
Copyright © 1992, by the author(s).

All rights reserved.

Permission to make digital or hard copies of all or part of this work for personal or
classroom use is granted without fee provided that copies are not made or distributed
for profit or commercial advantage and that copies bear this notice and the full citation

on the first page. To copy otherwise, to republish, to post on servers or to redistribute to
lists, requires prior specific permission.

GENETIC ALGORITHM FOR CNN

TEMPLATE LEARNING

by

T. Kozek, T. Roska, and L. O. Chua

Memorandum No. UCB/ERL M92/82

1 July 1992

GENETIC ALGORITHM FOR CNN

TEMPLATE LEARNING

by

T. Kozek, T. Roska, and L. O. Chua

Memorandum No. UCB/ERL M92/82

1 July 1992

ELECTRONICS RESEARCH LABORATORY

College of Engineering
University of California, Berkeley

94720

Genetic Algorithm for CNN Template Learning *

T. Kozek*, T. Roska1 and L. 0. Chua

Electronics Research Laboratory
Dept. of Electrical Engineering and Computer Science

University of California at Berkeley
Berkeley, CA 94720

Abstract

A new learning algorithm for space invariant cellular neural networks (CNNs) is
described. Learning is formulated as an optimization problem. Exploration of any
specified domain of stable CNNs is possible by the current approach. Templates are
derived using a genetic optimization algorithm. Details of the algorithm are discussed
and several application results are shown. Using this algorithm propagation-type and
grey-scale-output CNNs can also be designed.

1 Introduction

Cellular neural networks [1, 2, 3] have found many applications [4, 5], among others, in
image processing. CNN is now considered as the paradigm of cellular analog programmable
multidimensional processing arrays with distributed logic and memory [6].

The question is, which arises every time CNNs are used to perform a given operation,
what is the "program" of the network, i.e., in the simplest case, the template elements. A
possible and perhaps the most general answer to this question is to design an algorithm which
can derive the template for a given operation. In other neural network areas algorithms of
this kind are referred to as learning.

This paper presents a learning algorithm which can be applied in a wide problem domain.
Previous results [7, 8, 9] were restricted to binary output and the stability of the network
was assumed. The basic method they were following was to set up a system of inequalities

*This work is supported by the joint grant INT 90-01336 of the National Science Foundation and the
Hungarian Academy of Sciences.

tAlso with the Computer and Automation Institute of the Hungarian Academy of Sciences and the
Technical University of Budapest, Hungary

*Visiting scholar, permanently with the Computer and Automation Institute of the Hungarian Academy
of Sciences

1

which provided the desired output to be a stable equilibrium point. By solving the system of
inequalities a template was gained, which hopefully worked and was robust. In [9] templates
were generated by means of a unimodal function which provided robustness in case of binary
output transformations, and unique result in the parameter space. A necessary condition in
deriving properly working templates is that the desired output is a stable equilibrium point.
But the solution of the system of inequalities does not guarantee that there are no other
local minima in the state space where the state transition might stop before reaching the
desired output. These methods gave some useful templates if the initial condition was not
too far from the desired output. Thus it was only possible to create templates with local
dynamics.

To derive reliably working templates, we also have to ensure that the transient finally
reaches the desired output from the initial state. (To provide proper convergence the tra
jectory of the transient has to be considered.) The simplest way to accomplish this is to
evaluate a template according to the difference of its settled output and the desired out
put. Minimizing this quantity by changing the template element values allows us to derive
templates for a given operation.

This input-output approach offers a flexible description of CNNs and makes possible to
learn propagating and gray-scale-output templates, but in return, the resulting cost function
is difficult to minimize. If the stability of the network is not guaranteed, the network may
oscillate or be chaotic. This means, the cost function based on the transient behavior of
the CNN will be noisy. Another difficulty arises if the cost function is not differentiate. In
addition, it may have multiple, separate, local, or even global minima. What still makes this
unfriendly cost function useful is the genetic optimization algorithm which is able to cope
with these types of functions. It can find global minima even in noisy and discontinuous
search spaces without using differential information about the cost function. We have found:
using genetic algorithms adapted properly, some classes of problems can be solved reliably
and with fast convergence.

In the next section a short introduction to genetic algorithms is given, then its application
for template learning is described. Simulation results using our program with the genetic
template learning algorithm are presented in section 3.

The application of genetic algorithms to template learning, the design of their parameters,
and the summary of the experiences (including propagating type templates) are our main
results presented here.

2 Genetic Algorithms

2.1 What is a Genetic Algorithm?

Genetic Algorithms (GAs) are stochastic search algorithms [10] based on the mechanics of
natural selection and natural genetics which have proven to be effective in a number of
applications. A "classical" genetic algorithm has the following basic properties:

• it works with a binary coding of the parameter set, (not the parameters themselves),

• searches from a population of points, (not from a single point),

• uses only the cost function values in the optimization, (no derivatives or other auxiliary
knowledge), and

• uses probabilistic transition rules.

What might make a genetic algorithm attractive is its computational simplicity (performs
simple operations on binary strings) and not being fundamentally limited by restrictive as
sumptions about the search space (continuity, existence of derivatives, unimodality, etc.).
Despite their relative simplicity, GAs outperform any random search by effectively exploit
ing "historical" information as the search evolves. Calculus based methods are inevitably
superior in the problem domain where they can be used, but GAs provide a robust search
in discontinuous and multimodal noisy search spaces.

2.2 Genetic Search Mechanism

Because genetic algorithms are rooted in both natural genetics and computer science, their
terminology mixes natural and artificial expressions. The scope of GAs is global, as they
use a population of binary strings - called chromosomes - to explore the search space. Each
chromosome encode a point in the parameter space, i.e. a possible solution of the problem
to be solved. These binary strings are evaluated through a "fitness" function (a kind of
objective or cost function) which contains all the information about the problem to be
solved. Evaluation means that the performance of each possible solution is determined and
the fitness value of the corresponding chromosome is calculated accordingly. The better the
solution encoded by a chromosome, the higher the fitness. The genetic algorithm then tries
to improve the fitness of the population by combining information contained in high fitness
chromosomes.

The search evolves through the subsequent generations of binary chromosomes. Each
generation produces the next one by means of probabilistic operators. These operators en
sure that the best members of the population will survive, and their information content is
preserved and combined to generate even better offspring. In the simplest GA a new gen
eration is created by three basic operators. First, chromosomes are selected for reproduction
with a probability proportional to their fitness. This simple mechanism assures that the most
successful ones will produce the next generation. Then the selected chromosomes are mated
randomly and each couple produces two children by crossover and mutation reproduction
operators. Crossover means exchange of substrings between two parent chromosomes com
bining valuable information of the parents. The simplest crossover operator is the one-point
crossover where first a crossing site is selected with uniform probability over the chromosome
length, then the corresponding strings are exchanged as shown in Figure 1.

Mutation maintains diversity in the string population by flipping an arbitrary bit in the
chromosomes with a probability that is generally low. This operator results a random walk
in the parameter space and introduces new information into the evolution process which
might have been lost with a premature convergence of the algorithm.

parents 1:00101101|1000
2:10110010|0101

crossing site $
offspring 1:00101101|0101

2:10110010|1000

Figure 1: The one-point crossover operator

An abstract description of a genetic algorithm using these components can be given by
the following:

1. Initialize randomly a population of chromosomes.

2. Evaluate each chromosome in the population.

3. Create new chromosomes by mating current chromosomes; apply selec
tion, crossover and mutation operators in reproduction.

4. Evaluate the new chromosomes and insert them into the population by
replacing old ones.

5. If time is up or a good solution is achieved stop and return, as result,
the best chromosome of the population, else go to 3.

Figure 2: Abstract description of a genetic algorithm

What links this algorithm to a particular problem is the parameter encoding and the
evaluation function. As it is discussed later encoding of the parameters is crucial and varies
from problem to problem. Unfortunately, there is no general method to find an optimal one.

If the algorithm works well, unexceptional chromosomes of the initial population are
replaced by better and better ones as shown in Figure 3. Through this process of simulated
evolution finally some highly-evolved solution to the problem will be produced. How it works
is explained in the next section.

2.3 The Mathematical Background

To understand the mechanism of genetic algorithms the notion of similarity templates or
schemata has to be introduced. Since every bit in the binary encoding of a possible solution
captures some information about the problem, high performance chromosomes are similar
in the sense that they contain ones and zeros in particular locations which encode high
performance features. Schemata describe these similarities in binary strings by means of the
ternary alphabet {0,1, *}. Numbers 0 or 1 at a specific location denote that there is a fixed

Population after
random initialization:

chromosomes

00111110001110100111

01011010000101110000

11100011101110110011

00111001100010011101

11100101001011100111

10101011110101010001

00101111011010100010

11101101011101101010

00100100110001110000

00000011110001010011

10100000010010010101

00111011101000110000

10100011000000110101

00011110110001001101

01110101111001010111

10001000101111110101

00101001000010011100

10101011100001111111

11010001101010111110

10010110011111011011

Population average: 14.79

Generation #10 Generation #20

«<•) chromosomes 9(-) chromosomes 5(0
12.00 10111001010111010101 11.98 00101001100110110100 0.00

17.02 00110001010011100100 0.00 10010011111001100101 11.90

12.06 10010001111001010001 11.99 00110011111011100100 0.00

11.96 10101101101110110011 12.08 00010011110011110100 0.00

12.04 00110011111001000111 12.12 00011111110101100100 0.00

12.07 11110111100001010001 12.09 10110001101011100101 12.08

21.42 11101011100000010001 12.09 00110011110010110101 12.00

20.60 10100010011010010001 11.89 00011001100011010000 0.00

24.12 10101011000001010111 12.04 00010011110011100100 0.00

12.15 10010000111110110001 12.04 10010001110010110101 11.98

12.02 00011111111111010111 12.08 00010011110010110100 0.00

23.65 10110001010000110101 11.98 10010001110111000101 11.96

11.94 10010001011010010001 11.93 00011001010011100101 11.94

12.00 10100011110010010001 11.93 00011011111111000000 17.54

12.04 00111010011010000100 0.00 00011111110011010001 11.98

11.98 10100011110011110001 12.10 00110011100011010000 0.00

14.82 11001000101011101111 17.20 10110011111010110100 0.00

17.66 00111001000010010100 28.00 10110011010001100100 0.00

24.21 00111001101110111101 21.09 00010011111111100100 0.00

12.00 10010001010011100011 11.97 00010011111011100100 0.00

12.33 5.07

Figure 3: Evolution of the genetic algorithmminimizing the cost function g(-). Starting from
a population of arbitrary strings better and better chromosomes are generated. The function
g(') is multimodal, all the chromosomes having zero cost encode possible good solutions of
the problem.

binary value in the string. The * symbol means 'don't care' and matches either 0 or 1 at the
position it stands. The schema in Figure 4 is contained in both string 1 and string 2.

string 1:00101101
string 2:10110110

schema: *01**1**

Figure 4: Example of a schema contained in both binary strings

Two important properties of schemata are used to discuss and classify string similarities.
The order of a schema S, denoted by o(5), is simply the number of fixed positions in the
string. For the schema in the example above o(*01 * *1 * *) = 3. Another characteristic
property of a schema is its defining length. For a schema S the defining length S(S) is the
distance between the first and last specifiedposition. In the previous example 8(*01 **1**) =
6-2 = 4.

Let us consider now the effect of reproduction operators on schemata contained in a
population of chromosomes. Let n denote the size of the population, i.e. the number of
chromosomes in it. Let the number m(.) of chromosomes containing a particular schema
S in the kth. generation be written as m(5, k). Strings are selected with a probability
Pi = /t'/Si/i? where /,- denotes fitness of the ith chromosome. After selecting n new
chromosomes from the old population weexpect to have m(5, fc+1) = m(5, k)-n-f(S)/ J2j /j>
where f(S) is the average fitness of the chromosomes containing S. With the notation
/ = 2j fj/n f°r the average fitness of the entire population it can be rewritten as

m($,* +l) =m($,*)^. (1)
It means that schemata whose fitness is greater than the population average will be found
in an increasing number of chromosomes, while the number of below-average schemata rep
resentatives will decrease. Suppose the fitness of a particular schema S remains above or
below the population average with a quantity c/, where c is a constant. We can write (1)
as follows: _ _

m(5, k+1) =m(S, k)^^- =(1 +c) •m(S, k). (2)
With a stationary value of c after k generations the expected number of chromosomes con
taining S is

m(5,*) = mOS,,0).(l + c)*, (3)

which means that the rate of survival or decay of schemata is exponential.
Effects of the one-point crossover operator on a particular schema depend on its defining

length. Assume that the chromosomes of the population are / bits long. A schemaS survives
if the crossing site falls outside its defining length, but it will not necessarily be disrupted
by the crossover operator, since it is possible that both parents contain S. All / —1 possible

crossing sites can be chosen with the same probability, and therefore the survival probability
of the schema is

P,c>l-g. • (4)
Mutation alters a position of a chromosome with probability pm. A schema S survives if

all of the specified positions remain unchanged. Since a single bit survives with probability
(1 —Pm) and the mutations are statistically independent, the survivalprobabilityof a schema
S is

Psm = (l-Pm)oiS), (5)
where o(S) denotes order of schema S. Mutation probability is generally small (pm <C 1),
therefore (5) can be approximated by 1 —o(S) •pm.

Assuming independence of reproduction operators and ignoring small cross-product terms
we conclude that the number of chromosomes containing schema S in the next generation
can be approximated by the following inequality:

m{S,t +l)>m(S,t)-&p- 1 6{s) afVln (6)

In other words, short, low order, above-average schemata will have exponentially increasing
number of representatives in the subsequent generations. This property has a special im
portance in designing GA applications. A coding should be chosen so that short, low-order
schemata are relevant to the underlying problem. Since this is essential in the evolution
process coding greatly affects performance of the resulting algorithm.

A binary string of length / contains 2l schemata, since at everylocation of the schema a *
or the corresponding bit of the binary string can stand. The number of schemata contained
in the whole population of size n is between 2l and n • 2l depending on the diversity of
the population. Although the actual number can never reach the upper bound, considering
short defining length schemata occur in many of the strings, this is a very large number.
From the above conclusion we know, that not all of these schemata are processed with high
probability, since the crossover operator destroys those of relatively long defining length. It
can be shown [10] that there is a lower bound on the number of schemata processed at the
desirable exponential survival/decay rate. For a population of n chromosomes the number
of effectively processed schematais at least 0(n3). It means that though in each generation
we perform only computation proportional to the size of the population, we get effective
processing of approximately n3 schemata. This unique feature of genetic algorithms is called
implicit parallelism and explains how this mechanism works.

2.4 Improved Techniques

Performance of the simplest GA can be enhanced by using advanced operators and some do
main specific knowledge built into them. It is also possible to use real number representation
and combine the algorithm with other optimization methods. In these cases the algorithm
is said to be a hybrid GA. A hybrid algorithm can be more efficient since it is adapted to

the specific problem, but the underlying theoretical background is still not firm and we can
rely only on the power of similarities and successful examples.

3 GA Based Template Learning

3.1 The Problem of Template Learning

Operations performed by an asymptotically stable CNN can be described by a triplet of signal
arrays, e.g. images: the input, initial state and settled output of the network mapped into
grey scale values of pixels. The problem of learning is to find the template to an operation
given by the image triplet. The template to be found should define the dynamics such that
the desired output is a stable equilibrium point in the state space and the initial state is in
its basin of attractions.

We can fulfill both requirements by considering the trajectory of the transient. The
simplest way to attain this is to create a cost function which compares the desired output to
the result of the transient defined by a given template and the input and initial state from
the image triplet. The following formula gives such a function:

g(p) = E(rf - *M)2 (7)
«=1

where p denotes the parameter vector, i.e. the template, k is the size of the network (i.e. the
number of cells), yf is the value of the ith pixel of the desired output and 2/,(oo) stands for
the corresponding pixel of the settled output. g(p) = 0 if the result of template p is identical
to the desired output and gives a quadratically increasing distance elsewhere. By using g(.)
as a cost function the problem of learning can be formulated as an optimization problem.
Applying genetic algorithms g(.) is minimized indirectly: its value is mapped into a fitness
value /(.) what is to be maximized.

3.2 Optimization by GA

To apply genetic algorithms, templates are coded as binary chromosomes and are evaluated
by the above cost function. Although the cost function is a quadratic distance in the state
space of the network, its form and properties vary from problem to problem in the parameter
space.

The simplest way to consider stability is to check symmetry [1] or positive cell-linking [11]
of the A template. Some equivalent transformations resulting positive cell-linking templates
can also be checked [12]. But minimizing g(p) with a genetic algorithm we do not have
to apply constraints to assure stability because unstable trajectories will result low fitness
values; therefore any specified domain of stable CNNs can be explored. It implies that
propagating mode templates can also be captured. Since the underlying network is nonlinear
and can oscillate and be chaotic, the cost function can be discontinuous and noisy if the CNN

is not stable. The shape of the function and the number of local and global minima depend
on the problem also. The genetic algorithm used for minimization of g(p) has to be effective
in each cases. To develop robust genetic search a number of algorithms using different
operators and parameter codings were tested on a variety of template learning problems.
Here we describe these operators and give a comparison on their performance later.

Coding methods

Coding here means how to represent a template as a binary string. Since the ultimate
goal of template design is to build analog VLSI CNN chips, feasibility of parameters has to
be considered. Constraints coming from technology restrict normalized parameter values to
be in the approximate range of [—5,5]. Using a fixed length binary representation of the
template elements this constraint can be simply enforced. Relative accuracy of template
elements is also limited by the technology and is around 10~2. Therefore higher resolution is
not required. For these reasons each real template value was coded with ten bits providing
the range [—5,5] and the resolution 0.01.

As it was indicated above encoding of parameters into binary chromosomes is crucial to
the performance of the algorithm. Three coding methods have been used:

• Standard coding. A widely used coding is to concatenate simply the binary strings
representing each real parameter value as shown in Figure 6. This method works
well until the dimensionality of the parameter space is low. But in larger spaces the
chromosomes are longer and the performance of the genetic operators decreases rapidly.
This happens because high-performance schemata become longer and the algorithm
cannot process them at the desirable exponential rate, since the crossover operator
destroys them with high probability.

• Enhanced coding. A better encoding is to put the corresponding bits of the real pa
rameters next to each other. Having n parameters, this results the following string:

(Pl,l»Pl,2,---,Pl,n,P2,l>i?2,2-..,P2,n, ••• ,PlO,l>PlO,2, . . . ,PlO,n), (8)

where pt-j is the ith bit of the jth parameter. This representation is much less sensitive
to the number of parameters, since the sign and ratio of the template values are more
relevant to the CNN than the magnitude of the parameters. An example of this coding
method is also shown in Figure 6.

• Reordering by inversion. There is a way to use the genetic algorithm itself to improve
the encoding in parallel with the evolution process. In the above two codings the mean
ing of a bit of a chromosome is determined by its location. Here the correspondence is
given by an integer which refers to the location of a given bit in the standard encoding.
After evaluating a generation, each chromosome is reordered by inversion. This means
that between two arbitrary positions the substring is inverted with the corresponding
position substring as shown in Figure 5. Reordering changes the defining length of
schemata while they themselves remain intact.

chromosome:001|01101|10
123|45678|9 10

reordered §. inversion sites §
chromosome :001|10110|10

123|87654|9 10

Figure 5: Reordering by inversion operator

The mechanism provides that bit values retain their original meaning regardless of
their position/ This operator clearly has no effect on the fitness of the chromosomes,
but enhances encoding as the search evolves. There is no rigorous explanation at the
moment how this mechanism contributes to the performance of the genetic algorithm.
Encoding of the same template with extended representation is shown in Figure 6.

The template: A =
0 0 0

1 2 -1

0 0 0

B = 0, 1 = 0,

Standard coding: 00011001|00110010|11100111

Enhanced coding: 0 0 1|0 0 1|0 1 1|1 1 0|1 0 0|0 0 1|0 1 1|1 0 1

Extended representation
before inversion: 00011001|00110010|11100111

12 3 4 5 6 7 8 |9 10111213141516|1718192021222324

Figure 6: Different binary encodings of the connected component detector template. Only
the nonzero template elements are represented. Vertical lines in the strings show logical
boundaries.

Reproduction strategies

• Nonoverlapping populations. Each population of size n generates n new chromosomes
and this offspring replace entierly the old population. This method was also combined
with elitist strategy which means, that one or a few of the best chromosomes are
preserved and inserted into the new generation.

• Steady-state reproduction means, that only a few individuals are replaced in the popu
lation to produce the next generation. Using this strategy chromosomes having fitness
value below the population average were replaced. In this case the above-average part
of a generation overlaps the next one.

An example of the results of these reproduction strategies are shown in Figure 7. In
both cases new generations were constructed not to have duplicate chromosomes, since they

10

do not contain additional information. This was carried out by the crossover and mutation
operators.

Current generation: Nextgeneration produced by
Nonoverlapping strategy: Steady-state reproduction:

chromosome fitness

10001000001110110101: 38.04

00111110101111100111: 21.98

10100011101000110001: 12.26

00111011000000110100: 28.00

11100011110001010011: 12.15

00000011101110110011: 26.06

00001110110001001101: 11.92

00111001000010011100: 10.62

01101010000101110000: 31.45

10011011110101010001: 12.09

Population average: 20.46

chromosome fitness

00001111100010001101: 31.76

00111000110001010001: 28.14

00111110101110110011: 21.03

00000011101111100111: 38.92

11110011101000110001: 17.33

10100101111001111111: 32.08

10000000010010010101: 11.75

10110110011111011011: 28.62

00001011100001010111: 35.14

10101000001110110101: 10.35

chromosome fitness

10001000001110110101: 38.04

00111110101111100111: 21.98

00111011000000110100: 28.00

00000011101110110011: 26.06

01101010000101110000: 31.45

10000001010010010101: 28.31

00111000000010011100: 34.13

10111000111001111111: 15.04

00100101110001010001: 27.63

00000011101110010111: 35.17

Figure 7: Reproduction by nonoverlapping and steady-state strategy. In case of steady-state
reproduction above-average chromosomes are not replaced.

Selection operator

For selection a modified version of the simple selection mechanism has been used. High
variance of the random selection slows down the evolution process. To avoid this, above-
average chromosomes are selected automatically and their fitness is reduced by the amount
of the average. After having no more chromosomes with fitness higher than the population
average, parents are selected randomly with a probability proportional to their fitness. An
example of this mechanism is shown in Figure 8.

Population after deterministic selection:Old population: Popi

chromosome fitness

(1) 10100000010010010101: 21.84 (1)
(2) 00111011101000110000: 32.18 (2)
(3) 10100011000000110101: 37.02 (3)
(4) 00011110110001001101: 13.27 (4)
(5) 01110101111001010111: 25.40 (5)
(6) 10001000101111110101: 38.12 (6)
(7) 00101001000010011100: 16.67 (7)
(8) 10101011100001111111: 22.83 (8)
(9) 11010001101010111110: 35.72 (9)
(10) 10010110011111011011: 28.17 (10)

Population average: 27.12

chromosome fitness

10100000010010010101: 21.84

00111011101000110000: 5.06

10100011000000110101: 9.90

00011110110001001101: 13.27

01110101111001010111: 25.40

10001000101111110101: 11.00

00101001000010011100: 16.67

10101011100001111111: 22.83

11010001101010111110: 8.60

10010110011111011011: 1.05

Selected parent pool:

chromosome
(2) 00111011101000110000
(3) 10100011000000110101
(6) 10001000101111110101
(9) 11010001101010111110
(10) looioiiooiiiiioiion
(8) 10101011100001111111
(6) 10001000101111110101
(5) 01110101111001010111
(3) 10100011000000110101
(1) 10100000010010010101

Figure 8: Example of the selection mechanism. Chromosomes above the line in the right
column were selected deterministically, those below the line with a probability proportional
to their fitness in the middle column.

11

Crossover operators

• One-point crossover was applied in a number of cases exactly the same way as shown
on Figure 1.

• Two-point crossover shown in Figure 9 is similar to the previous one, but in this case
two crossing sites are selected and substrings between the crossingsites are exchanged.
This method has the same properties as already described, but can combine certain
schemata which the one-point version cannot.

parents 1:00|101101|1000
2:10|110010|0101

$ crossing sites §
offspring 1:00|110010|1000

2:10|101101|0101

Figure 9: The two-point crossover operator

• Random crossover is shown in Figure 10. This operator combines two chromosomes
according to a random binary string. At every location the corresponding bits of the
parents are exchanged if the random string contains a 1 at that location. If the random
bit is 0 no exchange takes place.

parents 1
2

random string

001011011000

10110 0100101

011001110101

offspring 1: 001010101.101
2: 101101010000

Figure 10: The random crossover operator

All crossover operators were realized in a way that they generate new chromosomes
different from those already in the new generation. Difference from both parents, i.e. actual
exchange of information is also required. If the new chromosomes created by the operator
do not meet these conditions, different crossing sites are tried. If it still fails to create
different chromosomes, new, random mating is selected. This method generates duplicate
free offspring with a high probability, but if it still fails, mutation can alter duplicates.

Mutation operators

Mutation is performed in the standard way, namely a bit of a chromosome is altered with
a specified, low probability. A modified version have also been used which deterministically
modifies duplicate chromosomes in the population by flipping an arbitrary bit.

12

Evaluation

The evaluation function takes a chromosome (i.e. a template) and returns a fitness
value associated with it. Each time it is invoked the transient of the CNN governed by the
encoded template is calculated. Calculation is performed by integration of the state equation.
Computation stops if the network reached an equilibrium point or after a prescribed number
of iterations. Given the desired output and the result of the transient, the cost g(p) is
calculated. The value of the cost is then mapped into a fitness value so as to fit into the
genetic algorithm. There are a number of methods to perform this mapping known as fitness
techniques. We used the following ones:

• Direct mapping. This technique simply transforms g(p) to be minimized into a fitness
value fi which is to be maximized by the genetic algorithm. The possible largest differ
ence between two images is proportional to the image size, since the pixel values are in
the range [—1, +1]. The fitness of chromosome pi is calculated by /»• = maxdiff—g{pi),
where maxdiff is the possible largest difference (maxdiff= 4-image_size).

• Windowing. Zero or a constant minimum fitness value is assigned to the worst chro
mosome. Then each member of the population is credited with an increased fitness
proportional to the amount its cost is less than the cost of the worst one.

• Linear scaling. First a raw fitness is calculated using direct mapping then a linear
function maps the raw fitness into /t- such that the average cost of the population is
mapped into the average fitness and zero fitness or a minimum amount is assigned to
the chromosome with the maximal cost.

b ^avtragt 'w tbat sa»tn%t *wont

(a) (b) (c)

Figure 11: Fitness techniques: direct mapping (a), windowing (b), linear scaling (c).

Direct mapping is the most straightforward method of transforming cost values into
fitness values. But as the search evolves the population becomes more uniform and the
fitness difference between good and bad chromosomes becomes smaller. Since this difference
governs the survival or decay of the chromosomes the performance of the algorithm decreases.
Windowing and linear scaling provide two alternative methods to overcome this difficulty.

13

3.3 Simulation Results

The template learning program has been implemented in C code. The genetic algorithm
evaluates every chromosome by computing the transient of the CNN defined by the chromo
some. Since the computation starts always from the same initial state and with the same
input values, in case of a given template the state equation of the network is integrated
every time along the same trajectory in the state space of the network. It is possible that
an unstable trajectory is close to the desired ouput when the integration stops. This results
high fitness value although the corresponding template is not stable. If a fixed integration
length were used it would be,possible that the algorithm converges to a chaotic or periodic
template which reaches the desired output right at the moment when the integration stops.
To avoid this, random integration length is used. This results in a noisy cost function if the
network is not stable what the genetic algorithm can cope with.

Many times there is some a prioriknowledge about the template to be learned. Additional
information can increase the performanceof the algorithm on a given problem. To facilitate
the use of knowledge of this kind an additional input is used for the learning program. This
input is a format template which specifies which template elements are free parameters and
which can be set to a fixed value (e.g. 0). There is also a possibility to specify a template
element to be equal to another one or its inverse. Both, setting a template element to an
explicit value and applying equality constraints, decrease the dimensionality of the search
space, hence increase the speed of the search.

There are a number of parameters in a genetic algorithm which have to be specified.
Unless otherwise noted the following parameters were used in the simulations: population
size = 100, bit mutation rate = 0.005, nonoverlapping populations, two-point crossover,
direct mapping as fitness technique and enhanced coding method.

Example 1. The first example shows that even the simplest genetic algorithm is very
effective in solving relatively simple learning problems. In this case one-point crossover and
standard coding were applied for a population of size 20. In Figure 12 the training set for
horizontal connected component detection (CCD) [13] is shown.

(a) (b)

Figure 12: Training set for horizontal connected component detection: initial state (a), and
desired output(b).

The following reasoning gives an example how a priori knowledge can be used. The
CCD is a propagating type template and its result is independent from the actual loca
tion of the connected components. Therefore the location dependent input information
has to be ignored by setting the feedforward template elements to zero and only the ini
tial state of the network contains the input image. It is also clear, that CCD operates

14

in one direction, consecutively in case of horizontal CCD feedback template elements con
necting different rows can be set to zero, as well. Altogether this means that there are
four free parameters: three template elements in the central row of the feedback tem
plate and the constant current value, i.e. the format of the template is the following:

'0 0 01

A = * * * , B = 0, 1 = *,

.° ° ° J
where * denotes free parameters coded in the chromosome and A,B,I denote the feedback
tempalte, feedforward template, and current constant, respectively. Using the simple GA
after 10 generations the best chromosome of the population encodes the following template
which performs the desired operation:

Feedback

template:
0.00 0.00 0.00

1.95 3.04 -2.07

0.00 0.00 0.00

Feedforward

template:
0.00 0.00 0.00

0.00 0.00 0.00

0.00 0.00 0.00

Current

constant:

0.07

Figure 13: Horizontal CCD template produced by the simple genetic algorithm.

Example 2. Another example for propagating type templates is the shadow detector
[14]. Its training set is shown in Figure 14.

(a) (b) (c)

Figure 14: Training set for shadow detector: input(a), initial state (b), and desiredoutput(c).

Exploiting the horizontal propagating behavior of the operation the row-connecting tem
plate elements are set to zero. After 105 generations the following template is produced:

15

Feedback

template:
0.00 0.00 0.00

0.44 4.95 3.78

0.00 0.00 0.00

Feedforward

template:
0.00 0.00 0.00

0.19 4.92 1.18

0.00 0.00 0.00

Current

constant:

-0.05

Figure 15: Horizontal shadow detector

Example 3. As the search evolves the population becomes more uniform, the fitness
values of the chromosomes are increasing and get closer to each other. Since reproduction
is controlled by the fitness values, difference between higher and lower performance chromo
somes in the population becomes smaller and using direct mapping as fitness technique the
speed of convergence decreases. This undesirable effect can be avoided by windowing or lin
ear fitness scaling. In case of the averaging template shown in Figure 16 it took considerably
shorter to reach a good solution using windowing or linear scaling.

:W:#™::|

j§i|H
«

1 IP sflip'

H ;
iJl

Ki:.:"' IBS:" jgy
<•::•:••:.-£:•:•. ::::::-. il

(a)

Feedback

template:
0.19 1.54 0.19

1.54 2.27 1.54

0.19 1.54 0.19

Feedforward

template:
0.00 0.00 0.00

0.00 0.00 0.00

0.00 0.00 0.00

Current

constant:

0.45

Figure 16: Averaging template: initial state (a), desired output(b) and the template gener
ated by the GA using linear scaling. (Since the feedforward template is zero, the input of
the network is indifferent.)

In the previous examples there were only a few free parameters in each template, that is
the dimensionality of the search space was low. It also means that the binary chromosomes
were short and bits encoding important properties of the network (e.g. signs of template
elements) were close to each other. In other words, with the standard encoding the length of
schemata describing high-performance features of the design are proportional to the number
of free parameters, i.e. dimensions of the search space. If the number of free parameters
increasing, these schemata will not survive with the desired exponential probability, con-

16

secutively the convergence speed dramatically decreases and finally the algorithm may get
stucked at a local minimum.

Example 4. The next example of a corner detector [2] template (Figure 17) was not
possible to learn with the standard coding method but gave the result shown in Figure 17
using the enhanced coding.

Feedback Feedforward Current

template: template: constant

0.00 0.00 0.00 -0.57 -1.19 -0.57

0.00 2.00 0.00 -1.19 3.30 -1.19 -3.45

0.00 0.00 0.00 -0.57 -1.19 -0.57

Figure 17: Convex corner detector: input image and identical initial state (a), desired out
put(b), and the template generated using enhanced coding.

It was also possible to learn the corner detection using reordering to find better and
better coding in parallel with the evolution process, but this algorithm has proven to be
inferior to the previous one.

Example 5. Different reproduction strategies were also tested. Elitism improves con
vergence in large populations (> 50) preserving the best chromosome in each iteration. In
smaller populations it may cause premature convergenceby dominance of a super individual.
Steady-state reproduction usually does not work well in noisy search spaces. To overcome
this difficulty the whole population was evaluated in each iteration, not only the new chro
mosomes. This mechanism provided good performance in most cases but higher mutation
rate was necessary to maintain the diversity of the population. The inverse halftoning [15]
template in Figure 18 was generated by this algorithm.

17

_____^:. :,,,^^

•;;M«iimroKi:;::^wa^

(a) (b) (c)

Feedback Feedforward Current

template: template: constant

0.00 0.00 0.00 0.00 0.00 0.02 0.06 0.11 0.06 0.02

0.00 0.00 0.00 0.00 0.00 0.06 0.14 0.17 0.14 0.06

0.00 0.00 0.00 0.00 0.00 0.11 0.17 0.21 0.17 0.11 0.00

0.00 0.00 0.00 0.00 0.00 0.06 0.14 0.17 0.14 0.06

0.00 0.00 0.00 0.00 0.00 0.02 0.06 0.11 0.06 0.02

Figure 18: Inverse halftoning template and its trainingset: input image (a), initial state (b),
desired output (c). In this example the generated template cannot perfectly reproduce the
the desired output (the corresponding cost value is not zero) since the halftoning process has
already distorted the image.

Another possibility to make the algorithm insensitive to the number of free parameters is
to apply random crossover. This operator exchanges corresponding bits of the parent chromo
somes at every location with the same probability (P'{exchange} = 0.5). In case of one-point
crossover a certain schema survives if the crossing site falls outside the schema. Hence short
defining length schemata have higher survival probability. Since random crossover alters a
schema uniformly at any location, its survival is independent from the defining length. This
involves that the resulting algorithm will not be sensitive to the length of the chromosomes.
Simulation results confirm that the genetic algorithm with random crossover has good overall
performance. Although on simple problems it is inferior to most other algorithm variants
because short, high performance schemata are destroyed more often, it performs better than
any other as the number of free parameters encreases.

4 Conclusions

A new learning algorithm for cellular neural networks based on genetic search was described.
The whole domain of stable CNNs can be explored using this method. Templates were
evaluated according to the transient behavior of the network they resulted. Performance of
a template was determined by means of a quadratic difference between the desired output
and the settled output of the CNN governed by the template. This difference was minimized
using genetic optimization algorithms.

18

Even the simplest genetic algorithm could generate simple templates, but as the num
ber of free parameters in the template encreases its performance breaks down. Therefore
several genetic algorithm variants were tested on a wide range of template learning tasks to
develop a more robust algorithm. Templates with symmetric feedback (e.g. average, convex
corner detector) as well as propagating type (e.g. connected component detector, shadow
detector) and grey-scale output templates (inverse halftoning) were generated successfully.
The enhanced coding method with elitist strategy, two-point crossover and windowing fitness
technique was effective in simple and higher dimensional problems as well, but its perfor
mance was still sensitive to the size of the problem. Application of random crossover provided
an algorithm whose reproduction properties are independent from the length of the binary
chromosomes, therefore its performance is not influenced by the number of free design pa
rameters. Although on simple problems it is inferior to the algorithm mentioned above, as
the dimensionality of the problem increases it outperforms any other algorithm variant.

Further performance enhancement can possibly be achieved by hybrid genetic algorithms,
where using special operators more domain specific knowledge can be exploited. Moreover,
generality of the approach allows learning of nonlinear and delay-type templates [3] with the
same algorithm by parametrizing nonlinearities and delay factors.

19

References

[1] L. O. Chua and L. Yang, "Cellular neural networks: Theory," IEEE Transactions on
Circuits and Systems, vol. 35, pp. 1257-1272, 1988.

[2] L. 0. Chua and L. Yang, "Cellular neural networks: Application," IEEE Transactions
on Circuits and Systems, vol. 35, pp. 1273-1290, 1988.

[3] T. Roska and L. 0. Chua, "Cellular neural networks with nonlinear and delay-type
template elements," in IEEE International Workshop on Cellular Neural Networks and
Their Applications, Proceedings, pp. 12-25, 1990.

[4] Proceedings of the 1990 IEEE International Workshop on Cellular Neural Networks and
Their Applications, (Budapest, Hungary), 1990.

[5] Special Issue on Cellular Neural Networks, International Journal of Circuit Theory and
Applications, July 1992.

[6] T. Roska and L. O. Chua, "CNN: Cellular analog programmablemultidimensional pro
cessing array with distributed logic and memory," submitted for publication in IEEE
Transactions on Circuits and Systems. Preliminary version: Report DNS-2-1992 Com
puter and Automation Inst, of the Hung. Acad. Sci. (MTA-SzTAKI), Budapest.

[7] F. Zou, S. Schwarz, and J. A. Nossek, "Cellular neural network design using a learning
algorithm," in IEEE International Workshop on Cellular Neural Networks and Their
Applications, Proceedings, pp. 73-81, 1990.

[8] S. Schwarz and W. Mathis, "A design algorithm for cellular neural networks," in Pro
ceedings of the 2nd International Conference on Microelectronics for Neural Networks,
pp. 53-59, 1991.

[9] P. Szolgay and T. Kozek, "Optical detection of layout errors of printed circuit boards us
ing learned CNN templates," Report DNS-8-1991, Dual and Neural Computing Systems
Res. Lab., Comp. Aut. Inst., Hung. Acad. Sci. (MTA SzTAKI), Budapest, 1991.

[10] D. E. Goldberg, Genetic Algorithms in Search, Optimization, and Machine Learning.
Addison-Wesley, 1989.

[11] L. O. Chua and T. Roska, "Stability of a class of nonreciprocal cellular neural networks,"
IEEE Transactions on Circuit and Systems, vol. 37, pp. 1520-1527, 1990.

[12] L. 0. Chua and C. W. Wu, "On the universe of stable cellular neural networks," ERL
Memorandum UCB/ERL M91/31, University of California, Berkeley, 1991. To appear
in International Journal of Circuit Theory and Applications.

20

[13] T. Matsumoto, L. 0. Chua, and H. Suzuki, "CNN cloning template: Connected com
ponent detector," IEEE Transactions on Circuits and Systems, vol. 37, pp. 633-635,
1990.

[14] T. Matsumoto, L. 0. Chua, and H. Suzuki, "CNN cloning template: Shadow detector,"
IEEE Transactions on Circuits and Systems, vol. 37, pp. 1070-1073, 1990.

[15] K. R. Crounse, T. Roska, and L. 0. Chua, "Image halftoning with Cellular Neural Net
works," Tech. Rep. UCB/ERL M91/106, University of California at Berkeley Electronics
Research Laboratory, Nov. 1991.

21

List of Figures

1 The one-point crossover operator 4
2 Abstract description of a genetic algorithm 4
3 Evolution of the genetic algorithm minimizing the cost function g(-). Starting

from a population of arbitrary strings better and better chromosomes are
generated. The function g(-) is multimodal, all the chromosomes having zero
cost encode possible good solutions of the problem 5

4 Example of a schema contained in both binary strings 6
5 Reordering by inversion operator 10
6 Different binary encodings of the connected component detector template.

Only the nonzero template elements are represented. Vertical lines in the
strings show logical boundaries 10

7 Reproduction by nonoverlapping and steady-state strategy. In case of steady-
state reproduction above-average chromosomes are not replaced 11

8 Example of the selection mechanism. Chromosomes above the line in the right
column were selected deterministically, those below the line with a probability
proportional to their fitness in the middle column 11

9 The two-point crossover operator 12
10 The random crossover operator 12
11 Fitness techniques: direct mapping (a), windowing (b), linear scaling (c). . . 13
12 Training set for horizontal connected component detection: initial state (a),

and desired output(b) 14
13 Horizontal CCD template produced by the simple genetic algorithm 15
14 Training set for shadow detector: input(a), initial state (b), and desired out-

put(c). 15
15 Horizontal shadow detector 16

16 Averaging template: initial state (a), desired output(b) and the template
generated by the GA using linear scaling. (Since the feedforward template is
zero, the input of the network is indifferent.) 16

17 Convex corner detector: input image and identical initial state (a), desired
output(b), and the template generated using enhanced coding 17

18 Inverse halftoning template and its training set: input image (a), initial state
(b), desired output (c). In this example the generated template cannot per
fectly reproduce the the desired output (the corresponding cost value is not
zero) since the halftoning process has already distorted the image 18

22

Appendices

A User's Manual

The template learning program fits into the existing CNN simulation framework and uses the
same template and image formats. The user interface is still under modification. Description
will be given if it is finished.

B Project outline

B.l Main Ideas of the Current "Approach
• Template learning provides a general method for deriving templates which perform a

given image transformation.

• The transformation is given by an image triplet: the input, initial state and desired
output of the CNN.

• Performance of a template is measured by the difference of the desired output and the
final state of the network's transient governed by the template.

• Using this quantity ascost function the problem of template learning can be formulated
as an optimization problem.

• Although this cost function is hard to minimize (no differential property available, mul
timodal, can be discontinuous and noisy) genetic algorithms provide robust learning.

• Using a genetic algorithm stability of the network does not have to be provided by
constraints. This allows us to explore any specified domain of stable CNNs. Templates
with nonsymmetric feedback and grey scale desired output can also be derived which
was not possible with previous learning methods. It implies that a wide range of
propagating mode templates can be captured.

23

B.2 Problems Solved

Nearly 2000 lines of C code have been written including:

• genetic algorithm utilizing different operators

cost function which involves computation of CNN transients•

•

•

graphical user interface and input output routines providing full compatibility with
existing CNN software

A number of genetic algorithm variants were tested on a wide range of template learning
problems and a robust search mechanism was developed. Both local and propagating type
templates were successfully generated as well as grey scale output ones.

B.3 Difficulties

The main problem was to find a good encoding of the templates into binary strings. The
most common encoding which is reported to be successful in several application did not
work well on higher dimensional problems. Performance of genetic operators dramatically
decreased by the increasing length of binary strings encoding the template elements and the
algorithm stucked in local minima. Two other coding techniques have been applied which
gave better results.

It is also difficult to give an exact measure of robustness of templates gained by the
algorithm. I have two rough ideas concerning the problem: First the algorithm produces
several slightly different but perfectly working templates if it is not stopped when the first
good one is captured. These templates form a small ball in the parameter space. The size
of the ball gives an approximate lower bound on the robustness of the template. Another
possibility is to incorporate some kind of robustness information into the cost function. In
case of binary output templates this can be done by means of the inequality system used in
earlier works.

B.4 Future directions

I would like to use the CNN-HAC board to enhance the speed of the program since
most of the time is spent on CNN transient computation.

The generality of the cost function allows the genetic algorithm to gain /^-variant and
simple nonlinear and delay type templates by parametrizing the delay operators and
nonlinearities. An extension of the program in this direction could be interesting.

24

