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Abstract

We propose efficient and effective algorithms for MCM system partitioning under timing and capacity con
straints. We take advantage ofthe small number ofchip slots (compared to the large number ofcircuit modules)
and formulate itas an Integer Programming problem. We propose anovel approach called Constraints Decou

pling, which decomposes the original dual-constraint problem into two independent single-constraint problems,
which are much easier to solve. Experimental results are encouraging, all timing and capacity violations in the
initialdesigns can be eliminated.



1 Introduction

The emerging MCM (Multi-Chip Module) technology has greatly increased the need for aconstrained multi-way
partitioning algorithm. Qeariy each chip in MCM corresponds to apartition and we wish to assign the set ofcircuit
modulesinto the set of partitions (chips).

Due to the physical limitation ofMCM technology, each chip has alimit (Capacity Constraint) on the maximum

amount ofcircuitry it can implement. There is also anon-zero chip-to-chip delay introduced by traversing the chip
VO boundary and by MCM (interchip) wiring. Therefore the solution to the partitioning problem must also satisfy
the Timing Constraint. Note that the number ofpartitioning (chips) in practice is usually small(2-100).

In this paper we discuss ageneral method for partitioning anetwork of N interconnected circuit modules into

Msubnetworks (i.e. M-way partitioning), where Mis a fixed given number. Traditional methods for M-way
partitioning have been based on applying recursive two-way partitionings, e.g. Min-Cut partitioning. The main
drawback ofthis approach is the unnecessary restrictions imposed by higherlevel "cuts" on the freedom ofassigning
modules to partitions in the lower level.

It is possible to use 2-way ratio-cut[l][2] to identify natural clusters in the circuit and regroup these clusters
into M-way partitions. However none of the existing M-way partitioning algorithms can take multiple "hard"
constraints (e.g. capacity constraints of partitions and timing constraints between modules) into considerations.
These two constraints are often conflicting and interacting with each another. For this problem we take advantage
of the small number of partitions (relative to the number of modules) and formulate it as an integer programming
problem. (Notice that an integer programming formulation can not be solved efficienfly ifthe numberofpartitions
is inthesame order of number of modules.)

In this paper we propose anew method called "Constraint Decoupling", i.e., decoupling the original 2-constraint
problem into two single-constraint subproblems Aand B, which can be solved efficiently by exact algorithms or
heuristics. The difference between two solutions from Aand Bcan be used as apenalty term to update the cost
functions ofAand Bin the next iteration. When solutions from Aand Bconverge to the same solution, we obtain
asolution which satisfies both capacity and timing constraints.

We use TCM (Thermal Conduction Module)[3] as atest case for this idea. All ideas discussed in this paper are
applicable in ageneral M-way setting and TCM is one ofthe possible applications.

Section 2describes our general A/-way formulation and possible applications. Section 3describes achain of
problem transformation. Sections 4describes our main algorithms. Section 5shows experimental results.



2 Problem Formulation for General M-way Partitioning and Applications

2.1 Formulation

Theinput to theproblem includes the followings:

1). I is a setof M partitions. Let i € I bethe index toa partition.

2). J is a set of N modules. Let j 6 J be the indexto a module.

3). sj is thesizeof module j, representing themodule's area.

4). Ci is the capacityof partition i.

5). P isanM x N matrix, where pij is the cost ofassigning module j topartition i.

6). Dp isan M x M matrix, where Dp(iui2) isthe (abstract) routing distance between partitions t*i and t2.

7). Dc isan N x N matrix, where Dc(j\, ji) isthe maximum (abstract) distance allowed between modules j\
and j*2.

Asolution tothe problem is a mapping F : J —• I satisfying the following two constraints:

CI: (Capacity Constraints) Evj,f(j)=. &j < c„ Vt € /

C2: (TimingConstraints) DP(FUi),F(j2)) < Dc(j\,h), Vjuh e J

The objective is to

minimize J^ p.-,, subject to CI, C2.
Vij,F(i)=i

2.2 Application to TCM Partitioning

Our objective is to minimize the overall cost of assigning modules to partitions. Different value settings of the

P matrix have direct influence on the solutions. Therefore this formulation is quite flexible in terms ofadapting

to different applications. For example, if the designer wishes to fix module 3 in partition 5, he can set ps$ to a

sufficiently low value. Or ifhe wishes module 3not to be in partition 5,he can set ps$ toasufficiently high value.

Ifhe has equal preference for module 3to go to partitions 2and 4, he can set &$ and p^ to the same value.

We also notice that Dp can beused tospecify any variety ofdelay models, since itexplicitly specifies (abstract)

routing distance between any pair of two partitions. Inother words, the delay is specified in anabstract sense, not

in aphysical sense, since it assumes nophysical configuration.

In the case ofTCM partitioning, we immediately observe that each TCM chip slot corresponds toa partition.

The matrix DP can be easily derived from the physical orelectrical characteristics ofthe TCM. The only remaining
question is how to derive the cost matrix P.

To answer the question we must first examine the TCM partitioning process. The process starts with an experi

enced designer manually assigning Junctional blocks (modules) into TCM chip slots. Since the initial assignment is



largely based onintuitions and experiences rather than calculations (not much data available at this stage), there will

belotsof constraint violations in the laterstage. As thehigh level design evolves, more accurate estimates on the

sizes and delays of the modules become available. The designer isforced tomove some modules across chip slots

in order to avoid constraint violations. Since these movements cause a ripple effect to other modules, the whole

process becomes quite complex and labor intensive. Furthermore, the cut/move procedure isneeded throughout the

whole high level design phase and contributes greatly to theoverall design time.

It is clear that we need anautomatic tool tomove the modules tosatisfy constraints. It isdesirable todosoina

way that causes minimum "disturbance" tothe initial assignment. Inother words, given a"initial*' modules assign

ment which violates timing and capacity constraints, we want to find a "feasibleflegal)" assignment that deviates

from initial assignment minimally. There are many ways to calculate the amount ofdeviation. Forexample, module

3isinitially assigned toslot 1and gets reassigned toslot 6inthe feasible assignment, then the deviation ofmodule

3 is the distance (Manhattan or Euclidean) between slot6 andslot 1. In this work we calculate the deviation of a

module by Manhattan distance times the size ofthe module. This isdue to the consideration that a larger module

should be less prone to move. The overalldeviation is the sum of all individual module's deviation.

Now assuming we already have a(possibly illegal) module assignment Finitial : J —• I and s, is the size of
module j. we cancompute cost matrix P as the following:

Pij = Sj x Manhattanjdistance(i, Finitiai(j))

As a result, we are exactly minimizing the overall weighted deviation from a initial assignment

3 Problem Transformations

3.1 Transformation into Integer Programming Problem

The problem formulation proposed in section 2can be transformed into an integer programming problem by intro
ducing an Mx N matrix A' of binary variables which prescribes the mapping. We define xtj = 1ifmodule j is
assigned topartition i and Xij = 0 otherwise.

We note that CI, C2 and the objective function can be rewritten using this transformation (rewriting C2 is
avoided here forsimplicity). We also added implicit constraints C3forX matrix.

CI: (Capacity Constraints) J^jLi sjxij < c„ Vi € J

C2: (TimingConstraints) DP(F{jx)yF(j2)) < Dc(JuJ2), Vjuji € J

C3: (Generalized Upper Bound Constraints) J2ii\ Xij = 1, Y/ e J

The objective is to



M N

minimize ]£53p,-.,z,j, subject to CI, C2, C3.
i=l i=l

3.2 Transformation byVariables Splitting and Constraints Decoupling

OurideaofConstraints Decoupling came from the Variable Splittingmethod introduced byJornstenand Nasberg[6],
who used this method to derive a tight upper bound inBranch and Bound algorithm which solved Generalized As

signment Problems (only capacity constraints were considered). Ourmain contribution here istoderive a nontrivial

generalized formulation which can handle Timing Constraints and extend their basic Variable Splitting method to
decouple timingand capacityconstraints.

We introduce Aand B (M x N binary) matrices and transform the original integer programming problem into
the foliowings:

CI: (Capacity Constraints for A) J2jL\ Sja{j < c„ Vi € I

C2: (Timing Constraints for B) DP{FB(Ji),FB(j2)) < Dc(juhh VJUJ2 € J

where Fb is an assignment corresponding to binary matrix B.

C3: (Generalized Upper Bound Constraints for A) £i=i atJ = 1, Vj € J

C4: (Generalized Upper Bound Constraints for B) £i=i 6tJ = 1, Vj' e J

C5: (A/B Equivalence Constraint) A = B

The objective is to

j M N j Af JV
minimize (- 5ZS^ia«i+^]££py6tf)» subject to CI, C2, C3, C4, C5.

^,=i;=i z»=ii=i

The optimum solution A = B from this new formulation is equal to the optimum solution X for the original

integer programming problem. We omit the proof ofequivalence here but give some intuition for the reason of

doing so. Notice in this new formulation Amatrix is subject to constraints CI, C3, C5 and B matrix is subject to
constraints C2, C4 and C5. The only interaction between Aand B is through C5. Ifwe relax C5 and put apenalty
term corresponding to C5 into the cost function, we can decouple the problem into two independent subproblems

andeasilysolve them individually. This is discussed in the next section.

33 Lagrange Relaxation

As astandard technique we dualize C5 and add apenalty term into the cost function to get:



^^(2^^P"*i +2^^^b"*^^^t*~bii^ subjectto CI, C2, C3, C4.
' »*= 13-1 «=1 j-1 *'= 1 j= 1

where U is an M x N binary matrix corresponding to Lagrange Multipliers.

We can further simplify the expression into:

M N j m jv ,
^V7B(E D?''i +u'i)fl''i +EDoW • *'ife) subject to CI, C2, C3, C4.

' i=lj'=l t'=l i=l

Note that the first term inthisexpression involves onlymatrices A and Utandthesecond term involves only B

and U. Moreover A is onlyinvolved in CI and C3and B isonly involved in C2and C4. For anygiven U, wecan

solve

M N i M N ,

by solving

Subproblem A:

and Subproblem B:

»=lj=l 1=1 3=\

M N ,

^ii1(S2(o^"J +w0)a»i) su&jecffo CI, C3.
1=1 j=i

M N ,

EJPtlll^oPy-^iJM subject to C2y C4.vb vf-ff-jv2
1=1 j=i

Subproblem Aisknown asthe Generalized Assignment Problem (GAP) and has been intensively studied inthe

past[4]. Exact algorithms and fast heuristics have been developed. In this work we use the heuristic proposed by

Martello and Toth[4]. Interested readers are referred to theiroriginal text.

There isnoexisting work onSubproblem Basfaraswe know. We call Subproblem Ba"Distance-Constrained

Simple Assignment (DCSA) Problem" and propose a simple heuristic tosolve it.

4 Lagrange Heuristic

4.1 Primal-Dual Iterations

In the previous sections we showed that for a given Umatrix, we can solve for Aand B matrices independently.

The only remaining question is how to find the dual variable matrix U that corresponds to the optimum solution

ofour original problem. This is a very common and familiar question for discrete optimization. It is generally

solved bythe "Primal-Dual iteration" process. Inour case, the Primal problem is tosolve for A and B matrices in



Subproblems Aand B, and the Dual problem is to solved for Lagrange Multiplier matrix U. Primal-Dual iterations

starts with an initial guess ofUmatrix. For this fixed Umatrix we can solve Subproblems Aand B. Then we can

update U according to the solutions from Subproblem A and B. This new U isused in the next iteration to solve

Subproblems Aand B. This process can continue until the optimal solution isreached.

42 Subgradient Optimization

The most popular way to update Lagrange Multiplier matrix U is Subgradient Optimization. In our case, this
translates to

where &is the iteration count, *(*) = Ess^sai js me step size at iteration kand paVerage is a scaler constant
defined as the average value ofall pi3 in the P matrix.

43 Main Algorithm

The following is our main algorithm:

step 1: (Initialization)

Set k=1and tlj}) =peerage*
step 2: (Primal problem)

Solve
M N «

WCCEUtti +^Ki) subject to CI, C3.
1=13=1

and

step 3: (Dual problem)

update U matrix

M N ,

I5Ln(LD9^-«!i,>.j) subject to C2, C4.VB vf-ff-jv2
1=1.7=1

U*3 Uij + fc V.fl«J °*J)

step 4: (Check for convergence)

If A ^ B goto step 2, otherwise terminate.

4.4 Terminating Criteria

The main algorithm will terminate only when A= B is reached. However in practical situation this condition may
take too long to satisfy. Acareful examination ofthe constraints reveals two additional stopping criteria:

1). Ifsolution matrix A from Subproblem Aalso satisfies C2, stop.

2). Ifsolution matrix B from Subproblem Balso satisfies CI, stop.



In either case the solution matrix isalready alegal solution to our original problem and therefore the algorithm
can terminate.

4.5 Distance-Constrained Simple Assignment (DCSA) Problem

We propose the following simple heuristic for solving subproblem B.
stepl: (Sorting)

Sort all modules according totheir sizes into non-increasing order,
step 2: (Initialization)

set all bij to 0;

step 3: (Sequential SimpleAssignment)

for each module j e J in that orer

set i" = argmintoy 'v* GI};

set bi»j = 1 (assignj to i*)\

for eachmodule j' not assigned

for each partition i

if DP(iti*)>DcU'J)
set piji = oo;

endif

endfor

endfor

endfor

5 Testing the Ideas

Due to the current trend of adopting high density CMOS technology, the chip level of integration has been greatly
increased. This results in areduction in the number of chips per module used in TCM/MCM. However, the ever-
increasing system complexity and performance still drives the need to use multiple-chip configuration. We expect
the number ofpartitions used in each packaging level will remain steady in the range of 10-50. In this work we use
a16-chip (4 x4) TCM for our testing purpose. Several industrial circuits are used to illustrate the effectiveness of
our approach.

5.1 Preparing Data

In this section we describe how we obtained various data from real circuits and prepare input data to our general
M-way system partitioning algorithm.



Each ofthe industrial circuit we obtained contains acycle time value and aSystem Graph[5] G(R (J C, E), where
Ris the set ofall register nodes and Cis the set ofall combinational nodes. Each node in this graph is labeled as
either register or combinational block. Each node has adelay attribute and asize attribute. We apply aSuper-Node
Merging procedure as described in aprevious paper[5] to the circuits. This merging procedure essentially merges
all nodes that cannot afford to be assigned to different chip slots without violating cycle time constraints.

The resulting graph iscalled aSuper-Node Graph. Each node in this graph has asize attribute, which isthe sum

ofall the size attributes from the constituent register or combinational nodes. The set ofall Super-Nodes is the set
ofmodules Jmentioned in section 2.1. sj is the size attributes ofthe Super-Node j. The set ofpartitions is simply
thesetof 16chipslots. The capacity of each slotis assumed to be thesame and calculated as:

c, =i.iOx^-i, vie/
10

The 10% extra capacity isacommon allowance given to the designer.

We estimate the wiring delay between adjacent chip slot (.dunitJength) to be 7-14% ofthe system cycle time.

We assume the overall TCM wiring delay has two components: aconstant component d' corresponding to total
delay introduced when

1). signal travels out ofthe chip, through the TCM distribution layers, to the signal routing layers and plus
2). signal travels from the signal routing layers, through the TCM distribution layers, then into the chip.
The variable delay component is the delay introduced by actual TCM signal layer wiring. This component is

assumed tobelinearly proportional tothe manhattan distance. Based onthese assumptions wecan derive:

_ ,. . x (cycle Jime - 6! - d")
Dc(3u3i) = -j -

where d" is the maximum internal delay ofany combinational block that lies in adata path connecting j\ and

j*2. In other words, Dc{j\, j2) is the maximum distance allowed for TCM signal layer wiring.

If there isno connection between j\ and j2t Dc(j\, j2) isset toinfinity.

The Dc matrix constructed this way is not suitable for our purpose because it isnot transitively closed. For

example, if 2>c(1,2) = 10 and Dc(2,3) = 14, from triangular inequality we can conclude that the maximum

distance allowed between module 1and 3must be smaller or equal to 24. However this implied inequality may

be missing from the Dc matrix originally constructed. Therefore we need to compute the transitive closure of

the inequality relationships. We found that the problem of finding transitive closure of triangular inequality is

equivalent to the all-pairs shortest path problem. This problem can be solved usingexistingtechniques. Currently we

implemented Floyd-Warshall algorithm, which can be replaced by Johnson's algorithm in order to exploit sparsity.
We first make arandom initial assignment of all the Super-Nodes into the 16 slots. We then apply the method

described in section 2.2to this (possibly illegal) initial assignment to obtain the P matrix.



5.2 Test Results

A typical curve of convergence is shown below. The horizontal coordinate isiteration count and the vertical coor

dinate is (2 times) the number ofdisagreeing module assignments from the solutions ofsubproblems Aand B.
The program terminated at iteration 117 since solution from subproblem Asatisfies Tuning Constraints C2 and

therefore obtained a solution satisfying all constraints.

400

0 20 40 60

The results are summarized inthe following table.
80 100 120

For all testcases we eliminated all timing violations and capacity overflows within the number ofiterations
indicated in the table.

circuit

name

#of

Reg.

#of

Comb.

#of

Super-Nodes

#of

crit. edges

# of timing

violations

max. cap.

overflow

#of

iterations

CPU

min:scnd

cktl 545 12172 545 2022 70 20% 435 56:06

ckt2 342 8280 339 1962 90 57% 117 9:56

ckt3 357 3026 357 1180 62 73% 45 3:52

ckt4 521 6325 521 3924 184 64% 21 3:18

ckt5 380 3850 380 1094 34 53% 5 0:25

ckt6 607 4990 607 1392 46 54% 4 0:35

ckt7 472 3378 472 916 30 27% 2 0:12

10



The respective columns in the table (from left to right) are: 1). Circuit name, 2). Number of register nodes, 3).

Numberofcombinational nodes, 4). Number ofSuper-Nodes, 5). Number oftiming critical edges in the Super-Node
Graph, 6). Number oftiming violations in the initial assignment, 7). Percentage ofcapacity overflow in the worst

slot inthe initial assignment, 8). Number of iterations needed for a feasible solution, 9). CPU inminutes:seconds.
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