The Case for Application-Specific
Operating Systems

Thomas E. Anderson

Division of Computer Science

University of California, Berkeley
Berkeley, CA 94720

Computer systems of today have the potential for vastly improved applica-
tion performance. Advances in hardware technology have led to systems with
more, faster processors, higher bandwidth networks, and larger amounts of pri-
mary, secondary, and tertiary storage. Relative to systems of only a decade
ago, improvements of at least two orders of magnitude have occurred in each
of these areas, and it appears likely that the next decade will see equally large
improvements.

Recent evidence suggests that these trends will require re-thinking the tra-
ditional role of operating systems. Increasingly, applications programmers and
compiler writers have found that achieving the performance potential of modern
computer systems requires control over the physical resources of the machine.
Traditional operating systems, however, invisibly manage physical resources on
behalf of applications. As a result, some have suggested the only way to ob-
tain good application performance is to simply “turn off” the operating sys-
tem [Agarwal et al. 90, Black 90], although this loses the advantages that led to
running operating systems on top of bare hardware in the first place. As one ex-
ample, database systems have long been forced to re-implement major parts of
the operating system, such as threads, memory management, and I/0, in order
to gain control over the machine’s physical resources. High performance archi-
tectures and algorithms exacerbate both the problems with traditional operating
systems and the potential benefits of appropriate operating system support.

The challenge to operating systems designers, then, is to deliver to applica-
tions the performance available now only from dedicated hardware, combined
with the ease of sharing resources and data among multiple applications and
the simpler programming model found in general-purpose operating systems.

The operating systems community has spent much of the last few years
debating the value of “monolithic” and “small-kernel” operating system struc-
tures — whether operating system modules should be included in the kernel or
separated into distinguished application-level servers. I believe this debate will
be largely irrelevant to future computer systems, since both manage physical
resources behind the back of application software.



Instead, I propose an application-specific structure where as much of the op-
erating system as possible is pushed into runtime library routines linked in with
each application. The operating system kernel is stripped to its bare minimum
functionality: at a minimum, the kernel must adjudicate among application
requests for physical resources and it must enforce hardware protection bound-
aries between applications. Everything else, including resource management
and communication/sharing between applications, can and should be done by
operating system code running as library routines in each application. The key
is that the operating system must notify each application of changes in its re-
source allocation, to allow the application the chance to adapt to make best use
of whatever resources are available to it.

Pushing operating system functionality into each application need not neces-
sarily complicate the task of the application programmer. The runtime system
linked into each application can provide the programmer with the same interface
now provided by a traditional operating system; however, because these library
routines can be made application-specific, the programmer has the flexibility to
easily modify them whenever that is necessary for performance.

As one example, parallel applications are typically written and compiled as-
suming the number of processors running the program does not change during
its execution. This prevents long running jobs from sharing processors with in-
teractive jobs, since time-slicing behind the back of a parallel application often
yields terrible performance. It also prevents periods of low parallelism in one
job from being overlapped with periods of high parallelism in another. Node
failures are another reason for changes in the number of processors available
to an application; a fully configured Thinking Machines CM-5 is expected to
have a mean time between failures of only one hour. At least on shared-memory
multiprocessors, though, processor and thread management can be pushed to
the user level, improving performance and flexibility with no loss in functional-
ity [Anderson et al. 92].

As another example, many supercomputer applications are as performance-
limited by memory size and 1/O bandwidth as by processor cycles. Pre-fetching
is a promising way of hiding memory and I/O latency, but performance can
be drastically reduced if there is insufficient buffer space to hold all of the pre-
fetched material, for instance, if more than one application is pre-fetching at
the same time. This is another case where application knowledge of dynamic
resource allocation could lead to better performance.

As athird example, there has been recent interest in network file systems that
stripe files across multiple servers to obtain higher bandwidth. The traditional
approach would be to stripe files transparently to the user; an application may
be able to achieve better performance, however, if it knows how its data 1s
stored, so that it can co-locate pieces of its computation near the data being
used.



Several recent research efforts have made an argument for pushing certain
pieces of the operating system into each application [Young et al. 87, Bershad
et al. 91, Anderson et al. 92]. But these arguments have each focused on
only an 1solated piece of the operating system. Rather, I believe that the same
argument can be made for every physical resource managed by a traditional
operating system, be it processors, memory, the file cache, network bandwidth,
or secondary /tertiary storage, and for every medium of sharing between appli-
cations, be it local RPC, remote RPC, or the file system. The goal: major
improvements in application performance on high performance computer sys-
tems.

References

[Agarwal et al. 90] Agarwal, A., Lim, B.-H., Kranz, D., and Kubiatowicz, J.
APRIL: A Processor Architecture for Multiprocessing. In Proceedings

of the 17th Annual Symposium on Computer Architecture, pages 104—
114, May 1990.

[Anderson et al. 92] Anderson, T., Bershad, B., Lazowska, E., and Levy, H.
Scheduler Activations: Effective Kernel Support for the User-Level
Management of Parallelism. ACM Transactions on Computer Sys-
tems 10(1), February 1992.

[Bershad et al. 91] Bershad, B., Anderson, T., Lazowska, E., and Levy, H. User-
Level Interprocess Communication for Shared-Memory Multiproces-
sors. ACM Transactions on Computer Systems, 9(2), May 1991.

[Black 90] Black, D. Scheduling Support for Concurrency and Parallelism in
the Mach Operating System. IEEE Computer Magazine, 23(5):35—
43, May 1990.

[Young et al. 87] Young, M., Tevanian, A., Rashid, R., Golub, D., Eppinger,
J., Chew, J., Bolosky, W., Black, D., and Baron, R. The Duality of
Memory and Communication in the Implementation of a Multipro-
cessor Operating System. In Proceedings of the 11th ACM Symposium
on Operating Systems Principles, pages 63-76, November 1987.



