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Abstract

The goal of this project was to define and demonstrate a subset of the VHDL language [IEEE87] which is consistent with
the simulation semantics and yet has an interpretation as a specification. The subset shown in this work incorporates as
much of the language as is possible without compromising its interpretation as a specification of system behavior. There is
no other subset of the VHDL language which can incorporate more of the semantics of the language, yet retain an inter-
pretation as a specification.

To show why this is the larges subset of the VHDL language which has this property, a review of some of the many uses
of VHDL is given along with an explanation of why the interpretation of the full VHDL language as a specification within
this context is problematic at best. A definition of what it means to interpret an executable description as a specification is
given in the form of an example of an existing class of languages, the reactive languages, which have this property: being
executable yet having an interpretation as a specification. The question then is whether there is a useful subset of the
VHDL language that can be shown to be reactive. In fact, within the wide range of uses of VHDL, there is a class of uses
that can be interpreted as a reactive specification. The identification of this class of uses, and the restrictions on the lan-
guage structure that accompany it form the basis of the subset definition.

Reactive systems, or equivalently synchronous systems, have the property that they respond to events from the environ-
ment in which they reside; nothing of interest outside these events and their responses occurs in these systems. The formu-
lation of the definition of reactive systems in terms of events allows for a succinct description of their behaviors as regular
expressions. Hence the implementation of a reactive system is naturally in terms of one of the many finite automata which
recognizes the regular language that defines the system’s behavior, The goal of the subset definition then is to identify the
reactive portion of the VHDL language, independent of its language structures, so that the behavior of programs written in
the subset may be interpreted as regular expressions, and implemented in terms of (communicating) finite automata.

The Synchronous VHDL subset presented here is derived through a restriction on the abstract simulator that defines the
meaning of a VHDL program. The focus here is on restricting the simulator behavior and using that restriction to drive the
definition of the VHDL subset, instead of the other way around as has been traditional in the definition of other VHDL
language subsets. The result of this work is a description of the subset of the VHDL language that uses only finite-autom-
ata-like behavior; it thus has well-defined implementation as a network of communicating finite state machines.

In addition to the definition of Synchronous VHDL, a goal of this project was to demonstrate the subset in use. Thus, a
major portion of this project was the implementation of a compiler front-end which is used to analyze VHDL source text,
converting from the syntax of the language into a form suitable for compilation into a reactive language.
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Introduction

Chapter 1

Introduction

The 1980s saw the introduction of VHDL as a standard hardware description language for producing simulation models
of existing hardware components. The original purpose of VHDL was to provide a standard language in which the behav-
ior of electronic devices procured under U.S. Department of Defense programs could be encoded. The language design-
er’s goal was allow the seller to transmit a description of the part to the purchaser along with the part so that a definite idea
of its behavior would be imparted. In addition to describing behavior, the description was to act as a specification for the
part so that another one could be built in the future; to build a second copy, one must know what the first copy did.

Coupled with other developments such as an increased use of logic-level synthesis, larger designs being attempted, and
more complicated designs which require better testing, the use of VHDL changed from being purely a descriptive lan-
guage to one which is now being applied in far more varied ways. These areas range across testing, specification, netlist
representation and even into device-level simulation and analog simulation! For this project, the interest in VHDL is
solely in the area of specification; system-level specification for use in high-level and sequential-level synthesis.

It would be tempting to ignore these other areas to concentrate on VHDL as specification but unfortunately these other
application areas of VHDL impinge upon its use as a specification language. Both the simulator origins of the language
and the subsequent reinterpretation of it to apply it to new uses impose difficulties for the sound definition of VHDL as a
specification for computing hardware. A sound definition of specification is a precondition for defining a synthesis path
from VHDL to sequential-level or logic-level synthesis.!

The Theses of This Work

The thesis being investigated in this project is whether or not it is possible to define a subset of VHDL which is both con-
sistent with the simulation semantics described in its 1987 definition [[EEE87] and which also has an interpretation as a
specification of hardware. The interpretation as a specification is given by the restriction of the VHDL simulator behaviors
to those behaviors allowable under the synchronous system hypothesis. The consistency of the subset with the full simula-
tion semantics is guaranteed by defining the language subset based on a restriction of the simulator model and deriving the
effects on the language.

The validity of this thesis implies that it is possible to define the meaning of a VHDL program in this subset in a rigorous
way; the meaning is as a specification for a network of communicating finite state machines. The computations of this net-
work, its states and its state transitions, will be exactly the same as those of any correct VHDL simulator. Thus this subset
of VHDL can be used as an input for both sequential optimization and synthesis and also it can be checked for correctness
by automata-theoretic or temporal-logic based verification tools such as such as COSPAN [HK90] and [CJLM91].

A schematic of the desired VHDL subset is shown in Figure 1. Depicted there, as a subset of all possible VHDL pro-
grams, is the synchronous subset. This subset is defined, not by the set of syntactic constructs allowable in the subset, but
by the behavior of the simulator on those programs. The subset is defined by the behavior of the simulator, which implies
restrictions on the syntax, not the other way around as has been traditionally done. Figure 2 and Figure 3 illustrate this
distinction. A major point underpinning the synchronous subset is that this subset, while defined through the dynamic pro-

1. Exactly the same can be said for Cadence Design System’s Verilog language [Ver91], save for its history and origins. As the capa-
bilities of VHDL are a strict superset of those in Verilog, the work here applies equally to well to each language; Verilog will not be
mentioned further.
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cess of simulation, can actually be identified in a static analysis of program text; it is possible to determine whether a

VHDL program obeys synchronous semantics at compile time.
Figure 1 A Schematic of the Synchronous VHDL Subset
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Figure 2  Traditional VHDL Subset Definition
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Filter

Long- and Short-Range Goals

Ulumately the goal of this work is to define the synthesis semantics of VHDL in a rigorous way. That being done, the
effect of such a rigorous definition will show up elsewhere in the chain of tools that consume design descriptions. In addi-
tion to synthesis applications there are also verification aspects to design which are current areas of research. Providing a
standard front-end language to those tools is also a goal of this work. Further, though, a consistent semantics of VHDL as
finite automata will have affects in the design of simulators for VHDL; surely a simulator which used a network of com-
municating finite state machines would be simpler to partition and parallelize than a simulator which was fashioned as
prescribed in the definition of the VHDL language (IEEE87)? (c.f. [Vel90]).
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Figure 3  Synchronous VHDL Subset Definition
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Despite these far-reaching goals, the focus here is on a far more tractable problem: using the proposed synchronous
semantics of VHDL to define a translation path from VHDL to an executable format (e.g. to C code). This translation path
defines a simple simulator, thus forming a proof of concept both for the soundress of the synchronous subset of VHDL
and for the idea of using reactive compilation to define the specification aspect of this subset of VHDL.

Attempting to produce a system that performs both the identification of the synchronous subset of VHDL and the transla-
tion to the final executable form required too great an effort for a simple proof of concept study such as this one. Instead,
the approach taken for this work was to break that job up into two parts: the construction of a compiler front-end for the
VHDL language, and the use of that front-end to convert VHDL source text into a form which can be conveniently com-
piled by a reactive language compiler. The reactive language used is Esterel [CIS88], and thus this report describes the
design of a translation path from VHDL into Esterel and thus to a final executable form in C3. The main body of the report
describes the design and definition of Synchronous VHDL, leaving to the appendices the documentation of the salient
facts about the C++ compiler front-end for VHDL that was developed to support this work.

Overview

The goal of this work is to demonstrate the feasibility of constructing the translation path. The description here is simply
that of a proof of concept study. The simulator described here is in no sense yet a product, though the hope is that the tech-
nique described here for using reactive compilation to implement certain classes of simulation models is powerful enough
that one day it may lead to a product-quality approach.

The ideas described in this report have been given form in the development of a toolkit of compiler algorithms, which
have been written in C++. Because the construction of a complete VHDL simulator is a rather gargantuan task, it has not
been possible to produce a full VHDL simulator implementation within the scope of this project. Instead, what this work
represents is a study of the issues involved in developing such a simulator. Thus only those aspects of the simulator which
are directly related to the use of the reactive semantics as an implementation method for simulator models has been imple-

2. The description of the required simulator event processing loop, as found in Chapter 12 of [IEEE87], is reproduced in Appendix B.

3. Again, it must be stressed that the use of the Esterel compiler in this work is merely a convenience; a stand-alone reactive compila-
tion algorithm would allow for its replacement.

An Application of a Synchronous/Reactive Semantics to the VHDL Language 3 of 132
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mented. A good portion of the implementation which is not germane to the use of reactive compilation has been forgone.
The C++ compiler toolkit which was implemented for this study is described in the presentations of Chapter 4 and Chap-
ter 5. The hope is that with this work as the basis, a more extensive investigation of the use of reactive compilation tech-
niques can be attempted. Based on the investigation done here, those techniques hold the promise of enabling
improvements in a number of application areas ranging from embedded software applications to discrete-event simulators
as is the case here.

There are a number of problems involved in defining the translation path proposed here over and above the simple devel-
opment of a relationship between a VHDL subset and Esterel. The first of these is to motivate why a sound definition of a
translation path from VHDL to any other representation of computation is problematic; this is the subject of Chapter 2.4
The properties of reactive/synchronous languages with emphasis on the Esterel language is described in Chapter 3. That
chapter provides some background on Esterel’s semantics - both the interpretation semantics and the compilation seman-
tics. The synchronous subset of VHDL which is motivated by the translation of VHDL processes into Esterel is presented
in Chapter 4. A simple VHDL simulator for the Synchronous VHDL subset which uses the reactive language compilation
capability of the Esterel compiler as a code generator is presented in Chapter 5. Finally, a review of the conclusions which
can be drawn from the project described in this report is given in Chapter 6.

4. For the purposes of this report it is assumed that the reader is familiar with VHDL. The overview presented in the next chapter is not
a general presentation of the language, rather it focuses on the issues involved in interpreting VHDL models as synchronous specifica-
tions. Readers unfamiliar with VHDL may wish to see [LSU89), (IEEE87], [Coe89] or [ALG+91].

401132 An Application of a Synchronous/Reactive Semantics to the VHDL Language



The VHDL Problem

Chapter 2

The VHDL Problem

Expanding the interpretation of VHDL descriptions away from simulation is problematic because simulation models are
descriptive and the reduction relationship from reality to the modeling domain is held largely in the mind of the observer.
The differences between simulation models and specifications is shown schematically in Figure 4 and Figure 5. The pur-
pose of this chapter is to motivate why attempting to find a sound definition of a VHDL subset that can be interpreted as a
specification is hard.

Figure 4 A Simulation Model is a Reduction of Reality

e Real World

aduction to the mg

Simulation model of
the Real World

Figure 5 A Specification Lacks Details

Missing Details Specification of Behavior

The difficulties in subset definition fall into roughly four categories which can be summarized in the following way:
» A syntax-directed policy of use for the language is insufficient; this is addressed in Section 2.1.

= The inexact focus of the level of VHDL description makes interpretation at any specific level for specification prob-
lematic. This issue is addressed in Section 2.2.
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The VHDL Problem

« The asynchronous nature of parallelism in VHDL models is difficult to work with in simulation models and extremely
difficult to interpret as a specification. This and the simplification to synchronous parallelism being used here are
described further in Section 2.3.

« The VHDL simulator loop and the sequential code execution rules introduce an interpreter bias into the use of VHDL
for specification. Interpreter bias, the problems that it causes and the use of the synchronous system paradigm as an
attempt to solve them are described in Section 2.4.

Qualifying the difficulty of the problem is important so that the reader can better understand that all of the mechanism and
formality introduced in the later sections are necessary to achieve these ends. This proposal is for a semantics-driven pol-
icy which defines a VHDL subset that achieves the end of an interpretation for specification that covers as much of the
VHDL language as possible while still preserving the observable simulation behavior of the VHDL models.

This interpretation is not necessarily the easiest to implement nor is it the simplest subset policy ever devised>. The claim
is however, that this policy is the most complete in the sense that it allows for as much of the VHDL language as possible
to be interpreted as a specification of behavior. This is a very difficult claim to prove in the traditional formal sense of lem-
mas and theorems, so instead a convincing argument of this completeness is presented. The purpose of this section is to
review the problems which must be solved to define the notion of VHDL as a specification. Thus, this section provides the
basis for that convincing argument - that the synchronous interpretation of VHDL as described in Chapter 4 is both neces-
sary and sufficient for use as a specification of behavior.

2.1 Policies of Use

One of the first objections which arises in a semantics-modification proposal which is as invasive as is this one is whether
or not it could have been achieved with fewer restrictions or whether a result which was good enough could have been
achieved with a simple but mathematically inelegant set of restrictions on the language. In an attempt to head off those
arguments, this section is devoted to a description of the options for a VHDL policy in the traditional style (c.f. Figure 2).

The argument here is that each of these possibilities save for one, the synchronous subset which is based on the behavior
of the simulator directly, is insufficient or incomplete in some important way. It is important to remember throughout, that
the purpose here is to investigate the possible ways that a most-general subset for specification might be derived. The
insufficiency of any one of the following attempts on the problem does not indicate that it cannot be used; certainly there
are a number of synthesis systems which use each one. The point is that there is a more general and more elegant solution
available through the use of the Synchronous VHDL subset.

Using Identifiable Sublanguage

One of the more common restrictions to impose is that the VHDL description be restricted to use only an idehtiﬁable sub-
language. A common one is the dataflow portion of VHDL; another is a restriction to structural descriptions from a library
of known parts.

Examples of dataflow and structural subsets of VHDL are shown in Figure 6 and Figure 7 respectively. Both of these
examples are fairly straightforward as they are combinational examples; they contain no feedback and no internal state.8

5. A quick look through the relevant literature on VHDL-based high-level synthesis systems confirms this [CBH-+91] [Che91]
[HCD90] [LiGa89] [RoVe89] [UdVe89].

6. The processes in VHDL do have internal state in the signal drivers; that state is being ignored for these examples.

6 of 132 An Application of a Synchronous/Reactive Semantics to the VHDL Language
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When the examples use data types which are more complex than Bit” or when the flow dependencies in the models are not
acyclic, then the interpretation of the meanings of the architectures as specifications becomes unclear.

Figure 6  An Example of the Dataflow Sublanguage of VHDL

entity Some_Function is
port (A, B, C, D: in Bit; 01, 02: out Bit);
end Some_ Function;

architecture Dataflow of Some_Function is
begin

01l <= (A and B) or (C and D);

02 <= (A nor B) nand (C nor D);
end Dataflow;

Figure 7  An Example of the Structural Sublanguage of VHDL

entity Some Other_ Function is
port(A, B, C, D: in Bit; 01, 02: out Bit):
end Some Other_ Function;

use Lib.Specification_Parts.all;
architecture Structural of Some_Function is
signal Tmpl, Tmp2, Tmp3, Tmp4: Bit;

begin

Ul: and2

port map(Il => A, I2 => B, O => Tmpl);
U2: and2

port map(Il => C, I2 => D, O => Tmp2);
U3: or2

port map(Il => Tmpl, I2 => Tmp2, O => 0l);
U4: nor2

port map(Il => A, 12 => B, O => Tmp3):;
U5: nand2

port map(Il => C, I2 => D, O => Tmp4):;
U6: nand2

I
v

port map(Il => Tmpl, I2
end Structural;

Tmp2, 0 => 02);

Somehow it would be more satisfying if the interpretations of Figure 6 and Figure 7 as specifications were derived from
the behavior of the simulator rather than an intuitive understanding of what is written in English. Such a specification
would be more sound in general and could also trivially take into account the redefinition of the and, or, nand and or

7. The Bit data type is not predefined in VHDL; rather, it is a data type which is required to be available in the standard library by the
declaration: type Bit is ('0’, ‘1°);

An Application of a Synchronous/Reactive Semantics to the VHDL Language 7 of 132
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operators. It is rare for a user to redefine these operators on the Bit type, but quite common to do it for other data types.
The mechanics of the treatment of a VHDL specification subset should be robust under such redefinitions.

Using Structural Patterns . o
Another treatment of VHDL for specification involves using a known structure of the syntax to imply a specification. For
example, in Figure 8 a pattern of usage is indicated which will ultimately be interpreted as a clocked latch by the tool that

interprets the specification - the synthesis system.3
Figure 8  An Example of a Pattern of Usage

entity A Latched Function is
port (A, B, C, D: in Bit;
CLK, RST: in Boolean;
0: out Bit);
end A_Latched Function;

architecture Pattern_Match of Some Function is
signal Tmp_O: Bit bus;
begin
Reset:
block (RST = FALSE)
begin
Tmp_O <= guarded ‘07;
end block Reset;

Func:
block(not Clock’stable and Clock = True and RST)
begin
Tmp O <= guarded (A and B) or (C and D);
end block Func;

O <= Tmp_O;
end Pattern_ Match;

It may take more than a moment of reflection to determine the behavior of the two guarded blocks operating in tandem
driving a local signal of kind bus which is ultimately fed to the output. In fact, the simulator does quite a bit of work to
simulate these three constructs, so it is not surprising that the pattern is hard to recognize as a clocked latch with a reset
without some gedanken experiments on the abstract VHDL simulator.

This style of description is convenient, however complicated it may seem, for the tool writers for the “synthesis system”

need only recognize the three patterns: two guarded blocks driving the same bus signal and a third concurrent assignment
feeding the result out. This pattern can be used as a specification for a query into “the library” in which there will be just
such a clocked latch. The right-hand side of the Func block is taken as the specification of the logic function to be com-

puted and stored in the clocked latch.

The important point of this very structured use of VHDL is that it represents an extension to the language. The patterns
which are recognized by the synthesis tools, though defined completely within the syntax of the language standard, repre-

8. This style of specification in VHDL is in daily use at a major electronics company.
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sent idioms which are imbued with meanings defined outside of the language standard. Thus the use of a style or policy of
use VHDL ultimately represents a change in the language to suit a specific tool implementation or design library. As this
style of specification is so implementation-specific and depends so much on the modeler’s interpretation of the meaning of
the cooperation between the two blocks (Reset and Func in the figure) it will not be considered further here. It is intro-
duced here because this style of specification with VHDL is in fact used and is considered acceptable as a specification to
those who use it - it allows them to get designs done.

“... Well, Then We Won’t Support That”

Finally, there is the common method building a VHDL policy for synthesis specification which is completely ad hoc.
Essentially the procedure used is to start with a small subset of VHDL, such as the dataflow subset described above, and
grow by iteratively adding one more construct to the subset until it becomes difficult or impossible to support the new
addition. On the positive side, this method does tend to keep constructs out of the resulting subset which are obviously
incongruous: pointers and files and the like.

The problem with this method, as with the other syntax-directed policies is that there is no unifying principle with which
to accept or reject constructs from the subset language. The process of selection tends to devolve into attempting to map a
VHDL statement’s perceived meaning onto the target tool and if that cannot be done, then “... well, we won't support
that.”

Restricting the Simulator

Developing a policy for VHDL that can be interpreted as a specification which is based on restricting the syntax that will
be supported sounds easy and attractive. Its appeal lies in the ability to use the grammatical structure of the language, as
defined in Appendix A of [IEEE87], as an aid to the categorization and elimination of statements or constructs which are
considered too difficult to use. This unfortunately has serious effects on both the breadth of the language which can be
supported and the interpretation of that language after the allowed subset is identified.

After the allowed subset is identified from a review of the language definition there is no guarantee about what the review
process generated in terms of a subset (how much of the language is supported). Further, there is no set of rules for deter-
mining the meaning of the constructs in the subset after selection and ensuring that the specification meaning is the same
as the simulation meaning. This problem arises from the procedure used to accept or deny support for the various state-
ments; it is based on what is known to be supported in some target tool.

What is being searched for in an interpretation of VHDL as a specification is exactly backwards from the syntax-directed
case: there is no tool yet, so the goal is to find a subset of VHDL that specifies computing structures such that a tool can be
built which will derive an implementation for that specification. The presentation of that subset and the identification of a
tool, a VHDL-to-Esterel translator and its use as a simulator generator is the subject of Chapter 4 and Chapter 5.

2.2 The Breadth of VHDL Description

VHDL is a large language as many have noted. It is surprising just how large it is however when one considers not only
the languages structures involved, but also the various interpretations or policies with which its users mold the language to
suit various needs. These needs are outlined in the following sections; they range from describing test benches to black
box models to pure netlists and on into more exotic areas where VHDL was never intended to be applied.

In this section is exhibited the breadth of use to which VHDL can be put in order to frame the uses to which the specifica-
tion interpretation of VHDL will be made. These areas are not the areas to which VHDL is best put to use necessarily, but
they are areas where it can be demonstrated that VHDL is currently being put to use. It is important to understand this

breadth in order to provide the proper context for the presentation of the very constrained usages required of the synchro-
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nous subset of VHDL.. The desire is to motivate here is that the range of uses of VHDL are driven by needs for design
description and management which are outside the scope of this project. They are driven by a need for a language-driven
design framework which uses a common language across all levels of design ranging from high-level specification to test-
ing to low-level modeling of semiconductor behaviors. This goal may or may not be a desirable one to achieve. It is how-
ever being actively pursued and as will be shown in the following sections, it has a large effect on how well and how much
of VHDL can be interpreted as a specification.

The important point of this section is that from a specification viewpoint, there is no way to tell these various uses apart: a
test bench in VHDL looks remarkably like a switch-level model of a CMOS circuit - from the perspective of an automated
tool which consumes VHDL specifications. Typically it is only the identifier names used in the models which distinguish
them (i.e. names like test_bench or and3 or nfet). An automated tool cannot be expected to extract and comprehend
this intended use. It is thus critical that the user be able to identify these uses and disallow their submission as specifica-
tions in the first place; this is a “well we just won't let users do that” situation. A taxonomy of VHDL is provided in this
sectoin so that when users are told that they can’t use a certain class of VHDL as a specification, then they can have a
name for that class and a reason for the claimed inappropriateness as a specification.

Test Bench Construction

The test bench is where the full power of the VHDL language is most useful. In most design situations, it is up to the
designer of the model to provide a rig to test out the device model. Instead of letting that task be provided in an implemen-
tation-dependent manner, the VHDL language designers have allowed VHDL itself to serve that function. In fact, there
are standards for test benches written in VHDL such as the WAVES standard [WAV90] and the BSDL on-board test struc-
tures [PO90]. These test bench standards describe test structures ranging among the vector formats in files, the procedures
to apply test patterns, files that they will read and write and the in-device test structures required for the methodology.

The test bench is simply a VHDL entity and architecture which instantiates the device under test (DUT) and applies test
vectors and records the results. A schematic of this is shown in Figure 9. Some simulators provide this facility directly for
simple models; however for complex models like processors or controllers, it is typically advisable to build a flight
recorder and test vector application unit. This way the full power of VHDL can be used to filter the events being input to
and emanating from the DUT and record only the interesting ones.

Figure 9 A Schematic of a Test Bench

Input
Data Files

Output
Data Files
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A test bench for the traffic light controller is shown in Figure 10.° Although this test bench does not contain all of the parts
which are shown in Figure 9, it does contain the essential aspects which are: the test bench is antonomous, it does not have
any ports connecting it to anything, the test bench instantiates some component, and it applies test vectors to that compo-
nent and records the results of those tests. In Chapter 3 these conditions are shown to imply that a test bench is not a reac-
tive component and cannot not have an interpretation as a specification.

Figure 10 A Test Bench for the Traffic Light Controller

entity TLC Test is
end TLC Test;

use Work.Traffic_Package.all;
architecture Test of TLC Test is
signal Car_On_Farm Road: Boolean := FALSE;
signal Highway: Color := Green;
signal Farmroad: Color := Red;
component TLC
generic (Long_Time: Time; Short_Time: Time);
port (Car_On_Farmroad: Boolean in Boolean;
Highway: Light: out Color;
Farmroad: Light: out Color);
end component;
begin
Controller: TLC
generic map (5 ns, 2 ns)
port map(Car_On_Farm Road, Highway, Farmroad);

Car_on_Farm Road <= FALSE,
TRUE after 1 ns,
FALSE after 3 ns,
TRUE after 10 ns,
FALSE after 20 ns;
end Test;

use Work.all;
configuration spec of TLC_TEST is
for Test
for Controller: TLC
use entity Work.Traffic_Light_Controller(Specification);
end for;
end for;
end spec;

Black-Box Modeling
The essential idea behind a black box model is that it doesn’t matter how the part is described so long as it simulates the
correct responses. In fact, there is a retail market for models of processor blocks, controllers and other large blocks. These

9. This example is taken from [LSU89], pages 186-188.
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models are used in other models such as models of boards or backplanes to ensure that the complete design works cor-
rectly with the part.

What is considered to be behavioral or black-box modeling is shown in Figure 11,10 The idea is that all which is important
about an entity is its simulation behavior as perceived by the outside world. So, in this respect it is irrelevant whether the
description in the architecture is given by a complete cover for the boolean function as is the case in Figure 11 or by a
chain of interrelated processes.

Figure 11 A Black Box Description

entity Decoder is
port (Enable: in Bit;
Sel: Bit_Vector (2 downto 0);
Dout: out Bit_Vector (7 downto 0));
constant Delay: Time := 5 ns;
end Decoder;

architecture Selected of Decoder is
type vec8x8 is array(integer range 0 to 7) of bit_vector(0 to 7):
constant one_hot: vec8x8 := (
“00000001”, “00000010”, “000001007”, “000010007,
*00010000”, “001000007, “01000000”, “10000000”);
function cvt (bv: in bit_vector(2 downto 0)) return integer is
variable sum: integer := 0;
begin
if bv(0) = ‘1’ then
sum := sum + 1;
end if;
if bv(l) = ‘1’ then
sum := sum + 2;
end if;
if bv(2) = ‘1’ then
sum := sum + 4;
end if;
return sum;
end cvt;
begin

with Sel select
Dout <= one_hot (cvt (Sel));

end Selected;

Some synthesis systems accept this type of description as a specification because it is interpreted as specifying combina-
tional logic only. That interpretation is due to the use of the dataflow with construct in the main body of the architecture.

10. This example is taken from [LSU89), page 100.
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The with construct need not indicate combinational logic, especially in the presence of feedback or if the after clauses
are not all the same.

Typically though black box models are written with simulation efficiency in mind as they are to be used inside of other
models as leaf nodes. As such, black box models are typically not considered as specifications. They could be considered
as such though if the consuming tool were powerful enough to disambiguate the specification of behavior from the typi-
cally hyper-efficient coding of function at the behavioral level of VHDL.

Behavioral Specification

This is the level of description that is typically considered the most interesting use of VHDL for synthesis or verification.
The designs are written to be clear and expository, as opposed to being efficiently executable in a compiled-code simula-
tor. For example, contrast the two styles of description for the same decoder in Figure 11 and Figure 12; one is clearly
going to be faster to simulate in a compiled-code environment than the other.

Figure 12 A Specification of the Decoder

entity Decoder is
port (Enable: in Bit;
Sel: Bit_Vector(2 downto 0);
Dout: out Bit_Vector (7 downto 0));
end Decoder;

architecture Selected of Decoder is
begin
with Sel select
Dout <= “00000001” when “000”",

“00000010” when “001”7,
“00000100” when “010”,
“00001000” when “0117,
*00010000” when *“100”7,
*00100000” when “101”~,
*01000000” when “1107,
“10000000” when “111”;

end Selected

While both could be treated as specifications, it is more natural to consider the description in Figure 12 as a specification
and Figure 11 as a description. There is more to this than a simple intuitive notion of what is declarative and what is effi-
ciently executable. The notion of interpreter bias, which is described in more detail in Section 2.4 clarifies this by codify-
ing the effect of the operational model with which a description is given meaning on the interpretation of the description
as a specification. Interpreter bias is the effect of a specification being forced to look like an interpreter for the program-
ming language due to undesired corner conditions in the operational model.

In this example, the interpreter bias would predispose the specification of Figure 11 to look like a simulator with a stack
for the function call and some memory for the constants and variable. It would take a very fancy set of analyses to deter-
mine that the design of Figure 12 was the true intent of the specification. Maybe these sorts of analyses for VHDL-style
languages will exist some day; for now however, they don’t and so it is useful to draw a distinction between efficiently-
executable black-box models and expository specification models in VHDL.
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Netlist Declaration )
This sort of VHDL description is simply the assembly of pre-existing parts. It is not terribly important or interesting but it
is brought up here because it is a specification in the pure sense; a netlist is a partial specification for the placement and
routing portion of the design process (the remaining items being composed of information describing constraints and esti-
mates of resistances, capacitances, areas, delays and so forth). An example of netlist-based description is shown in Figure
13.1 These descriptions are pure structural description and amount to only a very fancy netlist format.

Figure 13 An Example of Netlist-Based Description

entity Full adder is
port (A: in Bit; B: in Bit;
Carry_in: in Bit;
AB: out Bit;
Carry_out: out Bit);
end Full_adder;

architecture Structure of Full_adder is
signal Temp_sum: bit;
signal Temp carry 1: bit;
signal Temp_carry 2: bit;
component Half adder
port(X: in Bit; Y: in Bit;
Sum: out Bit;
Carry: out Bit);
end component;
component Or_gate
port(Inl: in Bit: In2: in Bit;
Outl: out Bit);
end component;
begin
U0: Half_adder
port map(X => A, Y => B,
Sum => Temp_sum, Carry => Temp_carry_1);
Ul: Half_ adder
port map(X => Temp_sum, Y => C,
Sum => AB, Carry => Temp_carry 2);
U2: Or_gate
port map(Inl => Temp_carry_l, In2 => Temp_carry_ 2,
Outl => Carry out):;
end Structure;

Switch-Level Modeling

VHDL is a modeling language and one common problem in electronic design automation is the need to model the behav-
ior of a digital circuit at the transistor level, viewing the circuit as a network of switches. In this case, an attempt is made
to approximate the continuous phenomenon of transistor operating-point behavior with a discrete approximation: that of a
bidirectional switch. When the switch-level circuit modeling problem is cast within the discrete-event framework a further

11. This example is taken from [LSU89}, pages 20-21.
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approximation must be made as the discrete-event paradigm is a unidirectional one, events propagate unidirectionally
down wires, whereas the switch-level model is bidirectional as switches can carry information both forwards and back-
wards.

The key point here is that descriptions such as switch-level models are attempting to model physics. In this case, an
attempt is being made to approximate a continuous phenomenon within the discrete-event framework. This is very bad for
specification for it depends heavily on the level of the description: there is a huge reduction in detail from the continuous
domain to the abstract discrete-event domain and much of the meaning in the description is held in the mind of the
beholder. Such descriptions are very ambiguous due to this implicit reduction and can hardly be expected to be intuited by
automated means. Expecting a synthesis system to be able to intuit the continuous behavior from the abstract discrete-
event behavior is effectively asking for the inverse of the reduction shown in Figure 4. Although this sort of low-level rep-
resentation is not useful for specifying designs, many current simulator implementations are oriented towards this level of
simulation [MCC91] and provide special-cased value systems which are known to be more efficiently treated by the sim-
ulator.

Ause of VHDL to model a bidirectional transmission gate is shown in Figure 14.12 This gate is part of a larger switch-
level modeling package and value system which is developed in [Coe89]. As one might expect, atiempting to model bidi-
rectional switches with a unidirectional switch-level simulator is inefficient, but not impossible. The essential trick
involved in switch-level modeling using VHDL is the abstraction of a transistor (as a switch) into a small finite-state
machine. The various strengths emitted by the switch are modeled as values in a lattice-like value system encoded in
VHDL'’s enumerated data types.

Figure 14 Modeling a Transmission Gate

USE std.std_logic.ALL;
USE work.ALL;
ENTITY nfet IS
GENERIC (gdelay: time := 3 ps;
maxstrength: t_strength :
PORT(g: IN t_wlogic:
src, drn: INOUT t_wlogic);
END nfet; '

‘R7);

1]

ARCHITECTURE nfet_behavior OF nfet IS
COMPONENT bxfr_ type
GENERIC (gdelay: time := 3 ps;
maxstrength: t_strength := ‘R’);
PORT(g: IN t_wlogic;
src, drn: INOUT t_wlogic);
END COMPONENT;
BEGIN
il: bxfr type
GENERIC MAP (gdelay, maxstrength)
PORT MAP (g, src, drn);
END nfet_behavior;

12. This example is taken from [Coe89], pages 104-108. The bxfr_type model implements a bidirectional transmission gate as a finite
state machine; that description covers two full pages and is omitted here.
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This example of the use of VHDL to model digital circuits at the switch-level seem to be so egregious as to be rejected
outright as a misuse of the language. It is important however for it is an example of an interpretation of VHDL text which
is given meaning beyond the context of the VHDL language and as such it illuminates a far subtler issue of specification:
the use of different Bit data types:

type Bit is (07, ‘1’);
but for historical and simulation accuracy reasons they were written with the commonly-declared type MVBit,

type MVBit is (‘0 ‘1’, ‘X', ‘2');
which has an intuitive interpretation as a “bit” which is embedded in the lattice shown in Figure 15. This lattice is
extremely useful for simulation purposes as it allows the propagation of unknown or undefined values. There are even

more complicated ones which have been proposed[Coe89] and some have even been standardized in their interpretation
by the EIA and the IEEE!? such the one shown in Figure 16.

Figure 15 A Four-Valued Bit Lattice

The relevance to specification here is that the specification interpretation of these “bits” is not the ones with which they
have been imbued by their designers. As far as a specification interpretation is concerned, these are all multi-valued vari-
ables and it will take the relevant number of bits to encode them. For example, the specification interpretation of the data
type shown in Figure 16 which is taken from the IEEE LOGIC_SYSTEM package [BIL90] is that of a multi-valued vari-
able with 9 possible values. Thus, with respect to specifying a digital circuit, at least 4 bits to encode each of the possible
values of the data type; this was certainly not the intent of the IEEE models-standardization committee.

The interpretation as a specification of the various gate-level value systems is certainly not what the designers of these

systems intended. They had an idea which was more like that of Figure 4 wherein these value systems approximate reality
within the framework of VHDL. To a certain extent they accomplish that aim. The importance for the consumer of speci-
fications to be made aware of the limitations of the specification interpretation of VHDL; that there is an implicit level of

13. The example is taken from [Bil90]
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Figure 16 A Multi-Valued Bit Type Declaration

TYPE std ulogic is (

\U’, =-- Uninitialized

‘X', -- Forcing 0 or 1

‘0’, -- Forcing 0

‘1, -- Forcing 1

‘zZ’, -- High Impedance

‘W, -- Weak 0 or 1

‘L', -- Weak 0 (for ECL open emitter)

‘H’, -- Weak 1 (for open Drain or Collector)
‘D’ -- don’t care

)

specification and that the reductions in detail described in Figure 4 do not apply to specifications where everything is
defined explicitly.

Analog Modeling and Other Exotic Uses

There are a number of other uses to which VHDL has been put. One of the most inventive uses is modeling analog signals
for mixed analog-digital simulation completely within VHDL, This is accomplished by defining behavioral VHDL mod-
els which update the values on signals as per the usual methods of analog behavioral modeling. The values on signals are
records which contain the coefficients of polynomials that, if evaluated, would give the analog voltage on the wire. This
may be inelegant and inefficient, but it is a “recommended” practice for certain government contracts.

Summary

The point of this tour through the range of possible descriptions in VHDL was to provide some idea of where VHDL spec-
ifications might fit, were it to be defined. Of all of the descriptions that have been presented, none of them indicate in any
way, save for the English words used in the identifiers, which sort of description they are. The policy is in the mind of the
beholder.

Upon being given a random chunk of VHDL text, a simulator can analyze it, compile it and simulate it, independent of the
intended user’s interpretation of the description. The operational rules for simulation are fixed; it is the user’s interpreta-
tion of the results which change across the various styles. On the other hand, it is a much different situation for a synthesis
system to interpret VHDL as a specification, for there is some presumed level of description at which the VHDL text is
written. This cannot change over time if the specification is to be considered sound and rigorous.

A synthesis system cannot be expected to analyze any arbitrary VHDL description and intuit the writer’s original idea. As
a specific example of this, consider the 1-bit combinational full-adder shown in Figure 13. While it is described as a full
adder and a simulator will produce the outputs of a full adder on AB and Carry_out, that is not what is being specified.
What is being indicated in that VHDL text, when interpreted as a specification, is three communicating finite state
machines U0, U1 and U2 each with its own state: the drivers of the output signals of each instance: Temp_carry_1 and
Temp_sum for U0, Temp_carry_2 and AB for U1 and Carry_out for U2.

In spite of the fact that the system of Figure 13 describes a network of three finite state machines, it can be interpreted by
the user as a combinational network. This is because the three machines U0, U1 and U2 are connected in a unidirectional

14. This was first described to me by Alfred Gilman of Intermetrics as part of a modeling standard for DoD projects.
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manner thereby forming an acyclic pipeline as shown in Figure 18. Viewing the behavior of whole entity, one can inter-
pret its behavior as that of a full adder. With respect to the inputs A, B and Carry_in then, the two extemally-visible out-
puts AB and Carry_out are recognizable as the cover of the 1-bit combinational adder. Such is the distinction between
an interpretation of VHDL as a specification declaration and as an executable simulation model.

Figure 17 Combinational Logic as A Simple Pipeline

Tmp_Carry_1

w

Carry out

Tmp_sum Tmp_ Carry 2

Carry in

This presumed level of specification relates directly to the policy level shown in Figure 18. With respect to the use of
VHDL for simulation this policy level can change radically; it can change from being a test bench to being a register-
transfer description to being a switch-level transistor netlist or even something else. With respect to an interpretation of
VHDL as a specification for synthesis or verification, the definition of this policy level cannot change; it must always
remain fixed.

Figure 18 The Traditional Levels of A Simulation Model

Program Text

Concretely this means that it is not possible to have mixed interpretations of the VHDL descriptions which can still be
interpreted as specifications. The interpretation that is proposed here is the synchronous one and that means that the inter-
pretation of the VHDL, the presumed level of description, is one of communicating finite state machines: there is no struc-
ture and there is no “physics” allowed. This means for example, that there is no provision for an “extra” piece of
combinational logic or a “declaration” of a clocking discipline, or an asynchronous handshake or anything of that nature.
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The whole VHDL model is being interpreted as a specification for a finite automata, independent of what the syntax of the
model or the identifiers used in the model mean to the reader.

To drive home how this affects a user’s view of the language, consider the example of Figure 19. This example shows
what one might think of as a three-input “and” gate operating on a “bit” signal on a domain of true, false and unknown. In
fact, however the synchronous semantics of VHDL would interpret this as three communicating finite state machines,
each of which has one state variable which ranges over three possible values. The important point is that each VHDL pro-
cess is interpreted as an individual finite state machine for the purposes of specification.

igure 19 Really a Finite State Machine

package ThreeValued is

type Bit3 is (‘0’, ‘1’, ‘X');

function “and” (A, B: Bit3) return Bit3;
end ThreeValued;

package body of ThreeValued is
function “and” (A, B: Bit3) return Bit3 is
begin
if A= X’ or B = X’ then
return ‘X’;
elsif A = ‘1’ and B = ‘1’ then
return ‘1l’;
else
return ‘0’;
end if;
end “and”;
end ThreeValued;

use Work.ThreeValued.all;
entity and3 is
port (Inl: in Bit3; In2: in Bit3; In3: in Bit3;
Outl out Bit3):;
end and3;

architecture really_is_an_fsm of and3 is
signal tmpl, tmp2: Bit3;
begin
tmpl <= inl and in2;
tmp2 <= in2 and in3;
Outl <= tmpl and tmp2;
end;

2.3 The Nature of Parallelism

In addition to the presumed level of interpretation of VHDL, there is the aspect of parallelism involved in its specification
of computing systems. Parallelism is a complex phenomenon for it deals with both occurrence and time. The attributes of
parallelism in a language semantics drastically affects the form that any realizations of programs written in that language
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can take. The most problematic aspect of parallelism is that of time (not of occurrence); what is assumed about time in the
semantics affects all else. It is useful to consider that time has the following aspects:

Partial Ordering of Events
Events can be considered to occur only in relation to one another via the relations before or after. Some events may
be incomparable under this relation; such events are said to occur in parallel.

Equivalence of Events
In addition to the ordering of before and after, there is the notion of at the same time. Under this model only events
occurring at the same time are said to occur in parallel.

Delay Between Events
Finally, there is delay where events are not points in time, but rather intervals. This reflects the aspect of reality
wherein devices react in finite time. Two events are said to occur in parallel under this model if each occurs during
the other.

The following section describes the idea of parallelism as found in VHDL and then synchronous parallelism is presented
in contrast.

23.1 Asynchronous Parallelism

The fundamental goal of the VHDL simulator is to provide a means for simulating the parallel execution of the models.
Most VHDL simulators are purely sequential programs15 and use the standard techniques to simulate parallelism within
their sequential framework. These techniques involve maintaining queues of pending values and lists of processes to be
executed based on their sensitivities to signals on which the values are propagated.

What ultimately results from this operational model is that the type of parallelism which is exposed at the programmer
level is asynchronous parallelism. In this sort of parallelism, two events can only occur in relation to each other; either
one is first and the other is second, or vice versa. Two events on two separate signals never occur at the same time.

2.3.2 Synchronous Parallelism

The standard notions of VHDL parallelism is asynchronous parallelism because it is not possible to relate state changes in
any stronger way than by a partial ordering of events. Nothing can happen at the same time and so there is only before and
after.

The synchronous model of time abstracts time into discrete instants between which nothing of interest occurs. Synchro-
nous parallelism then requires that events in parallel occur at the same time. There is still a notion of before and after, but
the partial ordering of events is not used to define parallelism.

Synchronous parallelism does not offer or allow nondeterminism. Because of this restriction, and due to the fact that there
are only a finite number of possible events, an interpretation of synchronous parallelism as a finite automaton can be gen-
erated; Section 3.3.2 outlines how this is done for an existing synchronous language - Esterel.

The Synchrony Hypothesis
The interpretation of synchronous systems as finite automata is driven by two hypotheses: the synchrony hypothesis and
the strong synchrony hypothesis. These are termed hypotheses because synchronous systems are only guaranteed to func-

15. The VHDL simulator described in [Wil90] is one that is not; it distributes the simulation across a network of workstations.
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tion comrectly if these preconditions are true. The verification that the preconditions are met in any given implementation
of a synchronous system is a proof obligation imposed on the designer.

The synchrony hypothesis states that only explicit delay exists. All else (all other computations) are instantaneous. This
implies that the program only reacts in response to its environment. The strong synchrony hypothesis requires the syn-
chrony hypothesis and requires in addition that control steps take no time.

Both of these hypotheses are clearly not true in any physically realizable system. However, because time is measured only
at specific instants between which nothing of interest to the system occurs, it is possible to preserve this rather elegant fic-
tion through a timing analysis step. So long as the implementor can assure that for the given instance of the system, all
computations triggered by an event finish before the arrival of the next event then the conditions of the two synchrony
hypotheses can be considered to have been met. This is the timing verification step, and it corresponds exactly to timing
verification in hardware design.

24 Language Interpreters versus Program Specifications

In addition to the issues of the presumed level of interpretation and the definition of parallelism, there is also the issue of
how the language and the language’s semantics affects the specification. It has been said that language affects what can be
said to such a degree that certain concepts which are inelegantly dealt with in language simply are not treated. Thus a
qualification of the effect of the phrasing of the description on its interpretation as a specification needs to be made.

The comments of this section are phrased in terms of programming languages and interpreters and generally have a soft-
ware orientation. This is done on purpose to accentuate the operational aspects of the VHDL simulator as an interpreter
for the VHDL language which is a parallel programming language. It is within this framework of a formal language and
its interpreter that a notion of specification is being proposed. This extraction process is more difficult than it might seem
due to the of the intrusive effects of the language’s interpreter as explained below.

For the purposes here, the ultimate goal of hardware description languages is in the expression of computing, not in the
generation of the specific syntax by which that computation is expressed; i.e. the language is a means to an end, not an end
unto itself. While this seems obvious, there are those who take the opposite tack - namely that the purpose of the program-
ming language is to record all relevant design decisions and further, that any support for comments in a programming lan-
guage are an admission that providing such all-encompassing design flow support has not been possible. Such an extreme
position is not necessary here as only the aspects of the specification represented in the language is relevant.

In Figure 18 the traditional levels of a hardware description language program are shown. Description is accomplished
through various levels of abstraction until finally a machine can be instructed to perform the computation; this defines the
meaning of that hardware description. The trick of hardware description is to define the intervening abstractions so that
they can ultimately be implemented efficiently.

The following sections argue that the two intervening levels of Figure 18, the program and interpreter levels, are inciden-
tal to the task at hand and introduce interpreter bias into implementations. Interpreter bias is the term that is being used
here for tendency of final implementations to look more and more like a general facility which indirectly computes by
manipulating a data structure representing the computation. Optimizations tend to reduce this effect, but do not com-
pletely erase it because of their partial nature. A language’s interpreter bias prevents the optimization of these data struc-
ture manipulations into native machine-level operations.

One can treat the top level of the hierarchy shown in Figure 18 as a specification of the computation to be performed on
the machine. The job of the synthesis system, in the case of hardware, or the compiler in the case of software, is then to
produce something executable at the lowest level (the machine) which will satisfy the specification. An option for defining
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the meaning of the top-level specification is to use quantified logic formulae or some sort of exhaustive listing of input/
output pairings. Clearly though, for this notion of specification to be practically useful it must to be more concrete and
succinct than large masses of formulae or an unstructured mapping. Elaborating the representation of a true and meaning-
ful specification for computation is the subject of the next sections.

Program Specifications

The goal of high-level design is to take a specification (an idea) and produce something (an executable) that will compute
the required function. A specification is something which defines the relationships that shall hold on any implementation.
Many specifications are considered to be but an exhaustive list of the possible input/output relationships that hold over all
possible implementations. Ideally this exhaustive list is succinct. For a small class of simple functions, this can be done.
The boolean functions are such an example, for succinct specifications of logic functions can be given in either sum-of-
products or as a binary decision diagram. For more complex functions, especially those whose output depends on past
inputs or outputs (i.e. they maintain internal state) the task is far more complicated.

The key point to notice about a specification is that it indicates what observations the environment wishes to be able to
make about any implementation. At the extreme case, if nothing can be observed, as is the case with a so-called “black
box,” then the exhaustive list of input/output pairs is required. At the other extreme, if everything can be observed, then
the result is a “glass box” that is a pure structural description of the computation. Somewhere in the middle is the notion of
specification that is desired here.

The idea is to define specifications that allow for a trade-off along the axis of internal visibility; ranging from black box to
glass box. Each of these alternatives will have varying degrees of succinctness and, conversely, flexibility of implementa-
tion.

Regular Expressions as FSM Specifications

What can be observed from the study of regular expressions [HU79] is that they provide just such a specification for the
class of finite automata. As has already been argued, the use of the finite state machine model'6 is a good one in the case
of real-time software and simulator kemels, so it is very convenient that regular expressions are a succinct specification
for the domain of finite state machines.

For each regular expression, there is some set of finite automata that recognize that regular expression. In fact, it is conve-
nient, for this example, to examine the software tool which produces one of these automata for the case of software: lex
[LS75). The input to the program is a set of regular expression which is taken as the specification of the automaton to pro-
duce. Depending on the required state-space size and code-size trade-offs requested, the resulting implementation is either
larger and faster or smaller and slower.

On the other hand, examine this same example in the light of interpreter bias. by considering the case of a hand-coded
scanner versus the lex-generated one. It would take an extremely powerful optimizer to determine the function of the
hand-generated scanner to the level of detail required for use as a specification for the automaton. On the other hand, the
regular expression specification is entirely adequate for it only identifies the minimal set of points of user-observability in
the final automaton.

The use of regular expressions as a specification for a finite automaton was not presented only to illustrate the notion of a
language interpreter versus a program specification. This exact idea is used to define the specification nature and thus the
compilation procedure for the seemingly imperative language, Esterel and that procedure is outlined in Section 3.3.2.

16. Finite state machines, finite automata, (finite) state transition graphs and regular expressions can all be shown to be equivalent
(HU79]. Here these terms are used interchangeably with regular expression emphasizing specification and finite automata or fmite state
machine emphasizing implementation.
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Chapter 3

Synchronous/Reactive Languages

One of the most well-developed and extensively published synchronous languages is the Esterel language [CIS88)
[Ber91] [BDS91] [BCG86) [BC84].1” What is presented here by no means represents the whole language, rather only the
most relevant highlights of semantics are presented with a few examples of syntax. This chapter is focused mostly on
Esterel but the final section, Section 3.4, will describe the implications of the synchronous assumptions for VHDL.

Esterel, like other synchronous languages, requires that the strong synchrony hypothesis hold, as described in Section
2.3.2. The Esterel program is thus a specification for the computing which is to be performed rather than a representation
of a data structure on which computation shall occur. Also, as a synchronous language, an Esterel program is reactive, that
is it computes only in response to changes in its environment. All changes in the environment, even the passage of “real”
time are measured in terms of events impinging on the program. This indistinguishability between metric time (in sec-
onds) and symbolic time (in “ticks™) will become important in the next section as the examples show the interchangeabil-
ity between the signals SECOND and BUTTON with no loss of description.

The strong synchrony hypothesis allows the following claims can be made about Esterel semantics: non-delay events take
zero time and delay elements take exactly the amount of time specified. The effect of the strong synchrony hypothesis is
the separation of the correctness of an Esterel program into two independent parts: a functional correctness part and a tem-
poral correctness part. This independence of function and time is much the same as that which is found in clocked digital
circuits where so long as the circuit is able compute its next-state and output functions faster than the clock cycle time, the
circuit is considered to be correct. Different methods are used to verify the function and performance of the circuit, within
the clocked-digital paradigm they are seen to be independent. In the case of Esterel programs, the strong synchrony
hypothesis allows for different means of verification to be applied to each aspect, e.g. automata-theoretic methods to ver-
ify functional correctness and linear instruction scheduling methods to verify the temporal correctness.

31 Overview of the Language

The Esterel language is divided into two levels in order to define a simpler sound semantics for the language. There is a
core language over which the semantics is defined. In addition, there is an extended language which is defined in terms of
the core. I will only review the key concepts of the core language as the extended language provides only syntactic conve-
nience and it adds no new semantic power.

The important semantic feature of the language is that it has both an interpretive aspect and a specification aspect and
these are both exposed in the construction of the Esterel interpreter and the Esterel compiler respectively. These aspects
are described in Section 3.3.1 and Section 3.3.2. The interpretive aspect indicates how the execution of a statement
changes the state of the interpreter and what successor statement will be executed. The specification aspect is consistent
with the interpretive aspect but indicates only what computations and states must be observed in any realization of the
specification so that the compiler generates software which respects this minimal set of observability conditions.

The execution semantics of Esterel follows the synchronous paradigm. Time is separated into discrete instants between
which nothing of interest occurs. State transition computations are considered to be instantaneous and the only delays are

17. The descriptions presented here are from [BDS91] and so should be consistent with the latest available compiler [CIS88].
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those which are explicitly declared. There is an issue of the causal correctness of an Esterel program; but [BC84] demon-
strates how checking for this condition can be performed statically during compilation.

Esterel programs consist of networks of signals and processes with processes maintaining statements and variables. Sig-
nals are the only means by which processes are allowed to communicate (shared variables are disallowed). A process has
an interpretative aspect as the statement which will be executed in the current instant and a specification aspect as the cur-
rent state (of a finite state machine). Variables hold data values which are local to a process. The variable values and the
signal values available on the input signals determine the next statement to be executed, or the next state to be entered,
depending on which aspect of a process one is considering.

3.2 Core Language Constructs

Seven core language constructs are presented here which show the essential characteristics of Esterel. There are of course
a host of other constructs which are not presented here; they can be found in [CIS88).

The basic construct of Esterel is the statement. The purpose of a statement is to perform some work and possibly pass con-
trol on to a successor statement in the same instant. If statement completes its work and passes control, then the statement
is said to terminate in the first instant. If the statement does not release control in the first instant then it must be a delay of
some sort.

Each of the statements below are part of the core language. Each statement is presented with its syntax, informal seman-
tics and an indication as to whether the statement terminates in the first instant.

nothing
This statement does nothing and terminates instantaneously. It is mainly used in conjunction with other constructs
to define the meaning of statements in the extended language.

halt
This statement does nothing and does not terminate - ever. It too is used mainly to define statements in the extended
language.

emit signal(exp)
The value of exp is made available on signal in the current instant. The statement terminates in the current instant.

loop
instruction
end
The instruction is executed repeatedly. It is a static error for instruction to take zero time for that would repre-
sent an infinite amount of work being completed in zero time,

[

instruction1
]
instruction2
Il
]
instructionN
]
Each instruction is executed in parallel, synchronously with the others. The parallel statement completes when
every instruction has completed. This is a statement where the distinction between nothing and halt is apparent
and is often used to advantage.
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tag Tin
instruction
end
The instruction is executed in the current instant. If an exit T is executed then the whole tag-body terminates.
Otherwise the tag-body terminates when instruction does. This is another statement where the distinction
between nothing and halt is apparent and where that distinction is useful in conjunction with looping and parallel-
ism in the contained instruction.

do
instructiont

watching signal(variable)

timeout instruction2
The watching statement has a rather large syntax, however, it is the one construct in the core language which
accomplishes “real work” for only it introduces delay. The instruction1 is executed in the current instant; if it ter-
minates then so does the watching statement. If signal occurs in the current instant then instruction1 is killed and
control is passed with variable bound to the value on signal at the time of the event. The time-out instruction2
is executed if an event on signal occurs before the main instruction1 terminates.

There are other constructs in the core language which provide for sequential composition of statements, parallel composi-
tion, conditional execution, instantiation of local signals and variables and operations on variables. There is also a weak
module construct which provides for macro-like modules, an example of which is presented in Section 3.2.1.

A Small Example

The following simple examples demonstrate the use of the core language. Of note in these examples is the duality
between so-called relative time demarcated by events with names like BUTTON and so-called metric time which is mea-
sured in seconds. Here both are measured in terms of events on the signal BUTTON and SECOND respectively!®,

do

await BUTTON;

emit ACTION
watching SECOND
timeout

emit ALARM

The statement above implements the specification “wait for a button press and then do the action or else time-out in one
second and ring the alarm.”

trap END in
{
await SECOND;
emit ALARM;
exit END

await BUTTON;
emit ACTION;
exit END

18. This implies that if one is interested in an Esterel program with a real time behavior then that program will have to exist in an envi-
ronment in which it is “‘poked” to tell it to keep count of the passing (nano)seconds. Ensuring that the software can compute at speed is
the temporal verification obligation alluded to in Section 2.3.2.
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]
end

This second example uses the parallelism operator and a tag-body to get the same effect. Its informal specification would
be “wait for one button press and perform the action while waiting for one second at which time, ring the alarm. Quit after
which ever occurs first.”

3.2.1 AnExample - A Mouse Handler

This example shows how Esterel is used to create a simple application. This example produces indications of the number
of mouse clicks on the mouse in a given interval.! The example is broken up into three separate modules, Counter,
Emission and Mouse.

The Counter module counts occurrences of CLICK. When a RST is present, Counter emits a valued signal VAL whose
value is the number of occurrences of CLICK since the last reset.

module Counter:
input RST, CLICK;
output VAL(integer):

var v: integer in
do
v = 0;
every immediate CLICK do
v i=v + 1;
end;
watching RST;
emit VAL(v):;
end

The input signals RST and CLICK in the above code are “pure” in the sense that they do not carry any value and what is
important about them is merely their presence or absence. The output signal VAL on the other hand carries a value,
although all that is important with respect to the execution of the example is whether or not a value, any value, was emit-
ted onto VAL in an instant.

The module Emission processes the value of VAL which is assumed to be consistent with the definition found in module
Counter. The Emission module outputs one of NONE, SINGLE or MANY to indicate which decision was made; the
count is communicated to Emission via the signal VAL.

module Emission:
input VAL (integer);
output NONE, SINGLE, MANY;

await VAL;
if ?VAL = 0 then
emit NONE

19. This example of a mouse handler written in Esterel is taken directly from [BDS91], page 1296, as is the description of the function
of the mouse handing code.
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else
if 2vAL?? = 1 then
emit SINGLE
else
emit MANY
end
end

Finally, the main module, Mouse in a global loop puts in parallel a copy of the Counter module and the Emission
module and a process which resets the Counter every five TOP.

module Mouse;
input CLICK, TOP;
output NONE, SINGLE, MANY;

signal RST, VAL(integer) in
loop
copymodule Counter
B
await 5 TOP;
emit RST
I
copymodule Emission
end
end

The important point to notice in the example is the instantaneous communication which is declared. There is instanta-
neous communication inside the parallel statement since the second branch emits the signal RST that is received by the
Counter in the first branch. Then at the same instant, Counter emits VAL that is received and processed by Emission.

A second point to notice in the example is the weakness of the module construct. It is merely a macro construct and pro-
vides only a convenient textual substitution mechanism. What is desired in large designs is true hierarchy which allows
for modules to be abstracted in terms of simpler automata that specify the same behaviors.

3.3 Interpretation and Specification

As mentioned previously Esterel can be treated both as a language to be interpreted and as a specification for which there
exists a satisfying implementation. In this first sense it is no different than any other formal language; it is in the second
sense that it is different. Both of these treatments are reviewed in the following subsections..

3.3.1 The Interpretation of Esterel

Because Esterel is a formal language which describes computation, it has the property that it can be interpreted. The defi-
nition of this interpreter is hinted at in both [BCG86] and [BC84] but as that implementation was far and away slower than
the result of the specification treatment.2! not much attention is paid to the interpreter. The purpose of reviewing its exist-
ence here is simply to show that it exists but that its implementation is quite awkward.

20. The notation ?VAL indicates that the sigral namespace should be used for acquiring the rval in this expression. There are five
namespaces in Esterel, as described in [CIS88]. In this example one can see two namespaces straight away: the signal namespace and
the variable namespace.
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The interpreter consists of a set of potential functions which are maintained. These potential functions are data structures,
one for each signal, which describe the possibility of an event occurring on that signal in the current instant. In addition to
existing and having to be maintained by the interpreter, the implementation of the functions themselves is problematic.
The functions are charged with the duty of computing the successor statement to execute after a given event occurs. This
is problematic because the execution semantics of Esterel is not syntax directed. That is the successor statement is not
always trivially obvious from the syntax of the statement being executed. Consider the following example:22

input single signal sl (int),
output single signal s2(int) in
var X, Y: int in
await sl(X);
every next sl(Y) do
emit s2(X):
X =Y
end
end
end.

The successor statement upon receiving an input event on 81 is as follows:

input single signal sl(int),
output single signal s2(int) in
var X := 3, ¥Y: int in
every sl(Y) do
emit s2(X):
X =Y
end
end
end

This second statement is essentially a “currying” of the data into the new process; this new process must await further
events.

The definition of the interpreter for Esterel is obtained through the use of derivatives of regular expressions [Brz62]. The
interpreter computes these derivatives in the form of successor szatements on the fly. This was the original definition of the
meaning of an Esterel program. Subsequently it was observed that only a finite number of such derivatives exist and fur-
ther that these implied a finite number of successor statements and that all derivatives and successors could be precom-
puted, numbered, and stored as the compiled form of the program. Thus the compiled version of Esterel was developed
and the interpreter faded away.

33.2 The Compilation of Esterel

Compilation in Esterel is derived from the definition of execution of the language. Execution consists of processing
events. An event is the conjunction of the conditions on each of the signals in the whole Esterel program.

21. The implementors describe the interpreter acting on the order of minutes while the compiled code (ireating the program as a speci-
fication) resulted in millisecond response times - quite adequate for real-time software applications.

22. This is taken directly from [BC84). There have been several changes to the Esterel language between the publication of [BC84] and
the release of [CIS88] which are being ignored here.
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E = (5;=V) A (s=Vy) Ao A (s,=V))

Each event is a conjunctive predicate of the values on each of the signals. The boolean values in the conjunctive form are
interpreted as a bit vector, the complete set of which consists of 2" codes. This set of codes is interpreted as the set of
encodings of an alphabet for a finite automaton [HU79].

The conditions of synchronous parallelism ensure that there is only one event per instant and thus that there is only one
state transition per event. This is exactly the condition required for a finite automaton. The alphabet and the transitions
indicated by the program text are combined to form a set of states and state transition functions for the finite automaton.
The standard algorithms [HU79]{ASUS6] are used to generate automata from this point.23

What is interesting to note here in this process is that it exploits exactly the same algorithms used in the Unix scanner gen-
erator lex [LS75]. The algorithms for determining the regular expression implied by the program text are unique to
Esterel but the essential algorithms of the Esterel compiler have been published and used elsewhere extensively. Those
parts are the conversion of the regular expression through its derivatives [BRZ62][BCG86] and into automaton code.

The novel aspect of the Esterel compiler over and above leX, for example, is the dynamic assembly of the alphabet for the
finite automaton based on the boolean algebra induced by predicates on the signal conditions?* and the imperative-style
that the syntax of the language gives to what is fundamentally a regular expression specification for 2 finite automata.

This review of Esterel has described enough of that language that relationships between it and VHDL can easily observed;
those relationships are the subject of the next section.

34 Implications for VHDL

Esterel and VHDL are, at first glance, very close in the style of description, and in the major artifacts of the languages.
Both languages contain processes, signals and have an execution semantics described in terms of events and waiting on
events. There are differences of course, and the purpose of this paper is to define what those differences are so that only
the subset of VHDL which has the same semantics as Esterel will be used as the synchronous semantics.

The Treatment of Processes

A process in Esterel is a reactive entity which consists of a nested set of statements. The interpretive semantics of the pro-
cess is that of the next statement to be executed in the first instant, upon reacting to some event. The compilation seman-
tics of the Esterel process is that of a finite state machine in a specific state which will execute a state transition function
on the next event.

A restricted class of VHDL processes posses these same qualities. A process is considered to be waiting on its sensitivity
list for events to occur on that sensitivity list. When an event occurs, then the process is activated and it executes. For
example, the following would be an implementation of the Counter described in Section 3.2.1:

architecture somehow of something is
signal VAL: integer := 0;
begin

23. In [BDS91] the claim is made that the automata generated by the Esterel compiler [CIS88] are minimal.

24. This boolean algebra formulation is the same as that which is required by COSPAN [HK90] and other automata-theoretic verifica-
tion tools.
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Counter:

process (CLICK’ Transaction, RST’Transaction)
variable v: integer := 0;

begin

if CLICK’Transaction then
v :i=v + 1;

end if;

if RST’Transaction then
VAL <= v;

end if;

end process Counter;
end somehow;

Of immediate note in this description is that an Esterel process can terminate while a VHDL process never terminates.
Within the notation of Esterel it is as if the VHDL process has an implicit do forever loop around it. Thus the translation of
Esterel back into VHDL, as was attempted in this last example, is not directly defined. This should not be a problem for
the purposes here because the translation being designed is VHDL to Esterel; the second can model the first, but not vice
versa, Further examples of syntactic translations between VHDL and Esterel are given in Chapter 4.

The Treatment of Signals

The second area of similarity between VHDL and Esterel is the use of signals and events on those signals. A difference
between the two languages exists however in that events on wires in VHDL occur singly, E = (s, =V,) while in Esterel
an event on a wire is really the conjunction of all of the signals which are active at a given instant:

E = (Sl E‘/1) VAN (SZE V2) A e A (snE Vn)
This is the essential distinction between the synchronous semantics of Esterel and the discrete event semantics of VHDL.

In Esterel the event space forms a boolean algebra® which is interpreted as the alphabet of the finite automaton. The main
idea behind the synchronous semantics of VHDL is to derive this same sort of relationship among the VHDL events by
subsetting the allowable temporal behaviors that the restricted simulator will support. This will induce the boolean algebra
onto the VHDL event space and define the synchronous subset.

The Treatment of Time

Time in VHDL is separated into two levels, as shown in Figure 20. The upper level is intended to be used in the modeling
of real-world events and is measured in seconds (or fractions thereof). The lower level is called unit-delay or A-delay and
is intended for use by the simulator to allow events on signals to propagate until stability is reached. There is no restriction
on the number of A-delay events which can be fit between any two macro-time slices. As such, the description of Figure
21 computes an infinite amount in zero seconds.

The central idea behind the synchronous subset of VHDL is that the A-delay level of time can be done away with under
certain conditions. The use of A-delay can be done away with if at each point the computation implied by the event-prop-
agations is of fixed length. An example of this is shown in Figure 21. Shown in Figure 22 is a common example of a situ-
ation where the A-delay nature of the simulation can be replaced by a simple function which relates the triggering event to
the result event. In this example, the standard simulation semantics dictates that an event on A or B will trigger the first

25. See [Kur90] for more specific details on the relationships between boolean algebras and the alphabets of finite automata.
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Figure 20 The Two-Level Model of Time in VHDL
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Figure 21 A Non-Reactive Clock in VHDL

architecture not_reactive of CLK is
signal clock: bit;
begin
process
begin
clock <= not clock;
end process;
end not_reactive;

continuous signal assignment to recompute the value on Tmp; this would then cause the value of O to be recomputed.
Two A-level iterations are required by the simulator.

Figure 22 An Example of Needless A-Delay

entity Some_Function is
port (A, B, C: in Bit; O: out Bit);
end Some_Function;

architecture Reactive of Some_Function is
signal Tmpl: Bit;

begin
Tmpl <= A and B;
0 <= Tmpl or C;

end Reactive;

Having done away with the A-delay level of the VHDL time model, the only remaining level is the macro-time level. The
synchronous model of time schematically is shown in Figure 2325,
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Figure 23 The One-Level Model of Time in Synchronous VHDL

Computing the Reaction

Time in terms of events

26. The strong synchrony hypothesis says that the computation of reactions takes no time and the actual situation of it taking it some
time is shown in the figure; this is done for the purposes of clarity and to allow the reader to directly relate Figure 23 to Figure 20.
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Chapter 4

The Synchronous VHDL Subset

The argument presented earlier was that the only truly sound way to define the specification aspect of VHDL was to do it
from the semantics forward to the syntax and so the restrictions on the abstract simulator will imply restrictions on the
constructs in the language. The purpose of this section is to state that set of restrictions, which is surprisingly simple: there
are four basic restrictions - all others are derived from this essential set.

The Synchronous VHDL subset is defined as the full VHDL-1076 language with the following four proscriptions:
1. The signal queues for managing events are restricted to be of length one.

2. The sequential code in a process must execute without a stack.
3. The use of dynamic storage allocation is disallowed.
4. Signal propagation paths must be causal.

These restrictions on the abstract simulator are very simple, but by their application, the behaviors allowed in the abstract
simulator are transformed from the potentially infinite in space (memory) and time (execution time) to the finite in both
dimensions. The importance of these finiteness constraints is that they allow for a strong definition of the semantics of
VHDL. Processes are constrained to act as finite state machines and thus the whole VHDL program acts as a network of
communicating finite state machines. In this section the Synchronous VHDL subset is defined and a meaningful way of
creating implementations based on the finite-state semantics is provided.

The execution semantics of VHDL under the restrictions outlined above are the same as those of the synchronous model.
Thus, the subset simulator behavior, while remaining consistent with that of the full discrete event simulator, is defined in
terms of event reactions, i.e. processes compute only as a reaction to events on signals to which they are sensitive. The
utility of defining the subset semantics in terms of event reactions is that there exists efficient techniques for deriving a
finite automata-based implementation in this case. These algorithms involve computing the event derivatives of the pro-
gram and using those derivatives as the states of an automata that recognizes the regular language defined by the pro-
gram’s events [Brz62] [BS86]. This semantics and implementation in terms of event derivatives is the same as that which
is defined for the Esterel language [BC84]. This similarity is a connection that is used to advantage in this section in the
definition of the properties of the VHDL subset, and also in Chapter 5 in the implementation of the prototype simulator.

The implications of the four basic rules defining the Synchronous VHDL subset establishes the connection between this
subset and its synchronous semantics. Instead of describing the event derivatives on the VHDL language directly, a trans-
lation procedure is defined which relates syntactic structures in the VHDL subset to programs in the Esterel language.
Thus, the existing Esterel compiler [CIS88) is used both to give an operational meaning to the VHDL subset and also to
provide prototype simulators as is described in the next chapter. The sufficiency of the basic restrictions and their implica-
tions on the VHDL constructs that are supportable in their presence are reviewed in the following two sections, Section
4.1 and Section 4.2. The correspondences necessary to define a syntax-directed translation from VHDL to Esterel are
shown in Section 4.3. This translation is, in lieu of an explicit algorithm for compiling the VHDL programs directly to
automata, the definition of the Synchronous VHDL subset. The operational semantics defined for the Esterel language
[BC84] in terms of event derivatives and finite automata then serves as the basic computational model with the translation
procedure defined here being used to extend that definition to apply to the Synchronous VHDL subset.
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4.1 Implications of the Restrictions

The four restrictions listed above are designed to ensure that the synchronous subset of VHDL is still consistent with the
full VHDL language, yet constrain the simulator to finite memory requirements and finite execution time. We can be con-
fident that these restrictions do not change the semantics of VHDL for they only subtract possible behaviors from the full
abstract simulator; no new behaviors are defined. This is the necessary condition for the restrictions and the sufficient con-
dition is that the restrictions are the smallest set of restrictions which induce the desired finite behavior.

That this set of restrictions is minimal can be seen from a quick argument involving the deletion of any one of the rules.
Taking each rule in turn, it can be seen that the exclusion of any one of these rules from the definition of the synchronous
subset, and thus the corresponding admission into the subset of the constructs governed by that rule, allows for non-finite
behavior in the abstract simulator. The basic restrictions are reviewed below and a description is given of how each
restriction aids in ensuring that the VHDL subset is reactive and finite-state and further that a removal of any restriction
would allow for undesirable behavior. A description of the effect of these restrictions on the VHDL language constructs is
deferred until Section 4.2.

Finite Memory Requirements

The first rule restricts the signal queues to be of unit length and so it ensures that the simulator operates in both finite space
and finite time. In the full VHDL language, signals events are maintained on a queue of pending events. This queue’s size
is unrestricted since the use of waveform assignments, transport or inertial delay (the after clause in the signal assign-
ment) can append an arbitrary number of events. These pending events indicate future activity of the simulator and so con-
stitute a potential for both an unbounded amount of state and an unbounded amount of computation. The goal is to restrict
the simulator to a fixed and bounded amount of state such that the occurrence of any single event completely determines
the next-state of the simulator.

The second two rules restrict the other ways in which a VHDL model can create arbitrary amounts of state: implicitly
through the use of stack-based computations and explicitly through the use of dynamic memory allocation. The goal of
restricting the VHDL language is to ensure that the model can be treated as a specification for a finite state machine.
Clearly then if this goal is to be attained, language mechanisms for creating and maintaining potentially unbounded
amounts of memory must be proscribed.

Finite Reaction Computation

Having taken care to ensure that no VHDL description in the subset can create or maintain a non-static amount of mem-
ory, there is still one more aspect of the computations which must be constrained in order to ensure that the descriptions
fall within the reactive model. Care must be taken to ensure that any computation triggered by an event will complete in a
fixed amount of time. This condition summarizes one of the most important assumptions of the reactive model: the syn-
chrony hypothesis where the system finishes computing its reaction before the next event occurs. Simple as it may seem,
this requirement has a number of interesting effects on the subset.

The direct effect of restricting each reaction computation to be finite is summarized by the fourth rule: that all signal flow
paths be causal. In this case causality ensures that the result of an event which causes the system to compute its reaction
does not further cause the system to react: infinite oscillations are disallowed. The condition that all signal flow paths be
causal simply means that there may be no cycles in the signal flow graph of the VHDL program.27

27. Iis interesting to note that the VHDL-1076 standard does not explicitly disallow A-time oscillations. Many VHDL models using
this aspect of the language while executing on (correct) simulators will effectively infinite loop and attempt to use an infinite amount of
memory for the signal queues of pending events; the simulator ultimately fails due to lack of memory resources. Thus there are exam-
ples of “correct” VHDL which are sure to cause a valid simulator to fail. It is considered by most simulator-builders that the causality
condition (identifying cycles in the signal flow graph) is too time-consuming to check for large models. The condition is left unchecked
and it is thus a “‘programmer error” to allow such cycles to occur in any VHDL model [GI90].
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A second effect of the finite computation rule is that there may be no unbounded sequential executions commencing from
an event. This has the effect of requiring that all potentially unbounded loops be broken by a wait statement. Breaking all
potentially unbounded loops with a wait statement ensures that the computation of a reaction can be done in a fixed and
finite amount of time.

4.2 Implications on the Syntax

The four basic restrictions outline a broad set of rules for accepting or rejecting constructs and construct idioms from the
VHDL subset. An out line of the effect of the restrictions in terms of the constructs and construct idioms which are disal-
lowed is given in this section. The Synchronous VHDL subset is defined as all of the VHDL 1076 language subtracting
off the constructs and structures which are described in this section.

4.2.1 Restriction 1 - Time Queues of Length One

Restricting the time queues to be of length one has the obvious effect of removing the time queues from the abstract sim-
ulator model since time queues of length one allow for a single value to be defined on the signal. The effect of this
removal is that the simulator ceases to require the representation and manipulation of explicit signal queues such as the
one shown in Figure 24. Instead, the signal driver values can be represented explicitly in a single variable which is
updated by signal assignment. This variable, atomically updated, becomes a state variable of the final automaton under the
synchronous/reactive compilation algorithm.

Figure 24 A VHDL Signal Queue and the Process that Created It

signal S: integer;

1 |Snsp—p] 2 |[7ns ]| 6 [1Onsj—P={ 1 |30ns
3 N1/

signal s: integer;

process
begin
s <= 3, 1 after 5 ns, 2 after 7 ns, 6 after 10 ns,
1 after 30 ns;
wait;
end process;

Based on this restriction, the following list of items describe constructs which are disallowed due to the lack of signal
queues. Each restriction is described with a general title of the restriction, reason behind the restriction and a description
of how the restriction can be implemented in the form of a static check on the VHDL source text. The important point of
this last item is that the restriction can be checked at compile-time.
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Inertial Delay
Any construct in the syntax which supports inertial delay28 is disallowed with the most obvious one being the after
clause in signal assignments. Inertial delay must be removed for it cannot be supported on a time qzueue of length
one. A further point is that the preemption allows for hidden state to be stored in the signal queues. 9 The goal isto
ensure that all state is explicit so that it can be identified and compiled into the final automaton.

This restriction is implemented by identifying the use of inertial delay - that is by identifying the use of the after
keyword in signal assignments.

Transport Delay
While transport delay is not considered as intractable as inertial delay by some [AUG89], there is still an issue of
the implicit state storage on the time queues. This implicit state storage must be disallowed in order to ensure reac-
tiveness of the description, so the use of transport delay must be disallowed also.

This restriction is rather simple to implement as it requires the recognition of the transport keyword in a signal
assignment statement. Implicit uses of transport delay as is the case in waveform signal assignments commencing
with an inertial delay can be identified by recognizing and disallowing the waveform assignment.

Signal Attributes, Part 1
Most of the signal attributes are disallowed because they require the management of history information about the
signal queue, e.g. when was it last assigned to, for how long has it not been assigned to, when did it last change
value and what was its value when it did change and the like. These attributes are: Delayed, Stable, Quiet, and
Active respectively

The restriction is implemented at compile-time by identifying the uses of the proscribed signal attributes.

Signal Attributes, Part 2
Other derived signal attributes are disallowed because they return the simulation time at which some effect
occurred. These have no physical or specification correspondence and so are disallowed. These attributes are:
Last_Active and Last_Event.

The restriction is implemented at compile-time by identifying the uses of the proscribed signal attributes.

Signal Attributes, Part 3
The final remaining signal attribute is disallowed t0o because it can be implemented at the user level and thus need
not be built into the subset language. This attribute is: Last_Value.

The restriction is implemented at compile-time by identifying the uses of the proscribed signal attribute.

Signal Operations
It is possible to both implicitly and explicitly disconnect a driver from a resolved signal in VHDL. This disconnec-
tion can be accomplished implicitly through the use of guarded signal assignments or explicitly through the use of
null valued transactions in the signal assignment or through the disconnect statement. As disconnection operation

28. There are two delay models defined in VHDL 1076: inertial delay and transport delay. Inertial delay is used to model the physical
effect of gate drive; if a semiconductor device is not driven long encugh with the new value then the new value does not “stick.” Inertial
delay has the effect of filtering out pulses which are shorter than the indicated delay. Transmission delay is used to model the physical
effect of a transmission line which passes pulses of any width without modification; the delay aspect is the latency of the transmission
medium. More detailed descriptions of these delay models and their uses in modeling can be found in the literature [LSU89][-
Coe89][ALG+91]

29. The notion of preemption in inertial or transport delay is derived from the truncation of the signal driver queue which occurs when
an earlier event is registered. See [LSU89), pages 75-82.
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requires the corresponding manipulation of a runtime data structure, it is disallowed in the context of Synchronous
VHDL.

This restriction is implemented by recognizing the explicit use of null valued transactions in the signal assignment,
the use of the disconnect statement and also by recognizing the use of guarded signal assignments which implic-
itly use the disconnect operation. All proscribed uses are statically obvious from the source text.

4.2.2 Restriction 2 - No Runtime Stack

The central feature of the reactive compilation strategy is the identification of every state variable and the placement of
each in a single statically-allocated piece of storage. The automaton code generated by the reactive compiler computes by
identifying the event for the current instant and by computing an output event and a next state value based on that event
and the current state. The requirement that the current state be stored in explicitly materialized variables stems from the
requirement that there be no indirect interpretive overhead in this output and next-state computation as would be required
if intervening data structures such as runtime schedulers, memory allocators, signal queues - or a runtime stack.

It is interesting to note that the lack of a runtime stack in the final executable prevents the use of recursive subprograms,
but does not necessarily prohibit subprogram use in the general case. One can consider that all subprograms are implicitly
inlined. That is they are expanded in place as if they were but semantically-defined macros. Subprograms can be consid-
ered to be implicitly inlined as it is not necessary to explicitly do the inlining. However, it may be beneficial to share the
implementation of a given subprogram for reasons of performance or resource consumption, Within the confines of a soft-
ware simulator, this implementation sharing can be easily accomplished with a simple register-linkage calling-convention
for the subprograms (c.f. the subroutine calling conventions of older FORTRAN dialects), while in the hardware synthesis
case the sharing can be accomplished by determining a schedule for the use of shared functional units.

The following items describe constructs which are disallowed because they require a runtime stack.
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Nested Functions or Procedures
Nested subprograms, an example of which is shown in Figure 25, are disallowed because the support required for
these is explicitly stack oriented. Further they require the implicit management of an internal data structure called a
display or static link in order to execute them [ASU86].

Figure 25 Example of a Nested Procedure Requiring a Static Link

procedure p{(x: in integer; y, z: out integer) is

procedure g(a: in boolean; b: out integer) is
begin
if a then
b :=x+ 1;
else
b :=x * 10;
end if;
end q;

begin
g(true, y):
q(false, z);
end p;

This restriction is implemented by a simple restriction on the types of objects which may be declared in the declara-
tion-list of a procedure or function. Allowing only types, variables and constants, but not subprograms to be
declared there ensures that nested procedures and functions cannot occur.

Use of Recursion
Although the use of procedures and functions can be supported within the restrictions outlined, the requirement
identified earlier is that there be no stack. This essentially requires that all subprograms are be implicitly inlined and
thus the use of direct or indirect recursion cannot be supported.

‘This restriction is easily checked by determining if there is a cycle anywhere in the call graph of the VHDL subpro-
grams in a process. Implementing this check for all processes in the VHDL program ensures that there is no use of
direct, indirect or mutual recursion in any process.

Dynamically-Sized Objects
It is possible in VHDL to declare that the size of an array be determined at runtime. The array size is fixed over the
life of the array, but is determined only at the time of elaboration of the block containing the declaration, or the at
the time of the execution of the array slice expression.

This ability to process non-statically-sized objects results in the VHDL interpreter having to support management
techniques for dynamically-sized objects. An example of the use of such is shown in Figure 26 where the use of the
unconstrained type indication bit_vector in the function resolve results in an unknown size for the variable bv at
compile time. It is only when the function is invoked that the length of the array is bound.

The restriction against dynamically sized objects can be implemented in the simple case by disallowing uncon-
strained type declarations and slice expressions. Thus, for lack of a way to declare variable-sized objects or an
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Figure 26 A Use of a Dynamically-Sized Array

function resolve(bv: in bit_vector) return bit is
variable ret: bit;
begin
if bv’length = 0 then
ret := ‘0’;
else
ret := bv(l);
end if;
return ret;
end resolve;

subtype resolved_bit is resolve bit;

expression operator which will produce a variable-sized result, it will be possible to have explicit size information

on each data value in the program, including arrays.

This restriction will solve the problem completely but will have the unfortunate side effect of making the construc-
tion of packages containing semi-generic subprograms difficult. This is because a great deal of expressive power is
derived from the ability to query an array to determine its length and range at runtime. This allows one to write rou-
tines which are implicitly parameterized about the size of the array values upon which they are called. The example

shown in Figure 27 is a reasonable use of this facility in the xor function.

Figure 27 A Subprogram Implicitly Parameterized over the Size of an Array

function “xor” (bv: in bit_vector) return bit is
variable ret: bit := ‘0’;
begin
for i in bv’range loop
if bv(i) = ‘0’ then
ret := not ret;
end if;
end loop:;
return ret;
end “xor”;

So, there is a need for the implicit genericity afforded by the export of runtime size information back into the lan-

guage. On the other hand, as stated previously, this runtime size information is problematic from the standpoint of a
reactive compiler. A possible solution to this problem is to push the issue back into the library management portion
of the compiler; that is, treat runtime size information as implicit genericity and force the library management por-

tion of the compiler to generate and store copies of the subprogram which are customized for the specific size val-
ues. References to these non-generic instantiations would then be used instead of the generic version. Using this
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suggestion, allowances can be made for the succinctness of exposition afforded by the access to object size
attributes while still remaining within the confines of the reactive compilation restrictions>®

Also, as with the case of the example shown in Figure 27 , this restriction against unconstrained type declarations if
implemented exactly as stated would have the unfortunate effect of disallowing bus resolution functions - a feature
which can be supported in a synchronous framework. Esterel supports the concept of multiply-driven signals
through the use of a composition operator (CI1588].3! In the case of VHDL, although the source text does not allow
for the direct observation of it, each use of the bus resolution function on a multiply-driven signal is statically
bound. The compiler has access to the number of drivers for the resolved signal and can determine at compile time
the size of the array which represents the vector of signal drivers.

Locally Static Objects
Objects in VHDL which are declared in a manner which is independent of the runtime activities are called Iocafjly
Static whereas objects which require runtime activities in order to bind all their aspects are called globally stati 2
Only locally static declarations are allowed in the synchronous subset for the size of a globally static object is deter-
mined by the context in which it is elaborated. This is a general principle which allows for the dynamically sized
arrays as described in the previous item as a special case. As an example, consider Figure 28 in which is shown a
globally static subtype declaration that requires the implementation of a runtime type checking system to ensure the
consistency of the type safety rules.

Figure 28 A Locally Static and Globally Subtype Declaration

procedure p(low, high: in natural) is
subtype locally static is integer range 0 to 10;
subtype globally static is integer range low to ‘high;
begin

end p;

Itis fairly straightforward to restrict the use of globally static declarations. The analysis required to determine
Wwhether a declaration is static in the global sense or the local sense is rather sophisticated, in the general case requir-
ing the full power of a VHDL compiler. While it is unfortunate that this check requires so much infrastructure, the
key point is that the check can still be performed at compile time.

4.23 Restriction 3 - No Heap Storage

Heap storage is required in the VHDL language by the ability to dynamically create unnamed values. These values are
referred to in the usual manner: via pointers, or as they are called in the VHDL type system “access types.” There is no
utility for pointer types and dynamic allocation in the finite-state, statically-allocated reactive computing regime. Thus, all
vestiges of the dynamic allocation facilities in VHDL are proscribed in the definition of Synchronous VHDL.

The following items describe the facilities in VHDL which allow for the processing of dynamic storage:

30. See [Hil83], Chapter 2 for an analysis of this issue in the context of Ada.

31. The “bus resolution functions” in Esterel are called “the composition operator,” and are always named *, but may be implemented
by any user-defined function with the appropriate dyadic signature. The effect and intended use of the composition operator is exactly

that of a bus resolution function.

32. This is exactly backwards from the intuitive sense of these words, however see pages 7-15 in the LRM [IEEE87]. The names can be
remembered by understanding that they denote how much information is required to complete the definition. Locally static definitions
may be fixed at analysis time because they require less information; globally static definitions must be fixed at elaboration time because
they require more global information about the design in which they reside.
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Access Types
Pointers are the only way to access items which have been allocated in the heap. No heap in the subset’s abstract
simulator implies no pointers.

Disallowing the use of the access type constructor is sufficient to implement this restriction. If one cannot declare
pointer-valued variables or subprograms, then the use of a heap is not needed.

The New Operator
Again, no heap implies that there is no need to allocate in the heap. The new operator is disallowed as is the use of
the corresponding implicitly-declared deallocate procedure.

4.24 Other Restrictions

There are a few other miscellaneous restrictions which are required to ensure that the simulator maintains its finite-state
aspects. In addition, these restrictions ensure that the resulting simulator does not require extra data structures to manage
the state of each process. It is this extra meta-state that is important to eliminate for its existence establishes the begin-
nings of interpreter bias. Having an abstract simulator that does not require hidden states will ensure that the effects of
interpreter bias on the resulting implementation will be minimized.

The Time Type
The time type is simply an artifact of the full VHDL simulator. It has no specification counterpart since we are spec-
ifying a reactive system and reactive systems are defined independently of their temporal aspects.

The removal of the time type is also convenient for it ensures that other constructs that make reference to time
removed. For example the removal of the time data type ensures that the now function, which returns the current
simulator time is removed from the synchronous subset.

The File Type
The file type constructor is only relevant in the context of a full simulator and it does not have relevance for speci-
fication. As such, its use is disallowed in the Synchronous VHDL subset.

42.5 Summary

The result of these restrictions is that the simulator can execute in finite space with the minimum amount of meta-state
(none). In addition, the specification aspect of VHDL is defined operationally by the execution of a description on the
abstract (finite-state) simulator that is it is simply the set of inputs and outputs that the program will participate in over its
lifetime. This set of input output pairing for each instant defines a symbol set and the set of pairings over time defines a set
of behaviors in the form of strings of symbols: the behavior of the program is defined in terms of a regular expression
defined on the symbol set composed of input output pairings. The purpose of the reactive compiler is to derive a finite
automaton for this regular expression which “executes” the program by performing state transitions and producing output
events in response to input events.

It is interesting to note that the Synchronous VHDL subset is completely devoid of any references to time. What this
means is that the Synchronous VHDL subset operates only at the A-delay or unit-delay level. While it was argued that this
was an extremely bad thing for the purposes of modeling because zero-time modeling has no physical correspondence, the
point here is exactly the opposite. The use of a unit-delay model for specification is useful because it leaves the temporal
aspects of the language out of the functional specification. In order to impress the specification onto the time axis, as is
required during a simulation, the synchronous VHDL program will have to be put on a test bench like the one shown in
Figure 9. As the test bench will have a vector application unit and a flight recorder which are not reactive, the Device
Under Test (DUT) will be operated with time explicitly imposed on it from outside. Thus the DUT’s environment will
enforce the use of metric time on the device at simulation time.

Because the DUT, as a specification, is a reactive entity, its metric time behavior only becomes defined when the DUT is
connected up to its environment. This is consistent with the notion that constraints on systems really propagate from the
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interfaces into the center of the design. It is also consistent with the idea of the environment constraining a system’s

behavior as is found in language containment verification [HK90]. Thus the reactive synchronous specification semantics
of VHDL fits naturally into the existing simulation paradigm with as a Device Under Test and also into the automata-the-
oretic verification paradigm as a system which needs to be connected to its environment in order to be completely defined.

43 VHDL to Esterel

There is a strong comrespondence between Synchronous VHDL as presented in the previous section and the Esterel lan-
guage. This correspondence is shown here by relating the core language concepts of VHDL to the core language of
Esterel. However, only the correspondences which motivate the full translation procedure of Chapter 5 are presented here.
The comrespondences shown in this section are important however for they show how a control structure in a VHDL pro-
cess is converted into a control structure of an Esterel process. The full translation of a VHDL process to Esterel requires
a bit more mechanism than has been defined so far since VHDL has both control-handling and data-handling aspects (i.e.
arrays, records, scalars and other user-defined additions to the type system). Esterel on the other hand focuses on describ-
ing only control aspects of computation and has rather weak data-handling capabilities requiring some extra notation to
support the data-handling capabilities of VHDL.

The essential parts of the core language of Esterel were presented in Section 3.2. The essential core language construct of
VHDL is the process with some number of wait statements in it. All other legal synchronous VHDL process forms,
such as a process with a sensitivity list or the dataflow forms, can be de-sugared into the basic form according to the lan-
guage reference manual [IEEE87); the basic process form is shown in Figure 29..

Figure 29 The Structure of a Reactive VHDL Process

process-name:

process
vhdl-declaration-1;
vhdl-declaration=-2;

vhdl-declaration-M;
begin

vhdl-statement-1;

vhdl-statement-2;

vhdl-statement~-N;
end process process-name;

The correspondence between the VHDL process and the Esterel process is not exact but it is indeed close. The Esterel
process is defined as a sequence of statements which can terminate whereas the VHDL process is an implicit “loop for-
ever” construct which is required to have at least one wait statement in it. The structure in Esterel which corresponds nat-
urally to the VHDL process semantics is shown in Figure 30. It has an outer “loop forever” wrapped around it to emulate
the semantics of the implicit loop of the VHDL process. The important details left out of these figures are the formulation
of the declaration-list and statement-list in the VHDL and Esterel versions and are dealt with later..

4.3.1 Syntactic Correspondences

The translation of VHDL statements however are a bit less obvious but still straightforward. They can be translated
mostly in a syntax-directed manner as is described in this section. This is to say that the structure of the VHDL grammar
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Figure 30 The Corresponding Esterel Process

var
strl-declaration-1,
strl-declaration-2,

strl-declaration-M
in
loop
strl-statement-1;
strl-statement-2;

strl-statement-N
end
end

can be used to drive the translation. The syntax-directed property implies that the translation of the whole program is
determined by the translation of all the parts put together [ASU86). This is an important property for it means that the
translation is “simple” and it can be performed in a formal manner, without direct knowledge of the underlying semantic
meaning of each construct.

The Entity and Module Declarations

The entity declaration in VHDL declares the interface of a design unit while the module in Esterel accomplishes the same
function. There is an extra layer in the VHDL design hierarchy called the architecture. There may be many architectures
for a given entity interface, so for the purposes of a translation from VHDL to Esterel, the entity and architecture become
synonymous. The correspondence is illustrated by the following grammatical transformation:

entity e-name is module e-name+a-name:
port (interface-declaration-1ist); interface-declaration-list
end e-name;
signal
architecture a-name of e-name is signal-declaration-list
signal-declaration-list in
begin [
concurrent-statement-list | | concurrent-processes
end a-name; ]
end.

Signal Declarations

Signals operate essentially the same way in both VHDL and Esterel. Signals may be defined at the level of the architecture
in VHDL. This so that communication between the concurrent statements in the architecture can take place. A signal may
be read in any number of processes but unless it is a resolved signal, it may only appear on the left-hand side of a signal
assignment in one process. The same is true of signals in Esterel. The correspondence between signals in VHDL and
Esterel is best illustrated in the example above describing the syntax-directed translation of the VHDL entity and architec-
ture into an Esterel module: the signals declared locally in the VHDL architecture are translated as a local signal block in
the Esterel.
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Process and Loop Constructs

While there is no explicit process construct within Esterel, there is an implicit one which is defined by the parallelism
operator . The notion of process in Esterel however is much different than that of VHDL in that the Esterel process is an
artifact which can be repeatedly started, executed and terminated. A process in VHDL is a permanent structural fixture of
the description. Further, it has is an implicit “do forever” loop and so it never terminates.3> The VHDL idea of process can
be rendered within Esterel with the following syntax-directed translation:

p-name: var
process variable-declaration-list
variable-declaration-list in
begin loop
sequential-statement-list sequential-statement-list
end process p-name; end
end

This correspondence should be placed in the context of the syntax-directed translation defined for the entity-to-module
translation. In VHDL the architecture is filled with processes each of which operate in parallel and so what has been
defined in the Esterel translation is the same sort of structure.

Variable Declarations

Variables are treated in the same way in VHDL and in Esterel. In both languages shared variables are not allowed and all
inter-process communication must be performed via signals. The translation of VHDL variable declarations into Esterel is
accomplished using the local variable declaration construct of Esterel as shown in the example above. As there is only one
place within a process to declare variables, this direct translation of a single declaration block is sufficient.

Signal Emission Statements

Signal emission constructs in Synchronous VHDL and in Esterel are the same as the following correspondence demon-
strates:

VHDL Esterel

S-name <= rhs; emit s-name(rhs);

The Wait and Await Statements

The correspondence of the wait statement in VHDL can be obtained by using the await statement in Esterel as the fol-
lowing correspondence demonstrates:

VHDL Esterel
wait on await
S-name-1, case s-name-l
S—-name-2, case s-name-2
S—-name-N; case s-name-N
end

33. Actually a VHDL process can be terminated through the invocation of a Wait statement with no sensitivity list. Such a process is
typically interesting only in the context of simulator initialization because once halted, the process cannot be restarted - ever. An Esterel
process may be started, halted or killed by another process, and restarted as often as necessary.
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The If and If/Presence Statements

The treatment of conditionals in VHDL is performed in a unified manner which blurs an important distinction between
statically analyzable control tests and non-static data value conditions. In VHDL, one is forced to use the same control
construct - the if statement - to test for a transaction on a signal as well as to test a data condition. In Esterel on the other
hand, there is a distinction between the control part of the language which deals with inter-process events and the data part
of the language which deals with intra-process data values. There are two conditional statements in Esterel: the if state-
ment for data conditions and the presence statement for control conditions. The following figure illustrates the two
Esterel constructs and the VHDL structures to which they correspond:

VHDL Esterel
if data-test-condition then if data-test-condition then
statement-list statement-list
else else
statement-list statement-list
end if; end
if s-name’transaction then present s—-name then
statement-list statement-list
else else
statement-list statement-list
end if; end
The Loop Constructs

There are various looping constructs in VHDL, all of which are phrased in terms of an iteration scheme that controls a
basic loop body:

iteration-scheme loop
statement-1
statement-2
statement-N

end loop;

There is a for-loop iteration scheme which iterates over a discrete range, there is a while-loop iteration scheme which iter-
ates the loop until the termination condition is met, and finally there is the forever-loop iteration scheme which has no ter-
mination condition - it may only be exited through an explicit use of the eXit statement.
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The Esterel language contains no direct analog of the VHDL for- or while-loop though the same behavior can be derived
through the use of idioms involving loop, tag, if and exit as is outlined in the following correspondences:

VHDL Esterel
loop tag L in
statement-list loop
end loop statement-list
end
end
for v in range loop tag L in
statement-1list var v := range’left: type in
end loop loop

statement-list
if v = range’right then

exit L
end
end
end
end
while condition loop tag L in
statement-list loop
end loop if condition then
exit L
end
statement-list
end
end

As mentioned previously, a loop in the reactive model must contain a delay construct (e.g. an await or a do/watching in
Esterel) so that the body of the loop does not execute in zero time. Were this allowed occur, it would declare that an infi-
nite amount of computation occur in zero time (between successive events). Thus all loops in Synchronous VHDL must
contain some delay, which in the case of VHDL is a use of the wait statement. The requirement for the execution of at
least one wait statement on all paths across the body of a loop is not reflected in the grammatical correspondences shown
above, but it must be enforced in the translation phase in order for the translation be correct.

Treatment of Procedures and Functions
The use of subprograms, procedures or functions, is defined only within the context of a containing process. As described

What is proposed here is simple inlining where subprograms are not translated to Esterel directly but rather they are
implicitly expanded in the body of the calling process. This is an important feature not for reasons of execution perfor-
mance of the final automaton but because this interpretation allows for several features in VHDL to be supported in Syn-
chronous VHDL would not be supported in a translation to Esterel which did not use implicit inlining. These features are
as follows:

» Subprograms may take signals as parameter values the same way that they can take variable values. This allows one to
write general signal drivers>* which may be placed in a package for later use.
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« Subprograms may execute wait statements as if they were at the top-level. This allows one to write general procedures
for protocol management which may be placed in a package for later use.

Thus subprograms do not fall into the category of syntax-directed translations because of this implicit inlining.

34, The term signal driver here refers to a style of model where a procedure performs a set of signal assignments. It does not refer to the
structure of the same name within the VHDL simulator (that structure is not visible to the user).
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Chapter 5

A Synchronous VHDL Simulator

How the Synchronous VHDL subset might be used in the construction of a simulator is described in this chapter. The pur-
pose of designing a simulator based on the semantic properties of the subset is twofold. First, and most obvious, the exist-
ence of the simulator allows for the demonstration that the synchronous / reactive behavior of programs in the subset is the
same as the discrete event behavior defined by the standard simulator implementation. One of the major goals of the sub-
set definition was that the subset behave in the same way on both abstract simulator models - on the finite automata-based
simulator model and on the discrete-event simulator model. Second and less obvious is that the existence of the simulator
shows how the reactive and finite-state properties of the subset can actually be used to interpret a VHDL program as a
specification.

In Chapter 2, the difficulty of interpreting any arbitrary VHDL program as a specification of behavior was described and
the reactive model using synchronous parallelism was proposed as a way of making sense out of a process-oriented event-
based description of computation. Some of the central properties of an existing reactive language, Esterel, was presented
in Chapter 3 with an eye towards highlighting the similarities between the imperative processes of that language and those
of VHDL. In Chapter 4 the definition of the contents of the Synchronous VHDL subset was given by showing which con-
structs and construct idioms in the full VHDL-1076 standard could not be supported within the finite-state reactive restric-
tion. The previous chapters thus framed the question of what a VHDL specification subset must look like and how such a
subset may be identified in a rational way.

Given the subset definition, the next question is how to make use of the properties of the subset in implementation; that is
the subject of the following sections. The basic architecture of the simulator is described in Section 5.1 with an explana-
tion of how the VHDL language is converted into a finite-automata-based executable: a simple simulator. Detail about the
VHDL compilation procedure and a description of some pragmatic issues involved in the translation to Esterel are pro-
vided Section 5.2 and Section 5.3. Finally, in Section 5.4 a description of the lessons learned in this research about the
properties of the VHDL language with respect to the synchronous / reactive model. In a sense, this last section is the most
valuable for outlined in it, in concrete terms, are the reasons why VHDL is such a “difficult” language to interpret as a
specification of system behavior.

5.1 Simulator Architecture

The simulator designed for this work is oriented solely at demonstrating the viability of the Synchronous VHDL subset.
As described earlier in Chapter 2 the full VHDL language has a wide variety of uses in simulation, ranging from describ-
ing the model itself - the device under test (DUT) - to providing ways of programming the test stimuli system and recov-
ering and analyzing the test results. These uses are depicted again in Figure 9. The reactive properties of the Synchronous
VHDL subset imply that it is suitable for describing the DUT but not for describing the whole test bench setup shown in
Figure 9. Thus the simulator described in this report provides a demonstration of the feasibility of compiling the Synchro-
nous VHDL subset into an automata-based model of the DUT. The auxiliary features shown in Figure 9 such as test vector
application and recovery which would be necessary in a product are ignored here as the standard discrete event-based
implementations would suffice for those aspects of a full implementation.

The main flow of compilation in the simulator is shown in Figure 32. That figure shows how the compiler translates the
textual representation of the VHDL into a control flow graph representation. This is accomplished using the standard pars-
ing techniques [ASU86]. The result of this first phase is a set of Abstract Syntax Trees (ASTs) which represents the
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Figure 31 A Schematic of a Test Bench

Input
Data Files

Output
Data Files

Figure 32 Simulator Compilation Flow

VHDL

VHDL Syntax Front-End
Parsing, Symbol Tables,
Abstract Syntax Trees etc.

Conversion to Data Flow
and Control Flow Graphs

C Code Implementing
Finite Automata

Executable
Object Code

50 of 132 An Application of a Synchronous/Reactive Semantics to the VHDL Language



A Synchronous VHDL Simulator

VHDL source text. These tree structures are not described further in this report as they are merely a representation of the
VHDL source in a data structure and are fairly uninteresting. The next phase converts the ASTs into an assembly code
style intermediate form which facilitates the conversion to finite automata. From the control graph representation the goal
is to extract the state graph which represents the finite-state behavior of all of the VHDL processes executing in synchrony
so that the state graph can then be converted into an automata.

The process of converting from the imperative process-oriented description of the VHDL program to the state graph for-
mulation and then to the finite automaton requires a good deal of analysis. The actual procedures for converting directly
from the control flow of the intermediate representation into a finite automaton is described in Section 5.3. In lieu of
implementing that procedure directly, an existing implementation of the automaton extraction procedure has been used in
this work in the form of the Esterel compiler. The shaded path shown in Figure 32 indicates this use: the conversion of the
intermediate representation back into the high-level form suitable for compilation by the Esterel compiler. The final result
of either path is a body of C code® which implements the finite automaton representing the synchronous execution of the
all of the VHDL processes in under the reactive model.

5.2  Abstract Machine Architecture

The first two phases of the compilation flow of Figure 32 is fairly standard with respect to the design of a traditional com-
piler [ASU86]. These phases convert grammatically structured text into a form which represents the computation as a
graph of the control flow. This graph can then be used as the basis of further steps which optimize the computation or, as
is the case here, extract an equivalent finite automaton. The nodes of the graph are basic blocks consisting of straight-line
code with a single entry point and exit only at the end of the block. The instructions within the basic blocks represent the
atomic operations that are necessary to describe a VHDL process.

The intermediate code is based on an abstract machine model that supports the operations found in VHDL programs. The
textual representation of the intermediate form is that of an assembly code but this can easily be seen to be just a linear
representation of a control flow graph by replacing the goto labels with pointers. The idea is that the intermediate form be
a (semi) language-neutral description of a single process which has the following properties:

1. Itis close enough to the high-level language that simple translation from the high-level language to it is relatively
straightforward. In this case the naive code generation strategies of syntax-directed compilation are suitable [ASUS86]).

2. All information needed for further optimization can be represented directly in the format. That is, there should not be
any need to refer to any externally defined types, variables, signals or other items in any global libraries to make sense
out of the computation declared at the intermediate form level.

3. Itis general enough that it can be used for multiple source languages. For example, in addition to VHDL, one might
use the intermediate assembly language as an intermediate step in the compilation of Verilog or any other high-level
language with the appropriate semantic properties.

4. The conversion to state machines from this format is possible. In this case, the synchronous reactive execution seman-
tics is assumed.

5.2.1 The Abstract Architecture

The abstract machine architecture is that of a number of --register instruction processors each of which executes syn-
chronously with respect to its environment. Computations are described as programs on these processors. Programs com-
municate with other programs and the external environment in general through the emission and reception of events on
signals which are a broadcast medium. Thus the compilation of a network of Synchronous VHDL processes onto this

35. It should be noted here that C code is being used as the final representation of the automaton for reasons of convenience only. The
popularity of the C language makes it is a very portable target language; its use here is simply to represent the next-state tables and out-
put code of the automaton in an architecture-neutral form.
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machine can be a rather direct translation from the VHDL source to the instructions using simple syntax-directed meth-
ods. Though a convenient model for compilation and optimization purposes, this abstract model is not exactly realistic; it
is the role of the state graph extraction and automata generation procedure to produce a realistic representation for this
abstract model on a single physical processor.

The intermediate form bears the name Non-Deterministic Abstract Machine (NDAM) though for the purposes of this
work, none of the nondeterministic features were used.3¢ The architecture is abstract in the sense that there is no represen-
tation of busses or other interconnect. The NDAM system describes only a set of typed registers, typed signals and com-
putations which include transfers between the various registers and signals and synchronizations on signal events.

52.2 Describing Systems

A system is described as a number of NDAM assembly files with each assembly file describes one synchronous/reactive
process. The process defines a set of registers which contain values local to the process. The process communicates with
its environment through a set of formalized channels called signals. This distinction between the internal variables of the
process and the externally-broadcast signal values is an important distinction because for the derivation of event patterns
on the signals form the basis of the reactive compilation algorithm.

A NDAM description represents a single sequential process in exactly the same sense as a single VHDL process. The pro-
cess interacts with other processes by the emission and reception of events on signals. Thus, there are instructions for
emitting and awaiting events on signals. The specification of the network of processes and the linkage of their signals is
not defined within the framework of a single NDAM file and so this must be implemented externally. It is expected that
there be “linkage level” tools which will link multiple NDAM files and provide for scoping and renaming of signals.

52.3 The NDAM Process

Each NDAM process is described as a unit, here called a “file,” which describes the types, signals, and registers of the
process as well as the instructions of the body of the process. Like a VHDL process, a NDAM process is assumed to exe-
cute forever that is it never halts.3” A NDAM file describing a single process consists of a number of declarations which
describe the value domains used in the process, the internal registers of the process, the signals with which the process
communicates with other processes and of course the code body of the process.

Types
A type declaration defines a finite set of values which is then be used to define the domain of values that a signal or regis-
ter may take. The following are examples of some simple type declaration:

type t(unit) 1
type t(boolean) 2
type t(int5) range -16 15

In this case, three types are defined: the type unit which has a domain of the singleton set {0} the type boolean which
has the domain {0, 1} and the type int5 which has the domain {-16, ..., 15}

Registers
Registers hold values which are local to a process. A register can be either a scalar, an array or a record. A register has a
type and operations are only allowed between registers of the same type. There are register transfer operations to insert

36. In extending this work and the intermediate form on which it is based to allow for language-containment verification [Kur90] it
became necessary to add constructs supporting nondeterministic control flow (goto with multiple targets) and signal value emission
(signal emission with more than one value). Nondeterminism is not used in this work as VHDL does not support it; the intermediate
form however allows for it due to its other uses.

37. This e-looping model of execution was chosen because it is close to the nonterminating process execution model of VHDL.
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and extract values out of register and array registers. Both array and record registers are flat in the sense that there are no
multi-dimensional arrays or nested records. It is expected that the high-level language compiler which produced the
NDAM assembly code will have linearized all multi-dimensional arrays and flattened out all nested records. The follow-
ing are some examples of register declarations:

register r(l) t(unit)

register r(tmp) t(boolean)

register r(value) t(int5) := 3

register r(rec) t(intb5), t(boolean), t(boolean) := 3, 0, 1
register r(arr) t(boolean) S

These statements declare five registers, three singleton registers, one record register and one array register.

A register declaration defines a value which persists in the process for all time. In particular, the values stored in the regis-
ters persist across wait instructions. The wait instruction in the NDAM model is analogous to the wait statement in
VHDL and is described in further detail in the following section. It is useful in various computations however, to store
values which are not needed over the lifetime of the process, but rather are needed only locally in the computation of the
process. For this reason there is also a form of register declaration which indicates that the register is merely a temporary;
its value will be recomputed and consumed between wait instructions - its value is never required to be stored across any
waiit instruction. Typically temporary registers are used to store the single-bit values required in conditionals as in the fol-
lowing example:

temporary r(vtmp) t(int5)
r(vtmp) := r(rec).0
temporary r(tmp) t(boolean)
r(tmp) := r(vtmp) > r(value)
if r(tmp) goto L(1)
goto L(2)

Here two temporaries are declared, one to hold the first field of the rec register and one to hold the single-bit condition
generated by the comparison instruction.

Signals
Signals are used to define the external interface of a process. As with registers, signals are defined with a type that declares
the domain of values which may be present on the signal. The following are some example signal declarations:

signal s (1) t(unit)

signal s (tmp) t (boolean)

signal s(value) t (int5) := 3

signal s(rec) t(int5), t(boolean), t(boolean) := 3, 0, 1
signal s(arr) t(boolean) 5

As with registers, there can be singleton signals, record signals or array signals. In this case, as with the register example
there are three singleton signals, one record signal and one array signal declared.

The signal declarations do not define whether a signal is an input signal, an output signal or is used for both input and out-
put. This information can be ascertained from the use of the signal in the instruction body of the process. A signal is an
input signal if a wait, present, presence or selection instruction references it (these instructions are described in the
following section). A signal is an output signal if an emit statement references the signal.
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Instructions

The main part of an NDAM process description is its code body. The types, signals and registers are merely declarations
of the communication patterns and intemal storage used by the process; the behavior of a process is described by the
instructions. The instruction set consists of the usual operations which one might find on a register-register architecture:

» Assignment operations allow for the movement of values between registers. There are assignment operations to move
singletons to and from the fields of record registers and also assignment operations to move singletons to and from ele-
ments of arrays. In all, there are seven variants of the basic assignment instruction:

R(/hs) := R(rhs) aggregate register-to-register assignment
R(/hs) := R(rhs).offset record field to singleton assignment
R(/hs).offset := R(rhs) record field from singleton assignment
R(/hs) := R(rhs)[R(exp)] array member to singleton assignment
R(/hs)[R(exp)] := R(rhs) array member from singleton assignment
R(/hs) := R(rhs)[R(low), R(high)] array slice to array assignment
R(/hs)[R(low), R(high)] := R(rhs) array slice from array assignment

» Unary operations provide datapath operations involving a single source register. The unary operations supported are as
follows: abs, inc, dec, not, neg

R (/hs) := op R(rhs) the left-hand register receives the right-hand
register subjected to the Op

* Binary operations provide datapath operations involving two source registers. The binary operations supported are as
follows: and, or, nand, nor, xor, =, /=, <, <=, >, >=, +, -, *, /, mod, rem

R(lhs) := R(rhs-1) op R(rhs-2) the left-hand register receives the value of the two
right-hand registers subject to the op

e The emit instruction transfers a value from a register onto a signal in the current instant.38

emit S(ihs) R(rhs-1), R(rhs-2), ... R(rths-N)

e There are two attributes of a signal which can be referenced: a signal has a single value in the current instant, a signal
also has a notion of presence or absence in the current instant which indicates whether or not the signal was emitted in
the current instant. There are two signal reference instructions which transfer these signal attributes into a register:

R(name) := selection S(name) the current value of the signal is extracted®®
R(name) := presence S(name) a bit indicating presence or absence of the signal is transferred

» Normal control flows sequentially through the instruction stream. There are four instructions which allow for the con-
ditional or unconditional transfer of the control flow. The first of these is the unconditional goto instruction which

38. The emit instruction is defined in terms of nondeterministic signal emission in order 1o allow the NDAM intermediate form to be
used in the context of language-containment verification where nondeterminism is used as a form of abstraction [Kur90). The determin-
istic case of signal assigns the value of a single register to the signal in the instant.

39. The term selection derives from the use of this intermediate form in language-containment where the nondeterministic selection
value on the signal must be resolved [Kur90]. The degenerate case of nondeterminsitic signal reference is a deterministic signal refer-
ence which has the expected behavior.
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transfers the flow of control to another point in the instruction body.*? The next two instructions provide for condi-
tional control transfer based on the value in a register; a single-bit value in the case of the if instruction or a scalar
value in the case of the case instruction. Finally, the present instruction effects a control-transfer based on the pres-
ence or absence of signal emission in the current instant.

goto L(name-1), L(name-2), ..., L(name-N)

if [ not ] R(test) goto L(targef)

case R(key) when v-1-1, ... v-M-1 goto L(target-1)
;;hen v-1-N, ... v-M-N goto L(target-N)

present [ not ] S(tesf) goto L(targef)

 The final class of instruction is the wait statement which provides for event synchronization between processes. The
wait instruction, like its counterpart in the VHDL language, suspends the process until there is an event on the indi-
cated set of signals,

wait on S(name-1), S(name-2), ... S(name-N)

With these instructions, it is possible to describe the computation of any Synchronous VHDL process in a rather simple
and straightforward way. The instructions are designed to be atomic and to reference a limited number of registers. This is
in much the same spirit as the restriction to three addresses in 3-address code. In this context however, it is not so much
that there is a hard architectural limit on the number of values fetched, rather there is simply a desire to have an orthogonal
set of primitives with which to describe the computation.

There are two important points to note in the NDAM assembly code. The first is that the compilation of the VHDL to the
instruction level provides the opportunity for the traditional compiler optimizations to be performed on the process
description before the extraction of the state graph. These optimizations might include constant subexpression elimina-
tion, constant folding, constant propagation and strength reduction [ASU86]. The second point to note is that the granular-
ity of the assembly code level is very fine. Thus, the representation of a VHDL process in terms of the NDAM assembly-
level instructions reduces the complexity of data manipulations such as array, record and array slice operations to simple
atomic operations. As was noted previously, the Esterel language was designed to represent control and so there are corre-
spondingly few data manipulation operations. It is expected that the data manipulations be placed in the host language and
controlled by the Esterel program. Representing the VHDL process in terms of simple atomic operations, most of which
can be directly represented in Esterel, greatly eases the translation process.

5.3 Translation of Imperative Processes To Finite Automata

The translation of synchronously parallel imperative processes into a single finite automata is defined in terms of an event-
derivative semantics [BC84] where the derivative of a program with respect to an event is merely another program which
behaves as the first one would have after the event was seen.

The conversion from the imperative process form to the corresponding automata merely requires transitively taking the
derivative of the network of processes with respect to all possible events which can occur on the signals that are open to
the outside world. Though this might seem to be a hopeless task, there are two mitigating factors: the first is that there are
only a finite number of derivatives for a system with finite state [Brz62] and the second being that a derivative once seen
need not be taken again for all successors of it will be the same. Thus by taking derivatives with respect to events one

40. This is the third and final case of nondeterminism in the intermediate form. The deterministic form of the goto instruction has a sin-
gle target label and behaves as a jump or branch instruction.
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develops a graph of derivatives as shown in Figure 33. The conversion from the graph of derivatives to a simple state

‘igure 33 A Graph of Program Derivatives

module M:
input A(integer), B(integer):
@ output O(integer);
) do
A await A;

emit O(?A)
¢ Ae watching B
@ timeout
emit O(?B)

end

graph is rather straightforward: the derivatives are each given a number i which becomes the name of a state. The actual
derivative may then be thrown away as it no longer serves a useful purpose. The next step is the conversion from the state
graph form to that of a finite automata.

The central feature which makes this whole procedure feasible is the definition of the derivative of a program with respect
to an event. Unfortunately the definition of the behavior of a VHDL program with respect to an event is not so clear that
one could write down a “derivative” operation directly; VHDL is defined in terms of a discrete event semantics wherein
each process executes autonomously and is only awakened when there are events on the signals in its sensitivity list. The
purpose though of defining the Synchronous VHDL subset was to ensure that the discrete event semantics would be
restricted so that it would coincide with the synchronous semantics. So by virtue of the restrictions to finite state and reac-
tive execution which the Synchronous VHDL subset imposes we know that there must be a derivative of a VHDL pro-
gram with respect to an event

What has been achieved in this work is to use the connection between the Synchronous VHDL subset and the Esterel lan-
guage to define the derivative of a VHDL program in an indirect fashion. Instead of defining the derivative of a network of
VHDL processes with respect to an event directly as was done for the Esterel language [BC84], the derivative is defined
indirectly through the use of the Esterel language. The translation from the Synchronous VHDL subset to the Esterel lan-
guage which was outlined in Chapter 4 is the basis for this translation.

The syntax-directed translation procedure described in Chapter 4 though was described as being in the correct spirit, but
as being infeasible due the limited data-manipulation facilities of the Esterel language. This limitation was circumvented
through the introduction of an intermediate representation, the NDAM assembly code, which broke up the large data-
manipulation operations on records, arrays and the like into simple operations that could not only be optimized using tra-

56 of 132 An Application of a Synchronous/Reactive Semantics to the VHDL Language



A Synchronous VHDL Simulator

ditional compiler optimization techniques, but importantly, could be passed directly on to the Esterel language. A known
algorithm is then used for recovering the high-level control structure from the control flow graph [ARZ91] and the gener-
ation of Esterel is straightforward.

54 Lessons Learned

In constructing the simulator, a number of examples were coded in the Synchronous VHDL subset and one of these, a
simple key chain timer is shown in detail in Appendix A. Aside from developing an understanding of the strengths and
weaknesses of the reactive computing model and synchronous parallelism, probably the most important result of this
research is a set of strong reasons why the VHDL language has been so problematic as a specification language.

In this project a restriction of the VHDL language was identified under which a mathematical model of computation was
seen to apply. That model, the reactive model, which assumes synchronous parallelism, allows for the specifications
which are known to be useful in both the hardware and the software domain: the specification of finite state systems.
There are still a number of difficulties which remain in the use of VHDL as a specification language for this class of sys-
tem as described below.

54.1 VHDL Event versus VHDL Transaction

In VHDL, the notion of an event on a signal has a meaning which is especially relevant for discrete-event simulation. An
event is defined to be a change in value on a signal. Unfortunately, this is a dynamic condition as a signal assignment may
or may not cause an event on the signal depending on whether or not the new value assigned to the signal is the same as
the old value or not. A change in value causes an event depending on the value of the variable value in relation to the
present value of the signal output. A process which may or may not cause an event on its signal is shown in Figure 34.
What is necessary for the derivative semantics to be soundly defined is a static condition: a condition which is true inde-

Figure 34 May or May Not Cause an Event on output

process (value)
begin

output <= not value;
end

pendent of the value which is assigned to the signal.

Fortunately in VHDL, there is the notion of a VHDL transaction which is the execution of any signal assignment, inde-
pendent of the value which is actually assigned. While the transaction is typically ignored in the context of the standard
discrete-event simulation environment, it is possible to write VHDL models in terms of sensitivity to transactions instead
of events. Thus Synchronous VHDL processes must focus on the transaction activity of signals instead of the event activ-
ity as is the usual case.

The lesson to be learned here is that future imperative languages which are designed to be specifications must ensure that
the behaviors that they describe are statically analyzable. The event-sensitivity semantics of VHDL processes are most
certainly not statically analyzable. However focusing instead on the signal transactions allows for a static analysis of the
process’ coordination activity is feasible.

5.4.2 The Flat versus Nested Process Mcdels

A second important observation was that the flat process model of VHDL makes the description of nested behaviors par-
ticularly difficult. In particular, one often wants to describe one process as controlling one or more other processes, the
master telling the slave process when to go, awaiting their completion or telling them directly when to stop. These activi-
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ties are possible in VHDL's flat process scheme only with the most arduous of programming disciplines. What is required
is a “go/done” protocol between the master and the slave as shown in Figure 35. Even more difficult are coordinations

Figure 35 A Master and Slave Process Pair

signal input, output: some_data_type

master: slave:
process process (go)
begin ... vars .,
.. compute input... begin
go <= ping; output <= f (input, vars):;
wait on done; done <= ping;
. compute end process;

with output...
end process;

between multiple processes where the master must prepare to recover control after some subset the slaves complete yet
others are still computing.

The lesson to be learned here is that the specification language must allow for nested behaviors in the same way that it
allows for nested structures. In VHDL an architecture can be defined structurally in terms of instances of other compo-
nents, or it may be defined behaviorally in terms of a number of processes. In turn, an instance of a component is but a ref-
erence to another structure defined elsewhere; another VHDL entity/architecture pair. In contrast however, a process
cannot contain another process since a process is required to be a single thread of control. This is the heart of the matter
where in VHDL a structural unit can be defined in terms of other structural units or a behavioral units, but a behavioral
unit is atomic.4!

5.4.3 The Subtleties in the A-Time Models

Finally, there is the issue of the A-time model which has always appeared problematic from a specification point of view.
The A-time aspect of the VHDL language has no analogy with any physical effect in the real world since nothing com-
putes in an amount of time so small that it cannot be measured. So too the A-time model was problematic in the context of
Synchronous VHDL but for a different reason.

Earlier in Chapter 4 it was mentioned that the Synchronous VHDL subset disallowed all references to metric time, to the
use of the after clause in signal assignments, and to the use of the wait for timeval statement. Thus all Synchronous
VHDL program are written using the A-delay aspect of VHDL; the idea being that the VHDL program describes the reac-
tions that the system gives in response to events in its environment. The specification consists only of these reactions and
not to any other constraints

It is interesting to note that the Esterel language effectively has a notion of A-delay which appears in the definition of cau-
sality. If an event a is said to cause event b in the same instant, then event a must have occurred slightly before event b.
This is exactly the concept of A-delay - that two computations occurred at the same externally-observable time yet were
ordered with respect to each other. Causality ensures that there is never a cycle in this ordering relationship. The problem
with the A-delay system in Synchronous VHDL though is not related to causality directly for the restriction to causal sig-
nal flows ensures that there will never be a cycle of activity at the A-delay level. The problem is with how activity in pre-
vious deltas is referenced.

41. Others have observed this too [NVG91].
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In this case, it is convenient to exhibit a distinction between VHDL and Esterel - the example of Figure 36 where there are
two processes in each case. In both cases the first process awaits activity on the signals S1 and S2. Upon seeing activity

Figure 36 Referencing Activities in Previous Deltas

VHDL Esterel
process(S1l, S2) (
begin every [ S1 or S2 ] do
83 <= 81 + 82; emit S3(?S1 + 282)
end process; end
11
process(S3) every S3 do
begin present S1 then
if Sl’transaction then emit output (283 * 33)
output <= 8§83 * 33; else
else emit output (283 * 91)
output <= 83 * 91; end
endif end
end process; ]

on either of those signals a value is computed and emitted on the signal $3. The distinction between the two descriptions
is that the VHDL description will never see the transaction on signal S1 because it occurred one too many deltas back; i.e.
the VHDL S1’transaction only refers to signal activity in the immediately preceding delta of the current instant. The
Esterel process will always see the transaction on $1 because the presence test refers to activity in any preceding delta of
the current instant.

Thus the lesson to be leamned here is that although the notion of A-time may seem problematic, it is actually intrinsically
tied to the well-founded notion of causality. In concert with the causality however one must have a complete way of refer-
encing the existence or lack of existence of previous causal events, The problem with VHDL is that the ability to refer-
ence previous causal events is restricted by the discrete-event simulator model which only allows for referencing activity
in the previous simulation cycle and it does rot allow for references to all activity at the current instant.
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Chapter 6

Conclusions

The main conclusion that can be drawn from this work is that a meaningful subset of VHDL can be defired which can be
interpreted in a prescriptive manner as a specification. This subset is the synchronous subset which is defined not by
restricting the syntax of VHDL syntax, but rather by restricting the behavior of the simulator. The semantic restrictions
then dictate what constructs and construct idioms can be used in the subset.

The simplification which reduced the VHDL simulator from a discrete-event-based paradigm to a finite automata-based
paradigm imposed restrictions on the set of VHDL language constructs which could be supported within that framework.
Thus the definition of synchronous VHDL in terms of its syntactic makeup is driven not by artificial constraints imposed
by the capabilities of a target set of synthesis or verification tools but rather by the limits of the nature of the VHDL lan-
guage semantics itself. The synchronous subset of VHDL is in this sense the largest possible subset of VHDL which can
be interpreted as a specification.

The synchronous VHDL subset is reactive by virtue of the requirement that all processes in the subset must await events
and respond to those events sothey may not operate autonomously as would be the case if processes were allowed to sus-
pend themselves for specific time intervals. The reactive restriction coupled with the requirement of finite state allows for
the derivative of a VHDL process with respect to an event to be defined. The derivative of a process with respect to an
event is thus the behavior that the process will exhibit after seeing the event. In this way, the derivative can be thought of
as a Successor process.

There were fundamental restrictions imposed on VHDL processes: reactive semantics and finite state. The reactive
assumption allows for the definition of the derivative of a VHDL process. Due to the fact that a process does nothing
except react to events from its environment, the derivative thus becomes synonymous with the state of a process. The
restriction of VHDL processes to use only finite state ensures that there are a finite number of derivatives. Thus the com-
pilation of the synchronous VHDL subset is defined to be the extraction of these derivatives and the generation of the
derivative transition graph. The derivative transition graph is syronymous with the state transition graph of a finite autom-
ata whose execution performs the computations described by the VHDL processes.

The interpretation of the synchronous VHDL subset in terms of a finite automata model is thus intrinsically tied to the def-
inition of the derivative of a VHDL process with respect to an event. As shown in Chapter 5 the explicit definition of the
derivative operation is problematic at best. Instead, in this work the derivative operation is defined indirectly through a
translation from the VHDL subset to an existing synchronous language - Esterel. The derivative semantics for the Esterel
language having already been described [BC84]. The final goal of this work is not a translation path from VHDL to
Esterel but rather from VHDL directly to the reactive automaton. The path through Esterel used for this project was but a
means to this end which was used to demonstrate the idea.

The results of this study indicate that it is indeed possible to define a meaningful subset of VHDL which is suitable for use
as a specification of behavior instead of just a description of a structure containing behavioral entities. This synchronous
subset of VHDL will be useful for synthesis and verification contexts where its basis in automata theory can be exploited
through the use of sequential synthesis techniques and automata-theoretic verification algorithms. Further, the existence of
this subset will also effect on the construction of VHDL simulators as simulators based on the execution of the finite
automata models offer the potential of better performance and greater potential parallelism.
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Appendix A

The Key-Chain Example

The Synchronous VHDL subset was tested on a number of small examples. This chapter details the use of the subset on
one such example. The example is a small timer which is attached to a keychain. The idea being that when the owner
parks a car at a parking meter, the timer is set for the duration of the meter. At the duration of the interval, the alarm rings
to indicate that the owner is out of time and should refill the meter, or equivalently that the owner is now illegally parked
and is receiving a citation. The physical appearance of the object is shown in he drawing of Figure 37.

Figure 37 The Keychain Timer

The salient points of the part is that there are three keys labeled lefi-to-right as S1, S2 and S3 and there is a three and a half
digit display which shows the hours and minutes.

A.1 Specification
The specification of the part is rather simple and is given in the “user manual” is as follows:

To Set Timer
1. To set Hours: press S1

2. To set Minutes: press S2

To Start Timer
1. Once desired time is set press S3 - timer will start counting down

2. Buzzer will sound when zero is reached

To Discontinue or Reset Timer

1. To turn off buzzer: press S1
2. To stop timer (in mid-cycle): press S3; to restart (in mid cycle): press S3 again

3. To clear timer (during count down cycle): press S3, then press S1
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4. To clear timer (before count down cycle has started): press S3 twice, then press S1

A2 Synchronous VHDL

The following VHDL design implements the keychain timer specification. The design is broken down into three entities,
countdown, setup and timer. Each of the entities has a single architecture named synch which contains the processes
implementing the entity.

The entity countdown implements the down counting behavior of the counter and consists of four independent pro-
cesses: p1, p2, p3 and p4. The entity setup implements the setup phase of the counter and consists of three independent
processes: p1, p2 and p3. The timer entity is the top level of the design and it consists of an instance of the countdown
and an instance of the setup as well as three other processes: master, beeper and blinker. In the following sections,
Section A.3 and Section A 4, the translation of each of these processes is given in NDAM code and Esterel respectively.

== The Key Chain Timer
package types is

type peep is (ping);
end types:;

use Work.types.all;
entity countdown is
port (go: in peep;

decrement: in peep:
abort: in peep;
init_hours: in natural;
init_minutes: in natural;
init_seconds: in natural;
show_hours: out natural;
show_minutes: out natural;
show_seconds: out natural;
zero: out peep);

end countdown;

architecture synch of countdown is
signal dec_min, dec_hour: peep;
signal z_seconds, z_minutes, z_hours: boolean;

begin
pl:
process
variable seconds: natural;
begin
wait on go’transaction;
seconds := init_seconds;

show_seconds <= seconds;

z_seconds <= seconds = 0;

loop
wait on decrement’transaction, abort’transaction;
if abort’transaction’event then
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exit;
end if;
if seconds = 0 then
seconds := 59;
dec_min <= ping;
else
seconds := seconds - 1;
end if;

show_seconds <= seconds;
z_seconds <= seconds = 0;
end loop;
end process pl;

p2:
process
variable minutes: natural;
begin
wait on go’transaction;
minutes := init_minutes;
show_minutes <= minutes;
loop

wait on dec_min’transaction, abort’transaction;
if abort’transaction’event then

exit;

end if;

if minutes = 0 then
minutes := 59;
dec_hour <= ping;

else
minutes := minutes - 1;

end if;

shovw_minutes <= minutes;
z_minutes <= minutes = 0;
end loop;
end process p2;

p3:
process
variable hours: natural;
begin
wait on go’transaction;
hours := init_hours;
show_hours <= hours;
loop

wait on dec_hour’transaction, abort’transaction;
if abort’transaction’event then
exit;
end if;
if hours > 0 then
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hours := hours - 1;
end if;
show_hours <= hours;
z_hours <= hours = 0;
end loop;
end process p3;

p4:
process (z_seconds’transaction,
z_minutes’transaction,
z_hours’ transaction)
begin
if z_seconds and z_minutes and z_hours then
zero <= ping;
end if;
end process p4:

end synch;

use Work.types.all;
entity setup is
port (go: in peep;
sl: in peep;
s2: in peep;
s3: in peep;
init_hours: in natural;
init_minutes: in natural;
set_hours: out natural;
set_minutes: out natural;
done: out peep):;
begin
assert
not (sl’transaction’event and s2’transaction’event)
and
not (s2’transaction’event and s3’transaction’event)
report “sl, s2, and s3 are not all mutually disjoint”
severity error;
end setup;

architecture synch of setup is
signal rollover: peep;
begin

pl:
process
variable hours: natural;
begin
wait on go’transaction;
hours := init_hours:;
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set_hours <= hours;
loop
wait on s2’transaction, rollover’transaction,
s3’transaction;
if s3’transaction’event then

exit;
end if;
hours := hours + 1;
set_hours <= hours;
end loop:;

end process pl;

pP2:
process
variable minutes: natural;
begin
wait on go’transaction;
minutes := init_minutes;
set_minutes <= minutes;
loop
wait on sl’transaction, s3’transaction;
if s3’transaction’event then

exit;
end if;
if minutes < 59 then
minutes := minutes + 1;
set_minutes <= minutes;
else
minutes := 0;

rollover <= ping;
set_minutes <= minutes;
end if;
end loop;
end process p2;

p3:

process

begin
wait on go’transaction;
wait on s3’transaction;
done <= ping;

end process p3;

end synch;

use Work.types.all;
entity timer is
port (per_second: in peep;
sl: in peep:;
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s2: in peep;

s3: in peep;

show_hours: out natural;
show_minutes: out natural;
is_beeping: out boolean;
colon_showing: out boolean);

begin

assert
not (sl’transaction’event and s2’transaction’event)
and
not (s2’transaction’event and s3’transaction’event)
report “sl1, s2, and s3 are not all mutually disjoint”
severity error;

end timer;

architecture synch of timer is

component setup
port (go: in peep;

sl: in peep;
s2: in peep;
s3: in peep;
init_hours: in natural;
init_minutes: in natural;
set_hours: out natural;
set_minutes: out natural;
done: out peep);

end component;

for setup stage: setup
use entity Work.setup(synch);

component countdown
port (go: in peep;

decrement: in peep;
abort: in peep;
init_hours: in natural;
init_minutes: in natural;
init_seconds: in natural;
show_hours: out natural;
show_minutes: out natural;
show_seconds: out natural;
zero: out peep):

end component;

for countdown_stage: countdown
use entity Work.countdown (synch);

signal setup_go, setup_done: peep;
signal setup_hours, setup_minutes: natural;
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signal countdown_go, countdown_done: peep;
signal countdown_ abort, countdown_zero: peep;
signal hours_left, minutes_left, seconds_left: natural;

signal noshow_seconds: natural;
signal blink go, blink_stop: peep;
begin

setup stage:

setup
port map(go => setup_go,
sl => sl,
s2 => s2,
s3 => s3,

init_hours => setup_hours,
init_minutes => setup_minutes,
set_hours => hours_left,
set_minutes => minutes_left,
done => setup_done);

countdown_stage:
countdown
port map(go => countdown_go,

decrement => per_second,
abort => countdown_abort,
init_seconds => seconds_left,
init_minutes => minutes_left,
init_hours => hours_left,
show_hours => show_hours,
show_minutes => show_minutes,
show_seconds => noshow_seconds,
zero => countdown_zero);

master:
process
begin
setup_hours <= 0;
setup_minutes <= 0;
setup_go <= ping;
wait on setup_done;
seconds_left <= 0;
loop
countdown_go <= ping;
blink go <= ping;
wait on countdown_done’transaction;
blink_stop <= ping;
wait on s3’transaction, countdown_zero’transaction;
-- we’'re now stopped awaiting further instructions
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wait on s2’transaction, s3’transaction;
if s2’transaction’event then
countdown_abort <= ping;
exit;
end if;
end loop;
end process master;

beeper:
process
begin
is_beeping <= FALSE;
loop
wait on countdown_zero’transaction;
is_beeping <= TRUE;
wait on sl’transaction, s2’transaction;
is_beeping <= FALSE;
end loop:;
end process beeper;

blinker:
process
variable colon: boolean;
begin
colon := TRUE;
colon_showing <= colon;
loop
wait on blink_go’transaction;
loop
wait on per_second’transaction, blink_stop’transaction;
if per_second’transaction’event then
exit; '
end if;
colon := not colon;
colon_showing <= colon;
end loop;
end loop;
end process blinker;

end synch;

A3 NDAM Intermediate Code

The translation of each of the keychain timer’s processes into the Nondeterministic Abstract Machine Code (NDAM)
assembly code representation is given in this section. Each process is described separately with each description importing
the set of signals which are visible to the process in the original VHDL. The NDAM intermediate code representation in
this instance is fully deterministic as VHDL does not support nondeterminism; the nondeterministic features of the
NDAM intermediate code is unused.
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As each of the processes is described in a self-contained manner, there is an assumption that there is a final-linkage phase
which will aggregate all of the processes. In the current implementation, the Esterel compiler is used to do this, though
one could envision a special-purpose “linker” tool which would perform the same function.

A careful reader will observe that most processes declare a far larger set of signals than are actually used by that process.
This is acceptable given the broadcast model of communication which is implicit in the synchronous model of computa-
tion. In the following section, the translation to Esterel of each of these processes is included and only the signals which

are actually used by a process are shown.

A3.1 Entity: Countdown, Architecture: Synch, Process: P1
-- The Countdown Unit (process pl)

type t(peep) 1

constant r(peep) t(peep) := 0
signal s(go) t (peep)

signal s(decrement) t (peep)

signal s(abort) t (peep)

type t(natural20) 20

type t(naturalél) 60

signal s(init_hours) t(natural20)
signal s(init_minutes) t(naturalé60)
signal s(init_seconds) t(naturalé0)
signal s(show_hours) t(natural20)
signal s(show_minutes) t(naturalé60)
signal s(show_seconds) t(naturalé0)
signal s(zero) t (peep)

signal s(dec_min) t (peep)

signal s(dec_hour) t (peep)

type t(boolean) 2

signal s(z_seconds) t(boolean)
signal s(z_minutes) t(boolean)
signal s(z_hours) t(boolean)
register r(seconds) t(naturalé60)
constant r(natural60_0) t(natural60) := 0

constant r(natural60_59) t(naturalé0) := 59
L(start):

wait on s(go)

r (seconds) := selection s(init_seconds)

emit s(show_seconds) r(seconds)
temporary r(tmp) t(boolean)

r(tmp) := r(seconds) = r(natural60_0)

emit s(z_seconds) r(tmp)

wait on s(decrement), s(abort)
L(loop):

present s(abort) goto L(out)
temporary r(tmp2) t (boolean)

r(tmp2) := r(seconds) = r(naturalé60_0)
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if not r(tmp2) goto L(else)
L(then):
r(seconds) := r(natural60_59)
emit s(dec_min) x(peep)
goto L(endif)
L(else):
r (seconds) := dec r(seconds)
goto L(endif)
L(endif):
emit s(show_seconds) r(seconds)
temporary r(tmp3) t(boolean)
r(tmp3) := r(seconds) = r(natural60_0)
emit s(z_seconds) r(tmp3)
wait on s(decrement), s(abort)
goto L{loop)
L{out):
goto L(start)

A3.2 Entity: Countdown, Architecture: Synch, Process P2
—- The Countdown Unit (process p2)

type t(peep) 1

constant r(peep) t(peep) := 0
signal s{go) t(peep)

signal s(decrement) t (peep)

signal s(abort) t (peep)

type t(natural20) 20

type t(natural60) 60

signal s(init_hours) t (natural20)
signal s(init_minutes) t(naturalé0)
signal s(init_seconds) t (natural60)
signal s(show_hours) t(natural20)
signal s(show_minutes) t(naturalé60)
signal s(show_seconds) t(natural20)
signal s(zero) t (peep)

signal s(dec_min) t (peep)

signal s(dec_hour) t (peep)

type t(boolean) 2

signal s(z_seconds) t(boolean)
signal s(z_minutes) t(boolean)
signal s(z_hours) t(boolean)
register r(minutes) t(naturalé0)
constant r(naturalé0_0) t(naturalé0) := 0
constant r(natural60_59) t(naturalé0) := 59

L(start):
wait on s{go)
r(minutes) := selection s(init_minutes)
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emit s(show_minutes) r(minutes)
wait on s(dec_min), s(abort)
L(loop):
present s(abort) goto L(out)
temporary r(tmpl) t(boolean)
r(tmpl) := r(minutes) = r(natural60_0)
if not r(tmpl) goto L(else)
L(then):
r(minutes) := r(natural60_59)
emit s(dec_hour) r(peep)
goto L(endif)
L(else):
r{minutes) := dec r(minutes)
goto L(endif)
L(endif):
emit s(show_minutes) r(minutes)
temporary r(tmp2) t(boolean)
r(tmp2) := r(minutes) = r(natural60_0)
emit s(z_minutes) r(tmp2)
wait on s(dec_min), s(abort)
goto L(loop)
L(out):
goto L(start)

A3.3 Entity: Countdown, Architecture: Synch, Process P3
-- The Countdown Unit (process p3)

type t(peep) 1

constant r(peep) t(peep) := 0
signal s(go) t (peep)

signal s(decrement) t (peep)

signal s(abort) t (peep)

type t (natural20) 20

type t(naturalé0) 60

signal s(init_hours) t(natural20)
signal s(init_minutes) t(naturalé60)
signal s(init_seconds) t(naturalé0)
signal s(show_hours) t(natural20)
signal s(show_minutes) t(naturalé0)
signal s(show_seconds) t(naturalé60)
signal s(zero) t (peep)

signal s(dec_min) t (peep)

signal s(dec_hour) t(peep)

type t(boolean) 2

signal s(z_seconds) t(boolean)
signal s(z_minutes) t(boolean)
signal s(z_hours) t(boolean)
register r(hours) t(natural20)
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constant r(natural20_0) t(natural20) := 0
constant r(natural20_59) t(natural20) := 19

L(start):
wait on s(go)
r(hours) := selection s(init_hours)
emit s(show_hours) x(hours)
wait on s(dec_hour), s(abort)
L(loop):
present s(abort) goto L(out)
temporary r(tmpl) t(boolean)
r(tmpl) := r(hours) > r(natural20_0)
if not r(tmpl) goto L(endif)
r (hours) := dec r(hours)
L(endif) :
emit s(show_hours) r(hours)
temporary r(tmp2) t(boolean)
r(tmp2) := r(hours) = r(natural20_0)
emit s(z_hours) r(tmp2)
wait on s(dec_hour), s(abort)
goto L(loop)
L(out):
goto L(start)

A3.4 Entity: Countdown, Architecture: Synch, Process: P4
== The Countdown Unit (process p4)

type t{(peep) 1

constant r(peep) t(peep) := 0
signal s(go) t(peep)

signal s(decrement) t (peep)

signal s(abort) t (peep)

type t(natural2() 20

type t(natural60) 60

signal s(init_hours) t(natural20)
signal s(init_minutes) t(naturalé60)
signal s(init_seconds) t(naturalé0)
signal s(show_hours) t(naturalé0)
signal s(show_minutes) t(naturalé60)
signal s(show_seconds) t(naturalé60)
signal s(zero) t(peep)

signal s(dec_min) t (peep)

signal s(dec_hour) t (peep)

type t (boolean) 2

signal s(z_seconds) t(boolean)
signal s(z_minutes) t(boolean)
signal s(z_hours) t (boolean)
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L(start):
wait on s(z_seconds), s(z_minutes), s(z_hours)
temporary r{z_seconds) t (boolean)
temporary r(z_minutes) t(boolean)
temporary r(z_hours) t (boolean)

r(z_seconds) := selection s(z_seconds)
r(z_minutes) := selection s(z_minutes)
r(z_hours) := selection s(z_hours)

temporary r(tmpl) t(boolean)
temporary r(tmp2) t(boolean)
r(tmpl) := r(z_seconds) and r(z_minutes)
r(tmp2) := r(tmpl) and r(z_hours)
if not r(tmp2) goto L(endif)
emit s(zero) r(peep)
L(endif) :
goto L(start)

AJ3.5 Entity: Setup, Architecture: Synch, Process: P1
~- Setup Unit (process pl)

type t(peep) 1

constant r(peep) t(peep) := 0
signal s(go) t (peep)

signal s(sl) t (peep)

signal s(s2) t (peep)

signal s(s3) t(peep)

type t(natural20) 20

type t(naturalé60) 60

signal s(init_hours) t(natural20)
signal s(init_minutes) t(naturalé0)
signal s(set_hours) t(natural20)
signal s(set_minutes) t(natural60)
signal s(rollover) t (peep)

signal s(done) t (peep)

register r(hours) t(natural20)

L(start):
wait on s(go)
r(hours) := selection s(init_hours)
emit s(set_hours) r(hours)
wait on s(s2), s{(rollover), s(s3)
L(loop):
present s(s3) goto L(out)
r (hours) := inc r(hours)
emit s(set_hours) r(hours)
wait on s(s2), s(rollover), s(s3)
goto L(loop)
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L(out):
goto L(start)

A3.6 Entity: Setup, Architecture: Synch, Process: P2
-~ Setup Unit (process p2)

type t(peep) 1

constant r(peep) t(peep) := 0

signal s(go) t (peep)

signal s(sl) t(peep)

signal s(s2) t(peep)

signal s(s3) t(peep)

type t(natural20) 20

type t(naturalé0) 60

signal s(init_hours) t(natural20)

signal s(init_minutes) t(naturalé0)
signal s(set_hours) t(natural20)

signal s(set_minutes) t(natural60)

signal s(rollover) t (peep)

signal s (done) t (peep)

register r (minutes) t (naturalé60)

constant r(natural60_0) t(natural60) := 0
constant r(naturalé0_59) t(natural60) := 59

L(start):
wait on s(go)
r (minutes) := selection s(init_minutes)
emit s(set_minutes) r(minutes)
wait on s(sl), s(s3)

L(loop):
present s(s3) goto L(out)

type t(boolean) 2

temporary r(tmp) t (boclean)
r(tmp) := r(minutes) < r(natural60_59)
if not x(tmp) goto L(else)

L(then):
r{minutes) := inc r(minutes)
emit s(set_minutes) r(minutes)
goto L(endif)

L(else):
r(minutes) := r(natural60_0)
emit s(rollover) r(peep)
emit s(set_minutes) r(minutes)
goto L(endif)

L{endif) :
wait on s(sl), s(s3)
goto L(loop)

80 of 132 An Application of a Synchronous/Reactive Semantics to the VHDL Language



The Key-Chain Example

L(out):
goto L(start)

A.3.7 Entity: Setup, Architecture: Synch, Process: P3
-- Setup Unit (process p3)

type t(peep) 1

constant r(peep) t(peep) := 0
signal s(go) t (peep)

signal s(sl) t(peep)

signal s(s2) t(peep)

signal s(s3) t(peep)

type t(matural20) 20

type t(naturalé0) 60

signal s(init_hours) t{(natural20)
signal s(init_minutes) t(naturalé0)
signal s(set_hours) t(natural20)
signal s(set_minutes) t(naturalé60)
signal s(rollover) t (peep)

signal s(done) t (peep)

L(start):
wait on s(go)
wait on s(s3)
emit s(done) r(peep)
goto L(start)

A.3.8 Entity: Timer, Architecture: Synch, Process: Master
-- Timer Unit (process master)

type t(peep) 1

constant r(peep) t(peep) :=0
signal s(per_second) t (peep)

signal s(sl) t (peep)

signal s(s2) t(peep)

signal s(s3) t (peep)

type t(natural20) 20

type t (natural60) 60

signal s(show_hours) t(natural20)
signal s(show_minutes) t (naturalé60)
type t (boolean) 2

signal s(is_beeping) t (boolean)
signal s{(colon_showing) t (boolean)
signal s(setup_go) t (peep)

signal s(setup_done) t (peep)

signal s(setup_hours) t (natural20)
signal s(setup_minutes) t(natural60)
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signal s(countdown_go) t (peep)

signal s(countdown_done) t (peep)

signal s(countdown_abort) t (peep)

signal s(countdown_zero) t(peep)

signal s(hours_left) t (natural20)

signal s(minutes_left) t(naturalé0)
signal s(seconds_left) t(natural60)
signal s(noshow_seconds) t(naturalé60)
signal s(blink_go) t (peep)

signal s(blink_stop) t{(peep)

constant r(natural60_0) t(naturalé60) := 0
constant r(natural20_0) t(natural20) := 0

L(start):
emit s(setup_hours) r(natural20_0)
emit s(setup minutes) r(naturalé0_0)
emit s(setup_go) r(peep)
wait on s(setup_done)
emit s(seconds_left) r(naturalé60_0)
enmit s(countdown_go) r(peep)
emit s(blink_go) r(peep)
wait on s(countdown_docne)
emit s(blink_stop) r(peep)
wait on s(s3), s(countdown_zero)
wait on s(s2), s(s3)
L(loop):
present s(s2) goto L(out)
emit s(countdown_go) r(peep)
emit s(blink_go) r(peep)
wait on s(countdown_done)
emit s(blink stop) r(peep)
wait on s(s3), s(countdown_zero)
wait on s(s2), s(s3)
goto L (loop)
L{out):
emit s(countdown_abort) r(peep)
goto L(start)

A3.9 Entity: Timer, Architecture: Synch, Process: Beeper
-~ Timer Unit (process beeper)

type t(peep) 1

constant r(peep) t(peep) :=0
signal s(per_second) t (peep)
signal s(sl) t (peep)

signal s(s2) t(peep)

signal s({s3) t(peep)

type t (natural20) 20
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type t(natural60) 60

signal s(show_hours) t(natural20)
signal s(show_minutes) t(naturalé60)
type t(boolean) 2

signal s(is_beeping) t(boolean)
signal s(colon_showing) t (boolean)
signal s(setup_go) t (peep)

signal s(setup_done) t (peep)

signal s(setup_hours) t(natural20)
signal s(setup_minutes) t(naturalé60)
signal s(countdown_go) t (peep)
signal s(countdown_done) t (peep)
signal s(countdown_abort) t (peep)
signal s(countdown_zero) t (peep)
signal s(hours_left) t(natural20)
signal s (minutes_left) t (naturalé60)
signal s(seconds_left) t (naturalé0)
signal s(noshow_seconds) t(naturalé60)
signal s(blink_go) t (peep)

signal s(blink_stop) t (peep)
constant r(TRUE) t (boolean) := 1
constant r (FALSE) t(boolean) := 0

L(start):
emit s(is_beeping) r(FALSE)
L(loop):
wait on s(countdown_zero)
emit s(is_beeping) r (TRUE)
wait on s(sl), s(s2)
emit s(is_beeping) r (FALSE)
goto L(loop)

A.3.10 Entity: Timer, Architecture: Synch, Process: Blinker
-- Timer Unit (process blinker)

type t(peep) 1

constant r(peep) t(peep) :=0
signal s(per_second) t (peep)
signal s(sl) t (peep)

signal s(s2) t (peep)

signal s(s3) t (peep)

type t(natural20) 20

type t(natural60) 60

signal s(show_hours) t(natural20)
signal s(show_minutes) t (natural60)
type t(boolean) 2

signal s(is_beeping) t (boolean)
signal s(colon_showing) t(boolean)

An Application of a Synchronous/Reactive Semantics to the VHDL Language 83 of 132



The Key-Chain Example

signal s(setup_go) t (peep)

signal s(setup_done) t (peep)

signal s(setup_hours) t(natural20)
signal s(setup_minutes) t(naturalé60)
signal s(countdown_go) t (peep)
signal s(countdown_done) t (peep)
signal s(countdown_abort) t (peep)
signal s(countdown_zero) t (peep)
signal s(hours_left) t(natural2()
signal s(minutes_left) t(naturalé60)
signal s(seconds_left) t(naturalé0)
signal s(noshow_seconds) t(naturalé60)
signal s(blink_go) t (peep)

signal s(blink_stop) t (peep)
register r(colon) t(boolean)
constant r(TRUE) t (boolean) := 1
constant r(FALSE) t(boolean) := 0

L(start):

r(colon) := r(TRUE)

emit s(colon_showing) r(colon)
L(loop):

wait on s(blink_go)

emit s(is_beeping) r (TRUE)

wait on s(per_second), s(blink_stop)
L(loopl):

present s(per_second) goto L(outl)

r{colon) := not r(colon)

emit s(colon_showing) r(colon)

wait on s(per_second), s(blink_stop)

goto L(loopl)
L{outl):

goto L(loop)

A4 Esterel

This section contains the final Esterel translation of the original VHDL process. With the VHDL processes translated to
Esterel, all that remains to do is to link together in parallel the Esterel modules given here to form the final top-level
Esterel module. This top-level module is compiled with the -simul option of the Esterel V.3 compiler to form the final
simulator.

Ad4.1 Entity: Countdown, Architecture: Synch, Process: P1
module countdown pl:
% type declarations
% subsumed by the predefined Esterel type

% type integer;
% subsumed by the predefined Esterel type
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$ type boolean;
% type domain is a singleton set

% type peep:

% constant declarations

constant naturalé60_0: integer;

% type domain is a singleton set
% constant peep: peep;

constant natural60_59: integer;

input
go,
abort,
decrement,
init_seconds (integer) ;

output
show_seconds (integer),
z_seconds (boolean),
dec_min;

% declarations of registers

var
seconds := 0: integer
in
% declarations of temporaries
var
tmp3 := false: boolean,
tmp2 := false: boolean,
tmp := false: boolean
in
% the process body itself
loop
await go:
seconds := ?init_seconds;

emit show_seconds (seconds);
tmp := seconds = naturalé0_0;
emit z_seconds(tmp);
await
case abort
case decrement
end;
trap WHILE in
loop
present abort then
exit WHILE
end;
tmp2 := seconds = natural60_0;
if not tmp2 then
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seconds := seconds-1;
% an orphaned goto
nothing
else
seconds := natural60_59;
emit dec_min;
% an orphaned goto
nothing
end;
emit show_seconds (seconds);
tmp3 := seconds = natural60_0;
emit z_seconds (tmp3);
await
case abort
case decrement

end;
% an orphaned goto
nothing
end

end;

% an orphaned goto

nothing

end
end
end.

A4.2 Entity: Countdown, Architecture: Synch, Process: P2
module countdown_p2:

type declarations

subsumed by the predefined Esterel type
type integer;

subsumed by the predefined Esterel type
type boolean;

type domain is a singleton set

type peep;

o R P I KR N o

% constant declarations

constant naturalé0_0: integer;

% type domain is a singleton set
% constant peep: peep;

constant natural60_59: integer;

input
go,
abort,
dec_min,
init_minutes (integer);
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output
show_minutes (integer),
dec_hour,

z_minutes (boolean);

% declarations of registers

var
minutes := 0: integer
in
% declarations of temporaries
var
tmpl := false: boolean,
tmp2 := false: boolean
in
% the process body itself
loop
await go;
minutes := ?init_minutes;
emit show_minutes (minutes);
await

case abort
case dec_min
end;
trap WHILE in
loop
present abort then
exit WHILE
end;
tmpl := minutes = natural60_0;
if not tmpl then
minutes := minutes-1;
$ an orphaned goto
nothing
else
minutes := natural60_59;
emit dec_hour;
% an orphaned goto

nothing
end;
emit show_minutes (minutes);
tmp2 := minutes = naturalé0_0:
emit z minutes(tmp2);
await

case abort

case dec_min
end;
% an orphaned goto
nothing
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end
end;
% an orphaned goto
nothing
end
end

end.
A4.3 Entity: Countdown, Architecture: Synch, Process: P3
module countdown_p3:

type declarations

subsumed by the predefined Esterel type
type integer;

subsumed by the predefined Esterel type
type boolean;

type domain is a singleton set

type peep:

9 OP M X K P K

% constant declarations

constant natural20_0: integer;

$ type domain is a singleton set
% constant peep: peep:;

constant natural20_59: integer;

input
go,
dec_hour,
abort,
init_hours (integer);

output
z_hours (boolean),
show_hours (integer) ;

% declarations of registers

var
hours := 0: integer
in
% declarations of temporaries
var
tmpl := false: boolean,
tmp2 := false: boolean
in
% the process body itself
loop
await go;
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hours := ?init_hours;
emit show_hours (hours);
await
case abort
case dec_hour
end;
trap WHILE in
loop
present abort then
exit WHILE
end;
tmpl := hours > natural20_0;
if not tmpl else
hours := hours-1
end;
emit show_hours (hours);
tmp2 := hours = natural20_0;
emit z_hours (tmp2) ;
await
case abort
case dec_hour
end;
% an orphaned goto
nothing
end
end;
% an orphaned goto
nothing
end
end
end.

A4.4 Entity: Countdown, Architecture: Synch, Process: P4
module countdown_p4:

type declarations

subsumed by the predefined Esterel type
type integer;

subsumed by the predefined Esterel type
type boolean;

type domain is a singleton set

type peep:

R o P P P I P

constant declarations
type domain is a singleton set
constant peep: peep;

P P e

input
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z_hours (boolean),
z_minutes (boolean),
z_seconds (boolean) ;

output
zero;

% declarations of temporaries
var
Z_hours := false: boolean,
tmpl := false: boolean,
z_minutes := false: boolean,
tmp2 := false: boolean,
z_seconds := false: boolean
in
% the process body itself
loop
await
case z_hours
case z_minutes
case z_seconds
end;
z_seconds := ?z_seconds;
z_minutes := ?z_minutes;
z_hours := 2z hours;
tmpl := z_seconds and z_minutes;
tmp2 := tmpl and z_hours;
if not tmp2 else
emit zero
end;
$ an orphaned goto
nothing
end
end.

A.4.5 Entity: Setup, Architecture: Synch, Process: P1
module setup pl:

type declarations

subsumed by the predefined Esterel type
type integer:;

type domain is a singleton set

type peep:

P P I d° P

constant declarations
type domain is a singleton set
constant peep: peep;

P dP P
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input
go,
s2,
s3,
rollover,
init_hours (integer) ;

output
set_hours (integer);

% declarations of registers
var
hours := 0: integer
in
% the process body itself
loop
await go;
hours := ?init_hours;
emit set_hours (hours);
await
case rollover
case s2
case s3
end;
trap WHILE in
loop
present s3 then
exit WHILE
end;
hours := hours+l;
emit set_hours (hours);
await
case rollover
case s2
case s3
end;
% an orphaned goto
nothing
end
end;
% an orphaned goto
nothing
end
end.

A4.6 Entity: Setup, Architecture; Synch, Process: P2

module setup_p2:
% type declarations
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subsumed by the predefined Esterel type
type integer;

subsumed by the predefined Esterel type
type boolean;

type domain is a singleton set

type peep;

R I I P oP oP

% constant declarations

constant natural60_0: integer;

% type domain is a singleton set
% constant peep: peep;

constant natural60_59: integer;

input
sl,
go,
s3,
init_minutes (integer);

output
set_minutes (integer),
rollover;

% declarations of registers
var
minutes := 0: integer
in
% declarations of temporaries
var
tmp := false: boolean
in
% the process body itself
loop
await go;
minutes := ?init_minutes;
emit set_minutes (minutes):
await
case sl
case s3
end;
trap WHILE in
loop
present s3 then
exit WHILE
end;
tmp := minutes < naturalé0_59;
if not tmp then
minutes := natural60_0;
emit rollover;
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emit set_minutes (minutes):;
% an orphaned goto
nothing

else
minutes := minutes+l;
emit set_minutes (minutes);
% an orphaned goto

nothing
end;
await
case sl
case s3
end;
% an orphaned goto
nothing
end
end;
% an orphaned goto
nothing
end
end

end.
A4.7 Entity: Setup, Architecture: Synch, Process: P3
module setup_p3:

type declarations

subsumed by the predefined Esterel type
type integer;

type domain is a singleton set

type peep;

P P o I of

constant declarations
type domain is a singleton set
constant peep: peep;

P dP of

input

go.,
s83;

output
done;

% the process body itself
loop

await go;

await s3;

emit done;
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% an orphaned goto
nothing
end.

A.4.8 Entity: Timer, Architecture: Synch, Process: Master
module timer master:

type declarations

subsumed by the predefined Esterel type
type integer;

subsumed by the predefined Esterel type
type boolean;

type domain is a singleton set

type peep;

d° o 0P I P oP o

% constant declarations

constant natural20_0: integer;
constant natural60_0: integer:

% type domain is a singleton set
% constant peep: peep:

input
s2,
s3,
countdown_zero,
setup_done,
countdown_done;

output
countdown_go,
blink_stop,
blink_go,
countdown_abort,
setup_hours (integer),
setup_minutes (integer),
setup_go,
seconds_left (integer);

% the process body itself

loop
emit setup hours(natural20_0);
emit setup_minutes (natural60_0);
emit setup_go;
await setup_done;
emit seconds_left (naturalé0_0);
emit countdown_go;
emit blink go;
await countdown_done;
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emit blink_stop;
await
case countdown_zero
case s3
end;
await
case s2
case s3
end;
trap WHILE in
loop
present s2 then
exit WHILE
end;
emit countdown_go;
emit blink_go;
await countdown_done;
emit blink stop:;
await
case countdown_zero
case s3
end;
await
case s2
case s3
end;
% an orphaned goto
nothing
end
end;
emit countdown_abort;
% an orphaned goto
nothing
end.

A.4.9 Entity: Timer, Architecture: Synch, Process: Beeper
module timer beeper:

type declarations

subsumed by the predefined Esterel type
type integer;

subsumed by the predefined Esterel type
type boolean;

type domain is a singleton set

type peep:;

o0 P P P oP o o

constant declarations
subsumed by the predefined Esterel constant

P P
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% constant false: boolean;
% type domain is a singleton set
% constant peep: peep;
% subsumed by the predefined Esterel constant
% constant true: boolean;
input
sl,
s2,
countdown_zero;
output

is_beeping(boolean) ;

% the process body itself

loop
emit is_beeping (false);
loop
await countdown_zero;
emit is_beeping (true);
await
case sl
case s2
end;
emit is_beeping(false);
% an orphaned goto
nothing
end
end.

A.4.10 Entity: Timer, Architecture: Synch, Process: Blinker

module timer_ blinker:

% type declarations

% subsumed by the predefined Esterel type

% type integer;

% subsumed by the predefined Esterel type

% type boolean;

% type domain is a singleton set

% type peep;

$ constant declarations

% subsumed by the predefined Esterel constant
% constant false: boolean;

% type domain is a singleton set

% constant peep: peep;

% subsumed by the predefined Esterel constant
% constant true: boolean;
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input
per_second,
blink_stop,
blink_go;

output
is_beeping (boolean),
colon_showing (boolean);

% declarations of registers
var
colon := false: boolean
in
% the process body itself
colon := true;
emit colon_showing(colon);
loop
await blink_go:;
emit is_beeping(true);
await
case blink_stop
case per_ second

end;
trap WHILE in
loop
present per_second then
exit WHILE
end;
colon := not colon;
emit colon_showing (colon);
await
case blink_stop
case per_second
end;
% an orphaned goto
nothing
end
end;
$ an orphaned goto
nothing
end

end.
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Appendix B

The Synchronous VHDL Subset

This appendix documents the grammatical aspects of the Synchronous VHDL subset. There are two sections: the first sec-
tion, Section B.1, lists the constructs which are included in the VHDL subset while the second section, Section B.2
describes the constructs which are not supported in the subset.

The grammatical structure of the subset is defined without reference to the static correctness issues mentioned in Chapter
4. It should be noted that the grammatical structure documented in this appendix is much less important than the consis-
tency issues described in the main body. This is because even within the grammatical structure shown in Section B.1 one
can write nonsense programs through the use of non-causal signal assignments, recursion within subprograms, uses of
unconstrained array references and the like. The following sections then should be understood as a starting point for the
analyses described in Chapter 4. That is all legal Synchronous VHDL descriptions must fall within the grammatical struc-
ture described in Section B.1 and they must not use any of the constructs described in Section B.2. In addition however,
legal programs just also obey the further restrictions documented in Chapter 4.

B.1 Supported Constructs
The following BNF describes the grammatical structure of Synchronous VHDL Subset:42

abstract_literal
: decimal literal
based literal

Se —

actual_ designator
: expression

| signal_name

| variable name

|

;

OPEN

actual_ parameter part
: parameter_association_list

.
’

actual_part
actual designator

42. The BNF notation used here is a modified form of that which is found in Appendix A of VHDL-1076 Language Reference Manual
(LRM) [IEEE87]. The notation used there documents the structure of VHDL language but is not in and of itself useful because its loose
notation makes it unsuitable for use in an LR(1) parser-generator such as yacc. The description presented here is a modified form of
the Appendix A presentation, modified to be accepted by LR(1) parser generators. It is interesting to note that Appendix A of the LRM
is actually not part of the 1076 standard itself; it is provided for informational purposes only ([IEEE87] page A-1). No part of the stan-
dard actually documents the grammatical structure of the VHDL language.
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| function_name ‘(' actual_designatbor ‘)’

.
4

adding operator
\+I

A Py

\&I

e g

aggregate
: Y(' _element_association_list ')’

.
’

_element_association_list
: element_association
| _element_association_list ‘,’ element_association
H

alias declaration
: ALIAS identifier ‘:’ subtype_indication IS name

.
’

architecture_ body
: ARCHITECTURE identifier OF entity name IS
architecture_declarative_part
BEGIN
architecture_statement_part
END architecture optional_simple_name ‘;’

architecture_declarative_part
/* NULL */
| architecture_declarative_part block_declarative_item

.
’

architecture_statement_part
: /* NULL */
| architecture statement_part concurrent_statement

.
’

array type_definition
: unconstrained array definition
| constrained array definition

.
’

assertion_statement
ASSERT condition
_optional_report
_optional_severity ‘;’

~
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association_element
: formal_part EQGR actual part
| actual_part

.
’

association_list
association_element
| association list ‘,’ association_element

.
’

attribute_declaration
ATTRIBUTE identifier ‘:’ type mark ‘;’

LAY

attribute_designator
attribute_simple_ name

.
’

attribute_name
: prefix “\’‘’ attribute_designator
static_optional_paren_expression

.
’

attribute_specification
: ATTRIBUTE attribute_designator OF
entity_specification IS expression ‘;’

.
’

base
integer

-
’

base_specifier
: \BI

| \ol4

| \XI

’

base_unit_declaration
identifier ‘;'

.
’

/%
These are handled in the scanner directly

based integer: extended digit ( [ underline ] extended_digit }
based literal: base ‘#’ based_integer

{ ‘.’ based integer ] ‘#’ exponent
basic_character: basic_graphic_character | format_effector

¥ % * A ¥ *
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* basic_graphic_character: upper_case_letter | digit |
* special character | space_character

*/

binding_indication
: entity_aspect
_optional_ generic_map_aspect
_optional_port_map_aspect

~e

/*
* These are handled in the scanner

*

* bit_string_literal: base_specifier ‘7’ bit_value ‘7’

* bit_value: extended_digit {[ underline ] extended_ digit }
*/

block_configuration
: FOR block_specification
_use_clause_list
_configuration_item list

ENDFOR ;-

block_declarative item
: subprogram declaration
| subprogram body
| type_declaration
| subtype declaration
| constant_declaration
| signal_declaration
| file_declaration
| alias_declaration
| component_declaration
| attribute_declaration
| attribute_specification
| configuration specification
| disconnection_specification
| use_clause

’

block_declarative_part
: block_declarative_item
| block_declarative_part block declarative item

-
’

block_header
: optional_generic_clause generic_map
optional port clause_port_map

~,
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block_specification
: name
| label _optiocnal_ index_specification

.
4

block_statement
: label ‘:’
BLOCK optional_paren_expression
block_header
block_declarative_part
BEGIN
block_statement_part
END BLOCK 1label ‘;’

~e

block_statement_ part
¢ concurrent_ statement
| block_statement_part concurrent_statement

3
’

case_statement
CASE expression IS
case_statement_alternative_list

END CASE ;-

-
’

case_statement_alternative
WHEN choices EQGR sequence of_statements

-
’

_case_statement_alternative_list
: case_statement_alternative
_case_statement_alternative list case_statement_alternative

[
.
’

/*

*

These are handled by the scanner

*

character_literal: ‘\’’ graphic_character ‘\’’

*/

choice
: simple_expression
| discrete_range
| simple_name
| OTHERS
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choices
choice
| choices ‘|’ choice

-
L4

component_configuration
: FOR component_specification
_optional use_ binding_indication
_optional block configuration

ENDFOR ;-

.
’

component_declaration
: COMPONENT identifier
_optional_generic_clause
_optional_port_clause

END COMPONENT ;-

’

component_instantiation statement
: label ‘:f
name
_optional_generic_map aspect
_optional port_map aspect ‘;’

component_specification
: instantiation_list ‘:’ name

.
’

composite_type definition
: array type_definition
record type_definition

I
.
’

concurrent_assertion_statement
: _optional_label colon assertion_statement

.
’

concurrent_procedure_ call
: _optional_label colon procedure call_ statement

.
’

concurrent_signal_assignment_statement
: _optional_label colon conditional_signal_assignment
| _optional label colon selected_signal_assignment

.
’
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concurrent_statement
: block_statement
| process_statement
| concurrent_procedure_call
| concurrent_ assertion_statement
| concurrent_signal_assignment_statement
| component_instantiation_statement
| generate_statement
14

condition
: expression

.
.
1

condition_clause
: UNTIL condition

.
’

conditional_signal_assignment
: target LTEQ options conditional_waveforms ;'

.
4

conditional_waveforms
: _waveform when_condition_else_list
waveform

e

configuration_declaration
: CONFIGURATION identifier OF name IS
configuration declarative_part
block_configuration
END _optional_simple_name °;’

~e

configuration_declarative_part
: use_clause
| attribute_specification

configuration_declarative_part
: configuration_declarative_item
configuration_declarative part configuration_declarative_item

~e —

configuration_item
block_configuration
component_configuration

N, — ae
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configuration_specification
: FOR component_specification USE binding indication ‘;’

L3
L4

constant_declaration
: CONSTANT identifier_ list ‘:f
subtype_indication _optional_ initial value °‘;’

-
L4

constrained array definition
: ARRAY index constraint OF subtype indication

.
14

constraint
: range_constraint
| index constraint

.
’

context_clause
context_item
| context_clause context_item

.
’

context_item
: library_clause
| use_clause

.
’

/*
* This is handled in the scanner

*

* decimal literal: integer [ . integer ] [ exponent ]
*/

declaration
: type_declaration
| subtype_declaration
| object_declaration
| file_declaration
| interface_declaration
| alias_declaration
| attribute declaration
| component_declaration
| entity_declaration
| configuration_declaration
| subprogram declaration
| package_declaration
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design_file
: design_unit
| design_file design_unit

.
’

design_unit
: context_clause library unit

.
’

designator
identifier
| operator_symbol

-
’

direction
: TO
i DOWNTO

-
’,

discrete range
: subtype_ indication
| range

element_association
_optional_choices_eqgr expression

Ne  ee

element_declaration
identifier_ list ‘:’ element_subtype definition ‘;’

-
-
-

’

element_subtype definition
: subtype_indication

-
’

entity_ aspect
: ENTITY name _optional_identifier
| CONFIGURATION name
| OPEN

entity class
:  ENTITY
| ARCHITECTURE
| CONFIGURATION
| PROCEDURE
| FUNCTION
| PACKAGE
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TYPE
SUBTYPE
CONSTANT
SIGNAL
VARIABLE
COMPONENT
LABEL

entity declaration
: ENTITY identifier IS
entity header
entity_ declarative part
_optional_entity body
END simple_name ‘;’

entity declarative_item
: subprogram declaration
|  subprogram body
| type_declaration
| subtype declaration
| constant_declaration
| signal_declaration
| file_declaration
| alias_declaration
I attribute_declaration
| attribute_specification
| disconnection_specification
| use_clause

entity declarative_part
: entity declarative_item
| entity declarative part entity declarative_item

.
4

entity_designator
simple_name
| operator_symbol

-
’

entity_header
: _optional_generic_clause _optional_port_clause

.
’

entity name_list
: entity designator entity designator_list
| OTHERS
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| ALL

.
’

entity designator_list
: entity designator
entity designator_list ‘,’ entity designator

e e o

entity specification
: entity name_list ‘:’ entity_ class

3
’

entity statement
¢ concurrent_assertion_statement
| concurrent_procedure call
| process_statement
’

entity_ statement_part
: entity_ statement
entity statement_part entity statement

Yo = o

enumeration_literal
: identifier
| character literal
;

enumeration_type definition
‘(' enumeration_literal list ‘)’

~e oo

enumeration_literal list
: enumeration_literal
| enumeration_literal list ‘,’ enumeration_literal

.
!,

exit_statement
: EXIT _optional_label _optional when_condition ‘;’

.
’

/*
* These will be taken care of by the scanner

* exponent: E [ + ] integer | E - integer
*/

expression
: relation _and_relation_list
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| relation _or_relation_list
| relation _xor_relation_list
| relation NAND relation

| relation NOR relation

’

_and relation_list
/* NULL */
| AND relation _and_relation_list

.
’

_or_relation_list
: /* NULL */
I OR relation _or_relation_list

.
’

_¥or_ relation_list
: /* NULL */
| XOR relation _xor_relation_list

/*
These will be taken care of by the scanner

*

*

extended_digit: digit | letter
*/

factor
: primary _optional_exponentiation
| ABS primary

| NOT primary

’

floating_type definition
range_constraint

-
’

formal designator
name

.
.
.

’

formal parameter list
interface_list

.
-
-

’

formal part
formal_designator
| name ‘(' formal designator ‘)’

-
’
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full type_declaration
TYPE identifier IS type_definition

.
7

function call
: name _optional_ paren_actual_parameter part

.
’

generate_statement
: label ‘:’
generate_scheme GENERATE
_concurrent_statement_list
END GENERATE _optional label ‘;’

~e

concurrent_statement_list
: /* NULL */
| _concurrent_statement_list concurrent_ statement

-
’

generation_scheme
: FOR parameter_ specification
| IF condition

.
’

generic_clause
GENERIC “(® generic_list ‘)’ ‘;’

-
’

generic_list
: interface_list

.
!’

generic_map_aspect
GENERIC MAP ' (* association_list ‘)’

/'k

*

The scanner will take care of this

graphic_character: basic_graphic_character |
lower_case_character | other special_character

* *

*/

guarded signal_specification
: signal_list ‘:’ type mark

~. o
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/*

*

The scanner will take care of this

* *

identifier: letter { [ underline ] letter_or_digit }

*/

identifier list
: identifier
identifier_list ‘,’ identifier

e - o

if statement
: IF condition THEN
sequence_of_ statements
_elsif list
_optional_else
END IF ;-

.
’

_elsif list
/* NULL */
| _elsif list ELSIF condition THEN
sequence_of statements

.
’

incomplete type declaration
TYPE identifier ‘;’

we e

index_constraint
‘(" discrete_range_list ‘)’

-
’

- discrete_range_list
: discrete_range
| discrete_range_list ‘,’ discrete_range

.
4

index_specification
discrete_range
| expression

-
’

index subtype_definition
: type_mark RANGE LEGR

.
’
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indexed name
prefix ‘(' expression_list ‘)’

e e

expression_list
: expression
| expression_list ‘,’ expression

.
14

instantiation_list

: label_list
| OTHERS
| ALL
label list
: label

| label_list ',’ label

.
’

/*
* These will be taken care of by the scanner
*

* integer: digit { [ underline ]} digit }
*/

integer type definition
range_constraint

.
’

interface_constant_declaration
_optional_ constant identifier list ‘:’
_optional_in subtype_indication
_optional_initial_value

-
’

interface_declaration
interface_constant_declaration
| interface_signal_declaration
| interface_variable declaration
4

interface_element
interface_declaration

-
’

interface_list
interface_element
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| interface_list ‘;’ interface element

-
’

interface_signal_declaration
: _optional_signal identifier_ list
_optional mode subtype_indication
_optional_bus _optional_initial_value

A I 4
.

.
’

interface_variable_declaration
: _optional_variable identifier list ‘:’
_optional mode subtype_indication
_optional_intial_value

.
4

iteration_scheme
: WHILE condition
FOR parameter_specification

!
.
’

label
identifier

e e

/*
* The scanner will take care of these

*

* letter: upper_case_letter | lower_case_letter
* letter_ or_digit: letter | digit

*/

library clause
: LIBRARY logical_name_list ‘;’

.
’

library unit
primary unit
| secondary_unit

-
’

literal
: numeric_literal
| enumeration_literal
| string_literal
| bit_string literal
| NULL

’
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logical name
: identifier

.
r

logical_name_list
: logical_name
| logical name list ‘,’ logical_name

logical_operator
: AND

| OR

I NAND

I NOR

I XOR

’

loop_statement
: _optional_label colon
_optional_iteration_scheme LOOP
sequence_of_statements
ENDLOOP _optional_label ‘;'

.
’

miscellaneous_operator
STARSTAR
| ABS
| NOT

.
’

mode
: IN

| OUT

| INOUT

| BUFFER

| LINKAGE

.
’

multiplying_operator
- Nkt

VA

| MOD

| REM

name
: simple name

| operator_symbol

| selected name
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indexed_name
slice_name
attribute name

N — ——

next_statement
: NEXT _optional label _optional when_condition

-
.
’

null statement

: NULL

.
’

numeric_literal
abstract_literal
| physical literal

.
I’

object_declaration
: constant_declaration
| signal_declaration
| variable_declaration
’

operator_ symbol
: string_ literal

-
.
’

options
: _optional guarded _optional_transport

.
.
’

package_body
: PACKAGE BODY simple_name IS
package_body_declarative_part
END _optional_simple_name ‘;’

.
’

package_body_declarative item
: subprogram declaration
| subprogram body
| type_declaration
| subtype declaration
| constant_declaration
| file_declaration
| alias_declaration
| use_clause

’
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package_body_declarative_ part
: /* NULL */
| package body_declarative_part package_body_declarative_item

.
’

package_declaration
PACKAGE identifier IS
package_declarative_part
END _optional_simple_name ‘;’

-
’

package declarative_item
: subprogram_declaration
| type_declaration
| subtype_declaration
| constant_declaration
| signal_declaration
| file declaration
| alias_declaration
| component_declaration
| attribute declaration
| attribute_specification
| disconnection_specification
| use_clause

package_declarative_ part
package_declarative_item
| package_declarative_part package _declarative_item

.
’

parameter_ specification
: identifier IN discrete_range

.
14

physical literal
_optional abstract_literal name

.
’

physical type_definition
range_constraint
UNITS
unit_declaration_list

END UNITS

-
r

_unit_declaration_list
base_unit_declaration
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| _unit_declaration_list secondary unit_declaration

-
’

port_clause
PORT ‘(* port_list ‘)’

ALY Y

port_list
: interface_list

.
’

port_map_aspect
PORT MAP ‘(‘ association_list ‘)’

ALY

prefix
: name
| function_call

.
14

primary
: name
literal
aggregate

function_call
qualified expression
type_conversion
allocator

‘(' expression ‘)’

A e —

primary unit
: entity declaration
I configuration_declaration
| package_declaration

’

procedure_call_ statement
name _optional_paren actual_parameter part

-
’

process_declarative item
: subprogram declaration
| subprogram_body
| type_declaration
| subtype declaration
| constant_declaration
| wvariable declaration
| file_declaration
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| alias_declaration

| attribute_declaration

| attribute_specification
| use_clause

’

process_declarative part
: process_declarative item
process_declarative_part process_declarative_item

~e — o

process_statement
: _optional_label_colon
PROCESS _optional_sensitivity_list
process_declarative_part
BEGIN
process_statement_part
END _optional_label ‘;’

process_statement_part
sequential_ statement
| process_statement_part sequential_statement

.
’

qualified expression
: type_mark ‘\’’ ‘(' expression ‘)’
type mark ‘\’’ aggregate

L T —

range
: attribute_name
| simple_expression direction simple_expression
i

range_constraint

RANGE range

AU T

record type definition
: RECORD
_element_declaration_list
END RECORD

~

_element_declaration_list
: element_declaration
| _element_declaration_list element_declaration

.
’
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relation
simple_expression
optional_relational_operator_simple expression

relational_ operator
. \r

| NOTEQ
l A} < \

I LEQ

I \ >

| GEQ

return_ statement
: RETURN _optional_expression

.
’

scalar_ type definition
: enumeration_type definition
| integer_type definition
I floating_type definition
| physical_type definition

’

secondary_unit
: architecture_body
| package_body

secondary_unit_declaration
identifier ‘=’ physical_literal ‘;’

.
4

selected_name
: prefix ‘.’ suffix

.
’

selected_signal_assignment
WITH expression SELECT
target LE options
selected waveforms *‘;'

.
4

selected waveforms
: _waveform when_choices list
_waveform when_choices
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_waveform when_choices
: /* NULL */
I _waveform when_choices _waveform when choices ‘,’

_waveform when_choices
: waveform WHEN choices

~e e

sensitivity clause
ON sensitivity list

~e se

sensitivity list
: _name_ list

~. .

_name_list
! name
| _name_list ‘,’ name
’

sequence_of_ statements
: sequential_ statement
| sequential_ of statements sequential_: statement

sequential_ statement
: wait_statement

| assertion_statement

| signal_assignment_statement

| variable_assignment_statement
| procedure_call statement

| if_statement

| case_statement

1 loop_statement

| next_statement

| exit_statement

| return_statement

| null statement

sign
\+I
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signal_assignment_statement
target GEQ _optional_transport waveform ‘;’

.
4

signal_declaration
: SIGNAL identifier list *:f
subtype_indication _optional_ signal kind
_optional_initial_value *;’

.
’

signal_kind
: REGISTER
| BUS

signal_list
: _name_list
| OTHERS
| ALL

.
’

simple_expression
_optional_sign term _adding operator_term_ list

.
’

_adding_operator_term_list
: /* NULL */
| _adding_operator_ term list adding_operator term

.
’

simple_name
identifier

-
4

slice_name
: prefix ‘(' dixcrete_range ‘)’

.
4

/*

* The scanner is going to take care of these

*

* string_literal: ‘"’ { graphic_character } ‘7’

*/

subprogram_body
: subprogram specification IS
subprogram declarative_part
BEGIN

subprogram_statement_ part
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END _optional_designator ‘;’

subprogram_declaration
subprogram_specification ‘;’

.
’

subprogram declarative_item
: subprogram declaration
| subprogram body
| type_declaration
| subtype declaration
| constant_declaration
| variable declaration
| file_declaration
| alias_declaration

| attribute_declaration

| attribute_specification

| use_clause

’

subprogram declarative_part
subprogram_declarative_item
| subprogram declarative_part subprogram declarative item

[}
’

subprogram specification
PROCEDURE designator
_optional paren_formal_parameter_list
| FUNCTION designator
_optional_paren_formal parameter_list RETURN type mark

-
’

subprogram statement_part
: _sequential_ statement_list

-
4

subtype_declaration
: SUBTYPE identifier IS subtype_indication ‘;’

.
’

subtype_indication
_optional name type_mark _optional_constraint

.
’

suffix
simple_ name
| character_literal
| operator_symbol
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| ALL
target

: name

| aggregate

.
’

term
: factor _multiplying operator_factor_list

-
’

_nmultiplying operator_factor_list
: /* NULL */
| _multiplying operator_factor_list multiplying_operator_factor

.
4

timeout_clause
FOR expression

.
,

type_ conversion
: type _mark ‘(' expression ')’

.
’

type_declaration
full type declaration
incomplete_type declaration

.
r

type_definition

scalar_type definition
composite type_definition
access_type_definition

file type definition

NP e g

type_mark
name

.
’

unconstrained array_definition
: ARRAY ‘(* _index subtype definition_list ‘)’
OF subtype_indication

-
’

_index subtype_definition_list
: index_subtype_definition
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| index subtype_definition list ‘,’ index_ subtype_definition

.
r’

use_clause
¢ USE _selected name_list

.
r

_selected_name list
: selected name
| _selected name_list ‘,’ selected name

variable assignment_statement
target COLONEQ expression ;'

.
’

variable_declaration
: VARIABLE identifier_ list ‘:’ subtype_indication
_optional_initial value ‘;’

.
’

wait_statement
WAIT _optional_sensitivity clause
_optional_ condition_clause
_optional_timeout_clause ‘;’

-
’

_optional_abstract_literal
: /* NULL */
| abstract_literal

.
’

_optional block_configuration
/* NULL */
| block_configuration

_optional_bus

: /* NULL */
| BUS

.
’

_optional choices_eqgr
: choices EQGR

.
’

_optional_condition_clause
/* NULL */
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| condition_clause

.
r

_optional_constant
: /* NULL */
CONSTANT

I
.
’

_optional constraint
/* NULL */
| constraint

-
’

_Optional_designator
: /% NULL */
designator

€ — e

_optional else
¢ /* NULL */
| ELSE sequence of_statements

.
’

_optional_entity body
/* NULL */
| BEGIN entity statement_part

.
4

_optional_exponentiation
: /* NULL */
| STARSTAR primary

_optional generic_clause
: /* NULL */
generic_clause

I
.
’

_optional_generic_clause_generic_map_aspect
: /* NULL */
| generic_clause generic_map_aspect ‘;’

.
’

_optional generic_map_ aspect
: /* NULL */
| generic_map_aspect

.
’
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_optional_generic_map aspect
: /* NULL */
| generic_map_ aspect

.
’

_optional guarded
/* NULL */
| GUARDED

-
4

_optional_identifier
¢ /* NULL */
| identifier

_optional_in
/* NULL */
| IN

.
4

_optional_ index specification
: /* NULL */
‘(' index specification ‘)’

I
.
’

_optional_initial_ value
¢ /* NULL*/
| COLONEQ expression

.
,

_optional_iteration_scheme
/* NULL*/
| iteration_scheme

.
4

_optional label colon
: /* NULL */
| label ‘:’

3
r

_optional_label
/* NULL */
| label

-
’

_optional_mode
: /* NULL */
|  mode

-
’
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_optional_name
/* NULL */
| name

13
’

_optional_ paren_actual_parameter_part
: /* NULL */
I Y(' actual_parameter_part ‘)’

.
’

_optional paren_expression
: /* NULL */
I (" expression ‘)’

_optional paren formal parameter_ list
/* NULL */
| ‘(' formal parameter_ list ‘)

-
’

_optional_port_clause
/* NULL */
| port_clause

-
4

_optional_port_clause_port_map_aspect
: /* NULL */
| port_clause port_map_aspect ;'

.
’

_optional port_map_aspect
: /* NULL */
| port_map_aspect

.
r

_optional_port_map_aspect
: /* NULL */
| port_map aspect

.
’

_optional_relational_operator_simple_expression
:  /* NULL */
| relational_operator simple_expression
;

_optional_report
: /* NULL */
| REPORT expression

.
14
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_optional_sensitivity_clause
/* NULL */
| sensitivity clause

.
!’

_optional_ sensitivity_ list
: /* NULL */
| sensitivity list

_optional_severity
: /* NULL */
| SEVERITY expression

-
’

_optional_sign
/* NULL */
| sign

.
’

_optional signal
/* NULL */
SIGNAL

N —— e

_optional_signal_kind
: /* NULL */
| signal_kind

_optional_simple_name
: /* NULL */
| simple_name

.
’

_optional timeout_clause
/* NULL */
| timeout_clause

-
’

_optional_ use binding_indication
: /* NULL */
| USE binding_indication ‘;’

.
r

_optional when_condition
: /* NULL */
| WHEN condition

.
’
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_optional_variable
: /* NULL */
| VARIABLE

-
r

_use_clause_list
/* NULL */
| _use_clause_list

.
’

_waveform when_condition_else_list
/* NULL */
| _waveform when_condition_else_list waveform

WHEN condition ELSE

B.2 Unsupported Constructs

The constructs described in this section are defined in the full VHDL 1076 language standard but cannot be supported in
the Synchronous VHDL Subset. Each of the constructs is shown along with a simple statement describing why the con-
struct cannot be supported. Chapter 4 describes these reasons in more detail.

access_type_definition
: ACCESS subtype_indication

-
’

allocator
NEW subtype_ indication
| NEW qualified expression

These two constructs cannot be supported because they are used provide dynamic memory allocation

disconnect_specification
DISCONNECT guarded_signal specification
AFTER expression ‘;’

-
’

This construct cannot be supported because it manipulates the number of drivers attached to a signal. It represents a
manipulation of the runtime data structures in the simulator.

_optional_transport
: /* NULL */
| TRANSPORT

The transport delay model is not supported in the subset

_optional_after_expression
: /* NULL */
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| AFTER expression

The after clause is not supported because it is only relevant for the inertial and transport delay models, neither of which
are supported in the Synchronous VHDL subset.

file declaration
: FILE identifier ‘:’ subtype_indication IS

_optional _mode file_logical_name ‘;’

file logical_name
: expression

.
’

file type_definition
FILE OF type mark

e s

The three constructs above cannot be supported because they provide an interface from the simulator to the operating sys-
tem.

signal assignment_statement
target GEQ _optional_ transport waveform *;’

;
selected_waveforms

: _waveform when_choices_ list
_waveform when_choices

;
_waveform when_choices

/* NULL */
_waveform when_choices _waveform when_choices ‘,’

Ne — o8

_waveform when_choices
: waveform WHEN choices

.
14

waveform
: waveform element
waveform ‘,’ waveform element

I
;
waveform element

expression _optional_after_expression
NULL _optional_after_expression

~e — o
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_waveform when condition_else_list
/* NULL */
| waveform when condition_else_list waveform

WHEN condition ELSE

The use of waveform signal assignments is not supported in the Synchronous VHDL subset because the waveform assign-
ment implicitly uses the transport delay model. The transport delay model is not supported in the subset.

unconstrained array definition
: ARRAY ‘(' _index subtype_definition list ‘)’
OF subtype_indication

.
’

_index subtype definition_list
index subtype_definition
index_ subtype_definition_list ‘,’ index_ subtype_definition

e —— 4

Unconstrained arrays are not supported in the Synchronous VHDL subset unless there is a way to determine the bounds
which will actually be applied to the array. So, while not all unconstrained arrays are illegal, any use of an unconstrained
array which cannot be assigned a fixed bound at compile time is not legal. This restriction is due the requirement for finite
state,

: WAIT _optional sensitivity clause
_optional condition_clause
_optional timeout_clause ‘;’

.
’

The use of the timeout clause in the wait statement is not supported in the subset. The timeout clause refers to a time limit
and therefore is not a reactive construct; the behavior of the wait statement is not defined in terms of a reaction to events
external to the process.
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