
Decentralized Optimal Power Pricing:

The Development of a Parallel Program �y

S. Lumetta

L. Murphy X. Li

D. Culler I. Khalil

Department of Computer Science

571 Evans Hall

University of California at Berkeley

Berkeley, CA 94720

Abstract

For MPP's to solve new and interesting problems,
they must support the development of sophisticated al-
gorithms on very large data sets. Successful develop-
ment depends strongly on the speed of the execute-�x
cycle. Sequential machines cannot provide su�ciently
fast execution of large problems, but many program-
ming systems available on MPP's today neglect the
signi�cance of time spent �xing an algorithm during
development. Those systems which do address the
�x time commonly demand drastic sacri�ces in exe-
cution speed. Between these two extremes is the mid-
dle ground where development must occur. We have
implemented a new algorithm to solve an optimiza-
tion problem for an electrical power system, a problem
large enough to require signi�cant computational re-
sources. To help abstract the communication and lay-
out requirements of the problem away from the main
algorithm, we have developed a small object system li-
brary. The results are an e�cient and easily modi�-
able solution to the problem and a general approach to
solving this class of problems.

�This material is based upon work supported under a
National Science Foundation Presidential Faculty Fellowship
Award, a Graduate Research Fellowship, and Infrastructure
Grant number CDA-8722788, as well as Lawrence Livermore
National Laboratories Inst. for Scienti�c Research Grants
#UCB-ERL-92/69 and #UCB-ERL-92/172. Any opinions,
�ndings, conclusions, or recommendations expressed in this
publication are those of the authors and do not necessarily re-

ect the views of either organization.

yVersions of this work are to appear in the Proceedings of
Supercomputing 1993 and the IEEE Parallel and Distributed
Technology magazine.

1 Introduction

Use of MPP's divides into two classes: the brute
force acceleration of simple numeric kernels and the
development of novel solution techniques for problems
large enough to require signi�cant computational re-
sources. The former demands only e�cient execution,
but the latter requires the ability to abstract away
from the issues of layout and communication and the
ability to quickly modify the algorithm under develop-
ment. We have implemented a new algorithm to solve
one of these latter problems|a large-scale optimiza-
tion problem for an electrical power system.

The power system optimization problem is stated as
follows: given a power network represented by a tree,
with the power plant at the root and the customers
at the leaves, use local information to determine the
prices which will optimize the bene�t to the commu-
nity. In an operational system, the problem must be
solved in a few seconds, and a simulationmust demon-
strate that these constraints are reasonable. The size
of the network|10,000 customers served from a single
plant or substation|is typical of realistic systems. To
solve the problem, we implemented a novel strategy
of iterative optimization put forth in [7]. The size of
the problem, coupled with the real-time constraints,
convinced us that solution on a workstation would be
neither productive nor worthwhile.

Prior to our implementation, the algorithm had
only been tested on toy systems three orders of mag-
nitude smaller than our own. We expected di�culties
to arise both in implementing the algorithm itself and
in adjusting the algorithm to work on the larger sys-
tem. As with any large problem, we wanted to divide
the problem into smaller subproblems which could be

solved independently. Speci�cally, we hoped to iso-
late the layout and communication problems from the
main algorithm. We found, however, that the abstrac-
tions available to us were insu�cient to allow easy
segmentation. To meet the need for
exible but e�-
cient code, we designed and implemented a system for
�ne-grained synchronization of data objects between
processors. After encapsulating the layout and com-
munication problems of the program within our object
system, the remaining code became much cleaner and
easier to modify.

Our implementation runs on the Connection
Machine-5 at Berkeley. The CM-5 connects 64
Sparc processors with private local memories in a
fat-tree network, providing a SPMD, message-passing
paradigm with which to program (note that these 64
processors are not enhanced with vector capabilities as
are some CM-5 installations). The CM Active Mes-
sage layer[9] insulates the application from the private
nature of the processor memory, allowing any proces-
sor to access memory on any other processor without
the latter explicitly recognizing the former.

The remainder of this paper is organized as follows:
Section 2 describes the problem and algorithm; Sec-
tion 3 explains the goals of the object system and how
they were met; Section 4 discusses the interactive pro-
cess of development and the results obtained from the
work. Section 5 summarizes the project, gives our con-
clusions, and suggests avenues for further research.

2 Pricing of Electric Power

Electric power distribution systems almost always
have a tree structure, with a unique point of supply
at the root (the substation) and the customers at the
leaves. Intermediate nodes represent switches, tap-
points, and transformers, where the path of electrical
power is split. The tree structure for this application is
shown in Figure 1. Ten main feeders run from the root,
each branching o� twenty lateral nodes. Each lateral
node is the head of a line of �ve branch nodes, and each
branch node has ten leaves. In total, there are 1; 201
internal nodes and 10; 000 customers. This system is a
typical size for medium-to-large distribution systems.

The pricing problem is to set the price for each
customer's power consumption so that the economic
e�ciency of the whole community is maximized. Cus-
tomers are assumed to act locally to maximize their
own bene�ts, based on the prices currently o�ered to
them. The local information used by a customer to
determine their maximum bene�t is private to that

Root

10 Leaf Nodes/Branch
Total: 1201 Internal Nodes

10,000 Leaf Nodes

Branch Node

Leaf Node

Main Feeder

Lateral Node
1

1
2 3 4 5 6 7 8

10
9

5

3

2

1

4

20 19 18 17 16 15

10 Main Feeders

5 Branch Nodes/Lateral
20 Lateral Nodes/Feeders

Figure 1: Power Distribution Tree

customer. On the other hand, customers are not con-
cerned with the operation of the power system. They
are only exposed to the e�ects of their actions on the
system through the prices sent to them by the root.
Thus, the pricing problem is inherently decentralized.

Previous pricing schemes either ignored the decen-
tralized nature of the problem by assuming all the in-
formation necessary for solution was available in one
location, or attempted to learn this information by us-
ing past behavior or by `probing' the system. In [7],
a pricing scheme was presented which sets the prices
in such a way that individual bene�t maximization
by the customers also results in maximization of com-
munity bene�ts. This scheme addresses the issue of
decentralized knowledge by using a new distributed
pricing algorithm, emphasizing local computations.

The algorithm requires a number of parameters to
be chosen beforehand. These include the local op-
timization conditions for the leaves (customer bene-
�t functions and constraints), the power loss parame-
ters for each line, the electrical constraints imposed by
the power system, and the cost of supply of electrical
power at the substation.

2.1 Problem Formulation

We formulate the pricing problem as an optimiza-
tion problem at two levels, those of the customer and
of the community. The mathematical details can be
found in Appendix A.

Partial list of variable names

Pi Real power demanded by ith customer

Qi Reactive power demanded by ith customer

�iR Price for real power demand Pi

�iX Price for reactive power demand Qi

P out
r Real power
ow out of line r (sum of
ows to

children)

Qout
r Reactive power
ow out of line r (sum of
ows to

children)

P loss
r Real power loss in line r

Qloss
r Reactive power loss in line r

P in
r Real power
ow into line r (before loss)

Qin
r Reactive power
ow into line r (before loss)

�R Lagrange multiplier for the global real power

equality constraint

�X Lagrange multiplier for the global reactive power

equality constraint

First, for each customer i, the cost of consump-
tion is the price of electricity multiplied by the de-
mand : �iR � Pi for the real power consumed, and
�iX �Qi for the reactive power. The problem is to �nd
the real and reactive power demands Pi and Qi which
maximize individual bene�t minus cost of consump-
tion, for given prices �iR and �iX . There is a linear
equality and a quadratic inequality constraint asso-
ciated with each customer. Individual bene�t maxi-
mization thus consists of solving 4 simultaneous non-
linear equations for each i.

The bene�t of electricity consumption to the com-
munity is the sum of the individual bene�ts. The sub-
station cost of supply is a negative bene�t to the com-
munity. Hence the net bene�t to the community is
the sum of the individual bene�ts, minus the cost of
supply.

This net bene�t is maximized, subject to balance
constraints on the
ow of power in each lossy line. For
a lossy line r, the balance constraints take the form:

P in
r = P out

r + P loss
r

Qin
r = Qout

r + Qloss
r

The power losses in r are quadratic functions of the
power
ows into r; i.e., P loss

r is a quadratic function
of P in

r and Qin
r , and similarly for Qloss

r . Thus, given
the values of P out

r and Qout
r , these balance constraints

are coupled quadratic equations in P in
r and Qin

r . In
our application, there are 1; 200 pairs of power balance
constraints.

Since the optimal values of the prices are not known
in advance, we send prices down the tree from the root,
compute the customer responses to these prices at the
leaves, and propagate the e�ects of these responses on
the system back up the tree to the root. The pricing
algorithm is iterative, where each iteration consists of
a downward sweep followed by an upward sweep.

Each P out
r and Qout

r is the sum of the
ows to de-
scendant nodes of r. The upward sweep begins by

calculating demand at the leaves, where downstream

ows are de�ned to be zero. Once the demands of all
children of an internal node have been calculated, the
demand of that node may be calculated to satisfy the
balance constraints on the line above. This process
leads to an upward sweep, propagating up the tree
until it reaches the substation, where a convergence
check is applied. If this check fails, the prices are up-
dated, and propagated down the tree to the leaves
(customers), which compute new demands. Then the
upward sweep begins again.

The outline of the algorithm, broken into four steps,
is shown below.

1. Initialization
k 0
Guess initial values of the multipliers associated with the
substation convergence check, �R(0) and �X(0).

2. Pass prices down and compute demand

(a) Compute the prices for customer i, using �R(k) and
�X (k).

(b) Compute customer i's demand, Pi(k) and Qi(k), by
solving the 4 simultaneous nonlinear equations asso-
ciated with i.

(c) Begin upward sweep at the leaves.

(d) When P out
r (k) andQout

r (k) have been calculated for
r, compute P in

r (k) and Qin
r (k) by solving 2 coupled

quadratic equations.

(e) Propagate the computed power
ows towards the
root.

3. Convergence test (done at the root node)
Compute the new values of total system demand.
Use the new total demands to check for convergence of �R
and �X .
If converged, stop. Otherwise, go to step 4.

4. Update the multipliers (done at the root node)
Use an update rule to generate �R(k + 1) and �X(k + 1).
k k + 1
Go to step 2

The algorithm is described graphically in Figure 2.

3 Object System

Traditional message-passing systems present more
trouble to programmers than do sequential or shared
memory machines because of the need to design and
implement message-passing protocols for communica-
tion and synchronization on a per-problem basis. The
most e�cient implementations require that this com-
munication code be fully integrated with the rest of
the program, but for development one must be capable
of easily modifying the algorithm without redesigning

Done

Pass Up

P, Q

R R R

X X

Update

X

X

Root
Nodes to Processors

iP , Qi

Compute Customer Demands

()oP ,Q o

P ,Q o

oP R

X
o

Converged?
C

C

Q

()o

R

Yes

No

X

R

Initialization

Pass Down

X

i

i
R

Figure 2: Algorithm to Iteratively Optimize an Electrical Power System

the communication pattern. One needs abstractions
which are general enough to allow separation of the
code sections and yet close enough to the hardware
communication primitives that a reasonable e�ciency
is maintained. We began to work out a model for these
abstractions, keeping in mind that while an object sys-
tem needs to make correct and e�cient programming
easy, it need not make misuse impossible.

The central goal of the object system is to separate
the problem of data layout from the algorithm itself
by providing a global object space abstraction, yet to
allow an optimized layout to be re
ected in the ex-
ecution time of the program. Data locality occupies
a crucial position in e�cient programming of MPP's,
and the object system must provide good methods for
the common case of local data so that the programmer
is capable of optimization.

Design choices for such systems often depend on the
particular objects being considered. The most obvious
choice of object for the power problem is the node,
each of which consists of about 100 bytes. This �ne
grain-size puts fairly strong constraints on the amount
of tolerable overhead per object, but also implies that
several accesses will be made to an object when it
is used, making it more e�cient to duplicate remote
objects in local memory than to repeatedly reference
them remotely. In addition, we would like to access
objects directly on reference, without introducing ex-
tra levels of indirection.

3.1 Previous Systems

Several systems have already been developed for
distributed parallel programming, including Ivy [4],
Linda [3] and Tarmac [1] [5]. Shared virtual memory
systems such as Ivy move entire memory pages be-
tween processors, clearly inappropriate for a problem
in which an object averages 100 bytes. Linda is based
on the tuple space abstraction, and requires that all
shared data be encoded as tuples. The application has
no say in placement of data or communication pat-
terns, however, so the programmer can not optimize
the program with an appropriate data layout.

The Tarmac system came closest to meeting the
goals of our system. Tarmac provides a model of
shared global state called mobile memory, which al-
lows uniquely-identi�ed and arbitrarily-sized objects
to be created, moved, and copied. The original Tar-
mac abstraction [5] made no attempt to provide syn-
chronization capabilities, but the CM-5 implementa-
tion [1] corrects this lack. However, the extra overhead
involved in several of Tarmac's design decisions inter-
feres with the goals of our system: under the mobile

Global
Pointer

Read
Pointer

Read/Write
Pointer

lock

write_back

write_back_and_free
get_read_only

get_writable

free_gptr

Figure 3: Gptr state model

memory abstraction, Tarmac objects are not bound to
any processor|each object can reside and be moved
from processor to processor. When a processor wishes
to access an object, it must follow a chain of `hints'
as to the object's current location (i.e., one or more
levels of indirection). Keeping with this model, only
a single copy of an object exists at any time|copying
an object results in the creation of a new, uniquely-
identi�ed object. The object in Tarmac is thus in-
herently consistent, but at the cost of ine�ciency in
access and the possibility of objects thrashing between
processors. Since our application does not require the
mobile memory abstraction, we do not wish to pay the
overhead to support these abstractions. We prefer a
system which exploits the programmer's knowledge of
access patterns by binding each object to a processor
and which allows multiple copies of objects to exist
when required for e�ciency.

After reviewing the object systems mentioned, we
decided that none came su�ciently close to meeting
the goals presented above for our program. The re-
mainder of this section describes the object system we
designed to meet our goals more e�ectively.

3.2 Pointer Model

The system is based on the global pointer, consist-
ing of a home processor number and a pointer in the
address space of the home processor.1 The user is
provided with routines to allocate data objects of arbi-
trary size and to access them asynchronously for read-
ing and synchronously for writing.

When an object is created using gmalloc, a struc-
ture called a gptr is returned. A gptr structure can

1The reader familiar with Split-C [2] will recognize the simi-
larity to the Split-C memorymodel|themain di�erence here is
that our code is completely at the user level. Without compiler
support, some concepts are di�cult to implement as elegantly
as one would like. We hope to port our system to Split-C in the
near future.

be in one of three states, including the global pointer
state, as shown in Figure 3. In this state, the gptr can
be passed freely between processors, copied, stored in
objects, and treated much the same as any other type
of data. The data object itself, however, cannot be
referenced while a gptr is in the global pointer state.
The gptr can be transformed into either of the two
other states via object system procedures.

The other two states of the gptr are used when a
local copy of a data object is present on the proces-
sor. The �rst provides only the capability to read the
data, and is called a read pointer. The second provides
the additional capability to write to the data object,
and is called a read/write pointer. While in either of
these states, the gptr should only be used to reference
the data; the gptr in these states has no signi�cance
to other processors, and may be corrupt even for the
same processor at a later time. Thus, read pointers
and read/write pointers can not be stored in objects
or passed between processors.

Synchronized accesses can be accomplished by
means of the read/write pointer. At most one gptr re-
ferring to a particular object can be in this state at any
time, and the object itself is considered to be locked.
Requests to change state from a global pointer to the
object are denied while the object is locked, but no at-
tempt is made to invalidate or update older versions of
the object which may be present on other processors.
Since managing data consistency at the library level
must be general enough to provide consistency mod-
els for every program, and since this generality implies
overhead not only for what is used but also for what
is not, we felt that implementing a data consistency
model was best left to the programmer. We encoun-
tered no problems in building an appropriate model
for the power problem using the object system.

The object system library provides procedures to
transform gptrs in any given state into any of the
other states. Obtaining either a read pointer or a
read/write pointer from a global pointer is done with
the get read only and get writable procedures. If
the object is local to the processor requesting the state
change, the gptr is simply changed (assuming the re-
quest was successful), and the data object itself is used
as a virtual local copy. If the object is remote, the data
is copied into local memory and the gptr is changed
to reference this copy. Since most objects will be ref-
erenced more than once in a short period of time, it is
more e�cient to make a copy of a small object than
to repeatedly request data from a remote processor.

A read pointer may be returned to the global
pointer state by a call to free gptr, or a read/write

pointer for the object may be obtained by a call to
lock. To avoid sending unnecessary messages, the lat-
ter does not obtain the latest version of the object. If
the latest version is needed, one must �rst release the
version being held with free gptr.

Read/write pointers must write the modi�ed data
back to the data object to change to another state.
write back simply writes back the data and main-
tains a local copy of the object with a read pointer.
write back and free writes the data back and dis-
cards the local copy, returning the gptr to the global
pointer state.

By direct modi�cation of the gptr, the system
avoids the expense of lookup for each reference.
Macros are provided to determine the state of a given
gptr, although in most cases the programmer will al-
ready know.

3.3 Implementation

A gptr consists of two 32-bit �elds, one indicat-
ing the processor number of the processor on which
the global data object is located, and the second �eld
pointing to the object in the home processor's address
space. The scheme used to di�erentiate between gptr
states relies on the home processor (pnum) �eld. If
the pnum is greater or equal to 0, the gptr is the
global pointer state. Recall that no direct access is
possible from this state. The constants READ and
READ WRITE are used in place of the processor for
the read and read/write states. In both cases, the
address �eld of the gptr becomes a local pointer to
the data (or a copy of the data if the object was re-
mote). Figure 4 shows the structures used for objects
and local copies along with a global pointer and a read
pointer.

In addition to the user-visible gptr structure, the
library uses a second structure internally to manage
synchronization and local caching of data objects. The
global header, or gheader, structure is appended to
the front of each data object as it is created, and also
appears on the front of each local copy. The actual
pointer value in both global and local gptrs points
beyond this header.

The gheader structure contains four 32-bit �elds.
The �rst �eld holds the size of the data object, and
is used to simplify requests for state changes which
might require data transfers. Only a single bit is
used in the second �eld, a
ag for locking the ob-
ject. The
ag in the global object is set whenever
a gptr is changed to the read/write state and cleared
when the gptr is returned to the global pointer state.
The lock bit in the local copy mirrors that of the

global pointer

size

lock bit

self-referencing

data

size

lock bit

Local copy of object

local copy of data

local pointer

Global pointer Read pointer

Global object

home pnum

global pointer

global pointer

to object

READ const.

Processor boundary

Figure 4: Global and local data objects

global object and is used to e�ciently prevent more
than one gptr on the same processor from entering
the read/write state (see caching below). The third
and fourth �elds of the gheader form a global pointer
which points to the global data object. When a rou-
tine changes the state of a gptr from global pointer
to either read or read/write, it must store the global
pointer for later use. The �elds in the global object
are self-referencing, and allow the system to change a
global pointer into a local pointer for objects on the
same processor by merely changing the pnum �eld to
READ or READ WRITE and to avoid relatively high
cost of copying the data.

The other internal device used by the system is a
hash table mapping global pointers to local copies.
Because of the possibility of several gptrs on a single
processor referencing the same data object, a map-
ping with reference counts is maintained, ensuring
that only a single local copy of any object will ever
exist. Any time a read or read/write pointer is re-
quested, the routines �rst search the hash table to
determine if a local copy already exists. If a copy is
present, it is used, preventing costly communication
with the data's home processor. Requests to obtain a
read/write pointer must still contact the home proces-
sor for the lock, of course, but may not need to receive
the data, just an approval. Again, if another gptr on
the same processor already possesses the lock, refusal
is automatic and requires no communication because
the lock bit in the local copy will be set.

3.4 Example of Use

To demonstrate how the object system simpli�es
the code in the program, this section presents a por-

tion of the code used to compute demand at the leaves.
Figure 5 shows the code executed for each leaf owned
by a processor. The leaves are linked in a list by gptrs,
and the processor traverses the list and calculates the
demand for each node, adding it to the downstream
demand of the parent. If all of the children for a parent
node have been processed, the parent node is added
to the queue on its home processor (not shown).

Note that the only di�erences apparent between
this code and code one would write for a uniproces-
sor are the calls to get and write back local copies of
data, and the duplication of the parent's gptr. These
calls can be likened to declaration of variables|the
programmer declares which data he intends to read
and which he intends to write, performs the actions,
and then declares that he has �nished with the data.
Because it is modi�ed directly, the local gptr is fully
equivalent to a uniprocessor pointer.

4 Implementation and Results

After designing and implementing the object sys-
tem to help break apart the electrical power network
problem, we began to attack the problem itself. This
section discusses the various stages of development,
�rst with the structure of the program and the op-
timal solution for lossless power lines, and then with
the development of the algorithm to solve the problem
with typical loss rates.

4.1 Algorithm Implementation

The �rst part to be written was the code to dis-
tribute the network across the processors. The net-

next=LEAF_NODE (current)->next_leaf;
while (get_writable (¤t));

/* Obtain a writeable copy of the leaf node */
/* and read the gptr to the next leaf node. */

/* Calculate the demand at the leaf */

optimize_node (&NODE_P (current), &NODE_Q (current),

 LEAF_NODE (current)->pi_R,

 LEAF_NODE (current)->pi_I);

if (NODE_P (current) < 0)

 NODE_P (current)=NODE_Q (current)=0;

parent=LEAF_NODE (current)->parent;

NODE_P (parent)+=NODE_P (current);

NODE_Q (parent)+=NODE_Q (current);

done=++CHILDREN_DONE (parent);

write_back_and_free (&parent);

write_back_and_free (¤t);

while (get_writable (&parent));

/* Write the modified data back */
/* and free the local copies. */

/* Duplicate the gptr to the parent of the */

/* calculations have been completed. */

/* leaf, then modify the parent node to */
/* indicate that another child’s */

Figure 5: Code segment for calculation of leaf demand

Root
Nodes to Processors

Figure 6: Distribution of the tree across processors

work used in the problem is �xed, so we avoided the
issues of dynamic load-balancing and simply allocated
the nodes to processors to roughly balance the load.
The division of the tree is shown in Figure 6|the
small boxes represent processors and each circle rep-
resents a lateral node and associated branch and leaf
nodes. The root node is owned by one of the pro-
cessors along the top row. After building the lateral
nodes and passing a gptr to the next processor, each
processor builds the nodes below each lateral node it
owns. Node initialization is performed as each node is
created.

Once the tree structure had been set up, other sec-
tions of code could treat the tree as if it were com-
pletely local, with the object system handling any im-
plicit communication. For example, see Figure 5 for a
sample segment of code for computation of customer
demand.

The iteration of the algorithm became a simple loop
relying on two procedures to perform the work. The
�rst procedure corresponds to the `Pass Down' frame
of Figure 2 and computes the path-dependent price in-
formation for each customer. The second corresponds
to the `Compute Customer Demands' and `Pass Up'
frames, which �nd customer demand and calculate line
losses, passing information upward to determine the
power demand at the root. The `Converged?' and
`Update' frames were coded directly into the main loop
since only the owner of the root node need perform
these actions.

4.2 Lossless Solution

Working with the simpler problem of a lossless sys-
tem, we debugged the code and found that the basic
algorithm did work as expected. Although we can not
directly verify that our solution to the lossless problem
is indeed correct, predictions based on smaller systems
agree with our results, and scaling is reliable with loss-
less systems.

Recall now the real-time constraints on the prob-
lem: the substation will perform this algorithm with a
period of between 10 and 30 minutes. Prices must not
be allowed to vary for more than a small fraction of
this period to ensure reliable costs to the customers.
With these limits in mind, we proceeded to time our
�rst results.

Timing with the 33MHz processor clock on one of
the processors (after processor synchronization), the
solution of the lossless network takes a total of 5.436
seconds, most of which is spent building the tree. The
iterations take between 107 and 691 milliseconds, de-
pending on how close the leaf nodes start to the so-
lution of the demand optimization. The previous so-
lution of demand from a leaf node is used as initial
values in the subsequent solution, and computation
time decreases monotonically as the algorithm pro-
gresses. The iterations are computationally intensive,
with only about 10 milliseconds needed to pass prices
down the tree and, presumably, a similar amount to
pass information back up. Clearly the parallel ma-
chine meets the constraints of the problem, demon-
strating that the algorithm can meet the needs of ac-
tual power networks.

Initial timing results on a workstation indicated
that solution of a single customer demand problem
required about 6 milliseconds. Scaling the problem to
10,000 nodes, we expect that the problem will take
about one minute per iteration. Even the lossless
problem requires six iterations, so a workstation could
well require one-half of the pricing period just to settle
the prices. To verify our beliefs, we built the tree on a
single processor and solved the lossless problem. Find-
ing the solution required an average of 48 times longer
than did 64 processors, indicating approximately 75%
e�ciency. Part of this speedup can be attributed to
the cache size|1/64th of the tree �ts into the cache,
while the entire tree does not. Running the code on
the workstation mentioned above, we found that the
solution in fact took twice as long as predicted|a to-
tal of 12 minutes for the lossless problem. Neither the
single CM-5 Sparc processor nor the workstation is ca-
pable of meeting the real-time constraints of the prob-
lem. An adequately fast solution requires the compu-

tational power of a supercomputer.

4.3 Code Development

After our initial success with the lossless problem,
we set the line impedances to what we believed to
be typical values (ten times the values given in Ap-
pendix B). The algorithm broke down trying to solve
such a high-loss problem|demand oscillated wildly
between almost nothing and about twice that of the
lossless solution. Reducing the line impedances, we
found that the algorithm converged for impedances of
up to 1/10th of the proposed values. Table 1 shows
the solutions for various impedances, scaled to actual
typical impedances. Noting that the total demand at
the root decreases almost linearly in impedance over
the range measured, with real demand dropping by
2.4 units at 1=100th, 23.4 units at 1=10th, and 216.7
units at full impedance, we were able to guess at the
solution to the high-loss problem.

Over the next few weeks we directly veri�ed our
ideas about reducing modi�cation time as we passed
hundreds of times through the execution-�x cycle.
The time invested in development of the object sys-
tem was more than returned in the time saved in later
modi�cation. The global memory abstraction insu-
lated the necessary changes from the communication
schemes, allowing us to concentrate on the algorithm
itself.

After many failed attempts to eliminate the oscilla-
tions, we tested the system to determine the amount
of power being lost in the lines. The line impedances
proposed initially for the system proved far too high|
over 16% of the power was lost near equilibrium. Since
no actual system would allow the total losses to exceed
2-3% of demand at the root, we probed the system
with successively higher line impedances to determine
the percentage of power loss for which the algorithm
broke down. The results are shown in Table 2. The
algorithm breaks down at about four times the typical
line impedance, when the power lost in the system is
roughly three times the nominal value of 2-3%.

5 Conclusions and Future Work

Using the CM-5 as a development tool, we have suc-
cessfully implemented a new algorithm to solve the
problem of optimal pricing for electrical power net-
works. Because of the problem's size, solution by a
workstation would be unproductive. Because of the
real-time constraints imposed on the problem for use
with actual power networks, such a solution would also

Fraction of Number of
Typical Impedance Iterations �R �X P0 Q0

0 6 0.72527 0.14505 7252.7 1450.5
1=100th 6 0.72504 0.14502 7250.3 1450.2
1=10th 12 0.72293 0.14472 7229.3 1447.2
Typical 19 0.70360 0.14192 7036.0 1419.2

Table 1: Results for Various Loss Rates

Multiple of Number of Demand Demand
Typical Impedance Iterations at Root at Leaves % Loss

Typical 18 7034.7 6862.9 2.44
2 21 6848.9 6535.1 4.58
3 48 6686.8 6252.5 6.49
3.5 107 6612.5 6124.4 7.38

Table 2: Power Lost for Various Loss Rates

fail to be worthwhile. An adequate solution to the
problem requires the computational power of a paral-
lel machine.

We approached the problem by �rst separating out
the requirements of communication and layout from
the algorithm. Through the abstraction provided by
our object system, we removed the complexity of in-
tegrating communication patterns into the main code.
As a result, the code became more
exible and eas-
ier to modify. The overhead cost of the simpli�cation
was not unreasonable, with processors operating at ap-
proximately 75% e�ciency. We feel that our approach
could be pro�tably extended to many problems.

Although we have made progress in understanding
optimal power pricing in distribution networks, many
avenues remain for exploration. Realistic power sys-
tems might recon�gure the network, for example, so
a simulation must be capable of redistributing nodes
to processors in a short time. The addition of direct
power
ow constraints on internal lines would also in-
crease realism, perhaps requiring iteration over each
subtree to arrive at a valid solution. Also, some of
the equations used in our solution were simpli�ed ver-
sions of the actual optimization equations|the precise
equations may introduce further complications in the
algorithm. Furthermore, customers in realistic sys-
tems would have distinct bene�t and inequality func-
tions, whereas each of the customers in our example
used the same functions.

We also hope to further develop the object system
by integrating it into the Split-C library[2]. Split-C is
an extension to the C language which provides e�cient
support for the shared memory, message passing, and
data parallel programming paradigms. Making the

system available for use by others at Berkeley will pro-
vide valuable feedback about its features, drawbacks,
and general usefulness.

Acknowledgements

The authors would like to thank Professor Felix Wu
for helpful discussions about the material presented
here.

A Mathematical Formulation

List of Variable Names

n Number of customers (leaf nodes)

Pi Real power demanded by ith customer

Qi Reactive power demanded by ith customer

bi(Pi; Qi) ith customer bene�t as a function of Pi and Qi

gi(Pi; Qi) Maximum demand (inequality) constraint on

customer i

hi(Pi; Qi) Plant (equality) constraint on customer i

�iR Price for real power demand Pi

�iX Price for reactive power demand Qi

Rr Resistance in lossy connection line r

Xr Inductance in lossy connection line r

P out
r Real power
ow out of line r (sum of
ows to

children)

Qout
r Reactive power
ow out of line r (sum of
ows

to children)

P loss
r Real power loss in line r

Qloss

r Reactive power loss in line r

P in
r Real power
ow into line r (before loss)

Qin
r Reactive power
ow into line r (before loss)

Iteration �R �X P0 Q0

Seed 0.700000000 0.140000000 8239.801156694 1664.608805105
1 0.700000000 0.140000000 6959.868551160 1403.411689330
2 0.699019554 0.140084472 7188.664606141 1450.045276479
3 0.703868325 0.141302650 7004.110193816 1412.489213193
4 0.703001600 0.141289347 7056.467032462 1423.147533006
5 0.703664711 0.141543232 7027.919801036 1417.338490767
6 0.703445923 0.141590428 7038.171058708 1419.424940720
7 0.703538976 0.141677597 7033.458500768 1418.465918893
8 0.703490560 0.141719440 7035.284828317 1418.837616770
9 0.703500067 0.141760125 7034.529297524 1418.683852235
10 0.703488250 0.141786929 7034.794122864 1418.737754710
11 0.703486035 0.141808432 7034.724649824 1418.723604511
12 0.703482633 0.141824260 7034.725501200 1418.723781255
13 0.703480105 0.141836174 7034.727268342 1418.724142099
14 0.703478255 0.141845147 7034.728379528 1418.724368484
15 0.703476897 0.141851904 7034.728625597 1418.724418497
16 0.703475886 0.141856989 7034.728481712 1418.724389115
17 0.703475124 0.141860814 7034.728188545 1418.724329308
18 0.703474546 0.141863691 7034.727974218 1418.724285567

Table 3: Results for Typical Loss Rates

P0 Total real power supplied by substation

Q0 Total reactive power supplied by substation

c(P0; Q0) Cost to substation for supplying P0 and Q0

�R Lagrange multiplier for the global real power

equality constraint

�X Lagrange multiplier for the global reactive

power equality constraint

In practice there would be some variation in cus-
tomer behavior. In this application, however, we as-
sume that the customers are identical. Therefore the
same model applies to all n customers. The ith cus-
tomer's problem is

max
Pi;Qi

fbi(Pi; Qi) � (�iR � Pi + �iX �Qi)g (1)

such that bi(Pi; Qi) = log(1 + Pi) + log(1 + Qi)

hi(Pi; Qi) = Pi � 5Qi = 0

gi(Pi; Qi) = P 2
i + Q2

i � 0:8 � 0

Assume that all lines in Figure 1 except those from
branch nodes to leaves have impedance of the form
Zr = Rr+jXr (see Figure 7). The power
ows in line
r are then related by

P in
r = P out

r + P loss
r

Qin
r = Qout

r + Qloss
r

Leaf Nodes

Z = R + j X

Down-Stream

P_in, Q_in P_out, Q_out

Lateral/Branch Node

Branch Nodes

Figure 7: Typical lossy line

The power losses in line r depend directly on the
ows
into the line:

P loss
r = Rr � ((P

in
r)2 + (Qin

r)2) (2)

Qloss
r = Xr � ((P

in
r)2 + (Qin

r)2)

Given P out
r and Qout

r , the above coupled quadratic
equations are solved to �nd the power
ow into each
line. This process propagates up the tree until the
substation demand P0 and Q0 (at the root) is found.

The global problem is then

max
P0;Q0;fPig;fQig

("X
i

bi(Pi; Qi)

#
� c(P0; Q0)

)
(3)

such that

P0 �
X
i

Pi �
X
r

P loss
r = 0

Q0 �
X
i

Qi �
X
r

Qloss
r = 0

8i; hi(Pi; Qi) = Pi � 5Qi = 0

8i; gi(Pi; Qi) = P 2
i + Q2

i � 0:8 � 0

where, in this application,

c(P0; Q0) =
1

2� 104
(P 2

0 +Q2
0)

Note that the constraints hi and gi are satis�ed locally
by leaf i, based on the ith prices.

Assume (3) has a solution P̂0, Q̂0, fP̂ig, fQ̂ig, �̂R
and �̂X . Then from the Kuhn-Tucker optimality con-
ditions [6], we get

�iR = �̂R

0
@1 + X

r2U(i)

�r

1
A+ �̂X

0
@ X

r2U(i)

Xr

Rr

�r

1
A

�iX = �̂X

0
@1 + X

r2U(i)

�r

1
A + �̂R

0
@ X

r2U(i)

Rr

Xr

�r

1
A

where �r = 2Rr

P in
r

1� 2RrP in
r � 2XrQin

r

�r = 2Xr

Qin
r

1� 2RrP in
r � 2XrQin

r

and U (i) is the set of lines on the path from the root
to i.

Since the optimal values of the multipliers, �̂R and
�̂X , are not known in advance, we iteratively send
prices down the tree and propagate demand back up,
each time adjusting the prices towards their optimal
values. We begin by guessing values for �R and �X ,
and at each iteration we check the optimality condi-
tions

@c(P0; Q0)

@P0
= �R

@c(P0; Q0)

@Q0
= �X

Hence after receiving the total demand P0 and Q0 at
the root, we check if the condition holds to the desired

precision. If it does not, we update �R and �X using
the following rule:

�R �R + ��R ; �X �X + ��X

where the corrections are de�ned by

��R = �
�R �

@c
@P0

1� @2c
@P2

0

@P0
@�R

��X = �
�X �

@c
@Q0

1� @2c
@Q2

0

@Q0

@�X

B Convergence for Typical Loss Rates

Table 3 shows the convergence to optimality for a
system with typical losses (around 2.5% of total power
is lost in the lines): Rr = 1=(3� 105) and Xr = 1=106

for lines leading to lateral nodes and Rr = 1=104 and
Xr = 1=(5� 104) for lines leading to branch nodes.

Recall that the convergence criteria here are given
by:

@c(P0; Q0)

@P0
= P0

10000 = �R

@c(P0; Q0)

@Q0
= Q0

10000 = �X

Notice that the convergence towards the �nal so-
lution in iteration 18 is initially underdamped, with
prices oscillating around the solution, but in later iter-
ations becomes overdamped, approaching the solution
from above. We attribute this phenomena to the in-
teraction between the root price multipliers �R and �X
and the intermediate node multipliers � and �|the
same interaction which causes the algorithm to break
down at high loss rates.

References

[1] D. F. Bacon and S. E. Lucco, \Tarmac: A Mobile
Memory System for the Connection Machine CM-
5," Draft

[2] D. E. Culler, A. Dusseau, S. C. Goldstein, A. Kr-
ishnamurthy, S. Lumetta, T. von Eicken, K. Yelick,
\Introduction to Split-C," to be published in Pro-
ceedings of Supercomputing, 1993.

[3] D. Gelernter, \Parallel Programming in Linda,"
Proceedings of the International Conference on
Parallel Processing, pp. 255-263, Aug. 1985.

[4] K. Li and P. Hudak, \Memory Coherence in
Shared Virtual Memory Systems," Proceedings of
the 5th Annual ACM Symp. on ACM Conf. on
Principles on Distributed Computing, pp. 229-239,
1986.

[5] S. E. Lucco and D. P. Anderson, \Tarmac: a Lan-
guage System Substrate Based on Mobile Mem-
ory," UCB Report CSD 89/#525, November 1989.

[6] D. G. Luenberger, Linear and Nonlinear Program-
ming, 2nd. Ed., Addison-Wesley, 1989.

[7] L. Murphy, R. J. Kaye and F. F. Wu, \Distributed
Spot Pricing in Radial Distribution Systems," Pa-
per 93 WM 148-7 PWRS, presented at the IEEE
Power Engineering Society 1993 Winter Meeting,
Columbus, OH, Jan 31 - Feb 5, 1993.

[8] P. Stenstr�om, \A Survey of Cache Coherence
Scheme for Multiprocessors," IEEE Computer, pp.
12-24, June 1990.

[9] T. von Eicken, D. E. Culler, S. C. Goldstein, K. E.
Schauser, \Active Messages: a Mechanism for In-
tegrated Communication and Computation," UCB
Report CSD 92/#675, March 1992.

