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Existing monolithic artificial neural network architectures are not sufficient to cope with
large complex problems. A better approach isto build large scale heterogeneous networks using
both supervised and unsupervised learning modules. 1n these architectures an unsupervised learning
algorithm, such as the k-means algorithm, decomposes the overal task and a supervised learning
algorithm, such as one based on gradient descent, solves each subtask.

We have investigated heterogeneous architecturesthat are based on anovel k-means parti-
tioning algorithm that integrates into its partitioning process information about the input distribution
aswell asthestructuresof thegoal and network functions. We have a so added two new mechanisms
to our k-means agorithm. The first mechanism biases the partitioning process toward an optimal
distribution of the approximation errors in the various sub-domains. This leads to a consistently
lower overall approximation error. The second mechanism adjusts the learning rate dynamically
to match the instantaneous characteristics of a problem; the learning rate is large at first, alowing

rapid convergence, and then decreases in magnitude as the adaptation converges. Thisresultsin a



lower residua error and makes the new k-means agorithm al so viablefor non-stationary situations.

We evaluate the performance and complexity of these heterogeneous architectures and
compare them to homogeneous radia basis function architectures and to multilayer perceptrons
trained by the error back-propagation algorithm. The evaluation shows that the heterogeneous
architectures give higher performance with lower system complexity when solving the Mackey-

Glass time series prediction probelm and a hand-written capital |etter recognition task.
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Chapter 1

| ntroduction

1.1 Motivation and Goal

Inthe context of empirical inference of multi-variatefunctions, an artificial neural network
isessentialy afunction represented by the composition of many simplefunctions, referred to in this
dissertation as basic functions®. These basic functionsare usually parameterized but constrained in
form: typically non-linear functions of a few variables or linear functions of many variables [1].
By adjusting the parameters of these basic functions, we can alter the shapes of these functions and
thus modify the overall input-output relationship of the network. Several forms of basic functions
have been proposed; however, they can be divided based on the characteristics of their supportsinto
those with global supports, as exemplified by the sigmoid function; and those with local supports,
as exemplified by the Gaussian radial basisfunction.

Since we are interested in artificial neural network architectures which are simple to

We refer to simple functions composing an artificial neural network as basic functions instead of basis functionsin
order to emphasize the fact that the network can have a more elaborate form of composition than a simple weighted sum
of basis functions.



Sigmoid Gaussian

Figure 1.1: Examplesof basic functions used in artificial neural networks.
implement with dedicated VLS| hardware, we will focus in this dissertation on architectures that
have fixed replicated structures and use on-line learning algorithms. Particularly, we are interested
in architectures whose learning agorithms can be expressed as simple recursive equations and do
not use complicated data structures. Most of these architectures are homogeneousin the aspect that
they are composed of the same types of basic functions. The architectures that are composed of
global-support basic functions, such as, the multi-layer perceptron [2], tend to form very compact
representations but require along training time. Conversely, the architectures that are composed of
local-support basic functions, such as, aradial basis function network [3, 4, 5, 6, 7] tend to learn
rapidly, but requires more extensive hardware, i.e., alarge number of processing units.

Traditional artificial neural network architectures solvetheir tasks by addressing the entire
problem as awhole. However, this approach is not sufficient to cope with large, complex problems.
Simply extending these architectures to ever larger homogeneous systems in order to solve larger
praoblemsisimpractical. Training large-scal e networks composed of global-support basic functions
asmonolithicsystemsisunacceptably slow because alarge number of parameters have to be adjusted
concurrently. Experimental studies indicate that the learning times of these monolithic networks
scales poorly with the sizes of problems|[8]. For example, Tesauro and Janssens[9] experimentally

showed that the learning time of the multilayer perceptron trained with error back-propagation [2]



for the XOR problem grows exponentialy with the complexity of the problem. Since there is no
efficient way to bias the structures of these networks, the large amount of training datais needed
[10]. On the other hand, building alarge scale network composed of local-support basic functions
in parallel VLSI hardware will typically be too costly because the structure of the network would
have to be very large and because its connectivity requirements would be excessive. According to
Akersand Walker [11], the connectivity of anetwork with just afew thousand processing elements
would exceed the current or even projected interconnection density of ULSI system.

The existence of heterogeneous organizations in mammalian visua systems[12, 13, 14]
suggests that artificial neural networks for solving large, complex problems should be composed
of variety of modules, each dedicated to a different sub-task. Severa heterogeneous architectures
based on task decomposition [15, 16, 17, 18, 19, 20, 21, 22, 23] have been proposed for solving
large and complex supervised learning problems. One embodiment of such architectures comprises
a gating module that divides the assigned task into subtasks and a collection of speciaized expert
modules, each of which isassigned to solve a particular subtask.

Jacobs [22] has proposed a class of heterogeneous architectures that are based on an
associative Gaussian mixture model. This model assumes that the error difference between the
target output and the output of an expert module has a Gaussian distribution. The output of
the architecture is a linear combination of the outputs of all the expert modules, weighted by the
corresponding outputsfrom the gating module. Thelearning god of thisarchitectureisto maximize
the negative log likelihood of generating the desired output under this model. This study shows
that these architectures can achieve better accuracy than a single multi-layer perceptron trained by

error back-propagation. However, their convergence rate, similiar to that of a single multi-layer



perceptron trained by error back-propagation, is still too slow for practical purposes, since al the
parameters of a system in these architectures are adjusted concurrently, which leadsto undesirable
coupling that slows down the convergence rate.

Severa other researchers [15, 17, 19, 21] have proposed another class of heterogeneous
architectures that are based on k-means partitioning. In these architectures, the k-means algorithm
is used by a gating network to partition the domain of an assigned task into non-overlapping sub-
domains. The task defined on each sub-domain is then solved by an expert module trained by a
supervised learning algorithm based on gradient descent. The class of heterogeneous architectures
based on k-means partitioning has been shown to have a higher accuracy and faster convergence
rate than asingle multi-layer perceptron trained by error back-propagation, i.e., for approximating a
2-dimensional sincfunction [21] and for recognizing Japanese characters [23]. In addition, systems
of these heterogeneous architectures have also been shown to use less hardware than radial basis
function networks, i.e, in time series prediction [17]. Because of their advantages in speed and
hardware over the traditional architectures, we examine in this dissertation the on-line version of a
class of heterogeneous architectures that are based on the k-means partitioning. Our investigation
will concentrate on both the performance and algorithmic complexity of these architectures when
addressing large, complex problems. We believe that this investigation provides a guide for the

construction of large general purpose artificial neural networks.

1.2 ThesisOverview

Following this introduction, the background material for the dissertation and the math-

ematical notation used in the thesis are provided in chapter 2. The k-means clustering agorithm,



the supervised learning a gorithms based on gradient descent, and the heterogeneous architectures
based on k-means partitioning are briefly reviewed.

The performance of the heterogeneous architectures based on k-meanspartitioning strongly
dependson theefficacy of thek-meansa gorithmin decomposing theassigned task. Thusin chapter 3
we investigate the k-means algorithm in general and the adaptive k-means algorithm in particular.
We introduce two novel mechanismsfor improving the performance of the k-means agorithm. The
first mechanism is for biasing the partitioning process so that it can achieve an optimal partition.
The second mechanism is for adjusting the learning rate dynamically to match the instantaneous
characteristics of a problem, permitting the algorithm to converge first very rapidly and later very
closely towards an optimal solution. The dynamic adjustment of the learning rate also renders the
algorithm usable for non-stationary situations.

In chapter 4 we introduce an enhancement for the class of heterogeneous architectures
based on k-means partitioning. The enhanced architectures are characterized by a novel k-means
algorithmthat not only considerstheinput distribution but al sointegratesintoitspartitioning process
information about the goa function and the capabilities of the expert modules. The new k-means
algorithm alows each individual region in the partition to adjust its size so that the representation
resourcesin al theregionsare optimally used. In order to enable the proposed k-means algorithmto
achieve its optimal performance and to be usable for both stationary and non-stationary situations,
we have also included the two mechanismsintroduced in chapter 3.

Chapter 5, 6 and 7 present the performance and complexity evaluation of the enhanced
heterogeneous architectures. In chapter 5 the performance of these enhanced heterogeneous archi-

tecturesis evaluated compared against that of theradial basisfunction architectures [6], and agai nst



multilayer perceptrons trained by the error back-propagation algorithm [2] using the Mackey-Glass
time series prediction benchmark and ahand-written capital |etter recognitiontask. For the Mackey-
Glassproblem, where theinput dimensionisquitelow, we al so compare the enhanced heterogeneous
architectures with the architectures based on the lookup table and on the local model approaches
[24, 25].

In chapter 6, we investigate the complexity of serial implementations of the enhanced
heterogeneous architecture compared to those of the radial basis function and back-propagation
architectures. We analyze the implementation of each architecture to determine the number of
arithmetic operations in its training cycle, and aso the time needed to perform these operations
seridly. Inchapter 7, we examine the complexity of parallel implementationsof the af orementioned
three architectures. We determine for each architecture the implementation cost, defined as the
silicon area required by the arithmetic blocks in the implementations. We aso compute the time
needed by each architecture to complete its training cycle assuming maximum parallel execution.
Finally, we summarize the results of this study and recommend directions for future reserach in

chapter 8.



Chapter 2

Heter ogeneous Architecture Based on

K-Means Partitioning

The heterogeneous architectures[15, 17, 19, 21, 23] that weinvestigatein thisdissertation
are composed of a gating module that uses the k-means algorithmto partition an assigned task, and
acollection of specialized expert modulesthat are trained by a supervised learning a gorithm based
on gradient descent. In this chapter, we will first review the k-means algorithmin section 2.1, and
the supervised learning algorithms based on gradient descent in section 2.2. We will then cover
in section 2.3 the mathematical definition of the heterogeneous architectures based on the k-means

partitioning.

2.1 K-MeansClustering Algorithm

The k-means clustering agorithm [26, 27, 28, 29] has been applied in many areas of

applications. In the area of communications, it has been used for compressing image or speech



data. In the area of connectionist network modeling, it has been used for processing the input data
of complicated classification tasks, e.g., in feature-map classifiers [30] or in radia basis function
networks[29]. Inthisdissertation, weareinterested in applying thek-meansal gorithm to decompose
the given task for heterogeneous architectures.

The task of the k-means agorithm is to partition the domain Z of input pattern & into
K regions. When the Euclidean distance is used as a deviation measure between & and reference
vector ¢, the k-means clustering problem can be formulated as that of finding a partition [ Z, ... ,

Tk ] and reference vectors é, ... , ¢x that minimizethe total spatial variation:

K
Tv=Yu  with o= / p(@)||7 — &2 d7, 2.1)
k=1 Tk

where p denotes the probability distribution of #, and the notation || || denotesthe I, norm. Quantity
v, isthespatial variationinregion 7, andis defined by the expected val ue of the squared Euclidean
distance between ¢, and ¥ in 7. The value of v; thus depends on the location of ¢ and on the
geometrical properties of the region 7.

One commonway for defining region 7. in the partition isto use a member ship indicator.
The membership indicator M), specifies whether a given point Z in Z belongs to region Z,. We
defineitsvalueto be 1if #isin Z; and O otherwise. For the traditional k-means agorithm, which
is based on the Euclidean deviation measure, the membership indicator M}, is given by

1if |F—Gl2 < ||#—¢|2 foreachi#k
My,(7) = . 2.2)

0 otherwise

For the event of more than one minimum ||# — ¢||, we set M}, with thelowest index k to 1 and the



othersto 0.
In the batch mode of operation, the k-means algorithm is presented with an ensemble of
input patterns 71, ... ,Zp. It determines the reference vectors and the corresponding partition using

the following algorithm:

Step 0:  initializethereference vectors é, ... , ¢k .
Step 1. for each #;, determine the membership indicator My (x;).
Step 2:  computethetota spatial variation of the partition generated in step 1.
if itsvalueis small enough, stop.
Step 3:  updating reference vectors according to
& = {3000y Mu(@)F;} /{51, Mi(E:)} for 1<i< K.

Step4: gotostepl.

It should be noted that such an iterative improvement algorithm need not necessarily
converge to an optimum solution; its performance depends on the initia positions of the reference
vectors. It is often useful, therefore, to enhance the algorithm performance by providing the
algorithm with good initia reference vectors, and perhaps to start it with severa different initial
reference vector sets.

In addition to the batch mode of operation, the k-means algorithm can aso operatesin
the on-line or adaptive mode. In the adaptive mode of operation, where the ensemble of # is
not available, the k-means a gorithm derives the reference vectors and the corresponding partition
through time-averaging. It iteratively computes a new value of the reference vector ¢, 711 after

each presentation of an input vector Z7 using the following equation:

1= Cor + Mp(Z7) {08 (¥1 — Cu7) ], (2.3)
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where 7, isthe learning rate. For the traditional adaptive k-means agorithm, the learning rate

e 1S defined to be constant.

2.2 Supervised Learning Algorithms Based on Gradient Descent

The objective of supervised learning is to adjust the function of a network so that it best
approximates the goal function provided by training data. Let ¢ : R™ — R"™ denote the goal
functionand f : R™ — R" denote the network function. Assume that the characteristics of the
network function f depend on a parameter vector «. To make explicit the dependence of fon
parameter @, we will write f(w, -) instead of f With the mean sgquared error criterion, supervised
learning can be formulated as a problem of finding «* that minimizesthe cost function:

MSE= | p(@) /(5,7 — (@) dz, (24)
where || || isa Euclidean distance and p isthe distribution of # defined on the input domain 7.

In most actua applications, the exact information of distribution p is not available and

must be derived through the training data. Assume that the training set consists of (1, §(Z1)),...,

— —

(Zp, §(Zp)). Wethusinstead minimizein practice the following cost function:

MSE =Y e(d, 7)) with e(8, &) = || f(&, ;) — §(Z)|)% (2.5)

Many supervised learning agorithms have been proposed; however, most of them are
developed based on the gradient descent principle. Examples of supervised learning algorithms

based on gradient descent are the least mean squared (LMS) algorithm [31] and the error back-
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propagation algorithm [2]. These supervised learning a gorithms have proven to be effective for
many applications despite their simplicity.

Assume network function f has continuousfirst partial derivativeson RM . For the batch
mode of operation, where the entiretraining set is available, the algorithm based on gradient descent

for finding w* that minimizesthe MSE in equation 2.5 is defined by the iterative equation:

P

Wry1 = Wy — 1ga Yy Ve(dr, T;), (2.6)
=1

where 7,4 iS @ nonnegative scalar constant. According to this agorithm, we take a step from point
w7 dong the direction of the negative gradient of MSE to a new starting point @y 1.

In some applications, the a gorithmis confined to work with one sample of aninput-output
pair a atime. In thison-line or stochastic mode of operation, the algorithm for minimizing MSE

based on gradient descent is defined as:

QBT_|_1 = lBT — Ngd Ve(lﬁT, fT). (2.7)

where £ isthe sample of input vector at timeT. Note that the gradient in equation 2.7 is estimated
by Ve(wr, Z7). The on-lineversion of the supervised learning a gorithm based on gradient descent
may be preferable to the batch version when the training set is large. In addition, the noise due
to the use of an estimated gradient can help the agorithm escape from local minima, allowing the

on-line agorithm to achieve a better performance than the batch agorithm.
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2.3 Structure and Learning Algorithm of Heter ogeneous Ar chitecture
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Figure 2.1: Schematic diagram of a heterogeneous architecture based on k-means partitioning.

Figure 2.1 showsthe schematic diagram of aheterogeneous architecture based on k-means
partitioning. It depicts a system that implements a mapping f from the input domain Z in RM to
RYN. Asshowninthediagram, thissystem of heterogeneous architecturesis composed of ak-means
gating module and K expert modules. The task of the gating module is to generate membership
indicators M, using thek-means algorithm, and thetask of expert module % isto generate afunction

fi. The output of the system is defined to be
— I( —
J(E) =Y My(&) fr(E). (2.8)
k=1

When such a heterogeneous architecture is used to approximate a goal function g, the

system partitionstheinput domainZ of g into non-overlapping regions using the k-meansagorithm.
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For a system with K expert modules, the input domain 7 is partitioned into K regions. 71, ... ,
Tr, which are specified by K membership functions: M1 , ... , M. Initsorigina form, where
the traditional k-means algorithm is used, the membership indicator My is based solely on the
distribution p, and defined according to equation 2.2.

Using the partitioning generated by the k-means algorithm, the system then decomposes
the goal function g into A" component functions: {1, ..., §x }, We use g to denote the restriction
of g to 7. Each of these g;. is then approximated by an expert module %, whose characteristics
depends on parameter @,. We typically set @ so that the partial mean squared error MSE;, is

minimized, where the MSE,, is defined as:

MSE. = [ p(d) |1 fi(.7) - Gl 227, @9)

Thesepartia mean squared errorsare usual ly minimized using supervised | earning based on gradient
descent.

In thisdissertation, we are interested in the on-line version of the heterogeneous architec-
tures based on k-means partitioning. In the batch mode of operation, the parameters in the system
are updated only after al the patternsin the training set have been presented. 1n the on-line mode of
operation, the parameters are adjusted after each pattern presentation. Since a system with on-line
learning works with one training pattern at atime, the system does not have to store dl the training
dataand it can run "live" with aprocess that generates new data continuously. Since the parameters
are constantly updated in the on-line mode, a system with on-line learning can track changesinthe
statistics of the training data faster than a system with batch learning. In addition, a system trained

by an on-linelearning algorithm tends to learn faster, especially for the case of large training sets.
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As a demonstration of how the heterogeneous architectures based on k-means partition-
ing solve their assigned problems, we apply a system in these architectures to approximate a
1-dimensional function of the form:

g(z) = 422, (2.10)

where # is a random variable with uniform distribution on [—0.5,0.5]. The system used in this
demonstration is composed of 4 expert modules each with a linear network function f; and of a
k-means module that partitions the input domain into 4 regions. Overall, the system generates the

network function of the form:

4
flz) =" My(z) fu(x). (2.11)
k=1
Membership indicator M, isdefined based on the reference points c1, ¢z, 3, and ¢4 of the k-means
module, and it has the following form:

1 if |loe—c|| < |Jlz—¢l foresch:#k
My(z) = . (2.12)

0 otherwise

In the event of more than one minimum || — &||, we set the M, with the lowest index £ to 1 and

the othersto 0. Thelinear function f; is expressed in the form:
fk(x) = ay + bpx, (213)

where . is the constant of f. and by, is the coefficient of =. We start training the above system
by initializing ¢1 ¢, c3 and ¢4 to 0; and all the parameters of expert modules f1, f> fz and f4 to

1010, We then iteratively update these parameters using a random sequence of input-output pairs
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generated according to equation 2.10.
Let z7 and ¢, v denote the input = and the reference point c;, at iteration T. Also, let
ar,7 and b 7 denote the two parameters of f;, at iteration T. The algorithm for updating the system

parametersin the T-thiteration is as follows:

Algorithm:
Step 1:  compute the network output f (7 ) according to equations 2.11.
Step 2:  updatethe reference points ¢, according to
cer+1=cxr + Mp(er) {nem (27 — 1)},
where the learning rate ., is defined to be 0.01.
Step 3:  update the parameter of the expert modul es according to
ag, 741 = ak, 7 + Mims My (z7)o7 forl<k<4
b r+1 = i1 + Mims My (27)d7 27 for1<k<4
where s isdefined to be 0.01 and é7 isdefined to be f(xp) — g(z7).

Figure 2.2 illustratesthe performance of the heterogeneous system on arandomized i nput-
output sequence generated according to eqaution 2.10. Figure 2.2a shows the normalized mean
squared error (NMSE) as a function of the number of patterns presented. The normalized mean
squared error is defined as the mean squared error between f and ¢ normalized by the mean squared
valueof g. Each curve hereistheaverage of fiveruns, each with different training pattern sequences.

Figure 2.2b depicts the function f of the heterogeneous system obtained after 100,000
pattern presentations, compared to the goa function ¢g. The performance of a heterogeneous
architecture strongly depends on the partitioning of the input domain. For this simpleillustration,
where g isa1l-dimensional quadratic polynomial and » isuniformly distributed in theinput domain,
the partition that minimizesthe total spatial variation defined in equation 2.1 and the partition that

minimizes the mean squared error defined in equation 2.4 are the same. As aresult, the traditional
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NMSE g(x) and f(x)
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Figure 2.2: A simple demonstration example with a 1-dimensional quadratic function.

(& The NMSE vs. the number of patterns presented. (b) The goa function ¢ and the network
function f.

k-means agorithm is able to generate a partition that optimally minimizes the corresponding mean
squared error between f and ¢g. For more complicated problems, the partition with minimum total
gpatial variation and that with minimum mean squared error are usually different. Thus, in general,
the traditional k-means algorithm cannot partition the input domain of a heterogeneous architecture
optimally. In chapter 3, we introduce some mechanisms to improve the partitioning capabilities.
Using the insight gained from chapter 3, we then introduce in chapter 4 an improved k-means

algorithm that iswell suited to partition the input domain of a heterogeneous architecture.




17

Chapter 3

Adaptive K-Means Algorithm with

Variation-Weighted Deviation M easure

We introduce in this chapter an enhancement of the traditional k-means agorithm that

attempts to minimize the total spatial variation:

K
Tv=Y v with o= / p(@)||7 — &2 d7, 3.1)
k=1 Tk

This TSV cost function is commonly used for input feature extraction and signal compression.
The new k-means a gorithm approximates an optimal clustering solution with an efficient adaptive
learning rate, which renders it usable even in situations where the statistics of the problem task
vary slowly with time. It has been shown to perform better than other k-means variants on several

tutorial examples, and aso on vector quantization coding of image data.
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3.1 Problemsof the Traditional Adaptive K-Means Algorithm

One serious problem with most k-means agorithms is that the clustering process may
not converge to an optimal or near-optimal configuration. The agorithm can assure only local
optimality, which depends on the initia locations of the representative vectors [32]. Some initial
reference vectors may get stuck in regions of the input domain with few or no input patterns,
and may not move to where they are needed. A traditional way to deal with this under-utilization
problemisto employ leaky learning [ 33] where, in additionto adjusting the closest reference vector,
other reference vectors are also adjusted but with smaller learning rates. Another approach is the
conscience learning law [34] where the determination of the closest reference vector uses a norm
that favors the reference vectors that in the past have responded to fewer patterns, thus equalizing
the average rates of winning for each region. However, these two methods yield partitions that are
not optimal or near optimal with respect to the total spatial variation cost function, since the added
mechanisms have the effect to distort the cost function. Moreover, leaky learning increases the
amount of computation required for each pattern presentation since all the reference vectors have
to be updated.

In the on-line mode, the performance of the k-means algorithm depends strongly on the
learning rate. There is a trade-off between the dynamic performance (rate of convergence) and
the steady-state performance (residua deviation from the optimal solution). When using a fixed
learning rate, it must be sufficiently small for the adaptation process to converge. The smaller the
learning rate, the smaller theresidual deviation but the slower the convergencerate. Optimal learning
rates cannot be determined in advance since they are problem dependent; normally a conservative

valueis chosen initialy and then improved by trial-and-error. Because of this difficulty, adaptive
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k-means agorithms with variable learning rates have been investigated. Darken and Moody first
proposed to makethelearning rate of each cluster center equal to theinverse of the squareroot of the
number of patterns assigned to that center [35]. Since the convergence of thislearning scheduleis
very slow, they later proposed a search-then-converge schedule, where i = 10/(1+ 7'/7) [36]. In
this scheme, thelearning rate stays near 7o for asearch time 7 and then decreases at therate of 1/7'.
For many problemsthis can yield precise convergence in short times. However, it isnot possibleto
determine an apriori best search time ~ for al possible problems. Furthermore, such approaches
with pre-determined learning rates are not flexible enough to handle problems with time-varying
characteristics.

This chapter presents an alternative approach that solves both of the above two problems
which have been attacked independently in previous work. We describe a method that has the

following characteristics:

¢ Italowstheadaptation processto escape from bad minimawithout distorting the cost function

for asymptotically large K .

¢ It dynamically adjuststhe learning rate based on the quality of the current clustering.

o Itisapplicable to situations where patterns are generated from sources with non-stationary

distributions.
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3.2 Optimal Criterion for an Adaptive K-Means Clustering

As mentioned in section 2.1, the total spatial variation of the k-means agorithm which

we are trying to minimizeis given by:

K

V=Y u with o = / p(7) |17 — &||2 d7. (3.2)
k=1 Tk

where v, represents the spatial variation in region Z;. Its value depends on the location of ¢, and

the geometrical properties of theregion 7. Gersho [37] showed that:

For a continuous underlying probability density p and large K, all regionsin an optimal

\oronoi partition have the same spatial variations vy.

Because the k-means agorithm produces a Voronoi partition, we conjecture that it is worthwhile
to aim for a partition in which all the regions have the same variations v, even if K issmall and
the distribution is non-smooth. This goal is built directly into the cost function based on which the
reference vectors are adjusted. In this manner we can eliminate most bad clustering configurations

from the solution set and thus increase the chance of finding an optimal or near-optimal solution.

3.3 Variation-Weighted Deviation Measure

We seek to improve the capability of the k-means agorithm in partitioning an input
domain by including the above optimality criterion into the deviation measure of the algorithm.

Suchinclusionisachieved by the use of the variation-wei ghted deviation measure. In thismeasure,
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the deviation between # and ¢, is defined as:
d(&,&) = ve|& - & (3.3)

This deviation measure thus results in a variation-weighted membership indicator My, .4 Of the
form:

1 if v |7 — @))% < v ||¥— ¢ foreachi # k
M pugi (%) = (34)

0 otherwise

In the event of more than one minimum vy, || — ¢ ||, we set the M), with the lowest index % to 1 and
the othersto 0. Multiplying the Euclidean deviation measure by variation »;, biases the membership
indicator in favor of regions with smaller variation v, and thus leads to the robust equalization of
v among al the regionsin the partition.

With the variation-weighted deviation measure, the k-means a gorithm attempts to mini-

mizethe tota »z-weighted variation:

K K
W= Yo [ p@)|F-alPdi= ) oR (35
k=1 I k=1

assuming that v, can be perfectly estimated. It is shownin Appendix A that the clustering process
based on minimizing TVV is capable of attaining a solution that is optimal with respect to the total
gpatial variation for asymptoticaly large K. Thisindicates that in the ideal situation where K is
large and vy, is perfectly estimated, the above biased deviation measureforces al regionsto "equaly
share the load" without distorting the total spatial variation cost function, asis the case with other

equalization schemes.
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To obtain theestimated vari ation vy, for each region, we use thefollowing simple, weighted

running time-average :
dpr1=0atpr + (1—a) {Mk,uwgt(fT) |27 — 5k,TH2} , (3.6)

In the first term, we multiply 95, 7 by a which is a constant slightly less than 1. The purpose is
to reduce the value of the previous estimate v, 7. In the second term, we add to the new estimate
oy, 7+1 New information about the variation v;,. Notethat the closer a isto 1, the more accurate the
estimate of vy, but the longer the estimation time constant. We start this estimation by initializing
al v, o to the same small number. Thisalowsthe effect of theinitializationto disappear quickly so

that the estimated v, is soon dominated by the actual data seen by each region.

3.4 Dynamic Adjustment of L earning Rate

An optimal value for the instantaneous |earning rate could be derived from the difference
between the quality of the partition at that moment and that of a known target partition: When the
partitionisfar from its destination, thelearning rate should be large so that the partition can improve
quickly. As the partition gets closer to its target, the learning rate should be reduced in order to
minimize the residual deviation from the target solution.

The success of such amethod depends on how the quality of a partition is measured. For
an optimal solution, the variationsv;. for dl regionsin atarget partition must be equal. Our estimate
of quality is thus based on the similarity of the current »;’s and is derived from the entropy of the

normalized values of variations v;. Thus, the quality of a partition having variations v1, v, ..., v
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is defined to be:
K K
H(Ul, V25 eees ?J]() = Z —Vk,norm In(vk,norm) with Vi norm = vk/(z vi) (37)
k=1 =1

This approach appears to be a "natural” choice for the quality measure, as it does not rely on any
arbitrary constant or user-adjustable parameters. According to this measure, the quality of afina
partition isamaximum equal to In( &), and it occurs When v1 ,0rm = v2.00rm = --- = UK norm =
1/ K. Using thismeasure, we can define the learning rate ; at time T as:

IN(K) — H(v1,v2, ..., vK)
In(K) '

n= (3.8)

Thislearning rate dependsonly on thecurrent values of thevariations vy ; it thusallowsusto compute
a learning rate without any knowledge of the final partition. This learning rate is automatically
limited to the range of 0 and 1; it is close to 1 when the current partition given by the algorithm is
far from an optimal solution, and close to O when it is close to afinal optimal partition with all vy,
being equal.

Such an automatic determination of the learning rateis preferable to any pre-determined
rate or schedule. The learning rate automatically adjusts to the problem characteristics and requires
neither user interaction nor prior information about the task. It is also applicableto problemswhose

statistics vary slowly with time, or occasionally show a sudden change.
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3.5 [lllustrative Experiments

In this section, we investigate the performance of the optimal k-means agorithm and
compare it to other versions of the k-means agorithm on several simple tutorial examples. The
training patterns used in these examples are generated from synthetic probability distributions
including both stationary (section 3.5.1) and non-stationary (section 3.5.2) statistics. In section 3.6,

we then evaluate the optimal k-means algorithm on a practical application: vector quantization.

3.5.1 Stationary Distributions

Thissubsection presentstheresults of an empirical comparison on problemswhose pattern
distributions are stationary, i.e., the probability distributions of the training patterns do not change

with time. In this subsection, we compare the following four k-means algorithms:
¢ Optm : the proposed optimal adaptive k-means agorithm, (o = 0.9999);

¢ Cons : the adaptive k-means algorithm with the conscience learning rule [34],

(B = 0.0001, ; = 0.01);
e Sort : the adaptive k-means algorithm with the square root learning rate [35];
e Trad : thetraditional adaptive k-means algorithm [27], (n = 0.01).

We empirically evaluate these four algorithms on seven situations corresponding to three
probability distributions in 1 dimension and four distributions in 2 dimensions. The three 1-
dimensiond distributionsused in thissimulation are : uniform, square, and 3-level Cantor distribu-

tions (Fig. 3.1). The data in the uniform distribution are uniformly distributed in [—0.5, 0.5]. The

Thisisthe value used by Desieno [34] and it is equivalent to o = 0.9999.
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density of the square distribution is proportional to the squared distance from the origin. The dis-
tribution of the 3-level Cantor set isuniformly distributed on afractal; it may be formed by starting
with the unit interval, removing its middle third, and then recursively repeating the procedure on

the two portions of the interval that are | eft.

ul(x) s1(x) cl(x)
1 3 3.375
-0.5 0.5 X -0.5 0.5 X -0.5 0.5 X
@ (b) (©

Figure 3.1: Distributionsfor the 1-dimensional training sets: (@) uniform, (b) square, and (c) 3-level
Cantor.

For the 2-dimensional distributions, we employ: uniform, square, 3-level Cantor, and
1-dimensional sub manifold distributions. The first three distributions are simply the products of
two corresponding distributionsin 1 dimension. The fourth distribution consists of data points that
are restricted to lie on a S-shaped curve defined by the equation y = 8z° — 2, where = and y are
the horizontal and vertical ordinates, respectively, and = is uniformly distributed in the interval

[—0.5, 0.5]. Sample sets drawn from these 2-dimensional distributionsare shown in Figure 3.2.
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Figure 3.2: Datadrawn from the 2-dimensional test distributions. (a) uniform, (b) square, (c) 3-level
Cantor, and (d) 1-dimensiona sub manifold.
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Figure 3.3 shows the simulation results of the four agorithms on the 1-dimensiona
distribution problems. In these 1-dimensiona problems, we eval uate each agorithm on a sequence
of patterns randomly chosen from a set of 2000 patterns generated according to a specified test
distribution. We dividetheinput domaininto 10 regions (k = 10) and initialize the reference vectors
to uniformly distributed random locationsin theinput domain. For the Optmalgorithm, weinitiaize
the variation v of each region to be 10~%°, and for the Cons algorithm, we initialize the winning
probability of each region to be (1/K) = 0.1. To improve statistical accuracy, we average the
simulation results over 5 runs, each with different pattern sequences and different initial reference
vectors. The same pattern sequences and the same initia reference vectors are applied to every
algorithm in order to achieve a fair comparison. We measure the performance of each agorithm
using the normalized total spatial variation (NTSV), defined as the total spatia variation divided
by the variance of #. Using the NTSV as the performance measure makes the simulation results
invariant to the spatial scaling of input #.

Figure 3.3a shows the simulation results of the four algorithms on the 1-dimensional
uniform distribution problem. We plot in this figure the residual deviation of NTSV from the
computed optimum value with respect to time measured by the number of pattern presentations.
The simulationindicates that at the beginning, the Optmalgorithm is overly responsive because we
start the simulation with almost zero variations. Until each region has seen about 3 to 5 patterns,
their boundaries change greatly in response to every new data pattern. After areasonable estimate
of the v;’s has been built up, the agorithm minimizes the NTSV rapidly. Its NTSV becomes lower
than that of the other algorithms after about 1000 presentations. Asymptotically, the new agorithm

approaches the optimum value more closely than any of the others.
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Figure3.3: Averagesimulationrunsof thefour k-meansalgorithmson the 1-dimensional distribution
problems. (@) The simulations on 1-dimensional uniform distribution. (b) The learning rates on
1-dimensional uniform distribution. (c) The simulations on 1-dimensional square distribution. (d)
The simulations on 1-dimensional Cantor distribution.
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Figure 3.3b showsthelearning rates » for this 1-dimensional uniform distribution problem.
Cons and Trad have fixed learning rates of magnitude 0.01. The square-root schedule is roughly
a straight line with slope -1/2 in this log-log plot. For the Optm agorithm, its learning rate
automaticaly behaves similar to that of a search-then-converge schedule, with an initial high
learning rate, which then declinesrapidly with a slope closeto the inverse of the number of patterns
assigned to each cluster. The time for the break-point between the two phases is determined
automatically by the nature of the problem.

For the square distribution, the performance of each agorithmis similar to that of the uni-
form case. The new agorithm Optm surpasses the others after about 2000 presentations (Fig. 3.3c).
For the case of the 3-level Cantor distribution, where the NTSV cost function has bad local minima,
the Optm algorithm performs much better than the others; it approaches a final value which is one
tenth of that approached by the Cons agorithm and one fifth of that approached by Sgrt and Trad
(Fig. 3.3d). The Optm agorithm can achieve alower NTSV than other algorithms because it avoids
being trapped in abad local minimum. In 5 out of 5 runs, the Optm algorithm can find the good
clustering configuration (Fig. 3.4a), whereas, the Trad and Sgrt algorithmsfind good partitions only
in 2 out of 5runs (Fig. 3.4c-d). The Cons algorithm has difficulties locating the good solution due
to the conflicting goals between the NTSV cost function and the bias mechanism for equalizing the
winning probability of each cluster (Fig. 3.4b). The fact that the Optm agorithm found a good
solutionin 5 out of 5 runsindicatesthat it isinsensitive to the initialization specifications.

Figures 3.5 shows the simulation results of the four algorithms on the 2-dimensiona
problems. We derived these simulation results using asimilar procedure as that employed in the 1-

dimensional problemsexcept that we divide each input domain of these 2-dimensional problemsinto
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Figure 3.4: Five individual smulation runs of the four k-means algorithms on the 1-dimensional
3-level Cantor distribution problem. (a) The simulationsof the Optmalgorithm. (b) Thesimulations
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Figure3.5: Averagesimulation runsof thefour k-meansal gorithmson the 2-dimensional distribution
problems. The distributions that generate the training set are (a) uniform, (b) square, (c) 3-level
Cantor (4) and 1-dimensiona sub-manifold.
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16 regions (K = 16). Again, each curveisthe average of 5 individual simulation runs with different
random starting reference vectors and different pattern sequences. For the uniform distribution, the
NTSV of the Sgrt algorithm drops faster than the others in the initial phase. However, in steady
state the Optm agorithm out-performs the others by the some small degree (Fig. 3.5a). For the
square distribution problem, the NTSV given by Optm falls below that of the other three algorithms
after about 4000 presentations (Fig. 3.5b). In the case of Cantor distribution and the 1-dimensional
sub-manifold problems, the new agorithm Optm performs much better than the other agorithms
because it can avoid being trapped in bad local minima (Fig. 3.5¢-d).

Figure 3.6 shows resulting partitions obtained from the four algorithms on the Cantor set
problem after 10° pattern presentations. A small square indicates the center of a cluster, and the

surrounding ellipse represents the size of a cluster. The ellipse associated with cluster ¢ is defined

as
w_caczz Z/—sz
( 02’) + U;”) =1, (3.9)
z Y

where c,.; and ¢, ; are the horizontal and the vertical ordinates of the :-th reference vectors, and
o2 and 05 are the » and y variances of the patternsin region :. The Optm algorithm produces an
optimal partition (Fig. 3.6a). The partition obtained from Consisinferior to that of Optmsince some
clusters cover more patterns than others (Fig. 3.6b). In the cases of Trad and Sgrt, their partitions
are even worse since some of the clusters cover no patternsat all (Fig. 3.6¢-d). These empty clusters
areindicated by small squares without ellipses—two of them appear in the Trad case and oneinthe
Sgrt case. Similar results are also observed in the case of the 1-dimensional sub manifold problem.
For Trad and Sgrt, eight out of sixteen clusters cover no patterns (Fig. 3.7c-d). Also, because the

bias mechanism of the Cons distorts the NTSV cost function, the partition given by Optmiis closer
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Figure 3.6: A sample of the partitionsassociated with the 2-dimensional 3-level Cantor distribution
problem. These partitions are generated by the four k-means agorithms. (a) Optm, (b) Cons, (c)

Trad and (d) Sort.
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Figure 3.7: A sample of the partitions associated with the 1-dimensional sub manifold distribution
problem. These partitions are generated by four versions of k-means agorithms. (a) Optm, (b)

Cons, (¢) Trad and (d) Sgrt. Note the eight unused reference vectors in cases (c) and (d).
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to optimal than that of Cons.

3.5.2 Non-Stationary Distributions

This subsection eval uates the optimal k-means algorithm on problems whose patterns are
derived from time-varying distributions. We compare in this subsection the performance of the

following four adaptive k-means clustering algorithms:
e Optm : the proposed optimal k-means agorithm (« = 0.9999).

e Cons : theadaptive k-means algorithm with the conscience learning rule[34],

(B = 0.0001,% 5 = 0.01);

e Tradl : thetraditional adaptive ("on-line") k-means algorithm [27] (n = 0.1).

e Trad2 : thetraditiona adaptive ("on-line") k-means agorithm [27] ( = 0.01).

Because its learning rate is monotonically decreasing, the square root k-means agorithm is not
applicable for non-stationary situations and thus is not included in this evaluation. Based on the
1-dimensional sub-manifold distribution (Fig. 3.2d) in section 3.5.1, we have constructed three
non-stationary distributions. These distributions allow us to evaluate the performances of the
aforementioned algorithms in the following non-stationary situations.

(1) Constantly rotating distribution: We continuously vary the underlying distribution
by rotating the S-shaped curve counter-clockwise at the rate of 1 revolution per 20,000 pattern

presentations.

2Thisis the value used by Desieno [34] and it is equivalent to o = 0.9999.
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(2) Constantly trandlating distribution: We continuously vary the underlying distribution
by translating the S-shaped curve at the rate of 1 length-unit per 100,000 pattern presentations.

(3) Abrupt changein distribution: We abruptly change the distribution after learning has
reached steady-state (after 10° presentations/cluster). Wetransform the S-shaped curve by mirroring
the curve across the horizontal axis.

Figure 3.8a shows the simulation results of the four algorithms on the problem with
constantly rotating statistics. As indicated in the figure, the NTSV of Optm and Tradl are lower
than those of Cons and Trad2. Figure 3.8c shows the learning rates of the four agorithmsfor the
same problem. It reved s that the learning rates of both Optmand Tradl are larger than that of Cons
and Trad2. These larger learning rates alow Optm and Tradl to follow the changes more closely.
Contrary to Tradl whose learning rate is pre-determined, the Optm agorithm dynamically adjust
itslearning rate to match the nature of the problem. Similar results are also observed in the case of
the constantly translating distribution (Fig. 3.8b,d). To illustrate how well each agorithm follows
the rotating distribution, we plot in Figure 3.9 the locations of the 16 reference vectors after the
adaptation processes have reached stead state, i.e., after 8 full rotations of the S-shaped curve. This
figure shows that only Optm and Tradl can follow the rotating distribution closely. Because of
the vj-equalization, Optm can produce a partition in which the reference vectors are more evenly
distributed, and thus achieve a lower NTSV than Tradl. Cons can follow the rotation but with a
substantial phase lag. Trad2 with its small learning rate just averages over al the possible rotation
angles.

Figure 3.10ashowsthe simulationresult of the four algorithmson a data set with abruptly

changing statistics. The simulation indicates that only Optm and Cons can regain a performance
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Figure 3.8: Average simulationrunsof thefour k-means algorithmson the problemswith constantly
changing statistics. (&) The simulations on the rotating pattern distribution. (b) The simulationson
the trandlating pattern distribution. (c) The learning rates on the rotating pattern distribution. (d)
Thelearning rates on the translating pattern distribution.




37

e]®) /
o ) ©O¥0 ;
@O QQ@ \\% .
S . 7
e 5 3 O
Q Co %050
o,’l
@ (b)
o o)
o OQ@ [ elel o) o
o o ’ R o
/ Q) / 00
, o ~
@ oo 0 g
/ o o
o/l
(© (d)

Figure 3.9: Locations of reference vectors for the rotational non-stationary problem for (a) Optm,
(b) Cons, (c) Tradl, (d) and Trad2. The figures show the reference vector center locations after
160,000 presentations, i.e., after 8 full counter-clockwise rotations of the S-shaped curve.
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Figure 3.10: Simulationsof the four k-means algorithms on the problem where the training pattern
distribution experiences an abrupt change: (@) the normalized mean square error (b) and thelearning
rate for the Optm a gorithm.
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level equivalent to that before the change. Cons, however, cannot achieve as low a NTSV as
Optm, neither before nor after the change of the statistics, because its load balancing scheme
distorts the NTSV cost function more severely. The learning rate of the Optm agorithm is shown
Figure 3.10b. When the Optm algorithm first starts, the learning rate is large since the variance
of the 16 normalized variations vy, ., IS large. As the algorithm approaches an optimal steady
state, the variance decreases and the learning rate decreases correspondingly. At the moment right
before the change of the input statistics, the learning rate is 0.015, and the variance and mean of
the normalized variations vy, ;,or5, 1S 2.7 X 10~ and 1/16, respectively. When the input statistics
changes, the uniformity of the vy, ..., isdisturbed. The variance of vy, ..., increases gradually and
thusresultsin anincreasing learning rate. After 240 pattern presentations, i.e., after each region has
been assigned an average of 15 new pattern vectors, the variance of vy, .1, inCreasesto 4.3 x 104,

and the learning rate grows to 0.029, about twice its value before the change of the statistics.

3.6 Vector Quantization Coding of Image Data

In this section we evaluate the optima k-means agorithm in a realistic application,
specifically, vector quantization coding of amonochromeimage. We have chosen thisapplicationin
part because the computationisvery intensive dueto thelarge amount of datathat must be processed.
Furthermore, sinceitsworking principleis simple, it does not obscure the efficiency of the k-means
algorithm under test. Finally, the evaluation results can be expressed both numerically and visualy,
providing additional intuitive understanding of the differences among various algorithms.

Vector quantizationimage coding isused to reduce the transmission bit rate or datastorage

reguirements while maintaining an acceptable image quality. In this application, the images to be
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encoded are decomposed into small blocks, say 4 by 4 pixels, caled vectors. The resulting vectors
are represented by the "nearest” of a limited set of prototype vectors, called codewords. The set of
codewords used to represent an image, or a portion of an image, is called codebook.

The "LENA" image (Fig. 3.11) used in this section consists of 512 by 512 pixels, each
digitized into 8-bit gray levels. Following [38], we partition the imageinto 4 quadrants, and encode
each one separately with only 32 different codewords. To find the "best” 32 codewords for each
guadrant, we use k-means clustering to partition the vectors observed in a given quadrant into 32
clusters, and then define the centroids of the resulting clusters as the codewords. In this experiment,
each quadrant is decomposed into 4096 blocks of 4 by 4 pixels, each defining a 16 dimensional
vector. Theindividual encoding of the 4 quadrants of the image allows us to study the adaptability
of the optimal k-means agorithm when the source statistics is changing from one quadrant to the

next.

Figure3.11: The"LENA" image.
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For the purpose of comparison, we test here the following four k-means algorithms on

computing the codebooks for the LENA image:
e Optm : the proposed optimal k-means algorithm (o = 0.9999).

¢ Cons : the adaptive k-means algorithm with the conscience learning rule [34],

(B = 0.0001,2 5 = 0.01).
e Trad : thetraditiona adaptive ("on-line") k-means algorithm (» = 0.01).

e LBG : the classical batch k-means agorithm which is the generalized Lloyd clustering

algorithm proposed by Linde, Buzo, and Gray [39].

We have included the LBG agorithm in this evaluation because it is a standard method
used in image coding applications. Whereas Optm, Cons and Trad are adaptive on-line algorithms
in which the parameters are updated after each pattern presentation, the LBG algorithm operatesin
batch mode where the parameters are updated only after each iteration, containing all the patterns
in thetraining set.

To evaluate these four algorithms, we apply each of them to compute the codebooks for
the upper-left, upper-right, lower-left, and lower-right quadrants, in that sequence. For the first
(upper-left) quadrant, weinitiaizethe 32 codewordsto actual pattern vectors randomly drawn from
this quadrant. We then continue by presenting to the algorithm 81920 patterns randomly selected
from the upper-left quadrant. The 81920 pattern presentations correspond to 20 iterations of the
presentation of all 4096 patterns in the quadrant. To compute the codebooks for the other three

guadrants, we successively initidize the 32 codewords for the new gquadrant with the codewords

3Thisis the value used by Desieno [34] and it is equivalent to o = 0.9999.
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generated from the previous one.
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presentations presentations
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@ (b)
Figure 3.12: The normalized total spatial variation (NTSV) of the four k-means algorithms: (@) The

initial codewords are assigned to pattern vectorsrandomly selected from the upper-left quadrant. (b)
Theinitial codewords are assigned to uniformly distributed random locationsin the pattern domain.

Figure 3.12a shows the normalized total spatial variation (NTSV) of the four k-means
algorithms obtained from the above experiment. The results indicate that in steady state, Optm
performs better than the other three algorithms; it outperforms Trad and LBG by a small amount,
and Cons by a larger margin. In order to demonstrate the steady-state performance of these four
algorithms visually, we display in figure 3.13 the images encoded by the codebooks generated in
the above simulation. The visua quality of image 3.13a (encoded by Optm) appears to be slightly
better in the areas of the shoulder, forehead and nose, than images 3.13b-d (encoded by Cons, Trad

and LBG, respectively). This observation also corresponds to the fact that image 3.13a has the
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Figure 3.13: The encoded image with initial codewords assigned to randomly selected patternsin
the upper-left qudrant: (a) Optm, (b) Cons, (c) Trad, and (d) LBG.




higher signal-to-noiseratio (SNR) than the other three images, where SNR is defined as:

2552

NR = 10 log ( =,

) dB. (3.10)

With respect to the dynamic performance, figure 3.12a revedls that the LBG agorithm adapts
somewhat faster than the Optm agorithm after an abrupt change such as switching from one
guadrant to the next; the NTSV of the LBG agorithm drops slightly faster than that of the Optm
algorithm after the switching of each training set. This is a consequence of the batch operation
of LBG which tends to have a shorter effective memory of the initial codewords than an adaptive
algorithm such as Optm. The learning rate of the three "on-line" agorithms could be increased
to show a similarly fast response, but at the cost of some increase in the final steady-state error.
However, for an application such as image coding, we are primarily interested in the steady-state
performance since the clustering process is terminated when the error starts to show insignificant
reduction with each new iteration. In other applications where the problem statistics are non-
stationary and unknown in advance, Optm is more appropriate than LBG, because it can track the
statistics changes constantly and automatically without resorting to an external agent to re-initiate
the training process.

Figure 3.12b showsthe NTSV resulting from asimul ationsimilar to thefirst one. However,
the starting codewords in this case are chosen from uniformly distributed random locations in the
pattern domain of [0, 255]'6. This initialization method is inefficient since some of the initial
codewords may liein regions with no pattern, and thus may resultsin some unused codewords. By
comparing theresults of thissimulation with that of the first simul ation, we can study the robustness

of each algorithm to the selection of theinitial codewords.
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Comparing the NTSVs of the four agorithms in the second simulation, we see that the
NTSV for the Optm algorithm is always lower than for the other three algorithms. At steady state,
the NTSV of Optmis about 80% of that generated by LBG, which isthe second best. Thusthe Optm
algorithm clearly outperforms the other three algorithms when the starting codewords are poorly
initialized. When comparing the NTSV in this figure with that in figure 3.12a, we see that only the
Optm agorithm maintains near-optimal performance in spite of theinefficient initial codewords.

Figure 3.14 shows the encoded images using the codewords generated from the second
simulation. Comparing image 3.14awithimage 3.13a, wefind that the visual quality of bothimages
is about the same. The SNR of image 3.14ais 99.5% of that of image 3.13a. This demonstrates
that Optm can find good codewords even with inefficient initialization.

Comparing images 3.13b-d with images 3.14b-d, we find obvious degradation of the
visua quality around the shoulders, faces, and the hats in images 3.14b-d. Especially, image 3.14c
obtained with Trad exhibits annoying edges and shading stepsin many area. It also has the lowest
SNR of al the images corresponding to about 75% of the SNR for Optm. Images 3.14b and 3.14d
exhibit about 89% to 93% of the SNR for Optm. This degradation indicates that the Cons, and
LBG, and in particular the Trad algorithmswill perform far from optimal if they are inappropriately

initialized.

3.7 Summary

The optimality criterion for this new algorithm is derived from the assumption that the
distribution p is smooth and K islarge. Even though thisis not true for many practical cases, our

simulation results show that the algorithm has better dynamic and static performances than other
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Figure 3.14: The encoded images with initial codewords assigned to uniformly distributed random
locationsin the pattern domain: (&) Optm, (b) Cons, (c) Trad, and (d) LBG.
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k-means variants. The superior performance is attributed to two novel mechanisms employed. The
first one guidesthe partition towardsan optimal solution. It allowsthe new agorithmto out-perform
thetraditional and the square-root k-means a gorithms. Since the new biasing mechanismis capable
of attaining the optimal partition for asymptotical large K, the resulting algorithm can a so generate
a partition with lower total spatial variation than the a gorithm based on the conscience rule which
simply equalizes the number of patternsin each region.

Thesecond mechanism dynamically adjuststhelearning rate and thereby makesit possible
to learn very quickly initialy, without sacrificing accuracy in approximating the final optimal
solution. As the partition approaches an optimal solution, the learning rate decreases; thisin turn
alows the partition to move even closer to the optima value. A small threshold vaue in the
computed learning rate can be used as a simple stopping criterion for the adjustment of the cluster
centers. However, it might be advisable to continue to monitor the input statistics by computing
the entropy of the normalized within-region variations, so that the system can react automatically
to any changes in input behavior and resume adjusting the reference vectors. Should the density
distribution of theinput patterns suddenly change, the resulting imbalancein the »;’swould quickly
increase the learning rate, and the partition can be adjusted to the new situation with good response

times.
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Chapter 4

Heter ogeneous Architecture Based on

Error-Weighted K-M eans Partitioning

In chapter 2, we have described the class of heterogeneous architectures that are based on
k-means partitioning. When thetraditional k-means algorithm is used to partition the input domain,
only the input distribution is considered in the partitioning process. As aresult, the representation
power of the expert modules in the architecture is not fully utilized. In this chapter, we introduce
an enhancement of the heterogeneous architectures which can fully utilize the representation power
of al the expert modules and which is suitable for both stationary and non-stationary situations.
The enhanced architecture is characterized by a novel k-means algorithm that integrates into its
partitioning process information about the input distribution, the structure of the goa function and
about the capahilities of the expert modules. The new k-means algorithm alows each individua
region in the partition to adjust its size so that the representation resources in al the regions are

optimally used.
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4.1 Objective of the Input Partitioning

For the heterogeneous architecture described in section 2.3 to perform itstask efficiently,
its partitioning process should aso take into account the goal ¢ of the network. In function
approximation, the aim of a connectionist network is to minimize the mean squared error between

the goal function ¢ and the network function f defined as:

K
MSE=S MSE,  with  MSE, = /I PD|Fo(@) = Gu(D)2d7 4.1)
k=1 k

where MSE;, is the contribution to the MSE from region 7, and referred to as the partial mean
squared error in 7. Quantity MSE; can be expressed as the product of p; and ¢, where py,
is defined as [7, p(¥) d7 and ¢ is defined as 1/py [, (D) fo(Z) — Gi(F)]|2dZ. Quantity py is
the probability of # being in 7. It reflects the density of input pointsin 7. Quantity ¢ is the
mean squared error in Z; and is defined by the conditional expected value of the squared difference
between f and 7 for Zin Zj. It reflects the mismatch between f; and 7, on Z;,. The fact that MSE;,
is the product of p; and ¢; suggests that the k-means algorithm should integrate into its process
information about the input distribution aswell as about the mismatch between fk and gj.. Sincethe
traditional k-means algorithm divides an input domain based only on the distribution p, it produces
a partition that is usually not optimal for a heterogeneous architecture to approximate a specific
output function.

Two schemesfor improving the capability of thek-meansalgorithm for thedecomposition
of the input domain have been proposed previously. The first scheme is based on the use of an

extended metric [40, 41, 42] which attempts to equalize the output variationsin the various regions.
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The output variation in region Z;, is defined as the square of the difference between §(#) and
< g(&)> for dl & in Iy, where < §(&) > is the mean of (&) in Z;. One serious problem with
this scheme is that it disregards the shape of the network function f. To solve this problem, a
second scheme, referred to as the error-driven k-means algorithm, has been developed [21]. In
this scheme, the magnitude of the learning rate is scaled by the squared error between the network
output f(f ) and the target value ¢(Z). This modulation of the learning rate attracts relatively more
reference vectors into areas where the approximation error between f and g ishi gh compared to
areas with low approximation error. Since the density of the reference vectors in areas with high
approximation error is higher than that in areas with low error, the regions in the areas with high
approximation error are smaller than those in the areas with low error. The error-driven k-means
algorithm thus allows a heterogeneous architecture to alocate more representation resources into
areas where they are more effective in improving the desire fit. However, this scheme requires
that the reference vectors ¢, nheighboring the winning subdomain be adjusted too; it thus increases
the computational complexity, especially for high-dimensional cases. Furthermore, because the
learning rate is modulated by {f(f) — §(#)}?, the adjustment term may be too large and may cause
the adaptation process to become unstable if the output is not properly scaled with respect to the
input.

In this chapter, we present a heterogeneous architecture with amodified version of the k-
means algorithm that integratesinto its partitioning process information about the distribution p and
about the mismatch between f;, and 7. The new k-means algorithmisbased on aweighted squared

Euclidean distance measure that attemptsto equali ze the time-averaged squared error evenly among

al the expert modulesin a network. It requires less computation than the error-driven k-means
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algorithm and is fast enough for computationin real time, since only the winning reference vector
needs to be adjusted. In addition, the new k-means algorithm does not modulate its learning rate
with the output error. It thus avoids the scaling sensitivity problem of the error-driven k-means

algorithm.

4.2 Error-Weighted Deviation Measure

To improve the capabilities of the k-means algorithm in partitioning the input domain
of a heterogneous architecture, we use the error-weighted deviation measure, where the deviation

between 7 and reference vector ¢, is defined as:
d(Z,&,) = || — &% (4.2)

When the squared Euclidean distance measure is used to determine the winning region, only the
input distribution p is considered in determining the extent of each region. By weighting this
deviation measure with the mean squared errors ¢, we alow the k-means algorithm to incorporate
both the input distribution p and the output mismatch ¢, into its partitioning process, thus enabling
each individual region to adjust its size according to both considerations. With this error-weighted
deviation measure, the k-means agorithm thus attempts to minimize the total error-weighted
variation:
%
TEV = kz—:ll/k with v = /Ik p(@)e | — &2 dz, 4.3)

where vy, isan error-weighted variationin 7.

In the following, we will investigate the characteristics of an optimal partition that mini-
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mizes the total error-weighted variation. The investigation will consider only the asymptotic case
where K, the number of regions (or "clusters") inthe partition, isvery large. We start with Gersho's
theorem [37], which statesthat for large K and asmooth underlying input distribution, al variations
v Must be the same for an optimal partition that minimizesthe total spatial variation.

Let ¢ be areal-valued function of the form:

pDa/Q  ifTel
(7= : (4.4)

p(f)G]{/Q |f f € I]{

where ¢) is anormalization factor so that theintegral of ¢ on Z becomes one. This function ¢ can
beinterpreted as aweighted probability function induced from p and ¢. With this notation, the total

error-weighted variation can be expressed as:

K

TEV=Su  with = Q/ oD — &2 d, (45)
k=1 Tk

Let {c;} be aset of reference vectors that minimizes the total error-weighted variation.
Theregion Z;, associated with ¢, will be defined by the inequality:

T =47 |- &)° < |- 7%, foreachi #k}. (4.6)

As K becomes large, the values of ¢; in the regions neighboring to 7, approach that of ¢;. The
corresponding increase in uniformity of ¢; in the neighborhood of 7;. reduces the bias of the error-

weighted deviation measure, and results in a boundary of 7;. that closely resembles that generated
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based on the non-weighted squared distance measure. This interpretation together with equation
4.5 dlows us to view an optimal partition that minimizes the total error-weighted variation with
respect to p as an optimal partition that minimizesthe total spatial variation with respect to ¢.
Theincrease in uniformity of ¢; aso smoothensfunction ¢. For a smooth distribution p,
function ¢ can be assumed to be smoothly varying for asymptoticaly large K. Since the definition
of TEV in equation 4.5 is the same as that of TSV in equation 3.2, applying Gersho's criterion to
equation 4.5 resultsin the following statement: For asymptotically large K and smooth distribution
p, dl error-weighted variations v; must be the same for an optima partition that minimize the
total error-weighted variation. This theoretical result leads us to conjecture that even for small
K, equalizing the variations v;, might lead in a robust manner to near-optimal partitions. Our

experimental resultsin section 4.4 support this conjecture.

4.3 K-MeansAlgorithm with Error-Weighted Deviation Measure

Even though the error-weighted deviation measure allows usto integrate into the k-means
algorithm information about the input distribution and about the mismatch between fk and gy,
the agorithm still may have difficulties converging to an optimal or near-optimal configuration.
As has been successfully demonstrated for unsupervised input partitioning in chapter 3 equalizing
the spatid variations vy in the partition enables the k-means agorithm to converge to an optimal
partition. Following the scheme used in 3.3 for v;-equalization, we define an effective deviation

between 7 and reference vector ¢, as

(%, &) = Dy &7 — &% (4.7)
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Multiplying the error-weighted deviation measure by 7, biases the membership indicator in favor
of regions with smaller variations 7, and it leads to a robust equalization of these values in the
various regionsin the partition.

To obtain the estimates 7;,, we use the weighted running time-average:

Drr4r=aber + (1= a)Mp(Fr) & |Fr — Gl (4.8)

where a isaconstant slightly lessthan 1. This equation is the modification of equation 3.6 used for

estimating v;. To estimate ¢;,, we use

Gorri=ér + (L—a)Mu(@r)lenr + {f(3r) - §(#r)}yY, (4.9)
This equation allows us to update €, of the winning expert by adding into €;, 741 new information
about its approximation error, and maintain the previous value of ¢, for other expert module. We
start this estimation by initiaizing al 7y, o and € o to some small number, allowing the effect of the
initialization to disappear quickly, so that the estimates are soon dominated by the actual data seen
by each region.

In order for our modified k-means algorithm to attain both adaptation speed and approx-
imation accuracy, we adjust the learning rate of the algorithm dynamically, based on the entropy
of the estimated variations 7;, 3.4. According to this entropy measure, the learning rate (7,,) is
defined to be:

Nem = 1 — H(ﬁl, ey lA/K)/ln(I(), (4.20)

where H (D1, ..., i) = Soh 1 = Pkmorm 1Pk norm ) With Dg o = Pk /(3211 7). This dynamic
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adjustment of the learning rate, together with the mechanism for equalizing the variations, has
experimentally shown to improve the performance of the k-means a gorithm, especially in the cases
of non-stationary input statistics 3.5.2 These mechanismsare used again toimprovethe performance
of the new k-means algorithm.

Inthe course of adaptation, thelocationsof thereference vectors ¢, are constantly varying.
When these reference vectors change, the boundaries of the input domainswill change accordingly,
resulting in non-stationary training data for each expert module. To assist an expert module to cope
with this non-stationary situation, we correlate the learning rate ;,,, s of the LM Salgorithm with the

learning rate 7y, of the k-means algorithm by setting it to:

Mims = Mo + K- (4.11)

Thefirst term, 1., iSthe learning rate of the k-means a gorithm defined by equation 4.10. It alows
us to vary the learning rate of an expert module according to the stationarity of the input domain
of the expert module. The second term, &, is a constant used to prevent 7;,,,, from becoming too
small. Since the adaptation of the expert module cannot be be completed before the input domain
of the expert module has been stabilized, the constant « allows the expert module to complete its

adaptation after itsinput domain has reached stationary state (7x,, — 0).

4.4 Empirical Demonstration

This section presents an empirica demonstration of the enhanced heterogeneous archi-

tectures introduced in this chapter. It illustrates the performance of this new architecture through a
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system that implements piecewise linear approximation of the goal function; the expert modulesin
the system are restricted to be linear functions trained by the least mean square (LMS) algorithm
[31]. Thefollowing four versions of the heterogeneous architecture based on k-means partitioning

are compared:

¢ Ewgt: the Ewgt architecture usesthek-meansalgorithm based on the error-weighted deviation
measure and the LMS algorithm with 7;,,s = nz,, + 0.01. The parameters of the k-means

agorithm are set asfollows: o = 0.9999, @ o = 1071% and &, o = 10710,

e Vwgt: the Vwgt architecture uses the k-means algorithm based on the variation-weighted
squared distance measure [43] and the LMSalgorithmwith ;,,,s = 7, + 0.01. Thisk-means
algorithm partitions the input domain based only on the input distribution. Its parameters are

set asfollows: @ = 0.9999 and @, o = 10710,

¢ Extd: the Extd architecture uses the k-means algorithm based on the extended Euclidean
metric [40, 41, 42] and the LMS dgorithm with 7;,,, = 0.01. The learning rate y,, of the

k-means algorithm is set to 0.01.

e Errd: the Errd architecture uses the error-driven k-means agorithm [21] and the LMS

algorithm with 7;,,,s = 0.01. Thelearning rate 7, of the k-means algorithmis set to 0.01.

In this evduation, we first demonstrate the performance of the above four architectures
on two tutorial 1-dimensional approximation problems. We then examine these architectures on a

more challenging 4-dimensional problem: the prediction of the Mackey-Glass time series [44, 45].
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Figure 4.1 illustrates the performance of the above four architectures on the first one-

dimensional problem. The goal function, shownin figure 4.1a, is defined as:

g(z) = 1.52% with z € [-0.5,1.0]. (4.12)

For this demonstration, we divide the input domain into two subdomains so that a partition is
characterized by asingleboundary point X g. The overall approximation error of the heterogeneous
architecture for a given boundary point Xz is measured by the normalized mean squared error
(NMSE), defined as the mean squared error between f and ¢ normalized by the mean squared value
of g. Figure 4.1b shows the NMSE of the above four architectures on an input-output sequence
generated accordingto (4.12). Each curveistheaverageof fiverunswith different pattern sequences.
For each architecture, we initidlize al ¢; of the k-means algorithm to 0.5 and al the parameters of
expert module f;, to 10719, The simulation resultsindicate that the final error generated by Ewgt is
about one fifth of those generated by Vwgt, Extd, and Errd. Notice that the NMSE of Errd appears
to increase after 20,000 presentations, indicating a conflict between the goals of minimizing the
mean squared error and of evenly partitioning the input domain.

Figure 4.1c shows the calculated NMSE as a function of the partitioning point Xg. It
indicates that the optimum performance is achieved when the partitioning point isat X5 = 0.60
and the resultant NMSE is equal to 0.015. Our results show that the partition produced by Ewgt
(X5 = 0.57) comes much closer to the optimum partition than the other three a gorithms.

To evaluate scaling sensitivity, we have also applied the four algorithmsto afunction:

G(z) = 150* with z € [-0.5,1.0]. (4.13)
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The performance of Ewgt, Vwgt and Extd are similar to their performance on ¢(z ), indicating that
the scaling of the output with respect to the input does not affect their stability. The simulation of
Errd could not be completed sinceit became unstabledue to the scaling sensitivity of thisalgorithm.

As amore challenging test of the new agorithm, we use the Mackey-Glass time series
prediction task [45]. Thistime seriesisobtained by integrating the Mackey-Glass differential-delay

equation [44]:

de[t]  ax[t — 7]
dt 14 200t — 7]

— ba[t], (4.14)

where a, b and 7 are defined to be 0.2, 0.1 and 17 respectively. In this problem, we use the 4-
dimensiona input vector #; = (x[i], [ — 6], x[¢— 12], [ — 18]) to predict theoutput y; = =[i+85],a
value of thetime seriesin thefuture. We train each of the heterogeneous architectures on a sequence
of input-output patterns randomly selected from a training set of 10,000 input-output pairs. We
evaluate each system on a test set containing 500 input-output pairs that differ from those in the
training set. We again measure the performance using the normalized mean squared error (NMSE)
on the test set, defined as the mean squared error on the test set normalized by the mean squared
value of thetime series.

Figure 4.2 comparesthe performance of the above four architectures on the Mackey-Glass
problem. We test these architectures on three instances where the input domain is divided into 4, 8,
and 16 regions respectively. For each instance, weinitiaize all the reference vectors ¢, to 0.93, the
mean of the time series, and all the parameters in expert module f;, to be 10~10.

Figure4.2ashowsthe NMSE of thefour architectureswheretheinput domainispartitioned
into 4 regions. Each curve here is again the average of five runs with different pattern sequences.

Thesimulationresultsindicatethat all four architectures have comparable performance with respect
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to both convergence rates and the steady state accuracy.

Figure4.2b showsthe NMSE of thefour architectureswheretheinput domainispartitioned
into 8 regions. The simulationsindicate that the Ewgt algorithm has better generalization abilities.
The NMSE of Ewgt at the steady state is about six tenths that of VVwgt, about haf that of Extd, and
about three tenthsthat of Errd. Note that the NMSE of Errd fluctuates by alarge degree even when
the algorithm reaches the steady state. With respect to learning speed, the Ewgt algorithm has a
faster convergence rate than Vwgt and Extd; the NMSE of Ewgt always stays below those of Vwgt
and Extd except for the first few pattern presentations. Comparing Ewgt to Errd, we find that the
NM SE of Ewgt decreases faster than that of Errd at both the initial and final stages.

Figure4.2c showsthe NMSE of thefour architectureswheretheinput domainispartitioned
into 16 regions. The relative shapes of the NMSE curves in this figure are resembling those in
figure 4.2b, indicating that the four architectures have similar relative behaviors.

The simulationsin al these three instances indicate that Ewgt has better performance. It
can achieve lower steady state NMSE compared to the other three architectures. The steady state
NMSEs of both Ewgt and VVwgt are lower than those of Extd and Errd, indicating that both Ewgt
and Vwgt can partition the input domain more effectively. Also, since Ewgt takes into account the
output information of the goal function, it can achieve better accuracy than Vwgt.

Figure 4.2d compares the NMSEs of Ewgt from figure 4.2a, 4.2b and 4.2c. It indicates
that the more regions in the partition, the slower a convergence rate but the higher the steady state
accuracy. The same behavior is aso observed for Vwgt and Extd. However, for Errd, we find that
both of its NMSE curves in figure 4.2c and 4.2b are identical. Further investigation reveas that 8

out of 16 regions cover no data points. Asaresult, only 8 out of 16 expert modules are utilized. All
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these evidences indicates that Ewgt, Vwgt and Extd scale quite well while Errd scales poorly with

respect to the number of regionsin the partition.

45 Summary

This chapter has introduced an enhanced version of the heterogeneous architecture based
on k-means partitioning. The enhanced architecture is based on a modified the k-means algorithm
that partitions the input domain by integrating into its process information about the input dis-
tribution and about the mismatch between the network function and the goal function. The new
k-means agorithm uses an error-weighted deviation measure that aims at equalizing the average
approximation errors in all regions of the partition. This scheme of equalizing the errors in the
different regions has several advantages. It is simple enough to be performed in rea-time. It does
not require a critical scaling of the output with respect to the input. Moreover, since the error
weighting factor represents the key god of the algorithm most directly, the new k-means algorithm
out-performs other k-means algorithms with different innovative but more adhoc approaches.

The scheme of equalizing the approximation errorsin all regions of the partition is based
on the assumption that a distribution p(Z) is smooth and K is large. For the case of small & and
non-smooth distribution, equalizing the approximation errors might distort the cost function that the
k-means a gorithm attemptsto minimize. However, this error-equalization allows the new k-means
algorithm to fully utilize the given resources robustly, and thus offsets the disadvantage caused by
the distortion of the goal function. The equalization of the approximation errors therefore permits
the new k-means agorithm to partition the input domian more effectively. As evident from our

demonstration on the Mackey-Glass problem, the larger number of cluster, the better the heteroge-
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neous architecture with the new k-means agorithm performs compared to other architecture. For
such problems, with alarger number of clusters, the asymptotic assumptionsunderlying our scheme
are approximated even better, and should thusresult in partitionsthat lie very close to the optimum.

A key insight gained in this work is that the k-means algorithm is not restricted to
unsupervised learning tasks; deviations from a desired goal function can be used to bias the
partition in such a way that the overal error is reduced. Finally, the scheme for integrating the
mismatch between the network function and the goal function presented in this paper isnot limited
to the described multi-module architecture but can also be applied to other supervised learning

architectures that use the k-means algorithm.
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Chapter 5

Per for mance Evaluation of

Heter ogeneous Architectures

5.1 Scope of Evaluation

In chapter 1 we have argued that traditional artificial neural network architectures are not
sufficient to cope with large complex problems, and that heterogeneous architectures are needed
to solve such problems. In this chapter and the two that follow, we support the above argument
with acomparative analysis of the performance and complexity of heterogeneous architectures and
traditional architectures for large, complex problems. The heterogeneous architectures analyzed
in this study are restricted to those based on error-weighted k-means partitioning, as introduced in
chapter 4.

In this chapter we compare the performance of a heterogeneous architecture that imple-

ments a piecewise linear function (Het), against that of traditiona architectures on the Mackey-
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Glass time series prediction [45], and on a hand-written character recognition task [46]. These
two problems are considered by a number of connectionist researchers [45, 29, 17, 47, 48, 46] to
be benchmarks for evauating the approximation and classification capabilities of artificial neura
networks.

For the Mackey-Glass problem, where the input dimension is quite low, we compare the

Het architecture with the following 4 traditiona architectures:

¢ RBF : theradial basis function architecture [29];

¢ Thl : the architecture based on alookup table approach;

¢ Loc : the architecture based on alocal model approach [24, 25];

¢ and BP : the back-propagation architecture, which isamultilayer perceptron trained with the

on-line back-propagation algorithm [2].

The RBF, Thl and Loc architectures have been chosen to represent traditional, homogeneous ar-
chitectures composed of local-support basic functions. The BP architecture represents traditiona,
homogeneous architectures composed of global-support basic functions. The performance of Het
with these four architectures on the Mackey-Glass prablem is described in section 5.3. In section
5.4, the Het, RBF, and BP architectures are evaluated on the hand-written capital |etter recognition
problem. The results from these two evaluations are then discussed in section 5.5.

An analysis of serial and paralel implementations of the heterogeneous architectures are
givenin chapter 6 and 7, respectively. Since we are interested in artificial neural network architec-
tureswhich are simpletoimplement with paralld VLS| hardware, we compare theimplementations

of Het to only those of RBF and BP. We have chosen these two types of architectures because of
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their popularity and suitability for dedicated hardware implementation.

5.2 Review of Architecturesunder Test

This section gives a brief review of the following three architectures:

Het : the heterogeneous architecture based on error-weighted k-means partitioning,

RBF : theradia basis function architecture,

¢ Thl : the architecture based on alookup table approach,

Loc : the architecture based on alocal model approach,

and BP : the back-propagation architecture.

5.2.1 HeterogeneousArchitecture

Figure 5.1 depicts the schematic diagram of a heterogeneous architecture based on error-
weighted k-means partitioning (Het). For an architecture that represents a piecewiselinear mapping

from RM to R, its network function is of the following form:
J(@) =" My(@)Ju() (5.1)

where K isthe number of expert modules. The membership indicator M}, is defined as:

M(7) = . (52
0 otherwise
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Figure5.1: Theschematic diagram of aheterogeneousarchitecturebased on error-wei ghted k-means
partitioning.

In the event of more than one minimum € || — ¢%||, we set the M}, with the lowest index k to
1 and the others to 0. The membership indicators M1,...,Mx are determined using the k-means
algorithm based on error-weighted deviaiton measure described in section 4.3. Each expert module

implements alinear function fk of the form giving below:

M
Jri(8) = w0+ > wrija;, forl <i < N. (5.3)
i=1
Function f; ; represents the -th component of fi. The parameters Wk,i0y - » Wk OF fr; are

adjusted using the least mean square (LMS) algorithm [31]. For the experimentsin this chapter, we
set the parameter « in the partitioning module of the Het architecture to be 0.9999. We initiadize
its oy, and &, to 10719, We also set the learning rate 7, of the LMS agorithm to 7;,,, + 0.01 and

initializewkﬂ»j to 10~10,
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5.2.2 Radial Basis Function Architecture
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Figure 5.2: The schematic diagram of theradia basis function architecture.

The classicd radia basis function architecture is a connectionist architecture based on
basic functions with local supports. For an architecture that implements a function from R™ to

RN asshownin figure 5.2, its network function is defined to be

K
(@) =" dron, with ¢ = o(]|7 — &l)), (5.4)
k=1

where ¢ represents aradial basis function and K is the number of the radia basis functionsin the

architecture. Thetypical form of ¢ isa Gaussian function, which is defined as:
o = ¢(|7 = &) = exp( |7 - &]|*/a?), (5.5)

where o isaparameter defining the width of the Gaussian function.
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Severa radia basis function architectures [3, 4, 5, 29, 7] have been developed. In this
comparison, we primarily rely on the architecture described by Moody and Darken [29]. The
network function in this architecture is given by:

K =
fl7) = Zk=10k0k (5.6)
Y k=1 Pk
This normaized form of the network function generalizes better than the one defined by equation
5.4. Thetraining agorithm used by Moody and Darken [29] for determining the parameters ¢, o

and o, isdivided into 3 independent successive stages:

¢ Placeall the Gaussian centers ¢, using an adaptivek-meansalgorithm. Inorder toimprovethe
allocation of the Gaussian centers, we usein thisinvestigation the adaptive k-meansa gorithm
based on the variation-wei ghted deviation measure instead of the traditional adaptivek-means

algorithm.
¢ Define thewidth o of al the Gaussian functions using the global nearest neighbor rule [29]:

K

g = {1/]( Z H5k - gk,nearest"2}1/27 (57)
k=1

Where ¢, neqrest 1S the nearest Gaussian center ¢; to ¢x.
¢ Determinethe heights «;, of al the Gaussian functions using the LMS adaptation rule [31].

For the experiments in this chapter, we set the parameter « in the k-means algorithm to be 0.9999,
and initialize 7, to 1071, We set the learning rate 7;,,,; of the LMS agorithm to be 0.01, and

initialize all components of height «#;, to 10~19,
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5.2.3 Architecture based on a Lookup Table Approach

The architecture based on a lookup table approach uses a regular grid of local support
basic functions. In this architecture, the input domain is partitioned into disjoint cells: 71, ... , 7x.
Associated with cell 7, is parameter Z. that represents the output of the cell. For agiven input Z,

the system generates an output of the form:

F(@) = 2 My(@), (5.8)

k=1

where M. isamembership function defined to be 1 if # belongsto 7, and O otherwise. The value

—

of f(¥) isthus equal to zj, where My (%) = 1. To train the system so that the mean squared error

(MSE) between fandthe goal function g is minimized, the following recursive equations are used:

Z, 141 Zyr + Me(E7){g(Fr) — Zir)/(ner + 1)} (5.9)

ngpre1 = kT + Mi(ZT) (5.10)

where ny, isthe number of data points seen by cell &, and where zj, o and ny, o are set to 0.

The architecture based on a lookup table approach is suitable only for problems with a
low dimensional input domain since its hardware scales exponentially with the number of input
dimensions. This type of architecture can learn very rapidly but it generalizes poorly because it
normally has too many degree of freedom. Thus, comparing Het with this architecture is a good
tool to investigate how much speed the heterogeneous architecture has to sacrifice in exchange for

its generalization power.
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5.24 Architecturebased on a Local Model Approach

The architecture based on a loca model approach [24, 25] has successfully addressed
many approximation problems of low input dimensions. In this architecture, al the incoming
training samplesare stored and used as reference vectors ¢, Associated with each reference vector
is an influence function ¢, whose value is defined to be 1 at ¢, and is gradualy vanishing with

distance from the sample position. A typica form of ;. isa Gaussian function, defined as:
or(@) = exp([|7 - &)/ af), (5.11)

and o2 is a parameter defining the width of the Gaussian function.

Associated with each reference vector isalso alocal modd f;, assumed to be linear for
this study. The coefficients of f. are determined using the weighted least squares fit among all
the training samples; the squared difference between the target output and the value of f;. at each
sample point isweighted by the value of the influence function at that point. To generate the output,
we combinethe local models f;, of various training samples according to the equation:

= _ L= 2(F)fr(T)
/@ Shoiwe(®)

(5.12)

where K isthe number of stored training samplesin the architecture.

For the experiment in this chapter, the batch version of the local model architecture is
used. The sample points are organized using the bumptree data structure [25]. This alows us
to quickly prune away training samples whose influence values are insignificant, i.e., less than a

pre-determined threshold, thus speeding up the computation of f for a given input &,
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5.2.5 Back-Propagation Architecture

The back-propagation architecture is probably the most popular artificial neural network
architecture. In this architecture, a multi-layer perceptron, which is a network with global-support
basic functions, is trained with the back-propagation algorithm [2], which is a supervised learning
procedure based on gradient descent. The goal of the back-propagation learning algorithmisto find
a set of network parameters that minimizes the mean squared error between the network function
f and the goal function §. For the experiments performed in this chapter, we use the on-line
version of the back-propagation algorithm and set its learning rate to 0.01. Figure 5.3a shows the
back-propagation network used in the Mackey-Glass problem. The network has two hidden layers
of perceptrons, each consisting of 20 sigmoidal units, and it represents amapping from R* to R of

theform:

4
Zl,k(f) = 1+ EXp{—kao — Z kaixi}, for1 < k<20 (513)
=1
20
Zzﬁ(f) = 1+ EXp{—kao — Z w27ki2’17i(f)}, for 1 < k < 20 (5.14)
=1
20
[(&) = wao+ ) w3izi(d), (5.15)

=1

where z; denote the ¢-th component of input vector .
Figure 5.3b shows the back-propagation network used in the hand-written capital letter
recognition problem. The network has one hidden layer of 10 sigmoidal units and 26 sigmoidal

outputs. It implements a mapping from R1® to R?® of the form:

100
Zl,k(f) = 1+ EXp{—kao — Z kaixi}, forl < k<10 (516)
=1
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Figure 5.3: The schematic diagrams of the back-propagation architectures. (@) a network with two
hidden layers of perceptrons for addressing the Mackey-Glass time series prediction problem, (b) a
network with one hidden layer of perceptrons for addressing ahand-written capital |etter recognition

task.
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10

fk(f) = 1+ eXp{—kao — Z kaizLi(f)}, for 1 < k < 26 . (5.17)
=1

5.3 Mackey-Glass Time Series Prediction

This section reports the empirical evaluation of the Het, RBF and BP architectures on the
Mackey-Glass time series prediction [45]. The Mackey-Glasstime series used in thisevaluation is
derived by integrating the differential-delay equation [44, 45]:

deft] 0.2zt — 17]
dt 14 2200t — 17]

— 0.12]1]. (5.18)

Using this time series z[t], we then define a training set of 10,000 input-output pairs, where input
Z; isdefined as (z[i], 2[i — 6], z[¢ — 12], z[¢ — 18]) and output y; as z[i + 85].

Inthissimulation, we useaHet architecturethat partitionstheinput domaininto 8 regions.
We initialize each reference vector ¢ to (0.93, 0.93, 0.93, 0.93), where 0.93 is the mean of the
Mackey-Glass time series. For the RBF architecture, we use a system consisting of 64 RBF units.
We initialize ¢, to (0.93, 0.93, 0.93, 0.93). For the BP architecture, we initialize al the weight
parameters to random values ranging from -0.5 to 0.5. We train each of the above systems on a
sequence of input-output patterns randomly selected from our training set of 10,000 input-output
pairs. We evaluate each architecture on atest set containing 500 input-output pairs that differ from
those in the training set. We measure the performance using a normalized mean squared error
(NMSE), defined as the mean sgquared error divided by the mean squared value of the time series.

Figure 5.4a showsthe NMSE of the Het, RBF and BP systems on the test set asafunction

of the number of patterns presented during training. Each curve hereisthe average of 5 runs, where
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each run uses a different training sequence. For Het or BP, the NMSE plotted at N presentations
is the value obtained after the system has been presented with N patterns. For RBF, the value is
obtained after 2N pattern presentations. The first N presentations are used to find the centers of
the Gaussian functions, and the other N patterns are needed to adjust the heights of the Gaussian
functions. The figure also shows a horizontal line Con representing the result of Lapedes and
Farbes's experiment [45]. Using the conjugate gradient method, they were ableto train amultilayer
perceptron with the above topology to achieve the NMSE of 0.000136.% Thislineis shown here for
visua reference and does not illustrate any dynamic characteristics.

Thisfigureindicatesthat the Het system has better generalization capabilities. The steady
state error of Het, measured after 107 pattern presentation, isabout athird of that for RBF, and about
asixth of that for BP. With respect to learning speed, the Het system has a faster convergence rate
than the RBF and BP systems. Furthermore, the NMSE of Het always stays below that of RBF and
falls below that of BP after about 70 pattern presentations.

Figure 5.4b compares the NMSE of the Het system to that of the architecture based on
the lookup table approach on the test set. This type of architecture can learn very rapidly but it
generalizes poorly because it normally has too many degree of freedom. Thus, comparing Het with
thisarchitectureisagood tool to investigate how much speed the heterogeneous architecture hasto
sacrifice in exchange for its generalization power.

For our evaluation, we define the input domain of the lookup table approach to be
[0.41, 1.32]*, the smallest 4-dimensional box containing all the patterns in our training set. Three

versions of the lookup table architecture, each with different levels of quantization, are tested:

!In Lapedesand Farber's simulation [45], the performance of a network is measured by the normalized error, defined
as the root mean squared value of the prediction error normalized by the standard deviation of the time series. The NMSE
of 0.000136 is equivalent to the normalized error of 0.05.
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e Thl4: each dimensionis quantized into 4 levels, resulting in atotal of 256 cells;

e ThI8: each dimensionis quantized into 8 levels, resulting in atotal of 4,096 cells;

¢ Thl16: each dimensionis quantized into 16 levels, resulting in atotal of 65,536 cells;

It isevident from figure 5.4b that alookup table with fewer cells can learn faster than one
withmorecells. Reducing the number of cellsincreases thelearning rate by reducing the number of
parameters that need adjustment. However, the steady state error does not improve monotonically
with the number of cells. When the number of cells is reduced, the size of each cell increases.
Consequently, the variation of the output datain each cell increases. As aresult, the estimation of
z, becomes slower, thus delaying the convergence rate of the entire system by some degree.

The NMSE of Thi8 at steady state is lower than that of Tbl4. Since the cellsin Thi8 are
smaller than those in Thl4, Thl8 can adjust its output to more closely match the variation of the
target function. However, the NMSE of Thl16 at steady stateishigher than that of Thl8 even though
it has more cells. This occurs because there are too few input-output patterns in the training set.
Sometesting patternsfall in cells that have never seen a data sample during training—thus resulting
inalarge error.

Comparing the performance of Het to that of the look-up table approach, we see that
the NMSE of Het decreases faster than those of the lookup tables for the first few hundred pattern
presentations. However, the rate of decrease then gradually slows down compared to those of Thl4
and Thl8, and the NMSEs of Thl4 and Thl8 drop below that of Het at about 2,000 and 10,000
pattern presentations, respectively. This slow-down happens because Het attempts to re-partition
itsinput domain to evenly distribute the load among all the expert modules. After theinput domain

is re-partitioned, Het then rapidly reduces its NMSE and again drops below the curves of Tbl4 and
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Thl8 after 12,000 and 60,000 pattern presentations, respectively. At steady state, the NMSE of Het
isonly about 1% of that of Thl4, and about a thirtieth of that of Tbl8. Comparing the performance
of Thl16 with that of Het, we see that the NMSE of Het is awaysbelow that of Thl16 and the NMSE
of Het at steady state is about 1% of that of Tbl16.

In addition to the aforementioned comparisons, we also compare the Het architecture
with the architecture based on the local model approach [24, 25]. This comparison alows us to
evaluate the performance of the Het architecture, which operatesinthe"on-line" fashion onasimple
hardware, against that of an efficient local approximation scheme, which operates in the "batch"
mode on a more elaborated hardware.

Figure 5.4c shows the NMSEs of the Het architecture and the local model approaches on
the test set. The horizonta lines representing the NMSEs of the local model approachs are shown
for visual reference, and do not illustrate any dynamic characteristics. Inthiscomparison, al 10,000
input-output patterns in the training set are used as reference vectors. We set the width of each
influence Gaussian function o2 to ||Gx — Chnearest||?/ %, WNEr€ Gk eares: IS the nearest reference
vector to ¢, and k isaconstant. Fivevauesof  aretested: 1, 6, 7, 8, and 14; and the corresponding
results are depicted by Loc/1, Loc/6, Loc/7, Loc/8, and Loc/14, respectively. As evident from this
comparison, the local model architecture can perform better than the Het architecture for a proper
choice of x (k = 6,7, 8), but only by aslight margin. Thisresult is very promising, considering
that the Het architecture uses simple recursive rules to adjust its parameters while the local model
method employs complex agorithms, such as, the singular value decompoasition to perform the

weighted least squares fit and the bumptree data structure to organize the stored data.
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54 Hand-Written Letter Recognition

In this section, we test the Het, RBF, and BP architectures on the task of classifying
hand-written capitd |etters. We exclude both thelookup table and local model approaches from this
evaluation because of the high dimensionality of the input domain. These two approaches have a
large number of parameters that need to be adjusted and thus require excessive amounts of training
data. The available data set is not large enough for training these two architectures. In addition,
the local model method needs to perform the weighted least squares fit to sample data, and the
complexity of this computation scales proportionaly to the cube of the input dimension. It isthus
too expensive for this high-dimensional problem.

The character data used in this simulation are obtained from the experiment performed
in [46]. These characters are hand-written on a80 x 120 pixel window with a5 pixel-wide brush.
All characters are approximately centered and scaled to the full size of the window. Following the
character entry, the window is divided into 100 regions of 8 x 12 pixels. Each of theseregionsisan
input whose valueis the percentage of "on" pixelsin theregion. There are thus 100 inputs, each of
which could have any of 8 x 12 = 96 distinct values.

In thischaracter recognition problem, we use the Het architecture that partitionstheinput
domain into 8 regions. We initialize each component of the reference vector &, to 10~1°. For the
RBF architecture, we use a system that consists of 128 RBF units. We initialize each component
of & to 10719, For the BP architecture, similar to the Mackey-Glass problem, we initialize all the
weight parameters to random values ranging from -0.5 to 0.5.

These Het, RBF, and BP systems are used in this evaluation to estimate the membership

function of an input pattern. Each system has 26 outputs, one for each capita letter. The value of
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each output indicates the relative likelihood that the input belongs to the corresponding category.
The input is classified by selecting the category with the maximum output value. We train each
of these systems using a sequence of labeled input patterns randomly selected from atraining set,
consisting of 50 x 26 capitd letters. We evaluate each system on atest set consisting of 26 x 10
letters, not found in thetraining set. The system performance is measured by the classification error,
defined as the percentage of misclassifications.

Figure 5.5 shows the classification error of the Het, RBF, and BP systems on the test set
as afunction of the number of patterns presented during training. Each curve in thisfigure is the
average of 5 runs, each using a separate training sequence. Thisfigure showsthat the classification
error of Het decreases faster than those of RBF and BP. The learning curve of Het always remains
below those of RBF and BP. Het can correctly classify adl the patternsin thetraining set after 40,000
pattern presentations, as indicated by absence of adaptation after that time point. By comparison,

BP needs 350,000 presentations, almost 9 times as many, and RBF needs 8,000,000 presentations,
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or about 20 times as many.
To evaluate the generali zation power of each system, we use the steady state classification
error, measured after dl the training patterns are correctly classified. We find that the steady state

classification error of Het isonly 7%, whilethose of BP and RBF are 9.2% and 11.7%, respectively.

5.5 Summary and Discussion

In this chapter, we have evaluated a heterogeneous architecture that is based on error-
weighted k-means partitioning and on linear experts for addressing the subtasks. This architecture
has been compared to radial basis function and back-propagation architectures on the M ackey-Glass
time series prediction and on a hand-written capita letter recognition task. For both problems,
we have found that the heterogeneous architecture exhibits a faster convergence rate and better
generdization than other on-line architectures. Given that the input dimension of the Mackey-
Glass prablem is low and that of the character recognition problem is high, we conjecture that the
heterogeneous architecture will perform well on problems with a wide range of input dimensions.

For the Mackey-Glass problem, where theinput dimensionislow, we have al so compared
the heterogeneous architecturewith thearchitecturesbased on thel ookup tableand on thelocal model
approaches. Thisexperiment indicatesthat both the heterogeneous architecture and thelookup table
approach have comparabl e speeds, but the former has much higher generalization capability. It aso
shows that the architecture based on the local model approach, with its complicated a gorithm, can
perform slightly better than the heterogeneous architecture.

Comparing the performance of the radia basis function and back-propagation architec-

tures, we have found that the former performs better on the Mackey-Glass problem while the latter
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performs better on the character recognition. This indicates that the radial basis function archi-
tecture is more suited to address problems with low input dimension while the back-propagation
architecture is more suited to address problems with high input dimension.

In problems with low input dimension, such as the Mackey-Glass problem, the goa
function, in genera, tends to be complicated, and the input data tend to distribute over large extent
of the input domain. These problems are more suited for architectures with local-support basic
functions, such as a look-up table approach. For the problem with high input dimension, such as
the character recognition problem, the input data tend to scatter in clusters that are quite easily
separated by hyper-planes. These problems can thus be more effectively addressed by architectures
with global-support basic functions, such as a multi-layered perceptron. However, both these two
classes of problems can be addressed reasonably well by a heterogeneous architecture. In the
heterogeneous architecture, the assigned task is divided into sub-tasks, each solved by a different
expert module. This architecture thus has some flexibility in defining the input domain of each
expert module, alowing the granularity of the sub-task to match the characteristics of the basic

function in the expert module.
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Chapter 6

Serial Implementations and Complexity

Evaluation

In the previous chapter, we have evaluated the performance of the heterogeneous archi-
tectures (Het), which is based on error-weighted k-means partitioning, with the examples of the
Mackey-Glass time series prediction and of the hand-written capital letter recognition task. We
have compared in this evaluation the performance of the Het architecture to those of the radial
basis function (RBF) architecture, of the architecture based on lookup table approach Thl, of the
architecture based on local model approach Loc, and of the back-propagation (BP) architecturesin
terms of their generalization capabilitiesand convergence rates.

In this chapter and the next, we will evaluate the implementation complexities of the
Het, RBF, and BP architectures for the Mackey-Glass time series prediction and for the hand-
written capital letter recognition problem. The Thl and Loc architectures are excluded from this

evaluation because they require large amounts of hardware when addressing problems with high-
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dimensiona inputs. In addition, the Loc architecture utilizes a complicated data structure and its
algorithm involves large amount of computation. Their hardware implementations are relatively
more complicated than that of the Het architecture.

An artificia neura network architecture can be implemented with different amount of
concurrency of execution, ranging from a serial implementation at one end of the spectrum to a
maximally parallel implementation at the other end. In order to gain insight into the relative im-
plementation complexities of the Het, RBF, and BP architecture, we investigate the implementation
complexities of these three architectures for two extreme cases. serial and maximally parallel. In
this chapter, we first describe the serial implementation of each architecture by its learning ago-
rithm. We then evaluate the complexity of each implementation by determining the number of
arithmetic operations in its learning algorithm. The learning time of each implementation, defined
asthetime needed to perform all the arithmetic operationsin the training process, isa so computed.
In the next chapter, we evaluate the complexities for the parallel implementation of the Het, RBF,

and BP architecture in terms of the hardware costs and running times.

6.1 Heterogeneous Architectures

This section describes the serial implementations of heterogeneous architectures based
on error-weighted k-means partitioning (Het) for both function approximation and classification. It

also determines the number of arithmetic operations required by the implementations.
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6.1.1 Function Approximation

For aHet architecture representing a piecewise linear mapping from RM to RY , itsserial

implementation is given by the algorithm Het-I.

Notation

Beagin

Het-1 Algorithm

Let K denote the number of expert modulein the system.

Let & denote an input vector and «; denoteits i-th component.

Let ¢ denotethe k-th reference vector and ¢, ; denote itsi-th component.

Let ¢ denote the goal function and g; denoteits i-th component.

Let f denote the network function of Het and f; denoteits i-th component.

Let f;; denote the network function of the &-th expert module, and f; ; denote its i-th component.

Let wy, ;; denote the coefficient of «; for generating output f7, ;.

Let d(7,

&) denote the deviation between # and ¢;.

Let £, denotetheindex of the winning reference vector, to which input Z is closest.

Let « and 3 denote the constants used in the running average for computing o, where o« + 5 = 1.

Step 1:  find thewinning index k,, .
Step 1.1:  compute deviation d(, &) = &y Z?il(xi —epi) forl<k < K.
Step1.2:  find ky, suchthat d(Z, ¢, ) < d(Z,¢r), for 1< k < K.
Step 2:  compute the network output f
Step2.1:  compute ﬁw according to:
Jrw,i(Z) = wpy i0+ Z]M:1 Whay,ij L5 forl<i<N.
Step22:  define f(Z) = fi, (¥).
Step 3:  compute thelearning rates 1, and n;.,,s using the equations:

Nem = |n(2£(:1 I;k) + {Zf:]__ﬁk |n9k}/{2£(:1 I;k}’
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Mms = Mims + 0.01.

Step 4:  update parameters wy,, ;; Of the &, -th expert module using the equations:
Why ij + Mims {19i(Z) — fry i(Z)} forl<i< N,andj=0
Wk, i =
o Wk i + Mms 196(Z) — fr, i(E)}2; forl<i< Nandl<j<M

Step 5:  update parameter ¢, according to:

Ery = @iy + B0 {0i(E) = fry (D)}
Step 6:  update the winning reference vector ¢, using the equation:

Chui = Chu,i + Tem(Zi — Chy i) forl<i< M.
Step 7:  update parameters i, according to the equations:

a4+ B SO (wi —cry i) ik =ky
vy =

avy otherwise

End

In the following, we analyze step by step the Het-1 algorithm for the number of the arith-
metic operations performed in itstraining cycle. For convenience, we categorize these operations,

based on the approximate complexity of their hardware realization, into 4 classes:

e comparison;

o addition: which includes subtraction;

¢ multiplication: which includes division and squaring operation;

¢ and nonlinear-function computation: which includes the computations of sigmoid, exponen-

tial, and logarithm functions.
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Analysis of Het-I

Step1:  Step 1.1 needs 2KM—K additions and KM+2K multiplications, and step 1.2 needs K—1

comparisons.

Step 2:  Thisstep needs MN additions and MN multiplications.

Step 3:  Thisstep can be subdivided as follows:

Step3.1:  computes; = Y b, D
Step3.2:  computesy = Sr_; — % Indy.

Step 3.3 et Nem = |n(51) + 52/51, and set NMms = Nem + 0.01.

This implementation needs 2K additions, K+1 multiplications, and K+1 logarithmic-

function computations.

Step 4:  Thisstep can be subdivided as follows:

fori =1to N do
Step4.1:  compute 6 = N {gi(Z) — fri(Z)}
W, 45 + 6 forj =0

Step 4.2 Se‘twkwyi]» =
W, 45 + l‘]’(s for 1 <j< M

Thisimplementation needs MN+2N additions and MN+N multiplications.

Step 5:  Thisstep can be subdivided as follows:

Step5.1:  computeA2 = S {gi(F) — frn i(£)}2.

Step 5.2: set gkw = Ozgkw + ﬁAZ.
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Step 5.1 needs only N—1 additionsand N multiplicationssince all the differences between
¢:(%) and f,, (%) are dready computed in step 4.1,

Step 5.2 needs 1 addition and 2 multiplications.

Step 6:  This step needs 2M additions and M multiplications.
Step 7:  Thisstep can be subdivided as follows:
Step7.1:  fork =1to K do
set Dk = Osz .
Step7.2:  computeA? = &, S (2 — cry )2
Step 7.3: set I;kw = I;kw + ﬁAZ.
Step 7.1 needs K multiplications.
Step 7.2 needs only M—1 additions and M+1 multiplications since al the differences
between z; and ¢, 1 are aready computed in step 6.
Step 7.3 needs 1 addition and 1 multiplications.
End of Analysis

Thisandysisindicates that one training cycle of Het-1 consists of

¢ K—1 comparisons,

o 2MN+2KM+K+3M4+3N-+2 additions,

o KM+2MN+4K+2M+2N+5 multiplications,

¢ and K+1 logarithm-function cal culations.



89

6.1.2 Clasdsification

For a heterogeneous architecture that classifiesinput # € RM to N categories, its serial
implementation is specified by the algorithm Het-11. Note the Het-11 is similar to Het-1 except for

step 2, 4 and 5.

Het-11 Algorithm

Notation

Let C,,, denotesthe category indicated by the heterogeneous system.

Let C,,4 denote the category specified by the goa function.

Beagin
Step 1:  find thewinning index k,, .
Step1.1:  compute deviation d(Z, &) = &% Yorky (s — e )% for 1< k < K.
Step1.2:  find ky, suchthat d(Z, ¢, ) < d(Z,¢r), for 1< k < K.
Step 2: determine the category of input z.
Step 2.1:  compute the output of the k., -th expert modul e according to the equation:
Jrw,i(E) Iwkw,io-I-ZjNilwkw,iﬂﬁj, for1<¢<N.
Step2.2:  find Cyy, suchthat f;, c,,. (%) > fr, i(¥), forl <i < N.
Step 3:  compute thelearning rates 1, and n;.,,s using the equations:
Mem = Iy P6) + {2y 20 N0}/ {50y 22,
Nims = Mims + 0.01.
if Csys = Cyoar thendo step 4 and 5.
Step 4:  update parameters wy,, ;5 Of the &, -th expert module using the equations:
" Wi + Mms 19:(E) — yr,, i(F)} fori = Cyys, Cyoar; andj =0
kuw,ij =
] Wy ij + Mms {19:(L) = Yo, i(F)}x;  fori = Cyys, Cyoar; and 1< j < M

where g, () = 0and g¢,.., (%) = L.

goal
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Step 5:  update parameter ¢, according to:
€k, = aép, + 5.
Step 6:  update the winning reference vector ¢, using the equation:
Chui = Chu,i + Mem(Zi — Chy i) s forl<i< M.
Step 7:  update parameters i, according to the equations:
avy + BEy, Zi\;l(l‘l — Chyi)? if k= ky

Ve =
avy otherwise

End

Following the method used to anayze the Het-1 algorithm, wefind that onetraining cycle

of the Het-11 agorithm consists of

¢ K+4+N-—2 comparison,

2KM+MN-+K4+5M-+7 additions,

KM+MN-+4K+4M+6 multiplications,

and K+ 1 logarithm function computations.

6.2 Radial Basis Function Architectures

6.2.1 Function Approximation

As reviewed in section 5.2.2, the computation performed by the radia basis function

architecture used in this dissertation is described by 3 procedures:

¢ The adaptive k-means algorithm based on the variation-weighted deviation measure for plac-

ing the centers of the Gaussian radial basis functions.
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¢ The global nearest neighbor rule [29] for computing the Gaussian width. With thisrule, the

widths of all the Gaussian functions are defined to be
K
{1/]( Z H5k - gk,nearest"2}1/27 (61)
k=1

Where ¢, neqrest 1S the nearest Gaussian center ¢; to ¢x.

¢ Theleast mean square (LMS) algorithm for determining the heights of the Gaussian functions

that minimizethe mean squared error between the network function and the goal function.

Theseria implementation of the RBF architectureisthus specified by K-Means, Width and Height-I,
which are described in the following.
K-Means Algorithm

Notation

Let K denote the number of the Gaussian RBF sthe system.

Let ¢, isthe k-th Gaussian center and ¢;, ; denote its¢-th component.
Let ¢, denotethe vaue of the k-th Gaussian function.

Let w;; denote the coefficient of ¢, for generating output f;(Z).

Let d(Z, &) denote the variation-wel ghted deviation between # and ¢j,.

Let £, denotetheindex of the winning Gaussian center, to which input Z is closest.

Beagin

Step 1:  find thewinning index k,, .
Step1.1:  compute deviation d(Z, ¢ ) = vy, Z?il(l‘i — ckyi)z, forl<k < K.
Step1.2:  find ky, suchthat d(Z, ¢, ) < d(Z,¢p), for 1< k < K.

Step 2 compute the learning rates 7, Using the equations:

Nem = |n(2£(:1 6[{;) + {Zf:]_ _616 lnak}/{Zf:l ak}’
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Step 3:  update the winning Gaussian center ¢, using the equation:
Chuyi = Chyyi + Mem (s — €y i), forl<i <M.
Step 4:  update parameters oy, according to the equation:
~ M 2 .
avy + BZi:l(xi — Ckw,i) if k = ky
Vp =

oty otherwise

End

Analysis of K-Means

Stepl:  Step 1.1 needs 2KM—K additions and KM+K multiplications, and step 1.2 needs K—1

comparisons.

Step 2: Step 2 needs 2K—1 additions, K+1 multiplications, and K+1 logarithmic-function com-

putations.

Step 3:  This step needs 2M additions and M multiplications.

Step 4:  This step needs M additions and M+K+1 multiplications.

End of Analysis

Thetotal operationsin one cycle of the K-Means algorithm consists of

K—1 comparisons,

2KM+K4+3M—-1 adiitions,

KM+3K+2M+2 multiplications,

and K+ 1 logarithmic-function computations.
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Wdth Algorithm

Beagin

Stepl:  fork =1to K do
find dg min Whichisthe minimum of ||cj, — Gl2forl<i< Kandi# k.

Step2:  compute thewidth o2 defined as (Y"1, di min)/ K .

End

Analysis of Width

Step 1:  This step needs K? — 2K comparisons, 2K°M—K? — 2KM+K additions, and K?M—KM

multiplications.
Step 2: Thisstep needs K—1 additionsand 1 multiplication.

End of Analysis

This analysis indicates that the total number of operations required for determining the Gaussian

width are

o K2—2K comparisons,

o 2KZM—K2—-2KM-+K additions,

e and K2M—KM-+1 multiplications.
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Height-I Algorithm

Beagin
Stepl:  fork =1to K do
compute ¢, = exp(—||Z — & ||2/o?).
Step 2 compute Zfil O
Step 3 fori=1to N do
compute output y; = {3 _y wikdi }/ {351 6 }.
Step 4:  update parameters w;;; using the equations:
Wik = Wik + Mims{19:(F — i (D)}, forl<i<Nand 1<k<K.
End
Analysis of Height-I

Step 1:  This step needs 2KM—K addititions, KM+K multiplications, and K exponentia function

computations.

Step 2: Thisstep needs K—1 additions.

Step 3:  This step needs KN—K additions and KN+N multiplications.

Step 4: This step needs 2KN additions and 2KN multiplications.

End of Analysis

Thetotal number of operationsin one cycle of Height-1 consists of

o 2KM+3KN—-K—1 additions,

¢ KM+3KN+K+1 multiplications,
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¢ and K exponential-function computations.

6.2.2 Clasdsification

When we apply the radia basis function architecture to classification problems, we need
to modify the algorithm Height-1 so that the output of the architecture can be used to estimate the
likelihoodsof an input pattern belonging to the various categories. The modified algorithm, refered
asHeight-11, aswell asitsanalysis, is described in the following.

Height-11 Algorithm

Notation

Let C,,, denotesthe category indicated by the RBF system.

Let C,,4: denotethe category indicated by the goal function.

Beagin

Stepl:  fork =1to K do
compute ¢, = exp(—(|Z — ¢x[[?/o?).
Step2:  compute i, 5.
Step 3:  determine the category of input z.
Step 3.1:  fori=1to N do
compute output f; (#) = {3 ¢y wikdr }/{Y 1=y 65 }-
Step 3.2.  find Cyy s suchthat fc,,, () > fi(Z), for L<i < N.
Step4: if Cyys = Cyoar do
update parameters w;;, using the equations:
Wik = Wik + Mims {9:(Z) — f:(X) }or, fori = Coys, Cyoar; and1 < k < K,

where fc., (Z) = 0and f¢,.., (%) = 1.

End
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Thetotal number of operationsin onetraining cycle of the Height-11 agorithm consist of
¢ N—1 comparisons,
¢ 2KM+KN+3K-1 additions,
¢ KM-+KN-+5K+N multiplications,

¢ and K exponential function computations.

6.3 Back Propagation Architectures

6.3.1 Function Approximation

Thissection describesthe seria implementationsand the analyses of the back-propagation
architectures for function approximation. It is concentrated on the class of architectures with a
network of two hidden layers and linear outputs. We assume that the architecture implements
a mapping from RM to R", and that there are H; sigmoidal units in the first hidden layer, H»

sigmoidal unitsin the second hidden layer, and N linear output unitsin the output layer.

BP-1 Algorithm

Notation

Let f; denote the i-th component of network function f.

Let ¢; denote the i-th component of goal vector g.

Let z1 ; denote the output of the ¢-th unit in the first hidden layer.
Let 2, ; denote the output of the ¢-th unit in the second hidden layer.
Let wq ;; denote the co-efficient of x; for generating output z1 ;.
Let wo ;; denote the co-efficient of z; ; for generating output z ;.

Let w3 ;; denote the co-efficient of 2, ; for generating output f;.



Let s(a) denote the sigmoid function of « defined as {1+ exp(—a)} L.

Beagin

Step 1:  generate the outputs of the first hidden layer:
21,0 = s(wi0+ Z]Nil W1,452;) forl<:< Hj.
Step 2:  generate the outputs of the second hidden layer:
22, = s(wa0 + Zf[:ll W2,i571,5) forl<:< Hj.
Step 3:  generate the outputs of the network:
fi=wsio+ Y2 waiza;  forl<i<N.
Step 4:  update the parameters in the output layer.
fori =1to N do
Step4.1:  computeds; = n{g;(¥) — fi(Z)}.
w3 j + 034 j=0
Step 4.2: Set w35 =
w3ij + 22,63, for1<j<1H;
Step 5:  update the parametersin the second layer.
fori =1to H,do
Step 5.1 compute (5272' = Zzyi(l — 2272') ch\f:l wgykiégyk.
woj + 62,4 j=0
Step 5.2: set Wy i =
w5 + 21,02, for1<j<H;
Step 6:  update the parametersin thefirst layer.
fori =1to H; do
Step 6.1: compute (5172' = Zlyi(l — Zl,i) Zfil wzykiézyk.
Wy + 614 j=0
Step 6.2: set w15 =
wy 45 + l‘]'(slyi for 1 <j<M

End




Analysis of BP-I

Step 1:

Step 2:

Step 3:

Step 4

Step 5:

Step 6:
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This step needs H; M additions, H1M multiplications, and H; sigmoid function computa

tions.

This step needs HyH» additions, HyH, multiplications, and H, sigmoid function compu-

tations.

This step needs H,N additionsand H,N multiplications.

Step 4.1 needs 1 addition and 1 multiplication.

Step 4.2 needs 1 addition.

Step 4.3 needs H, additionsand H, multiplications.

Since these three steps have to be performed N times, the total operations performed in

step 4 are HoN+-2N additionsand HoN+N multiplications.

Step 5.1 needs N additions and N+2 multiplications.

Step 5.2 needs 1 addition.

Step 5.3 needs H; additionsand H; multiplications.

Sincethese steps are to be repreated H, times, thetotal operations performed instep 5 are

H1H>+HoN+-H» additions and H1Ho+H1N+2H, multiplications.

Step 6.1 needs H, additionsand Hy + 2 multiplications.
Step 6.2 needs 1 addition.
Step 6.3 needs M additions and M multiplications.

Sincethese steps are to be repreated H; times, thetotal operations performed in step 6 are
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HiH>+H;M+H; additions and H1H»>+H;M+2H; multiplications.

End of Analysis

The computation in one cycle of BP-1 consists of

¢ 3H;1Hy+2H;M+3H,N+Hq +Ho+2N additions,

e 3HiHy+2H{M+HN+2HoN+H1+H> muItipIicationS,

¢ and Hi-+H, sigmoid function computations.

6.3.2 Clasdsification

The serial implementation of the back-propagation architecture used in the character
recoghiton problem is described by the BP-11 agorithm. To allow the implementation to be more
general, we assume that the architecture is used for a classification task involving NV categories, and

that its network has one hidden layer containing H perceptrons.

BP-11 Algorithm

Notation

Let C,,, denote the category of the input pattern indicated by the back-propagation system.

Let C,,4 denote the category of the input pattern specified by the goal function.

Beagin

Step 1:  generate the outputs of the first hidden layer:

715 = s(w1i0 + Z]M:1 W1,452;) forl<i < Hj.
Step 2:  generate the outputs of the network:

fi(%) = s(wa,i0 + Zf[:ll wyi5215)  forl<i < Ha.

Step 3.  classify the category of theinput by selecting C, , such that fc, . (£) > fi(Z) for1 <i < N.
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if Csys = Cyoar then do steps4 and 5.
Step 4:  update the parameters in the output layer.
fori =1to N do
Step4.1:  computedy; = (1 — y;)yi(g:(Z) — fi(£)).
where g;(¥) = 1if i = Cyoq1 and O otherwise.
wo4j + 625 j=0
Step4.2:  setwyg; =
wo 5 + 21,5624 forl<j< H,
Step 5:  updatethe parametersin thefirst layer.
fori=1to H;1do
Step5.1:  computedy; = 21, (1— 214) Yo peq wa kib2k.
S5 wn = w5 + 014 J=0

w45 + l‘]'(slyi forl <j<M

End

The computation requirement in one training cycle of BP-I1 consists of

¢ N—1 comparisons,

2H1M—|—3H1N—|—H1—|—3N additi ons,

2H;M+3H1N+2H1+ 3N multiplications,

and H1+N sigmoid function computations.

6.4 Complexity Comparison

This section compares the complexity of the Het, RBF and BP architectures for the

Mackey-Glass problem described in section 5.3 and for the hand-written capital letter recognition
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problem described in section 5.4. The complexity of each architecture is measured by the number
of arithmetic operations needed by its learning algorithm to perform onetraining cycle.
Asdescribedin section 5.3, the M ackey-Glass problem isformul ated asthe approximation
of afunction that maps a point in 4 dimensional input domain to a scalar value (M=4 and N=1). In
this particular evaluation, we use a Het architecture that partitions the input domain into 8 regions
(K=8). We compare this Het architecture against a RBF architecture with 64 RBF units (K=64)
and against a BP architecture with two hidden layers, each of 20 sigmoida units (H;=H,=20).
Using these specifications and the results derived from sections 6.1, 6.2 and 6.3, we compute the
number of the arithmetic operations needed by the three architectures to complete their training
cycles. Theresults from this computation are listed in table 6.1. Table 6.1 dso lists the numbers of
arithmetic operations required by the learning algorithms of the Het, RBF, and BP architectures for
the hand-written capital |etter recognition described in section 5.4. Thesethree architecture are used
to classify an input of 100 dimensionsinto 26 capital letters (M=100 and N=26). Inthisproblem, we
use a Het architecture that partitions the input domain into 8 regions (K=8). We compare this Het
architecture against a RBF architecture with 128 RBF units (K=128) and against a BP architecture

with one hidden layer of 10 sigmoidal units (H=10).

6.5 Convergence Ratevs. Computation Time

In chapter 5, we have eval uated the convergence rates of the Het, RBF and BP architectures
with respect to the number of pattern presentations. Because the computationa requirements for
each pattern presentation for thevariousarchitecturesaredifferent, itisal so necessary to comparethe

computation time required in each pattern presentation in order to evaluate the overall convergence
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Table 6.1: Arithmetic Operations Required in One Training Cycle.

Mackey-Glass

Algorithm | Comparison |  Addition | Multiplication | Nonlinear
Het-I 7 97 87 9
RBF(K-Means) 63 588 467 65
RBF(Wdth) 3968 28224 16129 0
RBF(Height-I) 0 639 513 64
BP-I 0 1462 1500 40

Character

Algorithm Comparison Addition Multiplication Nonlinear
Het-11 32 4715 3838 9
RBF(K-Means) 127 26028 13387 129
RBF(Wdth) 16128 3234944 1625601 0
RBF(Height-11) 25 29311 16779 128
BP-I1 25 2868 2878 36

rates. For an artificial neural network architecture with on-line learning, its computation time is
equivalent to the product of the number of pattern presentations and the time needed for performing
onetraining cycle.

To determine a training-cycle time, it is necessary to know the execution times of the
operations performed in the algorithm. In order to establish such times, we assume that al
comparisons and additions are carried out for two 32-bit numbers, and each multiplication is
for two 16-bit numbers. We aso assume that each non-linear function computation is performed
by looking up an entry in a ROM having 256 entries each of 32 bits. The execution times of
these operations are measured in term of addition time units, where 1 addition time unit (atu) is
the time required to perform one addition. Using the estimated specifications of the SPERT chip
[49, 50], which is a micro-processor for artificial neural network computation being implemented
a International Computer Science Institute (ICSI), we assume the execution time of a comparison

operation to be equal to 1 atu, the execution time of multiplication to be equal to 2 atus, and the
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Table 6.2: Time for Completing One Training Cyclein Serial Mode

| Application | Algorithm \ Time (atu) \ Ratio |
Het-I| 296 1.00
RBF(K-Means) 1715 5.79
Mackey-Glass RBF(Width) 64450 217.74
RBF(Height-1) 1793 6.06
BP-I 4542 15.34
Het-11 12441 1.00
RBF(K-Means) 53187 4.28
Character RBF(WIdth) 3251202 261.33
RBE(Haght-I1) 63150 5.08
BP-11 8721 0.70

time required for retrieval of an entry from ROM to be 2 atus.

Table 6.2 lists the training-cycles of the learning algorithms in the Het, RBF, and BP
architectures for the Mackey-Glass problem and for the hand-written capital |etter recognition task.
It dso liststhe ratio of atraining-cycletime for each agorithm to that of Het of the same problem.

Figure6.1aand 6.1b show theNMSE asthefunction of the number of pattern presentations
for the Mackey-Glass and letter recognition problems. These two figures are the results from the
evaluations performed in section 5.3 and 5.4, and they are shown here again for the purpose of
comparison with figure 6.1c and 6.1d.

Figure 6.1c shows the NMSE of the Het, RBF, and BP architectures with respect to the
computation timefor the Mackey-Glass problem, where the computation timeis measured in terms
of training-cycletimesof Het-1. The overall computation timeof Het isequa to N, 7x.;, where V,,
standsfor the number of pattern presentations, and 7'y;.; standsfor the training-cycletime of Het-I.
The overall computation time of BP is equal to N, 7sp, Where Tgp stands for the training-cycle

time of BP-1. For RBF, its training procedure is divided into 3 stages. The computation time for
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Figure 6.1: Performance comparison of Het, RBF, and BP architectures.
(8 NMSE vs. number of pattern presentations for the Mackey-Glass problem.
(b) NMSE vs. number of pattern presentations for the hand-written letter recognition problem.
(c) NMSE vs. computation time for the Mackey-Glass problem.
(d) NMSE vs. computation timefor the hand-written letter recognition problem.
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the first stage is equal to N,Txns, Where Ty s stands for the training-cycle time of K-Means.
The computation time for the second stage is equal to Ty 4, the time for computing the widths of
Gaussian functions. The computation time for the third stage is equal to N, 7x,, where T, stand
for the training-cycle time of Height-1. The total computation time of the RBF architecture is thus
equal to

computati ontime = Np(TKM + THt) + Twa, (62)

Figure figure 6.1d shows the NMSE of the Het, RBF, and BP architectures with respect to the
training-cycle time of Het-11 for the letter recognition problem. The computation times of these
three architectures are calculated in the similar manner to their counterpart in the figure 6.1c.

The results shown in figure 6.1c and 6.1d indicate that Het has much better performance
than RBF and BP, when measured in termsof the computationtime. Comparing figure 6.1aand 6.1c,
reveds that the convergence rate of Het is much faster than those of RBF and BP when measured
by the computation time for the Mackey-Glass problem. For the letter recognition problem, figure
6.1b and 6.1d show that the difference between the convergence rates of Het and BP becomes
smaller when measured by the computation time than when measured by the number of pattern
presentations. However, the difference between the convergence rates of Het and RBF becomes
much larger when measured by the computation time than when measured by the number of pattern

presentations.
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Chapter 7

Parallel | mplementation and

Complexity Evaluation

In this chapter we investigate the parallel implementations of the heterogeneous architec-
turebased on error-weighted k-meanspartitioning (Het), theradia basisfunction (RBF) architecture,
and the back-propagation (BP) architecture. The parallel implementations of these three architec-
tures are described in sections 7.1, 7.2, and 7.3. These implementations are restricted to those that
capture the maxima paralelism of the architectures. In section 7.4, we estimate the hardware cost
of each implementation for the M ackey-Glass time series prediction and ahand-written capital |etter
recognition task. The hardware cost of an implementation is approximately defined as the silicon
arearequired for realizing all the operators in the implementation. In section 7.5, we determine for
each architecture the computation time needed to complete one training cycle in a maximally con-
current manner for both the Mackey-Glass and | etter recognition problems. Finally thecomplexities

of these implementations are compared in section 7.6.



107

7.1 Heterogeneous Architectures

Clgss

,,,,,,,,,,,,,,,,,,,,,,,,

A
N
f
Multiplexer [€
—> —>
f1 T T | Af}}K M
Expert . Expert Learning Rate Partitioning
1 K Unit Module

) { ! !

x|, —>

Figure 7.1: The block diagram of the parallel implementation of the heterogeneous architecture
based on error-weighted k-means partitioning.

This section describes a parallel implementation of the heterogeneous architecture based
on error-weighted k-means partitioning (Het) which represents a piecewise linear mapping from
RM to RN. The block diagram of this implementation, as shown in figure 7.1, consists of the

following functiona blocks:

apartitioning module, for generating membership functions M (Z);

K expert modules, each with linear network function f;

alearning rate unit, for calculating the learning rates 7z, and 1y,s;

— —

amultiplexer, for generating the system output (%) = Mi(Z) fu(Z);

and a post processor, for determining the classindicated by the network output.
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Note that a post processor is only needed when used in a classification task. The detail imple-
mentations of these building blocks are derived from the algorithms performing the corresponding
tasks. We anayze each of the building blocks for its hardware requirement, measured by the
number of arithmetic operators used in theimplementation, and its computationtime, defined as the
minimal time needed to perform al necessary arithmetic operationsin itsagorithm in amaximally

concurrent manner.

7.1.1 ThelLearning Rate Unit

Thetask of thelearning rate unit isto cal culate the learning rates 7., and ;,,,s according

to the equations:

K

K K
Nem = In(Z l’)k) + {Z —Ug In&k}/{z l’/\k} and Mms = Mms T 0.01. (7.1)
k=1 k=1 k=1

The learning rate unit computes these two learning rates using the the procedure illustrated by the

flowchart in figure 7.2.
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Step 1:
Step 2:
Step 3:
Step 4:
Step 5:
Step 6:
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computety = Y 7.
computet, = S 1, Dx Indy.
computets = In(t1).
computets = ta/t1.

st Nem = €3 — 1a.

Figure 7.2: Flow chart of the computation performed by the learning rate unit.

The step-by-step analysis of this procedureis provided in the following.

Analysis

Step1:  To compute "X . 7, we use K—1 adders arranged in the form of a binary tree with

[ K/2] leaves, as shown in figure 7.3. The notation [r] represents the smallest integer

larger than or equal to . This summing operation requires [10g,K] addition time. One

addition timeis defined to be the time needed for performing one addition.

Step 2:  This step needs K multipliers, K log-circuits and a binary tree of K—1 adders. The time

needed to perform thisstepis 1 1og-time plus 1 multiplicationtimeplus [10g,K] addition

times.

Step 3:  Thisstep needs 1 log-circuit and is completed in 1 log-time, the time required for com-

puting one logarithm function.

Step 4:  Thisstep needs 1 division circuit and is completed in 1 divisiontime.
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Step 5:  Thisstep needs 1 subtractor and is completed in 1 subtraction time.

Step 6:  Thisstep needs 1 adder and is completed in 1 addition time.

A+B+C+D+E+F+G+H

1

T
T T
1 1 ot

Figure 7.3: Theblock diagram of a adder tree with 4 leaves.

Based on this analysis, we determine the number of operators required by the learning rate unit
by summing up al the operators in each step. We aso determine the time needed by the learning
rate unit to complete its computation. This execution timeis equal to the time of the critica path
in the computation. For this specific case, the critical path consists of steps 2, 4, 5 and 6. Similar
to chapter 6, we categorize these operations based on their hardware and time complexitiesinto 4

categories:

e comparison;

o addition: which includes subtraction;

¢ multiplication: which includes division and sgauring operation;
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¢ and non-linear function computation: which includes the computationsof sigmoid, exponen-

tial, and logarithm functions.

The resultant hardware requirement and execution time are

Hardware requirement: 2K adder, K+1 multipliers, and K+1 log circuit.

Computation time: 2 + [log,K] addition times plus 2 multiplication times plus 1 log time.

7.1.2 ThePartitioningModule

My My
000
Competitive| 500 Competitive| Membership
1 K Indicator
—
X

Figure 7.4: The block diagram for the parallel implementation of the partitioning module.

Figure 7.4 shows the block diagram of the partitioning module that partitions the input
domain into K regions. The module consists of a membership indicator and K competitive units.
The task specifications of these blocks, as well as the analysis of their hardware requirements and
execution times, are described in the following.

7.1.21 A Membership Indicator

A membership indicator determines the membership functions M3i,..., M based on the

error-weighted deviations é,7;||7 — &||? generated by the K competitive units. Its task can be

described by the flowchart in figure 7.5.
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START

Step1:  find index k,, such that
Ernli||Z = G, l|? < Ekbi||Z — G|,
forl<k<K.
STEP2 Step2:  set My, (#) to 1 and other My, (%) to .

STEP1

HHY

END

Figure 7.5: Flow chart of the computation performed by the membership indicator.

Analysis

Step 1:  Thisstep needs K—1 comparators. By arranging these comparatorsin theform of abinary

tree with [K/2] leaves, we can achieve these comparisonsin [log,K]| comparison times.

Step 2:  Sinceit takesacomparatively short timeto open and closethe switch according to M, (&),

we assume that there is no delay in this step.

Hardware requirement:  K—1 comparators.

Computation time: [log,K]| comparison times.

7.1.2.2 A Competitive Unit

A competitive unit is composed of 3 sub-units:
¢ asub-unit for calculating an error-weighted deviation between 7 and ¢y,
¢ asub-unit for updating ¢, and 7,
¢ and a sub-unit for updating €.

7.1.2.21 A Sub-Unit for Calculating an Error-Weighted Deviation

The function of this sub-unit is to calculate the error-weighted deviation between & and ¢}, using
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the procedure described by the flowchart in figure 7.6.

START

STEP1 STEP2
- - Stepl:  computet; = [|F — &%

Step2:  computets = €.
Step3:  computetts.

Figure 7.6: Flow chart for computing the error-weighted deviation.

Analysis

Step1:  Thedetail agorithm for computing || — ;|| isasfollows:

Step1.1l:  fori=1to M doinpardlée
compute (z; — ¢; 1, )?

Step1.2:  compute Zf‘il(m —cip)

where z; and ¢; ;, denote the :-th component of # and ¢}, respectively.

Step 1.1 needs M adders and M multipliers, and is completed in 1 addition time plus 1
multiplication time.

Step 1.2 needs M—1 adders. By connecting these adders as a binary tree with [M/2]

leaves, this step is completed in [log,M| addition times.
Step 2:  Thisstep needs 1 multiplier and is completed in 1 multiplication time.

Step 3:  Thisstep needs 1 multiplier and is completed in 1 multiplication time.
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Hardware requirement:  2M—1 adders and M+2 multipliers.

Computation time: 1+ [log,M| addition times plus 2 multiplication times.

7.1.2.2.2 A Sub-Unit for Updating ¢ and 7,

The function of this sub-unitisto adjust ¢, and 7 according to the flowchart shownin figure 7.7.

YES NO

=] =

| STEP2 | | STEP3 | | STEP4 |

STEPS5

Stepl:  fori=1to M, doinpadléd
computetlyi =T; — Ci k-

Step2:  fori=1to M, doinpadléd
set ¢ x = ¢k + Nemd;.

Step3:  computet, = S @2,

Step4: computets = Fé;.

Step5: computets = tois.

Step 6: computets = aby.

Step?: set oy = ta+ts.

Step 8: set vy = avg.

Figure 7.7: Flow chart for updating ¢;. and ;. of the partitioning module.
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Analysis

Step 1:  Thisstep needs M adders and is completed in 1 addition time.

Step 2:  This step needs M adders and M multipliers, and is completed in 1 addition time plus 1

multiplication time.

Step 3:  This step needs M—1 adders and M multipliers and is completed in [log,M] addition

times plus 1 multiplication times.

Step 4: Thisstep needs 1 multiplier and is completed in 1 multiplication time.

Step 5:  Thisstep needs 1 multiplier and is completed in 1 multiplication time.

Step 6:  Thisstep needs 1 multiplier and is completed in 1 multiplication time.

Step 7:  Thisstep needs 1 adders and is completed in 1 addition time.

Step 8:  Thisstep needs 1 multiplier and is completed in 1 multiplication time.

Hardware requirement:  3M adders and 2M+4 multipliers.
Computation time: 2 + [log,M| addition time plus 2 multiplicationtimeif My (%) = 1,

1 multiplicationtimeif M (&) = 0.
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7.1.2.2.3 A Sub-Unit for Updating ¢

The function of this sub-unit is described by the flowchart in figure 7.8.

START

Stepl:  computety = >0 {fri(F) — gri(%)}

Step2: computet; = «éy.
Step3: computets = [ts.
Step4: setép = 1o+ t3.

STEP4

Figure 7.8: Flowchart for updating error €y,.

Analysis

Step 1:  Thesub-unitrecievesthedifferences{ fi ; (%) — g ;(%) } from the expert moduleindicated
by My. It thus needs to wait 1 addition time for the expert module to compute these
values. To calculate £1, this sub-unit uses N—1 adders and N multipliers and completes

this computationin [log,N| addition times plus 1 multiplicationtime.
Step 2: Thisstep needs 1 multipliersand is completed in 1 multiplicationtime.
Step 3:  Thisstep needs 1 multipliersand is completed in 1 multiplicationtime.

Step 4:  Thisstep needs 1 adder and is completed in 1 addition time.

Hardware requirement: N adders and N+2 multipliers.

Computation time: 2 + [log,N] addition times plus 2 multiplication times.
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Output
Output bo0 utpi

Unit 1 Unit N

X
Figure 7.9: The block diagram for the parallel implementation of an expert module.
7.1.3 A Linear Expert Module
Figure 7.9 shows the block diagram of alinear expert module that represents a mapping
from # to RY. The system is composed of N output units, each associated with one output
dimension.
7.1.3.1 An Output Unit

Thetask of output unit » isto computefunction f, ,, and update the corresponding parameters wy, ,, .

This output unit is composed of 2 sub-units:
e asub-unit for computing function f; ,,,
e and asub-unit for updating @y, ,.

7.1.3.1.1 A Sub-Unit for Computing Function f ,,

Thetask of thissub-unit isto compute the linear function:

M

Sk = Wkno + Z Wk, i1, (7.2)
=1

where M isthe dimension of an input. Thistask isdescribed by the flowchart in figure 7.10.
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START

STEP1

Stepl:  fori=1to M, doinpadléd
computetlyi = Wk nik;.
STEP2 Step 2: compute Wk n0 + Zﬁ‘iltl,i'

HHY

END

Figure 7.10: Flow chart for computing the output f ,,(Z).

Analysis
Step 1:  Thisstep needs M multipliers and is completed in 1 multiplication time.

Step 2:  Thisstep needs M adders and is completed in [log,(M+1)] addition times.

Hardware requirement: M adders and M multipliers.

Computation time: [log,( M+1)] addition times plus 1 multiplication time.

7.1.3.1.2 A Sub-Unit for Updating

This sub-unit adjusts parameter wy , using the LMS algorithm, described by the flowchart in
figure 7.11.

Analysis

Step 1:  This step needs 1 adder and 1 multiplier, and is completed in 1 addition time plus 1

multiplication time.

Step 2:  Thisstep needs 1 adder and is completed in 1 addition time.
This step needs needs M adder and M multipliers, is completed in 1 addition time plus 1

multiplication time.
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START

STEP1

Stepl:  compute
tl = Mims (gk,n(f) - fk,n(f))
N
Step3:  fori=1to M doinpardlé
Set Wi ny = W pg + 1.

<

END

Figure 7.11: Flow chart for updating parameter @y, ,,.

Hardware requirement:  M+2 adders and M+1 multipliers.

Computation time: 2 addition times plus 2 multiplication times.

7.1.4 A Post-Processor

Inaclassification task, aHet architecture needs a post-processor to determinethe category
of theinput #. A post-processor first finds the maximum value of the output f1(%), ... , fn (&),
and then defines the category of the input to be the one corresponding to the maximum value. Its

hardware requirement and the computation time are

Hardware requirement:  N—1 comparators.

Computation time: [log,N| comparison times.
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Figure 7.12: Theblock diagram of the parallel implementation of the radia basis function architec-

ture.

Figure 7.12 shows the block diagram of the implementation of a radial basis function

architecture which represents a mapping from R to R™N. Thisimplementation, as illustrated by

thefigure, iscomposed of the following building blocks:

¢ K RBF maodules, each for implementing a Gaussian radial basisfunction;

an output module, for generating the output vector;

alearning rate unit, for caculating learning rate .., ;

awidth unit, for calculating the widths of theradial basisfunctions;

amembership indicator, for determining the closest Gaussian center to the input;
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¢ and a post-processor, for determining the category of the input in a classification task.
In the following, we provide the detail specifications of these modules, as well as the analysis of

their hardware requirements and their execution times.

7.2.1 A RBF Module

A RBF module is composed of 3 units:
e aunit for computing the Euclidean devaition |7 — &|?,
e aunit for computing Gaussian function exp(—||Z — &||%/o?),

¢ and aunit for updating ¢ and v.

7.2.1.1 A Unit for Computing the Euclidean Deviation
Thefunction of thisunitisto computethe Euclidean deviation between # and ¢, using the procedure

described by the flowchart in figure 7.13.

Stepl: fori=1to M doinparalé

compute (z; — ¢; 1, )?
STEP1 Step 2: compute Zi‘il(xl - ci,k)z'

STEP2

Il

where z; and ¢; ; denote the :-th component of &
END and the Gaussian center ¢j, respectively.

Figure 7.13: Flow chart for computing the Euclidean deviation.

Hardware requirement:  2M—1 adders and M multipliers.

Computation time: 1+ [log,M| addition time plus 1 multiplicationtime.
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7.2.1.2 A Unit for Computing Gaussian Function

This unit computes the Guassian function exp(—||# — ||?/o?) using the Euclidean deviation
generated by the unit for computing the Euclidean deviation. Its hardware is composed of 1
multiplier and 1 exponentia circuit, and its computation is completed in 1 multiplication time plus

1 exponential time.

7.2.1.3 A Unit for Updating ¢ and oy,

YES NO
M=1

Stepl:  fori=1to M, doinpadléd
Computetlyi =T; — Ci k-

Step2:  fori=1to M, doinpadléd
set ¢ = ¢k + Nemds.

Step3:  computet, = Y, d2.

Step 4. computets = Fio.

Step 5. computety = aig.

Step6 set v = 13+ 4.

Step 7 set vy = avg.

Figure 7.14: Flow chart for updating ¢ and v, of the k-means a gorithm.
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Figure 7.14 shows the procedure used by this sub-unit to adjust ¢, and o, of the k-means
algorithm. This procedure is similar to the one described in subsection 7.1.2.2.2. The hardware

reguirement and computation time of this procedure are:

Hardware requirement:  3M adders and 2M+3 multipliers.
Computation time: 2 + [log,M| addition time plus 2 multiplicationtimeif My (%) = 1,

1 multiplicationtimeif M (&) = 0.

7.2.2 An Output Module

Figure 7.15 depicts the schematic diagram of an output module. It illustratesthe following building

blocks:

¢ N output units, each corresponding to one output dimension;

¢ and anormalizing unit.

A N
f1 N
Normalizing Unit <
A N
9 On
Output 500 Output
Unit 1 Unit N
T [e)ele) T
¢, %

Figure 7.15: The block diagram of an output module.
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7.22.1 An Output Unit

An output unit is composed of 2 sub-units:
¢ asub-unit for computing o,,,

¢ and a sub-unit for updating @,,.

72211 A Sub-Unit for Computing Output o,

Thetask of thissub-unit isto compute the function:

K
Op = Z wk,n¢k7 (73)

k=1

where ¢, is the output of the k-th RBF unit and wy, ,, is the corresponding amplitude coefficient.
The procedure for computing the output o,,, which is essentially similar to the procedure described

in subsection 7.1.3.1.1, is shownin figure 7.16.

START

Stepl:  fork = 1to K, doinpardléd
compute wy, , ¢x.
Step2:  compute Zle WP

STEP1

HHY

STEP2

END

Figure 7.16: Flow chart for computing the output f ,,(Z).

Hardware requirement: K—1 adders and K multipliers.

Computation time: [10g,K] addition times plus 1 multiplication time.
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7.2.2.1.2 A Sub-Unit for Updating ,,
This sub-unit adjusts the amplitude coefficients ,, using the LMS algorithm. The procedure used
in this sub-unit, which is essentially similar to the procedure described in subsection 7.1.3.1.2, is

showninfigure 7.17.

START

STEP1

Stepl:  computets = ims{gn () — fn(Z)}
Step2:  fork =1to K doinpardlé

STEP2 set wy ;= Wn k + phipty.

HHY

END

Figure 7.17: Flow chart for updating the parametersin the n-th output unit.

Hardware requirement:  K+1 adders and K+1 multipliers.

Computation time: 2 addition times plus 2 multiplication times.

7.2.2.2 A Normalizing Unit
Thetask of a normalized unit is to divide the output o,, of each output unit with the sum of all ¢y.

The computation in thistask is described by the flowchart shown in figure 7.18.

START

Stepl:  computet; = S r_, és.
Step2:  forn =1to N doinpardlée
compute f,, (¥) = o (7).

STEP1

HHY

STEP2

END

Figure 7.18: Flow chart for normalizing the output of the output module.
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Analysis

Step1:  Thisstep needs K—1 adders connected in abinary tree with [K/2]| leaves. The processis

completed in [log,K]| addition times.
Step2:  Thisstep needs N division circuits and iscompleted in 1 division time.

Since the hardware and time complexities of division and multiplication are essentialy the same,

we substitute the division operation with the multiplication operation.

Hardware requirement:  K—1 adders and N multipliers.

Computation time: [10g,K] addition times plus 1 multiplication time.

7.2.3 A Membership Indicator

A membership indicator determines the membership functions Mi,..., M based on the
Euclidean deviations ||7 — ¢;||2, generated by the K RBF units. This determination is described by

the flowchart in figure 7.19.

START

Stepl:  fork =1to K doinpardléd

jo— multiply 4 to ||Z — &||2.

Step2:  find index k,, such that
O, |7 = @, |17 < 0|7 — Cxll?,
forl<k<K.

Step 3 set My, (#) to 1 and other My, (%) to 0.

STEP2

lglgisd

STEP3

Figure 7.19: Flow chart for normalizing the output of the output module.
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Analysis
Step 1:  Thisstep needs K multipliersand iscompleted in 1 multiplication time.
Step 2:  Thisstep needs K—1 comparators, and is completed in [log,K] comparison times.

Step 3. Since it takes comparatively short time to open or close the switch according to M (&),

we assume that there is no delay in this step.

Hardware requirement:  K—1 comparators and K multipliers.

Computation time: [10g,K] comparison times plus 1 multiplicationtime.

7.2.4 A Learning Rate Unit

START

Stepl:  computet; = S, Dy
Step2:  computet; = S, Dy InDy.
Step3:  computets = In(t1).

Step4:  computeis = to/1;.

Step 5: set gy, =tz — ta.

STEPS

END

Figure 7.20: Flow chart for computing the learning rate 7y, .

The learning rate unit calculates the learning rate 7y, :

K

K K
Mem = (Y ) + Y —rlndn} /D o), (7.4
k=1 k=1

k=1
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using the procedure shown in figure 7.20. This procedure is similar to the one described in

subsection 7.1.1.

Hardware requirement:  2K—1 adders, K+1 multipliers, and K41 log-circuit.

Computation time: [10g,K] addition times plus 2 multiplication times plus 1 log-time.

7.25 A Width Unit

This unit is used to the width of the Gaussian function. The width o of all the Gaussian

functions are defined to

K
(1/K 3" (18 = Conearcst P32 (7.5)
k=1
The procedure for computing thiswidth isillustrated by the flowchart in figure 7.21. Analysis

Step 1 fork =1to K and k # 1doin paralel
compute ||&; — &|?

Step K: fork=1to K and k # K doin pardléel
compute ||éx — & ||?
Step K+1:  find d2 = the minimum of ||, — & |2
forl<k< Kandk # 1

Step2K:  find d% = theminimum of ||k — &||?
forl<k< Kandk # K.
END Step 2K+1: computeo? = (Y5, d2)/K.

Figure 7.21: Flow chart for determining the width of the Gaussian radial basis function.

Step 1: This step needs 2KM—K—-2M+1 adders and KM—M multipliers, and is completed

in1+[log,M] addition times plus 1 multiplication time.
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Step K: This step needs 2KM—K—-2M+1 adders and KM—M multipliers, and is completed
in1+[log,M] addition times plus 1 multiplication time.

Step K+1:  Thisstep needs K—2 comparators, and is completed in [log, (K—1)] comparison times.

Step 2K:  Thisstep needs K—2 comparators, and is completed in [log, (K—1)] comparison times.
Step 2K+1: Thisstep needs K—1 adders and 1 division circuit (multiplier), and is completed

in [log,K] addition times plus 1 division (multiplication) time.

Hardware requirement:  2K’M—K?—2KM+2K—1 adders, K*M—MK+1 multipliers,
and K?—2K comparators.
Computation time: [log,(K—1)] comparison time plus 1+ [1og,K] + [log,M| addition

times plus 2 multiplication time.

7.2.6 A Post-Processor

Inaclassification task, aRBF architecture needsapost-processor to determinethe category
of theinput #. A post-processor first finds the maximum value of the output f1(%), ... , fn (&),
and then defines the category of the input to be the one corresponding to the maximum value. Its

hardware requirement and the computation time are listed in the following summary:

Hardware requirement:  N—1 comparators.

Computation time: [log,N| comparison times.
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This section describes the parallel implementations for two classes of back-propagation

architectures: one for function approximation and the other for classification. The former is a

genera case of the architecture used in the Mackey-Glass problem described in section 5.3, and the

latter is a general case of the architecture used in the hand-written character recognition problem

described in section 5.4.

7.3.1 Function Approximation

fy

T

Output
1

]

[exeNe}

A

Z2,1

N

Hidden
21

[eNeNe}

Hidden
2H,

11

Hidden
11

[eNeNe}

1H:1

Hidden
1H

M

-
X

Figure 7.22: The block diagram of the parallel implementation of a back-propagation architecture

with two hidden layers.
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Figure 7.22 showsthe implementation of an architecture for function approximation. This

implementation is composed of
o H first-hidden-layer units,
e M, second-hidden-layer units,
e and N linear output units.

The implementations of these units, including their analyses, are provided in the following three
subsections.

7.3.1.1 A First-Hidden-Layer Unit

The implementation of this unit is composed of a sub-unit for computing its output =1 ; and for

updating its parameter i ;.

7.3.1.1.1 A Sub-Unit for Computing z1 ;

This sub-unit receives an input © € RM and generates a scalar outpuit:

M
21,4(7) = s(wio+ Y wiia)), (7.6)

i=1

where s isasigmoid function whosevalue s(«) isdefined to be {1+ exp(—a)} ~1. The computation

performed by this sub-unit is specified by the flowchart in figure 7.23.
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START

STEP1

Stepl:  fori=1to M doinpardlée

STEP2 compute wq ;; ;.

Step 2 computea = w50 + Zi‘il w1 35T
Step3:  compute sigmoid value s(a).

lylpisd

STEP3

Figure 7.23: Flow chart for computing the output of a first-hidden-layer unit.

Analysis

Step 1:  Thisstep needs M multipliers and is completed in 1 multiplication time.

Step 2:  Thisstep needs M adders and is completed in [log,(M+1)] addition times.

Step 3: Thisstep needs 1 sigmoid-circuit and is completed in 1 sigmoid-time, defined as thetime

needed for computing a sigmoid function.

Hardware requirement: M adders, M multipliers, and 1 sigmoid-circuit.
Computation time: [log,(M+1)] addition times plus 1 multiplicationtime

plus 1 sigmoid-time.

7.3.1.1.2 A Sub-Unit for Updating 1 ;
Thetask of thissub-unitisto update parameters wi ;o,...,w1,,n based on ez 1;,...,€2 f1,; SeNt

by the hidden unitsin the second layer. The updatea gorithmisgivenintheflowchart infigure 7.24.
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START

Step 1 computet; = Zf:zl €2,5i-
Step2:  computet, =1 — zg;.
Step3:  computets = zy ;to.
Step4:  computedy ; = tita.

Step 5. set w0 = w10+ 61,

Step6: forj = 1to M doinpardlé
set wiij = wi45 + 61,75

Figure 7.24: Flow chart for updating the parameters of afirst-hidden-layer unit.

Analysis

Step1:  Thisstep needs Hy—1 adders and is completed in [log,H| addition times.

Step 2:  Thisstep needs 1 subtractor (adder) and is completed in 1 subtraction (addition) time.

Step 3: Thisstep needs 1 multiplier and is completed in 1 multiplication time.

Step 4:  Thisstep needs 1 multiplier and is completed in 1 multiplication time.

Step 5:  Thisstep needs 1 adder and is completed in 1 addition time.

Step 6:  Thisstep needs M adders and M multipliers, and is completed in 1 addition time plus 1

multiplication time.

Hardware requirement:  H,+M+1 adders and M+2 multipliers.
Computation time: 2 addition times plus 3 multiplication times, or 1+ [log,H2| addition

times plus 2 multiplication times, whichever is maximum.
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7.3.1.2 A Second-Hidden-Layer Unit
The implementation of this unit is composed of a sub-unit for computing its output =, ; and for

updating its parameter ;.

7.3.1.21 A Sub-Unit for Computing z3;
This sub-unit receives inputs z1 1 ,..., 21,7, from the hidden unitsin thefirst layer and generates the
output of the form:
Hy
2’272'(5) = S(wzﬂ'o + Z w27ij217]‘(f)). (7.7)
=1

Thisoutput 25 ; is computed with an algorithm similar to the one described in subsection 7.3.1.1.1.

The hardware requirement and the execution time of this sub-unit are given below:

Hardware requirement:  Hy adder, H; multipliers, and 1 sigmoid-circuit.

Computation time: [log,(H141)| addition times plus 1 multiplication time plus 1 sigmoid-time.

7.3.1.2.2 A Sub-Unit for Updating >,

The task of this sub-unit is to update parameters wy ;o,...,w2, 7, based on ez 1;,...,€3 v; sent by the
output units. It also generates € ;1,....e2,; 7, for updating the parameters in first-layer hidden units.
The computation of this sub-unit is specified by the flowchart shown in figure 7.25. Note that this

algorithmis similar to the algorithm in section 7.3.1.1.2 except we have added step 5.
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START

EP2 Step 1 computet; = Z;’V:l €355

STEP1 Step2: computet, = 1— z;.

STEP3 Step3:  computets = z;to.
Step4:  computedy; = tita.
Step5:  forj = 1to Hy doinpardle
— compute €2 ;; = w2,ij62,;-
Step 6: set w0 = w20 + 62,5
Step7: forj =1to Hydoinpardle

Set w5 = wo5 + 62,i71,5-

STEP5

Figure 7.25: Flow chart for updating the parameters of a second-hidden-layer unit.

Hardware requirement:  Hi1+N+1 adders and 2H;+2 multipliers.
Computation time: 2 addition times plus 4 multiplication times, or 1+ [log,N| addition

times plus 3 multiplication times, whichever is maximum.

7.3.1.3 A Linear Output Unit

A linear output unit is composed of 2 sub-units:

¢ asub-unit for computing alinear output f;,

¢ and asub-unit for updating its parameter s ;.
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7.3.1.3.1 A Sub-Unit for Computing a Linear Output f;

Thetask of thissub-unit isto compute the function:

Hp
fi(®) = wa o+ Y waij22,(F). (7.8)

7=1
This computation is described by the flowchart in figure 7.26.

START

STEP1
Stepl:  fori=1to Hpdoinpardléd
compute W3 522 5-
Step 2 compute fn(f) = w3no+ Zfizl W33522,5-

STEP2

HHY

END

Figure 7.26: Flow chart for computing the output of alinear output unit.

Hardware requirement:  H, adder and H, multipliers.

Computation time: [log,(H241)| addition times plus 1 multiplication time.

7.3.1.3.2 A Sub-Unit for Updating s ;
The task of this sub-unit is to update parameters w3 ;o ,..., w3,;f, and generates €3 ;1,...,€3;7, for
updating the parameters of the hidden unitsin the second layer. The computation of thissub-unitis

described in the figure 7.27.
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Se2
Step 3:
Step 4:
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compute 6z ; = n{g: () — fi(Z)}.
fori = 1to Hp doin parallée
compute €345 = wgyijégyi.
set w30 = w30+ 63;.
fori = 1to Hp doinparallée
set waij = waj + 0372,

Figure 7.27: Flow chart for updating the parameters of alinear output unit.

Analysis

Step 1:  This step needs 1 adder and 1 multiplier, and is completed in 1 addition time plus 1

multiplication time.

Step 2: This step needs H, multipliersand is completed in 1 multiplication time.

Step 3:  Thisstep needs 1 adder and is completed in 1 addition time.

Step 4:  Thisstep needs H, adders and H, multipliers, and is completed in 1 addition time plus 1

multiplication time.

Hardware requirement:  H»+2 adder, 2H,>+1 multipliers.

Computation time: 2 addition times plus 3 multiplication times.
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7.3.2 Clasdsification

For an architecture that classifiesinput # € R™ into NV categories, its parallel implemen-

tation, shown as a block diagram in figure 7.28, is composed of
¢ H hidden units,
¢ N sigmoidal output units,

¢ and a post-processor.

Output 600 QOutput
1 N
zy Zy
Hidden Hidden
000
1 H
T
>
X

Figure 7.28: The block diagram of the parallel implementation of a back-propagation architecture
for classification.

7.3.21 A Hidden Unit

The implementation of a hidden unit is identical to that of a first-layer hidden unit described in
subsection 7.3.1.1, except for some notation. The hardware requirement and the execution time of

ahidden unit are summarized below:
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Hardware requirement: 2M-+N-+1 adders, 2M+2 multipliers, and 1 sigmoid-circuit.
Time for computing output: [log,(M+1)] addition times plus 1 multiplication time
plus 1 sigmoid-time.
Timefor updating parameters: 2 addition times plus 3 multiplication times,
or 1+[log,H2]| addition times plus 2 multiplication times,

whichever is maximum.

7.3.2.2 A Sigmoidal Output Unit

A sigmoidal output unit is composed of 2 sub-units:
¢ asub-unit for computing a sigmoidal output f;,

¢ and asub-unit for updating its parameter o ;.

7.3.22.1 A Sub-Unit for Computing a Sigmoidal Output f;

Thetask of this sub-unit is to compute the function:

H
Jil@) = s(waio+ > wai2 (%)), (7.9)

i=1

where z; is the output of hidden unit ;. The hardware requirement and the execution time for the

implementation of this sub-unit are listed below:

Hardware requirement:  H adder, H multipliers, and 1 sigmoid-circuit.
Computation time: [log,(H+1)| addition times plus 1 multiplication time

plus 1 sigmoid-time.
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7.3.2.2.2 A Sub-Unit for Updating 5
The function of this sub-unit isto update parameters wy ;g ..., w2,;7, using the algorithm shownin

figure 7.29.

‘K

STEP1 STEP2 STEP4
Stepl:  computety = g;(Z) — fi(Z).
Step2:  computet, = 1 — f;(Z).
Step3: computets = t1t>.
STEPS Step 4: computets = Ufz(f)

Step 5. computedy; = tata.

Step6: forj = 1to H doinpardlé

compute €245 = wzyijézyi.
A Step7: et wp 0= wo 0+ 62

Step 8: j i

forj = 1to H doinpardlé
Set w55 = woi5 + 62,32

Figure 7.29: Flow chart for updating the parameters of a sigmoidal output unit.

Hardware requirement:  H+3 adder and 2H+3 multipliers.

Computation time: 2 addition times plus 4 multiplication times.

7.3.2.3 A Post-Processor
In a classification task, a BP architecture needs a post-processor to determine the category of the
input Z. A post-processor first finds the maximum value of the output f1(Z), ... , fn(Z), and then

defines the category of the input to be the one corresponding to the maximum value.

Hardware requirement:  N—1 comparators.

Computation time: [log,N| comparison times.
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7.4 Hardware Cost for Parallel Implementations

In this section, we estimate the hardware cost for the parallel implementationsof the Het,
RBF, and BP architectures described in sections 7.1, 7.2, and 7.3. We define the hardware cost of
each implementation by the silicon area of al the arithmetic operators in the implementation. The
silicon area dedicated to the connections among arithmetic operatorsis not included partly because
thisarea cannot be quantified correctly unlesstheimplementationisactually laid out on silicon, and
because approximating the hardware cost by the areas of the operators is accurate enough for the
purpose of establishing the relative hardware costs of Het, RBF and BP architectures.

To compute the hardware costs for the paralel implementations of Het, RBF and BP
architectures, we determine the number of arithmetic operators required in these implementations
in subsections 7.4.1, 7.4.2, and 7.4.3. These computational requirements are then translated into

the area costs in subsection 7.4.4

7.4.1 HeterogeneousArchitecture

Theimplementationof the Het architecturefor afunction approximationtask, asdescribed

in section 7.1, is composed of
¢ alearning rate unit, consisting of 2K adders K+1 multipliers, and K+ 1 log-circuits;

¢ a partitioning module, consisting of 5SKM+KN-K adders, 3KM+KN+8K multipliers, and

K—1 comparators,
o K expert modules, each consisting of 2MN+2N adders, and 2MN-+N multipliers.

¢ and amultiplexer, whose complexity is assumed to be equivalent to 1 adder.
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According to these specifications, the total number of operatorsin the implementation are

¢ K—1 comparators,

¢ 2KMN+5KM+3KN+K+1 adders,

¢ 2KMN+3KM+2KN+9K+1 multipliers,

and K+1 log-circuits.

For the Mackey-Glass problem (where M=4, N=1, and K=8), the number of arithmetic operatorsin
the paralldl implementationsof Het isequivalent to 7 comparators, 257 adders, 249 multipliers, and
9 log-circuits.

For the letter recognition problem (where M=100, N=26, and K=8), the humber of arith-
metic operators in the paralel implementations of Het is equivalent to 32 comparators, 46,233
adders, 44,489 multipliers, and 9 log-circuits. Thisresultsalso includes apost-processor, consisting

of 25 comparators.

7.4.2 Radial Basis Function Architecture

According to the specifications defined in section 7.2, the parallel implementation of the

radial basis function RBF architecture is composed of

¢ K RBF modules, each consisting of 5M—1 adders, 3M+4 multipliersand 1 exponent-circuit.

¢ an output module, consisting of 2KN+K—1 adders and 2KN-+2N multipliers;

¢ amembership indicator, consisting of K—1 comparators and K multipliers;

¢ alearning rate unit, consisting of 2K—1 adders, K+1 multipliers, and K+1 log-circuits;
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¢ awidth unit, consisting of 2K?°M—K?—2KM+2K—1 adders, K2M—KM+1 multipliers, and
K2—2K comparators;
These specifications indicates that the total number of operators in the implementation are
o K?2—K—1 comparators,
o 2K2M—K24-3KM+2KN+-4K—3 adders,
o K2M+42KM+2KN-+6K+2N+2 multipliers,
¢ K+1log-circuits,
¢ and K exponential-circuits.

For the Mackey-Glass problem (where M=4, N=1, and K=64), the number of arithmetic operators
in the parallel implementations of RBF is equivalent to 4,031 comparators, 29,821 adders, 17,412
multipliers, 65 log-circuits, and 64 exponential-circuits.

For the letter recognition problem (where M=100, N=26, and K=128), the humber of
arithmetic operators in the paralld implementations of RBF is equivalent to 16,280 comparators,
3,305,981 adders, 1,671,350 multipliers, 129 log-circuits, and 128 exponentia-circuits. These

numbers al so include a post-processor, consisting of 25 comparators.

7.4.3 Back-Propagation Architecture

For the back-propagation architecture described in subsection 7.3.1, which is used for

function approximation, itsimplementation is composed of

¢ Hj first-hidden-layer units, each consisting of Ho+2M+1 adders, 2M+2 multipliers, and 1

sigmoid-circuit;
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¢ H> second-hidden-layer units, each consisting of 2H;+N+1 adders, 3H;+2 multipliers, and

1 sigmoid-circuit;
¢ and N linear output units, each consisting of 2H,+2 adders and 3H,+1 multipliers.
In summary, the total number of operators in thisimplementation are
e 3HiH24+2H1M+3H2N+H1+H2+2N adders,
e 3HiH2+2H1M+3H>N+2H; +2H>+N multipliers,
e and Hi+H, sigmoid-circuits.

For the parallel implementation of the BP architecture used in the Mackey-Glass problem (where
M=4, N=1, and H1=H»=20), its operator requirements are 1,462 adders, 1,501 multipliers, and 40
sigmoid-circuits.

For a back-propagation architecture described in subsection 7.3.2, which is used for

classification, itsimplementation is composed of
¢ H hidden units, each consisting of 2M+ N+ 1 adders, 2M+2 multipliers, and 1 sigmoid-circuit;

¢ Nsigmoidal output units, each consisting of 2H+ 3 adders, 3H+3 multipliers, and 1 sigmoid-

circuit.
The total number of operators in thisimplementation are
¢ N—1 comparators,
¢ 2HM+3HN+H+3N adders,

o 2HM+3HN+2H+3N multipliers,
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¢ and H+N sigmoid-circuits.

For the parale implementation of the BP architecture used in the hand-written letter recognition
problem (where M=100, N=26, and H=10), its operator requirements are 25 comparators, 2,868

adders, 2,878 multipliers, and 36 sigmoid-circuits.

744 Hardware Cost Comparison

Table 7.1 summarizes the number of arithmetic operators required in the paralel imple-
mentations of Het, RBF, and BP. To compute the hardware cost from these operator requirements,
it is necessary that we know the silicon areas of the various operators in the implementation. In
this investigation, similar to the case of seria implementations, we assume that each adder and
comparator in the implementation are for two 32-bit numbers, and each multiplier is for two 16-bit
number. We also assume that each non-linear function is implemented by a look-up table having
256 entries, each of 32 bits. Table 7.2 lists the implementation costs of the Het, RBF and BP
architectures for the Mackey-Glass and | etter recognition problem. We express the implementation
costs in adder-area units, aaus, where 1 aau is equivalent to the area of one adder. In this hardware
cost estimation, we approximate the silicon area of a comparator to be 0.5 aaus, the area of a
multiplier to be 7 aaus, and the area of alook-up table to be 13 aaus. These approximations are
based on the specifications of the SPERT chip [49, 50]. Table 7.2 shows the implementation costs
of Het, RBF, and BP. It aso showsthe ratio of the hardware cost of each architecture to that of the
Het architecture of the same problem. According to this table, the implementation cost of Het is
lowest for the Mackey-Glass problem, and that of BP is lowest for the |etter recognition problem.

Theimplementation costs of the RBF architeture are highest for both problems.



Table 7.1: Number of Operators in the Parallel Implementations

Mackey-Glass Time Series Prediction

Algorithm | Comparator | Adder | Multiplier | Nonlinear
Het 7 257 249 9
RBF 4,031 29,821 17,412 129
BP 0 1,462 1,501 40

Character Classification

Algorithm Comparator Adder Multiplier Nonlinear
Het 32 46,223 44,489 9
RBF 16,280 3,305,981 1,671,478 257
BP 25 2,868 2,878 36

Table 7.2: Hardware Cost of the Parallel Implementationsin adder area units.

Application | Algorithm \ Area Cost \ Ratio
Het 2,070 1.00

Mackey-Glass RBF 155,397 75.07
BP 12489 6.03

Het 357,789 1.00

Character RBF 15,017,808 41.97
BP 23,494 0.07

146
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7.5 Computation Timefor Parallel | mplementations

In this section, we determine computation times of the Het, RBF and BP architectures for

the parallel hardware specified in sections 7.1, 7.2, and 7.3. For this section, we compute for each

architecture a training-cycle time, the time needed to to perform the arithmetic operations in one

training cycle. We then compare the convergence rates of the three architectures with respected to

the computationa time, defined as the product of the training-cycle time and the number of pattern

presentations. Even though our definition of a one-training-cycle does not include the time needed

for transmitting data from one operator to another operator, it is accurate enough for establishing

the relative speeds of the learning algorithmsin the three aforementioned architectures.

7.5.1 HeterogeneousArchitecture

START

Step 1:

STEP1
l | STEP3 | | STEP4 | Step 2
STEP2 Step 3:
Step 4:
| STEP6 | | STEPS5 | Step 5
Step 6:
Step 7:
Step 8:

fork = 1to K doin pardlé
compute the error-weighted deviation
between # and ¢;,.
determine the membership indicators.
compute the outputs of al expert modules f;;
determine the learning rates ng,,, and 7y,
compute the output f(Z) = My (%) fz (Z).
updatecy; and oy, foral 1 < k < K.
updateé, for 1 < £k < K.
update wy, for 1 < k < K.

Figure 7.30: Flow chart of the learning algorithm of the heterogeneous architecture.

Figure 7.30 shows the learning algorithm of the Het architecture for the hardware imple-

mentation specified in section 7.1.
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Analysis

Step 1:  Thisstepis performed by the sub-unit for computing the error-weighted deviation and is
completed in 1+ [log,M| addition times plus 2 multiplication times.

Step 2:  Thisstepisperformed by the membership indicator and is completed in [log,K| compar-
ison times.

Step 3:  Thisstep is performed by the sub-units for computing f; ; in @l the output units, and is
completed in [log,(M+1)] addition times plus 1 multiplication time.

Step 4. Thisstep isperformed by the learning rate unit and is completed in 2+ [log,K] addition
times plus 2 multiplication times plus 1 log-time.

Step 5:  Thisstepisto transmit the output of the expert module corresponding to M (). Sinceiit
takes comparatively short timeto close or open the switchs of the multiplexer, we assume
that thereis no delay in thisstep.

Step 6:  This step is performed by the sub-units for updating ¢, and 7, and is completed in
2 + [log,M] addition time plus 3 multiplication times.

Step 7:  Thisstep is performed by the sub-units for updating €, and is completed in 2 + [log,N]
addition times plus 2 multiplication times.

Step 8:  Thisstep is performed by the sub-units for updating @, ; and is completed in 2 addition
times plus 2 multiplication times.

End of Analysis

For the Mackey-Glass problem (where M=4, N=1, and K=8), this anaysis indicates that the
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critical path of the learning cycle of the Het architecture consists of step 4 and 6. The computation
timeof thiscritical path isequivalent to 9 addition times plus4 multiplicationtimesplus 1 log-time.

For the letter recognition problem (where M=100, N=26, and K=8), the above anaysis
indicates that the critical path consists of steps 1, 2 and 6. The computation time of such a path
is equivalent to 3 comparison times plus 17 addition times plus 4 multiplication times. However,
since the 26 outputs of the Het architecture are used as the estimates of the likelihoods of an input
being various capital letters, we need to compare these 26 outputs in order to determine the class
of the input. This determination needs [log, 26] = 5 comparison times. Therefore, the total
execution time of one training cycleis equivaent to 8 comparison times plus 17 addition times plus

4 multiplication times.

7.5.2 Radial Basis Function Architecture

For the RBF architecture investigatedin thisdissertation, itslearning procedure is divided

into 3 stages:

¢ Locating the centers of the Gaussian functions using the k-means algorithm,

¢ Determining the widths of the Gaussian functions,

¢ Adjusting the heights of the Gaussian functions.

For the purpose of determining the computation time, we describe the algorithms in these three
stages based on the parallel implementation specified in section 7.2. We then analyze each step in

the algorithm for its computation time.
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7.5.2.1 Determining the Centers of the Gaussian Functions

The k-means agorithm for determining the centers of the Gaussian functions are described by the

flowchart in figure 7.31.

Step 1:

Step 2

Step 3
Step 4:

STEP5

END

fork = 1to K doin pardlé
compute the Euclidean deviation
between # and ¢;,.
determine the membership indicator M.
determine learning rates 7y, .
update ¢, and oy, for 1 < k < K.

Figure 7.31: Flowchart of the k-means agorithm for computing the centers of the Gaussian func-

tions.

Analysis

Step 11  Thisstepisperformed by thesub-unitintheRBF modules, andiscompletedin 1+ [log,M |

addition times plus 1 multiplication time.

Step 2:  Thisstep is performed by the membership indicator, and is completed in [log,K] com-

parison times plus 1 multiplication time.

Step 3:  This step is performed by the learning rate unit and is completed in [log,K] addition

times plus 2 multiplication times plus 1 log-time.

Step 4:  This step is performed by the sub-unit for updating ¢ and 7, and is completed in

2 + [log,M] addition times plus 2 multiplication times.

End of Analysis
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Thisanalysisindicatesthat it takes 3+ 2[log,M| additiontimesplus [log,K] comparison

times plus 4 multiplication times, or 2 + [log,K]| + [log,M] addition times plus 4 multiplication

timesplus 1 log-time, whichever islonger, to complete one training cycle of the k-means algorithm.

7.5.2.2 Determining the Width of the Gaussian Functions

We use the width unit, described in section 7.2.5, to determine the width of the Gaussian functions.

Thecomputationtime of thisunitisequivalentto [log,(K—1)| comparisontimesplus1+ [log,M]| +

[10g,K] addition times plus 2 multiplicationtimes.

7.5.2.3 Determining the Heights of the Gaussian Functions

The least mean square (LMS) algorithm is used to determine the heights of the Gaussian functions.

Thisagorithm isdescribed in the figure 7.32

Sent

Step 2:

STEP6

Step 3:
Step 4:

Step 5:

S

fork = 1to K doin pardlé
compute r? = ||Z — & |2

fork = 1to K doin pardlé
compute ¢, = exp(r?/c?).

compute "5, &y..

forn = 1to N doinpardlé
compute output o,, .

normalize al outputso,, by S5, .

update parameters w, .

Figure 7.32: Flowchart of the LMSalgorithm for determining the heightsof the Gaussian functions.
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Analysis

Step1:  This step is performed by the sub-unit for computing the Euclidean deviation, and is

completed in 1+ [log,M] addition times plus 1 multiplication time.

Step 2:  Thisstepisperformed by the sub-unit for computing aGaussian function, andiscompl eted

in 1 multiplication time plus 1 exponent-time.

Step 3:  Thisstep is computed by the summing unit, and is completed in [1og,K] addition times

Step 4:  This step is performed by the sub-unit for generating output o,,, and is completed in

[10g,K] addition timesand 1 multiplication time.

Step 5:  Thisstep isperformed by the normalizing unit and is completed in 1 multiplicationtime.

Step 6: This step is performed by the sub-unit for updating @,,, and is completed in 2 addition

times and 2 multiplication times.

End of Analysis

This analysisindicates that it takes 3 + [log,M]| + [log,K] addition times plus 6 multi-
plication times plus 1 exponent-time to complete one training cycle of theLMS agorithm.

For the Mackey-Glass problem (where M=4, N=1, and K=64), it takes 6 comparison
times plus 7 addition times plus 4 multiplication times to complete one cycle of the k-means
algorithm. It takes 6 comparison times plus 9 addition times plus 2 multiplication timeto determine
the widths of the Gaussian functions, and it takes 11 addition times, 6 multiplication times and 1

exponent time to complete one cycle of LMS.
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For the character recognition (where M=100, N=26, and K=128), it takes 7 comparison
times, 17 addition times and 4 multiplication times to complete one training cycle of the k-means
algorithm. It takes 7 comparison times plus 15 additiontimes plus 2 multiplicationtimeto determine
the widths of the Gaussian functions. For onetraining cycle of LMS it takes 5 comparison times
plus 17 addition times plus 6 multiplication times plus 1 exponent-time, where the post-processing

timeisaready included.

7.5.3 Back-Propagation Architecture

7.5.3.1 Function Approximation

START

Stepl:  fori=1to Hydoinpadld

STEP1 compute 21
Step2:  fori=1to Hydoin pardléd
compute 22
STeP2 Step3:  fori=1to N doinparald
compute f;.
STEP3 Step4: fori = 1to N doin paralel

update parameter s ;.
Step5:  fori=1to Hpdoin pardléd

update parameter w, ;.
Step6:  fori=1to Hydoinpardléd
STEPS update parameter y ;.

STEP4

STEP6

Dglptelslaled

Figure 7.33: Flow chart of the learning algorithm of the back-propagation architecture for function
approximation.

Figure7.33 showsthelearning a gorithm of the back-propagation architecturefor function
approximation. The algorithm is for a network with two hidden layers and a linear output layer

which are specified in section 7.3.1.
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Analysis

Step 1:  Thisstep is performed by the sub-unitsfor generating output z1 ; in thefirst-layer hidden
units, and is completed in [log,(M+1)| addition times plus 1 multiplication time plus 1
sigmoid-time.

Step 2:  This step is performed by the sub-units for generating output 2, ; in the second-layer
hidden units, and is completed in [log,(H1+1)| addition times plus 1 multiplicationtime
plus 1 sigmoid-time.

Step 3:  Thisstep is performed by the sub-unitsfor generating linear output f; in the linear output
units, and is completed in [log,(H2+1)] addition times plus 1 multiplication time.

Step 4 Thisstep is performed by the sub-units for updating parameter w3 ; in the linear output
units, and is completed in 2 addition times plus 3 multiplication times.

Step 5. Thisstep is performed by the sub-units for updating parameter w3 ; in the linear output
units, and is completed in 2 addition times plus 4 multiplication times, or in 14 [log,N]
addition times plus 3 multiplication times, whichever is maximum.

Step 6:  Thisstepisperformed by the sub-unitsfor updating parameter w1 ; in thefirst-layer hidden
units, and is completed in 2 addition times plus 3 multiplicationtimes, or in 1+ [log,H>]
addition times plus 2 multiplication times, whichever is maximum.

End of Analysis

For the Mackey-Glass problem (where M=4, H;=H»>=20, and N=1), the time for completing

one training cycle of the back-propagation architecture is equivalent to 23 addition times plus 12
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multiplication times plus 2 sigmoid-times.

7.5.3.2 Classification
Figure 7.34 shows the learning agorithm of the back-propagation architecture for classification.

The learning algorithm is for a network with one hidden layer and sigmoid outputs, described in

START

subsection 7.3.2.

Let C,,, denotethe category of the input pattern
indicated by the back-propagation system.

Let C,,4 denote the category of theinput pattern

F indicated by the goa function.

STEP3 Stepl: fori=1to H doinpardle
compute z; .

Step2:  fori = 1to N doin paralel

compute f;.
Step 3:  classify the category of input

suchthat fc,,, (£) > fi(¥)for1 <i < N.

Step4: fori = 1to N doin paralel

update parameter w, ;.
Step5:  fori = 1to H doin paralel

update parameter wy ;.

Figure 7.34: Flow chart of the learning a gorithm of the back-propagation architecture for classifi-
cation.

Analysis

Step 1:  Thisstepis performed by the sub-unitsfor generating output z; inthe hidden units, and is

completedin [log,(M+1)] additiontimesplus 1 multiplicationtimeplus 1 sigmoid-time.

Step 2:  This step is performed by the sub-units for generating output f; in the sigmoidal output

units, and is completed in [log,(H+1)] addition times plus 1 multiplication time plus 1
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sigmoid-time.

Step 3:  Thisstepiscompletedin [log,N| comparison times.

Step 4:  Thisstepisperformed by the sub-unitsfor updating parameter @ ; in the sigmoidal output

units, and is completed in 2 addition times plus 4 multiplication times.

Step 5:  Thisstepisperformed by the sub-unitsfor updating parameter 1 ; inthehidden units, and
is completed in 2 addition times plus 3 multiplication times, or in 14 [log,H;| addition

times plus 3 multiplication times, whichever is maximum.

End of Analysis
For the character recognition problem (where M=100, H=10, and N=26), the time needed to
complete one training cycle of the back-propagation architecture is 5 comparison times plus 18

addition times plus 8 multiplication times plus 2 sigmoidal times.

7.5.4 Computation Time Comparison

Table 7.3 summarizes the training-cycle times of Het, RBF and BP architectures for the
Mackey-Glass and | etter recognition problems, derived in sections 7.5.1, 7.5.2, and 7.5.3. Table 7.4
lists the training-cycle times in terms of addition time units (atu). It also lists the ratio of the
training-cycle time of each agorithm to that of Het for the same problem. The figuresin thistable
arederived by trand ating the resultslisted in table 7.3 using the same assumptionsas thosein section
6.4. That is, we approximate the delay time of comparison to be 1 atu, the delay of multiplication
to be 2 atus, and the delay timefor retrieval of anon-linear function value from alook-up table are
2 atus. Comparing these training-cycle times reveals that the training-cycle time of Het is shorter

than the other two.



Table 7.3: Times for Completing One Training Cycle Measured in Types of Operations.

Mackey-Glass Time Series Prediction

Algorithm | Comparison | Addition | Multiplication |  Nonlinear
Het 0 9 4 1
RBF(Center) 6 7 4 0
RBF(Wdth) 6 9 2 0
RBF(Height) 0 11 6 1
BP 0 23 12 2

Character Classification

Algorithm Comparison Addition Multiplication Nonlinear
Het 8 17 4 0
RBF(Center) 7 17 4 0
RBF(Wdth) 7 15 2 0
RBF(Height) 5 17 6 1
BP 5 18 8 2

Table 7.4: Timesfor Completing One Training Cycle Measured in Addition Time Units.

| Application | Algorithm |  CydeTime | Ratio
Het 19 1.00

RBF(Center) 21 1.10

Mackey-Glass RBF(Wdth) 19 1.00
RBF(Height) 25 132

BP 51 2.68

Het 28 1.00

RBF(Center) 32 114

Character RBF(Wdth) 24 0.86
RBF(Height) 36 1.28

BP 43 1.54
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Figures 7.35a and 7.35b show the NMSEs of the Het, RBF, and BP architectures with
respect to the computation time for the Mackey-Glass and | etter recognition problems. We measure
the computation time in terms of the training-cycle time of the Het architecture. The computation
times of Het and BP are defined to be the product of the number of pattern presentations and the
training-cycle times of the corresponding learning algorithms. For RBF, its computation time is
defined as:

computati ontime = Np(TKM + THt) + Twa, (7.10)

where NN, stands for the number of pattern presentations, and Tk ar, T+, and Tyy4 stand for the
training-cycle time of the k-means agorithm, the time for determining the width of the Gaussian
function, and the training-cycle time of the LMS agorithm, respectively. These two figures reveal
that Het has much better convergence rate than RBF and BP, when measured in terms of the

computation time.

7.6 Complexity Comparison

In this section, we compare the complexities of the described paralel implementations
of the Het, RBF and BP architectures for the Mackey-Glass problem and the hand-written letter
recognition task. For each of these implementations, we define its complexity to be the product
of the area cost and the computation time. Figures 7.36a and 7.36b show the NMSEs of the Het,
RBF, and BP architectures with respect to the time-area complexity for the Mackey-Glass and | etter
recognition problems. These results reveal that the Het architecture requires less complexity than

those required by the RBF and BP architectures for attaining the equivalent performance.



159

S

Het
RBF
BP’

1e+00 let01

let+02

1e+03 let04

let05

let06

1et+07

Time

NMSE

le+02

o o N ®

35

25

Het
— - RBF
W\/\ [N RAY 5
v
M
v
Time
1e+00 le+01 le+02 1e+03 le+04 1e+05 1e+06

@

(b)

Figure 7.35: Execution time comparison of Het, RBF, and BP on (@) the Mackey-Glass problem,

(b) and the hand-written capital |etter recognition.
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7.7 Implication for Practical Hardware

As evident in sections 7.1, 7.2, and 7.3, it is unredlistic to implement artificia neural
networks using the maximal parallel scheme in digital hardware since the hardware requirements
are excessive. Because a purely serial implementation of large scale networks is often too slow, it
is necessary to implement these architectures with a serial-parallel approach. In a serial-parallée
implementation, a set of processors is programmed to perform the computations in parale and
information among different processors are transferred through a communication network.

Another possibility for implementing artificial neural networksis to use a mixed anal og-
digital technique. Even though the accuracy of an analog circuit islower thanitsdigital counterpart,
the area of the analog circuit isin general more compact than that of the digital circuit, particularly,
when the computational operation isone that is naturally performed by physical processes, such as
the Kirchoff’s current law to add, or the Ohm’s law to multiply. In the heterogeneous architecture,
the k-means agorithm performed in the gating module does not require high accuracy. It can thus
be implemented with anal og technology so that the implementation can be more compact. In fact,
several analog or mixed analog-digital systems for performing the k-means algorithm have been

implemented successfully [51, 52].
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Chapter 8

Conclusion and Future Research

In this dissertation, we have investigated a class of heterogeneous architectures that are
based on k-means partitioning. In these architectures, the k-means algorithm is used to partition
the input domain into several non-overlapping sub-domains. Thetask defined on each sub-domain
is then solved by an expert module trained in a supervised manner. The output of the architecture
is defined to be the output of the expert modul e whose corresponding subdomain contains the input
point.

Experiments have shown that the performance of these heterogeneous architectures de-
pends strongly on the efficacy of the k-means algorithmin partitioning theinput domain. In order to
improve the overall performance of the heterogeneous architectures based on k-means partitioning,
we have first enhanced the performance of the traditional k-means algorithm by integrating into
its process two mechanisms:. thefirst for biasing the partitioning process so that the a gorithm can
achieve an optimal partition, and the second for adjusting the learning rate dynamically, permitting

theagorithmto converge very rapidly at first and later very closely towards an optimal solution. We
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have also modified the deviation measure of this enhanced k-means algorithm so that the algorithm
partitions the input domain based on both the input distribution, and information about the goal

function and the capability of the expert modules. This new deviation measure allows the k-means
algorithm to adjust the size of each individua sub-domainin the partition so that the representation
resources in all the sub-domains are optimally used.

We have compared the heterogeneous architectures based on the error-weighted k-means
partitioning against two traditional homogeneousarchitectures: the multi-layered perceptron trained
by back-propagation and the radial basis function architecture. The performance of these three ar-
chitectures are compared on the M ackey-Glass time series prediction and on a hand-written capital
letter recognition task. We have found that the heterogeneous architecture exhibits better gener-
alization than the radia basis function and back-propagation architectures. The convergence rate
of the heterogeneous architecture, measured in terms of the number of training pattern presenta-
tions, is aso faster than those of the back-propagation and radia basis function architectures. We
have also evaluated the convergence rate with respect to the computational time for two specific
cases. a serial implementation, where the operations in the architecture are performed in serid,
and a parallel implementation, where the operationsin the agorithm are performed with maximal
concurrency. For both cases, the convergence rate of the heterogeneous architecture, measured in
terms of the computation time, isfaster than those of the back-propagation and radial basisfunction
architectures. We have aso found that in the paralel implementation, the convergence rate of the
heterogeneous architecture when scaled with its hardware complexity is aso lower than the other
two architectures.

The heterogeneous architectures introduced in this dissertation can be further improved
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in severa aspects. In this study we assume that &', the number of the expert modules in the
heterogeneousarchitecture, ispre-determined, i.e., by theavailable hardware. 1t appearsworthwhile
to study thetrade-offsin varying K according to the characteristics of agiven problem. Idealy one
could come up with a cost heuristics that automatically adds or deletes expert modules to achieve
an optimal performance/cost ratio [53]. Assuming that such a system isimplemented on a machine
with afinite amount of hardware, where there is a significant amount of multiplexing of "virtual"
expert modules through the same physical processors, changing the number of expert modules
would simply change the degree of multiplexing, but would not require any structural changesin
the hardware architecture.

Currently, our heterogeneous architectures use binary-valued membership indicators.
Since there is no overlap among sub-domains, the goal functions defined on the various sub-
domains are approximated independently by different expert modules, resulting in a discontinuous
output function. In order for a heterogeneous architecture to generate a continuous output function,
smooth membership indicators which partition the input domain into overlapping sub-domainsare
needed [25]. To use smooth membership indicators, we would define the output of the architecture
to be a combination of the expert outputs weighted by their corresponding smooth membership
indicators. This would enable us to vary the output of the heterogeneous architecture smoothly
across the boundaries of sub-domains.

The superior performance of the heterogeneousarchitectureisattributed to thefact that the
assigned task is divided into sub-tasks, each solved by a different expert module. The architecture
thushas someflexibility in defining theinput domain of each expert module, allowing thegranularity

of the sub-task to match the characteristics of the basic function in the expert module. One
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significant demonstration of this dissertation isthat the heterogeneous architecture is more suitable
for addressing large, complex problemsthan are traditional homogeneous architectures. This study
illustratesthat alarge general purpose artificial neura network should be composed of a variety of

different modules.
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Appendix A

Asymptotic Property of Partition That

Minimizesthe Total Variation-Weighted

Variation

This appendix proves that when K, the number of regionsin the partition, islarge and p
the distribution of the pattern vectors Z, is smooth, the optimum partition and the optimum set of
reference vectorsthat minimizethetotal variation-weighted variation (TVV) and thosethat minimize

the total spatia variation (TSV) are the same. The definitions of the TVV and TSV are

i

K
/ (7) || % — & d7 oo Z v2, (A1

-
p(T) || — &% dF oot ka. (A.2)
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Without loss of generality, we define ¢, to be the centroid of the vectors in the region 7. This
definition is based on the optimality condition [39] that for a given partition, the optimum & that
minimizesal v;, are the Eulcidean centroids of the regions in the partition.

Suppose I'* isthe optimum partition that minimizes TSV. We are going to show that this
I dsominimizesTVV. Let v], ... , v} bethe within-region variation of the optimum partition I*.

Hence
K K
S>> 0p (A.3)
=1 =1

For arbitrary values of vy, ..., vi;

1K 1K 2
EZ vf > (Ezvk) : (A4)
k

=1

where the equality holdsif and only if v =+ - - = v.

Substituting equation A.3 into equation A.4, we obtain
1 K 1K 2
k=1 k=1

Gersho[37] showed that for asymptotically large K and asmooth underlying probability distribution,

the within-region variations v; of the optimum partition I must satisfy

v == =0, (A.6)
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Combining equation A.5 and A.6, we get

1
i Z v,% > ( v*)z, (A7)
k=1
which can be rewritten as:
K
Z v2 > K(v")2 (A.8)
k=1

Since K ( v*)?isTVV of I*, equation A.8 indicates that T* also minimizes TVV.
Let I** denote the optimum partition that minimizes TVV. To complete the proof, it is
neccessary to show that I** must also minimize TSV. Suppose that I* is the optimum partition of

TSV and assumethat it is different from I**. Then,

TSV( I*) > TSV( I*) (A.9)

We have added the argument of I to TSV in order to indicate that TSV isafunction dependingon I.
Aswe havejust proved that I* must minimize TVV if it minimizes TSV, equation A.9 thusindicates
that

TW( I*) > TW( I7). (A.10)

This result contradicts our assumption that I** is the optimum partition of TVV. This therefore

indicates that I** and I have to be the same.



