
Combining Windows

A Performance Evaluation of Design Options

Philip Bitar

Doctoral Dissertation

Filed 92/12/18

Refinements completed 93/02/10

Technical Report UCB//CSD-93-727

Computer Science Division
University of California

Berkeley, California 94720

 1993 Philip Bitar

iii

Abstract

A combining window is an interval of time in a combining node during which incoming requests are gath-
ered in the node in order to combine them into a single outgoing request. Our thesis is that a combining
window is necessary in order to realize the dual forms of concurrency — execution and storage con-
currency — that a combining tree is designed to achieve. Execution concurrency among the nodes at each
level of a combining tree is necessary for the tree to achieve the speed up that it is designed to give.
Without sufficient execution concurrency, the tree will not achieve the desired speed up. Storage con-
currency among the nodes at each level of a combining tree is necessary for the tree to achieve the buffer
storage that is required in order to implement the combining of requests. Without sufficient storage con-
currency, node buffers will overflow. More specifically, the combining window shows how to bound node
buffer size.

iv

v

For Marie

who has put up with so much

and so little

for so long

vi

vii

Acknowledgements

I thank my advisor Edward A. Lee for the opportunity to work in the Ptolemy research group. This pro-
vided a challenging and rewarding research experience in developing system software, as well as providing
a vehicle for running simulations.

I thank my colleagues in the Ptolemy group, and the staff that supports our work, for their invaluable con-
tribution, without which I could not have completed my research.

I thank my former advisor Al Despain (now at the University of Southern California) for the earlier oppor-
tunity to work in the Aquarius research group, where I pursued the topics of synchronization, coherence,
and parallel Prolog execution.

I thank Velvel Kahan for his support during the time that I was without an advisor and needed to find a new
advisor, and for his support since that time.

I thank Michel Dubois for his encouragement during the transition period, as I turned from parallel Prolog
execution back to synchronization and coherence, and during the years since then as I have continued to
develop the theory of synchronization and coherence and publish pieces of it.

I thank IEOR Prof. Ronald Wolff, whose classes in stochastic models and queuing theory provided the
mathematical theory that underlies this dissertation. I count these two classes as the most interesting
classes that I took at Berkeley.

I thank my committee members for their criticism and insight, which stimulated notable improvements in
the dissertation.

I appreciate the support of my mother and (before he died) my father, who provided unflagging moral sup-
port and, when needed, financial support, for my education.

I appreciate the encouragement of many friends and relatives, including my brothers David, Roger, and
Byron, my sister Marilyn, my friends Steve, Jay, and Ted, and friends from church.

I especially thank my wife Marie for her devoted love throughout a surprisingly lengthy graduate educa-
tion. I am grateful to Marie, and to our children Brittany and Owen, who were born during this time. They
endured the family life of a stressed and busy husband and daddy.

And now, I say, let’s get on with real living! Let’s get on with the family life that it’s time to stop dream-
ing about and time to start living — a family life that allows us to look more seriously beyond our own
needs, to the needs of others.

This research was partially funded by Sony Corp., Hitachi Ltd., Hitachi America, and NSF grants MIP-
8657523 and CDA-8722788.

viii

ix

Table of Contents

1. The Thesis ... 1

1.1. The Problem .. 1
1.2. The Thesis ... 1
1.3. Overview ... 2

2. Combining Tree Design .. 3

2.1. Basic Concepts .. 3
2.2. Purpose .. 8
2.3. Parameters ... 10
2.4. Bounding Node Buffer Size .. 16
2.5. Determining the Parameter Values ... 20
2.6. Conclusion .. 22

3. Literature Review ... 23

4. An Analytic Queuing Model ... 25

4.1. Memoryless Distributions ... 25
4.2. Basic Setup ... 26
4.3. Combining Buffer Size ... 28
4.4. Decombining Buffer Size ... 29
4.5. Conclusion .. 31

5. Simulation Experiments .. 33

5.1. Model .. 33
5.2. Strategy ... 37
5.3. Data ... 42
5.4. Conclusion .. 52

6. Conclusion .. 57

7. References ... 59

8. Appendix: Fetch-and-Add ... 61

x

1. The Thesis 1

1. The Thesis

1.1. The Problem
1.2. The Thesis
1.3. Overview

1.1. The Problem

In a combining tree, the combining of requests requires their temporal proximity.
Does the proximity need to be ensured?

The answer is yes. In order to ensure the parallel execution, and hence speed up, that the combining tree is
designed to give, it is necessary to observe a combining window, an interval of time in a combining node
during which incoming requests are gathered in the node in order to combine them into a single outgoing
request.

At first glance, one might rebut, ‘‘But this will slow the computation down.’’ In fact, it will not slow the
computation down if the window has an appropriate size, but to fail to observe a combining window may
slow the computation down. For without a combining window, sufficient combining may not occur at the
wider levels of the tree (closer to the leaves), so the processing demands may be concentrated on the
smaller number of nodes closer to the root. The result is that the request arrival rate at these nodes may
exceed their service rate, so the combining tree may not be able to obtain the speed up that it is designed to
achieve.

The problem of speed up that is solved by sufficient parallel execution has a dual problem: the problem of
node buffer space, which is solved by sufficient parallel storage. That is, if the arrival rate at a node
exceeds its service rate, not only will processing rate be too slow, but the node must also store all of those
requests, so its buffer space may be exceeded. Thus, the combining window allows us to bound node
buffer size.

1.2 The Thesis

Why are combining windows necessary?

A combining window is an interval of time in a combining node during which incoming requests are gath-
ered in the node in order to combine them into a single outgoing request.

g The thesis: A combining window is necessary in order to realize the dual forms of concurrency — exe-
cution and storage concurrency — that a combining tree is designed to achieve.

` Execution concurrency among the nodes at each level of a combining tree is necessary for the tree to
achieve the speed up that it is designed to give. Without sufficient execution concurrency, the tree
will not achieve the desired speed up.

` Storage concurrency among the nodes at each level of a combining tree is necessary for the tree to
achieve the buffer storage that is required in order to implement the combining of requests. Without
sufficient storage concurrency, node buffers will overflow.

2 1. The Thesis

1.3. Overview

What is in store for the reader of this dissertation?

Chapter 2 describes the design of asynchronous MIMD combining trees — their motivation, their struc-
ture, their parameters — and illustrates these principles using fetch-and-add. We develop a queuing per-
spective on combining trees, and on that basis explain exactly why combining windows are necessary. We
also present a bound for mean node buffer size in terms of asymptotic notation. Chapter 3 reviews the
literature on MIMD combining trees that is relevant to combining windows. Chapter 4 presents an analytic
solution to the node buffer problem, based on queuing networks. Chapter 5 describes the simulation
model, along with the simulation experiments and their results. Chapter 6, finally, presents our conclu-
sions, along with avenues for future research.

2. Combining Tree Design 3

2. Combining Tree Design

2.1. Basic Concepts
2.2. Purpose
2.3. Parameters
2.4. Bounding Node Buffer Size
2.5. Determining the Parameter Values
2.6. Conclusion

The concept of combining tree was invented by the Ultracomputer designers and developed by them in the
context of hardware combining (Gottlieb et al. 1983a, 1983b). The concept of software combining tree
was introduced by Yew et al. (1987) for polling-based busy wait, while Goodman et al. (1989) addressed
the issue of generalizing software combining trees to arbitrary combinable operations.

In this chapter, we build on the earlier work by developing the notion of combining tree for asynchronous
MIMD architecture in a novel way and independent of physical implementation, in order to make the
essential aspects clear and to make implementation options clear. The essential aspects may be explained
in terms of synchronization concepts and in terms of queuing constructs. (Note that our first presentation
of these concepts was in Bitar 1990a, and our reference for stochastic modeling and queuing theory is
Wolff 1989).

2.1. Basic Concepts

Where do we start in trying to understand combining trees?

Consider an associative binary operation ‘°’ on i terms. A combining tree may be used to speed up this
kind of computation through parallel execution, reducing the execution time from Θ (i) to Θ (log i), as
illustrated in Figure 2.1a. In addition, suppose that the operation is also commutative — such as addition
— and that each CPU may contribute values at arbitrary times, requesting the addition of a local value x to
y . Figure 2.1c illustrates the combining and decombining, while Figure 2.1b provides an abstract represen-
tation of Figure 2.1c.

Figure 2.1b represents the idea that each node of the tree combines requests flowing downward and decom-
bines replies flowing upward. This defines two conceptually distinct atomic operations at each node: a
combining and possible downward sending operation, and a decombining and upward sending operation.
Specifically, when a node receives a request, if there is another request with which it can be combined in
the combining buffer, the incoming request is combined with the other request, making a combined request
that contains not only the combined value, but also identifies the original requests so that decombining will
be possible. Then the combined request is either retained in the combining buffer for further combining, or
else a corresponding request is sent down to the parent node, and the combined request is transferred to the
decombining buffer to await the reply.

What was the original motivation for the combining tree?

The fetch-and-add paradigm was conceived by the Ultracomputer designers for incrementing a variable I
that is used to derive index values for a FIFO queue implemented as a circular array (Gottlieb et al. 1983a,
1983b). Processes may concurrently obtain queue cells by incrementing I using the combining tree and
then by taking the remainder modulo the queue size. This allows the processes to concurrently insert into

4 2. Combining Tree Design

iii

P4P3P2P1

P1 P2 P3 P4

x4

id4, x4id3, x3id2, x2id1, x1

id34, x3 + x4id12, x1 + x2

y

id12, x1 + x2, (id1,x1), (id2,x2) id34, x3 + x4, (id3,x3), (id4,x4)

Fetch-and-add(xi , y) = {read y then add xi to y }
Processor i request is fetch-and-add(xi , y)

Figure 2.1c. Combining and Decombining.

id3, y + x1 + x2

id4, y + x1 + x2 + x3

id2, y + x1id1, y

id34, x3 + x4, (id3,x3), (id4,x4)

y := x 1 ° x 2 ° x 3 ° x 4

x3x2x1

°°
°
y

id12, x1 + x2, (id1,x1), (id2,x2)

id34, y + x1 + x2id12, y

y + x1 + x2 + x3 + x4

CB = combining buffer, DB = decombining buffer
Up arrow = reply {a value of y }

Down arrow = request {read y then add a value to y }

Figure 2.1b. Implementation Structure.

PPPP

DBCB

y

DBCB

Figure 2.1a. Operation Tree.

CB, DB are not distinguished. Root node is implicit.

DBCB

Each processor has fixed number of contexts.

k

k /µcomb ≤ τ ≤ 1/r
µcomb = max combining rate, τ = mean combining window size

k = fan-in, r = processor steady-state request rate

To parent node

1/τ1/τ

rrrr

Decombine

Combine

P. . .P

Figure 2.1e. Node Performance Parameters.

...P P
n

Atomic operation

λ(n)

µ(n)

Figure 2.1d. Closed Queuing Network Model.

λ(n) = steady-state request rate
µ(n) = operation steady-state service rate

λ(n)

µcomb

µnet

µnet

µdecomb

Figure 2.1. Combining Tree.
P = processor

iii

2. Combining Tree Design 5

the respective cells. This simple paradigm must, however, be accompanied by a busy-wait queue at each
cell, since the cell indices will repeat themselves as I is incremented. At this busy-wait queue, a process
will poll the queue state while it waits for access. Similar handling of a delete index D allows parallel
deletions, but provision must be made for alternating inserts and deletes on each cell.

In addition, suppose it is desired that a delete request first detect whether there is at least one occupied cell
before continuing with the delete algorithm (and thus queuing at some cell to wait for an insert). To main-
tain the minimum number of occupied cells, a third variable min is incremented after each insert and decre-
mented before each delete. Similarly, if it is desired that an insert request first detect whether there is no
more than some maximum number of occupied cells (such as the number of cells in the queue less one), a
fourth variable max is incremented before each insert and decremented after each delete. The details of
insert and delete algorithms are shown in Figure 2.2, which provides an expression of algorithms proposed
by Gottlieb et al. (1983b). The authors also present other methods of handling busy wait at the cells. Algo-
rithms for sleep-wait queuing (P and V) are presented in the appendix.

What are hardware and software combining trees?

Hardware combining tree. The Ultracomputer designers envisioned using full-service synchronization in
a tree implemented completely in hardware, yielding a hardware combining tree (Gottlieb et al. 1983a,
1983b; Gottlieb 1987; Almasi, Gottlieb 1989). Under full-service synchronization an atomic operation is
executed by a server process, or processor, to which the requesting process sends a request for the opera-
tion (Bitar 1990b, 1992). The Ultracomputer designers used the configuration of Figure 2.3a with a multi-
stage interconnect, and at each switch in the network they placed a server processor (SP) having sufficient
capability to implement fetch-and-add combining and decombining. The designers of the IBM RP3 took a
similar strategy in an architecture like that of Figure 2.3c, but with SPs at the memory banks as in Figure
2.3a (Pfister et al. 1985).

Software combining tree. Yew et al. (1987), on the other hand, proposed implementing the atomic opera-
tions using full-service synchronization in Figures 2.3a and 2.3b with no combining in the network — just
the SPs at memory execute atomic operations — and the tree itself is defined by software, yielding a
software combining tree. They proposed this for busy-wait operations that create hotspots at memory, and
hence bottlenecks in the network. An example of such an operation is polling a barrier count or a bit, wait-
ing for it to become zero.

Using a software combining tree to implement general operations, such as fetch-and-add, rather than just
busy-wait operations, would require greater complexity in the SPs in order to enable them to implement the
combining and decombining operations illustrated in Figure 2.1b. In addition, the SPs would need to be
able to communicate with each other, or else the CPUs would need to mediate inter-SP communication,
notified by the SPs when appropriate.

Alternatively, notice that the pair of atomic operations of a software combining node (Figure 2.1b) may be
implemented by the CPUs using self-service synchronization. In this case, the tree is defined by the node
buffers, which are not associated with unique SPs as they would be under full-service synchronization.
Under self-service, then, a CPU executes an atomic operation — combine, insert, or delete — for itself by
locking the appropriate node buffer and executing the operation on the buffer contents.

Also observe that since the architecture of Figure 2.3c already has a CPU at each memory bank, it would
be easy to implement a software combining tree in this architecture using the CPUs as the servers. This
strategy would avoid the cost of hardware combining nodes and the cost of SPs, while retaining the flexi-
bility of a software combining tree. Finally, we point out that the software combining strategy of Goodman
et al. (1989) does not allow the pipeline concurrency that is available in our abstract model (Figure 2.1b),
which is a generalization of the Ultracomputer hardware combining strategy.

6 2. Combining Tree Design

iii

Figure 2.2. Fetch-and-Add Queuing Algorithms.

Figure 2.2a. FIFO Enqueue (Insert) Using Fetch-and-Add.

Enqueue(input: adr_entry; output: success_flag):

global variable: Q_size, max, min, I, Q[Q_size], Next[Q_size];
local, register variable: my_I, cell, ticket;

begin
if max < Q_size then /* queue not full */
begin

if fetch-and-add(max, 1) < Q_size then /* queue still not full */
begin

my_I := fetch-and-add(I , 1);

/* now (in effect) divide my_I by Q_size */
/* then take remainder to get cell, or truncate and multiply by 2 to get ticket */

cell := remainder(my_I /Q_size);
ticket := 2 * floor(my_I /Q_size); /* 2 tickets/cell: 1 enqueue, 1 dequeue */

while Next [cell] ≠ ticket do null; /* busy-wait for turn, could also delay retry */

Q [cell] := adr_entry ; /* write cell */

fetch-and-add(Next [cell], 1);
fetch-and-add(min, 1);

success_f lag := 1;
return; /* return */

end;
else /* queue full */

fetch-and-add(max, -1);
end;
success_f lag := 0; /* queue full */

end;

Notes for Figure 2.2.

1. The queue size, Q_size , is a power of 2 that is less than or equal to the capacity of I and D.

2. The variable ticket is used to implement FIFO busy-wait queuing at the cells. However, I and D must be large
enough so that by the time they wrap around — and thus begin repeating ticket values — the same values of ticket
from the previous iteration of I and D have been used, that is, the respective enqueues and dequeues have been com-
pleted.

ii

Figure 2.2b. Variable Values for Q_size = 4.

my_I: 0 1 2 3 4 5 6 7 8 9 10 11 12 13 14 15 . . .

cell: 0 1 2 3 0 1 2 3 0 1 2 3 0 1 2 3 . . .

ticket: 0 0 0 0 2 2 2 2 4 4 4 4 6 6 6 6 . . .cc
c
c
c

cc
c
c
c

cc
c
c
c

cc
c
c
c

iii

2. Combining Tree Design 7

iii

Figure 2.2 (continued). Fetch-and-Add Queuing Algorithms.

Figure 2.2c. FIFO Dequeue (Delete) Using Fetch-and-Add.

Dequeue(output: adr_entry, success_flag):

global variable: Q_size, max, min, D, Q[Q_size], Next[Q_size];
local, register variable: my_D, cell, ticket;

begin
if min > 0 then /* queue not empty */
begin

if fetch-and-add(min, -1) > 0 then /* queue still not empty */
begin

my_D := fetch-and-add(D , 1);

/* now (in effect) divide my_D by Q_size */
/* then take remainder to get cell, or truncate, multiply by 2, and add 1 to get ticket */

cell := remainder(my_D /Q_size);
ticket := 2 * floor(my_D /Q_size) + 1; /* 2 tickets/cell: 1 enqueue, 1 dequeue */

while Next [cell] ≠ ticket do null; /* busy-wait for turn, could also delay retry */

adr_entry := Q [cell]; /* read cell */

fetch-and-add(Next [cell], 1);
fetch-and-add(max, -1);

success_f lag := 1;
return; /* return */

end;
else /* queue empty */

fetch-and-add(min, 1);
end;
success_f lag := 0; /* queue empty */

end;

Notes for Figure 2.2.

1. The queue size, Q_size , is a power of 2 that is less than or equal to the capacity of I and D.

2. The variable ticket is used to implement FIFO busy-wait queuing at the cells. However, I and D must be large
enough so that by the time they wrap around — and thus begin repeating ticket values — the same values of ticket
from the previous iteration of I and D have been used, that is, the respective enqueues and dequeues have been com-
pleted.

ii

Figure 2.2d. Variable Values for Q_size = 4.

my_D: 0 1 2 3 4 5 6 7 8 9 10 11 12 13 14 15 . . .

cell: 0 1 2 3 0 1 2 3 0 1 2 3 0 1 2 3 . . .

ticket: 1 1 1 1 3 3 3 3 5 5 5 5 7 7 7 7 . . .cc
c
c
c

cc
c
c
c

cc
c
c
c

cc
c
c
c

iii

8 2. Combining Tree Design

Generalized combining tree. We will characterize combining trees in a general manner that applies to
both hardware and software trees. In this perspective, there is a combining tree for each combinable vari-
able y , as in Figure 2.1b, and the m combining trees in the system share the system hardware, both the
combining processors and their memories. Hence, a physical combining node must have sufficient proces-
sor power and memory space to accommodate all of the trees that it must process, which will be m or
fewer trees.

2.2. Purpose

When are combining trees necessary?

Given their complexity, we would like to avoid combining trees if possible, so we ask when they are neces-
sary. A combining tree is necessary when the respective computation is a system bottleneck, or when it
creates a system bottleneck (as a memory hotspot creates in a network), and when the bottleneck can be
relieved only by the use of high-level parallelism, that is, parallelism at the level of the atomic operation.

In order to clarify the concept of bottleneck and how to design a combining tree that will relieve a
bottleneck, let us conceptualize the execution of a program as a closed queuing network, and let us concep-
tualize an atomic operation as a service center. This is illustrated in Figure 2.1d for n processors. Notice
that since the system is closed, the request rate λ(n) is a strictly increasing function of program execution
rate, where rate is the reciprocal of mean inter-request time. In particular, if program execution rate slows
down due to congestion in the network, λ(n) will slow down accordingly, and this dynamic balancing
activity will lead to a processing state of the system that reflects the balanced, or steady, state averaged
over time. In analytic terms, this corresponds to a solution to the balance equations for the queuing system.
Underlying this slow down, a processor can have at most some fixed number of concurrent contexts
(processes loaded in processor registers), and a context can have at most some fixed number of outstanding
requests at a time, since its lookahead depth will be limited by both the processor hardware and the pro-
gram dependences. Throughout our analysis, the parameters we consider will be steady-state parameters.
Unless otherwise qualified, we let λ(n) = λmin(n), the request rate corresponding to the slowest acceptable
program execution rate, since this will be the value that we are normally interested in.

Now it becomes evident that the atomic operation in Figure 2.1d will be a bottleneck if λ(n) exceeds the
operation service rate µ(n) — the maximum possible throughput — for some implementation of the atomic
operation. If the computation cannot be restructured to reduce λ(n) sufficiently, then µ(n) must be sped up
to match λ(n).

The service rate µ(n) may be sped up using a faster hardware technology, by using architectural techniques
other than high-level parallelism, and by using high-level parallelism, i.e., combining. If the non-
combining architectural techniques are exhausted and we still have λ(n) > µ(n), the designer is faced with
the consideration of changing hardware technologies in the relevant system components, and this intro-
duces several problems. First, a fast enough technology may not be available. Second, if it is available, it
may be too costly. Third, if it is not too costly, it may warrant changing the technology of the entire sys-
tem. Yet in this case the acceptable program execution rate will probably increase, thereby increasing λ(n)
and leaving the system still unbalanced with λ(n) > µ(n). If non-combining architectural techniques and
faster technologies are exhausted, it remains to employ high-level parallelism in implementing the atomic
operation, i.e., to employ combining, and this is possible in an asynchronous architecture if the atomic
operation is associative and commutative.

Another perspective on λ(n) is its behavior when the system is scaled up. If the request rate grows arbi-
trarily large as the system is scaled, i.e., λ(n) → ∞ as n → ∞, then the operation service rate must also
grow arbitrarily large, i.e., µ(n) → ∞ as n → ∞, but the only means of achieving this is to use high-level
parallelism, that is, a combining tree.

Just the same, the idea that a program must be designed such that λ(n) → ∞, for some object, must not be

2. Combining Tree Design 9

iii

with Local Memories.

Figure 2.3b. Centralized Shared-Memory

with Caches.

Figure 2.3a. Centralized Shared-Memory

PP

M

SP

ICN

. . .

C

M

SP

...C

M

SP

LMLM

ICN

. . .

P

M

SP

...P

C

P

M . . . C

P

M

ICN

LMLM

ICN

...P P

Figure 2.3c. Distributed Shared-Memory. Figure 2.3d. Message Passing.

Figure 2.3. Major Architectural Configurations.

P = processor, C = cache, M = main memory, LM = local memory

SP = server processor (optional), ICN = interconnect network

iii

10 2. Combining Tree Design

accepted without consideration of alternative algorithms. To illustrate, the original motivation for fetch-
and-add was concurrent access to a FIFO queue containing processes to run, or work to execute. If there is
only a single queue to serve the respective function for the entire system, then certainly λ(n) → ∞ for that
queue. More generally, for λ(n) → ∞, we are talking about a relatively small number of queues compared
to the number of processors. For number of queues q (n), we are saying that n /q (n) → ∞, that is, that the
number of processors per queue is unbounded — assuming that the single-processor access rate does not
increase in n . However, strict FIFO is normally not necessary, so a more reasonable design would be to
have one queue for every l processors, where l yields an acceptable request rate and occupancy level per
queue: q (n) = R n /l H, making n /q (n) ≤ l . When a processor wishes to access a queue, it would ran-
domly select a queue for insertion (or else it would randomly select a queue for deletion).

A more difficult bottleneck to eliminate is a barrier. Specifically, a common parallel execution paradigm
entails dividing a computation into phases, where each phase is defined by a parallel construct such as
doall, and the end of a phase is determined when all processes have decremented a barrier count, causing it
to reach zero (Cheong, Veidenbaum 1990). During a single phase, the parallel execution threads have been
arranged to maintain the integrity of writable objects, whereas execution threads occurring in different
threads would interfere with each other.

2.3. Parameters

How do we design a combining tree?

The designer must address the parameters shown in Figure 2.4. Let us consider these parameters now,
keeping in mind that several performance parameters are illustrated in Figure 2.1e, and that for simplicity
we assume that all combining nodes are configured identically unless otherwise stated. The window
parameters will be discussed last, in the next subsection.

Regarding the number of combining trees m in the system, a physical combining node must have sufficient
processor power and memory space to accommodate all of the trees that it must process, which will be m
or fewer trees. If the number of concurrent trees varies over time, then m is the maximum of these
numbers.

Regarding processor request rate r , we assume that the program structure is independent of the number of
processors n . If a program is rewritten for a larger value of n , then we have a new program for which the
combining trees must be reparameterized. Consequently, the processor request rate r = r min — the request
rate generated by the slowest acceptable program execution rate — is independent of the number of proces-
sors n ; in particular, r does not increase in n . Notice that we could make the weaker assumption that
r ≡ r (n) is bounded; however, we prefer the simpler assumption that r is independent of n . The
significance in the difference between λ and r is that λ may be unbounded above whereas r is bounded,
hence we can design a combining node to handle k processor request streams, each having rate r . The
maximum possible request rate r max for a processor is limited by the processor architecture and the pro-
gram content. Finally, if the processor request rates are not the same for all processors, we let the request
rates refer to the maximum over the processors.

Regarding the maximum number of outstanding requests per processor n max.reqs.out, as mentioned, a proces-
sor can have at most some fixed number of concurrent contexts (processes loaded in processor registers),
and a context can have at most some fixed number of outstanding requests at a time, since its lookahead
depth will be limited by both the processor hardware and the program dependences. The product of the
two limits gives us the maximum number of outstanding requests per processor.

Regarding node combining rate µcomb, we divide the sojourn time of a combine request at a node into the
following three successive intervals.

2. Combining Tree Design 11

iii

Figure 2.4. Combining Tree Parameters.

Note: This is a partial list of the parameters that define a combining tree configuration.

Figure 2.4a. Processor Parameters, Other Rates, Fan-in.

g Processor parameters

` Closed system limits

g n : # processors

g # contexts/processor: # processes (execution threads) that can be concurrently loaded into the pro-
cessor.

g max # outstanding requests/context: Both processor lookahead depth and program dependences
limit this value. Once this limit is exhausted, the processor must stall until receiving a reply.

g n max.reqs.out: Max # outstanding requests/processor — product of the two prior variables.

` Request rates

g r : Individual processor request rate — the reciprocal of mean inter-request time for requests to a
combining tree.

g r max: The value of r that would result if the delay in the network were zero.

g r min: The value of r for the slowest acceptable program execution rate.

g λ: Total processor request rate. λ ≡ λ(n) = nr . λmin = λ(r min). λmax = λ(r max).

g Unless other qualified, we let r = r min since r min is normally relevant to the discussion.

g Other rates

` µcomb: Node combining rate — maximum rate at which incoming requests can be combined.

` µdecomb: Node decombining rate — maximum rate at which decombined requests can be produced.
We assume µdecomb = µcomb.

` µnet: Network request capacity — maximum rate at which the network can service requests from a
combining node.

` µmem: Memory service rate — maximum rate at which memory can service requests.

g k : Fan-in — combining node fan-in, decombining node fan-out.

iii

12 2. Combining Tree Design

iii

Figure 2.4 (continued). Combining Tree Parameters.

Figure 2.4b. Window Parameters, Buffer Sizes, # Combining Trees.

g Window parameters

` τ: Mean combining window size — mean time for which a combining node combines incoming re-
quests into a single outgoing request. τroot is the mean window size for the root node, which feeds
memory.

` τindep: The value of τ as an independent variable. This is relevant if window size is an independent
variable (as opposed to batch size).

` τdep: The value of τ as a dependent variable. This is the mean inter-request time for outgoing requests
of a combining node.

` β: Mean batch size — mean number of requests that are combined into a single outgoing request.

` Notes

g If batch size (rather than window size) is an independent variable, then τindep is undefined and τ =
τdep. On the other hand, if window size (rather than batch size) is an independent variable, then
τdep ≥ τindep, with equality holding iff empty batches do not occur, and τdep ≡ τdep(τindep) is an in-
creasing function of τindep, where ‘‘increasing’’ does not imply strictly increasing.

g τdep is a function of a node’s window discipline and its arrival process, hence in general it will vary
with distance from the processors.

g Unless otherwise stated, we let τ = τdep since τdep is normally relevant to the discussion.

g Buffer sizes

` Buffer entry size

` Combining buffer size (the buffer is associative by destination address)

` Decombining buffer size (the buffer is associative by request i.d.)

g Number of combining trees

` m : # combining trees in the system.

` Note: All of the foregoing parameters are determined per tree.

` r max* : Maximum of the r taken over the m trees.

iii

2. Combining Tree Design 13

g Entry time: Time from the request’s arrival at the node’s hardware queue until the node enters the
request in its combining buffer, combining it with a request already present (if any).

g Window time: Time for which the request is held in the node’s combining buffer in order to allow com-
bining with subsequent arrivals.

g Exit time: Time from the end of the window time until access to the network is obtained for routing the
request to the parent node.

In addition, there are two alternatives for when to move a request from the combining buffer into the
decombining buffer, thereby disallowing further combining of it.

g Pre-exit move: Move the request into the decombining buffer at the beginning of the exit time. This
would be normal for a software combining node since the user will manage the buffers while the system
will manage access to the network.

g Post-exit move: Move the request into the decombining buffer at the end of the exit time. This could be
done in a hardware combining node since the hardware will manage both the buffers and the network
access.

We see, then, that the combining rate µcomb is a node’s processing capacity corresponding to the entry time
— the rate at which a node can enter incoming requests into its combining buffer. The network request
capacity µnet corresponds to the exit time — the rate at which a node can gain access to the network to
place outgoing requests into the network. From Figure 2.1e we see that the node combining rate µcomb

must accommodate the incoming request rate, and the network must allow an exit rate µnet that matches the
node request rate: we must have µcomb ≥ kr , µcomb ≥ k /τ, and µnet ≥ (k +1) / τ. Clearly the combining rate
depends on the node design, so let us look more closely at node design now.

The highest-level decision in the node design is the choice between self-service synchronization (locking)
and full-service synchronization. Under self service, µcomb will normally be affected by the network traffic,
since a processor will normally not have a private connection to the memory bank containing a node’s
buffers. Under full service, the primary decision is the choice between hardware and software combining
nodes. Hardware combining nodes have the advantage of speed, but they have serious inflexibility disad-
vantages: inflexibility in the atomic operations they can perform, in the buffer resources they can use, and
in the fan-in k . In contrast, implementation of a software combining tree in Figure 2.3c or 2.3d, using full
service, gives a combining node the power of a CPU, the flexibility of software, and the buffer capacity of
a memory bank.

Regarding fan-in k , the fan-in k must be chosen so that the combined request rate of k processors, or k
combining nodes, does not exceed the combining rate µcomb: as stated above, we must have k /τ ≤ µcomb.
Hence, combining rate µcomb and fan-in k must be considered together in the design of the tree.

For a software combining tree, another consideration with respect to fan-in is the tradeoff between tree
depth and system balance: greater fan-in k reduces tree depth, (logk n) − 1, but also reduces system bal-
ance with respect to that tree since it concentrates the work on fewer physical nodes, namely,
(n −1)/(k −1) ∼∼ n /(k −1) nodes. (The expressions assume that n is a power of k .) The advantage of smaller
tree depth is that, for a given processor utilization, smaller depth allows a smaller limit on the number of
outstanding requests that a processor can issue before having to wait for a reply. In fact, if the depth is
sufficiently large in relation to the limit on the number of outstanding requests, then a processor will not be
able to maintain its minimum acceptable request rate r because it will be forced to wait for replies. We
will characterize this precisely in Section 2.5. In a software combining tree, then, we can accommodate
smaller tree depth by dispersing different trees over different physical nodes and by maintaining system
balance across trees rather than within trees. For simplicity, in the ensuing analysis we will assume that

14 2. Combining Tree Design

fan-in k is the same for all m trees.

Combining of requests requires their temporal proximity.
Does the proximity need to be ensured?

Combining window. The answer is yes. In order to ensure the parallel execution, and hence speed up,
that the combining tree is designed to give, it is necessary to observe a combining window, an interval of
time in a combining node during which incoming requests are gathered in the node in order to combine
them into a single outgoing request.

At first glance, one might rebut, ‘‘But this will slow the computation down.’’ In fact, it will not slow the
computation down if the window has an appropriate size, but to fail to observe a combining window may
slow the computation down. For without a combining window, sufficient combining may not occur at the
wider levels of the tree (closer to the leaves), so the processing demands may be concentrated on the
smaller number of nodes closer to the root. The result is that the request arrival rate at these nodes may
exceed the node service rate, so the combining tree may not be able to obtain the speed up that it is
designed to achieve. In addition, the node buffers may overflow at the nodes closer to the root.

To see this, suppose that a combining window is not observed — the window time is zero. Then if two
requests at a leaf do not arrive at the same time and if no combining occurs during the exit time, then the
requests will not be combined, so the leaf will become invisible for those requests: the requests will pass
right through to the parent node, subject to a transit delay through the leaf node.

To make the problem more explicit, suppose that the combining nodes are designed to handle a request rate
of kr , i.e., µcomb = kr (Figure 2.1e). Now let us focus on a group of k sibling processors, and let us assume
that during a time interval I of size τ, each processor sends a request to the group’s leaf, but the requests
are mutually staggered, each arriving in a distinct subinterval of size τ/k . Assume that during the interval
I , this also occurs for the other processor sibling groups in the system. Under this scenario, if a combining
window is not observed and if no combining occurs during the exit time, then the leaf nodes become invisi-
ble (except for the transit delay), and a second-level node will receive requests at the rate of k 2/τ = k 2r
instead of at the rate of k /τ = kr = µcomb. This is a worst-case scenario, but it clarifies that if the combining
window is not observed, the second-level nodes may receive requests at a rate that exceeds the rate µcomb

on which the design is based.

Continuing our scenario, due to the excessive request rate at the second-level nodes, more combining will
occur there, and the third-level nodes will receive a reduced request rate, closer to the design rate kr . But
then the third-level nodes will play a role like the leaf nodes, so the fourth-level nodes will receive an
excessive rate. This alternation phenomenon will continue through the tree, and the tree will not be pro-
cessing requests at the needed rate of λ(n) = nr , due to the loss of parallel execution. For example, the
processing that should have occurred at the leaves, but occurs at the second level instead, will proceed at a
rate k times slower than at the leaves.

Time/space duality. The problem of speed up that is solved by sufficient parallel execution has a dual
problem: the problem of node buffer space, which is solved by sufficient parallel storage. That is, if the
arrival rate at a node exceeds its service rate, not only will the processing rate be too slow, but the node
must also store all of those requests, so its buffer space may be exceeded. Thus, the combining window
allows us to bound node buffer size.

What is an appropriate window size?

Window size. A combining window creates a type of batch request, in this case a request that represents a
batch that will be stored in a decombining buffer if its size is greater than one. But if window size (rather

2. Combining Tree Design 15

than batch size) is manipulated as an independent variable, when a window closes, the batch may be empty
due to the random inter-arrival times of requests. Since an empty batch will not generate a request for the
parent node, we wish to adjust the mean window size τindep so that, given that an empty window will be
subsumed by the next window, the resulting request rate is a desired value, such as r , i.e., so that τdep = 1/r .
This implies that the mean independent window size τindep will be smaller than the mean dependent win-
dow size τdep, unless no empty batches occur.

Observe that τdep is the mean inter-request time for a node’s outgoing requests. It will depend not only on a
node’s window discipline, but also on the arrival process to the node. Hence, τdep will in general vary with
a node’s distance from the processors. For a complete tree, a node’s distance from the processors is the
same for all relevant processors, so in this case we may write τdep ≡ τdep, i , where i = 1,..., logk n . For con-
venience, we also let τdep, 0 be the processor mean inter-request time. Since we will normally be interested
in the dependent window size, for convenience we let τ = τdep and τi = τdep, i unless otherwise qualified.
Unsubscripted τ refers to the node being discussed, or to all nodes if all nodes are assumed to have the
same τ.

Now window size, even if manipulated as an independent variable, need not be constant. In general it is a
random variable having mean τ, where constant size is a special case. Window size and batch size may be
related by a time/space duality of means, for mean batch size at distance i from the processors is propor-
tional to the ratio τi / τi −1: βi = (k / τi −1) τi = k τi / τi −1. This gives us the fundamental time/space duality
relation:

(2.1)β ≡ βi = β (τi −1, τi) = k τi / τi −1

Rephrasing what we stated earlier, we can see from Figures 2.1e and 2.4 that we must have τ ≥ k /µcomb for
a node’s outgoing request rate to avoid outpacing the parent node and possibly overflowing its decombin-
ing buffer. In addition, for the root node we need τroot ≥ 1/µmem for the node to avoid outpacing its memory
unit. (For simplicity, we assume that the memory unit is fed solely by the respective root node.) Finally,
we need τ ≤ 1/r to maintain a per-processor throughput of at least r through the tree. The two one-sided
bounds together yield the fundamental combining-window bounds:

(2.2)k / µcomb ≤ τ ≤ 1/r

which, in terms of throughput, are

k g node output rate ≤ µcomb, node output rate ≥ r

where node output rate = 1/τ. Notice, however, that we do not need a throughput greater than r since r
yields an acceptable program execution rate. Consequently, we will assume that τ = 1/r since this rate will
avoid wasting network bandwidth and processor cycles. Just the same, in Chapter 5 we will explore the
implications of reducing τ closer to k /µcomb when k /µcomb < 1/r .

Window discipline. For τ = 1/r , the simplest window discipline is to close a window every k requests,
that is, to define windows by constant batch size. However, this introduces the problem of window-size
variance, since it will take a variable amount of time for k successive requests to arrive at a node. From a
high-level point of view, constant batch size will tend to propagate transient lulls and bursts in processor
request rate through the tree, thereby increasing the queue-length variance for each queue in the network.
Since queue length has a lower bound of zero, if queue length reaches zero at times during steady state,
increasing queue-length variance will increase queue-length mean. From a different perspective, increas-
ing server idle time, for a given request rate and service rate, will increase queue length. The result of
longer queues, in turn, will not only be longer transit times through the network, but also larger decombin-
ing buffer utilizations, as we will see below. In contrast to the discipline of constant batch size, the discip-
line of constant window size will tend to smooth out lulls and bursts, thereby decreasing the queue-length
variances and means, and hence reducing the transit times and decombining buffer utilizations.

In short, we have a tradeoff between batch-size variance — a space variance — and window-size variance

16 2. Combining Tree Design

— a time variance: constant batch size gives us variable window size, while constant window size gives us
variable batch size. Window-size variance, in turn, affects the probability distributions of queue length,
transit time, and decombining buffer utilization.

Observe that the problem of lulls under constant batch size can be compensated if the computation is
defined by phases, such as barriers, and the lulls occur in transition from one phase to another. In this case,
a processor can send an end-of-window request when arriving at the end of a phase. When a node receives
such a request, it will close its window and also send an end-of-window request to its parent. More gen-
erally, in a group of k sibling processors, when a processor arrives at the end of a phase, it could decide
whether to send an end-of-window request based on its arrival order among the k . The decision algorithm
would attempt to reduce the number of such messages while maintaining the flow rate through the tree.

2.4. Bounding Node Buffer Size

How do we find an upper bound on node buffer size?

Using asymptotic notation, let us determine an upper bound on mean buffer size in terms of parameters n ,
m , k , r , and d root, which is the distance of a node in question from the root. This is a much simpler task
than obtaining the probability distribution, which we address in Chapter 4. We will consider buffer entry
size, combining buffer size, and decombining buffer size. Regarding asymptotic notation, keep in mind
that O (.) is an asymptotic upper bound, Ω (.) is an asymptotic lower bound, and Θ (.) is the conjunction of
the two one-sided bounds.

Buffer entry size. Let the buffer cell size accommodate c requests, c ≥ k , and let us speak of cell size as
c , ignoring a constant overhead component per cell. A batch entry will comprise some number of cells.
Now if batch size is constant, cell size will be c = k , and an entry will comprise one cell. However, if
batch size is not constant, we may want c > k , and more than c requests may arrive during a window. The
overflow may be handled either by extending the entry — increasing the batch-size variance — or by
extending the window — increasing the window-size variance. Under the first strategy, of extending the
entry, at the arrival of a request ic + 1 within a window (i = 1,2,...), the entry will be extended, say by link-
ing or rehashing. Under the second strategy, of extending the window, at the arrival of request c + 1 within
a window, the current entry (containing c requests) will be completed and a new batch will be started, but
the window of the new batch will be lengthened by the remaining, unused portion of the prior window.
The first of the two strategies, which increases batch-size rather than window-size variance, will have
greater effect in smoothing out bursts, and thus in reducing transit-time variance, but at the cost of the com-
plexity of extending an entry. We express mean entry size in terms of k as Θ (k).

Combining buffer size. The combining buffer for a tree node needs only one entry, hence its mean size is
Θ (k). However, the combining buffer for a physical combining node must, in general, handle multiple
trees — m or fewer trees — giving a bound of O (mk) on its mean size.

Decombining buffer size. We need to bound decombining buffer size in terms of the node’s level in the
tree, since the level will determine the bound, as follows.

g Absolute bound: The distance of a node from the processors determines the absolute upper bound on
decombining buffer size.

g Probabilistic bound: The distance of a node from the root determines an upper-bound probability distri-
bution for buffer size, and hence an upper bound on mean buffer size.

Now let us see why this is true. As stated earlier, let d root be the distance of a node in question from the
root, d root = 0,..., R logk n H− 1, and let d processor = R logk n H− d root, which is the distance of the node from
the processors. Let us consider the absolute bound, followed by the probabilistic bound.

Absolute bound. The absolute upper bound on decombining buffer size of a node may be determined from

2. Combining Tree Design 17

d processor. Specifically, as mentioned earlier, a processor can have at most some fixed number of concurrent
contexts, and a context can have at most some fixed number of outstanding requests at a time (Figure 2.4a).
Thus, the absolute upper bound for distance d processor is the maximum number of requests per node
n max.requests/node.

(2.3)n max.requests/node = (n max.reqs.out requests/processor) (k dprocessor processors/node)

The number of requests is then multiplied by the maximum number of bits per request, but we will ignore
this conversion.

Now if batch size were constant, ensuring k -fold combining, then setting d processor = 1 in (2.3) would give
us an absolute bound for all nodes. However, under non-constant batch size, k -fold combining for each
window closure will not be guaranteed. Consequently, we must determine a probabilistic bound. In fact,
even if d processor = 1, if (2.3) is large, buffer size based on (2.3) may not be feasible, thus requiring a proba-
bilistic bound anyway. Here we determine a bound on the mean, while in Chapter 4 we address the proba-
bility distribution of buffer size.

Probabilistic/mean bound. To obtain an upper bound, we will assume that n max.reqs.out = ∞; that is, we will
assume that we have an open system, so that processor request rate never slows down because a processor
must wait for a reply. More generally, this means that n max.reqs.out is sufficiently large that the number of
outstanding requests for a processor is never limited by n max.reqs.out.

We begin by observing that after a request leaves a combining node for the parent node, the mean round-
trip transit time to memory, via the root, is the sum of the mean transit times at each of the intervening lev-
els:

i =1
Σ
d root

tni + t mem

where tni is the mean round-trip transit time from (exclusive) level i to (inclusive) level i −1 and where
t mem is the mean round-trip transit time from the root to memory. The term t mem is independent of n
assuming that processor requests are uniformly distributed across the memory banks, except for those han-
dled by combining trees, and that the number of memory banks is proportional to n . The term tni is, in
turn, the sum of the mean sojourn times at the links on the round-trip pathway from (exclusive) level i to
(inclusive) level i −1:

tni =
j =1
Σ
lni

tni j

where lni is the number of links on the round-trip pathway from (exclusive) level i to (inclusive) level i −1
and tni j is the mean sojourn time at link (i , j), i = 1,..., d root, j = 1,..., lni . (This assumes that the lni are con-
stants, but if they were random variables, we could obtain a suitable result with appropriate assumptions.)

This gives us the following expression for mean round-trip time from level d root:

i =1
Σ
d root

j =1
Σ
lni

tni j + t mem = Θ (
i =1
Σ
d root

j =1
Σ
lni

tni j)

To replace the sums by a product, let ln =
i

max(lni) and tn =
i , j

max(tni j), which yields asymptotic bound on

mean round-trip time

O (tn ln d root)

Now once a request has been sent, the mean number of additional requests that will be sent from the node
until the reply for the original request returns is just the mean round-trip transit time divided by τ = 1/r .
Once a reply arrives and the original request is decombined, the request will be deleted from the decombin-
ing buffer. For if reliable delivery of decombined requests may be a problem, we assume that it will be
handled by the network, which will handle each resulting component request individually.

18 2. Combining Tree Design

Since mean batch size is k for τ = 1/r , this yields the following results for decombining buffer size, keep-
ing in mind that d root ≤ R logk n H− 1, and r max* is the maximum request rate r over all m trees.

g Mean decombining buffer size

` For a tree node for one combinable variable:

(2.4)O (k r tn ln d root) = O (tn ln logk n)

` For a physical combining node:

(2.5)O (mk r max* tn ln d root) = O (tn ln logk n)

g Absolute decombining buffer size, from (2.3):

(2.6)Θ (n /k d root) = O (n)

Notice that in deriving (2.4) and (2.5), we assumed that singleton batches are stored in the decombining
buffer. We will see below what the correction for eliminating them is and that this correction does not
invalidate (2.4) and (2.5).

Now observe that a combine request that represents a batch of size one will not be stored in the decombin-
ing buffer, hence let β* ≡ βi

* = β* (τi −1, τi) be the mean size of batches in the decombining buffer of a node
at distance i from the processors. To see the relationship between β and β* , let B ≡ Bi = B (τi −1, τi) have
the distribution of the size of non-empty batches, and let B * ≡ Bi

* = B * (τi −1, τi) have the distribution of the
size of batches in the decombining buffer. Then if P { B > 1 } > 0, B * ∼ (B | B > 1); otherwise B * ≡ 0.
We will assume that P { B > 1 } > 0, since this is the interesting case. Since E (B) =
E (B | B > 1) P { B > 1 } + P { B = 1 }, we can obtain an expression for β* in terms of β:

(2.7)β* =
P { B > 1 }

β − P { B = 1 }hhhhhhhhhhhhhh = Θ (β)

Also observe that the arrival rate to a node is equal to the arrival rate to the node’s decombining buffer in
terms of combined requests, plus the departure rate from the node of uncombined requests (singleton
batches). More simply, the arrival rate to a node is equal to the departure rate of requests in terms of the
requests in the respective batches. To illustrate, we express the latter for distance i from the processors in
a complete tree — a rearrangement of (2.1):

(2.8)k / τi −1 = βi / τi

Since k = β (1/r , 1/r), if we let k * = β* (1/r , 1/r) and K = B (1/r , 1/r), we have (2.7) for the case which we
are considering of τi ≡ 1/r :

(2.9)k * =
P { K > 1 }

k − P { K = 1 }hhhhhhhhhhhhhh = Θ (k)

If we let r * be the rate of batches entering the decombining buffer for τ = 1/r , then r * = P { K > 1 } r ,
yielding

(2.10)k * r * = (k − P { K = 1 }) r = Θ (kr)

Thus, to exclude singleton batches from (2.4) and (2.5), we would replace kr by k * r * , but due to (2.10),
(2.4) and (2.5) are valid as stated.

Let us examine more closely the derivation of the term kr in (2.4) by defining and relating the underlying
random variables. Let Rd root

be the round-trip transit time from a node at level d root to memory, let N be the
number of outgoing requests from the node that occur during such a round trip (before the trip is done), let

Ti be the inter-request time preceding outgoing request i , i = 1,..., N +1, and let Sj =
i =1
Σ

j
Ti . Then for any

execution ω, and for any respective round trip in that execution, we have

2. Combining Tree Design 19

SN (ω) < Rd root
(ω), SN +1(ω) ≥ Rd root

(ω)

Since we are assuming an open system, the Ti are mutually independent, and if we assume a complete tree,
then the Ti are identically distributed since the distance from the processors determines their distribution.
In addition, N is not a stopping time (Wolff 1989) for the Ti because until the round trip is finished, request
N cannot be identified as the last request that will occur during the round trip. However, N +1 is a stopping
time for the Ti , and since the Ti are i.i.d., we can use Wald’s Equation (Wolff 1989) to obtain

E (Rd root
) ≤ E (SN +1) = E (N +1) τdep

noting that E (Ti) ≡ τdep. Since SN = SN +1 − TN +1, we have

E (Rd root
) > E (SN) = E (N +1) τdep − E (TN +1) ∼∼ E (N) τdep

Hence, we can conclude that

E (N) = Θ (E (Rd root
) / τdep)

Now the number of requests that enter the decombining buffer during the round trip may be defined as fol-
lows:

DN =
i =1
Σ
N

Bi

which includes singleton batches, or

DN
* =

i =1
Σ
N

Bi Ii

which excludes singleton batches, where indicator I ≡ Ii = 1 if and only if Bi > 1. N is independent of the
batch sizes, since N is determined by the Ti and Rd root

independent of the batch sizes, giving us

(2.11)E (DN) = E (N) E (B) = Θ (E (Rd root
) β / τdep)

(2.12)E (DN
*) = E (N) E (BI) = Θ (E (Rd root

) β* P { B > 1 } / τdep)

If we let τdep, i ≡ τdep = 1/r , and E (Rd root
) = O (tn ln d root), then (2.11) gives us (2.4), and (2.12) gives us

(2.4) with k * r * replacing kr in (2.4).

In conclusion, the derivation of (2.11) and (2.12) clarified that we converted the mean of one sum that has a
random limit into a product of means using Wald’s Equation, and that we converted the mean of another
sum that has a random limit into the product of means using independence of the sum limit from the sum
terms. These manipulations underlie the derivation of (2.4).

Scalability. Observe that the bound on mean size increases in d root since it increases in the round-trip tran-
sit time to memory, while the bound on absolute size decreases in d root since it increases in distance from
the processors. Thus, for a node at a fixed distance d processor from the processors, as n → ∞, the bound on
mean size goes to infinity, while the bound on absolute size remains constant.

On the other hand, for a node at a fixed distance d root from the root, as n → ∞, the bound on absolute size
goes to infinity, while the bound on mean size depends on the round-trip transit time to memory, which is
O (tn ln d root). If tn and ln are independent of n , then mean buffer size for the node is O (d root), indepen-
dent of n , and the system becomes scalable. That is, if the system is scaled up by adding nodes at the
leaves, leaving all prior nodes in place, the buffers for the prior nodes may remain unchanged. The buffers
of the new leaves, however, must be sufficiently larger than the buffers of the prior leaves, in order to
accommodate the longer round trip to memory. Notice that the absolute bound is irrelevant to scaling
because when a new level is added to the tree, the absolute bound for all prior nodes increases by a factor
of k .

Multistage interconnect. Let us illustrate the bound on mean size using a multistage interconnect having

20 2. Combining Tree Design

k × k switches, in which case the number of links between child and parent is independent of level in the
tree, i.e., lni ≡ ln . We have assumed that the number of memories is proportional to n , that the individual
processor request rate to the memory system is independent of n , and that processor requests are uniformly
distributed across the memory banks, except for those handled by combining trees. This makes the link
(mean) sojourn time tni j ≡ tn ≡ t independent of n , giving us the following bounds from (2.5).

g For a software combining tree: ln = Θ (logk n), yielding mean size

(2.13)O ((logk n) d root) = O (log2 n)

g For a hardware combining tree: ln = 1, yielding mean size

(2.14)O (d root) = O (log n)

Eliminating the decombining buffer. In a system with caches, if coherence is maintained for a block by
linking the cached copies into a list, as in the IEEE Scalable Coherent Interface (James et al. 1990), it is
possible to eliminate the decombining buffer of a physical combining node by distributing the decombining
information to the respective cache nodes. However, for software combining nodes, the distribution of
information serves no useful purpose since the combining trees should be distributed across the processor
nodes in a balanced manner. For hardware combining nodes, one would expect the distribution strategy to
incur a substantial performance cost due to the extra traffic and due to the decombining latency, thereby
possibly eliminating the speed advantage of hardware combining trees over software combining trees.

2.5. Determining the Parameter Values

How are the parameter values determined and implemented?

Software combining node. A software combining node is under software control, so processor request
rate can easily be evaluated during the computation, and window size may be incrementally modified,
based on an initial estimate. These evaluations could be made for each combining node independently,
hence τindep could differ with level in the tree to obtain equal τdep among the tree levels. However, this is
unnecessary. All that is necessary is to select τindep so that τdep at all levels satisfies the fundamental win-
dow bounds in (2.2). With regard to implementing a time-based window discipline, a processor can set a
timer trap, and if needed, it can keep additional timing information in a data structure that it consults when
a timer trap goes off.

Fan-in k and tree depth may be tuned over multiple program executions. More specifically, let us consider
the sequence of requests from a processor to a combining tree. For a given request i , let us consider the
subsequence that starts with i and that continues to the next request (if any) whose issuance will cause the
processor to stall if a reply to i has not yet been received. Let us call the latter request the stall point for i .
Let random variable L stall, i be the length of this sequence if the stall point for i exists; otherwise let L stall, i

be ∞. Let random variable T stall, i be the sum of the inter-request times contained in this sequence if the
stall point for i exists; otherwise let T stall, i be ∞. And let random variable T trip, i be the round trip time for
i . Then a processor will never stall in order to wait for a reply from the combining tree if and only if for all
executions ω and for all requests i in the execution

(2.15)T trip, i (ω) ≤ T stall, i (ω)

that is, if and only if the reply for every request i will be received by the time that the stall point for i is
reached. Keep in mind that in an asynchronous execution, the stall point for a request i may not be deter-
mined until after i has been issued.

Tree depth matters, then, because T trip, i is an increasing function of tree depth. Programs having small
values of T stall, i must have correspondingly small values of T trip, i if the processors are not to stall waiting
for replies, which may reduce their request rate below r min. Observe that the model presented in Figure 2.4

2. Combining Tree Design 21

oversimplifies by assuming that for all requests i , L stall, i is a constant, viz., n max.reqs.out.

In addition, it may be helpful to notice that the problem of avoiding stalling may roughly be characterized
in terms of filling a pipeline. Specifically, in a certain sense of the word, a combining tree may be thought
of as creating a pipeline for each request i , where the length of the pipeline is the round-trip time of the
request T trip, i . In order to avoid stalling, then, a processor must fill the pipeline with inter-request times
that fall between the issuing of request i and the arrival at the stall point for request i . If the processor can
fill this pipeline, then the reply for request i will emerge from the pipeline by the time that the stall point
has been reached.

Finally, notice that under lock-synchronized nodes, each node is identified by its pair of buffers, and a pro-
cessor must be designated as a supervisor for each node, in order to implement the combining window for
the node. In order to achieve this, for each tree there would be a mapping from the set of memory banks to
the set of processors, and each tree node would be assigned to the processor corresponding the node’s
memory bank.

Hardware combining node. For a hardware combining node, the situation is much more difficult due to
the cost and the inflexibility of hardware implementation. It is necessary to design for an acceptable
number of combining trees m , and then estimate the combining buffer size, which is Θ (mk), and the
decombining buffer size having bound on its mean O (mk r max* tn ln d root). Hence, the parameters must be
determined by modeling and simulation.

In a hardware combining node, the exit time provides an implicit combining window having mean length,
say, τexit. But this length is independent of the processor request rate r to a particular combining tree; con-
sequently, only by coincidence would τexit be an appropriate size for a given combining tree. For example,
assuming that τexit < k /µcomb, as we would expect, if r ≥ 1/τexit, then insufficient combining will occur: the
parent node will not be able to accommodate the resulting request rate and possibly the resulting decombin-
ing buffer utilization. Consequently, aside from special cases, we would expect it to be necessary for
explicit combining windows to be implemented in a hardware combining node.

How may an explicit combining window be implemented in a hardware combining node? Constant batch
size is the most attractive discipline from the point of view of hardware simplicity. However, it will tend to
propagate lulls and bursts in the processor request streams and thereby increase network queue lengths, as
discussed earlier. Thus, it may be desirable to use a time-based window discipline. A time-based window
may be implemented by augmenting a combining buffer entry with a counter that maintains the age of the
respective entry, decrementing the value from τindep to zero. Since τindep will, in general, differ from tree to
tree, each request should carry a value of τindep with it, where τindep has been selected so that τdep at all lev-
els will satisfy the fundamental bounds in (2.2). A node would then send a request to a parent when the
combining buffer of the node has an entry that is old enough — an entry with a counter equal to zero. If a
hardware combining buffer entry has a fixed size, then a time-based window must be accompanied by a
method for dealing with entry overflow — either extending the entry or extending the window, as dis-
cussed earlier. Also note that in a time-based scheme a processor must dynamically estimate r for each
tree, as in a software combining scheme, and store the information in an associative software table.

Finally, in a hardware combining network, tree depth cannot be altered, and one depth applies to all com-
bining trees. Hence, the task of satisfying (2.15) depends on minimizing T trip, i through efficient network
nodes and network management, and it depends on maximizing T stall, i through a sufficient number of pro-
cessor contexts, a sufficient processor lookahead depth, and a sufficient program lookahead depth.

22 2. Combining Tree Design

2.6. Conclusion

What have we accomplished?

We have developed the notion of combining tree for asynchronous MIMD architecture in a novel way and
independent of physical implementation, in order to make the essential aspects clear and to make imple-
mentation options clear. We have represented accesses to atomic operation in terms of a closed steady-
state queuing model (Figure 2.1d). This has enabled us to identify when a combining tree is necessary, and
how to parameterize the tree nodes (Figure 2.1e).

In particular, the model led us to the concept of combining window, an interval of time in a combining node
during which incoming requests are gathered in the node in order to combine them into a single outgoing
request. We then showed that the combining window is necessary in order to realize the dual forms of con-
currency — execution and storage concurrency — that a combining tree is designed to achieve:

g Execution concurrency among the nodes at each level of a combining tree is necessary for the tree to
achieve the speed up that it is designed to give. Without sufficient execution concurrency, the tree will
not achieve the desired speed up.

g Storage concurrency among the nodes at each level of a combining tree is necessary for the tree to
achieve the buffer storage that is required in order to implement the combining of requests. Without
sufficient storage concurrency, node buffers will overflow.

More specifically, the combining window allows us to bound decombining buffer size of a combining node
as a function of the distance of the node from the root. For a multistage interconnect, the bound for a
software combining node is O ((logk n) d root) = O (log2 n), while the bound for a hardware combining
node is O (d root) = O (log n), where d root is the distance of the node from the root.

3. Literature Review 23

3. Literature Review

What concepts relevant to windows have appeared in the literature?

In his dissertation, Ranade (1989) developed a synchronous combining scheme that is a realization of a
concurrent-read-concurrent-write parallel random access machine (CRCW PRAM). The resulting node
buffer size is O (log n), as shown in Chapter 5 of his dissertation. In Chapter 5, Ranade also briefly gen-
eralized his synchronous scheme to an asynchronous system by introducing a time parameter τ, such that if
a queue in level 0 of the interconnect is empty for time τ, then the respective node will send an end-of-
stream message to the next level. The end-of-stream messages propagate through the interconnect.

The effect of the end-of-stream message would be the same as that of a combining window in our scheme
if the message were sent whether or not queues were empty. Even so, without the queuing model, it is
impossible to determine what the value of τ should be, for it is impossible to quantify its role with respect
to overall system performance. Ranade suggests that τ might be as small as the network message system
can handle. Our model clarifies that the appropriate mean window size for a combinable variable depends
not only on the network processing rate, but also on the decombining buffer capacity — which could be
overrun by too small a τ — and on the processor request rate that results from an acceptable program exe-
cution rate. Thus, our model clarifies that each combinable variable has its own τindep, so ideally each
request will carry the τindep of its variable and be managed accordingly.

There has been little published on the topic of combining tree performance evaluation since the original
study by Pfister and Norton (1985), in which they identified the problem of tree saturation in a multistage
interconnect. In a non-combining network, tree saturation occurs when the buffers of nodes along a path-
way to a memory hotspot overflow, forcing the nodes to stop accepting requests. This problem, along with
the additional problem of decombining buffer overflow, can occur in a combining network under
insufficient combining. Their model is a discrete-time open-system model in which processor request rate
to a hardware combining network is manipulated, along with fraction of the requests that are combine
requests. The combine requests all go to the same memory module, whereas non-combine requests are
uniformly distributed across the memory modules. The network has fan-in two.

Several papers (Thomas 1986; Dias, Kumar 1989; Ho, Eager 1989) proposed discarding, rather than com-
bining, requests in order to reduce the request rate to a hotspot. While this can alleviate tree saturation, it
will slow down program execution since the request rate λ(n) to the atomic operation will be reduced (Fig-
ure 2.1d). If the negative feedback strategy of Scott and Sohi (1990) were used instead of combining, the
effect would be similar.

The first authors that we are aware of to identify and explore the issue of degree of combining are Lee and
his colleagues (Lee et al. 1986; Lee 1989), who pointed out that if the degree of combining is not large
enough, then the request rate to parent nodes will exceed their service rate, as we explained in Section 2.3.
However, their model does not provide the general perspective that we have provided in terms of a queuing
network; hence, they did not identify the need for combining windows. Their model is similar to that of
Pfister and Norton, using what we call implicit combining windows. In this context, they explained that if
buffer entry size is fixed — to keep the hardware simple and fast — entry size must be larger than fan-in k
in order to compensate for the fact that k -fold combining will not occur for some batches due to lack of
temporal proximity of the requests. They also pointed out that decombining buffer size at the leaves is
unbounded as n → ∞. Kang et al. (1991) and Merchant (1992) each presented a more detailed analytic
model of the same type of system. Merchant allowed an unlimited batch size and showed that for a finite
queue size in a node, the loss rate for non-combine requests is reduced by giving combine requests lower
priority in the queue.

In contrast to the foregoing approach, our model contains the parameter n max.reqs.out, which creates a closed
system when set to a finite value. Furthermore, we have gone beyond the foregoing approach to identify

24 3. Literature Review

the duality of execution and storage concurrency among the nodes at each level of a combining tree, and to
develop the concept of combining window, which solves the dual concurrency problems. In particular, the
combining window solves the problem of node buffer overflow by ensuring sufficient combining, and
thereby showing how to bound decombining buffer size as a function of distance d root of a node from the
root. In Chapter 2 we presented a bound on the mean in terms of asymptotic notation. In Chapter 4 we
will find a bounding probability distribution for buffer size using an analytic continuous-time open-system
queuing model. In Chapter 5 we will present the results of simulation experiments of a closed system in
order to obtain the distribution of node buffer size under a more realistic model, and in order to determine
the effects on execution speed and node buffer size of different window disciplines.

Finally, in a recent Ultracomputer paper, Dickey and Percus (1992) explored the degree of combining by
using an analytic discrete-time model that represents a single combining node having fan-in two. Their
model is a low-level model, dealing with details of hardware implementation of a combining node, and in
this context, they explored two limits on batch size: two and infinity. As with Lee and his associates, they
concluded that a limit of two allows insufficient combining for fan-in two.

In contrast to the Dickey and Percus model, our model is a high-level model of an entire combining net-
work, not just a single node. Our model is designed to accommodate arbitrary specialized models and to
allow the exploration of high-level issues related to combining tree design, as discussed above and in
Chapter 2.

4. An Analytic Queuing Model 25

4. An Analytic Queuing Model

4.1. Memoryless Distributions
4.2. Basic Setup
4.3. Combining Buffer Size
4.4. Decombining Buffer Size
4.5. Conclusion

How can we model the probability distribution of node buffer size?

As discussed in Chapter 2, we need a probability distribution for the size of the combining buffer, and we
need a distribution for the size of the decombining buffer for a particular distance d root of a node from the
root. In this chapter, we will present a simple model, from which more realistic models may be obtained
by relaxing constraints of choice, which we discuss at the end of this chapter. The simple model we
present here will illustrate the analytic solution strategy without the distraction of complex formula mani-
pulation, since we may appeal to well known properties and relations (Wolff 1989). (Note that the model
presented in this chapter was originally formulated in December 1990, in Bitar 1990b, under the assump-
tion that singleton batches are stored in the decombining buffer.)

More specifically, our model will make each standard service center an M/M/1 queue, while combining
and decombining service centers will be handled in a manner that is compatible with this. That is, each
service center will have i.i.d. exponential (Markovian) inter-arrival times and i.i.d. exponential service
times. The respective arrival process is a Poisson process. If the service rate at an M/M/1 queue exceeds
the arrival rate (so that the queue length will be stable, not becoming arbitrarily large), the departure pro-
cess from the queue is a Poisson process having the same rate as the arrival process. Thus, suppose that the
arrival sources for an assembly line of standard independent exponential queues are independent Poisson
processes, then the arrival processes for all queues will be Poisson processes, making all queues M/M/1.

4.1. Memoryless Distributions

The M/M/1 arrangement makes many derivative distributions simple and makes many relevant random
variables independent. The underlying reason is that the exponential distribution is memoryless: given that
some time has passed in an interval having exponentially distributed length, the distribution of the time
remaining in the interval is the same as that of the original interval. The discrete-time version of this is a
geometric distribution, which represents the tossing of a biased coin until a head is obtained: given that
some number of trials have passed in waiting for the first head, the distribution of the number of trials
remaining until the first head is the same as at the first trial. In terms of random variables, X has a
memoryless distribution if

(4.1)(X | X > t) ∼ X + t

That is, X has a memoryless distribution if, for all t ≥ 0, conditioning X on its being greater than t yields
the same distribution as that obtained by adding t to X . If we express (4.1) in terms of the tail distribution
function P { X > x }, x ≥ 0, and if we solve (via several clever but simple steps), we obtain an exponential
function for the tail.

(4.2)P { X > x } = [P { X > 1 }]x = q x , for x ≥ 0, 0 < q < 1

If X is discrete, (4.2) implies that X ∼ geometric /inclusive (p), where p = 1 − q , and X is the count of the
number of tosses (inclusive) until the first head; E (X) = 1/p . On the other hand, if X is continuous, it is
convenient to express q as a function of e , letting q = e −λ, λ > 0, making X ∼ exponential (λ), E (X) = 1/λ.
In addition, if X is geometric/inclusive(p), the count of the number of tails until the first head is

26 4. An Analytic Queuing Model

X − 1 ∼ geometric (p). While (4.1) is the memoryless property for the geometric/inclusive distribution,
(4.3) is the memoryless property for the geometric distribution.

(4.3)(X | X ≥ t) ∼ X + t

This is evident by letting t = 0 in (4.1) and (4.3).

As further perspective on the relation between the exponential and geometric distributions, we find that the
exponential is the limit of the geometric concept as the number of trials per time unit goes to infinity. That
is, if Xn ∼ geometric/inclusive(p /n), then Xn /n is the time until the first success for geometric trials lasting
1/n time units. Letting n → ∞, we find Xn /n → exponential(p), as we would expect, and λ = p is the rate
parameter.

Geometric (i.i.d. Bernoulli) trials are typically used to model the occurrence of events in a computer sys-
tem at the level of clock ticks. We see that the continuous-time version of this discrete model is that of
i.i.d. exponential inter-event times. For an arrival process, this continuous process is a Poisson process.
We will use the continuous-time approach here since queuing theory has been expressed in terms of
continuous-time models. In this context, when a request arrives at a queue, if there is a request in service
with exponentially distributed service time, the amount of time until the request is done has the same distri-
bution as when the service started. Similarly, when the request in service is done, if inter-arrival times are
exponentially distributed, as in a Poisson process, the amount of time until the next request arrives has the
same distribution as at the moment of the last arrival.

The negative -binomial (i , p) distribution represents the sum of i i.i.d. geometric(p) random variables.
This sum is the count of the number of tails that occurs in order to get a specified number, i , of heads in the
tossing of a biased coin. Analogously with the geometric distribution, negative -binomial /inclusive (i , p)
represents the sum of i i.i.d. geometric/inclusive(p) random variables.

The M/M/1 model must be modified to handle combining and decombining, for combining creates a batch
request, while decombining splits a batch into its component requests. In modeling combining, we must
separate the delay due to the work of combining from the delay due to the combining window. Thus, we
will represent the delay due to the work of combining as occurring in the service time of the combining
server, while we will represent the actual combining as occurring in the combining window. Further, in
defining the service disciplines for the combining window and the decombining server, we must take care
to ensure that the departures are Poisson, although this turns out to require no special arrangements. We
also treat the service of a decombine request as a single job, from the point of view of the sojourn time of a
subsequent arrival, in order to avoid the non-trivial complexity of modeling partial completion of a batch.
This increases our upper bound somewhat.

4.2. Basic Setup

The system is open (in contrast to Figure 2.1d), and has two networks, one carrying requests to memory
and one carrying requests from memory, as shown in Figure 4.1a. Processor requests to the combining
trees are independent Poisson processes having rate r to each tree. Normal processor requests to memory
(uniformly distributed across the memory banks) are independent Poisson processes at rate s . Each normal
request is acknowledged by memory, making the return rate identical. We assume that requests all have
the same size with regard to processing at a link node, although accommodating random size is not difficult
as long as the size is distributed geometrically. We will see how to handle geometrically distributed sizes
in dealing with decombine requests.

Each tree has fan-in k , and each physical combining node handles requests for all m combining trees, but
not normal memory requests. More specifically, each physical combining node has two processors, a com-
bining server for requests to memory and a decombining server for requests from memory; the processors
access the decombining buffer with no conflict. We assume two processors per node, no buffer conflicts,

4. An Analytic Queuing Model 27

iii

Figure 4.1. Components of Round Trip to Memory from Distance droot.

The round-trip transit time to memory is used to determine the distribution of the decombining buffer size.

Figure 4.1a. Network Configuration.
An arc label refers to the request rate on that arc. All request streams are Poisson processes.

Server

...

lmax, n Links

mr + s

droot Tree Levels

Server

mr

mr

k ..
.

Server
Combining

Windows

...

lmax, n Links

mr + s

droot Tree Levels

...

WindowsServer

CombiningCombining

r

r

.

.

.

kr

kr

mr

mr

k ..
.

m

Decombining

...

...mr ...

Decombining

k

m

r

r

mr

Root
Memory

mr + s

mr

mr

kr

kr

ii

Figure 4.1b. Round Trip Components.

Decombining buffer size is based on the sum of five component sums, each representing a service center. Each tree
contributes five respective sums to the total sum. The last column of this table lists the sum limits for these component
sums for one tree. NB(c , p) = negative binomial(c , p).
iii

Service Arrival Service Ratio Sojourn Count Sum
Center Rate Rate Rate Limit

λ µ ρ = λ/µ µ ρd c NB(c , p)

ρd = 1 − ρ δ = µ ρd = µ − λ p = δ /(δ + r *)
hhhhhhhhhhhh hhhhhh hhhhhhhhhhhh hhhhhhhhhhhh hhhhhhhhhhhhhhh hhhhhhhhhh hhhhhhhhhhhh

Combining mkr m µcomb kr /µcomb m µcomb ρdcomb d root N comb

Window kr w = kr /(k − 1) n/a w (let δ = w) d root N window

Decombining mr m µcomb /k kr /µcomb (m µcomb /k) ρddecomb 1 + d root N decomb

Link mr + s µnorm (mr + s)/µnorm µnorm ρdlink 2 l max, n d root N link

Root Memory mr + s µmem (mr + s)/µmem µmem ρdmem 1 N memiiicc
c
c
c
c
c
c
c
c
c
c
c
c
c
c
c
c
c
c
c

cc
c
c
c
c
c
c
c
c
c
c
c
c
c
c
c
c
c
c
c

ii

28 4. An Analytic Queuing Model

and two networks, in order to gain independence of the combining and decombining services and in order
to allow all servers to have Poisson arrival rates. We also exclude normal requests from the combining
node since they would have a shorter service time than combine and decombine requests, so they could not
be handled by the same M/M/1 queue.

It follows that combine requests arrive at a combining server at rate mkr , while decombine requests arrive
at a decombining server at rate mr . The arrival rates are listed in Figure 4.1b. We further assume that
combine and normal arrival rates to a forward communication link and to a root memory are mr and s ,
respectively, while the decombine and normal arrival rates to a backward link are the same. Due to our
assumptions about source arrivals and service times, the arrival streams to a service center are independent
Poisson processes, hence their composite stream is a Poisson process.

4.3. Combining Buffer Size

The distribution of combining buffer size depends on the combining window service discipline and its
arrival process. So let us discuss this first, then determine the distribution of the buffer size S comb.

A combining window is a service center in which service times are i.i.d. exponential(w) and in which a ser-
vice completion clears the queue and creates a batch departure. We would like w sufficiently greater than
r so that in discarding empty batches, the resulting request rate is r , or equivalently, the mean batch size of
non-empty batches is k . That is, w = 1/τindep (Figure 2.4b).

In order to determine the distribution of buffer size S comb, let us assume that a combining entry has size
equal to the number of requests it contains. As a first cut, let us allow empty entries. An entry, then, has
size equal to the number of i.i.d. exponential arrivals at rate kr that arrive during an independent exponen-
tial window that closes at rate w . Due to the memoryless property of the exponential and the geometric
distributions, a race between two independent i.i.d. exponential processes produces a geometric count of
the number of one type of event (a ‘‘failure’’) that occurs before an event of the other type (a ‘‘success’’)
occurs. Because we discard counts of zero, we condition the geometric distribution on the property that the
count is at least one. Due to the memoryless property shown in (4.3), it follows that entry size has the dis-
tribution of K , where K is geometric/inclusive(p) and probability of success p = w /(kr + w). Mean entry
size is E (K) = 1/p , and setting this equal to k , we find w = kr /(k − 1). In discarding batches having size
zero, we are left with a departure stream having rate P { K − 1 > 0 } w = (1 − p) w , which we find is r , as it
should be.

Discarding batches having size zero generalizes to partitioning the window departures into streams accord-
ing to batch size, in which case the stream with batch size i would have rate P { K − 1 = i } w , i = 0,1,2,... .
Are these streams Poisson processes? To answer this question, notice that there are two facets to a batch
departure: the inter-departure interval and the batch size. The first facet is created by a Poisson process
having rate w , while the second is created by a Poisson process that has rate kr and that interacts with the
first Poisson process.

Now in order to be a Poisson process, an arrival stream must have three properties. One property is this:
the probability that two or more events occur in an interval of size h is o(h), that is, it goes to zero faster
than h does. This property obviously holds for the individual streams because the departures are created
by a Poisson process. The other two properties are that the streams must have independent and stationary
increments: the number of events in an interval must be independent of the number of events in a disjoint
interval, and the distribution of the number of events in an interval must be independent of the location of
the interval in time. But each of the two processes that create the batch departures has independent and sta-
tionary increments, so the resulting stream for any particular batch size will have independent and station-
ary increments. Therefore, each stream having a particular batch size is a Poisson process.

The combining buffer size S comb is, in turn, the sum of m i.i.d. random variables Ki ∼
geometric/inclusive(1/k), making the size negative-binomial/inclusive(m , 1/k). This is an upper bound in

4. An Analytic Queuing Model 29

terms of number of requests. It may be converted to the number of bits by multiplying by the number of
bits per request, which we assume is constant (or nearly so).

We could, in addition, add to each Ki an overhead term that depends on Ki , such as R Ki /k H. The depen-
dence complicates the sum, so a reasonable simplification would be to add on R Ki

′/k H, where Ki
′ and Ki

are i.i.d.

4.4. Decombining Buffer Size

The distribution of decombining buffer size is determined by marking the departure of a request from a
combining window, and then counting the number of requests having batch size greater than one that the
window produces during the round trip of the marked request to memory via the root of its tree. Since a
batch size of one entails no combining, it will not be stored in the decombining buffer. Just the same, to
maintain the simplicity of the model, we will assume that a combine request representing a batch of size
one returns through the respective decombining server. Although this will increase our upper bound,
without this assumption a round-trip time would be more complicated to represent since it may entail levels
in which the decombining server is skipped.

More specifically, for tree i , let Nij be the number of batch requests produced during the marked request
sojourn at service center j . If we sum the Nij over j and then add one for the contribution of the marked
request to the buffer, we obtain Ni + + 1. If we sum these terms over i , we obtain the total number of batch
requests N total = N ++ + m in the buffer. N total is the number of Ki

* = (Ki | Ki > 1) that are summed to get
the unconditioned decombining buffer size S decomb, where E (Ki

*) = k * , from (2.9). Since we are modeling
an open system, the range of S decomb extends to infinity, so S decomb should be conditioned on the maximum
number of requests at the node n max.requests/node, shown in (2.3): (S decomb | S decomb ≤ n max.requests/node).

To get an upper bound case, we will assume that a parent and child in a tree are separated by the maximum
number of links l max, n . A more complex model could give a distribution to this value. A round trip to the
root, in our scenario, will contain 2 d root stages, each stage containing either a combining or a decombining
node, along with l max, n links. A visit to a combining node contains a visit to a combining server and a visit
to a combining window. Also, after visiting its root, the marked request visits memory.

For convenience, from this point on, when we speak of combining windows closing at the origin node, we
will implicitly mean windows producing batches of size greater than one. These will close at rate r * =
P { K > 1 } r = (1 − p)2 w , giving us i.i.d. window sizes ∼ exponential(r *). To determine the number of
windows that close at the origin during the round trip of the marked request, we determine the number of
windows that close during each sojourn of the request at a service center along the way. But, as we will
see, a visit to a service center will entail an exponential sojourn time, thus the number of windows that
close at the origin during each sojourn time is geometric, so the sum over these sojourns for a particular
kind of node, such as a link node, is negative binomial. The last column in Figure 4.1b shows the negative
binomial distribution for each service center. The random variables in that column are summed to get the
number of closed windows for one tree.

Let us now cover details of note for each service center. We will take the service centers in order of
increasing complexity. The reader is invited to refer to the appropriate row of Figure 4.1b when discussing
each center. Keep in mind that for an open system model, we need the service rate µ to exceed the arrival
rate λ. This is assumed to hold in the figure.

Combining window. In this case, the exponential(r *) window process at the origin races against the
exponential(w) that the marked request is visiting. The number of windows that close at the origin, then, is
geometric(p), where p = w /(w + r *), as shown in the table. This row is different from all others in the
table because this is not a standard queue; in particular, there is no value for ρ.

Combining server, root memory, and communication link. Here the race is against the sojourn time at

30 4. An Analytic Queuing Model

an M/M/1 queue. For an M/M/1 queue, the number of requests found in the service center on arrival is N
∼ geometric(ρd), where ρd = 1 − ρ, and ρ = λ/µ = (arrival rate)/(service rate). Thus, the sojourn time is the
sum of N + 1 i.i.d. exponential(µ) service times, which, due to the memoryless property of both distribu-
tions, is simply exponential(µ ρd). That is, due to the equivalence of geometric/inclusive and exponential, as
discussed with regard to (4.1) and (4.2), the geometric/inclusive sum of i.i.d. exponentials is exponential.

Decombining server. As mentioned earlier, we treat the service of a decombine request as a single job,
from the point of view of the sojourn time of a subsequent arrival, in order to avoid the non-trivial com-
plexity of modeling partial completion of a batch; that is, in order to avoid dealing with the probability dis-
tribution of the amount of a batch job in service that has been completed at the time of an arrival of another
batch. This distribution is specified through a generating function, rather than a closed form for the distri-
bution. This simplification increases the sojourn time of the marked request, at worst, by the service time
of one decombine batch for each of the 1 + d root decombining servers in the trip. Since the batch size is
geometric/inclusive(1/k) and since the service times for the component requests are i.i.d.
exponential(m µcomb), the service times of the batches are i.i.d. exponential(m µcomb /k).

The sojourn time of a component request of a batch will also depend on its service position within its own
batch. However, since batch size is geometric/inclusive, the position of a random sample from a batch
surprisingly turns out to have the same distribution. Consequently, we can treat the marked request as
being the last job of the batch without increasing its sojourn time, hence without increasing our upper
bound. This simplifies our representation of the sojourn time, because this completes the notion of treating
batch service as the service of a single job. Hence, the sojourn time of the marked request at a decombin-
ing server is completely analogous to the sojourn time at a combining server.

Notice that a decombining server splits its batch into component requests, resulting in k independent
streams of requests. Are these streams Poisson processes? We must check to see that the properties dis-
cussed earlier hold for each of the k component streams. Only the properties of independent and stationary
increments are in doubt. But we can see that both of these properties hold for a component stream because
the batch arrival stream has these properties and, in turn, because the batch sizes are geometric/inclusive
and geometric trials have these properties, and finally because the k streams that created each batch were
independent.

Summing the Terms. For any tree i = 1,...,m , the last column of the table lists the terms Nij , which are
independent negative binomial(cj , pj), where j is the service center (row). The sum of the Nij , plus m ,
yields N total = N ++ + m , which is the sum limit for determining decombining buffer size, as in (4.4).

(4.4)S decomb =
l =1
Σ
N total

Kl
*

However, we cannot calculate S decomb using N total since the Nij have different success probabilities for dis-
tinct j .

Rather, we must first sum the Nij over i = 1,...,m , yielding the component sum limits N + j , which are
independent negative binomial(mcj , pj). Then we must approximate the respective component sums using
independent random variables Xj ∼ normal(µ j , σ j

2), for appropriate µ j , σ j
2, which we determine below.

This yields estimate Ŝdecomb in (4.6).

(4.5)S decomb =
j =1
Σ

service centers

l =1
Σ

N+ j + 1

Kl
*

(4.6)Ŝdecomb =
j =1
Σ

service centers

Xj

This is justified by a generalization of the Central Limit Theorem since the Kl
* are i.i.d. For a sum limit Mi

∼ negative binomial(i , p), Mi converges in distribution to infinity as i → ∞. That is, P { Mi ≤ j } → 0 as
i → ∞ for j = 0,1,... . This means that the Mi will go to infinity, although not necessarily monotonically.

4. An Analytic Queuing Model 31

So using the Central Limit Theorem for small i in this case has weaker justification than if the Mi were
constants going to infinity monotonically.

The mean and variance of a component sum S , having sum limit N , are determined using conditional
expectation: E (S) = E [E (S | N)], V (S) = E [V (S | N)] + V [E (S | N)]. This is straightforward in our
cases since S and N are independent. Letting qj = 1 − pj , this yields µ j = mk cj qj /pj + k , and
σ j

2 = (mk cj qj /pj
2)[(k − 1)pj + k] + k (k − 1). Since the Xj are independent normal(µ j , σ j

2), their sum

Ŝdecomb is normal(
j
Σ µ j ,

j
Σ σ j

2).

Finally, a normal distribution has infinite negative and positive range, so we obtain our final estimate by
truncating at 0 and at n max.requests/node from (2.3), and then normalizing with respect to

P { 0 ≤ Ŝdecomb ≤ n max.requests/node }, yielding random variable (Ŝdecomb | 0 ≤ Ŝdecomb ≤ n max.requests/node) as
our final estimate. Actual values of this distribution are obtained by converting probability expressions to
expressions in terms of the normal(0,1) distribution.

Mean of the Sum. Let us relate E (S decomb) to the upper bound we obtained in (2.5) for the mean decom-
bining buffer size for a physical combining node: O (mk r max* tn ln d root), where r max* is the maximum
request rate over all m trees and tn is the mean sojourn time at a link.

In our network, the relevant term of S decomb is the N link term since it contains the number of links factor in
the bound expression. The corresponding sum limit over all trees is negative binomial(mc , p), so due to
independence the respective sum of the Ki

* over all trees has mean mk cq /p = O (mk c /p), for q = 1 − p .
But c = 2 l max, n d root, and 1/p = 1 + r * /(µnorm − (mr + s)), where r * = Θ(r), r = r max* , and
1/(µnorm − (mr + s)) is the mean sojourn time at a link. Thus, we see that the expression O (mk c /p) con-
tains all of the terms in O (mk r max* tn ln d root), with the replacement of ln by l max, n .

4.5. Conclusion

Weakening the assumptions. The M/M/1-based model that we have presented illustrates the analytic
solution strategy; however it is simple and not highly realistic. How can we make it more realistic?

The simplest feature to add is to accommodate a different request rate ri for each of the m trees. This
would simply require splitting each composite arrival stream at rate mr , into m distinct arrival streams,
each having its own rate ri ; mr would then be replaced by the sum of the ri in Figure 4.1b. Notice that
none of the service times would be affected by this change. In particular, the decombining service time
would not be affected because batch size depends only on k , hence is independent of ri .

Accommodating a different fan-in ki for each of the trees implies that the model is a software combining
model. This would require replacing k by ki , and for the combining server replacing mkr by the sum of
the ki ri .

We would also like to represent different request classes at the same server, in order to allow combining
and decombining servers to handle both combine or decombine requests and normal memory requests, as
in hardware combining nodes. The service times for distinct request classes will differ, so this takes us to
the M/H/1 model, where H refers to hyper-exponential service time, a probabilistic mixture of several
exponential service-time distributions.

Another important feature is to allow feedback in the network, in order to represent a combining node that
has only one processor for servicing both combine and decombine requests. This takes us to modified
Jackson networks that accommodate request classes. This approach would also give us a more realistic
model of two-processor combining nodes, as in Figure 4.1a, for we could now represent the decombining
buffer as a service center, in order to model contention for it between the two processors.

32 4. An Analytic Queuing Model

In addition, we would like to consider the effects of a closed system, since a real computer system, in our
context, will be closed. A closed system would give us a smaller bound on buffer size because a
processor’s time-average request rate, given i outstanding requests, would be strictly decreasing in i . It
would also be useful to represent service time as being constant, or nearly so, as it would be in a real sys-
tem.

Finally, to push curiosity to the limit, we could represent different-sized requests, we could represent batch
service at the decombining centers, and we could study transient behavior.

As we relax our assumptions in order to develop a more and more realistic analytic model, the tractability
of the analytic model will decrease, and it will eventually (maybe quite soon) become necessary to switch
to a simulation model in order to obtain the information that we wish to see, in particular, the effect of win-
dow discipline on execution speed and node buffer size.

Simulation. We leave to future research the effort of pushing the analytic endeavor to its limit, and we
turn, now, to the medium of simulation, in which we can easily formulate a more realistic model. We use a
simulation model in order to run experiments by which we investigate the effect of window discipline on
execution speed and node buffer size.

5. Simulation Experiments 33

5. Simulation Experiments

5.1. Model
5.2. Strategy
5.3. Data
5.4. Conclusion

We turn, now, to investigating the effect of combining window discipline on execution time and node
buffer size using a generic simulation model, which we specialize as appropriate. Our generic simulation
model is that of a queuing system that allows weaker, more realistic assumptions than those that an analytic
model can allow.

5.1. Model

Simulator. The simulations have been done using the Ptolemy simulation system, a schematic-based
simulation system written in C++ and developed by the Ptolemy research group in the Electrical Engineer-
ing and Computer Sciences department at the University of California, Berkeley. I have augmented
Ptolemy with 15,000 lines of C++ code, 7000 lines of Ptolemy preprocessor code, and 50 Ptolemy
schematics, called galaxies. Most of this code and these schematics are general-purpose tools.

Network. As shown in Figure 5.1, our network represents a hardware combining network. The network is
closed and contains four processors and four memories connected by a 4 × 4 multistage combining network
for handling requests going to memory and by a 4 × 4 multistage decombining network for handling
requests coming from memory. Each combining buffer in the combining network has a private zero-delay
connection to the respective decombining buffer.

Parameters. The parameters of the simulation model are shown in Figure 5.2. The simulator has many
parameters, and we manipulated only a few of these parameters in the set of experiments reported here —
our initial set of experiments — so we have only begun to tap the capabilities of the simulator.

Regarding the master control parameters (Figure 5.2a), these parameters specify the number of processors,
the random-number generator seeds, and the first and last iteration numbers in a simulation, which deter-
mine the number of i.i.d. iterations in the simulation.

Multiple i.i.d. iterations allow statistical estimates and tests to be computed across iterations of a simula-
tion. Once the simulation reaches steady state during an iteration, the mean of a dependent variable fluctu-
ates very little about its own mean as the variance of the dependent variable gradually approaches zero, so
the mean and variance should become independent of the initial conditions. Thus, the purpose of multiple
iterations under this simulation paradigm is just to verify that the independence of the initial conditions has
been reached. Having no reason to doubt this independence, we ran multiple iterations for only a couple
simulations. Regarding the variable, the first iteration number, this is a parameter so that a terminated
simulation may be continued at the beginning of an iteration that it did not complete.

The random-number generator is the Gnu multiplicative linear congruential generator (MLCG), which is
an implementation of the MLCG described in Park and Miller (1988). This generator takes two seeds,
which are output at the end of each iteration.

Regarding the processor parameters (Figure 5.2b), these parameters configure the processors, all of which
are configured identically and, with respect to probability distributions, are configured independently since

34 5. Simulation Experiments

iii

Comb Comb

A B

P

P

M

M

Comb Comb
P

P

M

M

Decomb Decomb

A B

Decomb Decomb

Figure 5.1. The Simulation Network.

P = processor, M = main memory

Comb = combining buffer and 2 × 2 switch

Decomb = decombining buffer and 2 × 2 switch

iii

5. Simulation Experiments 35

iii

Figure 5.2. Simulation Model Parameters.

Figure 5.2a. Master Control Parameters.

g # processors n : May be either two or four. Set to four in our experiments.

g RNG seeds: Random-number generator (multiplicative linear congruential generator) seeds — two
seeds.

g First and last iteration numbers: These determine the number of i.i.d. iterations in a simulation. Set to
one in our experiments.

iii

all random draws, both within and between processors, are independent. We treat the number of replies till
done as a constant, although a more general model would treat it as a random variable. In our experiments,
the stop-when-done flag is false so that the steady-state pattern of requests to the network will continue
unchanged until all processors are done, at which point the iteration will terminate and final statistics will
be computed. This strategy also makes it unnecessary to implement an end-of-window request under the
discipline of constant batch size, which would otherwise be necessary to cause incomplete combine entries
to be treated as complete, as discussed in Section 2.3. Also, the compute-time distribution is either con-
stant or uniform, thereby allowing the variance to be manipulated without changing the mean.

Regarding the combining-buffer, decombining-buffer, memory, and network parameters (Figure 5.2c),
these parameters specify the time that respective operations take, along with the initial value of the
memory. All time values except for memory update time and network inter-unit delay are set to zero in our
experiments because non-zero values would not contribute to the purpose of these experiments. The net-
work inter-unit delay is a parameter that allows us to lengthen round-trip time without imposing further
serialization on requests, so if it were to be conceptualized realistically, it would consist of an inter-unit
pipeline whose stages had the length of the memory update time.

Statistics. The statistics gathered by the simulator are shown in Figure 5.3, along with qualifying notes.
The actual simulated execution time of an iteration is recorded but is not of interest because it is largely
determined by the segment of the computation prior to reaching steady state. The hypothetical mean exe-
cution time is of interest because it integrates the steady-state means of the relevant parameters — proces-
sor inter-request time and round-trip time. The formula for hypothetical mean execution time assumes that,
in the execution of a hypothetical program, the number of replies per processor and the processor inter-
request time are uncorrelated, allowing the respective means to be multiplied to obtain the mean of the pro-
duct. In our experiments, the mean number of replies is assumed to be 10,000, which determines the rela-
tive weight of inter-request time and round-trip time in hypothetical execution time. Since we were not
concerned with the location of the cross-over points, the effect of hypothetical execution time for us was
simply that the mean round-trip time determines the asymptote of a curve, while the mean inter-request
time largely determines the rest of the curve.

36 5. Simulation Experiments

iii

Figure 5.2 (continued). Simulation Model Parameters.

Figure 5.2b. Processor Parameters.

g # replies till done: # replies that a processor must receive until it is done executing its hypothetical pro-
gram. Set to a sufficiently large value, for each experiment, to bring all iterations in the experiment to
steady state — 17,000 or more replies for the simulations reported here.

g Stop-when-done flag: Indicates if a processor should stop issuing requests once it is done executing its
hypothetical program. Set to false in our experiments.

g Max # outstanding requests: Maximum number of outstanding requests n max.reqs.out that a processor may
issue. May vary from 1 to infinity. Once a processor has exhausted this limit, it must wait for a reply
before issuing another request.

g Compute-time probability distribution: Constant or uniform. The mean of this distribution is 1/r max.
After a processor terminates a computation period (in its execution of the hypothetical program), the
processor receives waiting replies, issues a request to the network — either a combine or non-combine
request — and, if its maximum number of outstanding requests is not exhausted, initiates another com-
putation period.

g Combine request probability: The probability that a processor’s request will be a combine request, as
opposed to a non-combine request. Set to one in our experiments.

g # non-combine destinations: May vary from one to four memory modules. When a non-combine re-
quest is issued, the destination is chosen by a uniformly distributed draw among the non-combine desti-
nations.

g Vector of combine destinations: May contain any combination of memory module ids 0,1,2,3. Set to
the scalar zero in our experiments since here we are exploring the effects of system configuration on a
single combining tree.

g Vector of window disciplines (corresponds to vector of combine destinations): A discipline may be ei-
ther constant batch size or constant window size.

g Vector of window parameters (corresponds to vector of window disciplines): For the discipline of con-
stant batch size, a window parameter is β, whereas for the discipline of constant window size, a window
parameter is τindep.

g Vector of combine operations (corresponds to vector of combine destinations): A combine operation
may be add, multiply, minimum, or maximum. Irrelevant to our experiments since differences in opera-
tion duration are not represented in the simulation model.

g Combine request data value: The data value that is sent with a combine request. Irrelevant to our exper-
iments.

g Request-receive time, request-create time: Set to zero in our experiments.

iii

5. Simulation Experiments 37

iii

Figure 5.2 (continued). Simulation Model Parameters.

Figure 5.2c. Combining Buffer, Decombining Buffer, Memory, Network Parameters.

g Combining buffer parameters: Lookup time, combine time, batch-create time, request-create time, route
time. Set to zero in our experiments.

g Decombining buffer parameters: Lookup time, combine time, request-create time, route time. Set to
zero in our experiments.

g Memory parameters: Initial data value, update time, request-create time. In our experiments, request-
create time is set to zero, and the initial data value is irrelevant.

g Network parameters: Inter-unit delay. This is a constant value that delays a request prior to its arrival at
a processor, a combining buffer, a decombining buffer, or a memory module; thus, in our network it in-
creases round-trip time by 6 g inter-unit delay.

iii

5.2. Strategy

We present three experiments. The first experiment compares the effects of the two basic window discip-
lines, constant batch size and constant window size. The second experiment compares the effect of com-
bining, under constant window size, with non-combining when total processor request rate λ is the same as
memory service rate µmem. The third experiment explores the effect of reducing constant window size τ
below processor mean inter-request time 1/r min. Figure 5.4a presents the dependent variables of the experi-
ments.

Regarding the independent variable processor request rate r , in our experiments we will define r min =
r max, and unless otherwise qualified, we will let r = r min, λ = λmin.

Regarding the independent variable constant window size τ, since τindep is the focus of attention here, in
this chapter we define τ = τindep, rather than τ = τdep as in Chapter 2. Furthermore, we set τindep as if it were
τdep, say to 1/r , because the probability of an empty batch will vary according to system configuration and
level in the tree. This does not create a problem for interpreting our experimental results, and, where
relevant, we point out the effect on our data of the fact that actually τdep > τindep.

Window discipline. In the first experiment, we investigate the two basic combining window disciplines —
constant batch size and constant window size — and observe their effect on the dependent variables shown
in Figure 5.4a, but in particular on hypothetical execution time, decombining buffer utilization, and
memory queue utilization, where utilization is the amount of an infinite buffer/queue that is utilized, aver-
aged over time. Hypothetical execution time allows us to compare the two window disciplines in terms of
the time cost incurred in executing the hypothetical program, while buffer+queue utilization allows us to
compare the two disciplines in terms of the space cost incurred in executing the hypothetical program. As
explained in Section 2.3, constant window size should reduce the inter-request time variance, and hence the
memory queue utilization. Figure 5.4b shows the values of the independent variables whose values are not
specified in Figure 5.2.

Regarding the maximum number of outstanding requests n max.reqs.out, the results of the experiment are
evaluated by plotting, for a given window discipline, the steady-state value of a dependent variable as a

38 5. Simulation Experiments

iii

Figure 5.3. Simulation Model Statistics.
g Notes

` Statistics: For each dependent variable other than execution time, the following statistics are calculat-
ed as a function of simulated time (for appropriately chosen time points) for each iteration of an ex-
periment: sum of weights, minimum, mean, maximum, variance, standard deviation, and frequency
distribution, where the distribution is defined on a set of intervals that is chosen to provide a useful
collapsing of the variable’s values.

` Time-based vs. event-based statistics: A time-based statistic is one in which the weight of a data
value is the length of time for which the data value is descriptive of the relevant network component,
such as the length of a queue. An event-based statistic is one in which the data weights are all equal,
hence may be set to one without loss of generality.

` Individual vs. collapsed statistics: Processor statistics are collapsed across processors (that are in
use); combining buffer statistics are collapsed across combining buffers (that are in use) for each net-
work level; decombining buffer statistics are collapsed across decombining buffers (that are in use)
for each network level; memory statistics are collapsed across memories (that are in use), but statistics
for the individual memory queues are gathered, as well.

g Processor variables

` Time-based statistics: Busy time, # requests outstanding, queue length

` Event-based statistics: Inter-request time, round-trip time

g Combining buffer variables

` Time-based statistics: Utilization in terms of # requests, utilization in terms of # batches (at most one
batch at a time in our experiments), queue length

` Event-based statistics: Inter-request time, batch size of request being output, batch size of window
just ended (for discipline of constant window size), age of request being output

g Decombining buffer variables

` Time-based statistics: Utilization in terms of # requests, utilization in terms of # batches, queue
length

` Event-based statistics: Round-trip time

g Memory variables

` Time-based statistics: Queue length (includes request in service)

g Execution time

` Actual execution time: Amount of simulated time till all processors receive the per-processor number
of replies in the hypothetical program.

` Hypothetical mean execution time: Mean number of replies per processor g mean processor inter-
request time + mean round-trip time from processor. This formula assumes that the number of replies
per processor and the processor inter-request time are uncorrelated. In our experiments, the mean
number of replies is assumed to be 10,000.

iii

5. Simulation Experiments 39

function of the maximum number of outstanding requests allowed. Hence, the values of the maximum
number of outstanding requests were chosen to fill in the respective curves with the amount of detail
needed at a given region of the curve and, in addition, so that the last finite value yields the same results as
the infinite value. The last such finite value varies from configuration to configuration, and is determined
by first running the infinite case and noting the maximum value of the dependent variable ‘# requests out-
standing’ (Figure 5.3). The significance of the maximum number of outstanding requests is that the smaller
this number, the more often a processor will exhaust its allotted number of outstanding requests, hence the
more often a processor will have to wait for a reply before it will be able to continue its computation and
issue further requests that result from that computation. Thus, as the maximum number of outstanding
requests decreases, the effect of transit time will grow. We will see the results of this effect in our data.

Regarding the compute-time distribution, the two distributions were chosen to have the same mean (one)
but a zero and a non-zero variance, respectively, so that the interaction of inter-request time variance and
window discipline could be studied, in particular, the effect of constant window size in smoothing out lulls
and bursts in the processor request streams. The compute-time mean of one was chosen to match the
memory service time, giving us a total processor request rate that is four times the memory service rate.
This creates a need for combining and allows a two-level binary combining tree to reduce the processor
request rate to the memory service rate using a mean batch size β = 2. In terms of the notation of Figure
2.4, we have λ(4) = 4r = 4µmem, with the level-0 request rate to memory equaling the memory service rate
µmem. This match is appropriate, for under a closed system the desired request rate to a service center need
not be less than the service rate to obtain a stable queue, as it generally must be in an open system.

Regarding window discipline, the batch size of two was chosen to match the fan-in of two, and the window
size of one was chosen to match the mean processor inter-request time 1/r = 1.

Combining vs. non-combining. In the second experiment, we compare the effect of combining, under
constant window size, with non-combining when total processor request rate λ is the same as the memory
service rate µmem. In Section 2.2 we motivated the use of combining when λ exceeds the service rate of the

iii

Figure 5.4. Simulation Experiment Variables.

Figure 5.4a. Dependent Variables.

Note: These variables are defined in Figure 5.3.

g Processor variables: Utilization (busy time), # outstanding requests, inter-request time, round-trip time

g Combining buffer variables: Utilization in terms of # requests, inter-request time, batch size

g Decombining buffer variables: Utilization in terms of # requests, round-trip time

g Memory variables: Queue length

g Hypothetical mean execution time: Mean number of replies per processor g mean processor inter-request
time + mean round-trip time from processor, where 10,000 is the mean number of replies per processor
in the hypothetical program.

iii

40 5. Simulation Experiments

iii

Figure 5.4 (continued). Simulation Experiment Variables.

Figure 5.4b. Independent Variables for Experiment on Window Discipline.

Note: These variables are defined in Figure 5.2.

g Max # outstanding requests n max.reqs.out: 1, 2, 3, 4, 5, 6, 7, 8, 9, 10, 20, 30, 40, 50, infinite

g Compute-time distribution:

Constant one (r = 1, variance = 0), uniform(0,2) (r = 1, variance > 0)

g Window discipline: Constant batch size of two (β = 2), constant window size of one (τ = 1)

g Memory update time: one (µmem = 1)

g Network inter-unit delay: zero

iii

atomic operation of interest, whereas here we consider the case where λ does not exceed this service rate.

Why is this case interesting? This is interesting because of the effect that constant window size has on
reducing the inter-request time variance and hence on reducing the memory queue length, which will be
explored in the window discipline experiment, as discussed above. Hence, even with λ = µmem, combining
under constant window size should give us a reduction in memory queue length, and hence in round-trip
time, which is important in satisfying (2.15). In addition, although non-combining incurs no decombining
buffer utilization, it will incur memory queue utilization. As in the first experiment, we plot the value of a
dependent variable as a function of the maximum number of outstanding requests allowed n max.reqs.out.

Figure 5.4c shows the values of the independent variables whose values are not specified in Figure 5.2.
The reason for the large values of τ is to be able to compare the results of this experiment with those of the
third experiment on window size.

Window size. In the third experiment, we investigate the effect of reducing window size τ below mean
processor inter-request time 1/r . We are interested in observing the effect on hypothetical execution time
and decombining buffer utilization, since memory queue utilization should not vary among the experimen-
tal conditions. As in the other two experiments, we plot the value of a dependent variable as a function of
the maximum number of outstanding requests allowed n max.reqs.out.

Figure 5.4d shows the values of the independent variables whose values are not specified in Figure 5.2.
The only difference between the values in this experiment and those in the prior experiment is the value of
the network inter-unit time. This is increased to a positive value, in this experiment, in order reduce the
fraction of the round-trip time that consists of window sojourn time. This will enable us to see the effect of
reducing window size when it does not appreciably reduce round-trip time. Notice that we include cases of
τ > 1/r in order to obtain k -fold combining for k > 2. If fan-in k were greater than two in our network, we
could obtain k -fold greater than two-fold combining with τ = 1/r .

More specifically, with respect to reducing window size, there are three factors that interact to determine
whether decombining buffer utilization will increase or decrease:

5. Simulation Experiments 41

iii

Figure 5.4 (continued). Simulation Experiment Variables.

Figure 5.4c. Independent Variables for Experiment on Combining vs. Non-Combining.

Note: These variables are defined in Figure 5.2.

g Max # outstanding requests n max.reqs.out: 1, 2, 3, 4, 5, 6, 7, 8, 9, 10, 20, 30, 40, 50, infinite

g Compute-time distribution: Uniform(0,2) (r = 1, variance > 0)

g Window discipline: Constant window size of τ = 4, 2, 1, .75, .5, .25, 0

g Memory update time: .25 (µmem = 4)

g Network inter-unit delay: zero

iii

g Increase in arrival rate: Works to increase buffer utilization

g Decrease in round-trip time: Works to decrease buffer utilization

g Increase in fraction of singleton batches: Works to decrease buffer utilization

We can see, then, that as window size decreases, arrival rate to a node works to increase buffer utilization
at the node, whereas round-trip time from the node works to decrease buffer utilization at the node, and if
the minimum batch size is one, the fraction of singleton batches at the node works to decrease buffer utili-
zation at the node. This implies that for an appropriate configuration of the parameters, decombining
buffer utilization may decrease non-monotonically as window size is reduced.

We may illustrate these relationships by representing them algebraically, as follows, for a complete tree.
First note that in a complete tree, a node at distance i from the processors, where i = 1,..., logk n , is at level
id = (logk n) − i in the tree. Now let t interlevel, i be the mean round-trip transit time from (exclusive) a node
at distance i from the processors to (inclusive) a node at distance i +1 from the processors. Let t nonwindow, i

be the part of t interlevel, i that excludes combining window sojourn time. Then t interlevel, i ≤ τindep + t nonwindow, i

since τindep is an upper bound on mean window sojourn time. Also let t mem be the mean round-trip transit
time from the root to memory.

Finally, let us take βi
* from (2.7) and let pi = P { Bi > 1 }. Then for a complete tree in which window size

is an independent variable and is the same for all nodes, we have (5.1) as an upper bound on mean decom-
bining buffer utilization of a node at distance i from the processors:

ui ≡ ui (τindep, τdep, i −1, τdep, i) =

(5.1)βi
* + [pi βi

* / τdep, i] [
j =1
Σ
id

(τindep + t nonwindow, j) + t mem]

Now the left-hand term of ui is the mean batch size of a request whose batch enters the decombining
buffer, and the right-hand term is (an upper bound on) the mean number of requests that enter the decom-
bining buffer while the first request makes a round trip. Thus, the right-hand term is the product of the
arrival rate of requests to the decombining buffer times (an upper bound on) the mean round-trip time.

Since there are k id nodes at level id of a complete tree, the mean decombining buffer utilization of the entire

42 5. Simulation Experiments

tree is the sum of the ui over these nodes. These observations give us (5.2) as an upper bound on the mean
decombining buffer utilization of a complete tree in which window size is an independent variable and is
the same for all nodes:

(5.2)u total ≡ u total(τindep) =
i =1
Σ

logk n

k id ui (τindep, τdep, i −1, τdep, i)

Notice that the non-monotonicity of (5.2), as a function of τindep, is due to the decombining buffer arrival
rate from (5.1):

(5.3)pi βi
* / τdep, i

Let us analyze the behavior of this term. Using (2.7), we can replace βi
* by βi in (5.3), then using (2.8), we

can eliminate βi , giving us the following reexpression of (5.3):

(5.4)k / τdep, i −1 − P { Bi = 1 } / τdep, i

The left-hand term of (5.4) decreases in τindep since τdep ≡ τdep(τindep) increases in τindep (Figure 2.4). Conse-
quently, as long as the minimum batch size is greater than one, the right-hand term of (5.4) will be zero,
making (5.4) a decreasing function of τindep. Thus, as τindep decreases and the minimum batch size remains
greater than one, the decombining buffer arrival rate will increase. However, as τindep decreases
sufficiently that the minimum batch size reaches one, the right-hand term of (5.4) will become non-zero
and will begin working to decrease the buffer arrival rate. We know that as τindep → 0, the decombining
buffer arrival rate becomes zero as the fraction of singleton batches becomes one: as τindep → 0,
P { Bi = 1 } → 1, τdep, i (τindep) → τdep, i (0) = τdep, i −1(0) / k .

In conclusion, we have shown that decombining buffer arrival rate will decrease non-monotonically as
τindep decreases if P { Bi = 1 } = 0 for the initial values of τindep. In fact, even with P { Bi = 1 } > 0, (5.4)
will still increase if, and while, the increase in the left-hand term exceeds the increase in the right-hand
term.

Finally, the non-monotonicity of the terms (5.3), for i = 1,..., logk n , may translate into non-monotonicity of
u total for an appropriate configuration of parameters, giving us a non-monotonic decrease in decombining
buffer utilization as window size is reduced. In particular, we can see that increasing the network inter-unit
delay (Figure 5.4d) will reduce the fraction of round-trip time that consists of window sojourn time by
increasing the size of t nonwindow, j and t mem relative to τindep in (5.1). This will mitigate the effect that a
reduction in window size will have in reducing round-trip time, thereby making the non-monotonic effect
of (5.3) more pronounced.

5.3. Data

Steady state. Our first concern is to show that an iteration was run long enough to reach steady state, that
is, to reach a state where the distribution of a dependent variable changes very little with time. For con-
venience and practicality, we focus on checking the stability of the mean of the distribution. To demon-
strate steady state, Figure 5.5 shows mean memory queue length as a function of simulated time for four
combinations of window discipline and compute-time distribution under the case where n max.reqs.out = ∞.
The maximum number of outstanding requests n max.reqs.out was chosen to be infinite for this purpose
because under this condition the iteration will take the longest to reach steady state. Memory queue length
is chosen because when n max.reqs.out = ∞, memory queue length is the primary determinant of differences in
transit time among the window disciplines, hence memory queue length is the primary indicator of differ-
ences in performance among the window disciplines.

In addition, we know what the population distributions are for processor inter-request time when
n max.reqs.out = ∞, so we took an iteration under this configuration to a point where, for the distribution uni-
form(0,2), the sample mean came to within ±.001 of the population mean of one. Based on running the
random number generator independently for a million draws, we could see that ±.001 was as close as we

5. Simulation Experiments 43

iii

Figure 5.4 (continued). Simulation Experiment Variables.

Figure 5.4d. Independent Variables for Experiment on Window Size.

Note: These variables are defined in Figure 5.2.

g Max # outstanding requests n max.reqs.out: 1, 2, 3, 4, 5, 6, 7, 8, 9, 10, 20, 30, 40, 50, 60, infinite

g Compute-time distribution: Uniform(0,2) (r = 1, variance > 0)

g Window discipline: Constant window size of τ = 4, 2, 1, .75, .5, .25

g Memory update time: .25 (µmem = 4)

g Network inter-unit delay: four (increases round-trip time by 24)

iii

could practically ask to come to honing in on the population mean of one. Then we took all other
configurations to the same point.

Window discipline. We now wish to compare the four combinations of window discipline and compute-
time distribution in terms of the means and standard deviations of the dependent variables as a function of
the maximum number of requests allowed. Recall that the dependent variables are given in Figure 5.4a,
and the independent variables for the window-discipline experiment are given in Figure 5.4b. The results
are shown in Figures 5.6-5.8, where the legends mean the following:

g Window discipline

` Batch 2: Constant batch size of two (β = 2)

` Window 1: Constant window size of one (τ = 1)

g Compute-time distribution

` Constant 1: Constant one (r = 1, variance = 0)

` Uniform 02: Uniform(0,2) (r = 1, variance > 0)

As mentioned, processor inter-request time has the compute-time distribution mean and standard deviation
where the maximum number of outstanding requests is sufficiently large that it does not limit the processor
request rate. Figure 5.6 shows the effect that constant window size has at level 1 in smoothing out the lulls
and bursts generated by the uniform(0,2) distribution: constant window size inter-request time has half the
standard deviation of constant batch size inter-request time. The analogous effect at level 0, which feeds
memory directly, is shown in Figure 5.7, where the effect is even greater, reducing the standard deviation
by a factor of six. This difference in variance translates into a dramatic difference in memory queue
length, as seen in Figure 5.8. Memory queue utilization is added to decombining buffer utilization in the
figure because the sum of the two contribute to the total system storage requirements. However, a separate
graph of memory queue utilization (not shown) indicates that memory queue utilization for the lower three
conditions in Figure 5.8 is one and that the dramatic effect shown is due to memory queue utilization.
Keep in mind that memory queue utilization affects round-trip time and thus decombining buffer utiliza-
tion, hence a larger memory queue utilization is compounded by a larger decombining buffer utilization.

44 5. Simulation Experiments

iii

Batch 2, Constant 1
Window 1, Constant 1
Window 1, Uniform 02

Batch 2, Uniform 02

0 5000 10000 15000 20000
0

5

10

15

20

Simulated Time

M

e

a

n

Figure 5.5. Steady State Indicator: Memory Queue Length.

Note: n max.reqs.out = ∞.

iii

5. Simulation Experiments 45

iii

n
o
i
t
a
i
v
e
D

d
r
a
d
n
a
t
S

Max # Requests Outstanding

1.0

0.5

0.0
∞50403020100

Batch 2, Uniform 02

Window 1, Uniform 02

Window 1, Constant 1
Batch 2, Constant 1

Figure 5.6. Level 1 Combining Buffer Inter-Request Time.

iii

n
o
i
t
a
i
v
e
D

d
r
a
d
n
a
t
S

Max # Requests Outstanding

1.0

0.5

0.0
∞50403020100

Batch 2, Uniform 02

Window 1, Uniform 02
Batch 2, Uniform 02
Window 1, Constant 1

Figure 5.7. Level 0 Combining Buffer Inter-Request Time.

iii

46 5. Simulation Experiments

iii

x
a
M

Max # Requests Outstanding

307

207

107

7
∞50403020100

Batch 2, Uniform 02

Window 1, Uniform 02
Window 1, Constant 1
Batch 2, Constant 1

Figure 5.8. Memory Queue Plus Decombining Buffer Utilization.

iii

Turning to Figure 5.9, let us analyze the cross overs that appear in hypothetical mean execution time. To
obtain perspective for interpreting these results, let us reason through what would occur if there were no
combining, i.e., if window size were zero here. If there were no combining, with no limit on the number of
outstanding requests, the arrival rate at memory would be four times the memory service rate, hence execu-
tion time for 10,000 replies per processor would be the time that it takes 40,000 requests to be serviced by
memory, viz., 40,000 time units, plus a little extra for the time it takes to saturate the memory queue and
make a round trip. Furthermore, if the limit on the number of outstanding requests were decreased,
memory would remain the bottleneck, so its processing rate would still determine performance within a
small additive term per condition. Keep in mind that memory would serialize the processor requests and
hence stagger the replies, so once the processors exhausted their maximum number of outstanding requests,
their compute periods after the first would become staggered.

We see, then, that an execution time of about 40,000 is the worst we can do, and that combining helps
except in one case, as seen in Figure 5.9. Under constant compute time with only one outstanding request
allowed per processor, constant window size does not help, whereas constant batch size reduces hypotheti-
cal mean execution time from 40,000 to 20,000. This difference is an artifact of the fact that under con-
stant compute time, processor siblings are in lock step, thus once one request arrives in a combining win-
dow, the other request has also arrived, so further waiting needlessly delays the transit. The hypothetical
mean execution time of 20,000 for constant batch size is due to the two one-unit delays of compute time
and memory service time, times 10,000 replies per processor.

The uniform(0,2) compute-time distribution yields more interesting results. In this case, with only one out-
standing request allowed per processor, constant window size is worse than constant batch size: constant
window size produces a hypothetical mean execution time of 34,000 while constant batch size produces a

5. Simulation Experiments 47

iii

n

a

e

M

Max # Requests Outstanding

40,000

30,000

20,000

10,000

∞11.27.53.80.0

Batch 2, Constant 1

Batch 2, Uniform 02

Window 1, Uniform 02

Window 1, Constant 1

Figure 5.9. Hypothetical Execution Time.

iii

48 5. Simulation Experiments

hypothetical mean execution time of 26,000. Why the difference? Other data shows that batch sizes at
both levels 1 and 0 are nearly one for constant window size, indicating that little combining is occurring.
Yet constant window size forces a longer transit time from level 1, and thus from the processor. Hence, the
window at level 1 lengthens the transit time while achieving little combining. Consequently, under con-
stant window size, a shorter window would be better in this configuration. The reason is that with only one
outstanding request per processor, once a processor issues a request, it will stall until it it receives the
respective reply, so it is important to return the reply as soon as possible while still ensuring a sufficient
amount of combining.

Hypothetical mean execution time shows, then, that as the limit on the number of outstanding requests is
increased, constant window size soon outperforms constant batch size because of the reduction in inter-
request-time variance that constant window size produces. However, the magnitude of the execution-time
advantage is not great in our configuration. The primary advantage of constant window size, here, is
reduced decombining buffer + memory queue utilization.

Combining vs. non-combining. In the second experiment, we compare the effect of combining, under
constant window size, with non-combining when total processor request rate λ is the same as the memory
service rate µmem. The results are shown in Figures 5.10-5.12.

Overall, the comparison of non-combining with combining under constant window size is similar to the
comparison of constant batch size with constant window size from the first experiment, where all condi-
tions have the compute-time distribution uniform(0,2). However, the effect on memory queue length is not
evident from the combining buffer inter-request-time standard deviations, so we turn to the distribution of
level 0 inter-request time, shown in Figure 5.11. Here we see that 60% of the inter-request times to
memory under non-combining are less than .25. Thus, combining, under constant window size, eliminates
bursts that outpace memory. And, of course, it smoothes out the bursts by combining incoming requests,
rather than queuing them, thereby giving combining the advantage over non-combining.

Finally, combining, under constant window size, improves performance, but at what cost? The decombin-
ing buffer cost plus the memory queue cost must be compared for non-combining and combining. Figure
5.12 reveals that this combined cost becomes greater under non-combining than under combining as
n max.reqs.out increases sufficiently. Keep in mind that for Figure 5.12 we can deduce that decombining
buffer utilization is zero for τ = 0, and that memory queue utilization is one or less for τ ≥ 1/µmem = .25.

Window size. Let us move on to explore the effect of reducing window size τ below processor mean
inter-request time 1/r . The configuration for this experiment is the same as that for the second experiment
except that the network inter-unit delay is raised to a positive value in order to make the non-monotonic
behavior of decombining buffer utilization more pronounced. In addition, we do not take τ down to zero.

Why do we wish to reduce window size below 1/r ? The primary reason for reducing window size below
1/r is to come closer to satisfying (2.15) for small values of n max.reqs.out by reducing round-trip time T trip, i .
A secondary reason is that even if (2.15) is already satisfied, if r min ≤ r < r max, then program execution rate
could be sped up by increasing the processor request rate, taking r closer to r max: r min < r ≤ r max. We
wish to observe the cost in decombining buffer utilization of reducing window size.

Figure 5.13 shows the reduction in hypothetical mean execution time that is obtained by reducing window
size. For small values of n max.reqs.out, this reduction is relatively small but noticeable, while it vanishes for
sufficiently large values of n max.reqs.out. This is due to reduction in mean round-trip time, which can be cal-
culated directly from the window size and memory service time, since memory queue length will be negli-
gible, as it was in the second experiment.

Turning to the issue of decombining buffer utilization, we see from Figure 5.14 that for sufficiently large
values of n max.reqs.out, total utilization decreases monotonically as window size decreases. In contrast, for
moderate and small values of n max.reqs.out, we obtain the non-monotonic effect referred to in Section 5.2: as

5. Simulation Experiments 49

iii

n
a
e
M

Max # Requests Outstanding

61

51

41

31

21

11

1
∞50403020100

Window Size 0.00

All other window sizes

Figure 5.10. Memory Queue Length.

iii

y
c
n
e
u
q
e
r
F

Inter-Request Time

0.70

0.60

0.50

0.40

0.30

0.20

0.10

0.00
2.01.51.00.50.0

Figure 5.11. Level 0 Inter-Request Time to Memory.

Note: The configuration is τ = 0, n max.reqs.out = ∞. The interval endpoint modes are [xLo,xHi).

iii

50 5. Simulation Experiments

iii

154

104

54

4

∞403020100

Max # Request Outstanding

x

a

M

Window Size 0.00

Window Size 0.25

Window Size 0.50

Window Size 0.75

Window Size 1.00

Window Size 2.00

Window Size 4.00

Figure 5.12. Memory Queue Plus Decombining Buffer Utilization.

iii

5. Simulation Experiments 51

iii

n

a

e

M

Max # Requests Outstanding

410021

310021

210021

110021

10021

∞6050403020100

Window Size 4.00

Window Size 2.00

Window Size 1.00

Window Size 0.75

Window Size 0.50

Window Size 0.25

Figure 5.13. Hypothetical Execution Time.

iii

52 5. Simulation Experiments

window size decreases from four to two, buffer utilization increases, but as window size continues to
decrease to one, buffer utilization starts decreasing. What is the cause of the non-monotonicity? Let us
consider the fraction of batches that are singletons. Singletons are not stored in the decombining buffer, so
an increase in this fraction, due to reduced window size, will work toward reducing decombining buffer
utilization, as seen in the right-hand term of (5.4). In dropping from τ = 4 to τ = 2, we may expect to find
little or no increase in the fraction of singleton batches because window size is so large. However, Figures
5.15 and 5.16 show that mean batch size decreases monotonically in window size except for one case:
level 0 with n max.reqs.out = 10. In fact, for small values of n max.reqs.out at level 0, the drop in mean batch size
from τ = 4 to τ = 2 is very large and takes mean batch size close to one. In addition, for all values of
n max.reqs.out at level 1, this drop is very large. The frequency distributions are not shown, but they indicate
the same direction in the frequency of a singleton batch. Consequently, the singleton-batch curve, as a
function of window size, does not explain the non-monotonicity of utilization. That is, an increase in the
value of the right-hand term of (5.4) from zero to non-zero does not explain the non-monotonicity of (5.4).

We must turn, then, to arrival rate, i.e., the left-hand term of (5.4), to find the explanation. Figures 5.17 and
5.18, respectively, show mean inter-request time from the processors to level 1, and from level 1 to level 0.
For the requests from level 1 to level 0, we can see that the drop in mean inter-request time is much greater
in going from τ = 4 to τ = 2 than in going from another value of τ to a smaller value. This, then, explains
the non-monotonicity: the increase in arrival rate outweighed the increase in the fraction of singleton
batches for small and moderate values of τindep.

In conclusion, we see that the reduction in window size below 1/r down to the memory service rate
reduces execution time noticeably for small values of n max.reqs.out. In addition, we have observed the non-
monotonicity of decombining buffer utilization as a function of window size. However, neither the reduc-
tion in execution time nor the temporary increase in decombining buffer utilization is large in this
configuration.

5.4. Conclusion

What have we learned from the simulations?

We have developed a simulation model and simulator for running combining tree simulations, and we have
begun using this model by executing three experiments of interest. Specifically, we have explored the
effect of constant batch size vs. constant window size, the effect of combining (under constant window
size) vs. non-combining when total processor request rate λmin does not exceed the memory service rate
µmem, and the effect of reducing constant window size τ below processor mean inter-request time 1/r min.
Let us discuss each experiment briefly.

Window discipline. In the first experiment, we saw that for a sufficiently large limit on the number of out-
standing requests for a processor, constant window size outperforms constant batch size because it reduces
the inter-request time variance to the queues along the pathway to memory, in particular, the inter-request
time variance to the memory queue itself. This reduces the memory queue length, and hence the transit
time, the decombining buffer utilization, and the hypothetical mean execution time. As the limit on the
number of outstanding requests goes to infinity, the advantage in smaller execution time tapers off, while
the advantage in smaller memory queue utilization increases dramatically.

Keep in mind that in this experiment there was only one type of memory request, viz., a combine request to
a single memory module. More generally, after each of its compute periods a processor will issue a com-
bine request for module 0 with probability p and a non-combine request with probability pd = 1 − p , where
a non-combine request is uniformly distributed across the memory modules. This model was conceived by
Pfister and Norton (1985), as discussed in Chapter 3. Now for our experiment p = 1. But what would hap-
pen if we reduced p ? As p → 0, pd → 1, the processor requests become uniformly distributed across the
memory modules, and the combining requests to module 0 play a smaller and smaller role in system perfor-
mance. Thus, as p → 0, the advantage of constant window size over constant batch size will disappear. In

5. Simulation Experiments 53

iii

x

a

M

Max # Requests Outstanding

206

156

106

56

6
∞6050403020100

Window Size 4.00

Window Size 2.00

Window Size 1.00
Window Size 0.75
Window Size 0.50

Window Size 0.25

Figure 5.14. Decombining Buffer Utilization.

iii

54 5. Simulation Experiments

iii

Max # Requests Outstanding

8

7

6

5

4

3

2

1
∞58473523120

Window Size 4.00

Window Size 2.00

Window Size 1.00
Window Size 0.75
Window Size 0.50
Window Size 0.25

n
a
e
M

Figure 5.15. Level 1 Batch Size.

iii

n
a
e
M

Max # Requests Outstanding

1.91

1.81

1.71

1.61

1.51

1.41

1.31

1.21

1.11

1.01
∞6050403020100

Window Size 4.00

Window Size 2.00

Window Size 1.00

Window Size 0.75

Window Size 0.50

Window Size 0.25

Figure 5.16. Level 0 Batch Size.

iii

5. Simulation Experiments 55

iii

n

a

e

M

Max # Requests Outstanding

41

31

21

11

1

∞6050403020100

Window Size 4.00

Window Size 2.00

Window Size 1.00

Window Size 0.75

Window Size 0.50

Window Size 0.25

Figure 5.17. Processor Inter-Request Time to Level 1.

iii

56 5. Simulation Experiments

iii

n
a
e
M

Max # Requests Outstanding

41

31

21

11

1
∞6050403020100

Window Size 4.00
Window Size 2.00
Window Size 1.00
Window Size 0.75

Window Size 0.50

Window Size 0.25

Figure 5.18. Level 1 Inter-Request Time to Level 0.

iii

short, the extent to which constant window size is better than constant batch size in a given system depends
on the fraction of memory requests that are combine requests.

Combining vs. non-combining. In the second experiment, we examined a configuration in which the total
processor request rate λ does not exceed the memory service rate µmem. In this configuration, we saw that
the reduction in inter-request time variance afforded by constant window size in the first experiment has a
similar effect when compared to non-combining (constant batch size of one), dramatically reducing the
decombining buffer + memory queue length utilization for sufficiently large n max.reqs.out.

Window size. Finally, in the third experiment, we used the configuration of the second experiment, except
that we substantially decreased the fraction of round-trip time comprised of combining window sojourn
time. The result, for small values of n max.reqs.out, is a reduction in execution time, but the reduction is not
large. We also observed non-monotonic behavior of decombining buffer utilization as window size is
reduced.

6. Conclusion 57

6. Conclusion

What is the key to managing a combining tree?

We have seen that the key to managing a combining tree is to implement combining windows. This pro-
vides both sufficient execution concurrency and sufficient storage concurrency, among the nodes at each
level of the tree, which are the dual problems in the management of a combining tree.

Our strategy in this initial study has been to adopt a steady-state queuing model. In this context, our ana-
lytic model illustrates the analytic solution strategy. And our simulation experiments, which allow weaker,
more realistic assumptions than analytic models allow, show that combining window discipline can have a
substantial effect on execution speed and decombining buffer utilization.

What work remains for future research?

The combining-tree paradigm developed here is rich in possibilities for research, using both analytic and
simulation models.

Regarding analytic models, the analytic solution strategy may be taken in the directions discussed in the
conclusion to Chapter 4, exploring more realistic models than the model presented there by weakening that
model’s assumptions where it appears promising to do so.

Regarding simulation models, simulation experiments may be used to study the same issues that were
raised for analytic models. In addition, simulation experiments could be used to study the design of
hardware combining trees to determine how best to deal with the inflexibility of hardware in the face of
multiple combinable variables, each having its own ideal mean combining window size τ. This would
entail studying the cost/performance tradeoffs that arise in designing combining and decombining opera-
tions and buffers. Simulation experiments could also be used to study software combining trees to deter-
mine how best to utilize the flexibility they offer in mapping abstract combining nodes to hardware nodes.
In particular, the tradeoff between tree depth and system balance could be explored.

Simulation could also be used to explore the procedure that a process, or processor, may use to assess its
request rate r to a combining tree, upon which a time-based window discipline depends. This would entail
a procedure for making an initial estimate — possibly based on prior execution of the program — along
with a procedure for tuning the estimate. Further, the cost and performance advantage could be examined
of estimating the value of τindep that will yield the desired value of τdep, say 1/r .

Finally, another question that could be explored further, both analytically and experimentally, is the
analysis of transient behavior. The model presented in this dissertation is a steady-state model, and we
have shown how to evaluate window discipline using constant window parameters based on steady-state
means. We showed that for a sufficiently large limit on the number of outstanding requests, constant win-
dow size is better than constant batch size because it smooths out the lulls and bursts in the processor
request stream, thereby reducing execution time and decombining buffer utilization. Thus, the discipline of
constant window size has built into it a mechanism for dealing with transient behavior.

Yet, suppose that requests to some combining tree can be usefully modeled, not only as a steady-state
stream of individual requests, but also as a steady-state stream of bursts. That is, bursts occur at
stochastically-determined intervals, such as at the end of a computation phase like that defined by a doall
loop. Then k -fold combining could be obtained during a burst by using a mean window size that is shorter
than overall mean processor inter-request time 1/r , which incorporates the mean inter-burst time. To
optimize the handling of this case, we need to model the intra-burst request rate and specify the intra-burst
window size accordingly.

58 6. Conclusion

7. References 59

7. References

Almasi, G.S., Gottlieb, A. 1989. ‘‘The NYU Ultracomputer.’’ Section 10.3.6 in Highly Parallel Comput-
ing. Benjamin/Cummings, Redwood City, CA, 1989, 430-450.

Bitar, P. 1990a. ‘‘Combining windows: The key to managing MIMD combining trees.’’ Presented at
architecture workshop 1990. Published in Dubois, M., Thakkar, S. (Eds.), Scalable Shared Memory
Multiprocessors, Kluwer Academic Publishers, Norwell, Mass., 1992.

Bitar, P. 1990b. ‘‘MIMD Synchronization and Coherence.’’ November 1990, Version 92/03/26. Tech.
Report UCB/CSD 90/605, Computer Science Division, U.C. Berkeley, Berkeley, CA 94720.

Bitar, P. 1992. ‘‘The weakest memory-access order.’’ J. of Parallel & Distributed Computing, 15, August
1992, 305-331.

Cheong, H.C., Veidenbaum, A.V. 1990. ‘‘Compiler-directed cache management in multiprocessors.’’
Computer, 23(6), June 1990, 39-47.

Dias, D.M., Kumar, M. 1989. ‘‘Preventing congestion in multistage networks in the presence of
hotspots.’’ 18th Int’l Conf. on Parallel Processing, 1989, I-9 - I-13.

Dickey, S.R., Percus, O.E. 1992. ‘‘Performance differences among combining switch architectures.’’
21st Int’l Conf. on Parallel Processing, 1992.

Goodman et al. 1989. Goodman, J.R., Vernon, M.K., Woest, P.J. 1989. ‘‘Efficient synchronization prim-
itives for large-scale cache-coherent multiprocessors.’’ 3rd Int’l. Conf. on Architectural Support for
Prog. Lang. & Op. Sys., 1989, 64-75.

Gottlieb, A. 1987. ‘‘An overview of the NYU Ultracomputer project.’’ In Dongarra, J.J. (Ed.), Experi-
mental Parallel Computing Architectures, North-Holland / Elsevier Science Publishers, New York, NY,
1987.

Gottlieb et al. 1983a. Gottlieb, A., Grishman, R., Kruskal, C.P., McAuliffe, K.P., Rudolph, L, Snir, M.
‘‘The NYU Ultracomputer — designing an MIMD shared memory parallel computer.’’ IEEE Trans.
Computers, C-32(2), February 1983, 175-189.

Gottlieb et al. 1983b. Gottlieb, A., Lubachevsky, J., Rudolph, L. ‘‘Basic techniques for the efficient coor-
dination of very large numbers of cooperating sequential processes.’’ ACM Trans. Prog. Lang. & Sys.,
5(2), April 1983, 164-189.

Ho, W.S., Eager, D.L. 1989. ‘‘A novel strategy for controlling hot spot congestion.’’ 18th Int’l Conf. on
Parallel Processing, 1989, I-14 - I-18.

James et al. 1990. James, D.V., Laundrie, A.T., Gjessing, S., Sohi, G.S. ‘‘Scalable Coherent Interface.’’
Computer, 23(6), June 1990, 74-77.

Kang et al. 1991. Kang, B.-C., Lee, G., Kain, R. ‘‘Performance of multistage combining networks.’’
20th Int’l Conf. on Parallel Processing, 1991, I-550 - I-553.

Lee et al. 1986. Lee, G., Kruskal, C.P., Kuck, D.J. ‘‘The effectiveness of combining in shared memory
parallel computers in the presence of hot spots.’’ 15th Int’l Conf. on Parallel Processing, 1986, 35-41.

Lee, G. 1989. ‘‘A performance bound of multistage combining networks.’’ IEEE Trans. Computers, C-
38(10), October 1989, 1387-1395.

Merchant, A. 1992. ‘‘Analytical models of combining banyan networks.’’ SIGMETRICS 1992. Proceed-
ings are published as Performance Evaluation Review, 20(1), June 1992, 205-212.

Park, S.K., Miller, K.W. 1988. ‘‘Random number generators: good ones are hard to find.’’ Comm. of the
ACM. 31(10), October 1988, 1192-1201.

Pfister et al. 1985. ‘‘The IBM research parallel processor prototype (RP3): Introduction and architec-
ture.’’ 14th Int’l Conf. on Parallel Processing, 1985, 764-771.

Pfister, G.F., Norton, V.A. 1985. ‘‘Hot spot contention and combining in multistage interconnection net-
works.’’ IEEE Trans. Computers, C-34(10), October 1985, 943-948.

Ranade, A.G. 1989. ‘‘Fluent Parallel Computation.’’ Ph.D. dissertation, May 1989. TR 663, CS Dept.,
Yale U., 10 Hillhouse Avenue, New Haven, CT 06511.

Scott, S.L., Sohi, G.S. 1990. ‘‘The use of feedback in multiprocessors and its application to tree saturation
control. IEEE Trans. Parallel & Distributed Computing, 1(4), October 1990, 385-398.

Thomas, R.H. 1986. ‘‘Behavior of the butterfly parallel processor in the presence of memory hot spots.’’
15th Int’l Conf. on Parallel Processing, 1986, 46-50.

60 7. References

Wolff, R.W. 1989. Stochastic Models and the Theory of Queues. Prentice-Hall, Englewood Cliffs, NJ,
1989.

Yew et al. 1987. Yew, P.-C., Tzeng, N.-F., Lawrie, D.H. ‘‘Distributing hot-spot addressing in large-scale
multiprocessors.’’ IEEE Trans. Computers, C-36(4), April 1987, 388-395.

8. Appendix: Fetch-and-Add 61

8. Appendix: Fetch-and-Add

Sleep-wait queuing using fetch-and-add. Here we present algorithms for sleep-wait queuing, extending
the discussion of fetch-and-add algorithms presented in Chapter 2.

iii

Figure 8.1. Sleep-Wait P with FIFO Enqueue
Using Fetch-and-Add

P(input: adr_entry; output: sleep_flag):

global variable: Q_size, sem, I, Q[Q_size], Next[Q_size], Sem[Q_size];
local, register variable: my_I, cell, ticket;

begin
sleep_f lag := 1;

if fetch-and-add(sem , -1) ≤ 0 then /* may need to enqueue entry */
begin

my_I := fetch-and-add(I , 1);

/* now (in effect) divide my_I by Q_size */
/* then take remainder to get cell, or truncate to get ticket */
cell := remainder(my_I /Q_size);
ticket := floor(my_I /Q_size); /* enqueue, dequeue use same ticket */

while Next [cell] ≠ ticket do null; /* busy-wait for turn */
Q [cell] := adr_entry ;

if fetch-and-add(Sem [cell], -1) = 1 then /* V has already arrived */
begin

sleep_flag := 0;
fetch-and-add(Next [cell], 1);

end;
end;

end;

Notes for Figures 8.1, 8.2

1. The variable sem is the semaphore on which the P and V are operating.

2. Each cell of the array Sem is initialized to zero and ends up back at zero at the end of each turn.

3. If sleep_f lag is returned as 1, the process was enqueued and must sleep. If wake_f lag is returned as 1,
a process was dequeued and must be awakened.

iii

62 8. Appendix: Fetch-and-Add

iii

Figure 8.2. Sleep-Wait V with FIFO Dequeue
Using Fetch-and-Add

V(output: adr_entry, wakeup_flag):

global variable: Q_size, sem, D, Q[Q_size], Next[Q_size], Sem[Q_size];
local, register variable: my_D, cell, ticket;

begin
wakeup_f lag := 0;

if fetch-and-add(sem , 1) < 0 then /* may need to dequeue entry */
begin

my_D := fetch-and-add(D , 1);

/* now (in effect) divide my_D by Q_size */
/* then take remainder to get cell, or truncate to get ticket */
cell := remainder(my_D /Q_size);
ticket := floor(my_D /Q_size); /* enqueue, dequeue use same ticket */

while Next [cell] ≠ ticket do null; /* busy-wait for turn */

if fetch-and-add(Sem [cell], 1) = -1 then /* P has already arrived */
begin

adr_entry := Q [cell];
wakeup_flag := 1;
fetch-and-add(Next [cell], 1);

end;
end;

end;

Notes for Figures 8.1, 8.2

1. The variable sem is the semaphore on which the P and V are operating.

2. Each cell of the array Sem is initialized to zero and ends up back at zero at the end of each turn.

3. If sleep_f lag is returned as 1, the process was enqueued and must sleep. If wake_f lag is returned as 1,
a process was dequeued and must be awakened.

iii

Sleep-wait queuing using efficient busy-wait locking/waiting/unlocking. For comparison with fetch-
and-add algorithms, we present sleep-wait queuing algorithms based on efficient busy-wait
locking/waiting/unlocking, as discussed in Bitar (1990b). The strategy in these algorithms is to minimize
lock hold-time, and to lock head and tail concurrently only if necessary.

8. Appendix: Fetch-and-Add 63

iii

Figure 8.3. Sleep-wait P with FIFO Enqueue
Using Efficient Busy-Wait Locking/Waiting/Unlocking

P(input: adr_new_entry, sleep_flag):

global variable: sem, head, (tail,V_count);
local, register variable: old_sem, new_sem, (old_tail,old_V_count), (nil,new_V_count);

begin
fetch(instruction blocks);
wait; /* wait for cache to finish fetching */

lock(sem , old_sem);
new_sem := old_sem - 1;
unlock(sem , new_sem);

if old_sem > 0 then /* will not sleep-wait */
begin

sleep_f lag := 0;
return;

end;
/* old_sem ≤ 0, may need to enqueue entry and sleep-wait */

fetch(instruction blocks);
nil := NIL;
adr_new_entry →link := NIL;
sleep_f lag := 1;
wait; /* wait for cache to finish fetching */

lock((tail ,V_count), (old_tail ,old_V_count));

if old_V_count > 0 then /* outstanding V’s, don’t enqueue entry */
begin

sleep_f lag := 0;
new_V_count := old_V_count - 1;
unlock((tail ,V_count), (nil ,new_V_count)); /* tail is already NIL */
return;

end;
else /* no outstanding V’s, enqueue entry */
begin

if old_tail = NIL then /* queue empty, update head */
head := adr_new_entry ;

else /* else queue not empty, update tail link */
old_tail →link := adr_new_entry ;

unlock((tail ,V_count), (adr_new_entry ,0));
end;

end;

Notes for Figures 8.3, 8.4

1. The instruction ‘lock(x , old_x)’ locks the variable x , then executes old_x := x , for register old_x .

2. The instruction ‘unlock(x , new_x)’ executes x := new_x , for register new_x , then unlocks the variable x .

3. The instruction ‘unlock(x)’ simply unlocks the variable x .

ii

64 8. Appendix: Fetch-and-Add

iii

Figure 8.4. Sleep-wait V with FIFO Dequeue
Using Efficient Busy-Wait Locking/Waiting/Unlocking

V(output: old_head, wakeup_flag):

global variable: sem, head, (tail,V_count);
local, register variable: old_sem, new_sem, old_head, new_head, (old_tail,old_V_count), (nil,new_V_count);

begin
fetch(instruction blocks);
wait; /* wait for cache to finish fetching */

lock(sem , old_sem);
new_sem := old_sem + 1;
unlock(sem , new_sem);

if old_sem ≥ 0 then /* will not wakeup a process */
begin

wakeup_f lag := 0;
return;

end;
fetch(instruction blocks); /* old_sem < 0, may need to dequeue entry for wakeup */
nil := NIL;
wakeup_f lag := 1;
wait; /* wait for cache to finish fetching */

lock(head , old_head);

if old_head = NIL then /* queue may be empty, check tail */
begin

lock((tail ,V_count), (old_tail ,old_V_count));

if old_tail = NIL then /* queue is empty (could alternatively check head here) */
begin

new_V_count := old_V_count + 1;
unlock((tail ,V_count), (nil ,new_V_count));
unlock(head); /* no need to write; but if did write, must do so before unlocking tail */
return;

end;
else /* head updated since locked: no longer NIL, so read it again */
begin

unlock(tail); /* no need to write */
old_head := head ;

end;
end;

/* old_head ≠ NIL: queue not empty, dequeue head entry */
new_head := old_head →link ;
if new_head = NIL then /* queue now empty, update tail too */
begin

lock(tail , old_tail); /* lock tail to prevent concurrent enqueuing */
if old_tail = old_head then /* queue still empty, update tail */
begin

unlock(head , nil); /* head must be written before tail is set to NIL and unlocked */
unlock(tail , nil);

end;
else /* queue no longer empty */
begin

unlock(tail); /* no need to write */
new_head := old_head →link ; /* get new link written by enqueue algorithm */
unlock(head , new_head);

end;
end;
else /* queue not empty */

unlock(head , new_head);
end;
ii

