
i

Abstract

Evaluation of Heterogeneous Architectures for Artificial Neural Networks

by

Chedsada Chinrungrueng

Doctor of Philosophy in Engineering – Electrical Engineering

and Computer Science

UNIVERSITY of CALIFORNIA at BERKELEY

Professor Carlo H. Séquin, Chair

Existing monolithic artificial neural network architectures are not sufficient to cope with

large complex problems. A better approach is to build large scale heterogeneous networks using

both supervised and unsupervised learning modules. In these architectures an unsupervised learning

algorithm, such as the k-means algorithm, decomposes the overall task and a supervised learning

algorithm, such as one based on gradient descent, solves each subtask.

We have investigated heterogeneous architectures that are based on a novel k-means parti-

tioning algorithm that integrates into its partitioning process information about the input distribution

as well as the structures of the goal and network functions. We have also added two new mechanisms

to our k-means algorithm. The first mechanism biases the partitioning process toward an optimal

distribution of the approximation errors in the various sub-domains. This leads to a consistently

lower overall approximation error. The second mechanism adjusts the learning rate dynamically

to match the instantaneous characteristics of a problem; the learning rate is large at first, allowing

rapid convergence, and then decreases in magnitude as the adaptation converges. This results in a

ii

lower residual error and makes the new k-means algorithm also viable for non-stationary situations.

We evaluate the performance and complexity of these heterogeneous architectures and

compare them to homogeneous radial basis function architectures and to multilayer perceptrons

trained by the error back-propagation algorithm. The evaluation shows that the heterogeneous

architectures give higher performance with lower system complexity when solving the Mackey-

Glass time series prediction probelm and a hand-written capital letter recognition task.

iii

Contents

List of Figures vi

List of Tables ix

1 Introduction 1
1.1 Motivation and Goal : 1
1.2 Thesis Overview : 4

2 Heterogeneous Architecture Based on K-Means Partitioning 7
2.1 K-Means Clustering Algorithm : 7
2.2 Supervised Learning Algorithms Based on Gradient Descent : : : : : : : : : : : 10
2.3 Structure and Learning Algorithm of Heterogeneous Architecture : : : : : : : : : 12

3 Adaptive K-Means Algorithm with Variation-Weighted Deviation Measure 17
3.1 Problems of the Traditional Adaptive K-Means Algorithm : : : : : : : : : : : : : 18
3.2 Optimal Criterion for an Adaptive K-Means Clustering : : : : : : : : : : : : : : 20
3.3 Variation-Weighted Deviation Measure : 20
3.4 Dynamic Adjustment of Learning Rate : 22
3.5 Illustrative Experiments : 24

3.5.1 Stationary Distributions : 24
3.5.2 Non-Stationary Distributions : 34

3.6 Vector Quantization Coding of Image Data : 39
3.7 Summary : 45

4 Heterogeneous Architecture Based on Error-Weighted K-Means Partitioning 48
4.1 Objective of the Input Partitioning : 49
4.2 Error-Weighted Deviation Measure : 51
4.3 K-Means Algorithm with Error-Weighted Deviation Measure : : : : : : : : : : : 53
4.4 Empirical Demonstration : 55
4.5 Summary : 62

5 Performance Evaluation of Heterogeneous Architectures 64
5.1 Scope of Evaluation : 64

iv

5.2 Review of Architectures under Test : 66
5.2.1 Heterogeneous Architecture : 66
5.2.2 Radial Basis Function Architecture : 68
5.2.3 Architecture based on a Lookup Table Approach : : : : : : : : : : : : : 70
5.2.4 Architecture based on a Local Model Approach : : : : : : : : : : : : : : 71
5.2.5 Back-Propagation Architecture : 72

5.3 Mackey-Glass Time Series Prediction : 74
5.4 Hand-Written Letter Recognition : 79
5.5 Summary and Discussion : 81

6 Serial Implementations and Complexity Evaluation 83
6.1 Heterogeneous Architectures : 84

6.1.1 Function Approximation : 85
6.1.2 Classification : 89

6.2 Radial Basis Function Architectures : 90
6.2.1 Function Approximation : 90
6.2.2 Classification : 95

6.3 Back Propagation Architectures : 96
6.3.1 Function Approximation : 96
6.3.2 Classification : 99

6.4 Complexity Comparison : 100
6.5 Convergence Rate vs. Computation Time : 101

7 Parallel Implementation and Complexity Evaluation 106
7.1 Heterogeneous Architectures : 107

7.1.1 The Learning Rate Unit : 108
7.1.2 The Partitioning Module : 111
7.1.3 A Linear Expert Module : 117
7.1.4 A Post-Processor : 119

7.2 Radial Basis Function Architectures : 120
7.2.1 A RBF Module : 121
7.2.2 An Output Module : 123
7.2.3 A Membership Indicator : 126
7.2.4 A Learning Rate Unit : 127
7.2.5 A Width Unit : 128
7.2.6 A Post-Processor : 129

7.3 Back Propagation Architectures : 130
7.3.1 Function Approximation : 130
7.3.2 Classification : 138

7.4 Hardware Cost for Parallel Implementations : 141
7.4.1 Heterogeneous Architecture : 141
7.4.2 Radial Basis Function Architecture : 142
7.4.3 Back-Propagation Architecture : 143
7.4.4 Hardware Cost Comparison : 145

7.5 Computation Time for Parallel Implementations : : : : : : : : : : : : : : : : : : 147

v

7.5.1 Heterogeneous Architecture : 147
7.5.2 Radial Basis Function Architecture : 149
7.5.3 Back-Propagation Architecture : 153
7.5.4 Computation Time Comparison : 156

7.6 Complexity Comparison : 158
7.7 Implication for Practical Hardware : 160

8 Conclusion and Future Research 161

Bibliography 165

A Asymptotic Property of Partition That Minimizes the Total Variation-Weighted Vari-
ation 172

vi

List of Figures

1.1 Examples of basic functions used in artificial neural networks. : : : : : : : : : : 2

2.1 Schematic diagram of a heterogeneous architecture based on k-means partitioning. 12
2.2 A simple demonstration example with a 1-dimensional quadratic function. : : : : 16

3.1 Distributions for the 1-dimensional training sets: (a) uniform, (b) square, and (c)
3-level Cantor. : 25

3.2 Data drawn from the 2-dimensional test distributions: (a) uniform, (b) square, (c)
3-level Cantor, and (d) 1-dimensional sub manifold. : : : : : : : : : : : : : : : : 25

3.3 Average simulation runs of the four k-means algorithms on the 1-dimensional
distribution problems. (a) The simulations on 1-dimensional uniform distribution.
(b) The learning rates on 1-dimensional uniform distribution. (c) The simulations
on 1-dimensional square distribution. (d) The simulations on 1-dimensional Cantor
distribution. : 27

3.4 Five individual simulation runs of the four k-means algorithms on the 1-dimensional
3-level Cantor distribution problem. (a) The simulations of the Optm algorithm. (b)
The simulations of the Cons algorithm. (c) The simulations of the Sqrt algorithm.
(d) The simulations of the Trad algorithm. : 29

3.5 Average simulation runs of the four k-means algorithms on the 2-dimensional
distribution problems. The distributions that generate the training set are (a) uniform,
(b) square, (c) 3-level Cantor (4) and 1-dimensional sub-manifold. : : : : : : : : 30

3.6 A sample of the partitions associated with the 2-dimensional 3-level Cantor distri-
bution problem. These partitions are generated by the four k-means algorithms: (a)
Optm, (b) Cons, (c) Trad and (d) Sqrt. : 32

3.7 A sample of the partitions associated with the 1-dimensional sub manifold distribu-
tion problem. These partitions are generated by four versions of k-means algorithms:
(a) Optm, (b) Cons, (c) Trad and (d) Sqrt. Note the eight unused reference vectors
in cases (c) and (d). : 33

vii

3.8 Average simulation runs of the four k-means algorithms on the problems with con-
stantly changing statistics. (a) The simulations on the rotating pattern distribution.
(b) The simulations on the translating pattern distribution. (c) The learning rates
on the rotating pattern distribution. (d) The learning rates on the translating pattern
distribution. : 36

3.9 Locations of reference vectors for the rotational non-stationary problem for (a)
Optm, (b) Cons, (c) Trad1, (d) and Trad2. The figures show the reference vector
center locations after 160,000 presentations, i.e., after 8 full counter-clockwise
rotations of the S-shaped curve. : 37

3.10 Simulations of the four k-means algorithms on the problem where the training
pattern distribution experiences an abrupt change: (a) the normalized mean square
error (b) and the learning rate for the Optm algorithm. : : : : : : : : : : : : : : 38

3.11 The "LENA" image. : 40
3.12 The normalized total spatial variation (NTSV) of the four k-means algorithms: (a)

The initial codewords are assigned to pattern vectors randomly selected from the
upper-left quadrant. (b) The initial codewords are assigned to uniformly distributed
random locations in the pattern domain. : 42

3.13 The encoded image with initial codewords assigned to randomly selected patterns
in the upper-left qudrant: (a) Optm, (b) Cons, (c) Trad, and (d) LBG. : : : : : : : 43

3.14 The encoded images with initial codewords assigned to uniformly distributed ran-
dom locations in the pattern domain: (a) Optm, (b) Cons, (c) Trad, and (d) LBG. : 46

4.1 Performance comparison of the four heterogeneous architectures on a 1-dimensional
quadratic problem. : 58

4.2 Performance comparison on the Mackey-Glass time series prediction. : : : : : : 60

5.1 The schematic diagram of a heterogeneous architecture based on error-weighted
k-means partitioning. : 67

5.2 The schematic diagram of the radial basis function architecture. : : : : : : : : : 68
5.3 The schematic diagrams of the back-propagation architectures: (a) a network with

two hidden layers of perceptrons for addressing the Mackey-Glass time series pre-
diction problem, (b) a network with one hidden layer of perceptrons for addressing
a hand-written capital letter recognition task. : : : : : : : : : : : : : : : : : : : 73

5.4 Performance comparison on the Mackey-Glass time series prediction for: : : : : 76
5.5 Performance comparison of the Het, RBF, and BP architectures on the hand-written

character recognition task. : 80

6.1 Performance comparison of Het, RBF, and BP architectures. : : : : : : : : : : : 104

7.1 The block diagram of the parallel implementation of the heterogeneous architecture
based on error-weighted k-means partitioning. : : : : : : : : : : : : : : : : : : 107

7.2 Flow chart of the computation performed by the learning rate unit. : : : : : : : : 109
7.3 The block diagram of a adder tree with 4 leaves. : : : : : : : : : : : : : : : : : 110
7.4 The block diagram for the parallel implementation of the partitioning module. : : 111
7.5 Flow chart of the computation performed by the membership indicator. : : : : : 112

viii

7.6 Flow chart for computing the error-weighted deviation. : : : : : : : : : : : : : : 113
7.7 Flow chart for updating ~ck and �̂k of the partitioning module. : : : : : : : : : : : 114
7.8 Flowchart for updating error �̂k . : 116
7.9 The block diagram for the parallel implementation of an expert module. : : : : : 117
7.10 Flow chart for computing the output fk;n(~x). : : : : : : : : : : : : : : : : : : : 118
7.11 Flow chart for updating parameter ~wk;n. : 119
7.12 The block diagram of the parallel implementation of the radial basis function archi-

tecture. : 120
7.13 Flow chart for computing the Euclidean deviation. : : : : : : : : : : : : : : : : 121
7.14 Flow chart for updating ~ck and v̂k of the k-means algorithm. : : : : : : : : : : : 122
7.15 The block diagram of an output module. : 123
7.16 Flow chart for computing the output fk;n(~x). : : : : : : : : : : : : : : : : : : : 124
7.17 Flow chart for updating the parameters in the n-th output unit. : : : : : : : : : : 125
7.18 Flow chart for normalizing the output of the output module. : : : : : : : : : : : 125
7.19 Flow chart for normalizing the output of the output module. : : : : : : : : : : : 126
7.20 Flow chart for computing the learning rate �km. : : : : : : : : : : : : : : : : : 127
7.21 Flow chart for determining the width of the Gaussian radial basis function. : : : : 128
7.22 The block diagram of the parallel implementationof a back-propagation architecture

with two hidden layers. : 130
7.23 Flow chart for computing the output of a first-hidden-layer unit. : : : : : : : : : 132
7.24 Flow chart for updating the parameters of a first-hidden-layer unit. : : : : : : : : 133
7.25 Flow chart for updating the parameters of a second-hidden-layer unit. : : : : : : 135
7.26 Flow chart for computing the output of a linear output unit. : : : : : : : : : : : : 136
7.27 Flow chart for updating the parameters of a linear output unit. : : : : : : : : : : 137
7.28 The block diagram of the parallel implementationof a back-propagation architecture

for classification. : 138
7.29 Flow chart for updating the parameters of a sigmoidal output unit. : : : : : : : : 140
7.30 Flow chart of the learning algorithm of the heterogeneous architecture. : : : : : : 147
7.31 Flowchart of the k-means algorithm for computing the centers of the Gaussian

functions. : 150
7.32 Flowchart of the LMS algorithm for determining the heights of the Gaussian func-

tions. : 151
7.33 Flow chart of the learning algorithm of the back-propagation architecture for func-

tion approximation. : 153
7.34 Flow chart of the learning algorithm of the back-propagation architecture for clas-

sification. : 155
7.35 Execution time comparison of Het, RBF, and BP on (a) the Mackey-Glass problem,

(b) and the hand-written capital letter recognition. : : : : : : : : : : : : : : : : 159
7.36 Time-Area complexity comparison for the Het, RBF and BP architectures on (a) the

Mackey-Glass, (b) and the hand-written capital letter recognition problems. : : : 159

ix

List of Tables

6.1 Arithmetic Operations Required in One Training Cycle. : : : : : : : : : : : : : 102
6.2 Time for Completing One Training Cycle in Serial Mode : : : : : : : : : : : : : 103

7.1 Number of Operators in the Parallel Implementations : : : : : : : : : : : : : : : 146
7.2 Hardware Cost of the Parallel Implementations in adder area units. : : : : : : : : 146
7.3 Times for Completing One Training Cycle Measured in Types of Operations. : : 157
7.4 Times for Completing One Training Cycle Measured in Addition Time Units. : : 157

x

Acknowledgements

I am deeply grateful to my advisor, Prof. Carlo H. Séquin, for his continuous encourage-

ment and invaluable guidance throughout the course of my graduate study. I have learned a great

deal from his teaching, knowledge, and criticism. I would like to thank Prof. Jerome A. Feldman

and Prof. Stuart E. Dreyfus for serving on my dissertation committee. Thank also to Prof. Ping Ko

and Prof. Christian H. Hesse for participating on my qualifying examination committee.

Next I would like to thank every one who contributed to my reserach work one way

or the other. I wish to thank Reed Clay, Mani Srivastava and Vijay Medisetti for many useful

discussions. It has been great pleasure to share the office with Glenn Adams, Ping-San Tzeng,

and Dan Rice. Their friendship and support are truly appreciated. Special thanks should also go

to Yumiko Nakanishi for her patience and encouragement. Prof. Mongkol Dejnakarintra, Prof.

Suriyan Tishyadhigama, and Prof. Ekachai Leelarasmee, represent the many wonderful professors

who taugh me so much in my undergraduate years at Chulalongkorn University, Thailand.

Finally I would like to thank my father, Chongnum, and mother, Wanna, for their love,

encouragement, and patience, without which I would not be where I am today.

The financial support provided by the Joint Services Electronics Program and by the

Thailand-United States Educational Foundation is gratefully acknowledged.

1

Chapter 1

Introduction

1.1 Motivation and Goal

In the context of empirical inference of multi-variate functions, an artificial neural network

is essentially a function represented by the composition of many simple functions, referred to in this

dissertation as basic functions1. These basic functions are usually parameterized but constrained in

form: typically non-linear functions of a few variables or linear functions of many variables [1].

By adjusting the parameters of these basic functions, we can alter the shapes of these functions and

thus modify the overall input-output relationship of the network. Several forms of basic functions

have been proposed; however, they can be divided based on the characteristics of their supports into

those with global supports, as exemplified by the sigmoid function; and those with local supports,

as exemplified by the Gaussian radial basis function.

Since we are interested in artificial neural network architectures which are simple to

1We refer to simple functions composing an artificial neural network as basic functions instead of basis functions in
order to emphasize the fact that the network can have a more elaborate form of composition than a simple weighted sum
of basis functions.

2

Sigmoid Gaussian

Figure 1.1: Examples of basic functions used in artificial neural networks.

implement with dedicated VLSI hardware, we will focus in this dissertation on architectures that

have fixed replicated structures and use on-line learning algorithms. Particularly, we are interested

in architectures whose learning algorithms can be expressed as simple recursive equations and do

not use complicated data structures. Most of these architectures are homogeneous in the aspect that

they are composed of the same types of basic functions. The architectures that are composed of

global-support basic functions, such as, the multi-layer perceptron [2], tend to form very compact

representations but require a long training time. Conversely, the architectures that are composed of

local-support basic functions, such as, a radial basis function network [3, 4, 5, 6, 7] tend to learn

rapidly, but requires more extensive hardware, i.e., a large number of processing units.

Traditional artificial neural network architectures solve their tasks by addressing the entire

problem as a whole. However, this approach is not sufficient to cope with large, complex problems.

Simply extending these architectures to ever larger homogeneous systems in order to solve larger

problems is impractical. Training large-scale networks composed of global-support basic functions

as monolithic systems is unacceptably slow because a large number of parameters have to be adjusted

concurrently. Experimental studies indicate that the learning times of these monolithic networks

scales poorly with the sizes of problems [8]. For example, Tesauro and Janssens [9] experimentally

showed that the learning time of the multilayer perceptron trained with error back-propagation [2]

3

for the XOR problem grows exponentially with the complexity of the problem. Since there is no

efficient way to bias the structures of these networks, the large amount of training data is needed

[10]. On the other hand, building a large scale network composed of local-support basic functions

in parallel VLSI hardware will typically be too costly because the structure of the network would

have to be very large and because its connectivity requirements would be excessive. According to

Akers and Walker [11], the connectivity of a network with just a few thousand processing elements

would exceed the current or even projected interconnection density of ULSI system.

The existence of heterogeneous organizations in mammalian visual systems [12, 13, 14]

suggests that artificial neural networks for solving large, complex problems should be composed

of variety of modules, each dedicated to a different sub-task. Several heterogeneous architectures

based on task decomposition [15, 16, 17, 18, 19, 20, 21, 22, 23] have been proposed for solving

large and complex supervised learning problems. One embodiment of such architectures comprises

a gating module that divides the assigned task into subtasks and a collection of specialized expert

modules, each of which is assigned to solve a particular subtask.

Jacobs [22] has proposed a class of heterogeneous architectures that are based on an

associative Gaussian mixture model. This model assumes that the error difference between the

target output and the output of an expert module has a Gaussian distribution. The output of

the architecture is a linear combination of the outputs of all the expert modules, weighted by the

corresponding outputs from the gating module. The learning goal of this architecture is to maximize

the negative log likelihood of generating the desired output under this model. This study shows

that these architectures can achieve better accuracy than a single multi-layer perceptron trained by

error back-propagation. However, their convergence rate, similiar to that of a single multi-layer

4

perceptron trained by error back-propagation, is still too slow for practical purposes, since all the

parameters of a system in these architectures are adjusted concurrently, which leads to undesirable

coupling that slows down the convergence rate.

Several other researchers [15, 17, 19, 21] have proposed another class of heterogeneous

architectures that are based on k-means partitioning. In these architectures, the k-means algorithm

is used by a gating network to partition the domain of an assigned task into non-overlapping sub-

domains. The task defined on each sub-domain is then solved by an expert module trained by a

supervised learning algorithm based on gradient descent. The class of heterogeneous architectures

based on k-means partitioning has been shown to have a higher accuracy and faster convergence

rate than a single multi-layer perceptron trained by error back-propagation, i.e., for approximating a

2-dimensional sinc function [21] and for recognizing Japanese characters [23]. In addition, systems

of these heterogeneous architectures have also been shown to use less hardware than radial basis

function networks, i.e, in time series prediction [17]. Because of their advantages in speed and

hardware over the traditional architectures, we examine in this dissertation the on-line version of a

class of heterogeneous architectures that are based on the k-means partitioning. Our investigation

will concentrate on both the performance and algorithmic complexity of these architectures when

addressing large, complex problems. We believe that this investigation provides a guide for the

construction of large general purpose artificial neural networks.

1.2 Thesis Overview

Following this introduction, the background material for the dissertation and the math-

ematical notation used in the thesis are provided in chapter 2. The k-means clustering algorithm,

5

the supervised learning algorithms based on gradient descent, and the heterogeneous architectures

based on k-means partitioning are briefly reviewed.

The performance of the heterogeneous architectures based on k-means partitioning strongly

depends on the efficacy of the k-means algorithm in decomposing the assigned task. Thus in chapter 3

we investigate the k-means algorithm in general and the adaptive k-means algorithm in particular.

We introduce two novel mechanisms for improving the performance of the k-means algorithm. The

first mechanism is for biasing the partitioning process so that it can achieve an optimal partition.

The second mechanism is for adjusting the learning rate dynamically to match the instantaneous

characteristics of a problem, permitting the algorithm to converge first very rapidly and later very

closely towards an optimal solution. The dynamic adjustment of the learning rate also renders the

algorithm usable for non-stationary situations.

In chapter 4 we introduce an enhancement for the class of heterogeneous architectures

based on k-means partitioning. The enhanced architectures are characterized by a novel k-means

algorithm that not only considers the input distribution but also integrates into its partitioning process

information about the goal function and the capabilities of the expert modules. The new k-means

algorithm allows each individual region in the partition to adjust its size so that the representation

resources in all the regions are optimally used. In order to enable the proposed k-means algorithm to

achieve its optimal performance and to be usable for both stationary and non-stationary situations,

we have also included the two mechanisms introduced in chapter 3.

Chapter 5, 6 and 7 present the performance and complexity evaluation of the enhanced

heterogeneous architectures. In chapter 5 the performance of these enhanced heterogeneous archi-

tectures is evaluated compared against that of the radial basis function architectures [6], and against

6

multilayer perceptrons trained by the error back-propagation algorithm [2] using the Mackey-Glass

time series prediction benchmark and a hand-written capital letter recognition task. For the Mackey-

Glass problem, where the input dimension is quite low, we also compare the enhanced heterogeneous

architectures with the architectures based on the lookup table and on the local model approaches

[24, 25].

In chapter 6, we investigate the complexity of serial implementations of the enhanced

heterogeneous architecture compared to those of the radial basis function and back-propagation

architectures. We analyze the implementation of each architecture to determine the number of

arithmetic operations in its training cycle, and also the time needed to perform these operations

serially. In chapter 7, we examine the complexity of parallel implementations of the aforementioned

three architectures. We determine for each architecture the implementation cost, defined as the

silicon area required by the arithmetic blocks in the implementations. We also compute the time

needed by each architecture to complete its training cycle assuming maximum parallel execution.

Finally, we summarize the results of this study and recommend directions for future reserach in

chapter 8.

7

Chapter 2

Heterogeneous Architecture Based on

K-Means Partitioning

The heterogeneous architectures [15, 17, 19, 21, 23] that we investigate in this dissertation

are composed of a gating module that uses the k-means algorithm to partition an assigned task, and

a collection of specialized expert modules that are trained by a supervised learning algorithm based

on gradient descent. In this chapter, we will first review the k-means algorithm in section 2.1, and

the supervised learning algorithms based on gradient descent in section 2.2. We will then cover

in section 2.3 the mathematical definition of the heterogeneous architectures based on the k-means

partitioning.

2.1 K-Means Clustering Algorithm

The k-means clustering algorithm [26, 27, 28, 29] has been applied in many areas of

applications. In the area of communications, it has been used for compressing image or speech

8

data. In the area of connectionist network modeling, it has been used for processing the input data

of complicated classification tasks, e.g., in feature-map classifiers [30] or in radial basis function

networks [29]. In this dissertation,we are interested in applying the k-means algorithm to decompose

the given task for heterogeneous architectures.

The task of the k-means algorithm is to partition the domain I of input pattern ~x into

K regions. When the Euclidean distance is used as a deviation measure between ~x and reference

vector ~ck, the k-means clustering problem can be formulated as that of finding a partition [I1, ... ,

IK] and reference vectors ~c1, ... , ~cK that minimize the total spatial variation:

TSV =
KX
k=1

vk with vk =

Z
Ik

p(~x)k~x� ~ckk
2 d~x; (2.1)

where p denotes the probability distribution of ~x, and the notation k k denotes the l2 norm. Quantity

vk is the spatial variation in region Ik, and is defined by the expected value of the squared Euclidean

distance between ~ck and ~x in Ik. The value of vk thus depends on the location of ~ck and on the

geometrical properties of the region Ik.

One common way for defining region Ik in the partition is to use a membership indicator.

The membership indicator Mk specifies whether a given point ~x in I belongs to region Ik. We

define its value to be 1 if ~x is in Ik and 0 otherwise. For the traditional k-means algorithm, which

is based on the Euclidean deviation measure, the membership indicator Mk is given by

Mk(~x) =

8>>><
>>>:

1 if k~x� ~ckk
2 � k~x� ~cik

2 for each i 6= k

0 otherwise

: (2.2)

For the event of more than one minimum k~x� ~ckk, we set Mk with the lowest index k to 1 and the

9

others to 0.

In the batch mode of operation, the k-means algorithm is presented with an ensemble of

input patterns ~x1, ::: ,~xP . It determines the reference vectors and the corresponding partition using

the following algorithm:

Step 0: initialize the reference vectors ~c1, ... , ~cK .

Step 1: for each ~xi, determine the membership indicator Mk(xi).

Step 2: compute the total spatial variation of the partition generated in step 1.

if its value is small enough, stop.

Step 3: updating reference vectors according to

~ck = f
PP

i=1 Mk(~xi)~xig=f
PP

i=1 Mk(~xi)g for 1 � i � K.

Step 4: go to step 1.

It should be noted that such an iterative improvement algorithm need not necessarily

converge to an optimum solution; its performance depends on the initial positions of the reference

vectors. It is often useful, therefore, to enhance the algorithm performance by providing the

algorithm with good initial reference vectors, and perhaps to start it with several different initial

reference vector sets.

In addition to the batch mode of operation, the k-means algorithm can also operates in

the on-line or adaptive mode. In the adaptive mode of operation, where the ensemble of ~x is

not available, the k-means algorithm derives the reference vectors and the corresponding partition

through time-averaging. It iteratively computes a new value of the reference vector ~ck;T+1 after

each presentation of an input vector ~xT using the following equation:

~ck;T+1 = ~ck;T + Mk(~xT) f�km (~xT � ~ck;T)g; (2.3)

10

where �km is the learning rate. For the traditional adaptive k-means algorithm, the learning rate

�km is defined to be constant.

2.2 Supervised Learning Algorithms Based on Gradient Descent

The objective of supervised learning is to adjust the function of a network so that it best

approximates the goal function provided by training data. Let ~g : Rm ! Rn denote the goal

function and ~f : Rm ! Rn denote the network function. Assume that the characteristics of the

network function ~f depend on a parameter vector ~w. To make explicit the dependence of ~f on

parameter ~w, we will write ~f(~w; �) instead of ~f . With the mean squared error criterion, supervised

learning can be formulated as a problem of finding ~w� that minimizes the cost function:

MSE =
Z
I

p(~x) k~f(~w; ~xi)� ~g(~xi)k
2 d~x; (2.4)

where k k is a Euclidean distance and p is the distribution of ~x defined on the input domain I.

In most actual applications, the exact information of distribution p is not available and

must be derived through the training data. Assume that the training set consists of (~x1; ~g(~x1)),...,

(~xP ; ~g(~xP)). We thus instead minimize in practice the following cost function:

MSE =
PX
i

e(~w; ~xi) with e(~w; ~xi) = k~f(~w; ~xi)� ~g(~xi)k
2: (2.5)

Many supervised learning algorithms have been proposed; however, most of them are

developed based on the gradient descent principle. Examples of supervised learning algorithms

based on gradient descent are the least mean squared (LMS) algorithm [31] and the error back-

11

propagation algorithm [2]. These supervised learning algorithms have proven to be effective for

many applications despite their simplicity.

Assume network function ~f has continuous first partial derivatives on RM . For the batch

mode of operation, where the entire training set is available, the algorithm based on gradient descent

for finding ~w� that minimizes the MSE in equation 2.5 is defined by the iterative equation:

~wT+1 = ~wT � �gd

PX
i=1

re(~wT ; ~xi); (2.6)

where �gd is a nonnegative scalar constant. According to this algorithm, we take a step from point

~wT along the direction of the negative gradient of MSE to a new starting point ~wT+1.

In some applications, the algorithm is confined to work with one sample of an input-output

pair at a time. In this on-line or stochastic mode of operation, the algorithm for minimizing MSE

based on gradient descent is defined as:

~wT+1 = ~wT � �gdre(~wT ; ~xT): (2.7)

where ~xT is the sample of input vector at time T. Note that the gradient in equation 2.7 is estimated

byre(~wT ; ~xT). The on-line version of the supervised learning algorithm based on gradient descent

may be preferable to the batch version when the training set is large. In addition, the noise due

to the use of an estimated gradient can help the algorithm escape from local minima, allowing the

on-line algorithm to achieve a better performance than the batch algorithm.

12

2.3 Structure and Learning Algorithm of Heterogeneous Architecture

MODULE

GATING

NN

M

N

NN

k
M

k
f

KM1MKf1f

X

K1

EXPERTEXPERT

Figure 2.1: Schematic diagram of a heterogeneous architecture based on k-means partitioning.

Figure 2.1 shows the schematic diagram of a heterogeneous architecture based on k-means

partitioning. It depicts a system that implements a mapping ~f from the input domain I in RM to

RN . As shown in the diagram, this system of heterogeneous architectures is composed of a k-means

gating module and K expert modules. The task of the gating module is to generate membership

indicatorsMk using the k-means algorithm, and the task of expert module k is to generate a function

~fk . The output of the system is defined to be

~f(~x) =
KX
k=1

Mk(~x)~fk(~x): (2.8)

When such a heterogeneous architecture is used to approximate a goal function ~g, the

system partitions the input domainI of~g into non-overlapping regions using the k-means algorithm.

13

For a system with K expert modules, the input domain I is partitioned into K regions: I1, ... ,

IK , which are specified by K membership functions: M1 , ... , MK . In its original form, where

the traditional k-means algorithm is used, the membership indicator Mk is based solely on the

distribution p, and defined according to equation 2.2.

Using the partitioning generated by the k-means algorithm, the system then decomposes

the goal function ~g into K component functions: f~g1; :::; ~gKg, We use ~gk to denote the restriction

of ~g to Ik. Each of these ~gk is then approximated by an expert module ~fk, whose characteristics

depends on parameter ~wk. We typically set ~wk so that the partial mean squared error MSEk is

minimized, where the MSEk is defined as:

MSEk =

Z
Ik

p(~x) k~fk(~wk; ~x)� ~gk(~x)k
2 d~x: (2.9)

These partial mean squared errors are usually minimized using supervised learning based on gradient

descent.

In this dissertation, we are interested in the on-line version of the heterogeneous architec-

tures based on k-means partitioning. In the batch mode of operation, the parameters in the system

are updated only after all the patterns in the training set have been presented. In the on-line mode of

operation, the parameters are adjusted after each pattern presentation. Since a system with on-line

learning works with one training pattern at a time, the system does not have to store all the training

data and it can run "live" with a process that generates new data continuously. Since the parameters

are constantly updated in the on-line mode, a system with on-line learning can track changes in the

statistics of the training data faster than a system with batch learning. In addition, a system trained

by an on-line learning algorithm tends to learn faster, especially for the case of large training sets.

14

As a demonstration of how the heterogeneous architectures based on k-means partition-

ing solve their assigned problems, we apply a system in these architectures to approximate a

1-dimensional function of the form:

g(x) = 4x2; (2.10)

where ~x is a random variable with uniform distribution on [�0:5; 0:5]. The system used in this

demonstration is composed of 4 expert modules each with a linear network function fk and of a

k-means module that partitions the input domain into 4 regions. Overall, the system generates the

network function of the form:

f(x) =
4X

k=1

Mk(x)fk(x): (2.11)

Membership indicator Mk is defined based on the reference points c1, c2, c3, and c4 of the k-means

module, and it has the following form:

Mk(x) =

8>>><
>>>:

1 if kx� ckk � kx� cik for each i 6= k

0 otherwise

: (2.12)

In the event of more than one minimum k~x� ~ckk, we set the Mk with the lowest index k to 1 and

the others to 0. The linear function fk is expressed in the form:

fk(x) = ak + bkx; (2.13)

where ak is the constant of fk and bk is the coefficient of x. We start training the above system

by initializing c1 c2, c3 and c4 to 0; and all the parameters of expert modules f1, f2 f3 and f4 to

10�10. We then iteratively update these parameters using a random sequence of input-output pairs

15

generated according to equation 2.10.

Let xT and ck;T denote the input x and the reference point ck at iteration T. Also, let

ak;T and bk;T denote the two parameters of fk at iteration T. The algorithm for updating the system

parameters in the T-th iteration is as follows:

Algorithm:

Step 1: compute the network output f(xT) according to equations 2.11.

Step 2: update the reference points ck according to

ck;T+1 = ck;T + Mk(xT) f�km (xT � ck;T)g;

where the learning rate �km is defined to be 0.01.

Step 3: update the parameter of the expert modules according to

ak;T+1 = ak;T + �lmsMk(xT)�T for 1 � k � 4

bk;T+1 = bk;T + �lmsMk(xT)�TxT for 1 � k � 4

where �lms is defined to be 0.01 and �T is defined to be f(xT)� g(xT).

Figure 2.2 illustrates the performance of the heterogeneous system on a randomized input-

output sequence generated according to eqaution 2.10. Figure 2.2a shows the normalized mean

squared error (NMSE) as a function of the number of patterns presented. The normalized mean

squared error is defined as the mean squared error between f and g normalized by the mean squared

value of g. Each curve here is the average of five runs, each with different training pattern sequences.

Figure 2.2b depicts the function f of the heterogeneous system obtained after 100,000

pattern presentations, compared to the goal function g. The performance of a heterogeneous

architecture strongly depends on the partitioning of the input domain. For this simple illustration,

where g is a 1-dimensional quadratic polynomial and x is uniformly distributed in the input domain,

the partition that minimizes the total spatial variation defined in equation 2.1 and the partition that

minimizes the mean squared error defined in equation 2.4 are the same. As a result, the traditional

16

presentations

NMSE

2

5

1e-02

2

5

1e-01

2

5

1e+00

2

1 10 100 1000 10000 100000 1000000

(a)

f
g

g(x) and f(x)

x

0.00

0.25

0.50

0.75

1.00

-0.40 -0.20 0.00 0.20 0.40

(b)

Figure 2.2: A simple demonstration example with a 1-dimensional quadratic function.
(a) The NMSE vs. the number of patterns presented. (b) The goal function g and the network
function f .

k-means algorithm is able to generate a partition that optimally minimizes the corresponding mean

squared error between f and g. For more complicated problems, the partition with minimum total

spatial variation and that with minimum mean squared error are usually different. Thus, in general,

the traditional k-means algorithm cannot partition the input domain of a heterogeneous architecture

optimally. In chapter 3, we introduce some mechanisms to improve the partitioning capabilities.

Using the insight gained from chapter 3, we then introduce in chapter 4 an improved k-means

algorithm that is well suited to partition the input domain of a heterogeneous architecture.

17

Chapter 3

Adaptive K-Means Algorithm with

Variation-Weighted Deviation Measure

We introduce in this chapter an enhancement of the traditional k-means algorithm that

attempts to minimize the total spatial variation:

TSV =
KX
k=1

vk with vk =

Z
Ik

p(~x)k~x� ~ckk
2 d~x; (3.1)

This TSV cost function is commonly used for input feature extraction and signal compression.

The new k-means algorithm approximates an optimal clustering solution with an efficient adaptive

learning rate, which renders it usable even in situations where the statistics of the problem task

vary slowly with time. It has been shown to perform better than other k-means variants on several

tutorial examples, and also on vector quantization coding of image data.

18

3.1 Problems of the Traditional Adaptive K-Means Algorithm

One serious problem with most k-means algorithms is that the clustering process may

not converge to an optimal or near-optimal configuration. The algorithm can assure only local

optimality, which depends on the initial locations of the representative vectors [32]. Some initial

reference vectors may get stuck in regions of the input domain with few or no input patterns,

and may not move to where they are needed. A traditional way to deal with this under-utilization

problem is to employ leaky learning [33] where, in addition to adjusting the closest reference vector,

other reference vectors are also adjusted but with smaller learning rates. Another approach is the

conscience learning law [34] where the determination of the closest reference vector uses a norm

that favors the reference vectors that in the past have responded to fewer patterns, thus equalizing

the average rates of winning for each region. However, these two methods yield partitions that are

not optimal or near optimal with respect to the total spatial variation cost function, since the added

mechanisms have the effect to distort the cost function. Moreover, leaky learning increases the

amount of computation required for each pattern presentation since all the reference vectors have

to be updated.

In the on-line mode, the performance of the k-means algorithm depends strongly on the

learning rate. There is a trade-off between the dynamic performance (rate of convergence) and

the steady-state performance (residual deviation from the optimal solution). When using a fixed

learning rate, it must be sufficiently small for the adaptation process to converge. The smaller the

learning rate, the smaller the residual deviation but the slower the convergence rate. Optimal learning

rates cannot be determined in advance since they are problem dependent; normally a conservative

value is chosen initially and then improved by trial-and-error. Because of this difficulty, adaptive

19

k-means algorithms with variable learning rates have been investigated. Darken and Moody first

proposed to make the learning rate of each cluster center equal to the inverse of the square root of the

number of patterns assigned to that center [35]. Since the convergence of this learning schedule is

very slow, they later proposed a search-then-converge schedule, where �T = �0=(1 + T=�) [36]. In

this scheme, the learning rate stays near �0 for a search time � and then decreases at the rate of 1=T .

For many problems this can yield precise convergence in short times. However, it is not possible to

determine an a priori best search time � for all possible problems. Furthermore, such approaches

with pre-determined learning rates are not flexible enough to handle problems with time-varying

characteristics.

This chapter presents an alternative approach that solves both of the above two problems

which have been attacked independently in previous work. We describe a method that has the

following characteristics:

� It allows the adaptation process to escape from bad minimawithout distorting the cost function

for asymptotically large K.

� It dynamically adjusts the learning rate based on the quality of the current clustering.

� It is applicable to situations where patterns are generated from sources with non-stationary

distributions.

20

3.2 Optimal Criterion for an Adaptive K-Means Clustering

As mentioned in section 2.1, the total spatial variation of the k-means algorithm which

we are trying to minimize is given by:

TSV =
KX
k=1

vk with vk =

Z
Ik

p(~x) k~x� ~ckk
2 d~x: (3.2)

where vk represents the spatial variation in region Ik. Its value depends on the location of ~ck and

the geometrical properties of the region Ik. Gersho [37] showed that:

For a continuous underlying probability density p and large K, all regions in an optimal

Voronoi partition have the same spatial variations vk.

Because the k-means algorithm produces a Voronoi partition, we conjecture that it is worthwhile

to aim for a partition in which all the regions have the same variations vk, even if K is small and

the distribution is non-smooth. This goal is built directly into the cost function based on which the

reference vectors are adjusted. In this manner we can eliminate most bad clustering configurations

from the solution set and thus increase the chance of finding an optimal or near-optimal solution.

3.3 Variation-Weighted Deviation Measure

We seek to improve the capability of the k-means algorithm in partitioning an input

domain by including the above optimality criterion into the deviation measure of the algorithm.

Such inclusion is achieved by the use of the variation-weighted deviation measure. In this measure,

21

the deviation between ~x and ~ck is defined as:

d(~x;~ck) = vkk~x� ~ckk
2: (3.3)

This deviation measure thus results in a variation-weighted membership indicator Mk;vwgt of the

form:

Mk;vwgt(~x) =

8>>><
>>>:

1 if vk k~x� ~ckk
2 � vi k~x� ~cik

2 for each i 6= k

0 otherwise

(3.4)

In the event of more than one minimum vk k~x�~ckk, we set the Mk with the lowest index k to 1 and

the others to 0. Multiplying the Euclidean deviation measure by variation vk biases the membership

indicator in favor of regions with smaller variation vk, and thus leads to the robust equalization of

vk among all the regions in the partition.

With the variation-weighted deviation measure, the k-means algorithm attempts to mini-

mize the total vk-weighted variation:

TVV =
KX
k=1

vk

Z
Ik

p(~x) k~x� ~ckk
2 d~x =

KX
k=1

v2
k; (3.5)

assuming that vk can be perfectly estimated. It is shown in Appendix A that the clustering process

based on minimizing TVV is capable of attaining a solution that is optimal with respect to the total

spatial variation for asymptotically large K. This indicates that in the ideal situation where K is

large and vk is perfectly estimated, the above biased deviation measure forces all regions to "equally

share the load" without distorting the total spatial variation cost function, as is the case with other

equalization schemes.

22

To obtain the estimated variation v̂k for each region, we use the following simple, weighted

running time-average :

v̂k; T+1 = � v̂k; T + (1� �)
n
Mk;vwgt(~xT) k~xT � ~ck;T k

2
o
; (3.6)

In the first term, we multiply v̂k; T by � which is a constant slightly less than 1. The purpose is

to reduce the value of the previous estimate v̂k; T . In the second term, we add to the new estimate

v̂k; T+1 new information about the variation vk. Note that the closer � is to 1, the more accurate the

estimate of vk , but the longer the estimation time constant. We start this estimation by initializing

all v̂k;0 to the same small number. This allows the effect of the initialization to disappear quickly so

that the estimated v̂k is soon dominated by the actual data seen by each region.

3.4 Dynamic Adjustment of Learning Rate

An optimal value for the instantaneous learning rate could be derived from the difference

between the quality of the partition at that moment and that of a known target partition: When the

partition is far from its destination, the learning rate should be large so that the partition can improve

quickly. As the partition gets closer to its target, the learning rate should be reduced in order to

minimize the residual deviation from the target solution.

The success of such a method depends on how the quality of a partition is measured. For

an optimal solution, the variations vk for all regions in a target partition must be equal. Our estimate

of quality is thus based on the similarity of the current vk’s and is derived from the entropy of the

normalized values of variations vk. Thus, the quality of a partition having variations v1, v2, :::, vK

23

is defined to be:

H(v1; v2; :::; vK) =
KX
k=1

�vk;norm ln(vk;norm) with vk;norm = vk=(
KX
i=1

vi) (3.7)

This approach appears to be a "natural" choice for the quality measure, as it does not rely on any

arbitrary constant or user-adjustable parameters. According to this measure, the quality of a final

partition is a maximum equal to ln(K), and it occurs when v1;norm = v2;norm = ::: = vK;norm =

1=K. Using this measure, we can define the learning rate � at time T as:

� =
ln(K)�H(v1; v2; :::; vK)

ln(K)
: (3.8)

This learning rate depends only on the current values of the variations vk; it thus allows us to compute

a learning rate without any knowledge of the final partition. This learning rate is automatically

limited to the range of 0 and 1; it is close to 1 when the current partition given by the algorithm is

far from an optimal solution, and close to 0 when it is close to a final optimal partition with all vk

being equal.

Such an automatic determination of the learning rate is preferable to any pre-determined

rate or schedule. The learning rate automatically adjusts to the problem characteristics and requires

neither user interaction nor prior information about the task. It is also applicable to problems whose

statistics vary slowly with time, or occasionally show a sudden change.

24

3.5 Illustrative Experiments

In this section, we investigate the performance of the optimal k-means algorithm and

compare it to other versions of the k-means algorithm on several simple tutorial examples. The

training patterns used in these examples are generated from synthetic probability distributions

including both stationary (section 3.5.1) and non-stationary (section 3.5.2) statistics. In section 3.6,

we then evaluate the optimal k-means algorithm on a practical application: vector quantization.

3.5.1 Stationary Distributions

This subsection presents the results of an empirical comparison on problems whose pattern

distributions are stationary, i.e., the probability distributions of the training patterns do not change

with time. In this subsection, we compare the following four k-means algorithms:

� Optm : the proposed optimal adaptive k-means algorithm, (� = 0:9999);

� Cons : the adaptive k-means algorithm with the conscience learning rule [34],

(B = 0:0001,1 � = 0:01);

� Sqrt : the adaptive k-means algorithm with the square root learning rate [35];

� Trad : the traditional adaptive k-means algorithm [27], (� = 0:01).

We empirically evaluate these four algorithms on seven situations corresponding to three

probability distributions in 1 dimension and four distributions in 2 dimensions. The three 1-

dimensional distributions used in this simulation are : uniform, square, and 3-level Cantor distribu-

tions (Fig. 3.1). The data in the uniform distribution are uniformly distributed in [�0:5; 0:5]. The

1This is the value used by Desieno [34] and it is equivalent to � = 0:9999.

25

density of the square distribution is proportional to the squared distance from the origin. The dis-

tribution of the 3-level Cantor set is uniformly distributed on a fractal; it may be formed by starting

with the unit interval, removing its middle third, and then recursively repeating the procedure on

the two portions of the interval that are left.

1

x

u1(x)

0.5-0.5

(a)

3

x

s1(x)

0.5-0.5

(b)

3.375

x

c1(x)

0.5-0.5

(c)

Figure 3.1: Distributions for the 1-dimensional training sets: (a) uniform, (b) square, and (c) 3-level
Cantor.

For the 2-dimensional distributions, we employ: uniform, square, 3-level Cantor, and

1-dimensional sub manifold distributions. The first three distributions are simply the products of

two corresponding distributions in 1 dimension. The fourth distribution consists of data points that

are restricted to lie on a S-shaped curve defined by the equation y = 8x3 � x, where x and y are

the horizontal and vertical ordinates, respectively, and x is uniformly distributed in the interval

[�0:5; 0:5]. Sample sets drawn from these 2-dimensional distributions are shown in Figure 3.2.

-0.5

0.5

-0.5 0.5

(a)

-0.5

0.5

-0.5 0.5

(b)

-0.5

0.5

-0.5 0.5

(c)

-0.5

0.5

-0.5 0.5

(d)

Figure 3.2: Data drawn from the 2-dimensional test distributions: (a) uniform, (b) square, (c) 3-level
Cantor, and (d) 1-dimensional sub manifold.

26

Figure 3.3 shows the simulation results of the four algorithms on the 1-dimensional

distribution problems. In these 1-dimensional problems, we evaluate each algorithm on a sequence

of patterns randomly chosen from a set of 2000 patterns generated according to a specified test

distribution. We divide the input domain into 10 regions (k = 10) and initialize the reference vectors

to uniformly distributed random locations in the input domain. For the Optm algorithm, we initialize

the variation vk of each region to be 10�10, and for the Cons algorithm, we initialize the winning

probability of each region to be (1=K) = 0.1. To improve statistical accuracy, we average the

simulation results over 5 runs, each with different pattern sequences and different initial reference

vectors. The same pattern sequences and the same initial reference vectors are applied to every

algorithm in order to achieve a fair comparison. We measure the performance of each algorithm

using the normalized total spatial variation (NTSV), defined as the total spatial variation divided

by the variance of ~x. Using the NTSV as the performance measure makes the simulation results

invariant to the spatial scaling of input ~x.

Figure 3.3a shows the simulation results of the four algorithms on the 1-dimensional

uniform distribution problem. We plot in this figure the residual deviation of NTSV from the

computed optimum value with respect to time measured by the number of pattern presentations.

The simulation indicates that at the beginning, the Optm algorithm is overly responsive because we

start the simulation with almost zero variations. Until each region has seen about 3 to 5 patterns,

their boundaries change greatly in response to every new data pattern. After a reasonable estimate

of the vk’s has been built up, the algorithm minimizes the NTSV rapidly. Its NTSV becomes lower

than that of the other algorithms after about 1000 presentations. Asymptotically, the new algorithm

approaches the optimum value more closely than any of the others.

27

Optm

Cons

Sqrt

Trad

(NTSV - NTSVopt,computed)

presentations
2

5

1e-05

2

5

1e-04

2

5

1e-03

2

5

1e-02

2

5

1e-01

2

5

1e+00

2

10 100 1000 10000 100000 1000000

(a)

Optm

Cons

Sqrt

Trad

Learning Rate

presentations
5

1e-04

2

5

1e-03

2

5

1e-02

2

5

1e-01

2

5

1e+00

10 100 1000 10000 100000 1000000

(b)

Optm

Cons

Sqrt

Trad

NTSV

presentations

1e-02

1.5

2

3

4

5

7

1e-01

1.5

2

3

4

5

7

1e+00

1.5

10 100 1000 10000 100000 1000000

(c)

Opt

Cons

Sqrt

Trad

NTSV

presentations

1e-03

2

5

1e-02

2

5

1e-01

2

5

1e+00

10 100 1000 10000 100000 1000000

(d)

Figure 3.3: Average simulation runs of the four k-means algorithms on the 1-dimensional distribution
problems. (a) The simulations on 1-dimensional uniform distribution. (b) The learning rates on
1-dimensional uniform distribution. (c) The simulations on 1-dimensional square distribution. (d)
The simulations on 1-dimensional Cantor distribution.

28

Figure 3.3b shows the learning rates � for this 1-dimensional uniform distribution problem.

Cons and Trad have fixed learning rates of magnitude 0:01. The square-root schedule is roughly

a straight line with slope -1/2 in this log-log plot. For the Optm algorithm, its learning rate

automatically behaves similar to that of a search-then-converge schedule, with an initial high

learning rate, which then declines rapidly with a slope close to the inverse of the number of patterns

assigned to each cluster. The time for the break-point between the two phases is determined

automatically by the nature of the problem.

For the square distribution, the performance of each algorithm is similar to that of the uni-

form case. The new algorithm Optm surpasses the others after about 2000 presentations (Fig. 3.3c).

For the case of the 3-level Cantor distribution, where the NTSV cost function has bad local minima,

the Optm algorithm performs much better than the others; it approaches a final value which is one

tenth of that approached by the Cons algorithm and one fifth of that approached by Sqrt and Trad

(Fig. 3.3d). The Optm algorithm can achieve a lower NTSV than other algorithms because it avoids

being trapped in a bad local minimum. In 5 out of 5 runs, the Optm algorithm can find the good

clustering configuration (Fig. 3.4a), whereas, the Trad and Sqrt algorithms find good partitions only

in 2 out of 5 runs (Fig. 3.4c-d). The Cons algorithm has difficulties locating the good solution due

to the conflicting goals between the NTSV cost function and the bias mechanism for equalizing the

winning probability of each cluster (Fig. 3.4b). The fact that the Optm algorithm found a good

solution in 5 out of 5 runs indicates that it is insensitive to the initialization specifications.

Figures 3.5 shows the simulation results of the four algorithms on the 2-dimensional

problems. We derived these simulation results using a similar procedure as that employed in the 1-

dimensional problems except that we divide each input domain of these 2-dimensional problems into

29

NTSV

presentations5

1e-03

2

5

1e-02

2

5

1e-01

2

5

1e+00

2

10 100 1000 10000 100000 1000000

(a)

NTSV

presentations
3

4

5

6

8

1e-02

1.5

2

2.5

3

4

5

6

8

1e-01

10 100 1000 10000 100000 1000000

(b)

NTSV

presentations
3.5

4

5

6

7

8

1e-02

1.5

2

2.5

3

3.5

4

5

10 100 1000 10000 100000 1000000

(c)

NTSV

presentations
3.5

4

5

6

7

8

1e-02

1.5

2

2.5

3

3.5

4

5

10 100 1000 10000 100000 1000000

(d)

Figure 3.4: Five individual simulation runs of the four k-means algorithms on the 1-dimensional
3-level Cantor distribution problem. (a) The simulations of the Optm algorithm. (b) The simulations
of the Cons algorithm. (c) The simulations of the Sqrt algorithm. (d) The simulations of the Trad
algorithm.

30

Optm

Cons

Sqrt

Trad

NTSV

presentations

7

1e-01

1.5

2

3

4

5

7

1e+00

1.5

2

3

16 160 1600 16000 160000 1600000

(a)

Optm

Cons

Sqrt

Trad

NTSV

presentations1.5

2

3

4

5

7

1e-01

1.5

2

3

4

5

7

1e+00

1.5

16 160 1600 16000 160000 1600000

(b)

Optm

Cons

Sqrt

Trad

NTSV

presentations
1e-02

1.5

2

3

5

7

1e-01

1.5

2

3

5

7

1e+00

1.5

2

16 160 1600 16000 160000 1600000

(c)

Optm

Cons

Sqrt

Trad

NTSV

presentations

1e-02

1.5

2

3

5

7

1e-01

1.5

2

3

5

7

1e+00

1.5

2

3

16 160 1600 16000 160000 1600000

(d)

Figure 3.5: Average simulation runs of the four k-means algorithms on the 2-dimensional distribution
problems. The distributions that generate the training set are (a) uniform, (b) square, (c) 3-level
Cantor (4) and 1-dimensional sub-manifold.

31

16 regions (K = 16). Again, each curve is the average of 5 individual simulation runs with different

random starting reference vectors and different pattern sequences. For the uniform distribution, the

NTSV of the Sqrt algorithm drops faster than the others in the initial phase. However, in steady

state the Optm algorithm out-performs the others by the some small degree (Fig. 3.5a). For the

square distribution problem, the NTSV given by Optm falls below that of the other three algorithms

after about 4000 presentations (Fig. 3.5b). In the case of Cantor distribution and the 1-dimensional

sub-manifold problems, the new algorithm Optm performs much better than the other algorithms

because it can avoid being trapped in bad local minima (Fig. 3.5c-d).

Figure 3.6 shows resulting partitions obtained from the four algorithms on the Cantor set

problem after 106 pattern presentations. A small square indicates the center of a cluster, and the

surrounding ellipse represents the size of a cluster. The ellipse associated with cluster i is defined

as

(x� cx;i)2

�2
x

+
(y � cy;i)

2

�2
y

= 1; (3.9)

where cx;i and cy;i are the horizontal and the vertical ordinates of the i-th reference vectors, and

�2
x and �2

y are the x and y variances of the patterns in region i. The Optm algorithm produces an

optimal partition (Fig. 3.6a). The partition obtained from Cons is inferior to that of Optm since some

clusters cover more patterns than others (Fig. 3.6b). In the cases of Trad and Sqrt, their partitions

are even worse since some of the clusters cover no patterns at all (Fig. 3.6c-d). These empty clusters

are indicated by small squares without ellipses – two of them appear in the Trad case and one in the

Sqrt case. Similar results are also observed in the case of the 1-dimensional sub manifold problem.

For Trad and Sqrt, eight out of sixteen clusters cover no patterns (Fig. 3.7c-d). Also, because the

bias mechanism of the Cons distorts the NTSV cost function, the partition given by Optm is closer

32

(a) (b)

(c) (d)

Figure 3.6: A sample of the partitions associated with the 2-dimensional 3-level Cantor distribution
problem. These partitions are generated by the four k-means algorithms: (a) Optm, (b) Cons, (c)
Trad and (d) Sqrt.

33

(a) (b)

(c) (d)

Figure 3.7: A sample of the partitions associated with the 1-dimensional sub manifold distribution
problem. These partitions are generated by four versions of k-means algorithms: (a) Optm, (b)
Cons, (c) Trad and (d) Sqrt. Note the eight unused reference vectors in cases (c) and (d).

34

to optimal than that of Cons.

3.5.2 Non-Stationary Distributions

This subsection evaluates the optimal k-means algorithm on problems whose patterns are

derived from time-varying distributions. We compare in this subsection the performance of the

following four adaptive k-means clustering algorithms:

� Optm : the proposed optimal k-means algorithm (� = 0:9999).

� Cons : the adaptive k-means algorithm with the conscience learning rule [34],

(B = 0:0001,2 � = 0:01);

� Trad1 : the traditional adaptive ("on-line") k-means algorithm [27] (� = 0:1).

� Trad2 : the traditional adaptive ("on-line") k-means algorithm [27] (� = 0:01).

Because its learning rate is monotonically decreasing, the square root k-means algorithm is not

applicable for non-stationary situations and thus is not included in this evaluation. Based on the

1-dimensional sub-manifold distribution (Fig. 3.2d) in section 3.5.1, we have constructed three

non-stationary distributions. These distributions allow us to evaluate the performances of the

aforementioned algorithms in the following non-stationary situations.

(1) Constantly rotating distribution: We continuously vary the underlying distribution

by rotating the S-shaped curve counter-clockwise at the rate of 1 revolution per 20,000 pattern

presentations.

2This is the value used by Desieno [34] and it is equivalent to � = 0:9999.

35

(2) Constantly translating distribution: We continuously vary the underlying distribution

by translating the S-shaped curve at the rate of 1 length-unit per 100,000 pattern presentations.

(3) Abrupt change in distribution: We abruptly change the distribution after learning has

reached steady-state (after 105 presentations/cluster). We transform the S-shaped curve by mirroring

the curve across the horizontal axis.

Figure 3.8a shows the simulation results of the four algorithms on the problem with

constantly rotating statistics. As indicated in the figure, the NTSV of Optm and Trad1 are lower

than those of Cons and Trad2. Figure 3.8c shows the learning rates of the four algorithms for the

same problem. It reveals that the learning rates of both Optm and Trad1 are larger than that of Cons

and Trad2. These larger learning rates allow Optm and Trad1 to follow the changes more closely.

Contrary to Trad1 whose learning rate is pre-determined, the Optm algorithm dynamically adjust

its learning rate to match the nature of the problem. Similar results are also observed in the case of

the constantly translating distribution (Fig. 3.8b,d). To illustrate how well each algorithm follows

the rotating distribution, we plot in Figure 3.9 the locations of the 16 reference vectors after the

adaptation processes have reached stead state, i.e., after 8 full rotations of the S-shaped curve. This

figure shows that only Optm and Trad1 can follow the rotating distribution closely. Because of

the vk-equalization, Optm can produce a partition in which the reference vectors are more evenly

distributed, and thus achieve a lower NTSV than Trad1. Cons can follow the rotation but with a

substantial phase lag. Trad2 with its small learning rate just averages over all the possible rotation

angles.

Figure 3.10a shows the simulation result of the four algorithms on a data set with abruptly

changing statistics. The simulation indicates that only Optm and Cons can regain a performance

36

Optm

Cons

Trad1

Trad2

NTSV

presentations

1.5

2

3

4

5

7

1e-01

1.5

2

3

4

5

7

1e+00

16 160 1600 16000 160000 1600000

(a)

Optm

Cons

Trad1

Trad2

NTSV

presentations

1e-02

1.5

2

3

4

5

7

1e-01

1.5

2

3

4

5

7

1e+00

16 160 1600 16000 160000 1600000

(b)

Optm

Cons

Trad1

Trad2

Learning Rate

presentations-0.05

0.00

0.05

0.10

0.15

0.20

0.25

0.30

0.35

0.40

0.45

0.50

0.55

0.60

0.65

0.70

0.75

0.80

0.85

0.90

0.95

1.00

16 160 1600 16000 160000 1600000

(c)

Optm

Cons

Trad1

Trad2

Learning Rate

presentations-0.05

0.00

0.05

0.10

0.15

0.20

0.25

0.30

0.35

0.40

0.45

0.50

0.55

0.60

0.65

0.70

0.75

0.80

0.85

0.90

0.95

1.00

16 160 1600 16000 160000 1600000

(d)

Figure 3.8: Average simulation runs of the four k-means algorithms on the problems with constantly
changing statistics. (a) The simulations on the rotating pattern distribution. (b) The simulations on
the translating pattern distribution. (c) The learning rates on the rotating pattern distribution. (d)
The learning rates on the translating pattern distribution.

37

(a) (b)

(c) (d)

Figure 3.9: Locations of reference vectors for the rotational non-stationary problem for (a) Optm,
(b) Cons, (c) Trad1, (d) and Trad2. The figures show the reference vector center locations after
160,000 presentations, i.e., after 8 full counter-clockwise rotations of the S-shaped curve.

38

Optm

Cons

Trad1

Trad2

NTSV

presentations
1e-02

2

5

1e-01

2

5

1e+00

16 1600 160000 T T+160 T+16000 T+1600000

(a)

Learning Rate

presentations0.00

0.10

0.20

0.30

0.40

16 1600 160000 T T+160 T+16000 T+1600000

(b)

Figure 3.10: Simulations of the four k-means algorithms on the problem where the training pattern
distribution experiences an abrupt change: (a) the normalized mean square error (b) and the learning
rate for the Optm algorithm.

39

level equivalent to that before the change. Cons, however, cannot achieve as low a NTSV as

Optm, neither before nor after the change of the statistics, because its load balancing scheme

distorts the NTSV cost function more severely. The learning rate of the Optm algorithm is shown

Figure 3.10b. When the Optm algorithm first starts, the learning rate is large since the variance

of the 16 normalized variations v̂k;norm is large. As the algorithm approaches an optimal steady

state, the variance decreases and the learning rate decreases correspondingly. At the moment right

before the change of the input statistics, the learning rate is 0.015, and the variance and mean of

the normalized variations v̂k;norm is 2:7 � 10�4 and 1=16, respectively. When the input statistics

changes, the uniformity of the v̂k;nrom is disturbed. The variance of v̂k;norm increases gradually and

thus results in an increasing learning rate. After 240 pattern presentations, i.e., after each region has

been assigned an average of 15 new pattern vectors, the variance of v̂k;norm increases to 4:3�10�4,

and the learning rate grows to 0.029, about twice its value before the change of the statistics.

3.6 Vector Quantization Coding of Image Data

In this section we evaluate the optimal k-means algorithm in a realistic application,

specifically, vector quantization coding of a monochrome image. We have chosen this application in

part because the computation is very intensive due to the large amount of data that must be processed.

Furthermore, since its working principle is simple, it does not obscure the efficiency of the k-means

algorithm under test. Finally, the evaluation results can be expressed both numerically and visually,

providing additional intuitive understanding of the differences among various algorithms.

Vector quantization image coding is used to reduce the transmission bit rate or data storage

requirements while maintaining an acceptable image quality. In this application, the images to be

40

encoded are decomposed into small blocks, say 4 by 4 pixels, called vectors. The resulting vectors

are represented by the "nearest" of a limited set of prototype vectors, called codewords. The set of

codewords used to represent an image, or a portion of an image, is called codebook.

The "LENA" image (Fig. 3.11) used in this section consists of 512 by 512 pixels, each

digitized into 8-bit gray levels. Following [38], we partition the image into 4 quadrants, and encode

each one separately with only 32 different codewords. To find the "best" 32 codewords for each

quadrant, we use k-means clustering to partition the vectors observed in a given quadrant into 32

clusters, and then define the centroids of the resulting clusters as the codewords. In this experiment,

each quadrant is decomposed into 4096 blocks of 4 by 4 pixels, each defining a 16 dimensional

vector. The individual encoding of the 4 quadrants of the image allows us to study the adaptability

of the optimal k-means algorithm when the source statistics is changing from one quadrant to the

next.

Figure 3.11: The "LENA" image.

41

For the purpose of comparison, we test here the following four k-means algorithms on

computing the codebooks for the LENA image:

� Optm : the proposed optimal k-means algorithm (� = 0:9999).

� Cons : the adaptive k-means algorithm with the conscience learning rule [34],

(B = 0:0001,3 � = 0:01).

� Trad : the traditional adaptive ("on-line") k-means algorithm (� = 0:01).

� LBG : the classical batch k-means algorithm which is the generalized Lloyd clustering

algorithm proposed by Linde, Buzo, and Gray [39].

We have included the LBG algorithm in this evaluation because it is a standard method

used in image coding applications. Whereas Optm, Cons and Trad are adaptive on-line algorithms

in which the parameters are updated after each pattern presentation, the LBG algorithm operates in

batch mode where the parameters are updated only after each iteration, containing all the patterns

in the training set.

To evaluate these four algorithms, we apply each of them to compute the codebooks for

the upper-left, upper-right, lower-left, and lower-right quadrants, in that sequence. For the first

(upper-left) quadrant, we initialize the 32 codewords to actual pattern vectors randomly drawn from

this quadrant. We then continue by presenting to the algorithm 81920 patterns randomly selected

from the upper-left quadrant. The 81920 pattern presentations correspond to 20 iterations of the

presentation of all 4096 patterns in the quadrant. To compute the codebooks for the other three

quadrants, we successively initialize the 32 codewords for the new quadrant with the codewords

3This is the value used by Desieno [34] and it is equivalent to � = 0:9999.

42

generated from the previous one.

Optm

Cons

Trad

LBG

NTSV

presentations

2

3

5

7

1e-01

1.5

2

3

5

7

1e+00

1.5

2

3

0 81920 163840 245760 327680

(a)

Optm

Cons

Trad

LBG

NTSV

presentations

2

3

5

7

1e-01

1.5

2

3

5

7

1e+00

1.5

2

3

0 81920 163840 245760 327680

(b)

Figure 3.12: The normalized total spatial variation (NTSV) of the four k-means algorithms: (a) The
initial codewords are assigned to pattern vectors randomly selected from the upper-left quadrant. (b)
The initial codewords are assigned to uniformly distributed random locations in the pattern domain.

Figure 3.12a shows the normalized total spatial variation (NTSV) of the four k-means

algorithms obtained from the above experiment. The results indicate that in steady state, Optm

performs better than the other three algorithms; it outperforms Trad and LBG by a small amount,

and Cons by a larger margin. In order to demonstrate the steady-state performance of these four

algorithms visually, we display in figure 3.13 the images encoded by the codebooks generated in

the above simulation. The visual quality of image 3.13a (encoded by Optm) appears to be slightly

better in the areas of the shoulder, forehead and nose, than images 3.13b-d (encoded by Cons, Trad

and LBG, respectively). This observation also corresponds to the fact that image 3.13a has the

43

SNR = 15.7094

(a)

SNR = 14.7047

(b)

SNR = 15.4853

(c)

SNR = 15.2332

(d)

Figure 3.13: The encoded image with initial codewords assigned to randomly selected patterns in
the upper-left qudrant: (a) Optm, (b) Cons, (c) Trad, and (d) LBG.

44

higher signal-to-noise ratio (SNR) than the other three images, where SNR is defined as:

SNR = 10 log (
2552

TSV
) dB: (3.10)

With respect to the dynamic performance, figure 3.12a reveals that the LBG algorithm adapts

somewhat faster than the Optm algorithm after an abrupt change such as switching from one

quadrant to the next; the NTSV of the LBG algorithm drops slightly faster than that of the Optm

algorithm after the switching of each training set. This is a consequence of the batch operation

of LBG which tends to have a shorter effective memory of the initial codewords than an adaptive

algorithm such as Optm. The learning rate of the three "on-line" algorithms could be increased

to show a similarly fast response, but at the cost of some increase in the final steady-state error.

However, for an application such as image coding, we are primarily interested in the steady-state

performance since the clustering process is terminated when the error starts to show insignificant

reduction with each new iteration. In other applications where the problem statistics are non-

stationary and unknown in advance, Optm is more appropriate than LBG, because it can track the

statistics changes constantly and automatically without resorting to an external agent to re-initiate

the training process.

Figure 3.12b shows the NTSV resulting from a simulationsimilar to the first one. However,

the starting codewords in this case are chosen from uniformly distributed random locations in the

pattern domain of [0; 255]16. This initialization method is inefficient since some of the initial

codewords may lie in regions with no pattern, and thus may results in some unused codewords. By

comparing the results of this simulation with that of the first simulation, we can study the robustness

of each algorithm to the selection of the initial codewords.

45

Comparing the NTSVs of the four algorithms in the second simulation, we see that the

NTSV for the Optm algorithm is always lower than for the other three algorithms. At steady state,

the NTSV of Optm is about 80% of that generated by LBG, which is the second best. Thus the Optm

algorithm clearly outperforms the other three algorithms when the starting codewords are poorly

initialized. When comparing the NTSV in this figure with that in figure 3.12a, we see that only the

Optm algorithm maintains near-optimal performance in spite of the inefficient initial codewords.

Figure 3.14 shows the encoded images using the codewords generated from the second

simulation. Comparing image 3.14a with image 3.13a, we find that the visual quality of both images

is about the same. The SNR of image 3.14a is 99.5% of that of image 3.13a. This demonstrates

that Optm can find good codewords even with inefficient initialization.

Comparing images 3.13b-d with images 3.14b-d, we find obvious degradation of the

visual quality around the shoulders, faces, and the hats in images 3.14b-d. Especially, image 3.14c

obtained with Trad exhibits annoying edges and shading steps in many area. It also has the lowest

SNR of all the images corresponding to about 75% of the SNR for Optm. Images 3.14b and 3.14d

exhibit about 89% to 93% of the SNR for Optm. This degradation indicates that the Cons, and

LBG, and in particular the Trad algorithms will perform far from optimal if they are inappropriately

initialized.

3.7 Summary

The optimality criterion for this new algorithm is derived from the assumption that the

distribution p is smooth and K is large. Even though this is not true for many practical cases, our

simulation results show that the algorithm has better dynamic and static performances than other

46

SNR = 15.6310

(a)

SNR = 13.8924

(b)

SNR = 11.7090

(c)

SNR = 14.5800

(d)

Figure 3.14: The encoded images with initial codewords assigned to uniformly distributed random
locations in the pattern domain: (a) Optm, (b) Cons, (c) Trad, and (d) LBG.

47

k-means variants. The superior performance is attributed to two novel mechanisms employed. The

first one guides the partition towards an optimal solution. It allows the new algorithm to out-perform

the traditional and the square-root k-means algorithms. Since the new biasing mechanism is capable

of attaining the optimal partition for asymptotical large K, the resulting algorithm can also generate

a partition with lower total spatial variation than the algorithm based on the conscience rule which

simply equalizes the number of patterns in each region.

The second mechanism dynamically adjusts the learning rate and thereby makes it possible

to learn very quickly initially, without sacrificing accuracy in approximating the final optimal

solution. As the partition approaches an optimal solution, the learning rate decreases; this in turn

allows the partition to move even closer to the optimal value. A small threshold value in the

computed learning rate can be used as a simple stopping criterion for the adjustment of the cluster

centers. However, it might be advisable to continue to monitor the input statistics by computing

the entropy of the normalized within-region variations, so that the system can react automatically

to any changes in input behavior and resume adjusting the reference vectors. Should the density

distribution of the input patterns suddenly change, the resulting imbalance in the vk’s would quickly

increase the learning rate, and the partition can be adjusted to the new situation with good response

times.

48

Chapter 4

Heterogeneous Architecture Based on

Error-Weighted K-Means Partitioning

In chapter 2, we have described the class of heterogeneous architectures that are based on

k-means partitioning. When the traditional k-means algorithm is used to partition the input domain,

only the input distribution is considered in the partitioning process. As a result, the representation

power of the expert modules in the architecture is not fully utilized. In this chapter, we introduce

an enhancement of the heterogeneous architectures which can fully utilize the representation power

of all the expert modules and which is suitable for both stationary and non-stationary situations.

The enhanced architecture is characterized by a novel k-means algorithm that integrates into its

partitioning process information about the input distribution, the structure of the goal function and

about the capabilities of the expert modules. The new k-means algorithm allows each individual

region in the partition to adjust its size so that the representation resources in all the regions are

optimally used.

49

4.1 Objective of the Input Partitioning

For the heterogeneous architecture described in section 2.3 to perform its task efficiently,

its partitioning process should also take into account the goal ~g of the network. In function

approximation, the aim of a connectionist network is to minimize the mean squared error between

the goal function ~g and the network function ~f defined as:

MSE =
KX
k=1

MSEk with MSEk =
Z
Ik

p(~x)k~fk(~x)� ~gk(~x)k
2 d~x (4.1)

where MSEk is the contribution to the MSE from region Ik, and referred to as the partial mean

squared error in Ik. Quantity MSEk can be expressed as the product of pk and �k , where pk

is defined as
R
Ik
p(~x) d~x and �k is defined as 1=pk

R
Ik
p(~x)k~fk(~x) � ~gk(~x)k

2 d~x. Quantity pk is

the probability of ~x being in Ik. It reflects the density of input points in Ik. Quantity �k is the

mean squared error in Ik and is defined by the conditional expected value of the squared difference

between ~f and ~g for ~x in Ik. It reflects the mismatch between ~fk and ~gk on Ik. The fact that MSEk

is the product of pk and �k suggests that the k-means algorithm should integrate into its process

information about the input distribution as well as about the mismatch between ~fk and ~gk. Since the

traditional k-means algorithm divides an input domain based only on the distribution p, it produces

a partition that is usually not optimal for a heterogeneous architecture to approximate a specific

output function.

Two schemes for improving the capability of the k-means algorithm for the decomposition

of the input domain have been proposed previously. The first scheme is based on the use of an

extended metric [40, 41, 42] which attempts to equalize the output variations in the various regions.

50

The output variation in region Ik is defined as the square of the difference between ~g(~x) and

<~g(~x)> for all ~x in Ik, where <~g(~x)> is the mean of ~g(~x) in Ik. One serious problem with

this scheme is that it disregards the shape of the network function ~f . To solve this problem, a

second scheme, referred to as the error-driven k-means algorithm, has been developed [21]. In

this scheme, the magnitude of the learning rate is scaled by the squared error between the network

output ~f(~x) and the target value ~g(~x). This modulation of the learning rate attracts relatively more

reference vectors into areas where the approximation error between ~f and ~g is high compared to

areas with low approximation error. Since the density of the reference vectors in areas with high

approximation error is higher than that in areas with low error, the regions in the areas with high

approximation error are smaller than those in the areas with low error. The error-driven k-means

algorithm thus allows a heterogeneous architecture to allocate more representation resources into

areas where they are more effective in improving the desire fit. However, this scheme requires

that the reference vectors ~ck neighboring the winning subdomain be adjusted too; it thus increases

the computational complexity, especially for high-dimensional cases. Furthermore, because the

learning rate is modulated by f~f(~x)�~g(~x)g2, the adjustment term may be too large and may cause

the adaptation process to become unstable if the output is not properly scaled with respect to the

input.

In this chapter, we present a heterogeneous architecture with a modified version of the k-

means algorithm that integrates into its partitioning process information about the distribution p and

about the mismatch between ~fk and ~gk. The new k-means algorithm is based on a weighted squared

Euclidean distance measure that attempts to equalize the time-averaged squared error evenly among

all the expert modules in a network. It requires less computation than the error-driven k-means

51

algorithm and is fast enough for computation in real time, since only the winning reference vector

needs to be adjusted. In addition, the new k-means algorithm does not modulate its learning rate

with the output error. It thus avoids the scaling sensitivity problem of the error-driven k-means

algorithm.

4.2 Error-Weighted Deviation Measure

To improve the capabilities of the k-means algorithm in partitioning the input domain

of a heterogneous architecture, we use the error-weighted deviation measure, where the deviation

between ~x and reference vector ~ck is defined as:

d(~x;~ck) = �kk~x� ~ckk
2: (4.2)

When the squared Euclidean distance measure is used to determine the winning region, only the

input distribution p is considered in determining the extent of each region. By weighting this

deviation measure with the mean squared errors �k, we allow the k-means algorithm to incorporate

both the input distribution p and the output mismatch �k into its partitioning process, thus enabling

each individual region to adjust its size according to both considerations. With this error-weighted

deviation measure, the k-means algorithm thus attempts to minimize the total error-weighted

variation:

TEV =
KX
k=1

�k with �k =
Z
Ik

p(~x)�kk~x� ~ckk
2 d~x; (4.3)

where �k is an error-weighted variation in Ik.

In the following, we will investigate the characteristics of an optimal partition that mini-

52

mizes the total error-weighted variation. The investigation will consider only the asymptotic case

where K, the number of regions (or "clusters") in the partition, is very large. We start with Gersho’s

theorem [37], which states that for large K and a smooth underlying input distribution, all variations

vk must be the same for an optimal partition that minimizes the total spatial variation.

Let q be a real-valued function of the form:

q(~x) =

8>>>>>>><
>>>>>>>:

p(~x)�1=Q if ~x 2 I1

...
...

p(~x)�K=Q if ~x 2 IK

(4.4)

where Q is a normalization factor so that the integral of q on I becomes one. This function q can

be interpreted as a weighted probability function induced from p and �. With this notation, the total

error-weighted variation can be expressed as:

TEV =
KX
k=1

�k with �k = Q

Z
Ik

q(~x)k~x� ~ckk
2 d~x; (4.5)

Let f~c �k g be a set of reference vectors that minimizes the total error-weighted variation.

The region Ik associated with ~ck will be defined by the inequality:

Ik = f ~x : �kk~x� ~c �k k
2 � �ik~x� ~c �i k

2; for each i 6= k g: (4.6)

As K becomes large, the values of �i in the regions neighboring to Ik approach that of �k . The

corresponding increase in uniformity of �i in the neighborhood of Ik reduces the bias of the error-

weighted deviation measure, and results in a boundary of Ik that closely resembles that generated

53

based on the non-weighted squared distance measure. This interpretation together with equation

4.5 allows us to view an optimal partition that minimizes the total error-weighted variation with

respect to p as an optimal partition that minimizes the total spatial variation with respect to q.

The increase in uniformity of �k also smoothens function q. For a smooth distribution p,

function q can be assumed to be smoothly varying for asymptotically large K. Since the definition

of TEV in equation 4.5 is the same as that of TSV in equation 3.2, applying Gersho’s criterion to

equation 4.5 results in the following statement: For asymptotically large K and smooth distribution

p, all error-weighted variations �k must be the same for an optimal partition that minimize the

total error-weighted variation. This theoretical result leads us to conjecture that even for small

K, equalizing the variations �k might lead in a robust manner to near-optimal partitions. Our

experimental results in section 4.4 support this conjecture.

4.3 K-Means Algorithm with Error-Weighted Deviation Measure

Even though the error-weighted deviation measure allows us to integrate into the k-means

algorithm information about the input distribution and about the mismatch between ~fk and ~gk,

the algorithm still may have difficulties converging to an optimal or near-optimal configuration.

As has been successfully demonstrated for unsupervised input partitioning in chapter 3 equalizing

the spatial variations vk in the partition enables the k-means algorithm to converge to an optimal

partition. Following the scheme used in 3.3 for vk-equalization, we define an effective deviation

between ~x and reference vector ~ck as

d(~x;~ck) = �̂k �̂kk~x� ~ckk
2: (4.7)

54

Multiplying the error-weighted deviation measure by �̂k biases the membership indicator in favor

of regions with smaller variations �̂k , and it leads to a robust equalization of these values in the

various regions in the partition.

To obtain the estimates �̂k , we use the weighted running time-average:

�̂k; T+1 = � �̂k; T + (1 � �)Mk(~xT) �̂k k~xT � ~ck;Tk
2; (4.8)

where � is a constant slightly less than 1. This equation is the modification of equation 3.6 used for

estimating vk. To estimate �k , we use

�̂k; T+1 = �̂k; T + (1 � �)Mk(~xT)[�̂k;T + f~f(~xT)� ~g(~xT)g
2]; (4.9)

This equation allows us to update �̂k of the winning expert by adding into �̂k; T+1 new information

about its approximation error, and maintain the previous value of �̂k for other expert module. We

start this estimation by initializing all �̂k;0 and �̂k;0 to some small number, allowing the effect of the

initialization to disappear quickly, so that the estimates are soon dominated by the actual data seen

by each region.

In order for our modified k-means algorithm to attain both adaptation speed and approx-

imation accuracy, we adjust the learning rate of the algorithm dynamically, based on the entropy

of the estimated variations �̂k 3.4. According to this entropy measure, the learning rate (�km) is

defined to be:

�km = 1 �H(�̂1; :::; �̂K)=ln(K); (4.10)

where H(�̂1; :::; �̂K) =
PK

k=1 ��̂k;norm ln(�̂k;norm) with �̂k;norm = �̂k=(
PK

i=1 �̂i). This dynamic

55

adjustment of the learning rate, together with the mechanism for equalizing the variations, has

experimentally shown to improve the performance of the k-means algorithm, especially in the cases

of non-stationary input statistics 3.5.2 These mechanisms are used again to improve the performance

of the new k-means algorithm.

In the course of adaptation, the locations of the reference vectors~ck are constantly varying.

When these reference vectors change, the boundaries of the input domains will change accordingly,

resulting in non-stationary training data for each expert module. To assist an expert module to cope

with this non-stationary situation, we correlate the learning rate �lms of the LMS algorithm with the

learning rate �km of the k-means algorithm by setting it to:

�lms = �km + �: (4.11)

The first term, �km, is the learning rate of the k-means algorithm defined by equation 4.10. It allows

us to vary the learning rate of an expert module according to the stationarity of the input domain

of the expert module. The second term, �, is a constant used to prevent �lms from becoming too

small. Since the adaptation of the expert module cannot be be completed before the input domain

of the expert module has been stabilized, the constant � allows the expert module to complete its

adaptation after its input domain has reached stationary state (�km ! 0).

4.4 Empirical Demonstration

This section presents an empirical demonstration of the enhanced heterogeneous archi-

tectures introduced in this chapter. It illustrates the performance of this new architecture through a

56

system that implements piecewise linear approximation of the goal function; the expert modules in

the system are restricted to be linear functions trained by the least mean square (LMS) algorithm

[31]. The following four versions of the heterogeneous architecture based on k-means partitioning

are compared:

� Ewgt: the Ewgt architecture uses the k-means algorithm based on the error-weighted deviation

measure and the LMS algorithm with �lms = �km + 0:01. The parameters of the k-means

algorithm are set as follows: � = 0:9999, ŵk;0 = 10�10 and �̂k;0 = 10�10.

� Vwgt: the Vwgt architecture uses the k-means algorithm based on the variation-weighted

squared distance measure [43] and the LMS algorithm with �lms = �km+0:01. This k-means

algorithm partitions the input domain based only on the input distribution. Its parameters are

set as follows: � = 0:9999 and ŵk;0 = 10�10.

� Extd: the Extd architecture uses the k-means algorithm based on the extended Euclidean

metric [40, 41, 42] and the LMS algorithm with �lms = 0:01. The learning rate �km of the

k-means algorithm is set to 0.01.

� Errd: the Errd architecture uses the error-driven k-means algorithm [21] and the LMS

algorithm with �lms = 0:01. The learning rate �km of the k-means algorithm is set to 0.01.

In this evaluation, we first demonstrate the performance of the above four architectures

on two tutorial 1-dimensional approximation problems. We then examine these architectures on a

more challenging 4-dimensional problem: the prediction of the Mackey-Glass time series [44, 45].

57

Figure 4.1 illustrates the performance of the above four architectures on the first one-

dimensional problem. The goal function, shown in figure 4.1a, is defined as:

g(x) = 1:5x4 with x 2 [�0:5; 1:0]: (4.12)

For this demonstration, we divide the input domain into two subdomains so that a partition is

characterized by a single boundary pointXB. The overall approximation error of the heterogeneous

architecture for a given boundary point XB is measured by the normalized mean squared error

(NMSE), defined as the mean squared error between f and g normalized by the mean squared value

of g. Figure 4.1b shows the NMSE of the above four architectures on an input-output sequence

generated according to (4.12). Each curve is the average of five runs with different pattern sequences.

For each architecture, we initialize all ck of the k-means algorithm to 0.5 and all the parameters of

expert module fk to 10�10. The simulation results indicate that the final error generated by Ewgt is

about one fifth of those generated by Vwgt, Extd, and Errd. Notice that the NMSE of Errd appears

to increase after 20,000 presentations, indicating a conflict between the goals of minimizing the

mean squared error and of evenly partitioning the input domain.

Figure 4.1c shows the calculated NMSE as a function of the partitioning point XB. It

indicates that the optimum performance is achieved when the partitioning point is at XB = 0:60

and the resultant NMSE is equal to 0.015. Our results show that the partition produced by Ewgt

(XB = 0:57) comes much closer to the optimum partition than the other three algorithms.

To evaluate scaling sensitivity, we have also applied the four algorithms to a function:

G(x) = 150x4 with x 2 [�0:5; 1:0]: (4.13)

58

g(x)

x

0.00

0.50

1.00

1.50

-0.50 0.00 0.50 1.00

(a)

New

Vwgt

Extd

Errd

NMSE

presentations

1.5

2

3

5

7

1e-01

1.5

2

3

5

7

1e+00

1.5

2

1 10 100 1000 10000 100000 1000000

(b)

OptimumNewVwgt

Extd

Errd

NMSE

XB

0.000

0.100

0.200

0.300

0.340

-0.50 0.00 0.50 1.00

(c)

Figure 4.1: Performance comparison of the
four heterogeneous architectures on a 1-
dimensional quadratic problem.
(a) The goal function: g(x) = 1:5x4.
(b) The NMSE vs. the number of pattern pre-
sentations.
(c) The NMSE vs. the partitioning point XB.
Vertical lines mark the partitioning points for
various architectures.

59

The performance of Ewgt, Vwgt and Extd are similar to their performance on g(x), indicating that

the scaling of the output with respect to the input does not affect their stability. The simulation of

Errd could not be completed since it became unstable due to the scaling sensitivity of this algorithm.

As a more challenging test of the new algorithm, we use the Mackey-Glass time series

prediction task [45]. This time series is obtained by integrating the Mackey-Glass differential-delay

equation [44]:

dx[t]

dt
=

ax[t� �]

1 + x10[t� �]
� bx[t]; (4.14)

where a, b and � are defined to be 0.2, 0.1 and 17 respectively. In this problem, we use the 4-

dimensional input vector~xi = (x[i]; x[i�6]; x[i�12]; x[i�18]) to predict the output yi = x[i+85], a

value of the time series in the future. We train each of the heterogeneous architectures on a sequence

of input-output patterns randomly selected from a training set of 10,000 input-output pairs. We

evaluate each system on a test set containing 500 input-output pairs that differ from those in the

training set. We again measure the performance using the normalized mean squared error (NMSE)

on the test set, defined as the mean squared error on the test set normalized by the mean squared

value of the time series.

Figure 4.2 compares the performance of the above four architectures on the Mackey-Glass

problem. We test these architectures on three instances where the input domain is divided into 4, 8,

and 16 regions respectively. For each instance, we initialize all the reference vectors ~ck to 0.93, the

mean of the time series, and all the parameters in expert module ~fk to be 10�10.

Figure 4.2a shows the NMSE of the four architectures where the input domain is partitioned

into 4 regions. Each curve here is again the average of five runs with different pattern sequences.

The simulation results indicate that all four architectures have comparable performance with respect

60

Ewgt

Vwgt

Extd

Errd

NMSE

presentations

1e-04

2

5

1e-03

2

5

1e-02

2

5

1e-01

2

5

1e+00

2

5

1 10 100 1000 10000 100000 1000000 10000000

(a)

Ewgt

Vwgt

Extd

Errd

NMSE

presentations2

5

1e-04

2

5

1e-03

2

5

1e-02

2

5

1e-01

2

5

1e+00

2

5

1 10 100 1000 10000 100000 1000000 10000000

(b)

Ewgt

Vwgt

Extd

Errd

NMSE

presentations1e-05

2

5

1e-04

2

5

1e-03

2

5

1e-02

2

5

1e-01

2

5

1e+00

2

5

1 10 100 1000 10000 100000 1000000 10000000

(c)

Ewgt_4

Ewgt_8

Ewgt_16

NMSE

presentations

2

5

1e-04

2

5

1e-03

2

5

1e-02

2

5

1e-01

2

5

1e+00

1 10 100 1000 10000 100000 1000000 10000000

(d)

Figure 4.2: Performance comparison on the Mackey-Glass time series prediction.
(a) The input domain is partitioned into 4 regions. (b) The input domain is partitioned into 8 regions.
(c) The input domain is partitioned into 16 regions. (d) Comparison of the NMSE of Ewgt from a,
b and c.

61

to both convergence rates and the steady state accuracy.

Figure 4.2b shows the NMSE of the four architectures where the input domain is partitioned

into 8 regions. The simulations indicate that the Ewgt algorithm has better generalization abilities.

The NMSE of Ewgt at the steady state is about six tenths that of Vwgt, about half that of Extd, and

about three tenths that of Errd. Note that the NMSE of Errd fluctuates by a large degree even when

the algorithm reaches the steady state. With respect to learning speed, the Ewgt algorithm has a

faster convergence rate than Vwgt and Extd; the NMSE of Ewgt always stays below those of Vwgt

and Extd except for the first few pattern presentations. Comparing Ewgt to Errd, we find that the

NMSE of Ewgt decreases faster than that of Errd at both the initial and final stages.

Figure 4.2c shows the NMSE of the four architectures where the input domain is partitioned

into 16 regions. The relative shapes of the NMSE curves in this figure are resembling those in

figure 4.2b, indicating that the four architectures have similar relative behaviors.

The simulations in all these three instances indicate that Ewgt has better performance. It

can achieve lower steady state NMSE compared to the other three architectures. The steady state

NMSEs of both Ewgt and Vwgt are lower than those of Extd and Errd, indicating that both Ewgt

and Vwgt can partition the input domain more effectively. Also, since Ewgt takes into account the

output information of the goal function, it can achieve better accuracy than Vwgt.

Figure 4.2d compares the NMSEs of Ewgt from figure 4.2a, 4.2b and 4.2c. It indicates

that the more regions in the partition, the slower a convergence rate but the higher the steady state

accuracy. The same behavior is also observed for Vwgt and Extd. However, for Errd, we find that

both of its NMSE curves in figure 4.2c and 4.2b are identical. Further investigation reveals that 8

out of 16 regions cover no data points. As a result, only 8 out of 16 expert modules are utilized. All

62

these evidences indicates that Ewgt, Vwgt and Extd scale quite well while Errd scales poorly with

respect to the number of regions in the partition.

4.5 Summary

This chapter has introduced an enhanced version of the heterogeneous architecture based

on k-means partitioning. The enhanced architecture is based on a modified the k-means algorithm

that partitions the input domain by integrating into its process information about the input dis-

tribution and about the mismatch between the network function and the goal function. The new

k-means algorithm uses an error-weighted deviation measure that aims at equalizing the average

approximation errors in all regions of the partition. This scheme of equalizing the errors in the

different regions has several advantages. It is simple enough to be performed in real-time. It does

not require a critical scaling of the output with respect to the input. Moreover, since the error

weighting factor represents the key goal of the algorithm most directly, the new k-means algorithm

out-performs other k-means algorithms with different innovative but more adhoc approaches.

The scheme of equalizing the approximation errors in all regions of the partition is based

on the assumption that a distribution p(~x) is smooth and K is large. For the case of small K and

non-smooth distribution, equalizing the approximation errors might distort the cost function that the

k-means algorithm attempts to minimize. However, this error-equalization allows the new k-means

algorithm to fully utilize the given resources robustly, and thus offsets the disadvantage caused by

the distortion of the goal function. The equalization of the approximation errors therefore permits

the new k-means algorithm to partition the input domian more effectively. As evident from our

demonstration on the Mackey-Glass problem, the larger number of cluster, the better the heteroge-

63

neous architecture with the new k-means algorithm performs compared to other architecture. For

such problems, with a larger number of clusters, the asymptotic assumptions underlying our scheme

are approximated even better, and should thus result in partitions that lie very close to the optimum.

A key insight gained in this work is that the k-means algorithm is not restricted to

unsupervised learning tasks; deviations from a desired goal function can be used to bias the

partition in such a way that the overall error is reduced. Finally, the scheme for integrating the

mismatch between the network function and the goal function presented in this paper is not limited

to the described multi-module architecture but can also be applied to other supervised learning

architectures that use the k-means algorithm.

64

Chapter 5

Performance Evaluation of

Heterogeneous Architectures

5.1 Scope of Evaluation

In chapter 1 we have argued that traditional artificial neural network architectures are not

sufficient to cope with large complex problems, and that heterogeneous architectures are needed

to solve such problems. In this chapter and the two that follow, we support the above argument

with a comparative analysis of the performance and complexity of heterogeneous architectures and

traditional architectures for large, complex problems. The heterogeneous architectures analyzed

in this study are restricted to those based on error-weighted k-means partitioning, as introduced in

chapter 4.

In this chapter we compare the performance of a heterogeneous architecture that imple-

ments a piecewise linear function (Het), against that of traditional architectures on the Mackey-

65

Glass time series prediction [45], and on a hand-written character recognition task [46]. These

two problems are considered by a number of connectionist researchers [45, 29, 17, 47, 48, 46] to

be benchmarks for evaluating the approximation and classification capabilities of artificial neural

networks.

For the Mackey-Glass problem, where the input dimension is quite low, we compare the

Het architecture with the following 4 traditional architectures:

� RBF : the radial basis function architecture [29];

� Tbl : the architecture based on a lookup table approach;

� Loc : the architecture based on a local model approach [24, 25];

� and BP : the back-propagation architecture, which is a multilayer perceptron trained with the

on-line back-propagation algorithm [2].

The RBF, Tbl and Loc architectures have been chosen to represent traditional, homogeneous ar-

chitectures composed of local-support basic functions. The BP architecture represents traditional,

homogeneous architectures composed of global-support basic functions. The performance of Het

with these four architectures on the Mackey-Glass problem is described in section 5.3. In section

5.4, the Het, RBF, and BP architectures are evaluated on the hand-written capital letter recognition

problem. The results from these two evaluations are then discussed in section 5.5.

An analysis of serial and parallel implementations of the heterogeneous architectures are

given in chapter 6 and 7, respectively. Since we are interested in artificial neural network architec-

tures which are simple to implement with parallel VLSI hardware, we compare the implementations

of Het to only those of RBF and BP. We have chosen these two types of architectures because of

66

their popularity and suitability for dedicated hardware implementation.

5.2 Review of Architectures under Test

This section gives a brief review of the following three architectures:

� Het : the heterogeneous architecture based on error-weighted k-means partitioning,

� RBF : the radial basis function architecture,

� Tbl : the architecture based on a lookup table approach,

� Loc : the architecture based on a local model approach,

� and BP : the back-propagation architecture.

5.2.1 Heterogeneous Architecture

Figure 5.1 depicts the schematic diagram of a heterogeneous architecture based on error-

weighted k-means partitioning (Het). For an architecture that represents a piecewise linear mapping

from RM to RN , its network function is of the following form:

~f(~x) =
KX
i=1

Mk(~x)~fk(~x) (5.1)

where K is the number of expert modules. The membership indicator Mk is defined as:

Mk(~x) =

8>>><
>>>:

1 if �̂k �̂kk~x� ~ckk
2 � �̂i �̂ik~x� ~cik

2 for each i 6= k

0 otherwise

: (5.2)

67

NN

M

N

NN

k
M

k
f

KM1MKf1f

X

K1
K-MEANS

EXPERTEXPERT

Figure 5.1: The schematic diagram of a heterogeneous architecture based on error-weighted k-means
partitioning.

In the event of more than one minimum �̂k �̂kk~x � ~ckk, we set the Mk with the lowest index k to

1 and the others to 0. The membership indicators M1,...,MK are determined using the k-means

algorithm based on error-weighted deviaiton measure described in section 4.3. Each expert module

implements a linear function ~fk of the form giving below:

fk;i(~x) = wk;i0 +
MX
j=1

wk;ijxj ; for 1 � i � N: (5.3)

Function fk;i represents the i-th component of ~fk . The parameters wk;i0, ... , wk;iM of fk;i are

adjusted using the least mean square (LMS) algorithm [31]. For the experiments in this chapter, we

set the parameter � in the partitioning module of the Het architecture to be 0:9999. We initialize

its �̂k and �̂k to 10�10. We also set the learning rate �lms of the LMS algorithm to �km + 0:01 and

initialize wk;ij to 10�10.

68

5.2.2 Radial Basis Function Architecture

Sum and Normalize

k

w kk

K Kw1 1w

N

NN

x

M

K

RBF

1

RBF

Figure 5.2: The schematic diagram of the radial basis function architecture.

The classical radial basis function architecture is a connectionist architecture based on

basic functions with local supports. For an architecture that implements a function from RM to

RN , as shown in figure 5.2, its network function is defined to be

~f(~x) =
KX
k=1

~wk�k; with �k = �(k~x� ~ckk); (5.4)

where � represents a radial basis function and K is the number of the radial basis functions in the

architecture. The typical form of �k is a Gaussian function, which is defined as:

�k = �(k~x� ~ckk) = exp(�k~x� ~ckk
2=�2); (5.5)

where � is a parameter defining the width of the Gaussian function.

69

Several radial basis function architectures [3, 4, 5, 29, 7] have been developed. In this

comparison, we primarily rely on the architecture described by Moody and Darken [29]. The

network function in this architecture is given by:

~f(~x) =

PK
k=1 ~wk�kPK
k=1 �k

: (5.6)

This normalized form of the network function generalizes better than the one defined by equation

5.4. The training algorithm used by Moody and Darken [29] for determining the parameters ~ck, �

and ~wk is divided into 3 independent successive stages:

� Place all the Gaussian centers~ck using an adaptive k-means algorithm. In order to improve the

allocation of the Gaussian centers, we use in this investigation the adaptive k-means algorithm

based on the variation-weighted deviation measure instead of the traditional adaptive k-means

algorithm.

� Define the width � of all the Gaussian functions using the global nearest neighbor rule [29]:

� = f1=K
KX
k=1

k~ck � ~ck;nearestk
2g1=2; (5.7)

where ~ck;nearest is the nearest Gaussian center ~ci to ~ck.

� Determine the heights ~wk of all the Gaussian functions using the LMS adaptation rule [31].

For the experiments in this chapter, we set the parameter � in the k-means algorithm to be 0:9999,

and initialize v̂k to 10�10. We set the learning rate �lms of the LMS algorithm to be 0.01, and

initialize all components of height ~wk to 10�10.

70

5.2.3 Architecture based on a Lookup Table Approach

The architecture based on a lookup table approach uses a regular grid of local support

basic functions. In this architecture, the input domain is partitioned into disjoint cells: I1, ... , IK .

Associated with cell Ik is parameter ~zk that represents the output of the cell. For a given input ~x,

the system generates an output of the form:

~f(~x) =
KX
k=1

~zkMk(~x); (5.8)

where Mk is a membership function defined to be 1 if ~x belongs to Ik and 0 otherwise. The value

of ~f(~x) is thus equal to ~zk, where Mk(~x) = 1. To train the system so that the mean squared error

(MSE) between ~f and the goal function ~g is minimized, the following recursive equations are used:

~zk;T+1 = ~zk;T +Mk(~xT)f~g(~xT)� ~zk;T)=(nk;T + 1)g (5.9)

nk;T+1 = nk;T +Mk(~xT) (5.10)

where nk is the number of data points seen by cell k, and where ~zk;0 and nk;0 are set to 0.

The architecture based on a lookup table approach is suitable only for problems with a

low dimensional input domain since its hardware scales exponentially with the number of input

dimensions. This type of architecture can learn very rapidly but it generalizes poorly because it

normally has too many degree of freedom. Thus, comparing Het with this architecture is a good

tool to investigate how much speed the heterogeneous architecture has to sacrifice in exchange for

its generalization power.

71

5.2.4 Architecture based on a Local Model Approach

The architecture based on a local model approach [24, 25] has successfully addressed

many approximation problems of low input dimensions. In this architecture, all the incoming

training samples are stored and used as reference vectors ~ck. Associated with each reference vector

is an influence function 'k , whose value is defined to be 1 at ~ck and is gradually vanishing with

distance from the sample position. A typical form of 'k is a Gaussian function, defined as:

'k(~x) = exp(k~x� ~ckk
2=�2

k); (5.11)

and �2 is a parameter defining the width of the Gaussian function.

Associated with each reference vector is also a local model fk, assumed to be linear for

this study. The coefficients of fk are determined using the weighted least squares fit among all

the training samples; the squared difference between the target output and the value of fk at each

sample point is weighted by the value of the influence function at that point. To generate the output,

we combine the local models fk of various training samples according to the equation:

f(~x) =

PK
k=1 'k(~x)fk(~x)PK

k=1 'k(~x)
: (5.12)

where K is the number of stored training samples in the architecture.

For the experiment in this chapter, the batch version of the local model architecture is

used. The sample points are organized using the bumptree data structure [25]. This allows us

to quickly prune away training samples whose influence values are insignificant, i.e., less than a

pre-determined threshold, thus speeding up the computation of f for a given input ~x,

72

5.2.5 Back-Propagation Architecture

The back-propagation architecture is probably the most popular artificial neural network

architecture. In this architecture, a multi-layer perceptron, which is a network with global-support

basic functions, is trained with the back-propagation algorithm [2], which is a supervised learning

procedure based on gradient descent. The goal of the back-propagation learning algorithm is to find

a set of network parameters that minimizes the mean squared error between the network function

~f and the goal function ~g. For the experiments performed in this chapter, we use the on-line

version of the back-propagation algorithm and set its learning rate to 0.01. Figure 5.3a shows the

back-propagation network used in the Mackey-Glass problem. The network has two hidden layers

of perceptrons, each consisting of 20 sigmoidal units, and it represents a mapping from R4 to R of

the form:

z1;k(~x) = 1 + expf�w1;k0 �
4X
i=1

w1;kixig; for 1 � k � 20 (5.13)

z2;k(~x) = 1 + expf�w2;k0 �
20X
i=1

w2;kiz1;i(~x)g; for 1 � k � 20 (5.14)

f(~x) = w3;0 +
20X
i=1

w3;iz2;i(~x); (5.15)

where xi denote the i-th component of input vector ~x.

Figure 5.3b shows the back-propagation network used in the hand-written capital letter

recognition problem. The network has one hidden layer of 10 sigmoidal units and 26 sigmoidal

outputs. It implements a mapping from R100 to R26 of the form:

z1;k(~x) = 1 + expf�w1;k0 �
100X
i=1

w1;kixig; for 1 � k � 10 (5.16)

73

f

Output

2,20z2,1z

2,20

Hidden

2,1

Hidden

1,20z1,1z

1,20

Hidden

1,1

Hidden

x

4

(a)

10z1z

26f1f

261

OutputOutput

101

Hidden Hidden

x

100

(b)

Figure 5.3: The schematic diagrams of the back-propagation architectures: (a) a network with two
hidden layers of perceptrons for addressing the Mackey-Glass time series prediction problem, (b) a
network with one hidden layer of perceptrons for addressing a hand-written capital letter recognition
task.

74

fk(~x) = 1 + expf�w2;k0 �
10X
i=1

w2;kiz1;i(~x)g; for 1 � k � 26 : (5.17)

5.3 Mackey-Glass Time Series Prediction

This section reports the empirical evaluation of the Het, RBF and BP architectures on the

Mackey-Glass time series prediction [45]. The Mackey-Glass time series used in this evaluation is

derived by integrating the differential-delay equation [44, 45]:

dx[t]

dt
=

0:2x[t� 17]
1 + x10[t� 17]

� 0:1x[t]: (5.18)

Using this time series x[t], we then define a training set of 10,000 input-output pairs, where input

~xi is defined as (x[i]; x[i� 6]; x[i� 12]; x[i� 18]) and output yi as x[i+ 85].

In this simulation, we use a Het architecture that partitions the input domain into 8 regions.

We initialize each reference vector ~ck to (0:93; 0:93; 0:93; 0:93), where 0:93 is the mean of the

Mackey-Glass time series. For the RBF architecture, we use a system consisting of 64 RBF units.

We initialize ~ck to (0:93; 0:93; 0:93; 0:93). For the BP architecture, we initialize all the weight

parameters to random values ranging from -0.5 to 0.5. We train each of the above systems on a

sequence of input-output patterns randomly selected from our training set of 10,000 input-output

pairs. We evaluate each architecture on a test set containing 500 input-output pairs that differ from

those in the training set. We measure the performance using a normalized mean squared error

(NMSE), defined as the mean squared error divided by the mean squared value of the time series.

Figure 5.4a shows the NMSE of the Het, RBF and BP systems on the test set as a function

of the number of patterns presented during training. Each curve here is the average of 5 runs, where

75

each run uses a different training sequence. For Het or BP, the NMSE plotted at N presentations

is the value obtained after the system has been presented with N patterns. For RBF, the value is

obtained after 2N pattern presentations. The first N presentations are used to find the centers of

the Gaussian functions, and the other N patterns are needed to adjust the heights of the Gaussian

functions. The figure also shows a horizontal line Con representing the result of Lapedes and

Farbes’s experiment [45]. Using the conjugate gradient method, they were able to train a multilayer

perceptron with the above topology to achieve the NMSE of 0.000136.1 This line is shown here for

visual reference and does not illustrate any dynamic characteristics.

This figure indicates that the Het system has better generalization capabilities. The steady

state error of Het, measured after 107 pattern presentation, is about a third of that for RBF, and about

a sixth of that for BP. With respect to learning speed, the Het system has a faster convergence rate

than the RBF and BP systems. Furthermore, the NMSE of Het always stays below that of RBF and

falls below that of BP after about 70 pattern presentations.

Figure 5.4b compares the NMSE of the Het system to that of the architecture based on

the lookup table approach on the test set. This type of architecture can learn very rapidly but it

generalizes poorly because it normally has too many degree of freedom. Thus, comparing Het with

this architecture is a good tool to investigate how much speed the heterogeneous architecture has to

sacrifice in exchange for its generalization power.

For our evaluation, we define the input domain of the lookup table approach to be

[0:41; 1:32]4 , the smallest 4-dimensional box containing all the patterns in our training set. Three

versions of the lookup table architecture, each with different levels of quantization, are tested:

1In Lapedes and Farber’s simulation [45], the performance of a network is measured by the normalized error, defined
as the root mean squared value of the prediction error normalized by the standard deviation of the time series. The NMSE
of 0.000136 is equivalent to the normalized error of 0.05.

76

Het

RBF

BP

Con

NMSE

presentation2

5

1e-04

2

5

1e-03

2

5

1e-02

2

5

1e-01

2

5

1e+00

1 10 100 1000 10000 100000 1000000 10000000

(a)

Het

Tbl4

Tbl8

Tbl16

NMSE

presentation2

5

1e-04

2

5

1e-03

2

5

1e-02

2

5

1e-01

2

5

1e+00

1 10 100 1000 10000 100000 1000000 10000000

(b)

Het

Loc/1

Loc/6

Loc/7

Loc/8

Loc/14

NMSE

presentations
2

5

1e-04

2

5

1e-03

2

5

1e-02

2

5

1e-01

2

5

1e+00

1 10 100 1000 10000 100000 1000000 10000000

(c)

Figure 5.4: Performance comparison on the
Mackey-Glass time series prediction for:
(a) Het, RBF and BP,
(b) Het and the architecture based on the lookup
table approach.
(c) Het and the architecture based on the local
model approach.

77

� Tbl4: each dimension is quantized into 4 levels, resulting in a total of 256 cells;

� Tbl8: each dimension is quantized into 8 levels, resulting in a total of 4,096 cells;

� Tbl16: each dimension is quantized into 16 levels, resulting in a total of 65,536 cells;

It is evident from figure 5.4b that a lookup table with fewer cells can learn faster than one

with more cells. Reducing the number of cells increases the learning rate by reducing the number of

parameters that need adjustment. However, the steady state error does not improve monotonically

with the number of cells. When the number of cells is reduced, the size of each cell increases.

Consequently, the variation of the output data in each cell increases. As a result, the estimation of

zk becomes slower, thus delaying the convergence rate of the entire system by some degree.

The NMSE of Tbl8 at steady state is lower than that of Tbl4. Since the cells in Tbl8 are

smaller than those in Tbl4, Tbl8 can adjust its output to more closely match the variation of the

target function. However, the NMSE of Tbl16 at steady state is higher than that of Tbl8 even though

it has more cells. This occurs because there are too few input-output patterns in the training set.

Some testing patterns fall in cells that have never seen a data sample during training–thus resulting

in a large error.

Comparing the performance of Het to that of the look-up table approach, we see that

the NMSE of Het decreases faster than those of the lookup tables for the first few hundred pattern

presentations. However, the rate of decrease then gradually slows down compared to those of Tbl4

and Tbl8, and the NMSEs of Tbl4 and Tbl8 drop below that of Het at about 2,000 and 10,000

pattern presentations, respectively. This slow-down happens because Het attempts to re-partition

its input domain to evenly distribute the load among all the expert modules. After the input domain

is re-partitioned, Het then rapidly reduces its NMSE and again drops below the curves of Tbl4 and

78

Tbl8 after 12,000 and 60,000 pattern presentations, respectively. At steady state, the NMSE of Het

is only about 1% of that of Tbl4, and about a thirtieth of that of Tbl8. Comparing the performance

of Tbl16 with that of Het, we see that the NMSE of Het is always below that of Tbl16 and the NMSE

of Het at steady state is about 1% of that of Tbl16.

In addition to the aforementioned comparisons, we also compare the Het architecture

with the architecture based on the local model approach [24, 25]. This comparison allows us to

evaluate the performance of the Het architecture, which operates in the "on-line" fashion on a simple

hardware, against that of an efficient local approximation scheme, which operates in the "batch"

mode on a more elaborated hardware.

Figure 5.4c shows the NMSEs of the Het architecture and the local model approaches on

the test set. The horizontal lines representing the NMSEs of the local model approachs are shown

for visual reference, and do not illustrate any dynamic characteristics. In this comparison, all 10,000

input-output patterns in the training set are used as reference vectors. We set the width of each

influence Gaussian function �2
k to k~ck � ~ck;nearestk

2=�, where ~ck;nearest is the nearest reference

vector to~ck, and � is a constant. Five values of � are tested: 1, 6, 7, 8, and 14; and the corresponding

results are depicted by Loc/1, Loc/6, Loc/7, Loc/8, and Loc/14, respectively. As evident from this

comparison, the local model architecture can perform better than the Het architecture for a proper

choice of � (� = 6; 7; 8), but only by a slight margin. This result is very promising, considering

that the Het architecture uses simple recursive rules to adjust its parameters while the local model

method employs complex algorithms, such as, the singular value decomposition to perform the

weighted least squares fit and the bumptree data structure to organize the stored data.

79

5.4 Hand-Written Letter Recognition

In this section, we test the Het, RBF, and BP architectures on the task of classifying

hand-written capital letters. We exclude both the lookup table and local model approaches from this

evaluation because of the high dimensionality of the input domain. These two approaches have a

large number of parameters that need to be adjusted and thus require excessive amounts of training

data. The available data set is not large enough for training these two architectures. In addition,

the local model method needs to perform the weighted least squares fit to sample data, and the

complexity of this computation scales proportionally to the cube of the input dimension. It is thus

too expensive for this high-dimensional problem.

The character data used in this simulation are obtained from the experiment performed

in [46]. These characters are hand-written on a 80 � 120 pixel window with a 5 pixel-wide brush.

All characters are approximately centered and scaled to the full size of the window. Following the

character entry, the window is divided into 100 regions of 8� 12 pixels. Each of these regions is an

input whose value is the percentage of "on" pixels in the region. There are thus 100 inputs, each of

which could have any of 8� 12 = 96 distinct values.

In this character recognition problem, we use the Het architecture that partitions the input

domain into 8 regions. We initialize each component of the reference vector ~ck to 10�10. For the

RBF architecture, we use a system that consists of 128 RBF units. We initialize each component

of ~ck to 10�10. For the BP architecture, similar to the Mackey-Glass problem, we initialize all the

weight parameters to random values ranging from -0.5 to 0.5.

These Het, RBF, and BP systems are used in this evaluation to estimate the membership

function of an input pattern. Each system has 26 outputs, one for each capital letter. The value of

80

Het

RBF

BP

Classification Error

presentation

7

8

10

15

20

25

30

35

40

50

60

70

80

100

1 10 100 1000 10000 100000 1000000

(a)

Figure 5.5: Performance comparison of the
Het, RBF, and BP architectures on the hand-
written character recognition task.

each output indicates the relative likelihood that the input belongs to the corresponding category.

The input is classified by selecting the category with the maximum output value. We train each

of these systems using a sequence of labeled input patterns randomly selected from a training set,

consisting of 50 � 26 capital letters. We evaluate each system on a test set consisting of 26 � 10

letters, not found in the training set. The system performance is measured by the classification error,

defined as the percentage of misclassifications.

Figure 5.5 shows the classification error of the Het, RBF, and BP systems on the test set

as a function of the number of patterns presented during training. Each curve in this figure is the

average of 5 runs, each using a separate training sequence. This figure shows that the classification

error of Het decreases faster than those of RBF and BP. The learning curve of Het always remains

below those of RBF and BP. Het can correctly classify all the patterns in the training set after 40,000

pattern presentations, as indicated by absence of adaptation after that time point. By comparison,

BP needs 350,000 presentations, almost 9 times as many, and RBF needs 8,000,000 presentations,

81

or about 20 times as many.

To evaluate the generalization power of each system, we use the steady state classification

error, measured after all the training patterns are correctly classified. We find that the steady state

classification error of Het is only 7%, while those of BP and RBF are 9.2% and 11.7%, respectively.

5.5 Summary and Discussion

In this chapter, we have evaluated a heterogeneous architecture that is based on error-

weighted k-means partitioning and on linear experts for addressing the subtasks. This architecture

has been compared to radial basis function and back-propagation architectures on the Mackey-Glass

time series prediction and on a hand-written capital letter recognition task. For both problems,

we have found that the heterogeneous architecture exhibits a faster convergence rate and better

generalization than other on-line architectures. Given that the input dimension of the Mackey-

Glass problem is low and that of the character recognition problem is high, we conjecture that the

heterogeneous architecture will perform well on problems with a wide range of input dimensions.

For the Mackey-Glass problem, where the input dimension is low, we have also compared

the heterogeneous architecture with the architectures based on the lookup table and on the local model

approaches. This experiment indicates that both the heterogeneous architecture and the lookup table

approach have comparable speeds, but the former has much higher generalization capability. It also

shows that the architecture based on the local model approach, with its complicated algorithm, can

perform slightly better than the heterogeneous architecture.

Comparing the performance of the radial basis function and back-propagation architec-

tures, we have found that the former performs better on the Mackey-Glass problem while the latter

82

performs better on the character recognition. This indicates that the radial basis function archi-

tecture is more suited to address problems with low input dimension while the back-propagation

architecture is more suited to address problems with high input dimension.

In problems with low input dimension, such as the Mackey-Glass problem, the goal

function, in general, tends to be complicated, and the input data tend to distribute over large extent

of the input domain. These problems are more suited for architectures with local-support basic

functions, such as a look-up table approach. For the problem with high input dimension, such as

the character recognition problem, the input data tend to scatter in clusters that are quite easily

separated by hyper-planes. These problems can thus be more effectively addressed by architectures

with global-support basic functions, such as a multi-layered perceptron. However, both these two

classes of problems can be addressed reasonably well by a heterogeneous architecture. In the

heterogeneous architecture, the assigned task is divided into sub-tasks, each solved by a different

expert module. This architecture thus has some flexibility in defining the input domain of each

expert module, allowing the granularity of the sub-task to match the characteristics of the basic

function in the expert module.

83

Chapter 6

Serial Implementations and Complexity

Evaluation

In the previous chapter, we have evaluated the performance of the heterogeneous archi-

tectures (Het), which is based on error-weighted k-means partitioning, with the examples of the

Mackey-Glass time series prediction and of the hand-written capital letter recognition task. We

have compared in this evaluation the performance of the Het architecture to those of the radial

basis function (RBF) architecture, of the architecture based on lookup table approach Tbl, of the

architecture based on local model approach Loc, and of the back-propagation (BP) architectures in

terms of their generalization capabilities and convergence rates.

In this chapter and the next, we will evaluate the implementation complexities of the

Het, RBF, and BP architectures for the Mackey-Glass time series prediction and for the hand-

written capital letter recognition problem. The Tbl and Loc architectures are excluded from this

evaluation because they require large amounts of hardware when addressing problems with high-

84

dimensional inputs. In addition, the Loc architecture utilizes a complicated data structure and its

algorithm involves large amount of computation. Their hardware implementations are relatively

more complicated than that of the Het architecture.

An artificial neural network architecture can be implemented with different amount of

concurrency of execution, ranging from a serial implementation at one end of the spectrum to a

maximally parallel implementation at the other end. In order to gain insight into the relative im-

plementation complexities of the Het, RBF, and BP architecture, we investigate the implementation

complexities of these three architectures for two extreme cases: serial and maximally parallel. In

this chapter, we first describe the serial implementation of each architecture by its learning algo-

rithm. We then evaluate the complexity of each implementation by determining the number of

arithmetic operations in its learning algorithm. The learning time of each implementation, defined

as the time needed to perform all the arithmetic operations in the training process, is also computed.

In the next chapter, we evaluate the complexities for the parallel implementation of the Het, RBF,

and BP architecture in terms of the hardware costs and running times.

6.1 Heterogeneous Architectures

This section describes the serial implementations of heterogeneous architectures based

on error-weighted k-means partitioning (Het) for both function approximation and classification. It

also determines the number of arithmetic operations required by the implementations.

85

6.1.1 Function Approximation

For a Het architecture representing a piecewise linear mapping from RM to RN , its serial

implementation is given by the algorithm Het-I.

Het-I Algorithm

Notation

Let K denote the number of expert module in the system.

Let ~x denote an input vector and xi denote its i-th component.

Let ~ck denote the k-th reference vector and ck;i denote its i-th component.

Let ~g denote the goal function and gi denote its i-th component.

Let ~f denote the network function of Het and fi denote its i-th component.

Let ~fk denote the network function of the k-th expert module, and fk;i denote its i-th component.

Let wk;ij denote the coefficient of xj for generating output fk;i.

Let d(~x;~ck) denote the deviation between ~x and ~ck.

Let kw denote the index of the winning reference vector, to which input ~x is closest.

Let � and � denote the constants used in the running average for computing �̂k, where �+ � = 1.

Begin

Step 1: find the winning index kw.

Step 1.1: compute deviation d(~x;~ck) = �̂k�̂k
PM

i=1(xi � ck;i)
2; for 1 � k � K.

Step 1.2: find kw such that d(~x;~ckw) � d(~x;~ck); for 1 � k � K.

Step 2: compute the network output ~f .

Step 2.1: compute ~fkw according to:

fkw;i(~x) = wkw;i0 +
PM

j=1 wkw;ijxj for 1 � i � N .

Step 2.2: define ~f (~x) = ~fkw (~x).

Step 3: compute the learning rates �km and �lms using the equations:

�km = ln(
PK

k=1 �̂k) + f
PK

k=1��̂k ln �̂kg=f
PK

k=1 �̂kg,

86

�lms = �lms + 0:01.

Step 4: update parameters wkw;ij of the kw-th expert module using the equations:

wkw;ij =

8>><
>>:

wkw;ij + �lmsfgi(~x) � fkw;i(~x)g for 1 � i � N , and j = 0

wkw;ij + �lmsfgi(~x) � fkw;i(~x)gxj for 1 � i � N and 1 � j �M

Step 5: update parameter �̂kw according to:

�̂kw = ��̂kw + �
PN

i=1fgi(~x) � fkw;i(~x)g
2.

Step 6: update the winning reference vector ~ckw using the equation:

ckw;i = ckw;i + �km(xi � ckw;i) for 1 � i �M .

Step 7: update parameters �̂k according to the equations:

�̂k =

8>><
>>:

��̂k + ��̂k
PN

i=1(xi � ckw;i)
2 if k = kw

��̂k otherwise

End

In the following, we analyze step by step the Het-I algorithm for the number of the arith-

metic operations performed in its training cycle. For convenience, we categorize these operations,

based on the approximate complexity of their hardware realization, into 4 classes:

� comparison;

� addition: which includes subtraction;

� multiplication: which includes division and squaring operation;

� and nonlinear-function computation: which includes the computations of sigmoid, exponen-

tial, and logarithm functions.

87

Analysis of Het-I

Step 1: Step 1.1 needs 2KM�K additions and KM+2K multiplications, and step 1.2 needs K�1

comparisons.

Step 2: This step needs MN additions and MN multiplications.

Step 3: This step can be subdivided as follows:

Step 3.1: compute s1 =
PK

k=1 �̂k.

Step 3.2: compute s2 =
PK

k=1��̂k ln �̂k.

Step 3.3: set �km = ln(s1) + s2=s1; and set �lms = �km + 0:01.

This implementation needs 2K additions, K+1 multiplications, and K+1 logarithmic-

function computations.

Step 4: This step can be subdivided as follows:

for i = 1 to N do

Step 4.1: compute � = �lmsfgi(~x) � fkw;i(~x)g

Step 4.2: set wkw;ij =

8>><
>>:

wkw;ij + � for j = 0

wkw;ij + xj� for 1 � j � M

This implementation needs MN+2N additions and MN+N multiplications.

Step 5: This step can be subdivided as follows:

Step 5.1: compute ∆2 =
PN

i=1fgi(~x)� fkw;i(~x)g
2 .

Step 5.2: set �̂kw = ��̂kw + �∆2.

88

Step 5.1 needs only N�1 additions and N multiplications since all the differences between

gi(~x) and fkw ;i(~x) are already computed in step 4.1,

Step 5.2 needs 1 addition and 2 multiplications.

Step 6: This step needs 2M additions and M multiplications.

Step 7: This step can be subdivided as follows:

Step 7.1: for k = 1 to K do

set �̂k = ��̂k .

Step 7.2: compute ∆2 = �̂kw
PM

i=1(xi � ckw;i)
2.

Step 7.3: set �̂kw = �̂kw + �∆2.

Step 7.1 needs K multiplications.

Step 7.2 needs only M�1 additions and M+1 multiplications since all the differences

between xi and ckw ;1 are already computed in step 6.

Step 7.3 needs 1 addition and 1 multiplications.

End of Analysis

This analysis indicates that one training cycle of Het-I consists of

� K�1 comparisons,

� 2MN+2KM+K+3M+3N+2 additions,

� KM+2MN+4K+2M+2N+5 multiplications,

� and K+1 logarithm-function calculations.

89

6.1.2 Classification

For a heterogeneous architecture that classifies input ~x 2 RM to N categories, its serial

implementation is specified by the algorithm Het-II. Note the Het-II is similar to Het-I except for

step 2, 4 and 5.

Het-II Algorithm

Notation

Let Csys denotes the category indicated by the heterogeneous system.

Let Cgoal denote the category specified by the goal function.

Begin

Step 1: find the winning index kw.

Step 1.1: compute deviation d(~x;~ck) = �̂k�̂k
PM

i=1(xi � ck;i)2; for 1 � k � K.

Step 1.2: find kw such that d(~x;~ckw) � d(~x;~ck); for 1 � k � K.

Step 2: determine the category of input ~x.

Step 2.1: compute the output of the kw-th expert module according to the equation:

fkw;i(~x) = wkw;i0 +
PM

j=1 wkw;ijxj, for 1 � i � N .

Step 2.2: find Csys such that fkw;Csys
(~x) � fkw;i(~x); for 1 � i � N .

Step 3: compute the learning rates �km and �lms using the equations:

�km = ln(
PK

k=1 �̂k) + f
PK

k=1��̂k ln �̂kg=f
PK

k=1 �̂kg,

�lms = �lms + 0:01.

if Csys = Cgoal then do step 4 and 5.

Step 4: update parameters wkw;ji of the kw-th expert module using the equations:

wkw;ij =

8>><
>>:

wkw;ij + �lmsfgi(~x) � ykw;i(~x)g for i = Csys; Cgoal; and j = 0

wkw;ij + �lmsfgi(~x) � ykw;i(~x)gxj for i = Csys; Cgoal; and 1 � j �M

where gCsys
(~x) = 0 and gCgoal

(~x) = 1.

90

Step 5: update parameter �̂kw according to:

�̂kw = ��̂kw + �:

Step 6: update the winning reference vector ~ckw using the equation:

ckw;i = ckw;i + �km(xi � ckw;i) , for 1 � i � M .

Step 7: update parameters �̂k according to the equations:

�̂k =

8>><
>>:

��̂k + ��̂k
PN

i=1(xi � ckw;i)
2 if k = kw

��̂k otherwise

End

Following the method used to analyze the Het-I algorithm, we find that one training cycle

of the Het-II algorithm consists of

� K+N�2 comparison,

� 2KM+MN+K+5M+7 additions,

� KM+MN+4K+4M+6 multiplications,

� and K+1 logarithm function computations.

6.2 Radial Basis Function Architectures

6.2.1 Function Approximation

As reviewed in section 5.2.2, the computation performed by the radial basis function

architecture used in this dissertation is described by 3 procedures:

� The adaptive k-means algorithm based on the variation-weighted deviation measure for plac-

ing the centers of the Gaussian radial basis functions.

91

� The global nearest neighbor rule [29] for computing the Gaussian width. With this rule, the

widths of all the Gaussian functions are defined to be

f1=K
KX
k=1

k~ck � ~ck;nearestk
2g1=2; (6.1)

where ~ck;nearest is the nearest Gaussian center ~ci to ~ck.

� The least mean square (LMS) algorithm for determining the heights of the Gaussian functions

that minimize the mean squared error between the network function and the goal function.

The serial implementation of the RBF architecture is thus specified by K-Means, Width and Height-I,

which are described in the following.

K-Means Algorithm

Notation

Let K denote the number of the Gaussian RBF’s the system.

Let ~ck is the k-th Gaussian center and ck;i denote its i-th component.

Let �k denote the value of the k-th Gaussian function.

Let wik denote the coefficient of �k for generating output fi(~x).

Let d(~x;~ck) denote the variation-weighted deviation between ~x and ~ck.

Let kw denote the index of the winning Gaussian center, to which input ~x is closest.

Begin

Step 1: find the winning index kw.

Step 1.1: compute deviation d(~x;~ck) = v̂k
PM

i=1(xi � ck;i)
2; for 1 � k � K.

Step 1.2: find kw such that d(~x;~ckw) � d(~x;~ck); for 1 � k � K.

Step 2: compute the learning rates �km using the equations:

�km = ln(
PK

k=1 v̂k) + f
PK

k=1 �v̂k ln v̂kg=f
PK

k=1 v̂kg,

92

Step 3: update the winning Gaussian center ~ckw using the equation:

ckw;i = ckw;i + �km(xi � ckw;i) , for 1 � i � M .

Step 4: update parameters v̂k according to the equation:

v̂k =

8>><
>>:

�v̂k + �
PM

i=1(xi � ckw;i)
2 if k = kw

�v̂k otherwise

End

Analysis of K-Means

Step 1: Step 1.1 needs 2KM�K additions and KM+K multiplications, and step 1.2 needs K�1

comparisons.

Step 2: Step 2 needs 2K�1 additions, K+1 multiplications, and K+1 logarithmic-function com-

putations.

Step 3: This step needs 2M additions and M multiplications.

Step 4: This step needs M additions and M+K+1 multiplications.

End of Analysis

The total operations in one cycle of the K-Means algorithm consists of

� K�1 comparisons,

� 2KM+K+3M�1 adiitions,

� KM+3K+2M+2 multiplications,

� and K+1 logarithmic-function computations.

93

Width Algorithm

Begin

Step 1: for k = 1 to K do

find dk;min which is the minimum of k~ck � ~cik
2 for 1 � i � K and i 6= k.

Step 2: compute the width �2 defined as (
PK

i=1 di;min)=K.

End

Analysis of Width

Step 1: This step needs K2 � 2K comparisons, 2K2M�K2 � 2KM+K additions, and K2M�KM

multiplications.

Step 2: This step needs K�1 additions and 1 multiplication.

End of Analysis

This analysis indicates that the total number of operations required for determining the Gaussian

width are

� K2�2K comparisons,

� 2K2M�K2�2KM+K additions,

� and K2M�KM+1 multiplications.

94

Height-I Algorithm

Begin

Step 1: for k = 1 to K do

compute �k = exp(�k~x� ~ckk
2=�2).

Step 2: compute
PK

i=1 �k.

Step 3: for i = 1 to N do

compute output yi = f
PK

k=1 wik�kg=f
PK

k=1 �k g.

Step 4: update parameters wik using the equations:

wik = wik + �lmsfgi(~x� yi(~x)g�k; for 1 � i � N and 1 � k � K.

End

Analysis of Height-I

Step 1: This step needs 2KM�K addititions, KM+K multiplications, and K exponential function

computations.

Step 2: This step needs K�1 additions.

Step 3: This step needs KN�K additions and KN+N multiplications.

Step 4: This step needs 2KN additions and 2KN multiplications.

End of Analysis

The total number of operations in one cycle of Height-I consists of

� 2KM+3KN�K�1 additions,

� KM+3KN+K+1 multiplications,

95

� and K exponential-function computations.

6.2.2 Classification

When we apply the radial basis function architecture to classification problems, we need

to modify the algorithm Height-I so that the output of the architecture can be used to estimate the

likelihoods of an input pattern belonging to the various categories. The modified algorithm, refered

as Height-II, as well as its analysis, is described in the following.

Height-II Algorithm

Notation

Let Csys denotes the category indicated by the RBF system.

Let Cgoal denote the category indicated by the goal function.

Begin

Step 1: for k = 1 to K do

compute �k = exp(�k~x� ~ckk2=�2).

Step 2: compute
PK

i=1 �k.

Step 3: determine the category of input ~x.

Step 3.1: for i = 1 to N do

compute output fi(~x) = f
PK

k=1 wik�kg=f
PK

k=1 �k g.

Step 3.2: find Csys such that fCsys
(~x) � fi(~x); for 1 � i � N .

Step 4: if Csys = Cgoal do

update parameters wik using the equations:

wik = wik + �lmsfgi(~x) � fi(~x)g�k; for i = Csys; Cgoal; and 1 � k � K,

where fCsys
(~x) = 0 and fCgoal

(~x) = 1.

End

96

The total number of operations in one training cycle of the Height-II algorithm consist of

� N�1 comparisons,

� 2KM+KN+3K�1 additions,

� KM+KN+5K+N multiplications,

� and K exponential function computations.

6.3 Back Propagation Architectures

6.3.1 Function Approximation

This section describes the serial implementations and the analyses of the back-propagation

architectures for function approximation. It is concentrated on the class of architectures with a

network of two hidden layers and linear outputs. We assume that the architecture implements

a mapping from RM to RN , and that there are H1 sigmoidal units in the first hidden layer, H2

sigmoidal units in the second hidden layer, and N linear output units in the output layer.

BP-I Algorithm

Notation

Let fi denote the i-th component of network function ~f .

Let gi denote the i-th component of goal vector ~g.

Let z1;i denote the output of the i-th unit in the first hidden layer.

Let z2;i denote the output of the i-th unit in the second hidden layer.

Let w1;ij denote the co-efficient of xj for generating output z1;i.

Let w2;ij denote the co-efficient of z1;j for generating output z2;i.

Let w3;ij denote the co-efficient of z2;j for generating output fi.

97

Let s(�) denote the sigmoid function of � defined as f1+ exp(��)g�1.

Begin

Step 1: generate the outputs of the first hidden layer:

z1;i = s(w1;i0 +
PM

j=1 w1;ijxj) for 1 � i � H1.

Step 2: generate the outputs of the second hidden layer:

z2;i = s(w2;i0 +
PH1

j=1 w2;ijz1;j) for 1 � i � H2.

Step 3: generate the outputs of the network:

fi = w3;i0 +
PH2

j=1 w3;ijz2;j for 1 � i � N .

Step 4: update the parameters in the output layer.

for i = 1 to N do

Step 4.1: compute �3;i = �fgi(~x)� fi(~x)g.

Step 4.2: set w3;ij =

8>><
>>:

w3;ij + �3;i j = 0

w3;ij + z2;j�3;i for 1 � j � H2

Step 5: update the parameters in the second layer.

for i = 1 to H2 do

Step 5.1: compute �2;i = z2;i(1� z2;i)
PN

k=1 w3;ki�3;k.

Step 5.2: set w2;ij =

8>><
>>:

w2;ij + �2;i j = 0

w2;ij + z1;j�2;i for 1 � j � H1

Step 6: update the parameters in the first layer.

for i = 1 to H1 do

Step 6.1: compute �1;i = z1;i(1� z1;i)
PH2

k=1 w2;ki�2;k.

Step 6.2: set w1;ij =

8>><
>>:

w1;ij + �1;i j = 0

w1;ij + xj�1;i for 1 � j �M

End

98

Analysis of BP-I

Step 1: This step needs H1M additions, H1M multiplications, and H1 sigmoid function computa-

tions.

Step 2: This step needs H1H2 additions, H1H2 multiplications, and H2 sigmoid function compu-

tations.

Step 3: This step needs H2N additions and H2N multiplications.

Step 4: Step 4.1 needs 1 addition and 1 multiplication.

Step 4.2 needs 1 addition.

Step 4.3 needs H2 additions and H2 multiplications.

Since these three steps have to be performed N times, the total operations performed in

step 4 are H2N+2N additions and H2N+N multiplications.

Step 5: Step 5.1 needs N additions and N+2 multiplications.

Step 5.2 needs 1 addition.

Step 5.3 needs H1 additions and H1 multiplications.

Since these steps are to be repreated H2 times, the total operations performed in step 5 are

H1H2+H2N+H2 additions and H1H2+H1N+2H2 multiplications.

Step 6: Step 6.1 needs H2 additions and H2 + 2 multiplications.

Step 6.2 needs 1 addition.

Step 6.3 needs M additions and M multiplications.

Since these steps are to be repreated H1 times, the total operations performed in step 6 are

99

H1H2+H1M+H1 additions and H1H2+H1M+2H1 multiplications.

End of Analysis

The computation in one cycle of BP-I consists of

� 3H1H2+2H1M+3H2N+H1+H2+2N additions,

� 3H1H2+2H1M+H1N+2H2N+H1+H2 multiplications,

� and H1+H2 sigmoid function computations.

6.3.2 Classification

The serial implementation of the back-propagation architecture used in the character

recogniton problem is described by the BP-II algorithm. To allow the implementation to be more

general, we assume that the architecture is used for a classification task involvingN categories, and

that its network has one hidden layer containing H perceptrons.

BP-II Algorithm

Notation

Let Csys denote the category of the input pattern indicated by the back-propagation system.

Let Cgoal denote the category of the input pattern specified by the goal function.

Begin

Step 1: generate the outputs of the first hidden layer:

z1;i = s(w1;i0 +
PM

j=1 w1;ijxj) for 1 � i � H1.

Step 2: generate the outputs of the network:

fi(~x) = s(w2;i0 +
PH1

j=1 w2;ijz1;j) for 1 � i � H2.

Step 3: classify the category of the input by selecting Csys such that fCsys
(~x) � fi(~x) for 1 � i � N .

100

if Csys = Cgoal then do steps 4 and 5.

Step 4: update the parameters in the output layer.

for i = 1 to N do

Step 4.1: compute �2;i = �(1� yi)yi(gi(~x)� fi(~x)).

where gi(~x) = 1 if i = Cgoal and 0 otherwise.

Step 4.2: set w2;ij =

8>><
>>:

w2;ij + �2;i j = 0

w2;ij + z1;j�2;i for 1 � j � H1

Step 5: update the parameters in the first layer.

for i = 1 to H1 do

Step 5.1: compute �1;i = z1;i(1� z1;i)
PN

k=1 w2;ki�2;k.

Step 5.2: w1;ij =

8>><
>>:

w1;ij + �1;i j = 0

w1;ij + xj�1;i for 1 � j �M

End

The computation requirement in one training cycle of BP-II consists of

� N�1 comparisons,

� 2H1M+3H1N+H1+3N additions,

� 2H1M+3H1N+2H1+3N multiplications,

� and H1+N sigmoid function computations.

6.4 Complexity Comparison

This section compares the complexity of the Het, RBF and BP architectures for the

Mackey-Glass problem described in section 5.3 and for the hand-written capital letter recognition

101

problem described in section 5.4. The complexity of each architecture is measured by the number

of arithmetic operations needed by its learning algorithm to perform one training cycle.

As described in section 5.3, the Mackey-Glass problem is formulated as the approximation

of a function that maps a point in 4 dimensional input domain to a scalar value (M=4 and N=1). In

this particular evaluation, we use a Het architecture that partitions the input domain into 8 regions

(K=8). We compare this Het architecture against a RBF architecture with 64 RBF units (K=64)

and against a BP architecture with two hidden layers, each of 20 sigmoidal units (H1=H2=20).

Using these specifications and the results derived from sections 6.1, 6.2 and 6.3, we compute the

number of the arithmetic operations needed by the three architectures to complete their training

cycles. The results from this computation are listed in table 6.1. Table 6.1 also lists the numbers of

arithmetic operations required by the learning algorithms of the Het, RBF, and BP architectures for

the hand-written capital letter recognition described in section 5.4. These three architecture are used

to classify an input of 100 dimensions into 26 capital letters (M=100 and N=26). In this problem, we

use a Het architecture that partitions the input domain into 8 regions (K=8). We compare this Het

architecture against a RBF architecture with 128 RBF units (K=128) and against a BP architecture

with one hidden layer of 10 sigmoidal units (H=10).

6.5 Convergence Rate vs. Computation Time

In chapter 5, we have evaluated the convergence rates of the Het, RBF and BP architectures

with respect to the number of pattern presentations. Because the computational requirements for

each pattern presentation for the various architectures are different, it is also necessary to compare the

computation time required in each pattern presentation in order to evaluate the overall convergence

102

Table 6.1: Arithmetic Operations Required in One Training Cycle.

Mackey-Glass
Algorithm Comparison Addition Multiplication Nonlinear

Het-I 7 97 87 9
RBF(K-Means) 63 588 467 65

RBF(Width) 3968 28224 16129 0
RBF(Height-I) 0 639 513 64

BP-I 0 1462 1500 40

Character
Algorithm Comparison Addition Multiplication Nonlinear

Het-II 32 4715 3838 9
RBF(K-Means) 127 26028 13387 129

RBF(Width) 16128 3234944 1625601 0
RBF(Height-II) 25 29311 16779 128

BP-II 25 2868 2878 36

rates. For an artificial neural network architecture with on-line learning, its computation time is

equivalent to the product of the number of pattern presentations and the time needed for performing

one training cycle.

To determine a training-cycle time, it is necessary to know the execution times of the

operations performed in the algorithm. In order to establish such times, we assume that all

comparisons and additions are carried out for two 32-bit numbers, and each multiplication is

for two 16-bit numbers. We also assume that each non-linear function computation is performed

by looking up an entry in a ROM having 256 entries each of 32 bits. The execution times of

these operations are measured in term of addition time units, where 1 addition time unit (atu) is

the time required to perform one addition. Using the estimated specifications of the SPERT chip

[49, 50], which is a micro-processor for artificial neural network computation being implemented

at International Computer Science Institute (ICSI), we assume the execution time of a comparison

operation to be equal to 1 atu, the execution time of multiplication to be equal to 2 atus, and the

103

Table 6.2: Time for Completing One Training Cycle in Serial Mode

Application Algorithm Time (atu) Ratio

Het-I 296 1.00
RBF(K-Means) 1715 5.79

Mackey-Glass RBF(Width) 64450 217.74
RBF(Height-I) 1793 6.06

BP-I 4542 15.34

Het-II 12441 1.00
RBF(K-Means) 53187 4.28

Character RBF(Width) 3251202 261.33
RBF(Height-II) 63150 5.08

BP-II 8721 0.70

time required for retrieval of an entry from ROM to be 2 atus.

Table 6.2 lists the training-cycles of the learning algorithms in the Het, RBF, and BP

architectures for the Mackey-Glass problem and for the hand-written capital letter recognition task.

It also lists the ratio of a training-cycle time for each algorithm to that of Het of the same problem.

Figure 6.1a and 6.1b show the NMSE as the function of the number of pattern presentations

for the Mackey-Glass and letter recognition problems. These two figures are the results from the

evaluations performed in section 5.3 and 5.4, and they are shown here again for the purpose of

comparison with figure 6.1c and 6.1d.

Figure 6.1c shows the NMSE of the Het, RBF, and BP architectures with respect to the

computation time for the Mackey-Glass problem, where the computation time is measured in terms

of training-cycle times of Het-I. The overall computation time of Het is equal to NpTHet, where Np

stands for the number of pattern presentations, and THet stands for the training-cycle time of Het-I.

The overall computation time of BP is equal to NpTBP , where TBP stands for the training-cycle

time of BP-I. For RBF, its training procedure is divided into 3 stages. The computation time for

104

Het

RBF

BP

NMSE

presentation2

5

1e-04

2

5

1e-03

2

5

1e-02

2

5

1e-01

2

5

1e+00

1 10 100 1000 10000 100000 1000000 10000000

(a)

Het

RBF

BP

Classification Error

presentation

7

8

10

15

20

25

30

35

40

50

60

70

80

100

1 10 100 1000 10000 100000 1000000

(b)

Het

RBF

BP

NMSE

Learning time2

5

1e-04

2

5

1e-03

2

5

1e-02

2

5

1e-01

2

5

1e+00

1e+00 1e+01 1e+02 1e+03 1e+04 1e+05 1e+06 1e+07

(c)

Het

RBF

BP

Classification Error

Learning time

7

8

1e+01

1.5

2

2.5

3

3.5

4

5

6

7

8

1e+02

1e+00 1e+01 1e+02 1e+03 1e+04 1e+05 1e+06 1e+07

(d)

Figure 6.1: Performance comparison of Het, RBF, and BP architectures.
(a) NMSE vs. number of pattern presentations for the Mackey-Glass problem.
(b) NMSE vs. number of pattern presentations for the hand-written letter recognition problem.
(c) NMSE vs. computation time for the Mackey-Glass problem.
(d) NMSE vs. computation time for the hand-written letter recognition problem.

105

the first stage is equal to NpTKM , where TKM stands for the training-cycle time of K-Means.

The computation time for the second stage is equal to TWd, the time for computing the widths of

Gaussian functions. The computation time for the third stage is equal to NpTHt, where THt stand

for the training-cycle time of Height-I. The total computation time of the RBF architecture is thus

equal to

computation time = Np(TKM + THt) + TWd; (6.2)

Figure figure 6.1d shows the NMSE of the Het, RBF, and BP architectures with respect to the

training-cycle time of Het-II for the letter recognition problem. The computation times of these

three architectures are calculated in the similar manner to their counterpart in the figure 6.1c.

The results shown in figure 6.1c and 6.1d indicate that Het has much better performance

than RBF and BP, when measured in terms of the computation time. Comparing figure 6.1a and 6.1c,

reveals that the convergence rate of Het is much faster than those of RBF and BP when measured

by the computation time for the Mackey-Glass problem. For the letter recognition problem, figure

6.1b and 6.1d show that the difference between the convergence rates of Het and BP becomes

smaller when measured by the computation time than when measured by the number of pattern

presentations. However, the difference between the convergence rates of Het and RBF becomes

much larger when measured by the computation time than when measured by the number of pattern

presentations.

106

Chapter 7

Parallel Implementation and

Complexity Evaluation

In this chapter we investigate the parallel implementations of the heterogeneous architec-

ture based on error-weighted k-means partitioning (Het), the radial basis function (RBF) architecture,

and the back-propagation (BP) architecture. The parallel implementations of these three architec-

tures are described in sections 7.1, 7.2, and 7.3. These implementations are restricted to those that

capture the maximal parallelism of the architectures. In section 7.4, we estimate the hardware cost

of each implementation for the Mackey-Glass time series prediction and a hand-written capital letter

recognition task. The hardware cost of an implementation is approximately defined as the silicon

area required for realizing all the operators in the implementation. In section 7.5, we determine for

each architecture the computation time needed to complete one training cycle in a maximally con-

current manner for both the Mackey-Glass and letter recognition problems. Finally the complexities

of these implementations are compared in section 7.6.

107

7.1 Heterogeneous Architectures

Class

f

ff

ModuleUnit

Post-Processor

Learning Rate

X

MK1

Multiplexer

Partitioning

K

Expert

1

Expert

Figure 7.1: The block diagram of the parallel implementation of the heterogeneous architecture
based on error-weighted k-means partitioning.

This section describes a parallel implementation of the heterogeneous architecture based

on error-weighted k-means partitioning (Het) which represents a piecewise linear mapping from

RM to RN . The block diagram of this implementation, as shown in figure 7.1, consists of the

following functional blocks:

� a partitioning module, for generating membership functions Mk(~x);

� K expert modules, each with linear network function ~fk ;

� a learning rate unit, for calculating the learning rates �km and �lms;

� a multiplexer, for generating the system output ~f(~x) = Mk(~x)~fk(~x);

� and a post processor, for determining the class indicated by the network output.

108

Note that a post processor is only needed when used in a classification task. The detail imple-

mentations of these building blocks are derived from the algorithms performing the corresponding

tasks. We analyze each of the building blocks for its hardware requirement, measured by the

number of arithmetic operators used in the implementation, and its computation time, defined as the

minimal time needed to perform all necessary arithmetic operations in its algorithm in a maximally

concurrent manner.

7.1.1 The Learning Rate Unit

The task of the learning rate unit is to calculate the learning rates �km and �lms according

to the equations:

�km = ln(
KX
k=1

�̂k) + f
KX
k=1

��̂k ln �̂kg=f
KX
k=1

�̂kg and �lms = �lms + 0:01: (7.1)

The learning rate unit computes these two learning rates using the the procedure illustrated by the

flowchart in figure 7.2.

109

END

STEP 6

STEP 5

STEP 4STEP 3

STEP 2STEP 1

START

Step 1: compute t1 =
PK

k=1 �̂k.
Step 2: compute t2 =

PK

k=1 �̂k ln �̂k.
Step 3: compute t3 = ln(t1).
Step 4: compute t4 = t2=t1.
Step 5: set �km = t3 � t4.
Step 6: set �lms = �km + 0:01:

Figure 7.2: Flow chart of the computation performed by the learning rate unit.

The step-by-step analysis of this procedure is provided in the following.

Analysis

Step 1: To compute
PK

k=1 �̂k , we use K�1 adders arranged in the form of a binary tree with

d K=2 e leaves, as shown in figure 7.3. The notation dre represents the smallest integer

larger than or equal to r. This summing operation requires dlog2Ke addition time. One

addition time is defined to be the time needed for performing one addition.

Step 2: This step needs K multipliers, K log-circuits and a binary tree of K�1 adders. The time

needed to perform this step is 1 log-time plus 1 multiplication time plus dlog2Ke addition

times.

Step 3: This step needs 1 log-circuit and is completed in 1 log-time, the time required for com-

puting one logarithm function.

Step 4: This step needs 1 division circuit and is completed in 1 division time.

110

Step 5: This step needs 1 subtractor and is completed in 1 subtraction time.

Step 6: This step needs 1 adder and is completed in 1 addition time.

A+B+C+D+E+F+G+H

ADDER

ADDERADDER

HGFEDCBA

ADDERADDERADDERADDER

Figure 7.3: The block diagram of a adder tree with 4 leaves.

Based on this analysis, we determine the number of operators required by the learning rate unit

by summing up all the operators in each step. We also determine the time needed by the learning

rate unit to complete its computation. This execution time is equal to the time of the critical path

in the computation. For this specific case, the critical path consists of steps 2, 4, 5 and 6. Similar

to chapter 6, we categorize these operations based on their hardware and time complexities into 4

categories:

� comparison;

� addition: which includes subtraction;

� multiplication: which includes division and sqauring operation;

111

� and non-linear function computation: which includes the computations of sigmoid, exponen-

tial, and logarithm functions.

The resultant hardware requirement and execution time are

Hardware requirement: 2K adder, K+1 multipliers, and K+1 log circuit.

Computation time: 2 + dlog2Ke addition times plus 2 multiplication times plus 1 log time.

7.1.2 The Partitioning Module

KM1M

Indicator

Membership

K

Competitive

1

Competitive

X

Figure 7.4: The block diagram for the parallel implementation of the partitioning module.

Figure 7.4 shows the block diagram of the partitioning module that partitions the input

domain into K regions. The module consists of a membership indicator and K competitive units.

The task specifications of these blocks, as well as the analysis of their hardware requirements and

execution times, are described in the following.

7.1.2.1 A Membership Indicator

A membership indicator determines the membership functions M1,..., MK based on the

error-weighted deviations �̂k�̂kk~x � ~ckk
2 generated by the K competitive units. Its task can be

described by the flowchart in figure 7.5.

112

STEP 2

STEP 1

END

START

Step 1: find index kw such that
�̂kw �̂kwk~x� ~ckwk

2 � �̂k�̂kk~x� ~ckk2 ,
for 1 � k � K.

Step 2: set Mkw (~x) to 1 and other Mk(~x) to 0.

Figure 7.5: Flow chart of the computation performed by the membership indicator.

Analysis

Step 1: This step needs K�1 comparators. By arranging these comparators in the form of a binary

tree with dK=2e leaves, we can achieve these comparisons in dlog2Ke comparison times.

Step 2: Since it takes a comparatively short time to open and close the switch according toMk(~x),

we assume that there is no delay in this step.

Hardware requirement: K�1 comparators.

Computation time: dlog2Ke comparison times.

7.1.2.2 A Competitive Unit

A competitive unit is composed of 3 sub-units:

� a sub-unit for calculating an error-weighted deviation between ~x and ~ck,

� a sub-unit for updating ~ck and �̂,

� and a sub-unit for updating �̂k.

7.1.2.2.1 A Sub-Unit for Calculating an Error-Weighted Deviation

The function of this sub-unit is to calculate the error-weighted deviation between ~x and ~ck , using

113

the procedure described by the flowchart in figure 7.6.

END

STEP 3

STEP 2STEP 1

START

Step 1: compute t1 = k~x� ~ckk
2.

Step 2: compute t2 = �̂k�̂k.
Step 3: compute t1t2.

Figure 7.6: Flow chart for computing the error-weighted deviation.

Analysis

Step 1: The detail algorithm for computing k~x� ~ckk2 is as follows:

Step 1.1: for i = 1 to M do in parallel

compute (xi � ci;k)2

Step 1.2: compute
PM

i=1(xi � ci;k)2.

where xi and ci;k denote the i-th component of ~x and ~ck respectively.

Step 1.1 needs M adders and M multipliers, and is completed in 1 addition time plus 1

multiplication time.

Step 1.2 needs M�1 adders. By connecting these adders as a binary tree with dM=2e

leaves, this step is completed in dlog2Me addition times.

Step 2: This step needs 1 multiplier and is completed in 1 multiplication time.

Step 3: This step needs 1 multiplier and is completed in 1 multiplication time.

114

Hardware requirement: 2M�1 adders and M+2 multipliers.

Computation time: 1 + dlog2Me addition times plus 2 multiplication times.

7.1.2.2.2 A Sub-Unit for Updating ~ck and �̂k

The function of this sub-unit is to adjust ~ck and �̂k according to the flowchart shown in figure 7.7.

STEP 8

NOYES

STEP 7

STEP 6

STEP 4STEP 3STEP 2

kM = 1

END

STEP 5

STEP 1

START

Step 1: for i = 1 to M , do in parallel
compute t1;i = xi � ci;k.

Step 2: for i = 1 to M , do in parallel
set ci;k = ci;k + �kmdi.

Step 3: compute t2 =
PM

i=1 d
2
i .

Step 4: compute t3 = ��̂k.
Step 5: compute t4 = t2t3.
Step 6: compute t5 = ��̂k.
Step 7: set �̂k = t4 + t5.
Step 8: set �̂k = ��̂k.

Figure 7.7: Flow chart for updating ~ck and �̂k of the partitioning module.

115

Analysis

Step 1: This step needs M adders and is completed in 1 addition time.

Step 2: This step needs M adders and M multipliers, and is completed in 1 addition time plus 1

multiplication time.

Step 3: This step needs M�1 adders and M multipliers and is completed in dlog2Me addition

times plus 1 multiplication times.

Step 4: This step needs 1 multiplier and is completed in 1 multiplication time.

Step 5: This step needs 1 multiplier and is completed in 1 multiplication time.

Step 6: This step needs 1 multiplier and is completed in 1 multiplication time.

Step 7: This step needs 1 adders and is completed in 1 addition time.

Step 8: This step needs 1 multiplier and is completed in 1 multiplication time.

Hardware requirement: 3M adders and 2M+4 multipliers.

Computation time: 2 + dlog2Me addition time plus 2 multiplication time if Mk(~x) = 1,

1 multiplication time if Mk(~x) = 0.

116

7.1.2.2.3 A Sub-Unit for Updating �̂

The function of this sub-unit is described by the flowchart in figure 7.8.

STEP 4

END

STEP 3

STEP 2

STEP 1

START

Step 1: compute t1 =
PN

i=1ffk;i(~x)� gk;i(~x)g2

Step 2: compute t2 = ��̂k.
Step 3: compute t3 = �t1.
Step 4: set �̂k = t2 + t3.

Figure 7.8: Flowchart for updating error �̂k .

Analysis

Step 1: The sub-unit recieves the differences ffk;i(~x)�gk;i(~x)g from the expert module indicated

by Mk. It thus needs to wait 1 addition time for the expert module to compute these

values. To calculate t1, this sub-unit uses N�1 adders and N multipliers and completes

this computation in dlog2Ne addition times plus 1 multiplication time.

Step 2: This step needs 1 multipliers and is completed in 1 multiplication time.

Step 3: This step needs 1 multipliers and is completed in 1 multiplication time.

Step 4: This step needs 1 adder and is completed in 1 addition time.

Hardware requirement: N adders and N+2 multipliers.

Computation time: 2 + dlog2Ne addition times plus 2 multiplication times.

117

f k,1 f

X

k,N

Unit N

Output

Unit 1

Output

Figure 7.9: The block diagram for the parallel implementation of an expert module.

7.1.3 A Linear Expert Module

Figure 7.9 shows the block diagram of a linear expert module that represents a mapping

from ~x to RN . The system is composed of N output units, each associated with one output

dimension.

7.1.3.1 An Output Unit

The task of output unit n is to compute function fk;n and update the corresponding parameters ~wk;n.

This output unit is composed of 2 sub-units:

� a sub-unit for computing function fk;n,

� and a sub-unit for updating ~wk;n.

7.1.3.1.1 A Sub-Unit for Computing Function fk;n

The task of this sub-unit is to compute the linear function:

fk;n = wk;n0 +
MX
i=1

wk;nixi; (7.2)

where M is the dimension of an input. This task is described by the flowchart in figure 7.10.

118

STEP 2

STEP 1

END

START

Step 1: for i = 1 to M , do in parallel
compute t1;i = wk;nixi.

Step 2: compute wk;n0 +
PM

i=1 t1;i.

Figure 7.10: Flow chart for computing the output fk;n(~x).

Analysis

Step 1: This step needs M multipliers and is completed in 1 multiplication time.

Step 2: This step needs M adders and is completed in dlog2(M+1)e addition times.

Hardware requirement: M adders and M multipliers.

Computation time: dlog2(M+1)e addition times plus 1 multiplication time.

7.1.3.1.2 A Sub-Unit for Updating ~wk;n

This sub-unit adjusts parameter ~wk;n using the LMS algorithm, described by the flowchart in

figure 7.11.

Analysis

Step 1: This step needs 1 adder and 1 multiplier, and is completed in 1 addition time plus 1

multiplication time.

Step 2: This step needs 1 adder and is completed in 1 addition time.

This step needs needs M adder and M multipliers, is completed in 1 addition time plus 1

multiplication time.

119

kM = 1

END

STEP 1

STEP 3STEP 2

START

Step 1: compute
t1 = �lms(gk;n(~x)� fk;n(~x))

Step 2: set wk;n0 = wk;n0 + t1.
Step 3: for i = 1 to M do in parallel

set wk;ni = wk;ni + t1.

Figure 7.11: Flow chart for updating parameter ~wk;n.

Hardware requirement: M+2 adders and M+1 multipliers.

Computation time: 2 addition times plus 2 multiplication times.

7.1.4 A Post-Processor

In a classification task, a Het architecture needs a post-processor to determine the category

of the input ~x. A post-processor first finds the maximum value of the output f1(~x), ... , fN (~x),

and then defines the category of the input to be the one corresponding to the maximum value. Its

hardware requirement and the computation time are

Hardware requirement: N�1 comparators.

Computation time: dlog2Ne comparison times.

120

7.2 Radial Basis Function Architectures

Output Module

Class

Post-Processor

UnitModule KModule 1

RBFRBF

Unit

WidthLearning Rate

Indicator

Membership

X

Figure 7.12: The block diagram of the parallel implementation of the radial basis function architec-
ture.

Figure 7.12 shows the block diagram of the implementation of a radial basis function

architecture which represents a mapping from RM to RN . This implementation, as illustrated by

the figure, is composed of the following building blocks:

� K RBF modules, each for implementing a Gaussian radial basis function;

� an output module, for generating the output vector;

� a membership indicator, for determining the closest Gaussian center to the input;

� a learning rate unit, for calculating learning rate �km;

� a width unit, for calculating the widths of the radial basis functions;

121

� and a post-processor, for determining the category of the input in a classification task.

In the following, we provide the detail specifications of these modules, as well as the analysis of

their hardware requirements and their execution times.

7.2.1 A RBF Module

A RBF module is composed of 3 units:

� a unit for computing the Euclidean devaition k~x� ~ckk
2,

� a unit for computing Gaussian function exp(�k~x� ~ckk
2=�2),

� and a unit for updating ~ck and v̂.

7.2.1.1 A Unit for Computing the Euclidean Deviation

The function of this unit is to compute the Euclidean deviation between ~x and~ck, using the procedure

described by the flowchart in figure 7.13.

STEP 2

STEP 1

END

START Step 1: for i = 1 to M do in parallel
compute (xi � ci;k)2

Step 2: compute
PM

i=1(xi � ci;k)
2.

where xi and ci;k denote the i-th component of ~x
and the Gaussian center ~ck respectively.

Figure 7.13: Flow chart for computing the Euclidean deviation.

Hardware requirement: 2M�1 adders and M multipliers.

Computation time: 1 + dlog2Me addition time plus 1 multiplication time.

122

7.2.1.2 A Unit for Computing Gaussian Function

This unit computes the Guassian function exp(�k~x � ~ckk
2=�2) using the Euclidean deviation

generated by the unit for computing the Euclidean deviation. Its hardware is composed of 1

multiplier and 1 exponential circuit, and its computation is completed in 1 multiplication time plus

1 exponential time.

7.2.1.3 A Unit for Updating ~ck and v̂k

STEP 7

STEP 6

STEP 5

STEP 4

NOYES

STEP 3STEP 2

kM = 1

END

STEP 1

START

Step 1: for i = 1 to M , do in parallel
compute t1;i = xi � ci;k.

Step 2: for i = 1 to M , do in parallel
set ci;k = ci;k + �kmdi.

Step 3: compute t2 =
PM

i=1 d
2
i .

Step 4: compute t3 = �t2.
Step 5: compute t4 = ��̂k.
Step 6: set �̂k = t3 + t4.
Step 7: set �̂k = ��̂k.

Figure 7.14: Flow chart for updating~ck and v̂k of the k-means algorithm.

123

Figure 7.14 shows the procedure used by this sub-unit to adjust ~ck and v̂k of the k-means

algorithm. This procedure is similar to the one described in subsection 7.1.2.2.2. The hardware

requirement and computation time of this procedure are:

Hardware requirement: 3M adders and 2M+3 multipliers.

Computation time: 2 + dlog2Me addition time plus 2 multiplication time if Mk(~x) = 1,

1 multiplication time if Mk(~x) = 0.

7.2.2 An Output Module

Figure 7.15 depicts the schematic diagram of an output module. It illustrates the following building

blocks:

� N output units, each corresponding to one output dimension;

� and a normalizing unit.

Κ1 φφ

Normalizing Unit

NO

Nf

O

Unit NUnit 1

1

OutputOutput

1f

Figure 7.15: The block diagram of an output module.

124

7.2.2.1 An Output Unit

An output unit is composed of 2 sub-units:

� a sub-unit for computing on,

� and a sub-unit for updating ~wn.

7.2.2.1.1 A Sub-Unit for Computing Output on

The task of this sub-unit is to compute the function:

on =
KX
k=1

wk;n�k; (7.3)

where �k is the output of the k-th RBF unit and wk;n is the corresponding amplitude coefficient.

The procedure for computing the output on, which is essentially similar to the procedure described

in subsection 7.1.3.1.1, is shown in figure 7.16.

STEP 2

STEP 1

END

START

Step 1: for k = 1 to K, do in parallel
compute wk;n�k.

Step 2: compute
PK

k=1 wk;n�k.

Figure 7.16: Flow chart for computing the output fk;n(~x).

Hardware requirement: K�1 adders and K multipliers.

Computation time: dlog2Ke addition times plus 1 multiplication time.

125

7.2.2.1.2 A Sub-Unit for Updating ~wn

This sub-unit adjusts the amplitude coefficients ~wn using the LMS algorithm. The procedure used

in this sub-unit, which is essentially similar to the procedure described in subsection 7.1.3.1.2, is

shown in figure 7.17.

STEP 2

STEP 1

END

START

Step 1: compute t1 = �lmsfgn(~x) � fn(~x)g
Step 2: for k = 1 to K do in parallel

set wn;k = wn;k + phikt1.

Figure 7.17: Flow chart for updating the parameters in the n-th output unit.

Hardware requirement: K+1 adders and K+1 multipliers.

Computation time: 2 addition times plus 2 multiplication times.

7.2.2.2 A Normalizing Unit

The task of a normalized unit is to divide the output on of each output unit with the sum of all �k .

The computation in this task is described by the flowchart shown in figure 7.18.

STEP 2

STEP 1

END

START

Step 1: compute t1 =
PK

k=1 �k.
Step 2: for n = 1 to N do in parallel

compute fn(~x) = on(~x).

Figure 7.18: Flow chart for normalizing the output of the output module.

126

Analysis

Step 1: This step needs K�1 adders connected in a binary tree with dK=2e leaves. The process is

completed in dlog2Ke addition times.

Step 2: This step needs N division circuits and is completed in 1 division time.

Since the hardware and time complexities of division and multiplication are essentially the same,

we substitute the division operation with the multiplication operation.

Hardware requirement: K�1 adders and N multipliers.

Computation time: dlog2Ke addition times plus 1 multiplication time.

7.2.3 A Membership Indicator

A membership indicator determines the membership functions M1,..., MK based on the

Euclidean deviations k~x� ~ckk2, generated by the K RBF units. This determination is described by

the flowchart in figure 7.19.

STEP 3

STEP 2

STEP 1

END

START

Step 1: for k = 1 to K do in parallel
multiply v̂k to k~x� ~ckk

2.
Step 2: find index kw such that

v̂kwk~x� ~ckwk
2 � v̂kk~x� ~ckk

2,
for 1 � k � K.

Step 3: set Mkw (~x) to 1 and other Mk(~x) to 0.

Figure 7.19: Flow chart for normalizing the output of the output module.

127

Analysis

Step 1: This step needs K multipliers and is completed in 1 multiplication time.

Step 2: This step needs K�1 comparators, and is completed in dlog2Ke comparison times.

Step 3: Since it takes comparatively short time to open or close the switch according to Mk(~x),

we assume that there is no delay in this step.

Hardware requirement: K�1 comparators and K multipliers.

Computation time: dlog2Ke comparison times plus 1 multiplication time.

7.2.4 A Learning Rate Unit

END

STEP 5

STEP 4STEP 3

STEP 2STEP 1

START

Step 1: compute t1 =
PK

k=1 �̂k.
Step 2: compute t2 =

PK

k=1 �̂k ln �̂k.
Step 3: compute t3 = ln(t1).
Step 4: compute t4 = t2=t1.
Step 5: set �km = t3 � t4.

Figure 7.20: Flow chart for computing the learning rate �km.

The learning rate unit calculates the learning rate �km:

�km = ln(
KX
k=1

v̂k) + f
KX
k=1

�v̂klnv̂kg=f
KX
k=1

v̂kg; (7.4)

128

using the procedure shown in figure 7.20. This procedure is similar to the one described in

subsection 7.1.1.

Hardware requirement: 2K�1 adders, K+1 multipliers, and K+1 log-circuit.

Computation time: dlog2Ke addition times plus 2 multiplication times plus 1 log-time.

7.2.5 A Width Unit

This unit is used to the width of the Gaussian function. The width � of all the Gaussian

functions are defined to

f1=K
KX
k=1

k~ck � ~ck;nearestk
2g1=2: (7.5)

The procedure for computing this width is illustrated by the flowchart in figure 7.21. Analysis

STEP 2K+1

STEP 2KSTEP K+1

STEP KSTEP 1

END

START
Step 1: for k = 1 to K and k 6= 1 do in parallel

compute k~c1 � ~ckk2

...
...

Step K: for k = 1 to K and k 6= K do in parallel
compute k~cK � ~ckk2

Step K+1: find d2
1 = the minimum of k~c1 � ~ckk2

for 1 � k � K and k 6= 1.
...

...
Step 2K: find d2

K = the minimum of k~cK � ~ckk2

for 1 � k � K and k 6= K.
Step 2K+1: compute �2 = (

PK

k=1 d
2
k)=K.

Figure 7.21: Flow chart for determining the width of the Gaussian radial basis function.

Step 1: This step needs 2KM�K�2M+1 adders and KM�M multipliers, and is completed

in 1 +dlog2Me addition times plus 1 multiplication time.

...
...

129

Step K: This step needs 2KM�K�2M+1 adders and KM�M multipliers, and is completed

in 1 +dlog2Me addition times plus 1 multiplication time.

Step K+1: This step needs K�2 comparators, and is completed in dlog2 (K�1)e comparison times.

...
...

Step 2K: This step needs K�2 comparators, and is completed in dlog2 (K�1)e comparison times.

Step 2K+1: This step needs K�1 adders and 1 division circuit (multiplier), and is completed

in dlog2Ke addition times plus 1 division (multiplication) time.

Hardware requirement: 2K2M�K2�2KM+2K�1 adders, K2M�MK+1 multipliers,

and K2�2K comparators.

Computation time: dlog2(K�1)e comparison time plus 1+dlog2Ke+dlog2Me addition

times plus 2 multiplication time.

7.2.6 A Post-Processor

In a classification task, a RBF architecture needs a post-processor to determine the category

of the input ~x. A post-processor first finds the maximum value of the output f1(~x), ... , fN (~x),

and then defines the category of the input to be the one corresponding to the maximum value. Its

hardware requirement and the computation time are listed in the following summary:

Hardware requirement: N�1 comparators.

Computation time: dlog2Ne comparison times.

130

7.3 Back Propagation Architectures

This section describes the parallel implementations for two classes of back-propagation

architectures: one for function approximation and the other for classification. The former is a

general case of the architecture used in the Mackey-Glass problem described in section 5.3, and the

latter is a general case of the architecture used in the hand-written character recognition problem

described in section 5.4.

7.3.1 Function Approximation

N1

N1

OutputOutput

ff

22,Hz2,1z

22,H

Hidden

2,1

Hidden

11,Hz1,1z

11,H

Hidden

1,1

Hidden

x

M

Figure 7.22: The block diagram of the parallel implementation of a back-propagation architecture
with two hidden layers.

131

Figure 7.22 shows the implementation of an architecture for function approximation. This

implementation is composed of

� H1 first-hidden-layer units,

� H2 second-hidden-layer units,

� and N linear output units.

The implementations of these units, including their analyses, are provided in the following three

subsections.

7.3.1.1 A First-Hidden-Layer Unit

The implementation of this unit is composed of a sub-unit for computing its output z1;i and for

updating its parameter ~w1;i.

7.3.1.1.1 A Sub-Unit for Computing z1;i

This sub-unit receives an input ~x 2 RM and generates a scalar output:

z1;i(~x) = s(w1;i0 +
MX
j=1

w1;ijxj); (7.6)

where s is a sigmoid function whose value s(a) is defined to be f1+exp(�a)g�1. The computation

performed by this sub-unit is specified by the flowchart in figure 7.23.

132

STEP 3

STEP 2

STEP 1

END

START

Step 1: for i = 1 to M do in parallel
compute w1;ijxj.

Step 2: compute a = w1;i0 +
PM

i=1 w1;ijxj
Step 3: compute sigmoid value s(a).

Figure 7.23: Flow chart for computing the output of a first-hidden-layer unit.

Analysis

Step 1: This step needs M multipliers and is completed in 1 multiplication time.

Step 2: This step needs M adders and is completed in dlog2(M+1)e addition times.

Step 3: This step needs 1 sigmoid-circuit and is completed in 1 sigmoid-time, defined as the time

needed for computing a sigmoid function.

Hardware requirement: M adders, M multipliers, and 1 sigmoid-circuit.

Computation time: dlog2(M+1)e addition times plus 1 multiplication time

plus 1 sigmoid-time.

7.3.1.1.2 A Sub-Unit for Updating ~w1;i

The task of this sub-unit is to update parameters w1;i0,...,w1;iM based on �2;1i,...,�2;H2i sent

by the hidden units in the second layer. The update algorithm is given in the flowchart in figure 7.24.

133

STEP 6STEP 5

STEP 4

STEP 3

STEP 2

STEP 1

END

START

Step 1: compute t1 =
PH2

j=1 �2;ji.
Step 2: compute t2 = 1� z1;i.
Step 3: compute t3 = z1;it2.
Step 4: compute �1;i = t1t3.
Step 5: set w1;i0 = w1;i0 + �1;i.
Step 6: for j = 1 to M do in parallel

set w1;ij = w1;ij + �1;ixj.

Figure 7.24: Flow chart for updating the parameters of a first-hidden-layer unit.

Analysis

Step 1: This step needs H2�1 adders and is completed in dlog2H2e addition times.

Step 2: This step needs 1 subtractor (adder) and is completed in 1 subtraction (addition) time.

Step 3: This step needs 1 multiplier and is completed in 1 multiplication time.

Step 4: This step needs 1 multiplier and is completed in 1 multiplication time.

Step 5: This step needs 1 adder and is completed in 1 addition time.

Step 6: This step needs M adders and M multipliers, and is completed in 1 addition time plus 1

multiplication time.

Hardware requirement: H2+M+1 adders and M+2 multipliers.

Computation time: 2 addition times plus 3 multiplication times, or 1+dlog2H2e addition

times plus 2 multiplication times, whichever is maximum.

134

7.3.1.2 A Second-Hidden-Layer Unit

The implementation of this unit is composed of a sub-unit for computing its output z2;i and for

updating its parameter ~w2;i.

7.3.1.2.1 A Sub-Unit for Computing z2;i

This sub-unit receives inputs z1;1 ,..., z1;H1 from the hidden units in the first layer and generates the

output of the form:

z2;i(~x) = s(w2;i0 +
H1X
i=1

w2;ijz1;j(~x)): (7.7)

This output z2;i is computed with an algorithm similar to the one described in subsection 7.3.1.1.1.

The hardware requirement and the execution time of this sub-unit are given below:

Hardware requirement: H1 adder, H1 multipliers, and 1 sigmoid-circuit.

Computation time: dlog2(H1+1)e addition times plus 1 multiplication time plus 1 sigmoid-time.

7.3.1.2.2 A Sub-Unit for Updating ~w2;i

The task of this sub-unit is to update parameters w2;i0,...,w2;iH1 based on �3;1i,...,�3;Ni sent by the

output units. It also generates �2;i1,...,�2;iH1 for updating the parameters in first-layer hidden units.

The computation of this sub-unit is specified by the flowchart shown in figure 7.25. Note that this

algorithm is similar to the algorithm in section 7.3.1.1.2 except we have added step 5.

135

STEP 5

STEP 7STEP 6

STEP 4

STEP 3

STEP 2

STEP 1

END

START

Step 1: compute t1 =
PN

j=1 �3;ji.
Step 2: compute t2 = 1� z2;i.
Step 3: compute t3 = z2;it2.
Step 4: compute �2;i = t1t3.
Step 5: for j = 1 to H1 do in parallel

compute �2;ij = w2;ij�2;i.
Step 6: set w2;i0 = w2;i0 + �2;i.
Step 7: for j = 1 to H1 do in parallel

set w2;ij = w2;ij + �2;iz1;j.

Figure 7.25: Flow chart for updating the parameters of a second-hidden-layer unit.

Hardware requirement: H1+N+1 adders and 2H1+2 multipliers.

Computation time: 2 addition times plus 4 multiplication times, or 1+dlog2Ne addition

times plus 3 multiplication times, whichever is maximum.

7.3.1.3 A Linear Output Unit

A linear output unit is composed of 2 sub-units:

� a sub-unit for computing a linear output fi,

� and a sub-unit for updating its parameter ~w3;i.

136

7.3.1.3.1 A Sub-Unit for Computing a Linear Output fi

The task of this sub-unit is to compute the function:

fi(~x) = w3;i0 +
H2X
j=1

w3;ijz2;j(~x): (7.8)

This computation is described by the flowchart in figure 7.26.

STEP 2

STEP 1

END

START

Step 1: for i = 1 to H2 do in parallel
compute w3;ijz2;j.

Step 2: compute fn(~x) = w3;n0 +
PH2

i=1 w3;ijz2;j:

Figure 7.26: Flow chart for computing the output of a linear output unit.

Hardware requirement: H2 adder and H2 multipliers.

Computation time: dlog2(H2+1)e addition times plus 1 multiplication time.

7.3.1.3.2 A Sub-Unit for Updating ~w3;i

The task of this sub-unit is to update parameters w3;i0 ,..., w3;iH2 and generates �3;i1,...,�3;iH2 for

updating the parameters of the hidden units in the second layer. The computation of this sub-unit is

described in the figure 7.27.

137

STEP 4STEP 3

STEP 2

STEP 1

END

START

Step 1: compute �3;i = �fgi(~x) � fi(~x)g.
Step 2: for i = 1 to H2 do in parallel

compute �3;ij = w3;ij�3;i.
Step 3: set w3;i0 = w3;i0 + �3;i.
Step 4: for i = 1 to H2 do in parallel

set w3;ij = w3;ij + �3;iz2;j.

Figure 7.27: Flow chart for updating the parameters of a linear output unit.

Analysis

Step 1: This step needs 1 adder and 1 multiplier, and is completed in 1 addition time plus 1

multiplication time.

Step 2: This step needs H2 multipliers and is completed in 1 multiplication time.

Step 3: This step needs 1 adder and is completed in 1 addition time.

Step 4: This step needs H2 adders and H2 multipliers, and is completed in 1 addition time plus 1

multiplication time.

Hardware requirement: H2+2 adder, 2H2+1 multipliers.

Computation time: 2 addition times plus 3 multiplication times.

138

7.3.2 Classification

For an architecture that classifies input ~x 2 RM intoN categories, its parallel implemen-

tation, shown as a block diagram in figure 7.28, is composed of

� H hidden units,

� N sigmoidal output units,

� and a post-processor.

Class

Post-Processor

H

H

H

N

z1z

f1f

1

OutputOutput

1

Hidden Hidden

x

M

Figure 7.28: The block diagram of the parallel implementation of a back-propagation architecture
for classification.

7.3.2.1 A Hidden Unit

The implementation of a hidden unit is identical to that of a first-layer hidden unit described in

subsection 7.3.1.1, except for some notation. The hardware requirement and the execution time of

a hidden unit are summarized below:

139

Hardware requirement: 2M+N+1 adders, 2M+2 multipliers, and 1 sigmoid-circuit.

Time for computing output: dlog2(M+1)e addition times plus 1 multiplication time

plus 1 sigmoid-time.

Time for updating parameters: 2 addition times plus 3 multiplication times,

or 1+dlog2H2e addition times plus 2 multiplication times,

whichever is maximum.

7.3.2.2 A Sigmoidal Output Unit

A sigmoidal output unit is composed of 2 sub-units:

� a sub-unit for computing a sigmoidal output fi,

� and a sub-unit for updating its parameter ~w2;i.

7.3.2.2.1 A Sub-Unit for Computing a Sigmoidal Output fi

The task of this sub-unit is to compute the function:

fi(~x) = s(w2;i0 +
HX
j=1

w2;ijzj(~x)); (7.9)

where zj is the output of hidden unit j. The hardware requirement and the execution time for the

implementation of this sub-unit are listed below:

Hardware requirement: H adder, H multipliers, and 1 sigmoid-circuit.

Computation time: dlog2(H+1)e addition times plus 1 multiplication time

plus 1 sigmoid-time.

140

7.3.2.2.2 A Sub-Unit for Updating ~w2;i

The function of this sub-unit is to update parameters w2;i0 ,..., w2;iH, using the algorithm shown in

figure 7.29.

STEP 8STEP 7

STEP 6

STEP 5

STEP 4

STEP 3

STEP 2STEP 1

END

START

Step 1: compute t1 = gi(~x) � fi(~x).
Step 2: compute t2 = 1� fi(~x).
Step 3: compute t3 = t1t2.
Step 4: compute t4 = �fi(~x).
Step 5: compute �2;i = t3t4.
Step 6: for j = 1 to H do in parallel

compute �2;ij = w2;ij�2;i.
Step 7: set w2;i0 = w2;i0 + �2;i.
Step 8: for j = 1 to H do in parallel

set w2;ij = w2;ij + �2;izj .

Figure 7.29: Flow chart for updating the parameters of a sigmoidal output unit.

Hardware requirement: H+3 adder and 2H+3 multipliers.

Computation time: 2 addition times plus 4 multiplication times.

7.3.2.3 A Post-Processor

In a classification task, a BP architecture needs a post-processor to determine the category of the

input ~x. A post-processor first finds the maximum value of the output f1(~x), ... , fN(~x), and then

defines the category of the input to be the one corresponding to the maximum value.

Hardware requirement: N�1 comparators.

Computation time: dlog2Ne comparison times.

141

7.4 Hardware Cost for Parallel Implementations

In this section, we estimate the hardware cost for the parallel implementations of the Het,

RBF, and BP architectures described in sections 7.1, 7.2, and 7.3. We define the hardware cost of

each implementation by the silicon area of all the arithmetic operators in the implementation. The

silicon area dedicated to the connections among arithmetic operators is not included partly because

this area cannot be quantified correctly unless the implementation is actually laid out on silicon, and

because approximating the hardware cost by the areas of the operators is accurate enough for the

purpose of establishing the relative hardware costs of Het, RBF and BP architectures.

To compute the hardware costs for the parallel implementations of Het, RBF and BP

architectures, we determine the number of arithmetic operators required in these implementations

in subsections 7.4.1, 7.4.2, and 7.4.3. These computational requirements are then translated into

the area costs in subsection 7.4.4

7.4.1 Heterogeneous Architecture

The implementationof the Het architecture for a function approximation task, as described

in section 7.1, is composed of

� a learning rate unit, consisting of 2K adders K+1 multipliers, and K+1 log-circuits;

� a partitioning module, consisting of 5KM+KN�K adders, 3KM+KN+8K multipliers, and

K�1 comparators;

� K expert modules, each consisting of 2MN+2N adders, and 2MN+N multipliers.

� and a multiplexer, whose complexity is assumed to be equivalent to 1 adder.

142

According to these specifications, the total number of operators in the implementation are

� K�1 comparators,

� 2KMN+5KM+3KN+K+1 adders,

� 2KMN+3KM+2KN+9K+1 multipliers,

� and K+1 log-circuits.

For the Mackey-Glass problem (where M=4, N=1, and K=8), the number of arithmetic operators in

the parallel implementations of Het is equivalent to 7 comparators, 257 adders, 249 multipliers, and

9 log-circuits.

For the letter recognition problem (where M=100, N=26, and K=8), the number of arith-

metic operators in the parallel implementations of Het is equivalent to 32 comparators, 46,233

adders, 44,489 multipliers, and 9 log-circuits. This results also includes a post-processor, consisting

of 25 comparators.

7.4.2 Radial Basis Function Architecture

According to the specifications defined in section 7.2, the parallel implementation of the

radial basis function RBF architecture is composed of

� K RBF modules, each consisting of 5M�1 adders, 3M+4 multipliers and 1 exponent-circuit.

� an output module, consisting of 2KN+K�1 adders and 2KN+2N multipliers;

� a membership indicator, consisting of K�1 comparators and K multipliers;

� a learning rate unit, consisting of 2K�1 adders, K+1 multipliers, and K+1 log-circuits;

143

� a width unit, consisting of 2K2M�K2�2KM+2K�1 adders, K2M�KM+1 multipliers, and

K2�2K comparators;

These specifications indicates that the total number of operators in the implementation are

� K2�K�1 comparators,

� 2K2M�K2+3KM+2KN+4K�3 adders,

� K2M+2KM+2KN+6K+2N+2 multipliers,

� K+1 log-circuits,

� and K exponential-circuits.

For the Mackey-Glass problem (where M=4, N=1, and K=64), the number of arithmetic operators

in the parallel implementations of RBF is equivalent to 4,031 comparators, 29,821 adders, 17,412

multipliers, 65 log-circuits, and 64 exponential-circuits.

For the letter recognition problem (where M=100, N=26, and K=128), the number of

arithmetic operators in the parallel implementations of RBF is equivalent to 16,280 comparators,

3,305,981 adders, 1,671,350 multipliers, 129 log-circuits, and 128 exponential-circuits. These

numbers also include a post-processor, consisting of 25 comparators.

7.4.3 Back-Propagation Architecture

For the back-propagation architecture described in subsection 7.3.1, which is used for

function approximation, its implementation is composed of

� H1 first-hidden-layer units, each consisting of H2+2M+1 adders, 2M+2 multipliers, and 1

sigmoid-circuit;

144

� H2 second-hidden-layer units, each consisting of 2H1+N+1 adders, 3H1+2 multipliers, and

1 sigmoid-circuit;

� and N linear output units, each consisting of 2H2+2 adders and 3H2+1 multipliers.

In summary, the total number of operators in this implementation are

� 3H1H2+2H1M+3H2N+H1+H2+2N adders,

� 3H1H2+2H1M+3H2N+2H1+2H2+N multipliers,

� and H1+H2 sigmoid-circuits.

For the parallel implementation of the BP architecture used in the Mackey-Glass problem (where

M=4, N=1, and H1=H2=20), its operator requirements are 1,462 adders, 1,501 multipliers, and 40

sigmoid-circuits.

For a back-propagation architecture described in subsection 7.3.2, which is used for

classification, its implementation is composed of

� H hidden units, each consisting of 2M+N+1 adders, 2M+2 multipliers, and 1 sigmoid-circuit;

� N sigmoidal output units, each consisting of 2H+3 adders, 3H+3 multipliers, and 1 sigmoid-

circuit.

The total number of operators in this implementation are

� N�1 comparators,

� 2HM+3HN+H+3N adders,

� 2HM+3HN+2H+3N multipliers,

145

� and H+N sigmoid-circuits.

For the parallel implementation of the BP architecture used in the hand-written letter recognition

problem (where M=100, N=26, and H=10), its operator requirements are 25 comparators, 2,868

adders, 2,878 multipliers, and 36 sigmoid-circuits.

7.4.4 Hardware Cost Comparison

Table 7.1 summarizes the number of arithmetic operators required in the parallel imple-

mentations of Het, RBF, and BP. To compute the hardware cost from these operator requirements,

it is necessary that we know the silicon areas of the various operators in the implementation. In

this investigation, similar to the case of serial implementations, we assume that each adder and

comparator in the implementation are for two 32-bit numbers, and each multiplier is for two 16-bit

number. We also assume that each non-linear function is implemented by a look-up table having

256 entries, each of 32 bits. Table 7.2 lists the implementation costs of the Het, RBF and BP

architectures for the Mackey-Glass and letter recognition problem. We express the implementation

costs in adder-area units, aaus, where 1 aau is equivalent to the area of one adder. In this hardware

cost estimation, we approximate the silicon area of a comparator to be 0.5 aaus, the area of a

multiplier to be 7 aaus, and the area of a look-up table to be 13 aaus. These approximations are

based on the specifications of the SPERT chip [49, 50]. Table 7.2 shows the implementation costs

of Het, RBF, and BP. It also shows the ratio of the hardware cost of each architecture to that of the

Het architecture of the same problem. According to this table, the implementation cost of Het is

lowest for the Mackey-Glass problem, and that of BP is lowest for the letter recognition problem.

The implementation costs of the RBF architeture are highest for both problems.

146

Table 7.1: Number of Operators in the Parallel Implementations

Mackey-Glass Time Series Prediction
Algorithm Comparator Adder Multiplier Nonlinear

Het 7 257 249 9
RBF 4,031 29,821 17,412 129
BP 0 1,462 1,501 40

Character Classification
Algorithm Comparator Adder Multiplier Nonlinear

Het 32 46,223 44,489 9
RBF 16,280 3,305,981 1,671,478 257
BP 25 2,868 2,878 36

Table 7.2: Hardware Cost of the Parallel Implementations in adder area units.

Application Algorithm Area Cost Ratio

Het 2,070 1.00
Mackey-Glass RBF 155,397 75.07

BP 12489 6.03

Het 357,789 1.00
Character RBF 15,017,808 41.97

BP 23,494 0.07

147

7.5 Computation Time for Parallel Implementations

In this section, we determine computation times of the Het, RBF and BP architectures for

the parallel hardware specified in sections 7.1, 7.2, and 7.3. For this section, we compute for each

architecture a training-cycle time, the time needed to to perform the arithmetic operations in one

training cycle. We then compare the convergence rates of the three architectures with respected to

the computational time, defined as the product of the training-cycle time and the number of pattern

presentations. Even though our definition of a one-training-cycle does not include the time needed

for transmitting data from one operator to another operator, it is accurate enough for establishing

the relative speeds of the learning algorithms in the three aforementioned architectures.

7.5.1 Heterogeneous Architecture

STEP 8STEP 7

STEP 6 STEP 5

STEP 4STEP 3

STEP 2

STEP 1

END

START

Step 1: for k = 1 to K do in parallel
compute the error-weighted deviation
between ~x and ~ck.

Step 2: determine the membership indicators.
Step 3: compute the outputs of all expert modules ~fk.
Step 4: determine the learning rates �km and �lms
Step 5: compute the output ~f(~x) = Mk(~x)~fk(~x).
Step 6: update ~ck and �̂k for all 1 � k � K.
Step 7: update �̂k for 1 � k � K.
Step 8: update ~wk for 1 � k � K.

Figure 7.30: Flow chart of the learning algorithm of the heterogeneous architecture.

Figure 7.30 shows the learning algorithm of the Het architecture for the hardware imple-

mentation specified in section 7.1.

148

Analysis

Step 1: This step is performed by the sub-unit for computing the error-weighted deviation and is

completed in 1 + dlog2Me addition times plus 2 multiplication times.

Step 2: This step is performed by the membership indicator and is completed in dlog2Ke compar-

ison times.

Step 3: This step is performed by the sub-units for computing fk;i in all the output units, and is

completed in dlog2(M+1)e addition times plus 1 multiplication time.

Step 4: This step is performed by the learning rate unit and is completed in 2+ dlog2Ke addition

times plus 2 multiplication times plus 1 log-time.

Step 5: This step is to transmit the output of the expert module corresponding to Mk(~x). Since it

takes comparatively short time to close or open the switchs of the multiplexer, we assume

that there is no delay in this step.

Step 6: This step is performed by the sub-units for updating ~ck and �̂k , and is completed in

2 + dlog2Me addition time plus 3 multiplication times.

Step 7: This step is performed by the sub-units for updating �̂k and is completed in 2 + dlog2Ne

addition times plus 2 multiplication times.

Step 8: This step is performed by the sub-units for updating ~wk;i and is completed in 2 addition

times plus 2 multiplication times.

End of Analysis

For the Mackey-Glass problem (where M=4, N=1, and K=8), this analysis indicates that the

149

critical path of the learning cycle of the Het architecture consists of step 4 and 6. The computation

time of this critical path is equivalent to 9 addition times plus 4 multiplication times plus 1 log-time.

For the letter recognition problem (where M=100, N=26, and K=8), the above analysis

indicates that the critical path consists of steps 1, 2 and 6. The computation time of such a path

is equivalent to 3 comparison times plus 17 addition times plus 4 multiplication times. However,

since the 26 outputs of the Het architecture are used as the estimates of the likelihoods of an input

being various capital letters, we need to compare these 26 outputs in order to determine the class

of the input. This determination needs dlog2 26e = 5 comparison times. Therefore, the total

execution time of one training cycle is equivalent to 8 comparison times plus 17 addition times plus

4 multiplication times.

7.5.2 Radial Basis Function Architecture

For the RBF architecture investigated in this dissertation, its learning procedure is divided

into 3 stages:

� Locating the centers of the Gaussian functions using the k-means algorithm,

� Determining the widths of the Gaussian functions,

� Adjusting the heights of the Gaussian functions.

For the purpose of determining the computation time, we describe the algorithms in these three

stages based on the parallel implementation specified in section 7.2. We then analyze each step in

the algorithm for its computation time.

150

7.5.2.1 Determining the Centers of the Gaussian Functions

The k-means algorithm for determining the centers of the Gaussian functions are described by the

flowchart in figure 7.31.

STEP 3

STEP 5

STEP 2

STEP 1

END

START

Step 1: for k = 1 to K do in parallel
compute the Euclidean deviation
between ~x and ~ck.

Step 2: determine the membership indicator Mk.
Step 3: determine learning rates �km.
Step 4: update ~ck and v̂k for 1 � k � K.

Figure 7.31: Flowchart of the k-means algorithm for computing the centers of the Gaussian func-
tions.

Analysis

Step 1: This step is performed by the sub-unit in the RBF modules, and is completed in 1+dlog2Me

addition times plus 1 multiplication time.

Step 2: This step is performed by the membership indicator, and is completed in dlog2Ke com-

parison times plus 1 multiplication time.

Step 3: This step is performed by the learning rate unit and is completed in dlog2Ke addition

times plus 2 multiplication times plus 1 log-time.

Step 4: This step is performed by the sub-unit for updating ~ck and v̂k , and is completed in

2 + dlog2Me addition times plus 2 multiplication times.

End of Analysis

151

This analysis indicates that it takes 3+2dlog2Me addition times plus dlog2Ke comparison

times plus 4 multiplication times, or 2 + dlog2Ke + dlog2Me addition times plus 4 multiplication

times plus 1 log-time, whichever is longer, to complete one training cycle of the k-means algorithm.

7.5.2.2 Determining the Width of the Gaussian Functions

We use the width unit, described in section 7.2.5, to determine the width of the Gaussian functions.

The computation time of this unit is equivalent to dlog2(K�1)e comparison times plus 1+dlog2Me+

dlog2Ke addition times plus 2 multiplication times.

7.5.2.3 Determining the Heights of the Gaussian Functions

The least mean square (LMS) algorithm is used to determine the heights of the Gaussian functions.

This algorithm is described in the figure 7.32

STEP 6

STEP 4STEP 3

STEP 5

STEP 2

STEP 1

END

START

Step 1: for k = 1 to K do in parallel
compute r2 = k~x� ~ckk2.

Step 2: for k = 1 to K do in parallel
compute �k = exp(r2=�2).

Step 3: compute
PK

k=1 �k.
Step 4: for n = 1 to N do in parallel

compute output on.
Step 5: normalize all outputs on by

PK

k=1 �k.
Step 6: update parameters ~wn.

Figure 7.32: Flowchart of the LMS algorithm for determining the heights of the Gaussian functions.

152

Analysis

Step 1: This step is performed by the sub-unit for computing the Euclidean deviation, and is

completed in 1 + dlog2Me addition times plus 1 multiplication time.

Step 2: This step is performed by the sub-unit for computing a Gaussian function, and is completed

in 1 multiplication time plus 1 exponent-time.

Step 3: This step is computed by the summing unit, and is completed in dlog2Ke addition times

Step 4: This step is performed by the sub-unit for generating output on, and is completed in

dlog2Ke addition times and 1 multiplication time.

Step 5: This step is performed by the normalizing unit and is completed in 1 multiplication time.

Step 6: This step is performed by the sub-unit for updating ~wn, and is completed in 2 addition

times and 2 multiplication times.

End of Analysis

This analysis indicates that it takes 3 + dlog2Me + dlog2Ke addition times plus 6 multi-

plication times plus 1 exponent-time to complete one training cycle of the LMS algorithm.

For the Mackey-Glass problem (where M=4, N=1, and K=64), it takes 6 comparison

times plus 7 addition times plus 4 multiplication times to complete one cycle of the k-means

algorithm. It takes 6 comparison times plus 9 addition times plus 2 multiplication time to determine

the widths of the Gaussian functions, and it takes 11 addition times, 6 multiplication times and 1

exponent time to complete one cycle of LMS.

153

For the character recognition (where M=100, N=26, and K=128), it takes 7 comparison

times, 17 addition times and 4 multiplication times to complete one training cycle of the k-means

algorithm. It takes 7 comparison times plus 15 addition times plus 2 multiplication time to determine

the widths of the Gaussian functions. For one training cycle of LMS, it takes 5 comparison times

plus 17 addition times plus 6 multiplication times plus 1 exponent-time, where the post-processing

time is already included.

7.5.3 Back-Propagation Architecture

7.5.3.1 Function Approximation

STEP 6

STEP 4

STEP 3

STEP 5

STEP 2

STEP 1

END

START

Step 1: for i = 1 to H1 do in parallel
compute z1;i.

Step 2: for i = 1 to H2 do in parallel
compute z2;i.

Step 3: for i = 1 to N do in parallel
compute fi.

Step 4: for i = 1 to N do in parallel
update parameter ~w3;i.

Step 5: for i = 1 to H2 do in parallel
update parameter ~w2;i.

Step 6: for i = 1 to H1 do in parallel
update parameter ~w1;i.

Figure 7.33: Flow chart of the learning algorithm of the back-propagation architecture for function
approximation.

Figure 7.33 shows the learning algorithm of the back-propagation architecture for function

approximation. The algorithm is for a network with two hidden layers and a linear output layer

which are specified in section 7.3.1.

154

Analysis

Step 1: This step is performed by the sub-units for generating output z1;i in the first-layer hidden

units, and is completed in dlog2(M+1)e addition times plus 1 multiplication time plus 1

sigmoid-time.

Step 2: This step is performed by the sub-units for generating output z2;i in the second-layer

hidden units, and is completed in dlog2(H1+1)e addition times plus 1 multiplication time

plus 1 sigmoid-time.

Step 3: This step is performed by the sub-units for generating linear outputfi in the linear output

units, and is completed in dlog2(H2+1)e addition times plus 1 multiplication time.

Step 4: This step is performed by the sub-units for updating parameter ~w3;i in the linear output

units, and is completed in 2 addition times plus 3 multiplication times.

Step 5: This step is performed by the sub-units for updating parameter ~w3;i in the linear output

units, and is completed in 2 addition times plus 4 multiplication times, or in 1+dlog2Ne

addition times plus 3 multiplication times, whichever is maximum.

Step 6: This step is performed by the sub-units for updating parameter ~w1;i in the first-layer hidden

units, and is completed in 2 addition times plus 3 multiplication times, or in 1+dlog2H2e

addition times plus 2 multiplication times, whichever is maximum.

End of Analysis

For the Mackey-Glass problem (where M=4, H1=H2=20, and N=1), the time for completing

one training cycle of the back-propagation architecture is equivalent to 23 addition times plus 12

155

multiplication times plus 2 sigmoid-times.

7.5.3.2 Classification

Figure 7.34 shows the learning algorithm of the back-propagation architecture for classification.

The learning algorithm is for a network with one hidden layer and sigmoid outputs, described in

subsection 7.3.2.

YESNO
goalsysC = C

STEP 4

STEP 3

STEP 5

STEP 2

STEP 1

END

START

Let Csys denote the category of the input pattern
indicated by the back-propagation system.
Let Cgoal denote the category of the input pattern
indicated by the goal function.

Step 1: for i = 1 to H do in parallel
compute zi.

Step 2: for i = 1 to N do in parallel
compute fi.

Step 3: classify the category of input ~x
such that fCsys

(~x) � fi(~x) for 1 � i � N .
Step 4: for i = 1 to N do in parallel

update parameter ~w2;i.
Step 5: for i = 1 to H do in parallel

update parameter ~w1;i.

Figure 7.34: Flow chart of the learning algorithm of the back-propagation architecture for classifi-
cation.

Analysis

Step 1: This step is performed by the sub-units for generating output zi in the hidden units, and is

completed in dlog2(M+1)e addition times plus 1 multiplication time plus 1 sigmoid-time.

Step 2: This step is performed by the sub-units for generating output fi in the sigmoidal output

units, and is completed in dlog2(H+1)e addition times plus 1 multiplication time plus 1

156

sigmoid-time.

Step 3: This step is completed in dlog2Ne comparison times.

Step 4: This step is performed by the sub-units for updating parameter ~w2;i in the sigmoidal output

units, and is completed in 2 addition times plus 4 multiplication times.

Step 5: This step is performed by the sub-units for updating parameter ~w1;i in the hidden units, and

is completed in 2 addition times plus 3 multiplication times, or in 1+dlog2H2e addition

times plus 3 multiplication times, whichever is maximum.

End of Analysis

For the character recognition problem (where M=100, H=10, and N=26), the time needed to

complete one training cycle of the back-propagation architecture is 5 comparison times plus 18

addition times plus 8 multiplication times plus 2 sigmoidal times.

7.5.4 Computation Time Comparison

Table 7.3 summarizes the training-cycle times of Het, RBF and BP architectures for the

Mackey-Glass and letter recognition problems, derived in sections 7.5.1, 7.5.2, and 7.5.3. Table 7.4

lists the training-cycle times in terms of addition time units (atu). It also lists the ratio of the

training-cycle time of each algorithm to that of Het for the same problem. The figures in this table

are derived by translating the results listed in table 7.3 using the same assumptions as those in section

6.4. That is, we approximate the delay time of comparison to be 1 atu, the delay of multiplication

to be 2 atus, and the delay time for retrieval of a non-linear function value from a look-up table are

2 atus. Comparing these training-cycle times reveals that the training-cycle time of Het is shorter

than the other two.

157

Table 7.3: Times for Completing One Training Cycle Measured in Types of Operations.

Mackey-Glass Time Series Prediction
Algorithm Comparison Addition Multiplication Nonlinear

Het 0 9 4 1
RBF(Center) 6 7 4 0
RBF(Width) 6 9 2 0
RBF(Height) 0 11 6 1

BP 0 23 12 2

Character Classification
Algorithm Comparison Addition Multiplication Nonlinear

Het 8 17 4 0
RBF(Center) 7 17 4 0
RBF(Width) 7 15 2 0
RBF(Height) 5 17 6 1

BP 5 18 8 2

Table 7.4: Times for Completing One Training Cycle Measured in Addition Time Units.

Application Algorithm Cycle Time Ratio

Het 19 1.00
RBF(Center) 21 1.10

Mackey-Glass RBF(Width) 19 1.00
RBF(Height) 25 1.32

BP 51 2.68

Het 28 1.00
RBF(Center) 32 1.14

Character RBF(Width) 24 0.86
RBF(Height) 36 1.28

BP 43 1.54

158

Figures 7.35a and 7.35b show the NMSEs of the Het, RBF, and BP architectures with

respect to the computation time for the Mackey-Glass and letter recognition problems. We measure

the computation time in terms of the training-cycle time of the Het architecture. The computation

times of Het and BP are defined to be the product of the number of pattern presentations and the

training-cycle times of the corresponding learning algorithms. For RBF, its computation time is

defined as:

computation time = Np(TKM + THt) + TWd; (7.10)

where Np stands for the number of pattern presentations, and TKM , THt, and TWd stand for the

training-cycle time of the k-means algorithm, the time for determining the width of the Gaussian

function, and the training-cycle time of the LMS algorithm, respectively. These two figures reveal

that Het has much better convergence rate than RBF and BP, when measured in terms of the

computation time.

7.6 Complexity Comparison

In this section, we compare the complexities of the described parallel implementations

of the Het, RBF and BP architectures for the Mackey-Glass problem and the hand-written letter

recognition task. For each of these implementations, we define its complexity to be the product

of the area cost and the computation time. Figures 7.36a and 7.36b show the NMSEs of the Het,

RBF, and BP architectures with respect to the time-area complexity for the Mackey-Glass and letter

recognition problems. These results reveal that the Het architecture requires less complexity than

those required by the RBF and BP architectures for attaining the equivalent performance.

159

Het

RBF

BP

NMSE

Time2

5

1e-04

2

5

1e-03

2

5

1e-02

2

5

1e-01

2

5

1e+00

1e+00 1e+01 1e+02 1e+03 1e+04 1e+05 1e+06 1e+07

(a)

Het

RBF

BP

NMSE

Time

7

8

1e+01

1.5

2

2.5

3

3.5

4

5

6

7

8

1e+02

1e+00 1e+01 1e+02 1e+03 1e+04 1e+05 1e+06

(b)

Figure 7.35: Execution time comparison of Het, RBF, and BP on (a) the Mackey-Glass problem,
(b) and the hand-written capital letter recognition.

Het

RBF

BP

NMSE

Time X Area2

5

1e-04

2

5

1e-03

2

5

1e-02

2

5

1e-01

2

5

1e+00

1e+01 1e+03 1e+05 1e+07

(a)

Het

RBF

BP

NMSE

Time X Area

7

8

1e+01

1.5

2

2.5

3

3.5

4

5

6

7

8

1e+02

1e+00 1e+02 1e+04 1e+06 1e+08

(b)

Figure 7.36: Time-Area complexity comparison for the Het, RBF and BP architectures on (a) the
Mackey-Glass, (b) and the hand-written capital letter recognition problems.

160

7.7 Implication for Practical Hardware

As evident in sections 7.1, 7.2, and 7.3, it is unrealistic to implement artificial neural

networks using the maximal parallel scheme in digital hardware since the hardware requirements

are excessive. Because a purely serial implementation of large scale networks is often too slow, it

is necessary to implement these architectures with a serial-parallel approach. In a serial-parallel

implementation, a set of processors is programmed to perform the computations in parallel and

information among different processors are transferred through a communication network.

Another possibility for implementing artificial neural networks is to use a mixed analog-

digital technique. Even though the accuracy of an analog circuit is lower than its digital counterpart,

the area of the analog circuit is in general more compact than that of the digital circuit, particularly,

when the computational operation is one that is naturally performed by physical processes, such as

the Kirchoff’s current law to add, or the Ohm’s law to multiply. In the heterogeneous architecture,

the k-means algorithm performed in the gating module does not require high accuracy. It can thus

be implemented with analog technology so that the implementation can be more compact. In fact,

several analog or mixed analog-digital systems for performing the k-means algorithm have been

implemented successfully [51, 52].

161

Chapter 8

Conclusion and Future Research

In this dissertation, we have investigated a class of heterogeneous architectures that are

based on k-means partitioning. In these architectures, the k-means algorithm is used to partition

the input domain into several non-overlapping sub-domains. The task defined on each sub-domain

is then solved by an expert module trained in a supervised manner. The output of the architecture

is defined to be the output of the expert module whose corresponding subdomain contains the input

point.

Experiments have shown that the performance of these heterogeneous architectures de-

pends strongly on the efficacy of the k-means algorithm in partitioning the input domain. In order to

improve the overall performance of the heterogeneous architectures based on k-means partitioning,

we have first enhanced the performance of the traditional k-means algorithm by integrating into

its process two mechanisms: the first for biasing the partitioning process so that the algorithm can

achieve an optimal partition, and the second for adjusting the learning rate dynamically, permitting

the algorithm to converge very rapidly at first and later very closely towards an optimal solution. We

162

have also modified the deviation measure of this enhanced k-means algorithm so that the algorithm

partitions the input domain based on both the input distribution, and information about the goal

function and the capability of the expert modules. This new deviation measure allows the k-means

algorithm to adjust the size of each individual sub-domain in the partition so that the representation

resources in all the sub-domains are optimally used.

We have compared the heterogeneous architectures based on the error-weighted k-means

partitioning against two traditional homogeneous architectures: the multi-layered perceptron trained

by back-propagation and the radial basis function architecture. The performance of these three ar-

chitectures are compared on the Mackey-Glass time series prediction and on a hand-written capital

letter recognition task. We have found that the heterogeneous architecture exhibits better gener-

alization than the radial basis function and back-propagation architectures. The convergence rate

of the heterogeneous architecture, measured in terms of the number of training pattern presenta-

tions, is also faster than those of the back-propagation and radial basis function architectures. We

have also evaluated the convergence rate with respect to the computational time for two specific

cases: a serial implementation, where the operations in the architecture are performed in serial,

and a parallel implementation, where the operations in the algorithm are performed with maximal

concurrency. For both cases, the convergence rate of the heterogeneous architecture, measured in

terms of the computation time, is faster than those of the back-propagation and radial basis function

architectures. We have also found that in the parallel implementation, the convergence rate of the

heterogeneous architecture when scaled with its hardware complexity is also lower than the other

two architectures.

The heterogeneous architectures introduced in this dissertation can be further improved

163

in several aspects. In this study we assume that K, the number of the expert modules in the

heterogeneous architecture, is pre-determined, i.e., by the available hardware. It appears worthwhile

to study the trade-offs in varying K according to the characteristics of a given problem. Ideally one

could come up with a cost heuristics that automatically adds or deletes expert modules to achieve

an optimal performance/cost ratio [53]. Assuming that such a system is implemented on a machine

with a finite amount of hardware, where there is a significant amount of multiplexing of "virtual"

expert modules through the same physical processors, changing the number of expert modules

would simply change the degree of multiplexing, but would not require any structural changes in

the hardware architecture.

Currently, our heterogeneous architectures use binary-valued membership indicators.

Since there is no overlap among sub-domains, the goal functions defined on the various sub-

domains are approximated independently by different expert modules, resulting in a discontinuous

output function. In order for a heterogeneous architecture to generate a continuous output function,

smooth membership indicators which partition the input domain into overlapping sub-domains are

needed [25]. To use smooth membership indicators, we would define the output of the architecture

to be a combination of the expert outputs weighted by their corresponding smooth membership

indicators. This would enable us to vary the output of the heterogeneous architecture smoothly

across the boundaries of sub-domains.

The superior performance of the heterogeneous architecture is attributed to the fact that the

assigned task is divided into sub-tasks, each solved by a different expert module. The architecture

thus has some flexibility in defining the input domain of each expert module, allowing the granularity

of the sub-task to match the characteristics of the basic function in the expert module. One

164

significant demonstration of this dissertation is that the heterogeneous architecture is more suitable

for addressing large, complex problems than are traditional homogeneous architectures. This study

illustrates that a large general purpose artificial neural network should be composed of a variety of

different modules.

165

Bibliography

[1] A. R. Barron and R. L. Barron. Statistical learning networks: a unifying view. In Symposium

on the Interface: Statistics and Computing Science, Reston, VA, April 1988.

[2] D. E. Rumelhart, G. E. Hinton, and R. J. Williams. Learning internal representations by

error propoagation. In Parallel distributed processing: Explorations in the microstructure of

cognition, volume 1. Bradford Books, Cambridge, MA, 1986.

[3] D. Broomhead and D. Lowe. Multivariate functional interpolation and adaptive networks.

Complex System, 2:321–355, 1988.

[4] S. Lee and R. Kill. Multilayer feedforward potential function networks. In Proceedings of the

2nd IEEE International Conference on Neural Networks (ICNN-88), volume I, July 1988.

[5] M. Niranjan and F. Fallside. Neural networks and radial basis functions in classifying static

speech patterns. Technical Report CUEDIF-INFENG17R22, Engineering Department, Cam-

bridge University, 1988.

[6] J. Moody and C. J. Darken. Learning with localized receptive fields. In Touretzky, Hinton,

and Sejnowski, editors, Proceedings of the 1988 Connectionist Models Summer School, San

Mateo, CA, 1988.

166

[7] T. Poggio and F. Girosi. A theory of networks for approximation and learning. Technical

Report A.I.Memo No. 1140, Massachusetts Institute of Technology, 1989.

[8] Y. S. Abu-Mostafa. Information theory, complexity, and neural networks. IEEE Communica-

tions Magazine, November 1989.

[9] G. Tesauro. Scaling relationships in back-propagation learning. Complex System, April 1987.

[10] S. Geman, E. Bienenstock, and R. Doursat. Neural networks and the bias/varaince dilemma.

Neural Computation, 4:1–58, 1992.

[11] L. A. Akers and M. R. Walker. A limited-interconnect synthetic neural ic. In Proceedings of

the IEEE International Conference on Neural Networks (ICNN-88), July 1988.

[12] D. H. Hubel and T. N. Weisel. Receptive fields, binocular interaction and functional architecture

in cat’s visual cortex. J. Physiol. (London), 160:106–154, January 1962.

[13] D. H. Hubel and T. N. Weisel. Receptive fields and functional architecture in two nonstriate

visual area (18 and 19) of the cat. J. Neurophysiol. (London), 28:229–289, 1965.

[14] D. H. Hubel and T. N. Weisel. Brain mechanism of vision. Scientific American, pages 130–146,

September 1979.

[15] H. Ritter, T. Martinez, and K. Schulten. Topology conserving maps for learning visuo motor

coordination. Neural Networks, 2(3):159–168, 1989.

[16] A. H. Waibel. Consonant recognition by modular construction of large phonemic time-delay

neural networks. In D. S. Touretzky, editor, Advances in Neural Information Processing

Systems 1, 1989.

167

[17] R. D. Jones, Y. C. Lee, C. W. Barnes, G. W. Flake, K. Lee, P. S. Lewis, and S. Qian. Function

approximation and time series prediction with neural networks. Technical Report LA-UR

90-21, Los Alamos National Laboratory, Los Alamos, NM, 1990.

[18] J. B. Hamshire and A. H. Waibel. The meta-pi network, building distributed knowledge

representations for robust pattern recognition. Technical Report CMU-CS-89-166, Carnegie-

Mellon University, Pittsburg, PA, 1989.

[19] Y. Mori and K. Joe. A large-scale neural network which recognizes handwritten kanji cahrac-

ters. In D. S. Touretzky, editor, Advances in Neural Information Processing Systems 2. Morgan

Kaufmann, 1990.

[20] R. A. Jacobs. Task decomposition through competition in a modular connectionist architecture.

PhD thesis, Department of Computer & Information Science, University of Massachusetts,

Amherst, MA, September 1990.

[21] D. Fox, V. Heinze, K. Moller, S. Thrun, and G. Veenker. Learning by error-driven decom-

position. In Proceedings of the International Conference on Artitificial Neural Networks

(ICANN-91). Elsevier Science Publishers, June 1991.

[22] R. A. Jacobs, M. I. Jordan, S. J. Nowlan, and G. E. Hinton. Adaptive mixtures of local experts.

Neural Computation, 3(1), 1991.

[23] H. Kita, H. Masataki, and Y. Nishikawa. Nn/ii: Improved version of network for large-scale

pattern recognition tasks. In Proceedings of the International Joint Conference on Neural

Networks, Singapore (IJCNN-91), November 1991.

168

[24] S. M. Omohundro. Geometric learning algorithm. Technical Report TR-89-041, International

Computer Science Institute (ICSI), Berkeley, CA, July 1989.

[25] S. M. Omohundro. Bumptrees for efficient function, constraint, and classification learning. In

1990 IEEE Conference on Neural Information Processing Systems - Natural and Synthetic,

November 1990.

[26] S. P. Lloyd. Least squares quantization in pcm. IEEE Transaction on Information Theory,

IT-28(2):129–137, 1982.

[27] J. MacQueen. Some methods for classification and analysis of multivariate observations. Proc.

5th Berkeley Symp. Math. Stat. Prob., 281, 1967.

[28] T. Kohonen. Clustering, taxonomy, and topological maps of patterns. In M. Lang, editor,

Proceedings of the Sixth International Conference on Pattern Recognition, Silver Spring, MD,

1982. IEEE Computer Society Press.

[29] J. Moody and C. J. Darken. Fast learning in network of locally tuned processing units. Neural

Computation, 1:281–294, 1989.

[30] W. M. Huang and R. P. Lippmann. Neural net and traditional classifiers. In D. Anderson,

editor, Neural Information Processing System, 1988.

[31] B. Widrow and M. E. Hoff. Adaptive switching circuit. In Wescon Convention Record, 1960.

[32] J. Tou and R. C. Gonzalez. Pattern Recognition Principles. Addison-Wesley Publishing

Company, Inc, 1974.

169

[33] D. E. Rumelhart and D. Zipser. Feature discovery by competitive learning. In Parallel

distributed processing: Explorations in the microstructure of cognition, volume 1. Bradford

Books, Cambridge, MA, 1986.

[34] D. Desieno. Adding a conscience to competitive learning. In Proceedings of the 2nd IEEE

International Conference on Neural Networks (ICNN-88), volume I, July 1988.

[35] C. Darken and J. Moody. Fast adaptive k-means clustering: some empirical results. In

Proceedings of the International Joint Conference on Neural Networks (IJCNN-90), June

1990.

[36] C. Darken and J. Moody. Learning schedules for stochastics optimization. In 1990 IEEE

Conference on Neural Information Processing Systems - Natural and Synthetic, November

1990.

[37] A. Gersho. Asymptotically optimal block quantization. IEEE Transaction on Information

Theory, IT-25(4):373–380, 1979.

[38] P. Boucher and M. Goldberg. Color image compression by adaptive vector quantization. Proc.

IEEE ICASSP, pages 29.6.1–29.9.4, March 1984.

[39] Y. Linde, A. Buzo, and R. M. Gray. A algorithm for vector quantizer design. IEEE Transaction

on Communications, COM-28(4):84–95, January 1980.

[40] R. Hecht-Nielsen. Counterpropagation networks. Applied Optics, 26(3):4979–4984, Decem-

ber 1987.

170

[41] A. Saha and J. D. Keeler. Algorithm for better representation and faster learning in radial basis

function networks. In D. S. Touretzky, editor, Advances in Neural Information Processing

Systems 2. Morgan Kaufmann, 1990.

[42] B. Kosko. Stochastic competitive learning. In Proceedings of the International Joint Confer-

ence on Neural Networks (IJCNN-90), June 1990.

[43] C. Chinrungrueng and C. H. Séquin. Optimal adaptive k-means algorithm with dynamic

adjustment of learning rate. In Proceedings of the International Joint Conference on Neural

Networks (IJCNN-91-Seattle), July 1991.

[44] M.C. Mackey and L. Glass. Oscillation and chaos in physiological control systems. Science,

197:287, 1977.

[45] A. S. Lapedes and R. Farber. How neural nets work. In D. Z. Anderson, editor, Neural

information processing systems. American Institute of Physics, 1988.

[46] A. H. Kramer and A. Sangiovani-Vincentelli. Efficient parallel learning algorithms for neural

networks. In D. S. Touretzky, editor, Advances in Neural Information Processing Systems 1,

1989.

[47] R. S. Crowder. Predicting the mackey-glass timeseries with cascade-corelation learning. In

Touretzky, Hinton, and Sejnowski, editors, Proceedings of the 1990 Connectionist Models

Summer School, San Mateo, CA, 1990.

[48] Yan Le Cun. Hlm: a multilayer learning network. In Touretzky, Hinton, and Sejnowski,

editors, Proceedings of the 1986 Connectionist Models Summer School, San Mateo, CA,

1986.

171

[49] K. Asanović, B. Kingsbury, and N. Morgan. Spert specifications. Personal communication,

December 1992.

[50] K. Asanović, J. Beck, B. Kingsbury, P. Kohn, N. Morgan, and J. Wawrzynek. Spert: A

vliw/simd microprocessor for artificial neural network computations. Technical Report TR-

91-072, International Computer Science Institute (ICSI), Berkeley, CA, December 1991.

[51] J. R. Mann and S. Gilbert. An analog self-organizing neural network chip. In D. S. Touretzky,

editor, Advances in Neural Information Processing Systems 1, 1989.

[52] W. Fang, B. Sheu, and S. Chen. A real-time vlsi neuroprocessor for adaptive image compression

based upon frequency-sensitive competitive learning. In Proceedings of the International Joint

Conference on Neural Networks (IJCNN-91-Seattle), July 1991.

[53] J. Buhmann and H. Kuhnel. Complexity optimized vector quantization: a neural network

approach. Personal communication, 1992.

172

Appendix A

Asymptotic Property of Partition That

Minimizes the Total Variation-Weighted

Variation

This appendix proves that when K, the number of regions in the partition, is large and p,

the distribution of the pattern vectors ~x, is smooth, the optimum partition and the optimum set of

reference vectors that minimize the total variation-weighted variation (TVV) and those that minimize

the total spatial variation (TSV) are the same. The definitions of the TVV and TSV are

TVV =
KX
k=1

vk

Z
Ik

p(~x) k~x� ~ckk
2 d~x

def
=

KX
k=1

v2
k ; (A.1)

TSV =
KX
k=1

Z
Ik

p(~x) k~x� ~ckk
2 d~x

def
=

KX
k=1

vk: (A.2)

173

Without loss of generality, we define ~ck to be the centroid of the vectors in the region Ik. This

definition is based on the optimality condition [39] that for a given partition, the optimum ~c that

minimizes all vk are the Eulcidean centroids of the regions in the partition.

Suppose I� is the optimum partition that minimizes TSV. We are going to show that this

I� also minimizes TVV. Let v�1 , ... , v�K be the within-region variation of the optimum partition I�.

Hence
KX
i=1

vk �
KX
i=1

v�k (A.3)

For arbitrary values of v1, ..., vK ;

1
K

KX
k=1

v2
k �

1
K

KX
k=1

vk

!2

; (A.4)

where the equality holds if and only if v1 = � � � = vK .

Substituting equation A.3 into equation A.4, we obtain

1
K

KX
k=1

v2
k �

1
K

KX
k=1

v�k

!2

: (A.5)

Gersho [37] showed that for asymptotically largeK and a smooth underlying probability distribution,

the within-region variations v�k of the optimum partition I� must satisfy

v�1 = � � � = v�K = v�: (A.6)

174

Combining equation A.5 and A.6, we get

1
K

KX
k=1

v2
k � (v�)2; (A.7)

which can be rewritten as:
KX
k=1

v2
k � K(v�)2: (A.8)

Since K(v�)2 is TVV of I�, equation A.8 indicates that I� also minimizes TVV.

Let I�� denote the optimum partition that minimizes TVV. To complete the proof, it is

neccessary to show that I�� must also minimize TSV. Suppose that I� is the optimum partition of

TSV and assume that it is different from I��. Then,

TSV(I��) > TSV(I�) (A.9)

We have added the argument of I to TSV in order to indicate that TSV is a function depending on I .

As we have just proved that I� must minimize TVV if it minimizes TSV, equation A.9 thus indicates

that

TVV(I��) > TVV(I�): (A.10)

This result contradicts our assumption that I�� is the optimum partition of TVV. This therefore

indicates that I�� and I� have to be the same.

