can see that the
figure is vertically symmetric. A fixed point is located at (0.0,1.955) and is
the fixed point of Fig. 5(b). This fixed point is located at the intersectionof
the two thickest partsof the green curves, in the middle (measured from the
sides) of the figure and above the yellow region. This homoclinic tangle is
a detailed illustration of the complexity of a tangle and corresponds to the
moremodest hand-drawn figure, Fig.3.35, found in [7] on page 170. Fig. 6(c)
corresponds to Fig.3.36, page 171 of [7] and is an enlargement of the yellow
region in Fig. 6(b). The center of the inner most elliptic regions is the elliptic
fixed point (0.0,0.69898). This Fig. 6(c) isa good example of the relationship
of elliptic and hyperbolic regions in the phase plane known as island chains.
The elliptic regions are "centered" whereas the hyperbolic regions are the
colored regions that seem to diffuse through the elliptic regions. If we were
to magnify a small portion of a region near the hyperbolic period-11 point,
(0.0,1.341), we would continue to see complexity unfold on all scales. An
enlargement of the homoclinic tangle in red at this hyperbolic period-11
point at the top of Fig. 6(c) corresponds to Fig. 1.42, page 55 of [7].

The most significant aspect of this extraordinary complexity is that the
twist-and-flip circuit provides a window into its study through the twist-and-
flip map. Being able to harness this dynamic complexity in the design of new
systems, circuits, or neural networks will likely lead to a new generation of
novel applications, possibly unlike anything presently known.
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4.2 Class B: Gyration conductance function f(r) is
continuous and positive

It is an important fact to note that the twist-and-flip circuit has a range
of dynamic diversity far beyond that found in either the standard map or
the Henon maps. Both the maps of Henon and the standard map have pa
rameters that allow a broad range of experiments to be conducted. But the
twist-and-flip circuit does also through the physically meaningful parameters
a,w. Further, it has the gyration conductance function, f(r). To see that
the dynamic diversity due to this feature opens an additional dimension to
experimentalist we present two figures of the elliptic and hyperbolic regions
determined by varying the gyration conductance function. Additional exam
ples can be found in [6]. For a gyration conductance function /(r) = 1/r,
a = 0.2, and a; = n we have Fig. 7(a). For this map there exist a period-9
point located at (0.0, 0.13414). Fig. 7(a) shows the unstable manifold in
blue, a set of elliptic regions in the interior in red, and another set of elliptic
regions in green surrounding the unstable manifold. Fig. 7(b) is the graph
of the gyration conductance function.

FIGURE 7(b) and (d)

In Fig. 7(c) the gyration conductance function is /(r) = (r + log(r))/r2,
a = 0.2, and lj = w. A hyperbolic fixed point is located at (0.0,0.318218).
In this figure a blue unstable manifold corresponding to this hyperbolic fixed
point is shown inside an elliptic region which is in green. Also inside this
green elliptic curve are two sets of smaller elliptic curves shown in magenta
and red so that they may be easily distinguished. Fig. 7(d) is the graph of
this gyration conductance function.

4.3 Class C: Gyration conductance function f(r) is
step-wise constant (stair-case) and positive

In this section we use a stair-case type gyration conductance function to il
lustrate a fractal boundary that naturally occurs in the twist-and-flip circuit.
The construction is similar to that usedin the illustration of the l/3rd Cantor
set.
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FIGURE 8(a) through (d)

The gyration conductance function is

0.5ro (sgn(r - 1) - sgn(r - 2))

a = 1.8, u) = 7r, and r0 = 3.0. The graph of this function is seen in Fig. 8(a).
As seen there f(r) is 0.0 from 0.0 to 1.0. It is 3.0 for 1.0 < r < 2.0, and
is 0.0 for 2.0 < r. This graph represents the degree of rotation present in
the twist function centered at the point (a, 0.0) in the phase plane. See
Fig. 8(b). Starting at (a, 0.0), and going out to the circle of radius of 1.0
the twist has 0.0 rotation. Hence T Axes every point inside the inner circle
in Fig. 8(b). Between the inner circle and the outer circle, T rotates every
point 3.0 radians, and outside the outer circle of radius 2.0, T fixes every
point as well. As a result of this gyration conductance function, the entire
dynamics of this circuit takes place on a region that is the union of two annuli.
See Fig. 8(c). (Our thanks to Professor Morris W. Hirsch for suggesting
this map.) The point where the two outer circles intersect on the positive
vertical axis is y = 0.87177. The intersection of these two circles on the
negative vertical axis occurs at y = —0.87177 We are going to focus our
entire attention on the vertical line between these two points.

By a geometric argument that we will omit we can prove that a point
of period-three can be found at (0.0, —0.2565836). The following formula is
derived from that argument and can be used to And any values of y0 such
that |yo| < 0.87177 and (0.0, yo) is periodic of period-nand allof the periodic
points lie on two circles, one centered at (—a, 0.0) and the other centered at
(a, 0.0), with the same radius:

yo = a tan(0)

where 0 is given by the formula

((n + l)/2)r0mod(27r)
2

and n = 1,3,5,7,..., 2k —1.
Forany n for which there is a solution to this equation with |yo| < 0.87177,

there is an elliptic periodic point of period-n on the vertical axis for FT.
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Using this formula we can find elliptic periodic points of period 3, 33, 37,
and 41 on the vertical axis between the limits —0.87177, and 0.87177. The
periodic points are of the form (0.0, yo)> where yo is obtained from the above
formula. For example, for the period-33 point we have yo = 0.69248.

Around each elliptic point of period-n exist a largest region, invariant
under the map (FT)n, which is a circle. The intersection of this circle with
the vertical axis is an interval. If we remove these intervals, we have the start
of the construction used to generate the l/3rd Cantor set. See Fig. 8(d).

To continue this construction we generate additional elliptic periodic
points by the use of even more complex formulae which we do not present
here. For example there are periodic points of periods 47, 63,100 that cannot
be generated with the above formula. We remove the largest interval around
these points as before. If we continue in this manner, only the boundary of
these intervals remains, which is a Cantor set and thus a fractal. The forward
and backward iterates of this fractal by FT is still a fractal and the union of
all of these iterates is the fractal boundary of the union of all of the elliptic
regions in the annulus. In order to see what this fractal looks like we refer to
Fig. 8(e). What we see in this figure is not actually the fractal, but a very
good approximation to the fractal which is in fact a periodic orbit of FT of
very high period that we have not determined.

Another method of visualizing this fractal is to fill in all of the elliptic
regions, and then the fractal is what would be left over. But this can only
be done in an approximate sense. We refer ahead to Fig. 13(a) which illus
trates seven sets of elliptic regions that arise from the seven periodic points
mentioned above. Each region is in fact a connected set in the shape of a
circle but the figure only shows asterisk shaped regions for computational
convenience. Since the twist-and-flip map preserves area, all of the regions of
approximately the same size are related. In particular, in the center of each
circle is a periodic point, and the number of related regions of the same size
is equal to the period of this point. For example there are 37 of the largest
yellow regions. At the center of each region is a point of period-37 (there
are also some small unrelated yellow regions). There are 3 of the largest
magenta, or reddish-purple, regions, each containing a point of period-three
at its center. We have generated only seven sets of these elliptic regions, but
there are infinitely many more. Each set of regions is composed of a number,
say n, of connected disks having a periodic point of period-n at its center.
We cannot prove this at this time but we conjecture that every connected
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Fig. 10(a)



disk lying within the union of the two annuli seen in Fig. 13(a) contains a
periodic point of period-fc, and hence a maximal connected disk which is
mapped onto itself by the kth iterate of FT. The k iterates of this maximal
connected disk are all of the same area and form an open set such as the sets
of disks seen in Fig. 13(a).

Fractals of this type (boundaries of elliptic regions) are unlimited in the
twist-and-flip circuit. Figure 9(a) has gyration conductance function:

/W =

0.5 for r <1.0

2.0 for 1.0 < r < 2.0

1.0 for r >2.0

and a = 5.0 and u = it.

Figure 9(b) has gyration conductance function:

,, v f 1.0 for r < 1.0
/(r) = \ 2.(.0 for 1.0 <r

where a = 1.0 and u = ir

Figure 9(c) has gyration conductance function:

f(r) =
1.0 for r < 1.0

1.1 for 1.0<r<2.0

1.0 for r > 2.0

where a = 1.0 and u; = tt.

We remind the reader that what is seen in these figures is not the actual
fractal, but something like its outline. If we try to imagine the boundary of
all of these elliptic regions, that boundary would be the fractal.

5 Using the twist-and-flip circuit to illus
trate the effects of perturbations on KAM
circles

In this section we illustrate two KAM phenomena using the twist-and-flip
circuit. The first is the breakup of elliptic regions and KAM circles by a
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perturbation of circuit parameters. The second is the approximation of can
tori, fractals which form barriers to the movement of a dynamical system.
It is these barriers that may provide a mechanism for using limit cycles as a
means of computing.

5.1 Breakup of elliptic regions and KAM circles un
der perturbation of circuit parameters

We now demonstrate the breakup of elliptic regionsunder small perturbations
usingthe simple twist-and-flip map with a = 1.7943 and u = 7r. Figure 10(a)
shows a region of the Poincare phase plane of the simple twist-and-flip map
around the fixed point (0.0,-3.6394). Before the perturbation we see a large
elliptic region where every point lies on a crescent shaped curve and whose
iterates make up a quasi-periodic orbit. Hence, for a sufficiently small neigh
borhood of the fixed point, the map, restricted to each crescent shaped curve,
is conjugate (i.e., equivalent) [7] to an irrational rotation of the circle. After
a small perturbation of the parameter a of 0.05 (see Fig. 10(b)), this elliptic
region has broken up into two smaller elliptic regions, and the elliptic fixed
point has become hyperbolic. This particular break up of an elliptic region
into two smaller regions separated by a homoclinic tangle is fundamental to
the design of a signal detector [14].

FIGURE 11(a) through (f)

A further illustration of the break-up of KAM circles can be seen in
the following sequence of figures based on the twist-and-flip circuit having
a square-pulse rotation function, with r0 = 3.0,n = 1000, a = 1.995 and
u = ir. Beginning with Fig. 11(a) we see a series of 15 KAM circles on which
the twist-and-flip acts like an irrational rotation of a circle. With a small
change in the value of a from 1.995 to 1.99(Fig. 11(b)) we see the outermost
circlebreak down into small elliptic and hyperbolic regions that have not been
resolved dearly enough to recognize. At present the structure of the former
outer ring simply appears to be a "random" set of points that make up the
orbit starting frominitial conditions (3.78,0.0) in the phaseplane. When a is
decreased to the value 1.9 (Fig. 11(c)), rings 13,14 also break up into a more
distinct combination of elliptic regions. The empty holes represent elliptic
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regions with island chains which we have not resolved. Decreasing a to 1.8
(Fig. 11(d)) we see the formation of a period-three region with island chains
around it due to the breakdown of rings 10,11,12. Figs. 11(e) and 11(f) show
the continuation of this process for a = 1.7 and a = 1.6 respectively. When
a = 1.5 in Fig. 11(g), all of the original KAM circles are gone.

5.2 Approximation of cantori using the twist-and-flip
map

Cantori are cantor sets known to exist in Hamiltonian systems and even in
simplemaps of the unit circle onto itself. They have been extensively studied
by numerous researchers including Denjoy, Mather, Katok, Percival and oth
ers. The highly mathematical nature of this subject makes it impossible to
discuss here except in the most heuristic terms. For those desiring to delve
into this subject a starting point canbe found in [7], section6.4.1. The term
acantori,, is not used in this reference but can be found in [15], and seems to
be a term used by physicist's. It is not clear that the physicist and mathe
maticians are really discussing the same object but what is true is that the
physicist concept of cantori is nevertheless a useful and important one and
we illustrate it here using the twist-and-flip map.

The interest in cantori and fractal-like sets of elliptic regions is due to the
manner in which they form a barrier to transport in Hamiltonian systems
[15]. Rather than explain what is meant by the physicist, we will illustrate
how fractal-like elliptic regions are a barrier to movement.

In Fig. 12(a) is shown 16 sets of elliptic regions for the simple twist-and-
flip map FT, where ( a = 1.0, u> = 2ir), obtained by selecting an initial
condition and iterating FT until a set of closed curves has been formed. For
example, the regions which look like the two eyes and a mouth are all formed
from the same initial condition (0.0, —0.76). The interior of these curves
forms a set of regions, and for each set there is a k for which that set is
invariant for (FT)*. The union of all of these regions is therefore invariant
under FT. The symmetry of this set of elliptic regions is due to property 6
of section 3.

If westartoutside of all of these regions at the point (0.0, 9.0) and iterate
200,000 times we get Fig. 12(b). Note that this orbit contains a number of
holes of various shapes. They match exactly the elliptic regions seen in
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Fig. 12(a). Thus, from the looks of this figure, it appears that the set of
elliptic regions in Fig. 12 form some sort of barrier to the orbit of this point.
Since the elliptic regions are invariant, if we start outside of one we can
never enter it. But there are gaps between these regions, i.e., they do not
form a solid barrier. We can ask: why doesn't the orbit of our initial point
pass through one of these gaps? One reason is there are still more, smaller
elliptic regions between these gaps that are not shown in Fig. 12(a). These
additional regions are of smaller and smaller size and collectively make it
very improbable that an orbit will pass through them. Hence these regions
that are collectively fractal-like in that they exist on all scales may be said
to form a barrier to "transport".

The elliptic regions, however numerous, cannot touch one another, and
hence must have a boundary. This boundary can be a Cantor set and is, in
any case, a fractal. When it forms an invariant Cantor set, it is called a can
tori. The 'tori* part of this word comes from the word 'torus', which is what
the elliptic regions look like for three-dimensional twist-and-flip maps. The
cantori are also barriers to the orbits of FT. The elliptic regions in Fig. 12(a)
are just fractal-like. However, Fig. 12(c) contains an approximation to a can
tori. The map used is the simple twist-and-flip map with a = .3214, u = ir.
The approximate cantori is the outermost set of elliptic regions in yellow.
They can best be seen at the top of the figure but they completely encircle
the figure. Also shownare a set of outer most blue elliptic regions that encir
cle the approximation of the cantori. Also in yellow is an unstable manifold
for a hyperbolic fixed point at (0.0, 3.234). It appears trapped inside the
shell of elliptic regions. By property 7 the stablemanifold (not shown) is the
reflection of the unstable manifoldabout the vertical axis which runs directly
through the center of the figure (the vertical axis is also not shown). If the
stable manifold were shownwe would seea set of homoclinic tangles near the
top of the figure where the unstable manifold begins to oscillate. The yellow
unstable manifold also has an interior boundary seen as a set of blue and red
ellipticregions where cantori might also be found. The interior blue region is
broken up into more elliptic regions and will have island chains which are not
shown. The part of the figure inside the white rectangular box is enlarged in
Fig. 12(d).

The approximation is obtained by starting with a KAM circle for a = 0.0
and slowly varying a and keeping track of the breakup of the original circle
into ever smallerelliptic regions as a is increased. With patience, this process
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n=100
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2.7

Fig. 13(b)



Fig. 13(c)



Fig. 13(d)



Fig. 13(e)



Fig. 13(f)



could be continued until the regions appeared to be made up of dust sized
particles.

6 Mathematical Characterization of the Frac

tals Associated with the Twist-and-Flip
Circuit

In this section we want to illustrate the relationship of the fractal boundary of
the elliptic regions found the Poincare map of subsection 4.3 and a sequence
of stable and unstable manifolds that produce homoclinic tangles.

The significance of this is that if we remove the union of all of these open
sets from the two annuli, what is left is a closed set. In fact, since it is a
Cantor set, it is a fractal. As demonstrated by the figures in Sec.4, the twist-
and-flip circuit generates such fractals easily. We will now illustrate how this
fractal set is the limit of a sequence of unstable manifolds of twist-and-flip
maps. We will do this by constructing a sequence of rotation functions for
the twist-and-flip maps that converges pointwise to the square-pulse rotation
function shown in Fig. 8(a).

The sequence of rotation functions is given by the following formula:

/»(r) = 0.5ro(Mr-l)-Mr-2))

where

hn(r) = (exp(nr) - l)/(exp(nr) + 1)

We note that the pointwise limit of hn(r) is sgn(r), except at two points,
as n —> oo so that the limit of /n(r) is

0.5r0(sgn(r - 1) - sgn(r - 2))

which is a square-pulse of magnitude ro for 1 < r < 2 and 0.0 elsewhere.

FIGURE 13(b) through (f)

Figure. 13(b) is the graph of fn(r) for n = 10.0,100.0,1000.0. Also shown
is the limit of the /n, the square-pulse function.
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We want to see what happens to the unstable manifold W£ for this twist-
and-flip map as n —*• oo.

Figures 13(c)- 13(f) show the unstable manifold of FT as n ranges over
the values 10,100,300 and 2000. In each case a = 1.8, w = tt. To generate an
imageof the unstable manifoldwe use a line segment tangent to the unstable
manifold at the fixed point of length 0.01 divided into 5000 steps and iterated
55 times. In each figure caption is listed the location of the fixed point and
the slope of the unstablemanifold at that fixed point.

As can be seen in the sequence of figures, the unstable manifold is becom
ing confined to the narrow annulus of Fig. 13(a). We know from Sec.3 that
the stable manifold and unstable manifold are symmetric about the vertical
axis, as is the union of the two annuli and hence they are "converging" in
some sense to the region not occupied by the union of the elliptic regions
shown in Fig. 13(a). In fact the union of the elliptic regions and the union
of the unstable and stable manifolds share a common boundary. As n —+ oo,
the elliptic regions continue to grow in total area, and thus the area left
over for the stable and unstable manifolds becomes smaller. In the limit, we
conjecture that the union of the stable and unstable manifolds is "absorbed"
into the boundary of the union of the elliptic regions. This conjecture seems
to suggest that the fractal boundary of the union of the elliptic regions is in
some sense an analogue of the union of the stable and unstable manifolds.
We note that in the limit, the elliptic regions appear to converge to some
maximum size, but that in the limit, the unstable manifold vanishes. This
conjecture is further reinforced by the fact that the hyperbolic fixed point
approaches the point (0.0,0.87177), and the slope of the unstable manifold
approaches the slope —a/y. Thus near the fixed point, the stable and un
stable manifolds blend into the outer rings of the two annuli. But more
interesting still is that the point (0.0,0.87177) is not a fixed point for the
twist-and-flip map with the square-pulse rotation function.

7 Concluding Remarks

We have tried to show, in this paper, the broad array of fractal images that
can be produced by the twist-and-flip circuit. Although the real physical
realization of a circuit is by necessity not a lossless device, the dynamics of
this physical realization are nevertheless shaped by the fractal dynamics that
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are found in the twist-and-flip map which is lossless. It can be shown that
when a damping factor is added to the twist-and-flip map [6], Sec. 12.0 it
does not remove the fractals that already exist there. These fractals continue
to influence the circuit through transients of a very long duration and through
the formation of fractal attractors any of which can be of the form we have
illustrated. In fact a very large damping factor is needed to eliminate chaos
in these circuits when it exists [6].

What is particularly important is that by the variation of the parameters
of the twist-and-flip circuit and the use of a damping parameter, it is possible
to vary the fractal images the circuit can produceand due to the kaleidoscopic
nature of these images it may be possible to encode information in these
fractals. Simply put, the twist-and-flip circuit provides the possibility of
developing a new type of computer that utilizes the multitude of fractal
phenomena found in the twist-and-flip map as a computing device.

In another direction, the fact that the complexity present in this circuit
is unlimited in variety and scope, and the fact that an extensive theoretical
foundation exist for the twist-and-flip map makes it a very desirable and
interesting object for modeling and experimentation. What seems certain is
that the array of fractals that can now be shown to arise in circuits due to the
twist-and-flip circuit suggests that the study of circuits may take on equal
importance as the use of software tools in the field of modeling, simulation
and scientific experimentation.

Pedagogically, the twist-and-flip circuit provides the simplest two-dimensional
model of chaos that is an accurate paradigm for all two-dimensional chaos
that arises from systems described by periodically forced ordinary differential
equations.
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List of Figure Captions

Fig. 1
(a) The twist-and-flip circuit containing a gyrator characterized by a non

linear gyration conductance function g(vi,v2).

(b) The voltage source in (a) is a square-wave with amplitude a and
angular frequency w.

Fig. 2
(a) The integral curves for the twist-and-flip circuit during the halfperiod

where s(t) = a.

(b) The integral curves for the twist-and-flip circuit during the halfperiod
where s(t) = —a.

(c) Combined integral curves for the twist-and-flip circuit over a full pe
riod.

Fig. 3
(a) Fifty cycles ofa phase-plane trajectory for the simple (with /(r) = r)

twist-and-flip circuit from a single initial condition, (0,0 8.0). a = 1.0, w =

(b) Fifty iterations of a phase-plane orbit for the Poincare map, FT, of
the simple twist-and-flip circuit from a single initial condition, (0,0 8.0).
These fifty points correspond to strobing the continuous trajectory from (a)
once every half period (P/2 = tt/lj).

Fig. 4
(a) A single period of the phase plane orbit for the simple twist-and-flip

circuit from a single initial condition 1, at t = 0.

(b) The orbit from (a) drawn with the two relevant circles of radius rx
and r2, and thereflection of theleft circle centered at (-a, 0.0) into theright
circle centered at (a, 0.0).

(c) The Poincare map FT( 1) can beobtained by first reflecting thepoint
A into B , and then locating C and reflecting it to obtain point 2.
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Fig. 5
(a) The simple twist-and-flip map, FT, 4000 times starting from the point

(5.4, 0). The iterates of this point circulate around the three crescent shaped
curves in a sequential rather than random manner, a = 1.0, w = ir.

(b) A graphical procedure for locating a fixed point on the vertical axis.
The fixed point is located at (0.0,1.955).

Fig. 6
(a) Elliptic and hyperbolic regions of a simple twist-and-flip map a = 1.0,

u = 7T. The center of this figure is approximately located at (0.0, 6.2031)
and is an elliptic periodic point of period 2. (0.0, 1.95512)

(b) An extensive homoclinic tangle in green from the hyperbolic fixed
point (0.0,1.955) for the same simple twist-and-flip map as in (a).

(c) An enlargement of the small yellow region in (b) showing that it is
composed of a set of island chains.

Fig. 7
(a) The elliptic and hyperbolic regions for the twist-and-flip map having

the gyration conductance function /(r) = 1/r. a = 0.2, w = ir. Period-9
hyperbolic point is at (0.0, 0.134).

(b) The graph of the gyration conductance function /(r) = 1/r.

(c) The elliptic and hyperbolic regions for the twist-and-flip map having
the gyration conductance function /(r) = (r + log(r))/r2. a = 0.2, u> = it.
A hyperbolic fixed point is at (0.0, 0.318).

(d) The graph ofthe gyration conductance function /(r) = (r+log(r))/r2.

Fig. 8
(a) The graph of the gyration conductance function described by the

square-pulse f(r) = .5r0(sgn(r - 1) - sgn(r - 2)).

(b) The annulus on which all dynamics are generated for the square-pulse
gyration conductance function.

(c) The union of the two annuli on which all dynamics occurs for the
square-pulse gyration conductance function.
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(d) A set of intervals surrounding the elliptic periodic points on the ver
tical axis are removed to form a Cantor set. The Cantor set is formed by
deleting the entire interval around the periodic point and leaving the end
points of the interval.

(e) 100,000 iterates of the point (0.0, -0.4486) showing the outline of a
fractal image.

Fig. 9
(a) The outline of the fractal image for a three-region stair-case gyration

conductance function with a = 5.0 and w = ir.

(b) The outline of the fractal image for a two-region stair-case gyration
conductance function with a = 1.0 and tt = w.

(c) The outline of the fractal image for a three-region stair-case gyration
conductance function with a = 1.0 and w = ir.

Fig. 10
(a) The large elliptic region (yellow) around the point (0.0, -3.6394),

a = 1.7943, w = 7T.

(b) Abifurcation for alarge elliptic region around the point (0.0, -3.6394),
into two elliptic regions (red) surrounded by an unstable manifold (yellow).
a= 1.7943, u = tt.

Fig. 11
(a) Phase-plane orbits for the twist-and-flip map showing 15 concentric

KAM circles centered around a period-two point, (a, 0.0), of FT. a = 1.995,
U = 7T.

(b) Phase-plane orbits for the twist-and-flip map showing the break
down of the outermost circle, the fifteenth circle counting from inside out,
into smaller regions and homoclinic tangles (the homoclinic tangles are not
shown), a = 1.99, u; = ir.

(c) Phase-plane orbits for the twist-and-flip map showing the breakdown
of circles 13,14,15 into smaller regions and tangles, a = 1.9, w = ir

(d) Phase-plane orbits for the twist-and-flip map showing the breakdown
of circles 10,11,12 into smaller regions and tangles, a = 1.8, u> = ir
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(e) Phase-plane orbits for the twist-and-flip map showing the breakdown
of circles 7 through 15 into smaller regions and tangles, a = 1.7, uj = ir

(f) Phase-plane orbits for the twist-and-flip map showing the breakdown
of circles 4 through 15 into smaller regions and tangles, a = 1.6, u> = ir

(g) Phase-plane orbits for the twist-and-flip map showing the breakdown
of all KAM circles 1 through 15 into smaller regions and tangles, a = 1.5,
U = 7T

Fig. 12
(a) Phase-plane orbits for the simple twist-and-flip map showing numer

ous elliptic regions of varying sizes, a = 1.0, uj = 2ir.

(b) 200,000 iterates ofthesimple twist-and-flip map starting from (0.0, 9.0).
a = 1.0, lj = 2ir.

(c) An approximation to a cantori for the simple twist-and-flip map show
ing numerous small elliptic regions surrounding an unstable manifold at the
hyperbolic fixed point (0.0, 3.234). a = .3241, w = ir.

(d) An enlargement of the area inside the white rectangular box in (c).

Fig. 13
(a) Small circular phase plane orbits for the piece-wise linear twist-and-

flip map a = 1.8, w = ir, f(r) = .5r0(sgn(r - 1) - sgn(r - 2)). Afterremoval
of all such orbits only a Cantor set remains.

(b) The graph of the gyration conductance functions /n(r) = .5r0(hn(r —
1) - hn{r - 2)), for n = 10, and n = 100.

(c) The unstable manifold for the twist-and-flip map for a = 1.8, u = ir,
fn(r) = £r0(hn(r ~ 1) - K(r - 2)), n = 10. A hyperbolic fixed point is
located at (0.0, 1.013).

(d) The unstable manifold for the twist-and-flip map for a = 1.8, lj = ir,
Mr) = .5r0(/in(r - 1) - hn(r - 2)), n = 100. A hyperbolic fixed point is
located at (0.0, 0.8904).

(e) The unstable manifold for the twist-and-flip map for a = 1.8, u; = ir,
fn(r) = .5r0(Mr - 1) - Mr ~ 2))> n = 300. A hyperbolic fixed point is
located at (0.0, 0.87814).
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(f) The unstable manifold for the twist-and-flip map for a = 1.8, w = ir,
fn(r) = .5r0(/&n(r - 1) - hn(r - 2)), n = 2000. A hyperbolic fixed point is
located at (0.0, 0.87275).
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