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Abstract

The asymptotic probability of buffer overflow for a queueing system with a Markov
fluid input and deterministic service rate is derived by way of large deviation theory.
The equations characterizing the deviant behavior are presented and examples are given
for which closed form solutions may be obtained. An independence result extends the

analysis to cases where the input is an aggregate of independent Markov fluids.
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1 Introduction

We will investigate the probability of a buffer overflow for systems in which the input traffic
is modeled as a Markov fluid with an underlying chain of the birth death type. This problem
has received much attention in the literature, and many approaches have been developed
to characterize, not only the statistics of the queue length, but also the manner in which
overflows occur Anick et al. [1]. Our results are obtained by way of large deviation theory,
and thus are closely related to the work of Weiss [7). However our approach is different and
motivated by the recent work of Kesidis [4]. Our goal is to fully explore this framework for

the specific case of the birth death processes.

We consider a buffering system of size B with a deterministic service rate ¢, and an
N-rate Markov fluid source. Let X, denote the free buffer process, in the sense that it is
not constrained to be positive or below B. The evolution of X; is given by

St =r(%) - 1)

where Y; is a continuous-time birth death process with states 0,..., N — 1 and rate matrix
PO
Py = N, i=0,...,N-2;

Poi,i—l = pi t=1,...,N~-1

A deterministic traffic rate r(Y;) is associated with each state of the Markov chain. Note
that the traffic rate will be Markov if r(-) is one-to-one, however the queue length process

is not.



The goal is to compute the asymptotic probability of a buffer overflow in a busy cycle
as B — oo. If the system is stable this becomes a large deviation, and that theory becomes
directly applicable. We refer the interested reader to Bucklew [2), Kesidis [4], and references

therein and only provide a heuristic introduction to the results that we will use.

Our starting point is an expression for the relative entropy between two continuous-time
Markov chains. Let P and PO be the rate matrices of two N state continuous-time Markov

chains and denote by 7p the stationary distribution of P. Following Kesidis we have [5]

N

. F; ;

H(P || P%) =) =p(i) (Z P, jlog 75—+ P%; ~ P,-,,-) :
i=1 i#i i

This notion permits us to explore the probability that the Markov chain P° behaves as

another chain P for an extended period of time. Additionally, one can obtain the action

functional for the empirical distributions by considering

= 3 0
Tpe(m)= it H(P | PY)

1r
from which we extract the exponent for the likelihood of observing a distribution . We
wish to compute P(X; > B) during a busy cycle. For large B, our heuristic, justifiable by
convexity arguments, is that overflows are not due to fluctuations but to a steady buildup in
the queue, i.e., “the path to an overflow is a straight line.” Thus we evaluate the probability
that P° behaves like an alternate Markov chain P, which offers a mean traffic rate M + ¢
exceeding the buffer service rate, for a prolonged period of time. This is obtained, once

again, by considering a functional of the excess rate M :

H*(M) = f H(P| PY.

in
{P|Erpr(-)=c+M}

Finally, a bound on the probability of an overflow in a busy cycle of the form P(X, >
3



B) < exp(—~BE) is obtained by considering the most likely path, or slope, leading up to

this event :

(2)

The remainder of this paper is organized as follows. In Section 2 we discuss some prop-
erties of the relative entropy when two independent processes are involved. The required
minimizations are investigated in Section 3. We establish necessary and sufficient opti-
mality conditions and the uniqueness of the minimum for the constrained relative entropy
problem. In addition we discuss the problem of obtaining the overflow exponent directly.
This provides some insight into the nature of the solution. Section 4 includes two examples
which have analytical solutions. In Section 5, numerical procedures for obtaining the pa-
rameters of the deviant Markov chain, as well as the exponent and the effective bandwidth

are presented. We conclude with some remarks in Section 6.

2 A preliminary decoupling result

Theorem 1 Consider the relative entropy H(Q || P) between two rate matrices, Q and P,
where P corresponds to the product of two independent Markov chains, P = P! x P2, on
two spaces Xy and X. Consider the product-form Markov chain Q! x Q? obtained by taking

the marginal transition rates of the first (respectively the second ) component. Then :

H@QII P x P?) > H(Q' || P)+ H(Q*|| P*) = H(Q" x Q% || P! x P?). (3)



Proof : By definition

HQIP) = T ro(z) T Quylog 322 + Poy = Qay
v#z &

where z = (z1,22) and ¥y = (y1,%2). Using the fact that P is a product of two Markov

chains we can rewrite the entropy as

HQ || P! x P?) =
Z T (a: X ) Z Q lo Q(31y32) (y1,x2) +P1 Q
( ) Q\¥1,%2 " (z1,52),(¥1,22) /23 P;l " Z1,41 (z1,22),(¥1,22)
T1,T2 Y1721 ’
Q(z, ,
+ Z )71'Q(.'L'1, T2) %: Q(21,22),(z1,v2) 108 - (xll:ﬂ'z ::1 y2) + P2 2 w2 — @(en,z2)(z02)
(-‘L'ly-’b'z Y2FT2 y )

Using the relationship

1Q(21,22) = mq(z1)7Q(22 | 1),
we can rewrite the terms on the right hand side to obtain

HQ || P' x P?) =

| Q(z1,22), (31,
Z E TQ(21) E TQ(z2 | 21 )Q(n,x:),(yx.xz) log _ngz:)M + P;x.m Q(zx,zz).(m,zz)

Ty y15#z T2 T3,

+ the symmetrical term.

Now define Q} , = an(xg | 1)@ (21,22),(s1,22) 20d Q%, ,, similarly. Q1 corresponds to
z2

a rate matrix with the average transition rates of @ on the first component. With this

definition in mind and using Jensen’s inequality on the convex function z logz we obtain

1
H(Q II Pl x P2 ZWQ(“:]) Z Qzl:yl log .P]."yl + P;l "N Q;Jym

n#n 1

+ the symmetrical term.



Finally, note that in fact

::J.w = E TQ(z2 'zl)Q(zx,m)r(m.w)’

2,42
so it follows that wg(z;) is the invariant distribution for Q1. Thus,

1
2_mQ(®1) X Qi log ™ + Py, — Qi = H@Q || P,
z

n#En 1.9

and a similar expression is found for the symmetrical term. We have established

HQ| P' x P?) > H@Q' || P')+ H(Q* || P*) = H(Q' x @* || P' x P?).

Corollary 1 Consider the relative entropy H(Q || P) between two rate matrices, Q and
P, where P corresponds to the product of two independent Markov chains, P = P! x P2,
on two spaces A1 and X3. Suppose that the traffic rate corresponding to each product state

r(z1,22) is additive i.e., there ezist functions ry and ro such that
Y(z1,22), (21, 22) = 71(21) + ro(22). (4)
Then the minimizer Q* of H(Q || P) subject to a mean traffic constraint
M = Enyr(X1,X2) = Ergr1(X1) + Ergra(Xa) = My + M (5)

is of product-form.

Proof : Suppose Q;,, is a minimizer satisfying the constraint. Then by the previous
theorem, there is a corresponding product-form Markov chain Q! x Q2 with the same
marginal distributions, whence still satisfying the constraints, but with a lesser or equal

relative entropy. o



Corollary 2 Under the assumptions of Corollary 1

inf H@Q| P'x P?) =
{QlEnQT(l.£1.X2)=M} (Q " X )

inf H(O! || P! 221 PO Y (6
{(M"MZ)'IM”M’:M}{{Q"E« 1 (Xy)= @l )+{Qz|E,. Ol )} (6)

These results obviously hold in general for N independent Markov fluid sources with
additive rates. Intuitively the decoupling result implies that the most likely way for inde-

pendent Markov chains to deviate from their typical behavior is independently.

This constitutes a justification of the additive property of relative entropy for indepen-

dent Markov chains assumed in Kesidis [4], leading to the notion of effective bandwidth.

3 Solving the optimization problems

In this section, necessary and sufficient optimality equations are derived for the following

minimization problems

q* = i P° 7
(M) { PIE"P%: o +c}H (Pl P°) (7
N-1
where E, r(:) = E miTs, and
=0

H(P || P°)
{P|Expr()>c} Expr(-)— ¢

t 3

(8)

In computing these infima, we only consider rate matrices P which have the same graph
as the initial Markov Chain P9, i.e., the set of BD processes with rates \;, pj. We in fact

restrain ourselves to structure-preserving parametric changes of measure.
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The stationary distribution of such a P is given by Neuts [6] :

T = M, i>1, (9)
H142 -« o Jig
with
N-1 -1
)‘OAI :—1 )
mo={1+ . 10
° ( ,Z._; Hip2 .- i (10)
The expression for the relative entropy between P and P? is now
0 & Ai Hi 0
HP|P% = > m Alog»,“ z\,-+mloglﬁ+u,-—u,- (11)
=0 1
N-1
= Y midi+ i),
=0

with
¢ = /\;logﬁ+ T
3
_ Hi 0
¥ = mlog"‘—g'i' B — My

and the convention that Ay_; = po = 0.

3.1 Minimization of the relative entropy under constraints

We first solve problem (7).
This is done by forming the Lagrangian :
L(P,P%) = H(P || P°) + K (Expr(-) - (M +¢)), (12)
where K is a Lagra.hge multiplier.

The following two lemmas enable us to derive simple forms for the first order optimality

conditions.



N-1
Lemma 1 Define Sy = »_ m;. Then

=k
on; T
Vil ’X;‘(l{i—IZk} = Sk+1), (13)
orm; 5
— = ——=(1g>k — Sk). 14
. ﬂk( {i>k} — Sk) (14)
(15)
Lemma 2 Define
N=1
aj = Z 7i(di + i + Kr;). (16)
i=k+1
Then the first-order optimality equations for problem (7) are
A
—Sk1(HY (M) + K(M + ¢)) + agser + T log ,\—g = 0, 17)
k
Sep1(H*(M) 4 K(M + ¢)) = app1 + Tep1 kg1 log Z’;“ = 0, (18)
k+1

fork=0,...,N -2,

The derivation of these equations as well as the algebra required to establish the following

set of optimality conditions have been placed in the appendix.

Proposition 1 The first-order optimality equations for problem (7) are the following :

Akpes1 = )\2#2+19 k=0,...,N -2 (19)
Aet+pr = —H* M)+ K(rp—(M+¢))+ A2 +pl, £k=0,...,N-1; (20)
N-1
Z Tty = M+ (21)
k=0
N-2
H(M) = 3 (m(38 = 2) + mipa(u — pia)) .- (22)
1=0



The last equation defining H*(M) is in fact redundant, since it can be obtained by adding

the second set of equations weighted by coefficients 7.

Moreover, we have the following proposition.

Proposition 2 Define {7} as the set (mo,...,mn-1) and {us} similarly. Consider H(P ||

P%) as a function of {m;} and {u}. Then H(P || P°) is convez in {u} and, furthermore,

the function H*({m}) defined as H*({m}) = ?]JI:; H(P || P°) is convez in {m:}, so that the
B

optimality equations above actually define a unique minimum.

The proof is given in the appendix.

This proposition is related to a standard result in information theory regarding the
convexity of the relative entropy D(p || ¢) in the pair of probability distributions (p,q) over
a discrete space, this quantity being defined by D(p || q) = Zp(a:) logfl% Cover [3). It

z
implies that the infimum of problem (7) exists and is unique over the class of birth death
processes we have considered. This fact shows that among the set of all trajectories with
rate M + c over a period T generated by parametric changes of measure, there exists one
specific trajectory for P that is asymptotically stricly more likely than the others, assuming
that a large deviation principle holds for such a set Bucklew [2]. By Laplace’s argument,

the probability of PO to fire at a mean rate M + c over a period T is then asymptotically

equal to the probability of this most likely trajectory when T is large.

10



3.2 Direct computation of the exponent

Suppose now that we wish to directly compute the exponent, i.e., to solve problem (8) :

. H(P || PY)
E= o™ o Eor—c 23
(PIEnne()>¢} Enpr() — ¢ (23)

We will prove successively that this infimum may be characterized by a set of equations

similar to those derived before and the minimum is unique.

Proposition 3 A necessary and sufficient set of optimality equations for problem (8) is

Aktes1 = MpRir, k=0,...,N -2 (24)

N-1
H*e—rme)+ (A =M+ pf —pe)(D_ miri—¢) = 0, k=0,...,N-1 (25)
=0
N-1
Z Ty > ¢ (26)
1=0
M > 0, k=0,...,N -2, (27)
N-2
with, as before, H* = 3 (mi(A9 = X)) + miga (4 — pis1))-
=0

The proof is similar to that of Proposition 1 with a simplification due to the fact that
the Lagrange multiplier is 0 at the optimum because the inequality constraint will not be

saturated.

These optimality equations are necessary and sufficient from the existence and unique-
ness argument in the previous problem. Indeed, the minimum will be attained in a point

P* such that E,,.7(:) = ¢ + ¢ for some stricly positive ¢ and, moreover,

H(P* || P%) = inf _H(P| P,

{PIE,;r(-)=c+c}
11



which is unique by Proposition 2.

An algorithm is suggested at the end of this paper to compute the solution to these

equations.

4 Examples

4.1 Sum of on-off Markov fluid sources

We first consider the case where the input traffic to the buffer is an aggregate of N — 1
two-state Markov chains. Each of these will contribute a traffic rate of ap when off and a,
when on. A source turns on with intensity A? and off with with intensity u°. The aggregate

Markov fluid, corresponds to a birth death process with the following parameters :

A = (N =1-9X%

wo= i,
and with ry linear in k, i.e. r¢ = ak + 8, where a = a; — ag and 8 = (N — 1)ao.
Proposition 4 characterizes the solution to the constrained minimization of the relative

entropy.

Proposition 4 Define a = a(N — 1). In the on-off case, the optimal solution is :

Ai = (N=-1-=19d))

i = i,

12



with

_ (a=(M+c)+8)\7
A= (’\0"0 M+c—3 ) ’
0o M4c—B
('\“(a-(M+C)+ﬂ)) )

The entropy is given by :
B(M) = (V= 1) (5500 - ) + =00 - ). (28)
At p Atp

H*(M) is a sum of N — 1 equal terms corresponding to each of the N — 1 two-state Markov
fluids that constitute the input traffic. Note that this result could have been obtained

directly using Theorem 1.

The exponent is given in the following proposition.

Proposition 8 Denote the mean offered traffic rate by v = Xo—’}'_o—“u-a + B. Suppose v < ¢,

i.e. the system is stable. Then :

_ - 1y (04 1) = B) =A%)
S T CEY 9

This result can be compared to both Weiss [7] and Anick et al. [1]. In the first case
let 8= 0, and consider a limit as the number of sources increases, N — oo, such that the
mean offered traffic rate is constant and equal to XU%U' < ¢ < 1. This corresponds to letting

a=1,s0a=1/N,and the exponent becomes

0 ,\o)
1—-¢ ¢”

E = (N - 1)( (30)

This is identical to the result obtained by Weiss, in the case of large buffers, and a large

number of sources, from a conceptually different point of view [7].

13



We obtain the asymptotics established by Anick et al. by rewriting our exponent as
follows. Note that 8 = I'pn, @ + 8 = I'max, are respectively the minimum and maximum
traffic the aggregate source can offer. One can then rewrite the exponent, in their intuitively

pleasing form :

1] c—
E=(N-1) (c(_)‘r;f;()lfm’i)c). (31)

4.2 M/M/co Markov Fluid Source

In our second example, we consider an aggregate source in which sources arrive at rate \°
and contribute a traffic rate a. They turn off after an exponential period with mean ;10'

The corresponding a birth death process has the following parameters :

A= )Y
p o= il

and with 7y linear in k, i.e., rx = ok.

Proposition 6 In this case, the optimal solution is :

Ai o=

Bi = i,

with




The entropy is given by :

H* = (0= 3)+ 20 - ). (32)

Once again for this case the large deviation exponent can be found and is given by the

relatively simple form that follows.

Proposition 7 Suppose p%a < ¢, i.e. the system is stable. Then

0 )‘0
E= % -= (33)

This result is only true when N = oo but of course will hold for systems, processing a

large number of calls N.

5 Numerical solution

We present herein an algorithm to compute the exponent and the effective bandwidth for
the general case. Returning to equations (24), denote gz = AQ_,pf for k = 1,...,N — 1,

and rewrite an equivalent set of equations :

N-1
H*(c—10) + (A3 - Ao)( Z miri—c) = 0; (34)
=0
A=A+ p - L — (c' "") (A3 =), k=0,...,N —1. (35)
Ak—1 cC—To

The last series of equations may be rewritten as :

9% _ yo 0_ (¢ Tk
Mt 32 =3+ 8 (2

d )(AS—A0)=Ak(Ao), k=0,...,N—1
=70

15



By setting A\ = :‘,—f— fork=0,...,N — 2, we obtain

e Vet

= 36
™ qk U1 Ak(AO)a ( )

which can be written in a matrix form as

(7 Ak(Xo) —ak Ug—1 Uk—1

= = Ar(Ao) (37)
Vg 1 0 Vg1 Vg—1

where Ag(A°) is 2 x 2 dimensional.
Then, by induction

Uk

= Ar(Ao)Ar-1(A0) ... A1(Ao)

Vg Vo

For a given choice of Ag, A1,...,AN—2 may be computed recursively, and u1,...,2N—1
can be obtained by way of equations (24). However a boundary condition must be satisfied.

In particular, we require that Ay_; = 0, to be consistent with our set-up. Thus, the

unknown A¢ must be a root of the equation

un-1 =0,

or

( 10 ) AN-1(20)AN-2(A0) ... A1(Xo) 0, (38)

1
such that

16



This equation is in fact a polynomial of order N in Ao, so that the algorithm reduces
to the computation of the roots of this polynomial. Since we have established the existence
and uniqueness of the solution, there can be only one root satisfying these conditions. Let
Ap be this root. The exponent is then obtained from equation (34) :

H -2
- cC—To )

E =

=N
z T —C

=0

(39)

We turn now to the computation of the effective bandwidth. This is defined [4] as the

function a(6) such that :

H¥
N = 4. (40)
Z mir; — a(6)
1=0

a(6) can be interpreted as the service rate required to guarantee that the given source will

have an asymptotic probability of overflow less than or equal to e—B9,

From equations (34), we obtain

§ = )‘5"'\8
~a(6) - 1o

or
o = 6(a(8) = ro) + A
Then, a similar calculation to the above gives :

Uk AN+ +6(a(d)—r) —a Uk—1 Uk—1
= = Ag(6,a(6)) , (41)

Vg 1 0 Vk—1 Vg1

and the equation determining a(6) as a function of § becomes

§(a(8)—r A9
( 10 )AN_I(é,a(J))AN_g(J,a(cﬁ))...A1(6,a(6)) (a(8) = ro) + A3 =0, (42)

1

17



with the constraints

6 Conclusions

The problem of computing the asymptotic probability of buffer overflow for a queueing
system fed by N independent Markov fluids has been addressed. It has been shown that
when an overflow occurs as a large deviation, independent sources actually deviate in an
independent fashion, resulting in the notion of effective bandwidth discussed in [4]. Thus
it suffices to analyze the single source case. Necessary and sufficient optimality conditions
have been derived characterizing the deviant behavior, when the underlying Markov chain
is of the birth death type. Closed-form solutions have been found, when the input is the
aggregate of on/off sources, and when it corresponds to a system in which sources arrive
as a Poisson process, and leave independently after an exponential period. In the former
case, similar results have been obtained by different approaches. Numerical algorithms are
suggested for computing the actual deviant behavior for the general case. These may be of

interest for quick simulation. Further work is required on this topic.

References

[1] D. Anick, D. Mitra, and M.M. Sondhi. Stochastic theory of a data-handling system with

multiple sources. Bell System Tech. Journal, 61, 1982.

18



[2] J.A. Bucklew. Large Deviation Techniques in Decision, Simulation and Estimation.

John Wiley and Sons, New York, NY, 1990.

[3] T.M. Coverand J.A. Thomas. Elements of Information Theory. Wiley Series in Telecom-

munications, 1991.

[4] G. Kesidis. Cell Loss Estimation in High-Speed Digital Networks. Ph.D. Thesis. Dept.

of EECS, University of California, Berkeley, 1992.

[5] G. Kesidis and J. Walrand. Relative entropy between markov transition rate matrices.

to appear in IEEE Trans. Info Th.

[6] M.Neuts. Matriz-geometric solutions in stochastic models. John Hopkins University

Press, 1981.

[7) Alan Weiss. A new technique for analyzing large traffic systems. Adv. Appl. Probab.,

18:506-532, 1986.

19



Appendix

Proof of Lemma 1 : Define :

_ AoA1... A0

P;
IV RRRY 4
We note that
oF; P
e /\_kl{i—IZk}
oR _ _ A,
Oue | UREF
S _ kR P
ince m; N1 ©— F,
> P
j=0
P p_ p 8P)
om _ \enT —hiow
e P2
P; PR3 P
= P68 T B L Pl
=
= ﬁ(l{i—IZk} = Sk41)-
Derivatives with respect to uj follow in a similar fashion. o

Proof of Lemma 2 : We first compute the derivatives of the Lagrangian with respect to

Ak, k=0,...,N -2

oL =
—_— = 1,_ -5 H H ! K 1.... S 3
Ak g /\k( 1>k k+l)(¢ + ;) + m Og( ,\o) + g ( 1>k — k+1)7't
Sk+1 = N1 1 N-1 Ak
= - domidi+ i)+ D mri |+ — > mi@i+ i+ Kri) | + milog( 30)
e\ iz =0 Ak i=k+1 A
Sk+1

wwm+MM+m+k“+kmgo

In the same vein,fork=1,...,N-1:

oL

Sk . Mk
= —(H*(M)+ K(M - log( —==).
B = M)+ K(M + ) = 2%+ mylog( £p)

20



So that we finally get the following system for k = 0,..., N — 2 stated in lemma 2 :

_S
= SEHE(M) + E(M +6)) + S22 4 7 log( A¢,>

1l
L2

S,
e (M) + K(M +0) - 2 ‘+wk+llog(“oi) = 0.
K+ +1 I"’k+1

]

Proof of Proposition 1 : By multiplying the first and second type of equation obtained

in Lemma 1 by Ax and pi4, respectively, and adding them together, we obtain

Ak
TrAk log — AO + Tht1 k41 log Pitr _ 0.
k+1

Since

Tht] = T Ak

k+1 = kuk-{-l )
we have
log '\0 + log —5— B4l _ o.

A% FR41

In other words :
Akbtker = ApRy1 k= 0,..., N — 2. (43)

We now look for another set of characteristic equations. There are obtained by sub-

tracting two consecutive first equations (7) with indices k¥ and k + 1, to first get
A Ak—
(Sk = Sks1J(H*(M) + K(M + ¢)) + (aks1 — ax) + Tehx log r’;- — Te—1)k—1 log x’;—‘ =0.
k k-1

Equations (43) yield

Ak—1 p oy 223
lo, =1 = it
& AD-1 AD_ 1Bk
and on the other hand
Ak-1
T = Tk~
Be



So that the subtraction above reads
T(H* (M) + K(M + ¢)) — mi(dx + ¥ + K1) + 7% (/\k log i—'é + pilog ::—g) =0.
Then, after substitution of ¢ and 1) by their expressions, we get
A+ pe=—H* M)+ K(re = (M +e))+ M0+, k=0,...,N—1, (44)
with the usual convention AQ;_; = An—; = pud = po = 0.

Returning to the definition of H*(M), we obtain

N-1
A
H'(M) = Z T (A log — 30 =+ A0 - ) +p.log P +,u, —p.)
i=0
N-2 A N-2 i
= Yom (A log — 0 +Xi— ,\0)) + Y min (u.+1 log =5+ udy; — um)
=0 =0 :+l
N-2
= (":’(A? = M)+ mia(pd — u;+1)) :
=0
a
Proof of Proposition 2 : the existence and uniqueness of a single minimum :
Consider again the initial constrained minimization problem :
H*(M)= inf H(P| PY. (45)

{P|Epr(-)=M+c}
To prove that the optimality equations derived above actually define a minimum that is
moreover unique, change variables is required since there is no direct convexity result on H

as a function of the set of parameters ();, ;). Define first p; = F?i?’ fori=0,...,N-2.

We see that, since
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AO/\I oo /\,'_1
1 ) e ———

=7 veePio1, 121
o#lﬂz---ﬂi 0P0P1 - .- Pi-1, T2

with

N-1 -1
AoAL . Ao
W0=(1+§:u) ,

=1 H1H2. .- p

p;=%, i=0,...,N-2. (46)
On the other hand
Ai = piliyr, t=0,...,N=2. (47)
Then
H({m}, {pin}) = Nz';l i (W—:rJ:—l#e+1 log %’ylj&i +A7 - W—::lmu + pilog Z—§ +pd - ue) ,
=

the constraints being as follows :

N-1
E Tt = M+
1=0

N-1

zﬂ',‘ = 1;

=0

v
o
-~
l
o

-
|
—t
~

i
defining a constraint set Cy.

The unconstrained minimization over the variables p;4, is performed without constraint

and we have seen that, for a given set of {r;}, the optimum is given by

20,0 A0
,,=\/”_=\|ﬂT i=0,...N 2
o

Ai
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We know furthermore that this is the unique minimum in p;;; since the functions

Tig1 ,,.
Tit1 T Hit1 s
Gi(piv1) = %ﬂi+1 log "—,\o— + A0 - %I"'H-l
i : i

Hi+1
Yisr(Hin1) = piprlog 5= + pd — pin
Hiva

are convex.

We replace the ;41 by their optimal values and turn to a constrained problem in =; :

N- ~
H({n)) = ;:m- (V- g, )’

N-2

> (\/)\?ﬂ'i - \/7l’i+1 ”’?-{»1) ’

1=0

under the same constraints as before.

The next step is to prove that this function is strictly convex in the variables {r;} on the

set Cps. But in fact, H is a function of N variables that can be written a sum of functions

of 2 variables. Each one of these functions is strictly convex in its two variables, so the sum

is strictly convex in all the variables. H*({n;}) is then strictly convex, and the constraint

set Cp is convex. H* then admits a unique local minimum that is at the same time the

global minimum. And then the optimality equations (19) define a single minimum.

Proof of Proposition 4 : For simplicity we consider the case 8 = 0. One can verify that

the proposed solution :

)\; = (N-l—i))\;

with

3 = (ol —A})—M))%;
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k= (Ao"o(a(zv -Af) - M))%’

satisfies the optimality equations (19). Then, noting that the mean 7% of such a birth death

process is equal to
_ A
m= (N - l)m,

we find that :

N—2
H*(M) = D m (A= A) + miga (121 = pigr)
=0
N-2
= D mi (N=1-9A% =X+ mipq (64 1)1y, — pis1)

1=0

= (V= )= X)L~ mt) = (0 = N~ (N = Drwes) + (49 = iy
= - (- N0 - )+ 60— W)

= -1 (33500 -0+ T00- ).

Proof of Proposition 5 : Given the expression obtained above, and since

M+ec )
= 0,0
A_(A” a—(M+ec)

op=

in this specific case, the ratio to be minimized becomes

H*(M) _ (M4 (a=(M+)A°;)
—M—-(N‘l)(( Ma )~ ia ))-

Cancelling the first derivative of this ratio with respect to M yields

1 oM+ec 12 (Ma—(M+c)a\ 1, 0a—(M+c),_y (—Ma-a(a-(M+c))
A TP ’( (Ma)? )‘5("0 Ma )’( (M) )

(48)
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Simplifying on both sides and taking the squares, we find that the optimal M is given by

a
M+c= ?[T [a:c )z (49)
By substitution we find the exponent :
E = (a_c)_poga;c-ﬁﬂ' —(P) ¢
= (N _ 1)((’\0 + ”O)(c) - ’\Oa)
e(a—c) '
In the case where f is nonzero one can simply replace ¢ by ¢ — 8. (m]

Proof of Proposition 6 : One can easily verify that the proposed solution :

Ai o= A

Bi = iy,
with
1
Z
A = (,\OMOM_LC) ,
a

1
_ 0,0 2 \?
k= (’\#M+c) ’

satisfies the optimality equations in Proposition 1. Using the fact that the invariant distri-

bution for an M/M /oo process is Poisson with parameter p = %, and hence mean p we find

that

oo
H*'(M) = ZWf (A? = X)) + T (B4 — pis1)
=0

(>}
Yo (A= A) + mig (1 — p)

=0

— m (A A+ D0
= mi(A '\)+#(P H)-
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Proof of proposition 7 : Since

(M) = 204 oM te 2/ A0pO(M + )
a a ?

won _ (VP- V)

M M

we must minimize

Cancelling the first derivative of this ratio with respect to M yields

M+C= a—po.

By substituting one obtains the exponent :

* 0 0
E=jf TGO _¢° X

M> M o c
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