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Abstract

The goal of this project was to defineand demonstratea subsetof the VHDLlanguage[IEEE87] which is consistentwith
the simulationsemanticsand yet has an interpretation as a specification. The subset shownin this work incorporatesas
muchof the language as is possible without compromising its interpretation as a specification of systembehavior. Thereis
no othersubsetof theVHDL language which can incorporate moreof thesemantics of the language, yetretainan inter
pretation as a specification.

Toshow why this is thelatges subset of theVHDL language which hasthis property, a review of some of themany uses
ofVHDL isgiven along with anexplanation ofwhy theinterpretation ofthefull VHDL language asa specification within
this context isproblematic atbest. Adefinition ofwhat it means tointerpret anexecutable description asa specification is
given inthe form ofanexample ofanexisting class oflanguages, the reactive languages, which have this property: being
executableyet havingan interpretation as a specification. The questionthen is whetherthereis a usefulsubsetof the
VHDL language thatcanbeshown tobereactive. Infact, within thewide range of uses ofVHDL, there isa class ofuses
thatcan be int^preted as a reactive specification. The identification of thisclassof uses, andtherestrictions on the lan
guage structure that accompany it form the basis of the subset definition.

Reactive systems, orequivalently synchronous systems, have the property that they respond toevents from theenviron
ment inwhich they reside; nothing ofinterest outside these events and their responses occurs inthese systems. The formu
lation ofthe definition ofreactive systems interms ofevents allows for asuccinct description oftheir behaviors as regular
expressions. Hence the implementation ofa reactive system isnaturally interms ofone ofthe many finite automata which
recognizes the regular language that defines the system's behavior. The goal ofthe subset definition then isto identify the
reactive portion ofthe VHDL language, independent ofits language structures, so that the behaviorofprograms written in
the subset may be interpreted as regular expressions, and implemented interms of(communicating) finite automata.

The Synchronous VHDL subset presented here isderived through a restriction ontheabstract simulator that defines the
meaning ofaVHDL program. The focus here is on restricting the simulator behavior and using that restriction to drive the
definition of the VHDL subset, instead oftheother way around ashas been traditional in the definition ofother VHDL
language subsets. The result ofthis work isadescription ofthe subset ofthe VHDL language that uses only finite-autom
ata-like behavior, it thus has well-defined implementation as a network ofcommunicating finite state machines.

In addition to the definition ofSynchronous VHDL, agoal ofthis project was to demonstrate the subset inuse. Thus, a
major portion of this project was the implementation ofacompiler front-end which isused to analyze VHDL source text,
converting firom the syntax ofthe language into a form suitable for compilation into areactive language.
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Chapter 1

Introduction

Introduction

The1980s sawtheintroduction of VHDL asa standard hardware description language forproducing simulation models
ofexisting hardware components. Theoriginal purpose of VHDL was toprovide a standard language in which thebehav
iorofelectronic devices procured under U.S. Department of Defense programs could be encoded. Thelanguage design
er's goal wasallowthesellerto transmit a description of thepart to thepurchaser alongwiththe part so thata definite idea
of its behaviorwouldbe imparted. In addition to describing behavior, die description was to act as a specification for the
part so that another one could be built in the future; to build a second copy, one must know what the ^t copy did.

Coupledwithother developments suchas an increased use of logic-level synthesis,laiger designsbeingattempted,and
more complicated designs which require better testing, the use of VHDL changed from being purely a descriptive lan
guage to one which is now being applied in far more varied ways. These areas range across testing, specification, nedist
representation and even into device-level simulation and analog simulation! For this project, the interest in VHDL is
solely in the area of specification; system-level specification for use in high-leveland sequential-level synthesis.

It would be tempting to ignore these other areas to concentrate on VHDL as specification but unfortunately these other
application areas of VHDL impinge upon its use as a specificationlanguage. Both the simulator origins of the language
and the subsequent reinteipretation of it to apply it to new uses impose difficulties for the sound definition of VHDL as a
specification for computing hardware. A sound definition of specification is a precondition for defining a synthesis path
from VHDL to sequential-level orlogic-level synthesis.^

The Theses of This Work

The thesis being investigated in this project is whether or not it is possible to definea subset of VHDL which is both con
sistent with the simulation semantics described in its 1987 definition [IEEE87] and which also has an inteipretation as a
specificationof hardware. The interpretationas a specificationis given by the restriction of the VHDLsimulator behaviors
to those behaviors allowable und^ the synchronoussystem hypothesis.The consistency of the subset with the fiill simula
tionsemanticsis guaranteedby defining the languagesubsetbasedon a restriction of the simulatormodelandderivingthe
effects on the language.

The validity of this thesis implies that it is possible to define the meaning of a VHDL program in this subset in a rigorous
way; the meaning is as a specificationfor a network of communicating finite state machines. The computationsof this net
work, its states and its state transitions, will be exactly the same as those of any correct VHDL simulator. Thus this subset
of VHDL can be used as an input for both sequential optimization and synthesis and also it can be checked for correcmess
by automata-theoretic or temporal-logic based verification tools such as such as COSPAN [HK90] and [CJLM91].

A schematic of the desired VHDL subset is shown in Figure 1. Depicted there, as a subset of all possible VHDL pro
grams, is the synchronous subset This subset is defined, not by the set of syntactic constructs allowable in the subset but
by the behavior of the simulator on those programs. The subset is defined by the behavior of the simulator, which implies
restrictions on the syntax, not the other way around as has been traditionally done. Figure 2 and Figure 3 illustrate this
distinction. A major point underpinning the synchronous subset is that this subset, while defined through the dynamic pro-

1. Exactly the same can be said for Cadence Design System's Verilog language [Ver91], save for its history and origins. As the capa
bilities of VHDL are a strict superset of those in Verilog, the work here applies equally to well to each language; Verilog will not be
mentioned further.
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cess of simulation, can actually be identified in a static analysis of program text; it is possible to determine whether a
VHDL program obeys synchronous semantics at compile time.
Figure 1 A Schematic of the Synchronous VHDL Subset

AllVHDLPrograms

Figure 2 Traditional VHDL Subset Definition

All VHDL Programs
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interpreted as synchronous systems

Syntactic
Filter
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WAV.?

VHDL progams using
acceptable syntax

Long- and Short-Range Goals
Ultimately the goal ofthis work isto define the synthesis semantics ofVHDL in arigorous way. That being done, the
effect ofsuch a rigorous definition will show up elsewhere in the chain oftools that consume design descriptions. In addi
tion to synthesis applications there are also verification aspects to design which are current areas ofresearch. Providing a
standard front-end language to those tools isalso a goal of this work. Further, though, a consistent semantics ofVHDL as
finite automata will have affects in the design ofsimulators for VHDL; surely a simulator which used a network ofcom
municating finite stalemachines would besimpler to partition andparallelize than a simulator which wasfashioned as
prescribed in the definition ofthe VHDL language [IEEE87]^ (c.f. [Vel90]).
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Figure 3 Synchronous VHDL Subset Definition
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Despite these far-reaching goals, the focus here is on a far more tractable problem: using the proposed synchronous
semantics of VHDL to definea translationpath from VHDL to an executable format (e.g. to C code). This translationpath
defines a simple simulator, thus forming a proof of concept both for the soundness of the synchronous subset of VHDL
and for the idea of using reactive compilation to define the specification aspect of this subset of VHDL.

Attempting to produce a system that performs both the identification of the synchronous subset of VHDL and the transla
tion to the final executable form required too great an effort for a simple proof of concept study such as this one. Instead,
the appoach taken for this work was to break that job up into two parts: the construction of a compiler front-end for the
VHDL language, and the use of that front-end to convert VHDL source text into a form which can be conveniently com
piled by a reactive languagecompiler.The reactive languageused is Esterel [QS88], and thus this report describes the
design ofa translation path from VHDL into Esterel and thus toa final executable form in C^. The main body ofthe report
describes the design and definitionof Synchronous VHDL, leaving to the appendices the documentation of the salient
facts about the C++ compiler front-end for VHDL that was developed to support this work.

Overview

The goal of this work is to demonstrate the feasibility of constructing the translation path. The description here is simply
that of a proof of concept study. The simulator described here is in no sense yet a producL though the hope is that the tech
nique described here for using reactive compilation to implement certain classes of simulation models is powerful enough
that one day it may lead to a product-quality approach.

The ideas described in this report have been given form in the development of a toolkit of compiler algorithms, which
have been written in C++. Because the construction of a complete VHDL simulator is a rather gargantuan task, it has not
been possible to produce a full VHDL simulator implementation within the scope of this project Instead, what this work
represents is a study of the issues involved in developing such a simulator. Thus only those aspects of the simulator which
are directly related to the use of the reactive semantics as an implementation method for simulator models has been imple-

2. The description of the required simulator event processing loop, as found in Chapter 12 of [IEEE87], is reproduced in Appendix B.

3. Again, it must be stressed that the use of the Esterel compiler in this work is merely a convenience; a stand-alone reactive compila
tion algorithm would allow for its replacement
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mented. A good portion of the implementation which is not germane to the use of reactive compilation has been foigone.
The C-H- compiler toolkit which was implementedfor this study is described in the presentationsof Chapter4 and Chap
ter 5. The hope is that with this work as the basis, a moreextensiveinvestigation of the use of reactivecompilation tech
niques canbe attempted. Based on the investigation done here,thosetechniques holdthe promise of enabling
improvements ina number of application areasranging from embedded software applications todiscrete-event simulators
as is the case h^e.

There area number of problems involved indefining the translation path proposed here over and above thesimple devel
opment ofa relationship between a VHDL subset andEsterel. Thefint of these is tomotivate why a sound definition ofa
translation path from VHDL to any other representation ofcomputation isproblematic; this is the subject ofChapter 2.^
The propmies ofreactive/synchronous languages with emphasis onthe Esterel language isdescribed inChapter 3.That
chapter provides some background onEsterers semantics - both the interpretation semantics and the compilation seman
tics. The synchronous subset ofVHDL which ismotivated by the translation ofVHDL processes into Esterel ispresented
inChapter 4. Asimple VHDL simulator for the Synchronous VHDL subset which uses the reactive language compilation
capability of the Esterel compilerasa code generator ispresented inCh^ter 5.Finally, a review of theconclusions which
canbedrawn firom theproject described in thisreport isgiven in Ch^ter 6.

4. For the purposes of this report itis assumed that the reader is famihar with VHDL. The overview presented in the next chapter is not
ageneral presentation ofthe language, rather itfocuses on the issues involved in inieipreting VHDL models as synchronous specifica
tions. Readers unfamiliar with VHDL may wish to see [LSU89], [IEEE87], [Coe89] or[ALG+91].

^ of 132 An Application of aSynchronous/Reactive Semantics to the VHDL Language



The VHDL Problem

Chapter 2

The VHDL Problem

Expandingthe interpretation of VHDLdescriptionsaway fromsimulation is problematic becausesimulation modelsare
descriptive and the reduction relationship from reality to the modeling domain is held largelyin the mindof the observer.
The differences between simulationmodels and specifications is shown schematically in Figure4 and Figure 5. The pur
poseof this chapteris to motivatewhy attemptingto finda sounddefinition of a VHDLsubset that can be interpretedas a
specification is hard.

Figure 4 A Simulation Model is a Reduction of Reality

Reduction to the model

Figure 5 A Specification Lacks Details

Missing Details

e Real World

Simulation model of
the Real World

Specification of Behavior

The difficulties in subset definition fall into roughly four categories which can be summarized in the following way:

• A syntax-directed policy of use for the language is insufficient; this is addressed in Section 2.1.

• The inexact focus of the level of VHDL description makes interpretation at any specific level for specification prob
lematic. This issue is addressed in Section 2.2.
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The VHDL Problem

• The asynchronous nature ofparallelism inVHDL models isdifficult towork with insimulation models and extremely
difficult to int^ret asa specification. This andthesimplification tosynchronousparallelism being used here are
described further in Section 2.3.

• TheVHDL simulator loopandthesequential codeexecution rules introduce aninterpreter bias intotheuseof VHDL
forspecification. Inteipreter bias, theproblems that it causes andtheuseof thesynclu'onous system paradigm as an
attempt to solve them are describedin Section2.4.

Qualifying thedifficulty of theproblem is important so thatthereadercanbetterunderstand thatall of themechanism and
formalityintroducedin the later sectionsare necessaryto achieve theseends. Thisproposal is for a semantics-driven pol
icy which definesa VHDL subset that achieves the end of an interpretation for specificationthat covers as much of the
VHDLlanguageas possiblewhilestillpreserving the observable simulation behavior of the VHDL models.

This interpretation isnot necessarily the easiest to implement nw isitthe simplest subset policy ever devised^. The claim
is however, that thispolicy is the most complete in the sense that it allowsfor as muchof the VHDLlanguageas possible
to be int^reted asa specification of behavior. This is a verydifficult claimto provein the traditional formal senseof lem
mas and theorems,so instead a convincingargument of this completenessis presented.The purpose of this section is to
review the problems which must be solved to define the notion of VHDLas a specification.Thus, this section provides the
basis for that convincingargument- that the synchronousinterpretation of Vin>L as describedin Chapter 4 is both neces
sary and sufficient for use as a specification of behavior.

2.1 Policies of Use

Oneof the firstobjections which arises in a semantics-modification proposal which is as invasive as is thisone is whether
or not it couldhavebeenachieved withfewer restrictions or whether a resultwhich wasgoodenough couldhavebeen
achieved witha simple butmathematically inelegant setof restrictions on the language. In an attempt to headoff those
arguments, thissection is devoted to a description of theoptions for a VHDL policyin the traditional style(c./. Figure2).

Theargument hereis thateachof thesepossibilities savefor one, thesynchronous subsetwhich is basedon thebehavior
ofthe simulator directly, isinsufficient orincomplete insome important way. It isimportant toremember throughout, that
the purpose here is to investigate the possible ways that amost-general subset for specification might be d^v^. The
insufficiency ofany one of the following attempts onthe problem does notindicate that itcannot beused; certainly there
area number of synthesis systems which use each one. Thepoint is that there isa more general andmore elegant solution
available throughthe use of the Synchronous VHDLsubset.

UsingIdentifiable Sublanguage
One ofthe more common resuictions toimpose is that the VHDL description berestricted touse only an identifiable sub
language. Acommon one isthe dataflow portion ofVHDL; another isarestriction tostructural descriptions from a library
of known parts.

Examples ofdataflow andstructural subsets of VHDL areshown inFigure 6 andFigure 7 respectively. Both of these
examples arefairly straightforward as they arecombinational examples; they contain nofeedback and nointernal state.^

5. A quicklookthrough therelevant literature on VHDL-based high-level synthesis systems confirms this[CBH+91] [Che91]
[HCD90] [LiGa89] [RoVe89] [UdVe89].

6. Theprocesses in VHDL dohaveinternal state in thesignal drivers; thatstateis being ignored forthese examples.

6 of 132 AnApplication of a Synchronous/Reactive Semantics to the VHDL Language



The VHDL Problem

When the examples use data types which are more complex than Blt^ orwhen the flow dependencies in the models are not
acyclic, then the inteipietation of the meanings of the architectures as specifications becomesunclear.

Figure 6 An Example of the DataflowSublanguage of VHDL

entity Some_Function is
port(A, B, C, D: in Bit; 01, 02: out Bit);

end Some_Function;

architecture Dataflow of Some_Function is
begin

01 <= (A and B) or (C and D);

02 <= (A nor B) nand (C nor D);

end Dataflow;

Figure 7 An Example of the Structural Sublanguage of VHDL

entity Some_Other_Function is
port(A, B, C, D: in Bit; 01, 02: out Bit);

end Some_Other_Function;

use Lib.Specification_Parts.all;
architecture Structural of Some_Function is

signal Trapl, Tmp2, Tmp3, Tmp4: Bit;
begin

Ul: and2

port map(11 => A, 12 => B, O => Tmpl);
U2: and2

port map (II => C, 12 => D, 0 => Tmp2) ;
U3: or2

port map(II => Tmpl, 12 => Tmp2, 0 => 01);
U4: nor2

port map(II => A, 12 => B, 0 => Tmp3);
U5: nand2

port map(II => C, 12 => D, 0 => Tmp4);
U6: nand2

port map(II => Tmpl, 12 => Tmp2, O => 02);
end Structural;

Somehowit wouldbe moresatisfyingif the interpretations of Figure6 and Figure7 as specifications werederived firom
the behavior of the simulatorrather than an intuitive understanding of what is writtenin English. Such a specification
would be more sound in general and couldalso trivially takeintoaccount the redefinition of theand, or, nand andor

7. The Bit data typeis not predefined in VHDL; rather, it is a data typewhichis requiredto be availablein thestandardlibraryby the
declaration:type Bit Is ('0', '1');

AnApplication of a Synchronous/Reactive Semantics to the VHDL Language 7 of 132



The VHDL Problem

operators. It is rarefora usertoredefine these operators on theBit type, butquite common todoit forother datatypes,
lite mechanics ofthe treatment ofa VHDL specification subset should be robust under such redefinitions.

Using Structural Patterns
Anothertreatment of VHDL forspecification involves usinga knownstructure of thesyntaxto implya specification. For
example, in Figure8 a patternof usageis indicated which will ultimately be interpreted as a clockedlatchby the tool that
interprets the specification - the synthesis system.^
Figure 8 An Example of a Pattem of Usage

entity A_Latched_Function is
port(A, B, C, D: in Bit;

CLK, RST: in Boolean;

O: out Bit);

end A_Latched_Function;

architecture Pattern_Match of Some_Function is
signal Tmp_0: Bit bus;

begin

Reset:

block(RST = FALSE)

begin
Tn?)_0 <= guarded *0';

end block Reset;

Func:

block(not Clock'stable and Clock = True and RST)
begin

Tmp_0 <= guarded (A and B) or (C and D);
end block Func;

O <= Tinp_0;
end Pattern_Match;

It may take more than a moment ofreflection todetermine the behavior ofthe two guarded blocks operating intandem
driving a local signal ofkind bus which isultimately fed tothe output Infact, the simulator does quite a bitofwork to
simulate these three constructs, soit isnot surprising that the pattem ishard torecognize asa clocked latch with a reset
withoutsomegedankenexperiments on theabstractVHDLsimulator.

This style ofdescription isconvenient, however complicated itmay seem, for the tool writers for the "synthesis system"
need only recognize the three patterns: two guarded blocks driving the same bussignal anda third concurrent assignment
feeding the result out. This pattem can beused asa specification for a query into "the library" inwhich there will bejust
such a clocked latch. Theright-hand side oftheFunc block is taken as thespecification of the logic function tobecom
puted and stored in the clocked latch.

Theimportant point of this very stmctured useof VHDL is thatit r^resents anextension to thelanguage. The pattems
which arerecognized bythe synthesis tools, though defined completely within the syntax of the language standard, repre-

8. Thisstyleof specification in VHDL is in daily useat a major electronics company.

8 of 132 An Application of a Synchronous/Reactive Semantics to the VHDL Language



TheVHDL Problem

sentidioms which areimbued with meanings defined outside of thelanguage standard. Thus theuse ofa style orpolicy of
useVHDL ultimately represents a change in thelanguage to suita specific toolimplementation or design library. As this
style of specification is soimplementation-specific anddepends somuch onthemodeler's interpretation ofthemeaning of
the cooperation betweenthe two blocks(Reset and Func in the figure) it will not be considered furtherhere. It is intro
ducedhere because thisstyleof specification withVHDLis in fact usedand is considered acceptable as a specification to
those who use it - it allows them to get designsdone.

Well, Then We Won't Support That"
Finally,there is the common methodbuildinga VHDLpolicy for synthesisspecification which is completely ad hoc.
Essentially the procedure used is to start with a small subset of VHDL, such as the dataflow subset describedabove, and
grow by iteratively adding one more construct to the subset until it becomes difficult or impossible to support the new
addition. On the positive side, this method does tend to keq) constructs out of the resulting subset which are obviously
incongruous:pointersand filesand the like.

The problem with this method,as with the other syntax-directed policies is that there is no unifying principle with which
to accept or reject constructs from the subset language. The process of selection tends to devolve into attempting to map a
VHDL statement's p^ceived meaning onto the target tool and if that cannot be done, then "... well, we won't support
that."

Restricting the Simulator
Developing a policy for VHDL that can be interpreted as a specificationwhich is based on restricting the syntax that will
be supported sounds easy and attractive. Its ^p^ lies in the ability to use the grammatical structure ofthe language, as
defined in Appendix A of [IEEE87],as an aid to the categorization and elimination of statements or constructs which are
considered too difficult to use. This unfortunately has serious effects on both the breadth of the language which can be
supported and the interpretation of that language after the allowed subset is identified.

After the allowed subset is identifiedfirom a review of the language definition there is no guarantee about what the review
process generated in terms of a subset (how much of the language is supported). Further, there is no set of rules for deter
mining the meaning of the constructs in the subsetafter selectionand ensuringthat the specification meaning is the same
as the simulationmeaning.This problemarises from the procedure used to accept or deny support for the various state
ments; it is based on what is known to be supported in some taiget tool.

What is beingsearched for in an interpretation of VHDL as a specification is exactlybackwards fromthesyntax-directed
case: there is no tool yet, so the goal is to finda subsetof VHDLthatspecifiescomputingstructuressuch that a toolcan be
builtwhichwillderivean implementation for that specification. Thepresentation of that subsetand the identification of a
tool, a VHDL-to-Esterel translatorand its use as a simulator generator is the subject of Chapter 4 and Chapter S.

22 The Breadth of VHDL Description

VHDL is a large language as many have noted. It is surprising just how laige it is however when one considers not only
the languagesstructuresinvolved, but also the various interpretationsor policies with which its users mold the languageto
suit various needs. These needs are outlined in the following sections; they range from describing test benches to black
box models to pure netlists and on into more exotic areas where VHDL was never intended to be applied.

In this section is exhibited the breadth of use to which VHDL can be put in order to firame the uses to which the specifica
tion interpretation of VHDL will be made. These areas are not the areas to which VHDL is best put to use necessarily, but
they are areas where it can be demonstrated that VHDL is currently being put to use. It is important to understand this
breadth in order to provide the proper context for the presentation of the very constrained usages required of the synchro-
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nous subset of VHDL.The desire is to motivatehere is that the range of uses of VHDL are driven by needs for design
description and management whichare outside the scopeof this project They are driven by a need for a language-driven
design frameworkwhich uses a commonlanguageacrossall levels of design ranging from high-levelspecification to test
ing to low-level modeling of semiconductorbehaviors. This goal may or may not be a desirable one to achieve. It is how
ever being actively pursued and as will be shown in the following sections, it has a laige effect on how well and how much
of VHDL can be interpreted as a specification.

The importantpointof this sectionis that froma specification viewpoint there is no way to tell thesevarioususesapart* a
test bench in VHDL looks remarkably like a switch-level model ofa CMOS circuit - from the perspective of an automated
tool whichconsumesVHDLspecifications. Typically it is only the identifier names used in the models whichdistinguish
them (z.e. names like test.bench or and3 or nfet). An automatedtoolcannotbe expected to extractand comprehend
this intended use.It is thuscriticalthat the userbe able to identifytheseusesand disallow theirsubmission as specifica
tions inthe first place; this isa"well we just won't let users do that" situation. Ataxonomy ofVHDL isprovid^ in this
sectoin so that when us^ are toldthat theycanTusea certain classof VHDL as a specification, thentheycanhavea
name for that class and a reason for the claimedinappropiiateness as a specification.

Test Bench Construction

Thetestbench is where thefull power of theVHDL language is most useful. Inmost design situations, it is upto the
designer of themodel toprovide a rigtotest outthedevice model. Instead ofletting thattask beprovided inanimplemen
tation-dependent manner, the VHDL language designers haveallowed VHDL itselfto servethatfunction. In fact, there
are standards for test benches written in VHDL such as the WAVES standard [WAV90] and the BSDL on-board test struc
tures [PO90]. These testbench standards describe teststructures ranging among thevector formats infiles, the procedures
to^}ply testpatterns, files that they will read andwrite and thein-device teststructures required forthemethodology.

The test bench issimply a VHDL entity and architecture which instantiates the device under test (DUT) and applies test
vectors and records the results. Aschematic of this isshown inFigure 9.Some simulators provide this facility directly for
simple models; however for complex models like processors orcontrollers, it istypically advisable tobuild a flight
recorder and test vector application unitThis way the full power ofVHDL can beused tofilter the events being input to
andemanating from theDUTandrecord onlythe int^estingones.

Figure 9 A Schematic of a Test Bench
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Atest bench for the traffic light controller isshown in Figure 10.^ Although this test bench does not contain all ofthe parts
which are shown in Figure 9, it does contain the essentialaspects which are: the test bench is autonomous, it does not have
any portsconnecting it to anything, the testbenchinstantiates somecomponent, and it appliestest vectors to thatcompo
nent and records the results of those tests. In Chapter 3 these conditions are shown to imply that a test bench is not a reac
tive componentand cannot not have an interpretationas a specification.

Figure 10 ATest Bench for the Traffic Light Controller

entity TLC_Test is
end TLC_Test;

use Work.Traffic_Package.all;
architecture Test of TLC_Test is

signal Car_On_Fann_Road: Boolean := FALSE;
signal Highway: Color := Green;
signal Farmroad: Color := Red;
component TLC

generic(Long_Time: Time; Short_Time: Time);
port(Car_On_Farmroad: Boolean in Boolean;

Highway: Light: out Color;
Fanturoad: Light: out Color);

end component;
begin

Controller: TLC

generic map (5 ns/ 2 ns)
port map(Car_On_Farm_Road, Highway, Farmroad);

Car_on_Farm_Road <= FALSE,
TRUE after 1 ns,

FALSE after 3 ns,

TRUE after 10 ns,

FALSE after 20 ns;

end Test;

use Work.all;

configuration spec of TLC_TEST is
for Test

for Controller: TLC

use entity Work.Traffic_Light_Controller(Specification);
end for;

end for;

end spec;

Black-Box Modeling
The essential idea behind a black box model is that it doesn't matter how the part is described so long as it simulates the
correct responses. In fact, there is a retail market for modelsof processor blocks, controllers and other laige blocks. These

9. This example is taken from [LSU89],pages 186-188.
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models are used in other models such as models of boards or backplanes to ensure that the complete design works cor-
recdy with the part.

What is considered to be behavioral or black-box modeling is shown in Figure 11 The idea is that all which is important
about an entity is its simulation behavior as perceived by the outside world. So, in this respect it is irrelevant whether the
description in the architectureis given by a completecover for the booleanfunction as is the case in Figure 11 or by a
chain of interrelatedprocesses.

Figure 11 A BlackBoxDescription

entity Decoder is
port(Enable: in Bit;

Sel: Bit_Vector(2 downto 0);
Dout: out Bit_Vector{7 downto 0));

constant Delay: Tiroe := 5 ns;
end Decoder;

architecture Selected of Decoder is

type vec8x8 is array(integer range 0 to 7) of bit_vector(0 to 7);
constant one_hot: vec8x8 := (

«00000001", ^^00000010", ^^00000100", ^00001000",
^^00010000", ^00100000", ^^01000000", ^10000000");

function cvt(bv: in bit_vector(2 downto 0)) return integer is
variable sum: integer := 0;

begin
if bv(0) = ^1' then

sum := sum +1;

end if;

if bv(l) = *1' then

sum := sum + 2;

end if;

if bv(2) = *1' then

sum := sum + 4;

end if;

return sum;

end cvt;

begin

with Sel select

Dout <= one_hot(cvt(Sel));

end Selected;

Some synthesis systems accept thistype ofdescription asa specification because it is interpreted as specifying combina
tional logic only. Thatinterpretation isdueto theuseof thedataflow with construct in themain body of thearchitecture.

10. This exampleis taken from [LSU89], page 100.
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The with constnict need notindicate combinational logic, especially in the presence of feedback or if the after clauses
are not all the same.

Typically though blackboxmodels arewritten withsimulation efficiency in mind as theyare to be usedinsideof other
modelsas leaf nodes.As such,black box modelsare typically not considered as specifications. They could be considered
as suchthough if theconsuming tool were powerful enough to disambiguate thespecification of behavior from the typi
callyhyper-efficient codingof function at the behavioral levelof VHDL.

Behavioral Specification
This is the level of description that is typically considered the most interesting use of VHDL for synthesis or verification.
The designs are written to be clear and expository,as opposed to being efficientlyexecutable in a compiled-code simula
tor. For example, contrast the two sQ^les of description for the same decoder in Figure 11 and Figure 12; one is clearly
going to be faster to simulate in a compiled-code environment than the other.

Figure 12 A Specification of the Decoder

entity Decoder is
port(Enable: in Bit;

Sel: Bit_Vector(2 downto 0);
Dout: out Bit_Vector(7 downto 0));

end Decoder;

architecture Selected of Decoder is

begin
with Sel select

Dout <= ^00000001" when **000",

**00000010" when **001",

**00000100" when **010",

**00001000" when **011",

**00010000" when **100",

**00100000" when **101",

**01000000" when **110",

**10000000" when **111";

end Selected

While both could be treated as specifications,it is more natural to consider the description in Figure 12 as a specification
and Figure 11as a description. There is more to this than a simple intuitivenotionof what is declarativeand what is effi
ciently executable.The notion of interpreterbias, which is described in more detail in Section 2.4 clarifies this by codify
ing the effect of the operationalmodel with whicha description is given meaningon the interpretationof the description
as a specification. Interpreter bias is the effect of a specificationbeing forced to look like an interpreter for the program
ming language due to undesired comer conditions in the operational model.

In this example, the interpreter bias would predispose the specificationofFigure 11 to look like a simulator with a stack
for the function call and some memory for the constants and variable. It would take a very fancy set of analyses to deter
mine that the design ofFigure 12 was the true intent of the specification.Maybe these sorts of analyses for VHDL-style
languages will exist some day; for now however, they don't and so it is useful to draw a distinction between efficiently-
executable black-box models and expository specification models in VHDL.
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Netlist Declaration

Thissortof VHDL description is simply theassembly ofpre-existing parts. It isnotterribly important or interesting butit
is brought up herebecauseit is a specification in thepure sense;a netlistis a partialspecification for the placement and
routing portion of thedesignprocess (the remaining itemsbeingcomposed of information describing constraints and esti
matesof resistances, capacitances, areas, delaysand so forth).An exampleof netlist-based description is shownin Figure
13.^^ These descriptions are pure structural description and amount to only avery fancy netlist format

Figure 13 An Example of Netiist-BasedDescription

entity Full_adder is
port(A: in Bit; B: in Bit;

Carry_in: in Bit;
AB: out Bit;

Carry_out: out Bit);
end Full_adder;

architecture Structure of Full_adder is
signal Teinp_siain: bit;
signal Temp_carry_l; bit;
signal Temp_carry_2: bit;
con¥>onent Half_adder

port(X; in Bit; Y: in Bit;
Sum: out Bit;

Carry: out Bit);
end component;

component Or_gate
portdnl: in Bit: In2: in Bit;

Outl: out Bit);

end component;
begin

UO: Half_adder
port map(X => A, Y => B,

Sum => Temp_svim, Carry => Tenqp_carry_l);
Ul: Half_adder

port map(X => Temp_sum, Y => C,
Siam => AB, Carry => Teir^__carry_2) ;

U2: Or_gate
port mapdnl => Temp_carry_l, In2 => Temp_carry_2,

Outl => Carry_out);
end Structure;

Switch-Level Modeling
VHDL isa modeling language andonecommon problem in electronic design automation is theneedto model thebehav
iorofa digital circuit at the transistor level, viewing the circuit asa network ofswitches. Inthis case, anattempt is made
toapproximate thecontinuous phenomenon of transistor operating-point behavior with a discrete approximation: thatofa
bidirectional switch. Whentheswitch-level circuitmodeling inoblemis castwithin thediscrete-event framework a further

11. This exampleis taken from [LSU89],pages 20-21.
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approximation must be made as thediscrete-event paradigm isa unidirectional one, events propagate unidirectionally
downwires, whereas theswitch-level model is bidirectional as switches can cairy information bothforwards and back
wards.

The key point here is that descriptions suchas switch-level modelsare attempting to modelphysics. In this case, an
attempt is being made to approximatea continuousphenomenon within the discrete-eventframework.This is very bad for
specification for it dependsheavilyon the level of the description: there is a hugereductionin detail from the continuous
domainto the abstractdiscrete-event domainand muchof the meaning in the description is held in the mindof the
beholder. Suchdescriptionsare veryambiguousdue to this implicit reductionand can hardlybe expectedto be intuitedby
automated means. Expecting a synthesis system tobe able to intuit the continuous behavior from ^e abstract discrete-
event behavior is effectively asking for the inverse of the reduction shown in Figure 4. Although this sort of low-level rep
resentation is not useful for specifying designs, many current simulator implementations are oriented towards this level of
simulation [MCC91] and provide special-cased value systems which are known to be more efficiently treated by the sim
ulator.

Ause ofVHDL tomodel abidirectional transmission gate isshown in Figure 14.^^ This gate is{xut ofa larger switch-
level modeling package and value system which is developed in [Coe89]. As one might expect, attempting to model bidi
rectional switches with a unidirectional switch-level simulator is inefficient, but not impossible. The essential trick
involved in switch-level modeling using VHDL is the abstraction of a transistor (as a switch) into a small finite-state
machine. The various strengths emitted by the switch are modeled as values in a lattice-like value system encoded in
VHDL's enumerated data types.

Figure 14 Modeling a Transmission Gate

USE std.std_logic.ALL;
USE work.ALL;

ENTITY nfet IS

GENERIC(gdelay: time := 3 ps;
maxstrength: t_strength := *R');

PORT(g: IN t_wlogic;
src, drn: INOUT t_wlogic);

END nfet;

ARCHITECTURE nfet_behavior OF nfet IS
COMPONENT bxfr_type

GENERIC(gdelay: time := 3 ps;
maxstrength: t_strength := *R');

PORT(g: IN t_wlogic;
src, drn: INOUT t_wlogic);

END COMPONENT;

BEGIN

il: bxfr_type
GENERIC MAP(gdelay, maxstrength)
PORT MAP(g, src, drn);

END nfet behavior;

12. This example is taken from [Coe89],pages 104-108.The bxfr_type model implementsa bidirectionaltransmissiongate as a finite
state machine; that description covers two full pages and is omitted here.
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Thisexample of theuseof VHDL to model digital circuits at the switch-level seemto be so egregious as to berejected
outrightas a misuseof the language. It is importanthoweverfor it is an exampleof an interpretation of VHDLtext which
is given meaningbeyondthe contextof the VHDLlanguageand as such it illuminates a far subtler issue of specification:
the use of different Bit data types:

type Bit is (*0', *1');

but for historicaland simulation accuracyreasons they were written with the commonly-declared type MVBit,

type MVBit is (^OS *X', ^Z') ;

whichhas an intuitiveinterpretation as a "bit" which is embeddedin the lattice shownin Figure IS. This lattice is
extremely useful for simulation purposes as it allows the propagation of unknown or undefinedvalues. There are even
more complicatedones which have been proposed[Coe89] and some have even been standardizedin their interpretation
by the EIA and the lEEE^^ such the one shown inFigure 16.

Figure 15 A Four-Valued BitLattice

The relevance tospecification here is that the specification interpretation ofthese "bits" isnot the ones with which they
have been imbued by their designers. Asfaras a specification interpretation is concerned, these areall multi-valued vari
ables and itwill take the relevant number ofbits toencode them. For example, the specification interpretation ofthe data
type shown inFigure 16which is taken from theIEEE LOGIC_SYSTEM package [B1L90] is that ofa multi-valued vari
able with 9 possible values. Thus, with respect tospecifying a digital circuit, at least4 bits toencode each ofthe possible
valuesof the data type; this wascertainlynot the intentof the IEEEmodels-standardization committee.

The interpretation asa specification of thevarious gate-level value systems is certainly notwhat the designers of these
systems intended. They hadanidea which was more likethatofFigure 4 wherein these value systems approximate reality
within the framework ofVHDL. To a certain extent they accomplish that aim. The importance for the consumer ofspeci
fications tobemade aware of the limitations of thespecification interpretation ofVHDL; that there isanimplicit level of

13. The example is taken firom [Bil90]
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Figure 16 AMultl-Valuecl Bit TypeDeclaration

TYPE std._ulogic is (
, — Uninitialized

*X', — Forcing 0 or 1
*0', — Forcing 0
^1', — Forcing 1
*Z', — High Impedance

— Weak 0 or 1

^L', — Weak 0 {for ECL open emitter)
^H', — Weak 1 (for open Drain or Collector)
*D' — don't care

);

specification and that the reductions indetail described inFigure 4donotapply tospecifications where everything is
definedexplicitly.

Analog Modeling and Other Exotic Uses
There are a number ofother uses towhich VHDL has been put. One ofthe most inventive uses ismodeling analog signals
for mixed analog-digital simulation completely within VHDL}^. This isaccomplished by defining behavioral VHDL mod
els which update the values on signals as per ^e usual methods ofanalog behavioral modeling. The values on signals are
records which contain thecoefficients ofpolynomials that, if evaluated, would give theanalog voltage on thewire. This
maybe inelegant andinefficient, but it isa "recommended" practice forcertain government contracts.

Summary
The point ofthis tour through the range ofpossible descriptions inVHDL was toprovide some idea ofwhere VHDL spec
ifications might fit, were it to bedefined. Ofall ofthe descriptions that have been presented, none ofthem indicate inany
way, savefor theEnglish words used in theidentifiers, which sortofdescription they are.Thepolicy is in themind of the
beholder.

Upon being given a random chunk ofVHDL text, a simulator cananalyze it,compile itand simulate it, independent ofthe
intended user's interpretation ofthe description. The operational rules for simulation arefixed; it is the user's interpneta-
tion of theresults which change across the various series. Ontheother hand, it isa much different situation fora synthesis
system to interpret VHDL asa specification, for there is somepresumed level of description at which theVHDL textis
written. This cannot change over time if thespecification is tobeconsidered sound and rigorous.

Asynthesis system cannot beexpected toanalyze any arbitrary VHDL description and intuit the writer's original idea. As
a specific example of this, consider the1-bit combinational full-adder shown inFigure 13. While it isdescribed as a full
adder anda simulator will produce theoutputs ofa full adder onABandCarry.out, that isnotwhat isbeing specified.
What is being indicated in that VHDL text, when interpreted asa specification, is three communicating finite state
machines UO, U1 and U2 each with its own state: the drivers ofthe output signals ofeach instance: Temp_carry_1 and
Temp.sum forUO, TGmp_carry_2 and ABforU1 andCarry.out forU2.

Inspite of the fact that the system ofFigure 13 describes a network of three finite state machines, itcan beinterpreted by
the user as a combinationalnetwork. This is because the three machines UO, U1 and U2 are connectedin a unidirectional

14. This was first described tome byAlfred Gilman ofInteimetrics aspart ofa modeling standard for DoD projects.
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manner thereby forming an acyclic pipeline as shown inFigure 18. Viewing thebehavior of whole entity, onecaninter
pret itsbehavior as thatof a full adder. With respect to theinputs A, B and Carry_in then, thetwoextemally-visible out
putsAB and Carry_out are recognizable as thecoverof the 1-bitcombinational adder. Suchis thedistinction between
an interpretation of VHDLas a specification declaration and as an executablesimulationmodel.

Figure 17 Combinational Logic as A Simple Pipeline

Tmp__Carry_l

Tmp__sum Tmp_Carry_2 U2
Carryout

AB

Carry__in

Thispresumed levelof specification relates directly to thepolicy levelshown in Figure18.With respectto the useof
VHDL for simulation thispolicy levelcanchange radically; it canchangefrom beinga testbench to beinga register-
transf^ description to beinga switch-level transistor netlistor evensomething else.Withrespect to an inteipretation of
VHDL as a specification for synthesis or verification, thedefinition of thispolicy levelcannotchange; it mustalways
remain fixed.

Figure 18 The Traditional Levels of A Simulation Model

Model

Program Text

:language interpratm^:

Concretely thismeans thatit isnotpossible to have mixed interpretations of theVHDL descriptions which canstillbe
interpreted as specifications. The inteipretation that is proposed h^e is the synchronous oneand thatmeans that the inter
pretation of the VHDL, thepresumed levelof description, is one of communicating finite statemachines: thereis no struc
ture and there is no "physics" allowed. This means for example, that there is no provision for an "extra" piece of
combinational logic ot a "declaration"of a clockingdiscipline,or an asynchronoushandshakeor anythingof that nature.
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The whole VHDL model is being interpreted as a specification for a finite automata, independent of what the syntax of the
model or the identifiers used in the model mean to the reader.

To drive home how this affects a user's view of the language, consider the example of Figure 19. This example shows
what one might think of as a three-input "and" gate operating on a "bit" signal on a domain of true,false and unknown. In
fact, however the synchronous semantics of VHDL would interpret this as three communicating finite state machines,
each of which has one state variable which ranges over three possible values. The important point is that each VHDL pro
cess is interpreted as an individual finite state machinefor the purposes ofspecification.

igure 19 Really a Finite State Machine

package ThreeValued is
type Bit3 is (^0', ^1', );
function *^and" (A, B: Bit3) return Bit3;

end ThreeValued;

package body of ThreeValued is
function ^^and" (A, B; Bit3) return Bit3 is
begin

if A = *X' or B = *X' then

return ^X' ,*

elsif A = ^1' and B = *1' then

return ^1';

else

return ^0';

end if;

end ^^and";

end ThreeValued;

use Work.ThreeValued.all;

entity and3 is
port(Inl: in Bit3; In2: in Bit3; In3: in Bit3;

Outl out Bit3);

end and3;

architecture really_is_an_fsm of and3 is
signal tmpl, tmp2: Bit3;

begin
tmpl <= inl and in2;
tmp2 <= in2 and in3;
Outl <= tmpl and tmp2;

end;

23 The Nature of Parallelism

In addition to the presumed level of interpretationof VHDL, there is the aspect of parallelism involved in its specification
of computing systems. Parallelism is a complex phenomenon for it deals with both occurrence and time. The attributes of
parallelism in a language semanticsdrasticallyaffects the form that any realizationsof programswritten in that language
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can take. The most problematic aspect of parallelism is that of time (not of occurrence); what is assumed about time in the
semantics affects all else. It is useful to consider that time has the following aspects:

Partial Ordering of Events
Events can be considered to occur only in relation to one another via the relations b^ore or after. Some events may
be incomparable under this relation; such events are said to occur in parallel.

Equivalence of Events
In addition to the ordering of before and after, there is the notion of at the same time. Under this model only events
occurring at the same time are said to occur in parallel.

Delay Between Events
Finally, there is delay where events are not points in time, but rather intervals. This reflects the aspect of reality
wh^ein devices react in finite time. Twoevents are said to occur in parallel under this model if each occurs (hmng
the other.

Thefollowing section describes the ideaof parallelism as found in VHDL and thensynchronous parallelism is presented
in contrast.

23.1 Asynchronous Parallelism

Thefundamental goalof the VHDL simulator is to provide a means forsimulating the parallel execution of themodels.
Most VHDL simulators are purely sequential programs^^ and use the standard techniques tosimulate parallelism within
theirsequential framework. These techniques involve maintaining queues of pending values and listsof processes to be
executedbased on their sensitivities to signalson whichthe valuesare propagated.

Whatultimately results from thisoperational model is thatthe typeof parallelism whichis exposed at theprogrammer
levelis asynchronous parallelism. In this sortof parallelism, twoevents canonlyocciu* in relation to eachother, either
one is firstand theother is second,or vice versa. Twoeventson twoseparatesignalsneveroccurat the same time.

233 Synchronous Parallelism

Thestandard notions of VHDL parallelism is asynchronous parallelism because it is notpossible to relate statechanges in
any strongerway than by a partialordering of events.Nothingcan happenat the same time and so there is only before and
after.

The synchronous modelof timeabstractstimeintodiscreteinstantsbetween whichnothingof interestoccurs. Synchro
nous parallelism then requires that events in parallel occur at the same time. There is still a notion of before and after, but
the partialorderingof events is not used to defineparallelism.

Synchronous parallelism does not offer or allow nondeterminism.Because of this restriction, and due to the fact that there
are only a finitenumberof possibleevents, an interpretation of synchronous parallelism as a finiteautomatoncan be gen
erated; Section 3.3.2 outlines how this is done fm* an existing synchronouslanguage - Esterel.

The Synchrony Hypothesis
The interpretationof synchronoussystems as finiteautomata is driven by two hypotheses: th& synchronyhypothesisand
the strong synchrony hypothesis. These are termed hypothesesbecause synchronous systems are only guaranteed to func-

15. The VHDL simulator described in [V(^90] is one that is not; it distributes the simulation across a network of workstations.
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tioncorrectlyif thesepreconditions are true.The verification that thepreconditions are met in any given implementation
of a synchronous system is a proof obligationimposedon the designer.

The synchrony hypothesis states that only explicit delay exists. All else (all other computations) are instantaneous. This
impliesthat the programonly reacts in responseto its environment The strongsynchrony hypothesis requires the syn
chrony hypothesisand requires in addition that control steps take no time.

Bothof these hypothesesare clearly not true in any physicallyrealizablesystem.However, because time is measuredonly
at specific instants betweenwhichnothingof interestto the systemoccurs,it is possibleto preservethis ratherelegantfic
tion througha timinganalysis step. So long as the implementorcan assure that for the given instanceof the system, all
computations triggered by an event finishbefore the arrival of the next event then the conditions of the two synchrony
hypotheses can be consideredto have been met. This is the timingverification step, and it correspondsexactly to timing
verificationin hardware design.

2.4 Language Interpreters versus Program Specifications

In addition to the issues of the presumedlevel of interpretation and the definition of parallelism,there is also the issue of
how the languageand the language's semanticsaffects the specification. It has been said that languageaffects whatcan be
said to such a degree that certain conceptswhich are inelegantly dealt with in languagesimplyare not treated.Thus a
qualificationof the effect of the phrasing of the description on its interpretationas a specificationneeds to be made.

The comments of this section are phrased in terms of programming languages and interpreters and generally have a soft
ware orientation.This is done on purpose to accentuatethe operationalaspects of the VHDLsimulatoras an interpreter
for the VHDLlanguagewhich is a parallel programming language.It is withinthis framework of a formal languageand
its interpreterthat a notionof specification is beingproposed. This extraction processis moredifficult than it might seem
due to the of the intrusiveeffectsof the language's interpreter as explainedbelow.

For the purposes here, the ultimategoal of hardware descriptionlanguagesis in the expressionof computing,not in the
generationof the specificsyntax by which that computation is expressed; i.e. the language is a means to an end, not an end
unto itself.While this seemsobvious, thereare those who take the oppositetack- namelythat the purposeof the program
ming languageis to record all relevant design decisionsand further, that any support for comments in a programminglan
guageare an admission that providing such all-encompassing designflowsupporthas not been possible. Such an extreme
position is not necessary hereas only theaspectsof thespecification represented in the language is relevant

In Figure 18 the traditional levels of a hardware description language program are shown. Description is accomplished
through variouslevelsof abstraction untilfinally a machinecan be instructed to performthe computation; this definesthe
meaning of that hardwaredescription. The trick of hardwaredescription is to definethe intervening abstractions so that
they can ultimately be implemented efficiently.

The following sections arguethat the two intervening levelsof Figure 18, theprogram and interpreter levels,are inciden
tal to the task at hand and introduce interpreter bias into implementations. Interpreterbias is the term that is being used
herefor tendency of final implementations to lookmoreand morelikea general facility which indirectly computes by
manipulatinga data structure representing the computation. Optimizations tend to reduce this effect, but do not com
pletelyerase it becauseof their partial nature.A language's interpreter bias preventsthe optimization of thesedata struc
ture manipulations into native machine-level operations.

Onecan treatthe toplevelof the hierarchy shown in Figure 18as a specification of thecomputation to be performed on
the machine.The job of the synthesis system, in the case of hardware,or the compiler in the case of software, is then to
produce something executable at thelowest level(themachine) which willsatisfy thespecification. Anoption fordefining
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the meaningof the top-levelspecification is to use quantifiedlogic formulaeor some sort of exhaustive listing of input/
output pairings.Clearly though,for this notion of specification to be practicallyuseful it must to be more concrete and
succinct than large massesof formulaeor an unstructuredmapping.Elaboratingthe representation of a true and meaning
ful specificationfor computation is the subject of the next sections.

Program Specifications
The goalof high-level designis to takea specification (an idea)andproduce something (anexecutable) that will compute
therequired function. A specification is something which defines therelationships thatshallholdon any implementation.
Many specifications areconsidered tobe butanexhaustive listof thepossible input/output relationships thatholdoverall
possible implementations. Ideally this exhaustive list is succinct For a small class of simple functions, this can be done.
The booleanfunctions ate suchan example,for succinctspecifications of logic functions can be given in either sum-of-
products or as a binary decisiondiagram.For more complex functions, especiallythose whoseouqrut depends on past
inputs or ouqruts {i.e. they maintain internal state)the taskis far morecomplicated.

Thekey pointto notice abouta specification is that it indicates whatobservations theenvironment wishes to beable to
make about any implementation. At the extreme case, if nothing can be observed,as is the case with a so-called"black
box," then theexhaustive listof inpui/ouqrut pairs is required. At theother extreme, if everything canbe observed, then
theresultisa "glassbox"thatisa purestructural description of thecomputation. Somewhere in themiddle is thenotion of
specification that is desired here.

Theideais todefine specifications thatallow fora trade-off along theaxisof internal visibility; ranging from black boxto
glass box. Eachof these alternatives willhave varying degrees of succinctness and, conversely, flexibility of implementa
tion.

Regular Expressions as FSM Specifications
What canbeobserved from the study of regular expressions [HU79] is that they provide just such a specification forthe
class offinite automata. As has already been argued, the use ofthe finite state machine model^^ isa good one in the case
of real-time software andsimulator kernels, so it is very convenient thatregular expressions area succinct specification
for the domain of finite state machines.

Foreach regular expression, there is some setof finite automata thatrecognize thatregular expression. In fact, it isconve
nient,for thisexample, to examine the software tool whichproduces oneof theseautomatafor the case of software: lex
[LS7S]. Theinput to theprogram is a setofregular expression which is taken as thespecification of theautomaton topro
duce. Depending on therequired state-space sizeandcode-size trade-offs requested, theresulting implementation iseither
larger and faster or smaller and slower.

Ontheother hand, examine this same example in thelightof interpreter bias, byconsidering thecaseof a hand-coded
scanner versus the lex-generated one.It would takean extremely powerful optimizer to determine thefunction of the
hand-generated scanner to the levelof detail required for use as a specification for the automaton. On the other hand, the
regular expression specification is entirely adequate for it onlyidentifies theminimal setof points of user-observability in
the final automaton.

The use of regularexpressions as a specification for a finite automatonwas not presentedonly to illustrate the notionof a
language interpreterversus a program specification. This exact idea is used to define the specification nature and thus the
compilation procedure for the seemingly imperative language, Estereland thatprocedure is outlinedin Section3.3.2.

16. Finite statemachines, finite automata, (finite) state transition graphsandregularexpressions can all be shownto be equivalent
[HU79]. Heretheseterms areusedinterchangeably withregularexpressionemphasizing specification andfirute automataorfinitestate
machine emphasizing implementation.
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Chapter 3

Synchronous/Reactive Languages

One of the most well-developedand extensively published synchronous languages is the Esterel language [CIS88]
[Ber91] [BDS91] [BCG86] [BC84].^^ What ispresented here by no means represents the whole language, rather only the
most relevant highlights of semantics are presented with a few examples of syntax. This chapter is focused mostly on
Esterel but the final section, Section 3.4, will describe the implications of the synchronous assumptions for VHDL.

Esterel, like other synchronous languages, requires that the strong synchrony hypothesis hold, as described in Section
2.3.2.The Esterelprogramis thus a specification for the computingwhichis to be performed rather thana representation
of a data structureon whichcomputationshall occur. Also, as a synchronous language,an Esterelprogramis reactive, that
is it computes onlyin response to changes in its environment Allchanges in theenvironment, eventhepassage of "real"
timeare measuredin termsof events impinging on the program.This indistinguishabiliQ^ betweenmetric time (in sec
onds)and symbolic time (in "ticks") will becomeimportantin the next sectionas the examplesshowthe interchangeabil-
ity betweenthe signalsSECOND and BUTTONwith no loss of description.

The strongsynchrony hypothesis allowsthe following claimscan be madeaboutEsterelsemantics: non-delay events take
zero time and delayelementstake exactly the amountof time specified. The effectof the strongsynchrony hypothesis is
the separation of the correcmess ofan Esterel program into two independentparts: a functional correcmess part and a tem
poralcorrectness part.This independence of function and timeis muchthe sameas that which is found in clockeddigital
circuitswhoe so longas the circuit is able computeits next-stateand outputfunctions fasterthan the clockcycle time, the
circuit is considered to be correct.Differentmethodsare usedto verifythe function and performance of thecircuit,within
the clocked-digital paradigmthey are seen to be independent.In the case of Esterelprograms, the strong synchrony
hypothesisallows for differentmeans of verificationto be applied to each aspect, e.g. automata-theoretic methods to ver
ify functional correctness and linear instruction scheduling methods to verify the temporal correcmess.

3.1 Overview of the Language

The Esterel languageis dividedinto two levels in order to definea simplersoundsemanticsfor the language. There is a
corelanguage overwhich thesemantics isdefined. Inaddition, thereisan extended language which is defined in terms of
thecore. I willonly reviewthe key conceptsof the core languageas the extendedlanguageprovidesonly syntacticconve
nience and it adds no new semantic power.

The importantsemanticfeatureof the languageis that it has both an interpretive aspect and a specification aspect and
theseare both exposedin the construction of the Esterel int^reter and the Esterelcompilerrespectively. These aspects
are described in Section 3.3.1and Section3.3.2. The interpretiveaspect indicateshow the executionof a statement
changes the state of the interpreterand what successor statementwill be executed.The specification aspect is consistent
with the interpretive aspect but indicatesonly whatcomputations and states must be observedin any realization of the
specification so that the compilergeneratessoftware whichrespects this minimalset of observability conditions.

The execution semantics of Esterel follows the synchronous paradigm. Time is separated into discrete instants between
whichnothingof interestoccurs.State transitioncomputations are consideredto be instantaneous and the only delaysare

17. The descriptions presented hereare from[BDS91] andso shouldbe consistent withthelatestavailable compiler [CIS88].
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those which are explicitly declared. There isanissue of the causal correctness ofan Esterel program; but[BC84] demon
strates howchecking for thiscondition can beperformed statically during compilation.

Esterel programs consist of networks of signals andprocesses with processes maintaining statements andvariables. Sig
nalsare theonlymeans by which processes areallowed tocommunicate (shared variables aredisallowed). Aprocess has
an interpretative aspect as thestatement which willbe executed in thecurrent instant anda specification aspect as thecur
rent state (of a finitestate machine). Variables hold data values whichare local to a process.The variablevaluesand the
signalvaluesavailable on the inputsignalsdetermine the nextstatement to be executed, or thenext state to be entered,
dependingon whichaspectof a processone is considering.

32 Core Language Constructs

Sevencore languageconstructs are presentedhere whichshow the essentialcharacteristics of Esterel.There are of course
a host ofother constructs which are not presented here; they can be found in [CIS88].

The basic constructofEsterel is the statement.The purposeof a statementis to performsome workand possiblypass con
trol on to a successorstatementin the sameinstant If statementcompletesits workand passescontrol, then the statement
is said to terminatein the first instant.If thestatementdoes not releasecontrolin the first instantthen it mustbe a delay of
some sort

Each of the statements below are part of the core language. Each statementis presentedwith its syntax, informalseman
tics and an indicaticm as to whether the statement terminates in the first instant

nothing
This statementdoes nothingand terminates instantaneously. It is mainlyused in conjunction withother constructs
to define the meaning of statements in the extended language.

halt

Thisstatementdoesnothing anddoesnot terminate - ev^. It toois usedmainly todefine statements in theextended
language.

emit signai(exp)
The value of exp is made available on signal in the current instant The statement terminates in the current instant

loop
instruction

end

The instruction isexecuted repeatedly. It isa static error for instruction totake zero time for that would repre
sent an infinite amount of work being completed in zero time.

[
instructioni

II

instruction2

instructionN

]
Eachinstruction is executed in parallel, synchronously withtheothers. Theparallel statement completes when
everyinstruction hascompleted. Thisis a statement where thedistinction between nothing and halt is apparent
and is often used to advantage.
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tag Tin
instruction

end

Theinstruction is executed in thecurrent instant If anexit T is executed then thewhole tag-body terminates.
Otherwise the tag-body terminates when instruction does. This is another statement where the distinction
between nothing andhalt is apparent and where thatdistinction is useful in conjunction withlooping andparallel
ism in the contained instruction.

do

instructioni
watching signa!(variable)
timeout instruction2

The watching statement has a rather large syntax, however, it is the one construct in the core language which
accomplishes "real work** for only it introducesdelay.The instructioni is executedin the current instant; if it ter
minates thenso does the watchingstatement.If signal occursin the current instant then instructioni is killedand
control is passed with variable bound to the value on signal at the time of the event The time-out instruction2
is executedif an event on signal occurs before the main instructioni terminates.

There are other constructs in the core language which provide for sequential composition of statements, parallel composi
tion, conditional execution, instantiationof local signsds and variables and operations on variables.There is also a weak
module construct which provides for macro-like modules, an example of which is presented in Section 3.2.1.

A Small Example
The following simple examples demonstrate the use of the core language. Of note in these examples is the duality
between so-called relative time demarcated by events with names like BUTTON and so-called metric time which is mea
sured inseconds. Here both are measured interms ofevents onthe signal BUTTON and SECOND respectively^^.

do

await BUTTON;

emit ACTION

watching SECOND
timeout

emit ALARM

The statement above implements the specification "wait for a button press and then do the action or else time-out in one
second and ring the alarm."

trap END in

[
await SECOND;

emit ALARM;

exit END

I I

await BUTTON;

emit ACTION;

exit END

18. This implies that if one is interested in an Esterel program with a real time behavior then that program will have to exist in an envi
ronment in which it is "poked" to tell it to keep count of the passing (nano)seconds. Ensuring that the software can compute at speed is
the temporal verification obligation alluded to in Section 23.2.

An Application of a Synchronous/Reactive Semantics to the VHDL Language 25 of 132



Synchronous/Reactive Languages

]

end

This second example uses the parallelismop^tor and a tag-body to get the same effect. Its informal specificationwould
be "wait for one button press and performtheaction whilewaitingfor one secondat which time, ring the alarm. Quit after
which ever occurs first"

3,2.1 An Example - A Mouse Handler

Thisexample showshowEst^el is usedto createa simple application. Thisexample produces indications of thenumber
of mouse clicks on themouse ina given interval.The example is broken up intothree separate modules. Counter,
Emission and Mouse.

TheCounter module counts occurrences ofCLICK. When a RSTispresentCounteremits a valued signal VAL whose
value is the number ofoccurrences of CLICK since the last reset

module Counter:

input RST, CLICK;
output VAL(integer);

var v: integer in
do

V := 0;

every immediate CLICK do
V := V + 1;

end;

watching RST;
emit VAL(v) ;

end

The input signals RST and CLICK in the above code are "pure" inthe sense that they do not carry any value and what is
important about them ismerely their presence orabsence. The output signal VAL on the other hand carries a value,
although all that isimportant with respect to the execution ofthe example iswhether ornot avalue, any value, was emit
ted onto VAL in an instant

Themodule Emission processes thevalue ofVAL which isassumed tobeconsistent with thedefinition found inmodule
Counter. The Emission module outputs one ofNONE, SINGLE or MANY to indicate which decision was made; the
countis communicated to Emission via thesignal VAL.

module Emission:

input VAL(integer) ;
output NONE, SINGLE, MANY;

await VAL;

if ?VAL = 0 then

emit NONE

19. This example ofamouse handler written inEsterel istaken directly from [BDS91], page 1296, asisthe description ofthe function
of the mouse handingcode.
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else

if ?VAL^° = 1 then
emit SINGLE

else

emit MANY

end

end

Finally,the main module.Mouse in a global loop puts in parallel a copy of the Counter moduleand the Emission
moduleand a process whichresets the Counter every fiveTOP.

module Mouse;

input CLICK, TOP;
output NONE, SINGLE, MANY;

signal RST, VAL(integer) in
loop

copymodule Counter

I I

await 5 TOP;

emit RST

I I

copymodule Emission
end

end

The important point to notice in the example is the instantaneous communication which is declared. There is instanta
neousconununication insidethe parallelstatementsince the secondbranchemits the signal RST that is receivedby the
Counter in the first branch. Then at the same instant. Counter emits VALthat is received and processed by Emission.

A second point to notice in the example is the weakness of the module construct. It is merely a macro construct and pro
vides only a convenient textual substitution mechanism. What is desired in large designs is true hierarchy which allows
for modules to be abstracted in terms of simpler automata that specify the same behaviors.

33 Interpretation and Specification

As mentioned previously Esterel can be treated both as a language to be interpreted and as a specificationfor which there
exists a satisfying implementation. In this first sense it is no different than any other formal language; it is in the second
sense that it is different. Both of these treatments are reviewed in the following subsections..

33.1 The Interpretation of Esterel
Because Esterel is a formal language which describes computation, it has the property that it can be interpreted. The defi
nition of this interpreter is hinted at in both [BCG86] and [BC84] but as that implementation was far and away slower than
the result ofthe specification treatment,^^ not much attention ispaid tothe interpreter. The purpose ofreviewing itsexist
ence here is simply to show that it exists but that its implementation is quite awkward.

20. Thenotation ?VAL indicates thatthesignalnamespace should beusedfor acquiring thervalin thisexpression. Therearefive
namespaces in Esterel, as describedin [C1S88]. In this example one can see two namespaces straight away: thesignal namespace and
the variable namespace.
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The interpreter consistsof a set ofpotentialfunctionswhich are maintained. Thesepotential functions are datastructures,
one foreachsignal, which describe thepossibility of an eventoccurring on thatsignal in thecurrentinstant. Inaddition to
existingand havingto be maintained by the interpreter, the implementation of the functions themselves is problematic.
The functions are chargedwith thedutyof computing the successor statement to executeafter a giveneventoccurs.This
is problematic because the execution semantics of Esterel is not syntax directed. That is the successor statement is not
always trivially obvious from the syntax ofthe statement being executed. Consider the following example:^

input single signal sl(int),
output single signal s2(int) in

var X, Y: int in

await sl(X);

every next si(Y) do
emit s2(X);

X := Y

end

end

end.

The successorstatement upon receivingan input event on si is as follows:

input single signal si (int),
output single signal s2(int) in

var X := 3, Y: int in

every si(Y) do
emit s2(X);

X := Y

end

end

end

Thissecond statement is essentially a "currying" of thedataintothenewprocess; thisnewprocess mustawaitfurther
events.

Thedefinition of the interpreter forEsterel is obtained through theuseofderivatives of regular expressions [Brz62]. The
interpreter computes these derivatives intheform ofsuccessor statements onthefly. This wastheoriginal definition of the
meaningof an Esterel program.Subsequently it was observedthat only a finitenumberof such derivativesexist and fur
therthatthese implied a finite number of successor statements andthatallderivatives andsuccessors could beprecom-
puted,numbered, andstoredas thecompiled form of theprogram. Thusthecompiled version of Esterel wasdeveloped
and the interpreter faded away.

33J2 The Compilation of Esterel

Compilation in Esterelis derived fromthedefinition of execution of the language. Execution consists of processing
events.An event is the conjunctionof the conditionson each of the signals in the wholeEsterel program.

21. Theimplementors describe theinterpreter acting on theorderofminutes whilethecompiled code(treating theprogram as a speci
fication)resulted in millisecondresponse times - quite adequatefor real-timesoftware applications.
22. This is takendirectlyfirom [BC84]. Therehavebeenseveralchangesto theEsterellanguagebetweenthepublication of [BC841 and
the release of [CIS88] which are being ignored here.
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E = (Jj = Vj) A {S^ = V^) A... A = V^)
Each event isa conjunctive predicate of thevalues oneach of thesignals. Theboolean values in theconjunctive form are
interpreted asa bitvector, thecomplete setof which consists of 2" codes. This setofcodes is interpreted as thesetof
encodings ofan alphabet for a finite automaton [HU79].

The conditions of synchronous parallelism ensure that there isonly oneevent perinstant andthus thatthere isonly one
state transition per event This is exactlythecondition required fora finite automaton. The alphabetand the transitions
indicated by the program textare combinedto forma set of statesand state transition functions for the finite automaton.
The standard algorithms [HU79][ASU86] are used to generate automata from this point.^^

What is interestingto note here in this processis that it exploitsexactly the samealgorithmsused in the Unix scannergen
erator lex [LS7S]. The algorithms for determining the regularexpression implied by the program textare unique to
Esterel but the essential algorithms of the Esterel compiler have been published and used elsewhere extensively. Those
parts are the conversion of the regular expression through its derivatives [BRZ62][BCG86] and into automaton code.

The novel aspect of the Esterel compilerover and above lex, for example, is the dynamic assembly of the alphabet for the
finite automaton based on the boolean algebra induced by predicates on the signal conditions'̂ and the imperative-style
that the syntax of the language gives to what is fimdamentdly a regular expression specification for a finite automata.

This review of Esterel has described enoughof that language that relationshipsbetween it and VHDL can easily observed;
those relationships are the subject of the next section.

3.4 Implications for VHDL

Esterel and VHDL are, at first glance, very close in the style of description, and in the major artifacts of the languages.
Both languages contain processes, signals and have an execution semantics described in terms of events and waiting on
events. There are difiterences of course, and the purpose of this paper is to define what those differences are so that only
the subset of VHDL which has the same semantics as Esterel will be used as the synchronous semantics.

The IVeatment of Processes

A process in Esterel is a reactive entity which consists of a nested set of statements. The interpretive semantics of the pro
cess is that of the next statement to be executed in the first instant, upon reacting to some event. The compilation seman
tics of the Est^l process is that of a finite state machine in a specific state which will execute a state transition function
on the next event.

A restricted class of VHDL processes posses these same qualities. A process is considered to be waiting on its sensitivity
list for events to occur on that sensitivity list When an event occurs, then the process is activated and it executes. For
example, the following would be an implementationof the Counter described in Section 3.2.1:

architecture somehow of something is
signal VAL: integer := 0;

begin

23. In [BDS911the claim is made that the automata generated the Esterel compiler [CISSS] are minimal.

24. This boolean algebra formulation is the same as that which is required by COSPAN [HK90] and other automata-theoreticverifica
tion tools.
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Counter:

process(CLICK'Transaction, RST'Transaction)
variable v: integer := 0;

begin
if CLICK'Transaction then

V := V + 1;

end if;

if RST'Transaction then

VAL <= v;

end if;

end process Counter;

end somehow;

Ofimmediate note inthis description is that anEsteiel process can tenninate while a VHDL process never terminates.
Within thenotation ofEsterel it isasif the VHDL process has animplicitdoforever loop around it.Thus the translation of
Esterel back into VHDL, aswas attempted inthis last example, isnot directly defined. This should not beaproblem for
thepurposes here because thetranslation being designed is VHDL toEsterel; thesecond can model thefirst, butnotvice
versa. Further examples ofsyntactic translations between VHDL and Esterel aregiven inChapter 4.

The Treatment of Signals

The second area ofsimilarity between VHDL and Esterel isthe use ofsignals and events on those signals. Adifference
between the two languages exists however in that events on wires in VHDL occur singly, £ = (e Vj) while in Esteiel
anevent ona wire isreally the conjunction ofallof the signals which areactive ata given instant;

£ = s V^) A (.52 - ^2^
This is theessential distinction between the synchronous semantics ofEsterel and the discrete event semantics of VHDL.

In Esterel the event space forms aboolean algebra^ which isinterpreted as the alphabetofthe finite automaton. The main
idea behind the sjmchronous semantics of VHDL is to derive this same sort of relationship among the VHDL events by
subsetting the allowable temporal behaviors that the restricted simulator will support This will induce the boolean algebra
ontotheVHDL eventspaceanddefine thesynchronous subset

The Treatment of Time

Time in VHDL is separated into two levels, as shown in Figure 20. The upper level is intended to be used in the modeling
of real-world events and ismeasured in seconds (or firactions thereof). The lower level is called unit-delay or A-delay and
isintended for use by the simulator to allow events on signals to propagate until stability isreached. There isno restriction
on the number ofA-delay events which can be fit between any two macro-time slices. As such, the description ofFigure
21 computes an infinite amount in zero seconds.

The central idea behind the synchronous subset ofVHDL isthat the A-delay level oftime can be done away with under
certain conditions. The use ofA-delay can be done away with ifateach point the computation implied by the event-prop
agations isoffixed length. An example ofthis isshown in Figure 21. Shown in Figure 22 isacommon example ofasitu
ation where the A-delay nature ofthe simulation can be replaced by asimple function which relates the triggering event to
the result event. In this example, the standard simulation semantics dictates that an event on AorBwill trigger the first

25. See [Kur90] for more specific details onthe relationships between boolean algebras and the alphabets offinite
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Figure 20 The Two-Level Model of Time in VHDL

Micro Time
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Macro Time

Figure 21 A Non-Reactive Clock in VHDL

architecture not_reactive of CLK is
signal clock: bit;

begin
process

begin
clock <= not clock;

end process;

end not_reactive;

continuoussignalassignment to recomputethe valueon Tmp; this would then cause the value of O to be recomputed.
Two A-level iterations are required by the simulator.

Figure 22 An Example of Needless A-Delay

entity Some_Function is
port(A, B, C: in Bit; O: out Bit);

end Some_Function;

architecture Reactive of Some_Function is
signal Tmpl: Bit;

begin
Tnpl <= A and B;

O <= Tmpl or C;

end Reactive;

Having done away with the A-delay level of the VHDL time model, the only remaining level is the macro-time level. The
synchronous model oftime schematically isshown in Figure 23.^.
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Figure 23 The One-Level Model of Time in Synchronous VHDL

Computing the Reaction

Time in terms of events

26. The strong synchrony hypothesis says thai the computation ofreactions takes no lime and the actual situation of ittaking itsome
time is shown in the figure; this isdone for the purposes ofclarity and to allow the reader to directly relate Figure 23 to Figure 20.
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Chapter 4

The Synchronous VHDL Subset

Theaigument presented earlier was thattheonly truly sound way todefine thespecification aspect of VHDL wastodoit
from thesemantics forward to thesyntax andsotherestrictions ontheabstract simulator will imply restrictions on the
constructs in thelanguage. Thepurpose of thissection is tostatethatsetof restrictions, which is surprisingly simple: there
are four basic restrictions - all others are derived fipom this essential set

The Synchronous VHDLsubsetis defined as the full VHDL-1076 languagewith the following four proscriptions:

1. The signal queues for managingevents are restricted to be of length one.

2. The sequential code in a process must execute without a stack.

3. The use of dynamic storage allocation is disallowed.

4. Signal propagation paths must be causal.

These restrictionson the abstract simulatorare very simple, but by their application, the behaviorsallowed in the abstract
simulator are transformedfrom the potentially infinite in space (memory) and time (execution time) to the finite in both
dimensions.The importanceof these finiteness constraintsis that they allow for a strongdefinition of the semantics of
VHDL. Processesare constrained to act as finite state machines and thus the whole VHDL program acts as a network of
communicating finite state machines. In this section the Synchronous VHDL subset is defined and a meaningful way of
creating implementations based on the finite-state semantics is provided.

The executionsemanticsof VHDLtmderthe restrictionsoutlined above are the same as those of the synchronousmodel.
Thus, the subset simulator behavior,while remaining consistent with that of the full discrete event simulator, is defined in
terms of event reactions, i.e. processes compute only as a reaction to events on signals to which they are sensitive. The
utility of definingthe subset semanticsin terms of event reactions is that there exists efficienttechniquesfor deriving a
finiteautomata-based implementation in this case. These algorithms involvecomputingtheeventderivativesof the pro
gram and using those derivatives as the states of an automata that recognizes the regular language defined by the pro
gram's events [Brz62] [BS86]. This semantics and implementation in terms of event derivatives is the same as that which
isdefined for the Esterel language |BC84]. This simil^ty isaconnection that isused toadvantage in this section inthe
definition of the properties of the VHDL subset, and also in Chapter S in the implementationof the prototype simulator.

The implications of the four basic rules defining the Synchronous VHDL subset establishes the connection between this
subset and its synchronous semantics. Instead of describing the event derivatives on the VHDL language directly, a trans
lation procedureis definedwhichrelates syntacticstructures in the VHDLsubset to programsin the Esterel language.
Thus, the existing Esterel compiler [CIS88] is used both to give an operational meaning to the VHDL subset and also to
provide prototype simulatorsas is described in the next chapter. The sufficiencyof the basic restrictions and their implica
tions on the VHDL constructs that are supportable in their presence are reviewed in the following two sections. Section
4.1 and Section 4.2. The correspondences necessary to define a syntax-directed translation from VHDL to Esterel are
shown in Section4.3. This translationis, in lieu of an explicit algorithmfor compiling the VHDLprogramsdirectly to
automata, the definitionof the Synchronous VHDL subset. The operational semanticsdefined for the Esterel language
[6C84] in terms of event derivativesand finiteautomata then serves as the basic computationalmodel with the translation
procedure definedhere being used to extend that definition to apply to the Synchronous VHDL subset
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4.1 Implications of the Restrictions

The four restrictions listed above are designed to ensure that the synchronous subset of VHDL is still consistent with the
full VHDL language,yet constrainthe simulator to finitememory requirementsand finiteexecution time. Wecan be con
fident that these restrictions do not change the semantics of VHDL for they only subtract possible behaviors from the full
abstract simulator; no new behaviors are defined. This is the necessary condition for the restiictions and the sufficient con
dition is that the restrictions are the smallest set of restrictions which induce the desired finite behavior.

That this set of restrictions is minimal can be seen from a quick argumentinvolving the deletionof any one of the rules.
Taking each rule in turn, it can be seen that the exclusion ofany one of these rules from the definitionof the synchronous
subset,and thus the corresponding admission into the subsetof the constructsgovernedby that rule, allowsfor non-finite
behavior in the abstract simulator.The basic restrictions are reviewed below and a description is given of how each
restrictionaids in ensuring that the VHDL subset is reactiveand finite-state and further that a removalof any restriction
would allow for undesirablebehavior.A description of the effect of these restrictions on the VHDL languageconstructs is
deferred until Section 4.2.

Finite Memory Requirements
Thefirst rulerestricts thesignal queues tobeof unitlength andso itensures thatthesimulator operates inboth finite space
and finite time.In thefullVHDL language, signals events are maintained on a queue of pending events. Thisqueue'ssize
is unrestricted since theuse ofwaveform assignments, transport or inertial delay (the after clause in the signdassign
ment) canappend anarbitrary number of events. Thesepending eventsindicate future activity of thesimulatorandsocon
stitute a potential forboth anunbounded amount ofstate andanunbounded amount ofcomputation. The goal is torestrict
the simulator toa fixed and bounded amount of state such thattheoccurrence ofany single event completely determines
the next-state of the simulator.

The second two rules restrict the other ways inwhich a VHDL model can create arbitrary amounts ofstate: implicitly
through the use ofstack-based computations and explicitly through the use ofdynamic memory allocation. The goal of
restricting theVHDL language is toensure thatthemodel canbe treated as a specification fora finite state machine.
Clearly then if this goal is tobeattained, language mechanisms for creating andmaintaining potentially unbounded
amounts of memory must be proscribed.

Finite Reaction Computation
Havingtakencare to ensurethatno VHDL description in the subsetcan createor maintain a non-static amountof mem
ory, there is still one more aspect of thecomputations which must beconstrained inorder toensure that thedescriptions
fall within the reactive model. Care must be taken toensure that any computation triggered byan event will complete ina
fixed amount oftime. This condition summarizes one ofthe most important assumptions ofthe reactive model: the syn
chrony hypothesis where the system finishes computing itsreaction before the next event occurs. Simple asitmay seem,
this requirement hasa number of interesting effects on thesubset

The direct effect ofrestricting each reaction computation tobefinite is summarized by the fourth rule: that allsignal flow
paths becausal. Inthis case causality ensures that the result ofanevent which causes the system tocompute itsreaction
does not further cause the system toreact: infinite oscillations aredisallowed. The condition that allsignal flow paths be
causal simply means that there may beno cycles inthe signal flow gr!q}h ofthe VHDL program.^

27. It isinteresting tonote that the VHDL-1076 standard does notexplicitly disallow A-time oscillations. Many VHDL models using
this aspect of thelanguage while executing en (correct) simulators will effectively infinite loop and attempt touse aninfinite amount of
memory for thesignal queues of pending events; thesimulator ultimately fails due to lackof memory resources. Thusthere areexam
plesof"correct" VHDL which aresuretocause a valid simulator to fail. It isconsidered bymostsimulator-builders thatthecausality
condition (identifying cycles in thesignal flow grtqrh) is tootime-consuming tocheck forlargemodels. Thecondition is leftunchecked
and it is thus a "programmer error" to allowsuchcycles to occur in any VHDLmodel [GI90].
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A secondeffectof the finite computation rule is that theremay be no unbounded sequentialexecutions commencing from
an event Thishas theeffectof requiring that all potentially unbounded loopsbe brokenby a wait statement. Breakingall
potentially unbounded loops witha wait statement ensures that thecomputation of a reaction canbe donein a fixed and
finite amount of time.

4.2 Implications on the Syntax

The four basic restrictions outline a broad set of rules for accepting or rejecting constructs and construct idioms from the
VHDL subset An out line of the effect of the restrictions in terms of the constructs and construct idioms which are disal

lowed is given in this section. The Synchronous VHDL subset is defined as all of the VHDL 1076 languagesubtracting
off the constructs and structures which are described in this section.

4.2.1 Restriction 1 - Time Queues of Length One
Restricting the time queues to be of length one has the obvious effect of removing the time queues from the abstract sim
ulator model since time queues of length one allow for a single value to be defined on the signal. The effect of this
removal is that the simulator ceases to require the representation and manipulation of explicit signal queues such as the
one shown in Figure 24. Instead, the signd driver values can be represented explicitly in a single variable which is
updated by signal assignment This variable,atomically updated,becomes a state variableof the finalautomaton under the
synchronousAeactive compilation algorithm.

Rgure 24 A VHDLSignal Queue and the Process that Created It

signal 8: Integer;

3

10 ns 30 ns

signal s: integer;

process

begin
s <= 3, 1 after 5 ns, 2 after 7 ns, 6 after 10 ns,

1 after 30 ns;

wait;

end process;

Based on this restriction, the following list of items describe constructs which are disallowed due to the lack of signal
queues.Each restriction is describedwitha general title of the restriction, reason behind the restriction anda description
of how the restrictioncan be implementedin the form of a static check on the VHDL soiuce text. The importantpoint of
this last item is that the restriction can be checked at compile-time.
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Inertial Delay
Any construct inthe syntax which supports inertial delay^^ is disallowed with the most obvious one being the after
clause in signal assignments. Inertial delay must be removed for it cannot be supported on a time queue of length
one. Afurther point isthat the preemption allows for hidden state to be stored in the signal queues.^ The goal isto

. ensure that all state is explicit so that it can be identified and compiled into the final automaton.

This restriction is implementedby identifyingthe use of inertialdelay - that is by identifying the use of the after
keyword in signal assignments.

IVansport Delay
While transportdelay is not consideredas intractableas inertialdelay by some [AUG89]« there is still an issue of
the implicit state storage on the time queues. This implicit state storage must be disallowed in order to ensure reac-
tiveness of the description, so the use of transport delay must be disallowed also.

This restrictionis rather simpleto implementas it requires the recognitionof thetransport keywordin a signal
assignmentstatement.Implicitusesof transportdelayas is the case in waveform signal assignments commencing
with an inertialdelaycan be identified by recognizing and disallowingthe waveform assignment.

Signal Attributes, Part 1
Mostof the signalattributes are disallowed because theyrequirethe management of historyinformation about the
signal queue, e.g.when was it lastassigned to, forhow longhasit notbeen assigned to,when didit lastchange
valueand whatwasits value whenit didchange andthe like.Theseattributes are: Delayed, Stable, Quiet, and
Active respectively

Therestriction is implemented at compile-time byidentifying theuses of theproscribed signal attributes.

Signal Attributes, Fart 2
Other derivedsignal attributesare disallowed becausetheyreturn the simulationtime at whichsomeeffect

occurred. These have no physicalor specification correspondenceand so are disallowed.These attributesare:
Last.Actlve and Last.Event.

Therestriction is implemented atcompile-time byidentifying theuses of theproscribed signal attributes.

Signal Attributes, Part 3
Thefinal remaining signal attribute isdisallowed toobecause it canbe implemented at theuserlevel andthus need
not be built into the subset language.This attribute is: Last_Value.

Therestriction is implemented atcompUe-time byidentifying theuses of the proscribed signal attribute.

Signal Operations
It ispossible toboth implicitly andexplicitly disconnect a driver firom a resolved signal inVHDL. This disconnec
tion can beaccomplished implicitly through the use ofguarded signal assignments orexplicitly through the use of
null valued transactions inthe signal assignment orthrough the disconnect statement. As disconnection operation

28. There are two delay models defined inVHDL 1076: inertial delay and transport delay. Inertial delay isused tomodel the physical
effectof gatedrive;if a semiconductor deviceisnotdrivenlongenoughwithdienewvaluethenthenewvaluedoesnot"stick."Inertial
delay has theeffect offiltering outpulses which areshorter than theindicated delay. Transmission delay isused tomodel thephysical
effect ofa transmission line which passes pulses ofany width without modification; the delay aspect is the latency ofthe transmission
medium. More detailed descriptions of these delay models andtheirusesinmodeling canbefound in theliterature [LSU89][-
Coe89][ALG+91]

29. Thenotion ofpreemption in inertial or transport delay isderived from thetruncation ofthesignal driver queue which occurs when
an earlier event is registered. See [LSU89],pages 75-82.
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requires thecorresponding manipulation ofa runtime data structure, it is disallowed in thecontext of Synchronous
VHDL.

Thisrestriction is implemented byrecognizing theexplicit useof null valued transactions in thesignal assignment,
theuseof thedisconnect statement andalso byrecognizing theuse ofguarded signal assignments which implic
itly usethedisconnect operation. Allproscribed usesare statically obvious ff^om the source text

4^.2 Restriction 2 - No Runtime Stack

The central featureof the reactivecompilation strategy is the identification of everystate variableand the placementof
eachin a singlestatically-allocated pieceof storage. Die automaton codegenerated by thereactivecompiler computes by
identifying the event for the current instant and by computing an output event and anext state value ba^ on that event
and the current state. The requirement that the current state be stored in explicitly materialized variables stems from the
requirement that there be no indirect interpretive overhead in this output and next-state computation as would be required
if intervening data structures such as runtime schedulers, memory allocators, signal queues - or a runtime stack.

It is interesting to note that the lack of a runtime stack in the finalexecutable prevents the use of recursive subprograms,
but does not necessarily prohibit subprogram use in the general case. One can consider that all subprogramsare implicitly
inlined. That is they are expandedin placeas if they were but semantically-defined macros.Subprogramscan be consid
ered to be implicitly inlined as it is not necessary to explicitly do the inlining. However, it may be beneficial to share the
implementationofa given subprogram for reasons of performanceor resource consumption. Within the confinesof a soft
ware simulator, this implementation sharing can be easily accomplished with a simple register-linkage calling-convention
for the subprograms (c./. the subroutine callingconventionsof older FORTRANdialects), while in the hardwaresynthesis
case the sharing can be accomplished by determining a schedule for the use of shared functional units.

The following items describe constructs which are disallowed because they require a runtime stack.
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Nested Functions or Procedures

Nested subprograms, anexample of which is shown inFigure 25,aredisallowed because thesupport required for
these isexplicitly stack orient^. Further they require the implicit management ofan internal data structure called a
display or static linkin order to execute them [ASU86].

Figure 25 Example of a Nested Procedure Requiringa Static Link

procedure p(x: in integer; y, z: out integer) is

procedure q(a: in boolean; b: out integer) is
begin

if a then

b := X + 1;

else

b := X * 10;

end if;

end q;

begin

q(true, y);
q(false, z);

end p;

Thisrestriction is implemented bya simple restriction on thetypes ofobjects which maybe declared in thedeclara
tion-list ofaprocedure orfunction. Allowing only types, vari^les and constants, but not subprograms to be
declared thereensures that nested proceduresand functionscannotoccur.

Use of Recursion

Although theuseof procedures and functions canbe supported within therestrictions outlined, therequirement
identified eaiiieris thatthere benostack. Thisessentially requires thatall subprograms arebe implicitly inlined and
thus the use ofdirect or indirect recursion cannot be support^
Thisrestriction is easily checked bydetermining if there is a cycle anywhere in thecallgraph of theVHDL subpro
gramsin a process. Implementing thischeckfor all processes in the VHDL program ensuresthat thereis no useof
direct, indirector mutualrecursionin any process.

Dynamically-Sized Objects
It is possible in VHDL todeclare thatthesizeofanarray bedetermined at runtime. Thearray sizeis fixed overthe
lifeof thearray, butis determined only at thetime of elaboration of theblock containing thedeclaration, or theat
the time of the execution of the array slice expression.

This ability to process non-statically-sized objects results in theVHDL interpreter having to support management
techniques fordynamically-sized objects. Anexample of theuseof suchis shownin Figure26 where theuseof the
unconstrained type indication bit_vector in the function rosolve results in an unknown size for the variable bv at
compiletime. It is only whenthe function is invoked that the lengthof the array is bound.

The restriction against dynamically sizedobjectscan be implemented in thesimplecaseby disallowing uncon
strained typedeclarations and sliceexpressions. Thus, for lackof a wayto declare variable-sized objects or an
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Figure 26 A Use of a Dynamically-Sized Array

function resolve(bv: in bit_vector) return bit is
variable ret: bit;

begin
if bv'length = 0 then

ret := '»0';

else

ret := bv{1);

end if;

return ret;

end resolve;

subtype resolved_bit is resolve bit;

expression operatorwhichwill producea variable-sized result, it will be possibleto haveexplicitsize information
on each data value in the program, including arrays.

Thisrestriction willsolvetheproblem completely but willhave theunfortunate sideeffect of making the constmc-
tion of packages containing semi-generic subprograms difficult Thisisbecause a great dealof expressive power is
derivedfrom the ability to queryan array to det^mine its lengthand rangeat runtime.This allowsone to write rou
tines which areimplicitly parameterized aboutthesizeof thearray values upon which theyarecalled. Theexample
shownin Figure27 is a reasonable useof this facility in thexor function.

Figure 27 ASubprogram Implicitly Parameterized overthe Size ofan Array

function **xor"(bv: in bit_vector) return bit is
variable ret: bit := *0';

begin
for i in bv'range loop

if bv(i) = *0' then

ret := not ret;

end if;

end loop;
return ret;

end ^^xor";

So, there is a needfor the implicit genericity afforded by theexport of runtime sizeinformation backinto thelan
guage. Ontheotherhand, as statedpreviously, thisruntime sizeinformation isproblematic from thestandpoint of a
reactive compiler. A possible solution to thisproblem is to push theissue back intothelibrary management portion
of thecompiler; thatis, treat runtime sizeinformation as implicit genericity andforce thelibrary management por
tionof thecompiler togenerate andstorecopies of thesubprogram which arecustomized for thespecific sizeval
ues. References to these non-generic instantiations would then beused instead of thegeneric version. Using this
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suggestion,allowancescan be made for the succinctnessof expositionaffordedby the access to object size
attributes while still remaining within the confines ofthe reactive compilation restrictions^^

Also, as with the case of the exampleshown in Figure27, this resuiction against unconstrainedtype declarations if
implemented exactlyas statedwouldhave the unfortunate effectof disallowing bus resolutionfunctions - a feature
whichcan be supportedin a synchronous framework. Esterel supportsthe conceptof multiply-driven signals
through the use ofacomposition operator [CIS88].^^ In the case ofVHDL, although the source text does not allow
for thedirectobservation of it, eachuseof the busresolution function on a multiply-driven signal is statically
botmd. Thecompile hasaccess to thenumber of drivers for theresolved signal andcan determine at compile time
the size of the array which represents the vector of signal drivers.

Locally Static Objects
Objects in VHDLwhichare declaredin a mannerwhich is independent of the runtimeactivitiesare called locally
static whereas objects which require runtime activities inorder to bind all their aspects are called globally staticr^.
Only locally staticdeclarations areallowed in thesynchronous subset for thesizeof a globally staticobjectis deter
mined bythecontext in which it is elaborated. This is a general principle which allows for thedynamically sized
arraysas described in the previous itemas a special case. As an example, considerFigure28 in whichis showna
globally static subtype declaration that requires theimplementation ofa runtime typechecking system toensure the
consistencyof the type safetyrules.

Figure 28 ALocally Staticand Globally Subtype Declaration

procedure p(low, high: in natural) is
subtype locally_static is integer range 0 to 10;
subtype globally_static is integer range low to high;

begin

end p;

It isfairly straightforward torestrict the use ofglobally static declarations. The analysis required todetermine
wheth^ a declaration isstatic inthe global sense orthe local s^ise israther sophisticated, inthe genial case requir
ing the full power ofa VHDL compiler. While it isunfortunate that this check requires somuch infrastructure, the
keypointis that thecheckcanstillbe performed at compile time.

4.23 Restriction 3 • No Heap Storage
Heap storage isrequired inthe VHDL language bythe ability todynamically create unnamed values. These values are
referred to in the usual manner: via pointers, or as they are c^ed in the VHDL type system "access types.** There is no
utility for pointer types and dynamic allocation in the finite-state, statically-allocated reactive computing regime. Thus, all
vestiges of the dynamic allocation facilities inVHDL are proscribed inthe definition ofSynchronous VHDL.

The following items describe the facilities in VHDL which allow for the processing ofdynamic storage:

30. See [HilSS], Chapter2 for an analysis of thisissuein thecontextof Ada.
31. The "bus resolution functions" inEsterel are called "the composition operator," and are always named*, but may be implemented
by any user-defined fimction with the qjpropriate dyadic signature. The effect and intended use ofthe composition operator isexactly
that of a bus resolution function.

32. This isexactly backwards from the intuitivesense ofthese words, however seepages 7-15 inthe LRM [IEEE87]. The names canbe
remembered byunderstanding that they denote how much information isrequired tocomplete thedefinition. Locally static definitions
maybefixed atanalysis timebecause tiiey require lessinformation; globally static definitions mustbefixed atelaboration timebecause
theyrequire moreglobal information aboutthedesignin whichtheyreside.
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Access Types
Pointers are the onlyway to accessitemswhich havebeenallocated in the heap. No heapin the subset'sabstract
simulator implies no pointers.

Disallowing theuseof theaccess typeconstructor is sufficient to implement thisrestriction. If onecannotdeclare
pointer-valued variables or subprograms, thenthe useof a heapis not needed.

The New Operator
Again,no heapimpliesthat thereis no need to allocate in the heap.The new operatoris disallowed as is the useof
the corresponding implicitly-declared deallocate procedure.

4.2.4 Other Restrictions

There are a few other miscellaneous restrictions which are required to ensure that the simulator maintains its finite-state
aspects. In addition, these restrictions ensure that the resulting simulator does not require extra data structures to manage
the state of eachprocess.It is this extra meta-state that is importantto eliminatefor its existenceestablishes the begin
ningsof interpreter bias.Having an abstractsimulator that doesnot require hidden stateswillensurethat the effects of
interpreterbias on the resultingimplementation will be minimized.

The Time Type
The time type is simply an artifact of the full VHDL simulator.It has no specificationcounterpart since we are spec
ifying a reactive system and reactive systems are defined independentlyof their temporal aspects.

The removal of the time type is also convenient for it ensures that other constructs that make reference to time
removed. For example the removal of the time data type ensures that the now function, which returns the current
simulator time is removed from the synchronous subset.

The File Type
The file type constructor is only relevant in the context of a full simulatorand it does not have relevancefor speci
fication. As such, its use is disallowed in the Synchronous VHDL subset

4.2.5 Summary
The result of these restrictions is that the simulator can execute in finite space with the minimum amount of meta-state
(none). In addition, the specificationaspect of VHDL is defined operationallyby the execution of a description on the
abstract (finite-state) simulator that is it is simply the set of inputs and outputs that the program will participate in over its
lifetime.This set of input output pairing for each instant definesa symbol set and the set of pairings over time definesa set
of behaviors in the form of strings of symbols: the behavior of the program is defined in terms of a regular expression
defined on the symbol set composed of input ouq)ut pairings. The purpose of the reactive compiler is to derive a finite
automaton for this regular expression which "executes" the program by performing state transitions and producing ouq)ut
events in response to input events.

It is interesting to note that the Synchronous VHDL subset is completely devoid of any references to time. What this
means is that the Synchronous VHDL subset operates only at the A-delay or unit-delay level. While it was argued that this
was an extremely bad thing for the purposes of modeling because zero-time modeling has no physical correspondence, the
point here is exactly the opposite. The use of a unit-delay model for specificationis useful because it leaves the temporal
aspects of the language out of the functional specification. In order to impress the specification onto the time axis, as is
required during a simulation, the synchronous VHDL program will have to be put on a test bench like the one shown in
Figure 9. As the test bench will have a vector application unit and a flight recorder which are not reactive, the Device
Under Test (DUT) will be operated with time explicitly imposed on it from outside. Thus the DUT's environment will
enforce the use of meuic time on the device at simulation time.

Because the DUT, as a specification, is a reactive entity, its metric time behavior only becomes defined when the DUT is
connected up to its environment. This is consistent widi the notion that constraints on systems really propagate from the
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interfacesinto the centerof the design. It is also consistentwith the idea of the environment constraining a system's
behavioras is foundin languagecontainmentverification [HK90].Thus the reactivesynchronous specification semantics
of VHDLfits naturallyinto the existingsimulation paradigmwith as a DeviceUnderTestand also into the automata-the
oretic verification paradigmas a systemwhichneeds to be connectedto its environment in order to be completelydefined.

43 VHDL to Esterel

There is a strongcorrespondence between Synchronous VHDLas p'esented in theprevious section and theEsterel lan
guage. Thiscorrespondence is shown hereby relating thecore language concepts of VHDL to thecorelanguage of
Esterel.However, only thecorrespondences whichmotivatethe full translation procedureof Chapter5 are presentedhere.
The correspondences shown in this section are importanthowever for they show how a control structure in a VHDL pro
cess is converted into a control structure of an Esterel process. The full translation of a VHDL process to Esterel requires
a bit more mechanism than has been defined so far since VHDL has both control-handling and data-handling aspects (i.e.
arrays, records, scalars and oth^ user-defined additions to the type system). Esterel on the other hand focuses on describ
ing onlycontrolaspectsof computation and has rath^ weakdata-handling capabilities requiring someextranotation to
support the data-handlingcapabilities of VHDL.

The essentialparts of the core languageof Esterelwere presentedin Section3.2. The essentialcore languageconstructof
VHDL is the process withsomenumberof wait statements in it Allotho* legalsynchronous VHDLprocessforms,
such as a processwith a sensitivity list or the dataflow forms,can be de-sugaredinto the basicform accordingto the lan
guage referencemanual [IEEE87]; the basicprocess form is shown in Figure 29..

Figure 29 The Structure of a Reactive VHDL Process

process-name:

process

vhdl-declaratlon-1;

vhdl-declaration-2;

vhdl-declaration-M;

begin
vhdl-statement-1;

vhdl-statement-2;

vhdl-statement-N;

end process process-name;

The correspondence betweenthe VHDL process and theEsterelprocessis not exactbut it is indeedclose.The Esterel
process is defined as a sequence of statements which can terminate whereas the VHDL process is an implicit "loopfor
ever"construct which is required to haveat leastonewait statement in it Thestructure inEsterel which corresponds nat
urally to theVHDL process semantics is shown in Figure30. It has an outer"loopforever" wrapped around it to emulate
the semantics of the implicit loopof theVHDL process. The important details leftoutof these figures are theformulation
of the declaration-list and statement-list in the VHDL and Esterel versions and are dealt with lato*..

43.1 Syntactic Correspondences
The translation of VHDLstatements however are a bit lessobviousbut still straightforward. Theycan be translated
mostly in a syntax-directed manneras is describedin this section.This is to say that the structureof the VHDLgrammar
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Figure 30 The Corresponding Esterel Process

var

strl-declaratlon-1,

strl-declaration-2,

strl-declaration-M

in

loop

strl-statement-1;

strl-statement-2;

strl-statement-N

end

end

can be used to drive the translation. The syntax-directed property implies that the translation of the whole program is
determined by the translation of all the parts put together [ASU86]. This is an important property for it means that the
translation is "simple" and it can be performed in a formal manner, without direct knowledge of the underlying semantic
meaning of each construct.

The Entity and Module Declaratioiis
The entity declaration in VHDL declares the interface of a design unit while the module in Est^el accomplishes the same
function. There is an extra layer in the VHDL design hierarchy called the architecture. There may be many architectures
for a given entity interface, so for the purposes of a translation from VHDL to Esterel, the entity and architecture become
synonymous. The correspondence is illustrated by the following grammatical transformation;

entity e-name is module e-name+a-na/ne:
pozt{interface-declaration-list); interface-declaration-list

end e-name;

signal
architecture a-name of e-name is signal-declaration-list

signal-declaration-list in
begin [

concurrent-statement-list I / concurrent-processes
end a-name; ]

end.

Signal Declarations
Signals operate essentially the same way in both VHDL and Esterel. Signals may be defined at the level of the architecture
in VHDL. This so that communication between the concurrent statements in the architecture can take place. A signal may
be read in any number of processes but unless it is a resolved signal, it may only appear on the left-hand side of a signal
assignment in one process. The same is true of signals in Esterel. The correspondence between signals in VHDL and
Esterel is best illustrated in the example above describing the syntax-directed translation of the VHDL entity and architec
ture into an Esterel module: the signals declared locally in the VHDL architecture are translated as a local signal block in
the Esterel.
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Process and Loop Constructs
While there is no explicit processconstructwithinEsterel, there is an implicitone which is defined by the parallelism
operator II. The notion of process in Esterel however is muchdifferentthan that of VHDL in that the Esterelprocess is an
artifact which can be repeatedlystarted,executedand terminated. A process in VHDL is a permanentstructuralfixtureof
the description. Further, ithas isan implicit "do forever" loop and soitnever terminates.^^ The VHDL idea ofprocess can
berender^ within Esterel with the following syntax-directed translation:

p~name:

process

variable-declaration-list

begin
sequential-statement-list

end process p-narae;

var

in

variable-declaration-list

loop
sequential-statement-list

end

end

Thiscorrespondence shouldbeplacedin thecontextof the syntax-directed translation defined for the entity-to-module
translation.In VHDLthe architecture is filled with processeseach of whichoperate in paralleland so whathas been
defined in the Esterel translation is the same sort of structure.

Variable Declarations

Variables are treated in the same way in VHDLand in Esterel.In both languagesshared variablesare not allowedand all
inter-process communication mustbe performed viasignals. The translation of VHDL variable declarations intoEst^l is
accomplished using thelocal variable declaration constructofEsterel as shown in theexample above. Asthereisonlyone
placewithina process to declare variables, thisdirecttranslation of a singledeclaration blockis sufficient.

Signal Emission Statements
Signal emission constructs inSynchronous VHDL andinEsterel are thesame as thefollowing correspondence demon
strates:

VHDL Esterel

s-name <= rhs; emit s-name(rhs);

The Wait and Await Statements

Thecorrespondence of thewait statement in VHDL can beobtained by using theawait statement inEsterel as thefol
lowing correspondencedemonstrates:

VHDL

wait on

s-name-1,

s-name-2.

s-name-N;

Esterel

await

case s-name-1

case s-name-2

case s-name-N

end

33. Actually a VHDL process canbe terminated through theinvocation ofawait statement withno sensitivity list Such aprocess is
typically interesting onlyin thecontextof simulator initialization because oncehalted, theprocess cannot berestarted - ever.AnEsterel
process may be started,halted or killed by anotherprocess, andrestarted as often as necessary.
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The If and If/Presence Statements

The treatmentof conditionals in VHDL is performed in a unified manner which blurs an important distinction between
statically analyzable control tests and non-static data value conditions. In VHDL, one is forced to use the same control
construct - the If statement- to test for a transaction on a signal as well as to test a data condition.In Esterel on the other
hand, there is a distinction between the control part of the language which deals with inter-process events and the data part
of the language whichdealswithintra-process data values. Thereare two conditional statements in Esterel: the if state
ment for data conditions and the presence statementfor controlconditions.The following figure illustratesthe two
Esterel constructs and the VHDL structures to which they correspond:

VHDL

if data-test-condition then

statement-list

else

statement-list

end if;

if s-name'transaction then

statement-list

else

statement-list

end if;

Esterel

if data-test-condition then

statement-list

else

statement-list

end

present s-name then
statement-list

else

statement-list

end

The Loop Constructs
There are various looping constructs in VHDL, all of which are phrased in terms of an iteration scheme that controls a
basic loop body:

iteration-scheme loop
statement-1

statement-2

statement-N

end loop;

There is afor-loop iterationschemewhich iteratesover a discrete range, there is a while-loop iterationschemewhich iter
ates the loop until the termination condition is met, and finally there is forever-loop iteration scheme which has no ter
minationcondition- it may only be exited throughan explicit use of the exit statement

An Application of a Synchronous/Reactive Semantics to the VHDLLanguage 45 of 132



The Synchronous VHDL Subset

The Esterel languagecontains no direct analogof the VHDLfor- or while-loop though the same behaviorcan be derived
through the use of idiomsinvolving loop, tag, if andexit as is outlined in the following correspondences:

VHDL

loop

statement-list

end loop

for V in range loop
statement-list

end loop

while condition loop
statement-list

end loop

Esterel

tag L in
loop

statement-list

end

end

tag L in
var V := range'left: type in

loop

statement-list

if V = range'right then
exit L

end

end

end

end

tag L in
loop

if condition then

exit L

end

statement-list

end

end

Asmentioned previously, a loop in thereactive model must contain a delay construct (e.g. anawait ora do/Watching in
Esterel)so that the bodyof the loopdoes notexecuteinzero time.Were this allowed occur,it woulddeclare that an infi
niteamount of computation occur inzero time (between successive events). Thus all loops inSynchronous VHDL must
contain somedelay, which in thecaseof VHDL is a useof thewait statemrat Therequirement for theexecution of at
least onewait statement onallpaths across thebody ofa loop isnot reflected inthe grammatical correspondences shown
above,but it mustbe enforcedin the translation phase in orderfor the translation be correct.

IVeatment of Procedures and Functions

Theuseof subinrograms, procedures or functions, is defined onlywithin thecontext ofa containing process. Asdescribed
previously, thetreatment of subprograms handled byimplicit inlining. There arerestrictions onthecallgraph structure of
thesubprograms toprevent recursion andtoensure thattheimplicit inlining is always well-defined.

Whatis proposed hereis simpleinlining where subprograms are not translated to Esterel directly but rathertheyare
implicitly expanded in thebody of thecalling process. This is an important feature notforreasons ofexecution perfor
mance of the final automaton but because this interpretation allowsforseveral features in VHDL to be siqrported in Syn
chronous VHDL would not be supported in a translation to Esterel which didnot useimplicit inlining. Thesefeatures are
as follows:

• Subprogramsmay take signalsas parametervaluesthe same waythat they can take variablevalues.Thisallows one to
write general signal drivers^ which may be placed in a package for lat^ use.
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• Subprograms mayexecutewait statements as if theywereat thetop-level. This allowsone to writegeneralprocedures
for protocol management which may be placed in a package for later use.

Thus subprogramsdo not fall into the category of syntax-directedtranslations because of this implicit inlining.

34. The termsignal driver hererefers to a styleof modelwherea procedureperformsa set of signal assignments. It doesnot refer to the
structure of the same name within the VHDL simulator (that structure is not visible to the user).
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Chapter 5

A Synchronous VHDL Simulator

HowtheSynchronous VHDL subset might be usedin theconstruction ofa simulator is described in thischapter. Thepur
pose of designinga simulatorbasedon the semanticpropertiesof the subset is twofold.First, and most obvious, the exist
enceof the simulatorallowsfor the demonstration that the synchronous / reactivebehaviorof programs in the subset is the
same as the discrete event behaviordefined by the standard simulator implementation.One of the major goals of the sub
set definition was that the subset behave in the same way on both abstract simulator models - on the finite automata-based
simulator model and on the discrete-event simulator model. Second and less obvious is that the existence of the simulator

shows how thereactiveand finite-state propmies of the subsetcan actuallybe usedto interpreta VHDLprogramas a
specification.

In Ch£q)ter 2, the difficulty of int^reting any arbitraryVHDLprogramas a specification of behaviorwas describedand
the reactivemodelusing synchronous parallelismwas proposedas a wayof makingsense out of a process-orientedevent-
based description of computation.Some of the central properties of an existing reactive language, Esterel, was presented
in Chapter 3with an eye towards highlighting the simil^ties between the imperative processes ofthat language and those
of VHDL. In Chapter 4 the definitionof the contents of the SynchronousVHDL subset was given by showing which con
structs and construct idioms in the full VHDL-1076 standard could not be supported within the finite-state reactive restric
tion. The previous chapt^s thus framed the question of what a VHDL specification subset must look like and how such a
subset may be identifi^ inarational way.

Given the subset definition, the next question is how to make use of the properties of the subset in implementation; that is
the subject of the following sections. The basic architecture of the simulator is described in Section S.l with an explana
tion of how the VHDL language is converted into a finite-automata-based executable: a simple simulator.Detail about the
VHDL compilation procedure and a description of some pragmatic issues involved in the translation to Esterel are pro
vided Section 5.2 and Section 5.3. Finally, in Section 5.4 a description of the lessons learned in this research about the
properties of the VHDL language with respect to the synchronous / reactive model. In a sense, this last section is the most
valuable for outlined in it, in concrete terms, are the reasons why VHDL is such a "difficult** language to interpret as a
specification of system behavior.

5.1 Simulator Architecture

The simulator designed for this work is oriented solely at demonstrating the viability of the Synchronous VHDL subset
As described earlier in Chapter 2 the full VHDL language has a wide variety of uses in simulation, ranging from describ
ing the model itself - the device under test (DUX) - to providing ways of programming the test stimuli system and recov
ering and analyzing the test results. These uses are dq)icted again in Figure 9. The reactive properties of the Synchronous
VHDL subset imply that it is suitable for describing the DUT but not for describing the whole test bench setup shown in
Figure 9. Thus the simulator described in this report provides a demonstrationof the feasibility of compiling the Synchro
nous VHDL subset into an automata-based model of the DUT. The auxiliary features shown in Figure 9 such as test vector
application and recovery which would be necessary in a product are ignored here as the standard discrete event-based
implementations would suffice for those aspects of a full implementation.

The main flow of compilation in the simulator is shown in Figure 32. That figure shows how the compiler translates the
textual representation of the VHDL into a control flow graph representation. This is accomplished using the standard pars
ing techniques [ASU86]. The result of this first phase is a set of Abstract Syntax Trees (ASTs) which represents the
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Figure 31 A Schematic of a Test Bench
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VHDL source text.Thesetreestructures are notdescribed further in this report as theyare merely a representation of the
VHDL source ina datastructure andarefairly uninteresting. Thenext phase converts theASTs into an assembly code
style intermediate form which facilitates theconversion tofinite automata. From thecontrol graph representation thegoal
is toextract thestategraph which represents thefinite-state behavior ofalloftheVHDL processes executing insynchrony
so that the state graph can then be converted into an automata.

Theprocess of converting from theimperative process-oriented description of theVHDL program to thestategraph for
mulation and then to thefinite automaton requires a gooddealof analysis. Theactual procedures forconverting directly
from the control flow of theintermediate representation intoa finite automaton is described in Section 5.3.In lieuof
implementing thatprocedure directly, an existing implementation of theautomaton extraction procedure hasbeenusedin
this work in theform of theEsterelcompiler. The shMedpath shownin Figure 32 indicatesthisuse: the conversion of the
intermediate r^resentation t^ck into the high-level fonn suitablefor compilation by the Esterelcompiler. The finalresult
ofeither path is a body ofCcode^^ which implements the finite automaton representing the synchronous execution ofthe
all of the VHDL processes in under the reactive model.

5.2 Abstract Machine Architecture

The first two phasesof the compilation flow of Figure32 is fairly standardwithrespect to the designof a traditional com
piler [ASU86]. These phasesconvertgrammatically structuredtext into a form whichrepresents the computation as a
graph of the control flow. This graph can then be usedas the basis of further steps which optimizethe computation or, as
is the case here, extract an equivalentfiniteautomaton. The nodes of the gr^h are basic blocksconsistingof straight-line
code with a singleentry pointand exit onlyat the end of the block.The instructions withinthe basicblocksrepresent the
atomic operations that are necessary to describe a VHDL process.

The intermediate code is basedon an abstractmachinemodelthat supportsthe operations foundin VHDLprograms. The
textual r^resentation of the intermediateform is that of an assemblycode but this can easilybe seen to be just a linear
representation of a control flow graph by replacing the goto labels with pointers. The idea is that the intermediate form be
a (semi) language-neutraldescription of a single process which has the followingprop^es:

1. It is close enough to the high-level language that simple translation from the high-level language to it is relatively
straightforward. In this case the naive code generation strategies of syntax-directed compilationare suitable [ASU86].

2. All information needed for further optimization can be represented directly in the format That is, there should not be
any need to refer to any externally defined types, variables, signals or other items in any glotel libraries to make sense
out of the computation declared at the intermediate form level.

3. It is general enough that it can be used for multiple source languages. For example, in addition to VHDL, one might
use the intermediate assembly language as an intermediate step in the compilation of Verilogor any other high-level
language with the approinriate semantic properties.

4. The conversion to state machines from this format is possible. In this case, the synchronous reactive execution seman
tics is assumed.

5.2.1 The Abstract Architecture

The abstract machine architecture is that of a number of <x>-register instruction processors each of which executes syn
chronously with respect to its environment. Computations are describedas programson theseprocessors.Programscom
municate with other programs and the external environment in general through the emission and reception of events on
signals which are a broadcastmedium.Thus the compilationof a networkof SynchronousVHDLprocessesonto this

35. It should be noted hrare that C code is being used as the final representationof the automatonfor reasons of convenienceonly. The
popularityof the C languagemakesit is a veiy portable targetlanguage;itsuse here is simply to representthenext-statetablesand out
put code of the automaton in an architecture-neutral form.
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machinecan be a rather direct translation fiom the VHDLsource to the instructions usingsimplesyntax-directed meth
ods. Thougha convenientmodelfor compilation and optimization purposes, this abstractmodelis not exactlyrealistic; it
is theroleof the stategraphextraction andautomata generation procedure to produce a realistic representation for this
abstract model on a single physical processor.

Theintermediate form bears thename Non-Deterministic Abstract Machine (NDAM) though forthepurposes of this
work, none ofthe nondeterministic features were used.^^ The architecture isabstract in the sense that there is no represen
tation of busses orother interconnect TheNDAM system describes only a setof typed registers, typed signals and com
putations which include transfers betweoi thevarious regist^ andsignals andsynchronizations onsignal events.

5,2,2 Describing Systems
Asystem is described asa number of NDAM assembly files with eachassembly file describes onesynchronous/reactive
process.The processdefinesa set of registers whichcontainvalues local to the process.The processcommunicates with
its environment through a setof formalized channels called signals. Thisdistinction between the internal variables of the
process and theexternally-broadcast signal values is an important distinction because for thederivation of eventpatterns
on thesignalsform thebasisof thereactive compilation algorithm.

ANDAM description represents a single sequential process inexactly the same sense asasingle VHDL process. The pro
cess interacts with other processes bytheemission andreception ofevents onsignals. Thus, there areinstructions for
emitting and awaiting events on sigiials. The specification ofthe network ofprocesses and the linkage oftheir signals is
not defined within the framework ofa single NDAM file and sothis must beimplemented externally. It isexpected that
there be"Imkage level" tools which will link multiple NDAM files and provide for scoping and renaming ofsignals.

SJ23 The NDAM Process

Each NDAM process isdescribed asaunit, here called a"file," which describes the types, signals, and registers ofthe
process aswell as the instructions of the body of theprocess. Like a VHDL process, a NDAM process isassumed toexe
cute forever that is itnever halts.^^ ANDAM file describing asingle process consists ofanumber ofdeclarations which
describe the value domains used inthe process, the internal registers ofthe process, the signals with which the process
communicates with other processes andofcourse thecode body of theprocess.

Types
Atype declaration defines a finite set ofvalues which isthen be used to define the domain ofvalues that a signal orregis
termaytake. Thefollowing areexamples of somesimple typedeclaration:

type t(unit) 1

type t(boolean) 2

type t(int5) range -16 15

In this case, three types are defined: the type unitwhich has a domain ofthe singleton set {0} the type boolean which
has the domain {0,1} andthe type intSwhich has the domain {-16 15}

Registers
Registers hold values which are local toa process. Aregister can beeither a scalar, anarray ora record. Aregister has a
type and operations areonly allowed between registers of the same type. There areregister uansfer operations toinsert

36. Inextending this work and the intermediate form onwhich it isbased toallow for language-containment verification [Kur90] it
became necessary to add constructs supporting nondeterministic control flow (goto with multiple targets) and signal value emission
(signal emission with more than one value). Nondeterminism isnotused inthis work asVHDL does not siqiport it;the intermediate
form however allows for it due to its other uses.

37. This «»-looping model ofexecution was chosen because it isclose tothe nontmninating process execution model ofVHDL.
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and extract values out of register and array registers. Both array and record registers are flat in the sense that there are no
multi-dimensionalarrays or nested records. It is expected that the high-level language compiler which produced the
NDAM assembly code will have linearized all multi-dimensional arrays and flattened out tdl nested records. The follow
ing are some examples of register declarations:

register r{l) t(unit)
register r(tmp) t(boolean)
register r(value) t(int5) := 3
register r(rec) t(int5), t(boolean), t(boolean) := 3, 0, 1
register r(arr) t(boolean) 5

These statementsdeclare fiveregisters, three singletonregisters,one record registerand one array register.

A registerdeclaration defines a valuewhichpersistsin the processfor all time. In particular, the valuesstoredin the regis
ters persist acrosswait instructions. Thewait instmctionin the NDAM modelis analogousto the wait statementin
VHDL and is described in further detail in the following section. It is useful in various computations however, to store
values which are not needed over the lifetime of the process, but rather are needed only locally in the computation of the
process.For this reason there is also a formof registerdeclarationwhichindicatesthat the register is merelya temporary;
its value will be recomputedand consumedbetweenwait instructions - its value is never required to be storedacrossany
wait instruction. Typically temporary registers are usedto store thesingle-bitvaluesrequiredin conditionals as in the fol
lowing example:

temporary r(vtmp) t(int5)
r(vtmp) := r(rec).0

temporary r(tmp) t(boolean)
r(tn^) := r(vtmp) > r(value)

if r(tmp) goto L(l)
goto L(2)

Here two temporaries are declared, one to hold the firstfieldof the rec registerand one to hold the single-bitcondition
generated by the comparison instruction.

Signals
Signalsare used to define theextemal interfaceof a process.As withregisters,signalsare definedwitha type that declares
the domain of values which may be presenton the signal.The followingare some example signal declarations:

signal s(l) t(unit)
signal s(tmp) t(boolean)
signal s(value) t(int5) := 3
signal s(rec) t(int5), t(boolean), t(boolean) := 3, 0, 1
signal s(arr) t(boolean) 5

As with registers, there can be singleton signals, record signals or array signals. In this case, as with the register example
there are three singleton signals, one record signal and one array signal declared.

The signal declarations do not define whethera signal is an input signal, an output signal or is used for both input and out
put. This information can be ascertained from the use of the signal in the instruction body of the process. A signal is an
input signal if a wait, present, presence or selection instruction references it (these instructionsare described in the
following section). A signal is an output signal if an emit statement references the signal.

An Application of a Synchronous/Reactive Semantics to the VHDL Language 53 of 132



A Synchronous VHDL Simulator

Instructions

The mainpart of an NDAM process description is its code body.The types, signalsand registers are merely declarations
of the communication patterns and internal st(»age used by the process; the behavior of a process is described by the
instructions. The instruction set consists of the usual operations which one might find on a register-register architecture;

• Assignment operations allow for the movement of values between registers. There are assignment operations to move
singletonsto and from the fieldsof recordregistersand also assignmentoperationsto move singletons to and firom ele
ments of arrays. In all, there are seven variants of the basic assignment instruction:

R(//is) := R{rhs)
R(//is) := R{rhsii.offset
R{lhs),offset := R{rhs)
R(lh^ := R{rhs)[R{exp)]
R{ihs)[R{exp)] := R{rhs)
R{lhs) := R(/fi^[R(/OM^, ^{hlgh)]
R{lhs)[R{lovi^, R{hlgh)] := R(r/is)

aggregate register-to-regist^ assigrunent
record field to singleton assignment
record field from singleton assignment
array member to singleton assignment
array member from singleton assignment
array slice to array assignment
array slice from array assignment

Unaryoperationsprovidedatapathoperations involving a singlesourceregister. The unaryoperationssupported are as
follows: abs, inc, dec, not, nag

R (//IS) := op R{rhs) the left-hand register receives the right-hand
register subjected to the op

Binary operations provide datapath opoations involving twosource registers. Thebinary operations supported areas
follows: and, or, nand, nor, xor, =, /=, <, <=s, >, >=, +, -, *, /, mod, ram

R(lhs) := Rirhs-I) op R(r/rs-2) the left-hand register receives the value of the two
right-handregisters subject to the op

• The emitinstruction transfers a value fiem a regist^onto a signal in the current instant^^

amit S(//is) R{rhs-1)f R(r/is-^,... R(//is-AO

• There aretwo attributes ofa signal which canbereferenced: a signal hasa single value in thecurrent instant, a signal
also has anotion ofpresence or absence in the current instant which indicates whether or not the signal was emitt^ in
the current instant. There are two signal reference instructions which transfer these signal attributes into a register:

R{name) := selection S(name)
R{name) := presence S{name)

the current value ofthe signal isextracted^^
a bit indicatingpresenceor absenceof the signal is transferred

Normalcontrol flowssequentially throughthe instruction stream.There are four insmictionswhich allow for the con
ditional or unconditional transfer of thecontrol flow. The firstof theseis the unconditional gotoinstruction which

38. Ihe emit instruction is defined in termsof nondeterministic signalemission in orderto allowtheNDAM intermediate formto be
usedin thecontext of language-containment verification where nondeterminism is usedas a formof abstraction [Kui90]. The determin
isticcase of signalassignsthe valueof a singleregister to thesignal in the instant.

39. The termselection derives fromtheuse of this intermediate formin language-containment wherethenondeterministic selection
valueon the signalmustbe resolved [Kur90]. Thedegenerate caseof nondeterminsitic signalrefo'enceis a deterministic signalrefer
ence which has the expected behavior.
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transfers the flow ofcontrol toanother point in the instruction body.'̂ ^ The next two instructions provide for condi
tional control transfer based on the value in a register; a single-bit value in the case of the if instruction or a scalar
value in the case of the case instruction.Finally,the present instructioneffectsa control-transferbased on the pres
ence or absence of signal emission in the current instant.

goto L(name-t), L(/iame-2),L{name-N^
If [ not ] R(fasQ goto L(fargeO
case R(/<rey) when v-l-l,... v-M-l goto L{target-1)

when V-1-N,... v-M-Ngoto L{target-N^
present [ not ] S(fesl) goto L{targe(^

• The final class of instruction is the wait statement which provides for event synchronization between processes. The
wait instruction, like its counterpart in the VHDL language, suspends the process until there is an event on the indi
cated set of signals.

wait on Siname-I), S(nama-2),... S(/}ama-/^

With these instructions, it is possible to describe the computation of any Synchronous VHDL process in a rather simple
and straightforward way. The instructions are designed to be atomic and to reference a limited number of registers. This is
in much the same spirit as the resuiction to three addresses in 3-addresscode. In this context however, it is not so much
that there is a hard architectural limit on the number of values fetched, rather there is simply a desire to have an orthogonal
set of primitives with which to describe the computation.

There are two important points to note in the NDAM assembly code. The first is that the compilation of the VHDL to the
instruction level provides the opportunity for the traditionalcompiler optimizations to be performed on the process
description before the extraction of the state graph. These optimizations might include constant subexpression elimina
tion, constant folding, constant propagation and strength reduction [ASU86]. The second point to note is that the granular
ity of the assembly code level is very fine. Thus, the representationof a VHDL process in terms of the NDAM assembly-
level instructions reduces the complexity of data manipulations such as array, record and array slice operations to simple
atomic operations. As was noted previously, the Esterel language was designed to represent control and so there are corre
spondingly few data manipulation operations. It is expected that the data manipulationsbe placed in the host language and
controlled by the Esterel program. Representing the VHDL inocess in terms of simple atomic operations, most of which
can be directly represented in Esterel, greatly eases the translation process.

5J lYanslatton of Imperative Processes To Finite Automata

The translation of synchronously parallel imperative processes into a single finite automata is defined in terms of an event-
derivative semantics [BC84] wh^e the dmvative of a program with respect to an event is merely another program which
behaves as the first one would have after the event was seen.

The conversion from the imperative process form to the corresponding automata merely requires transitively taking the
derivative of the network of processes with respect to all possible events which can occur on the signals that are open to
the outside world. Though this might seem to be a hopeless task, there are two mitigating factors: the first is that there are
only a finite number of derivatives for a system with finite state [Brz62] and the second being that a derivative once seen
need not be taken again for all successors of it will be the same. Thus by taking dmvatives with respect to events one

40. This is the third and final case of nondeterminismin the intermediateform.The deteiministic form of the goto instructionhas a sin
gle target label and behaves as a jump or branch instruction.
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dE

develops agraph ofderivatives asshown inFigure 33. The conversion from the graph ofderivatives toa simple state

-igure 33 A Graph of Program Derivatives

module M:

input A(integer), B(integer);
output O(integer);

do

await A;

emit 0(?A)
watching B
timeout

emit 0(?B)
end

graph is rather straightforward: thederivatives areeach given a number i which becomes thename of a state. Theactual
derivative may then bethrown away asit no longer serves a useful purpose. The next step isthe conv^on from the state
graph form to that of a finite automata.

The central feature which makes this whole procedure feasible isthe definition ofthe derivative ofaprogram with respect
toanevent. Unfortunately thedefinition of thebehavior ofa VHDL program with respect toaneventis notsoclearthat
one could writedown a "dwivative" operation directly; VHDL is defined in terms of a discrete eventsemantics wherein
each process executes autonomously and isonly awakened when there are events on the signals inits sensitivity list The
purpose though of defining the Synchronous VHDL subset was to ensure that the discrete event semantics would be
restricted sothat it would coincide with thesynchronous semantics. Sobyvirtue of the restrictions tofinite state andreac
tive execution which the Synchronous VHDL subset imposes we know that there must be aderivative ofaVHDL pro
gram with respect to an event

What has been achieved in this work is to use theconnection between theSynchronous VHDL subset andthe Esterel lan
guage todefine the derivative ofa VHDL program inanindirect fashion. Insteadofdefining the derivative ofa network of
VHDL processes with respect toanevent directly as was done forthe Esterel language [BC84], thederivative is defined
indirectly through the use of the Esterel language. The translation from the Synchronous VHDL subset to the Esterel lan
guage whichwasoutlined in Chapter4 is the basis for this translation.

The syntax-directed translation procedure described inChapter4 though was described asbeing inthe correct spirit, but
as being infeasible due thelimited data-manipulation facilities of the Esterel language. This limitation was circumvented
through the introduction ofanintermediate representation, the NDAM assembly code, which broke upthe large data-
manipulation operations onrecords, arrays and the like into simple operations that could notonly beq)timized using tra-
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ditional compileroptimization techniques, but importantly, could be passeddirectlyon to the Esterel language. A known
algorithm is then used for recovering the high-level control structure from the control flowgraph [ARZ91]and the gener
ation of Esterel is straightforward.

5.4 Lessons Learned

In constructingthe simulator, a numberof examples were coded in the Synchronous VHDLsubset and one of these, a
simple key chain timer is shown in detail in Appendix A. Aside from developing an understandingof the strengths and
weaknessesof the reactive computing model and synchronousparallelism, probably the most important result of this
research is a set of strong reasons why the VHDL language has been so problematic as a specificationlanguage.

In this project a restriction of the VHDL language was identified under which a mathematicalmodel of computation was
seen to apply.That model, the reactive model, which assumes synchronous parallelism,allows for the specifications
which are known to be useful in both the hardware and the software domain: the specification of finite state systems.
There are still a numb^ of difficulties which remain in the use of VHDL as a specification language for this class of sys
tem as described below.

5.4.1 VHDL Event versus VHDL TVansaction

In VHDL, the notion of an event on a signal has a meaning which is especially relevant for discrete-event simulation. An
event is definedto be a change in value on a signal. Unfortunately, this is a dynamicconditionas a signal assignment may
or may not cause an event on the signal depending on whether or not the new value assigned to the signal is the same as
the old value or not. A change in value causes an event dependingon the valueof the variablevalue in relation to the
present value of the signal output. A process which may or may not cause an event on its signal is shown in Figure 34.
What is necessaryfor the Privative semantics to be soimdlydefined is a static condition: a condition which is true inde-

Flgure 34 May or May Not Cause an Event on output

process(value)

begin
output <= not value;

end

pendent of the value which is assigned to the signal.

Fortunately in VHDL, there is the notion of a VHDL transaction which is the execution of any signal assignment, inde
pendent of the value which is actually assigned. While the transaction is typically ignored in the context of the standard
discrete-event simulation environment, it is possible to write VHDL models in terms of sensitivity to Qansactionsinstead
of events. Thus Synchronous VHDL processes must focus on the transaction activity of signals instead of the event activ
ity as is the usual case.

The lesson to be learned here is that future imperative languages which are designed to be specifications must ensure that
the behaviors that they describe are statically analyzable. The event-sensitivity semantics of VHDL processes are most
certainly not statically analyzable. However focusing instead on the signal transactions allows for a static analysis of the
process' coordination activity is feasible.

5.4.2 The Flat versus Nested Process Models

A second important observation was that the flat process model of VHDL makes the description of nested behaviors par
ticularly difficult In particular, one often wants to describe one process as controlling one or more other processes, the
master telling the slave process when to go, awaiting their completion or telling them directly when to stop. These activi-
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tiesarepossible in VHDL's flat process scheme only with themostarduous of programming disciplines. What is required
is a "go/done" protocol between themaster and theslaveas shown in Figure35.Even more difficult arecoordinations

Rgure 35 A Master and Slave Process Pair

signal input, output: some_data_type

master:

process

begin
... confute input...
go <= ping;
wait on done;

... compute

with output...
end process;

slave:

process(go)
... vars ...

begin

output <= f(input, vars);
done <= ping;

end process;

between multiple processes where the master must prepare to recover control after some subset the slaves complete yet
othersare stillcomputing.

The lesson to be learned here is that the specification language must allow for nested behaviors in the same way that it
allows for nested structures. In VHDL an architecture can be defined structurally in tarns ofinstances ofother compo
nents, oritmay be defined behaviorally in terms ofa numberofprocesses. In turn, an instance ofacomponent isbut a ref
erence toanother structure defined elsewhere; another VHDL entity/architecture pair. In contrast however, aprocess
cannot contain another process since a process is required to bea single thread ofcontrol. This is theheart of thematter
where inVHDL astructural unit can be defined intoms ofother structural units orabehavioral units, but abehavioral
unit is atomic.^^

5.43 The Subtleties in the A-Time Models
Finally, there is the issue of the A-time model which has always appeared problematic from aspecification point of view.
The A-time aspect ofthe VHDL language has no analogy with any physical effect in the real world since nothing com
putes in an amount oftime so small that itcannot be measured. So too the A-time model was problematic in the contextof
Synchronous VHDL but for a different reason.

Earlier in Chapter 4 itwas mentioned that the Synchronous VHDL subset disallowed all references to metric time, to the
use ofthe after clause in signal assignments, and to the use ofthe wait for tlmeval statement Thus all Synchronous
VHDL program are written using the A-delay aspect ofVHDL; the idea being that the VHDL program describes the reac
tions that the system gives in response to events in its environment. The specification consists only ofthese reactions and
not to any other constraints

Itisinteresting to note that the Esterel language effectively has anotion ofA-delay which appears in the definition ofcau
sality. Ifan event a issaid to cause event bin the same instant, then event a must have occurred slightly before event b.
This isexactly the concept ofA-delay - that two computations occurred atthe same externally-observable time yet were
ordered with respect to each other. Causality ensures that there isnever acycle in this ordering relationship. The problem
with the A-delay system in Synchronous VHDL though is not related to causality directly for the restriction to causal sig-
nd flows ensures that there will never be acycle ofactivity atthe A-delay level. The problem is with how activity in pre
vious deltas is referenced.

41. Othershave observedthis too [NVG91].
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In this case, it is convenient to exhibit a distinction between VHDL and Esterel - the example of Figure 36 where there are
two processes in each case. In both cases the first process awaits activity on the signals SI and 82. Upon seeing activity

Figure 36 Referencing Activities In Previous Deltas

VHDL
process (SI, 52)
begin

S3 <= SI + S2;

end process;

process(S3)

begin
if SI'transaction then

output <= S3 * 33;
else

output <= S3 * 91;
endif

end process; ]

Esterel

every [ SI or S2 ] do
emit S3(?S1 + ?S2)

end

every S3 do

present SI then

emit output(?S3 * 33)
else

emit output(?S3 * 91)
end

end

on either of those signalsa value is computedand emitted on the signalS3. The distinctionbetween the two descriptions
is that the VHDL descriptionwill never see the transaction on signal 81 because it occurred one too many deltas back; i.e.
the VHDL 81 'transaction only refers to signal activity in the immediatelyprecedingdelta of the current instant The
Esterel process will always see the transactionon 81 because the presence test refers to activity in any precedingdelta of
the current instant

Thus the lesson to be learned here is that although the notion of A-time may seem problematic, it is actually intrinsically
tied to the well-foimded notion of causality. In conceit with the causalityhoweverone must havea completeway of r^er-
encing the existence or lack of existence of previous causal events. The problem with VHDL is that the ability to refer
ence previous causal events is restricted by the discrete-event simulator model which only allows fm: referencing activity
in the previoussimulation cycleand it does not allow for referencesto all activityat the current instant.
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Chapter 6

Conclusions

Conclusions

The main conclusion that can be drawn from this work is that a meaningful subset of VHDL can be defined which can be
interpretedin a prescriptivemanneras a specification. This subset is the synchronoussubset which is definednot by
restricting the syntax of VHDL syntax, but rather by restricting the behavior of the simulator.The semantic restrictions
then dictate what constructs and construct idioms can be used in the subset

The simplification which reduced the VHDL simulator from a discrete-event-based paradigm to a finite automata-based
paradigm imposedrestrictionson the set of VHDL language constructs which could be supported within that framework.
Thus the definition of synchronous VHDL in terms of its syntactic makeup is driven not by artificial constraints imposed
by the capabilities of a target set of synthesis or verification tools but rather by the limits of the nature of the VHDL lan
guage semantics itself. The synchronous subset of VHDL is in this sense the largest possible subset of VHDL which can
be interpreted as a specification.

The synchronous VHDL subset is reactive by virtue of the requirement that all processes in the subset must await events
and respond to those events sothey may not operate autonomously as would be the case if processes were allowed to sus
pend themselves for specific time intervals. The reactive restriction coupled with the requirement of finite state allows for
the derivative of a VHDL process with respect to an event to be defined. The derivative of a process with respect to an
event is thus the behavior that the process will exhibit after seeing the event. In this way, the derivative can be thought of
as a successor process.

There were fundamental restrictions imposed on VHDL processes: reactive semantics and finite state. The reactive
assumption allows for the definitionof the derivative of a VHDL process. Due to the fact that a process does nothing
except react to events firom its environment, the derivative thus becomes synonymous with the state of a process. The
restriction of VHDL processes to use only finite state ensures that there are a finite number of derivatives. Thus the com
pilation of the synchronous VHDL subset is defined to be the extraction of these derivatives and the generation of the
derivative transition graph. The derivative transition graph is synonymous with the state transition graph of a finite autom
ata whose execution performs the computations described by the VHDL processes.

The interpretation of the synchronous VHDL subset in terms of a finite automata model is thus intrinsically tied to the def
inition of the derivative of a VHDL process with respect to an event. As shown in Chapter 5 the explicit definition of the
derivative operation is problematic at best Instead, in this work the derivative operation is defined indirectly through a
translation from the VHDL subset to an existing synchronous language - Esterel. The derivative semantics for the Esterel
language having already been described [BC84]. The final goal of this work is not a translation path from VHDL to
Esterel but rather from VHDL directly to the reactive automaton. The path through Esterel used fw this project was but a
means to this end which was used to demonstrate the idea.

The results of this suidy indicate that it is indeed possible to definea meaningful subset of VHDL which is suitable for use
as a specification of behavior instead ofjust a description ofa structure containing behavioral entities. This synchronous
subset of VHDL will be useful for synthesis and verificationcontexts where its basis in automata theory can be exploited
through the use of sequential synthesis techniques and automata-theoretic verification algorithms. Further, the existence of
this subset will also effect on the construction of VHDL simulators as simulators based on the execution of the finite

automata models offer the potential of better performance and greater potential parallelism.
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The Key-Chain Example

Appendix A

The Key-Chain Example

The SynchronousVHDLsubset was testedon a numberof small examples.This chapterdetails the use of the subset on
one such example. The example is a small timer which is attached to a keychain. The idea being that when the owner
parks a car at a parking meter, the timer is set for the durationof the meter. At the durationof the interval,the alarm rings
to indicate that the owner is out of time and should refill the meter,or equivalently that the owner is now illegallyparked
and is receiving a citation. The physical appearance of the object is shown in he drawing of Figure 37.

Figure 37 The Keychain Timer

The salient points of the part is that there are three keys labeled left-to-right as S1, S2 and S3 and there is a three and a half
digit display which shows the hours and minutes.

A.l Specification

The specification of the part is rather simple and is given in the "user manual" is as follows:

To Set Timer

1. To set Hours: press S1

2. To set Minutes: press S2

To Start Timer

1. Once desired lime is set press S3 - timer will start counting down

2. Buzzer will sound when zero is reached

To Discontinue or Reset Timer

1. To turn off buzzer: press S1

2. To stop timer (in mid-cycle): press S3; to restart (in mid cycle): press S3 again

3- To clear timer (during count down cycle): press S3, then press S1
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4. To clear timer (before count down cycle has started): press S3 twice, then press SI

AJ2 Synchronous VHDL

The followingVHDLdesign implements the keychain timer specification. The design is brokendown into three entities,
countdown, setup and timer. Eachof the entitieshasa singlearchitecturenamedsynch whichcontainstheprocesses
implementing theentity.

Theentitycountdown implements thedowncounting behavior of thecounterandconsists of fourindependent pro
cesses: pi, p2, p3 and p4. The entity setup implements the setup phase ofthe counter and consists ofth^ independent
processes: pi, p2and p3. The timer entity isthe top level ofthe d^gn and itconsists ofan instance ofthe countdown
andan instance of thesetup as well as three otherprocesses: master, beeper andblinker. In thefollowing sections.
Section A.3 and Section A.4, the translation ofeach of these processes isgiven inNDAM code and Esterel respectively.

— The Key Chain Timer
package types is
type peep is (ping);

end types;

use Work.types.all;
entity countdown is

port(go: in peep;
decrement: in peep;
abort: in peep;
init_hours: in natural;
initjminutes: in natural;
init_seconds: in natural;
show_hours: out natural;
show_minutes: out natural;
show__seconds: out natural;
zero: out peep);

end countdown;

architecture synch of countdown is
signal dec_min, dec_hour: peep;
signal z_seconds, z_minutes, z_hours: boolean;

begin

pl:
process

variable seconds: naturals-
begin

wait on go'transactions-
seconds := init_secondSs-
show_seconds <= seconds;
z_seconds <= seconds = 0;
loop

wait on decrement'transaction, abort'transaction;
if abort'transaction'event then
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exit ;

end if;

if seconds = 0 then

seconds ;= 59;

dec_min <= ping;
else

seconds := seconds - 1;

end if;

show_seconds <= seconds;
z_seconds <= seconds = 0;

end loop;
end process pi;

p2:
process

variable minutes: natural;

begin
wait on go'transaction;
minutes := init_minutes;
show_minutes <= minutes;
loop

wait on dec_min'transaction, abort'transaction;
if abort'transaction'event then

exit;

end if;

if minutes = 0 then

minutes := 59;

dec_hour <= ping;
else

minutes := minutes - 1;

end if;

show_minutes <= minutes;
z_minutes <= minutes =0;

end loop;
end process p2;

P3:
process

variable hours: natural;

begin
wait on go'transactionj-
hours := init_hours;
show_hours <= hours;
loop

wait on dec_hour'transaction, abort'transaction;
if abort'transaction'event then

exit;

end if;

if hours > 0 then
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hours := hours - 1;

end if;

show_hours <= hours;
z_hours <= hours = 0;

end loop;

end process p3;

p4:

process(z_seconds'transaction,
z_ininutes' transaction,
z_hours'transaction)

begin
if z_seconds and z_minutes and z_hours then

zero <= ping;
end if;

end process p4;

end synch;

use Work.types .ailm
entity setup is

port(go: in peep;
si: in peep;
s2: in peep;
s3: in peep;
init_hours: in natural;
init_minutes: in natural;
set__hours: out natural;
set_minutes: out natural;
done: out peep);

begin
assert

not (si'transaction'event and s2'transaction'event)

and

not (s2'transaction'event and s3'transaction'event)

report *^sl, s2, and s3 are not all mutually disjoint"
severity error;

end setup;

architecture synch of setup is
signal rollover: peep;

begin

pi:

process

variable hours: natural;

begin
wait on go'transaction;
hours := init hours;
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set_hours <= hours;
loop

wait on s2'transaction, rollover'transaction,
s3'transaction;

if s3'transaction'event then

exit;

end if;

hours := hours + 1;

set_hours <= hours;
end loop;

end process pi;

p2:

process

variable minutes: natural;

begin
wait on go'transaction;
minutes := init_minutes;
set_minutes <= minutes;
loop

wait on si'transaction, s3'transaction;

if s3'transaction'event then

exit ;

end if;

if minutes <59 then

minutes := minutes + 1;

set_minutes <= minutes;
else

minutes := 0;

rollover <= ping;
set_minutes <= minutes;

end if;

end loop;

end process p2;

P3:
process

begin
wait on go'transaction;
wait on s3'transactions-

done <= ping;
end process p3;

end synch;

use Work.types .alls-
entity timer is

port(per_second: in peep;
sl: in peep;
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s2: in peep;
s3: in peep;
show_hours: out natural;
show_minutes: out natural;
is_beeping: out boolean;
colon_showing: out boolean);

begin
assert

not (si'transaction'event and s2'transaction'event)

and

not (s2'transaction'event and s3'transaction'event)
report ^sl, s2, and s3 are not all mutually disjoint"
severity error;

end timers-

architecture synch of timer is
component setup

port(go: in peep;
si: in peep;
s2: in peep;
s3: in peep;
init_hours: in natural;
init_minutes: in natural;
set_hours: out natural;
set_minutes: out naturals-
done : out peep);

end component;

for setup__stage: setup
use entity Wor)c.setup(synch) ;

component countdown
port(go: in peep;

decrement: in peep;
abort: in peep;
init_hours: in natural;
init_minutes: in natural;
init_seconds: in natural;
show_hours: out natural;
show_minutes: out natural;
show_seconds: out naturals-
zero : out peep);

end component;

for countdown_stage: countdown
use entity WorJc. countdown (synch);

signal setup_go, setup_done: peeps-
signal setup_hours, setup_minutes: natural;
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signal countdown_go, countdown_done: peep;
signal countdown_abort/ countdown_2ero: peep;
signal hours_left, ininutes_left, seconds_left: natural;

signal noshow_seconds: naturals-
signal blink_go, blink_stop: peep;

begin

setup_stage:
setup

port map(go => setup_go,
si => si,

s2 => s2,

s3 => s3,

init_hours => setup_hours,
init_ininutes => setup_minutes,
set_hours => hours_left,
set_minutes => minutes_left,
done => setup_done);

countdown_stage:
countdown

port map(go => countdown_go,
decrement => per_second,
abort => countdown_abort,
init_seconds => seconds_left,
init_minutes => minutes_left,
init_hours => hours_left,
show_hours => show_hours,
show_minutes => show_minutes,
show_seconds => noshow_seconds,
zero => countdown_zero) ;

master:

process

begin

setup_hours <= 0;
setup_minutes <= 0;
setup_go <= pings-
wait on setup_done;
seconds_left <= 0;
loop

countdown_go <= ping;
blink_go <= pings-
wait on countdown_done'transaction;
blink_stop <= pings-
wait on s3'transaction, countdown_zero'transaction;
— we're now stopped awaiting further instructions
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wait on s2'transaction, sS'transaction;

if s2'transaction'event then

countdown_abort <= ping;
exit;

end if;

end loop;

end process master;

beeper:

process

begin
is_beeping <= FALSE;
loop

wait on countdown_zero'transaction;
is_beeping <= TRUE;
wait on si'transaction, s2'transaction;
is_beeping <= FALSE;

end loop;
end process beeper;

blinker:

process

variable colon: boolean;

begin
colon := TRUE;

colon_showing <= colon;
loop

wait on blink_go'transaction;
loop

wait on per_second'transaction, blink_stop'transaction;
if per_second'transaction'event then

exit;

end if;

colon := not colon;

colon_showing <= colon;
end loop;

end loop;

end process blinker;

end synch;

NDAM Intermediate Code

The translation of each of the keychain timer's processes into the Nondeterministic Abstract Machine Code (NDAM)
assembly code representation is given in this section. Each process is described separately with each description importing
the set of signals which are visible to the process in the original VHDL. The NDAM intermediate code representation in
this instance is fully deterministic as VHDL does not support nondeterminism; the nondeterministic features of the
NDAM intermediate code is unused.
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Aseach of theprocesses isdescribed ina self-contained manner, there is anassumption that there is a final-linkage phase
which willaggregate all of theprocesses. In thecurrent implementation, theEsterel compiler is used to do this,though
one couldenvision a special-purpose "linker" tool whichwouldperformthe samefunction.

Acareful reader will observe thatmost processes declare a far larger setof signals than areactually used by thatprocess.
This is acceptable given the broadcast model ofcommunication which is implicit in thesynchronous model ofcomputa
tion. In the following section, thetranslation toEsterel ofeach of these processes is included andonly the signals which
are actually used by a process are shown.

A3.1 Entity: Countdown, Architecture: Synch, Process: PI

— The Countdown Unit (process pi)

type t(peep) 1
constant r(peep) t(peep) := 0
signal s(go) t(peep)
signal s(decrement) t(peep)
signal s(abort) t(peep)
type t(natural20) 20
type t(natural60) 60

signal s(init_hours) t(natural20)
signal s(init_minutes) t(natural60)
signal s(init_seconds) t(natural60)
signal s(show_hours) t(natural20)
signal s(show_minutes) t(natural60)
signal s(show_seconds) t(natural60)
signal s(zero) t(peep)
signal s(dec_min) t(peep)
signal s(dec_hour) t(peep)
type t(boolean) 2
signal s(z_seconds) t(boolean)
signal s(z_minutes) t(boolean)
signal s(z_hours) t(boolean)
register r(seconds) t(natural60)
constant r(natural60_0) t(natural60) := 0
constant r(natural60_59) t(natural60) := 59

L (start):

wait on s(go)
r(seconds) := selection s(init_seconds)
emit s(show_seconds) r(seconds)

temporary r(tmp) t(boolean)

r(tmp) := r(seconds) = r(natural60_0)
emit s(z_seconds) r(tmp)
wait on s(decrement), s(abort)

L(loop):

present s(abort) goto L(out)

temporary r(tmp2) t(boolean)

r(tmp2) := r(seconds) = r(natural60 0)
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if not r(tmp2) goto L(else)
L(then):

r(seconds) := r(natural60_59)
emit s(dec_niin) r(peep)
goto L(endif)

L(else):

r(seconds) := dec r(seconds)

goto L(endif)
L(endif);

emit s(show_seconds) r(seconds)
temporary r(tmp3) t(boolean)

r(tmp3) := r(seconds) = r(natural60_0)
emit s(z_seconds) r(tmp3)
wait on s(decrement), s(abort)
goto L(loop)

L(out):

goto L(start)

AJ.2 Entity: Countdown, Architecture: Synch, Process P2

— The Countdown Unit (process p2)

type t(peep) 1

constant r(peep) t(peep) := 0
signal s(go) t(peep)
signal s(decrement) t(peep)
signal s(abort) t(peep)
type t(natural20) 20

type t(natural60) 60

signal s(init_hours) t(natural20)
signal s (init__minutes) t(natural60)
signal s(init_seconds) t(natural60)
signal s(show_hours) t(natural20)
signal s(show_minutes) t(natural60)
signal s(show_seconds) t(natural20)
signal s(zero) t(peep)
signal s(dec_min) t(peep)
signal s(dec_hour) t(peep)
type t(boolean) 2

signal s(z_seconds) t(boolean)
signal s(z_minutes) t(boolean)
signal s(z_hours) t(boolean)
register r(minutes) t(natural60)
constant r(natural60_0) t(natural60) := 0
constant r(natural60_59) t(natural60) := 59

L(start):

wait on s(go)
r(minutes) := selection s(init minutes)
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emit s(show_minutes) r(minutes)
wait on s(dec_min), s(abort)

L(loop):
present s(abort) goto L(out)

temporary r(tmpl) t(boolean)

r(tmpl) := r(minutes) = r(natural60_0)
if not r(tmpl) goto L(else)

L(then):

r (minutes) := r(natural60_59)
emit s(dec_hour) r(peep)
goto L(endif)

L(else):

r(minutes) := dec r(minutes)

goto L(endif)
L(endif):

emit s(show_minutes) r(minutes)
temporary r(tn552) t (boolean)

r(tmp2) := r(minutes) = r(natural60_0)
emit s(z_minutes) r(tmp2)
wait on s(dec_min), s(abort)
goto L(loop)

L(out) :

goto L(start)

A3.3 Entity: Countdown, Architecture: Synch, Process P3

— The Countdown Unit (process p3)

type t(peep) 1
constant r(peep) t(peep) := 0
signal s(go) t(peep)
signal s(decrement) t(peep)
signal s(abort) t(peep)
type t(natural20) 20
type t(natural60) 60

signal s(init_hours) t(natural20)
signal s(init_minutes) t(natural60)
signal s(init_seconds) t(natural60)
signal s(show_hours) t(natural20)
signal s(show_minutes) t(natural60)
signal s(show_seconds) t(natural60)
signal s(2ero) t(peep)
signal s(dec_min) t(peep)
signal s(dec_hour) t(peep)
type t(boolean) 2

signal s(2_seconds) t(boolean)
signal s(z_minutes) t(boolean)
signal s(z_hours) t(boolean)
register r(hours) t(natural20)
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constant r(natural20_0) t(natural20) := 0
constant r(natural20_59) t(natural20) := 19

L(start):

wait on s(go)
r(hours) := selection s(init_hours)
emit s(show_hours) r(hours)
wait on s(dec_hour), s(abort)

L(loop):

present s(abort) goto L(out)
temporary r(tmpl) t(boolean)

r(tmpl) := r(hours) > r(natural20_0)
if not r(tmpl) goto L(endif)
r(hours) := dec r(hours)

L(endif);

emit s(show_hours) r(hours)
temporary r(tnp2) t(boolean)

r(tmp2) := r(hours) = r(natural20_0)
emit s(z_hours) r(tmp2)
wait on s(dec_hour), s(abort)
goto L(loop)

L(out):

goto L(start)

A^.4 Entity: Countdown, Architecture: Synch, Process: P4

— The Countdown Unit (process p4)

type t(peep) 1

constant r(peep) t(peep) := 0
signal s(go) t(peep)
signal s(decrement) t(peep)
signal s(abort) t(peep)
type t(natural20) 20

type t(natural60) 60

signal s(init_hours) t(natural20)
signal s(init_minutes) t(natural60)
signal s(init_seconds) t(natural60)
signal s(show_hours) t(natural60)
signal s(show_minutes) t(natural60)
signal s(show_seconds) t(natural60)
signal s(zero) t(peep)
signal s(dec_min) t(peep)
signal s(dec_hour) t(peep)
type t(boolean) 2

signal s(z_seconds) t(boolean)
signal s(z_minutes) t(boolean)
signal s(z hours) t(boolean)
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L(start) ;

wait on s(z_seconds), s(z_minutes), s(z_hours)
temporary r(z_seconds) t(boolean)
temporary r(z_minutes) t(boolean)
temporary r(z_hours) t(boolean)

r(z_seconds) := selection s(z_seconds)
r(z_minutes) := selection s(z_minutes)
r(z_hours) := selection s(z_hours)

temporary r(tmpl) t (boolean)

temporary r(tmp2) t (boolean)
r(tmpl) := r(z_seconds) and r(z_minutes)
r(tmp2) := r(tmpl) and r(z_hours)
if not r(tmp2) goto L(endif)
emit s(zero) r(peep)

L(endif):

goto L(start)

AJ.5 Entity: Setup, Architecture: Synch, Process: PI

— Setup Unit (process pi)

type t(peep) 1

constant r(peep) t(peep) := 0
signal s(go) t(peep)
signal s (si) t(peep)
signal s(s2) t(peep)
signal s(s3) t(peep)
type t(natural20) 20

type t(natural60) 60

signal s(init_hours) t(natural20)
signal s(init_minutes) t(natural60)
signal s(set_hours) t(natural20)
signal s(setjminutes) t(natural60)
signal s(rollover) t(peep)
signal s(done) t(peep)
register r(hours) t(natural20)

L(start):

wait on s(go)
r(hours) := selection s(init_hours)
emit s(set_hours) r(hours)
wait on s(s2), s(rollover), s(s3)

L(loop):

present s(s3) goto L(out)

r(hours) := inc r(hours)

emit s(set_hours) r(hours)
wait on s(s2), s (rollover), s(s3)
goto L(loop)
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L{out):

goto L(start)

A3.6 Entity: Setup, Architecture: Synch, Process: F2

— Setup Unit (process p2)

type t(peep) 1
constant r(peep) t(peep) := 0
signal s(go) t(peep)
signal s(sl) t(peep)
signal s(s2) t(peep)
signal s(s3) t(peep)
type t(natural20) 20
type t(natural60) 60
signal s(init_hours) t(natural20)
signal s (init__niinutes) t(natural60)
signal s(set_hours) t(natural20)
signal s(set_minutes) t(natural60)
signal s(rollover) t(peep)
signal s(done) t(peep)
register r(minutes) t(natural60)
constant r(natural60_0) t(natural60) := 0
constant r(natural60_59) t(natural60) := 59

L(start):

wait on s(go)
r(minutes) := selection s(init_minutes)
emit s(setjminutes) r(minutes)
wait on s(sl)/ s(s3)

L(loop):

present s(s3) goto L(out)
type t(boolean) 2
temporary r(tmp) t(boolean)

r(tmp) := r(minutes) < r(natural60_59)
if not r(tn^) goto L(else)

L(then):

r(minutes) := inc r(minutes)

emit s(set_minutes) r(minutes)
goto L(endif)

L(else):

r(minutes) := r(natural60_0)
emit s(rollover) r(peep)
emit s(set_minutes) r(minutes)
goto L(endif)

L(endif):

wait on s(sl)/ s(s3)

goto L(loop)
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L(out) :

goto L(start)

A.3.7 Entity: Setup, Architecture: Synch, Process: P3

— Setup Unit (process p3)

type t(peep) 1

constant r(peep) t(peep) := 0
signal s(go) t(peep)
signal s(sl) t(peep)
signal s(s2) t(peep)
signal s (s3) t(peep)
type t(natural20) 20
type t(natural60) 60
signal s(init_hours) t(natural20)
signal s(init_minutes) t(natural60)
signal s(set_hours) t(natural20)
signal s(set_minutes) t(natural60)
signal s(rollover) t(peep)
signal s(done) t(peep)

L(start):

wait on s(go)
wait on s(s3)

emit s(done) r(peep)
goto L(start)

A.3.8 Entity: Timer, Architecture: Synch, Process: Master

— Timer Unit (process master)

type t(peep) 1

constant r(peep) t(peep) :=0
signal s(per_second) t(peep)
signal s(sl) t(peep)
signal s(s2) t(peep)
signal s(s3) t(peep)
type t(natural20) 20
type t(natural60) 60

signal s(show_hours) t(natural20)
signal s(show_minutes) t(natural60)
type t(boolean) 2
signal s(is_beeping) t(boolean)
signal s(colon_showing) t(boolean)
signal s(setup_go) t(peep)
signal s(setup_done) t(peep)
signal s(setup_hours) t(natural20)
signal s(setup_minutes) t(natural60)
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signal s(countdown_go) t(peep)
signal s(countdown_done) t(peep)
signal s(countdown_abort) t(peep)
signal s(countdown_zero) t(peep)
signal s(hours_left) t(natural20)
signal s(minutes_left) t(natural60)
signal s (seconds__left) t(natural60)
signal s(noshow_seconds) t(natural60)
signal s (blink__go) t (peep)
signal s(blink_stop) t(peep)
constant r(natural60_0) t(natural60) := 0
constant r(natural20_0) t(natural20) := 0

L(start):

emit s(setup_hours) r(natural20_0)
emit s(setupjminutes) r(natural60_0)
emit s(setup_go) r(peep)
wait on s(setup_done)
emit s(seconds_left) r(natural60_0)
emit s(countdown_go) r(peep)
emit s(blink_go) r(peep)
wait on s(countdown_done)
emit s(blink_stop) r(peep)
wait on s(s3), s(countdown_zero)
wait on s(s2), s(s3)

L(loop):
present s(s2) goto L(out)
emit s(countdown_go) r(peep)
emit s(blink_go) r(peep)
wait on s(countdown_done)
emit s(blink_stop) r(peep)
wait on s(s3), s(countdown_zero)
wait on s(s2), s(s3)

goto L(loop)
L(out):

emit s(countdown_abort) r(peep)
goto L(start)

AJ.9 Entity: Timer, Architecture: Synch, Process: Beeper

— Timer Unit (process beeper)

type t(peep) 1

constant r(peep) t(peep) :=0
signal s(per_second) t(peep)
signal s(sl) t(peep)
signal s(s2) t(peep)
signal s(s3) t(peep)
type t(natural20) 20

82 of 132 An Application of a Synchronous/Reactive Semantics to the VHDL Language



The Key-Chain Example

type t(natural60) 60
signal s(show_hours) t(natural20)
signal s(show_minutes) t(natural60)
type t(boolean) 2
signal s(is_beeping) t(boolean)
signal s(colon_showing) t(boolean)
signal s(setup_go) t(peep)
signal s(setup_done) t(peep)
signal s(setup_hours) t(natural20)
signal s(setup_minutes) t(natural60)
signal s(countdown_go) t(peep)
signal s(countdown_done) t(peep)
signal s(countdown_abort) t(peep)
signal s(countdown_zero) t(peep)
signal s(hours_left) t(natural20)
signal s(minutes_left) t(natural60)
signal s(seconds_left) t(naturalSO)
signal s(noshow_seconds) t(natural60)
signal s(blink_go) t(peep)
signal s(blink_stop) t(peep)
constant r(TRUE) t(boolean) ;= 1

constant r(FALSE) t(boolean) := 0

L(start):

emit s (is_beeping) r(FALSE)
L(loop):

wait on s(countdown_zero)
emit s(is_beeping) r(TRUE)
wait on s(sl), s(s2)
emit s(is_beeping) r(FALSE)
goto L(loop)

A.3.10Entity: Timer, Architecture: Synch, Process: Blinker

— Timer Unit (process blinker)

type t(peep) 1
constant r(peep) t(peep) :=0
signal s(per_second) t(peep)
signal s(sl) t(peep)
signal s(s2) t(peep)
signal s(s3) t(peep)
type t(natural20) 20

type t(natural60) 60

signal s(show_hours) t(natural20)
signal s(show_minutes) t(natural60)
type t(boolean) 2

signal s(is_beeping) t(boolean)
signal s(colon_showing) t(boolean)
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signal s(setup_go) t(peep)
signal s(setup_done) t(peep)
signal s(setup_hours) t(natural20)
signal s(setup_minutes) t(natural60)
signal s(countdown_go) t(peep)
signal s(countdown_done) t(peep)
signal s(countdown_abort) t(peep)
signal s(countdown_zero) t(peep)
signal s(hours_left) t(natural20)
signal s(minutes_left) t(natural60)
signal s(seconds_left) t(natural60)
signal s(noshow_seconds) t(natural60)
signal s(blink_go) t(peep)
signal s(blink_stop) t(peep)
register r(colon) t(boolean)
constant r(TRUE) t(boolean) := 1

constant r(FALSE) t(boolean) := 0

L(start):

r(colon) := r(TRUE)

emit s(colon_showing) r(colon)
L(loop):

wait on s(blink_go)
emit s(is_beeping) r(TRUE)
wait on s(per_second), s(blink_stop)

L(loopl):

present s(per_second) goto L(outl)
r(colon) := not r(colon)

emit s(colon_showing) r(colon)
wait on s(per_second), s(blink_stop)
goto L(loopl)

L(outl):

goto L(loop)

A.4 Esterel

This section contains the finalEsterel translationof the original VHDLprocess. With the VHDLprocessestranslated to
Esterel, all that remains to do is to link together in parallel the Esterel modules given here to foim the final top-level
Esterelmodule. This top-level moduleis compiled with the -simul optionof theEsterelV.3 compilerto formthe final
simulator.

A.4.1 Entity: Countdown, Architecture: Synch, Process: PI

module countdown_pl:

% type declarations
% subsumed by the predefined Esterel type
% type integer;
% subsumed by the predefined Esterel type
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% type boolean;
% type domain is a singleton set
% type peep;

% constant declarations

constant natural60_0: integer;
% type domain is a singleton set
% constant peep: peep;
constant natural60_59: integer;

input
go,

abort,

decrement,

init_seconds(integer);

output

show_seconds(integer),
z_seconds(boolean),
dec_rain;

% declarations of registers
var

seconds := 0: integer
in

% declarations of temporaries
var

tmp3 := false: boolean,
tmp2 := false: boolean,
tmp := false: boolean

in

% the process body itself
loop

await go;
seconds := ?init_seconds;
emit show_seconds(seconds);
tmp := seconds = natural60_0;
emit z_seconds(tmp);

await

case abort

case decrement

end;

trap WHILE in
loop

present abort then
exit WHILE

end;

tmp2 := seconds = natural60_0;
if not tmp2 then
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seconds := seconds-1;

% an orphaned goto
nothing

else

seconds := natural60_59;
emit dec_min;
% an orphaned goto
nothing

end;

emit show_seconds(seconds);
tmp3 := seconds = natural60_0;
emit z_seconds(tmp3);
await

case abort

case decrement

end;

% an orphaned goto
nothing

end

end;

% an orphaned goto
nothing

end

end

end.

A.4.2 Entity: Countdown, Architecture: Synch, Process: P2

module countdown_p2:

% type declarations
% subsumed by the predefined Esterel type
% type integer;
% subsumed by the predefined Esterel type
% type boolean;
% type domain is a singleton set
% type peep;

% constant declarations

constant natural60_0: integer;
% type domain is a singleton set
% constant peep: peep;
constant natural60_59: integers-

input
go,

abort,

dec_min,
init_minutes(integer);
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output

show_minutes(integer),
dec_hour,
z_minutes(boolean);

% declarations of registers
var

minutes := 0: integer
in

% declarations of temporaries
var

tmpl := false: boolean,

tmp2 := false: boolean
in

% the process body itself
loop

await go;
minutes := ?init_minutes;
emit show_minutes(minutes);
await

case abort

case dec_min
end;

trap WHILE in

loop
present abort then

exit WHILE

end;

tmpl := minutes = natural60_0;
if not tmpl then

minutes := minutes-1;

% an orphaned goto
nothing

else

minutes := natural60_59;
emit dec_hour;
% an orphaned goto
nothing

end;

emit show_minutes(minutes);
tmp2 := minutes = natural60_0;
emit z_minutes(tmp2);
await

case abort

case decjmin
end;

% an orphaned goto
nothing
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end

end;

% an orphaned goto
nothing

end

end

end.

A.4.3 Entity: Countdown, Architecture: Synch, Process: P3

module countdown__p3:

% type declarations
% subsumed by the predefined Esterel type
% type integer;
% subsumed by the predefined Esterel type
% type boolean;
% type domain is a singleton set
% type peep;

% constant declarations

constant natural20_0: integer;
% type domain is a singleton set
% constant peep: peep;

constant natural20_59: integers-

input
go,

dec_hour,
abort,

init_hours(integer);

output

z_hours(boolean),
show_hours(integer) ;

% declarations of registers
var

hours := 0: integer
in

% declarations of temporaries
var

tmpl := false: boolean,

tmp2 := false: boolean
in

% the process body itself
loop

await go;
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hours := ?init_hours;
emit show_hours(hours) ;
await

case abort

case dec_hour
end;

trap WHILE in
loop

present abort then

exit WHILE

end;

tmpl ;= hours > natural20_0;
if not tmpl else

hours := hours-1

end;

emit show_hours (hours) ;
tnp2 := hours = natural20_0;
emit z_hours (tmp2) ;
await

case abort

case dec_hour
end;

% an orphaned goto
nothing

end

end;

% an orphaned goto
nothing

end

end

end.

A.4.4 Entity: Countdown, Architecture: Synch,Process:P4

module countdown_p4:

% type declarations
% subsumed by the predefined Esterel type
% type integer;
% subsumed by the predefined Esterel type
% type boolean;
% type domain is a singleton set
% type peep;

% constant declarations

% type domain is a singleton set
% constant peep: peep;

input
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z_hours(boolean),
zjminutes (boolean),
z_seconds(boolean) ;

output

zero;

% declarations of temporaries
var

z_hours := false: boolean,
tmpl := false: boolean,

z_minutes := false: boolean,
tmp2 := false: boolean,

z_seconds := false: boolean
in

% the process body itself
loop

await

case z_hours
case z_minutes
case z_seconds

end;

z__seconds : = ? z_seconds;
z_minutes := ?z_minutes;
z_hours := ? z_hours;
tmpl := z_seconds and z_minutes;
tmp2 := tmpl and z_hours;
if not tn^2 else

emit zero

end;

% an orphaned goto
nothing

end

end.

A.4.5 Entity: Setup, Architecture: Synch, Process: PI

module setup_pl:

% type declarations
% subsiamed by the predefined Esterel type
% type integer;
% type domain is a singleton set
% type peep;

% constant declarations

% type domain is a singleton set
% constant peep: peep;
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input
go,

s2,

s3,

rollover,

init_hours(integer) ;

output

set_hours(integer);

% declarations of registers
var

hours := 0: integer
in

% the process body itself
loop

await go;
hours := ?init_hours;
emit set_hours(hours);
await

case rollover

case s2

case s3

end;

trap WHILE in
loop

present s3 then
exit WHILE

end;

hours := hours+1;

emit set_hours(hours);
await

case rollover

case s2

case s3

end;

% an orphaned goto
nothing

end

end;

% an orphaned goto
nothing

end

end.

A.4.6 Entity: Setup, Architecture; Synch, Process: P2

module setup_jp2:
% type declarations
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% subsumed by the predefined Esterel type
% type integer;
% subsumed by the predefined Esterel type
% type boolean;
% type domain is a singleton set
% type peep;

% constant declarations

constant natural60_0: integer;
% type domain is a singleton set
% constant peep: peep;
constant natural60_59: integer;

input

si,

go,

s3,

init_minutes(integer);

output

set_minutes(integer),
rollover;

% declarations of registers
var

minutes := 0: integer
in

% declarations of temporaries
var

tmp := false: boolean
in

% the process body itself
loop

await go;
minutes := ?init_minutes;
emit set_minutes(minutes);
await

case si

case s3

end;

trap WHILE in

loop
present s3 then

exit WHILE

end;

tn^ := minutes < natural60_59;
if not tmp then

minutes := natural60_0;
emit rollover;
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emit set_minutes(minutes);
% an orphaned goto

nothing
else

minutes := minutes+1;

emit set_minutes(minutes);
% an orphaned goto
nothing

end;

await

case si

case s3

end;

% an orphaned goto

nothing
end

end;

% an orphaned goto
nothing

end

end

end.

A.4.7 Entity: Setup, Architecture: Synch, Process: P3

module setup_p3:

% type declarations
% subsumed by the predefined Esterel type
% type integer;
% type domain is a singleton set
% type peep;

% constant declarations

% type domain is a singleton set
% constant peep: peep;

input

go,

s3;

output

done;

% the process body itself
loop

await go;
await s3;

emit done;
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% an orphaned goto
nothing

end.

A.4.8 Entity: Timer, Architecture: Synch, Process: Master

module timer_master:

% type declarations
% subsiamed by the predefined Esterel type
% type integer;
% subsumed by the predefined Esterel type
% type boolean;
% type domain is a singleton set
% type peep;

% constant declarations

constant natural20_0: integers-
constant natural60_0: integer;
% type domain is a singleton set
% constant peep: peep;

input
s2,

s3/

countdown_zero t
setup_done,

countdown_done;

output

countdown_go,
blink_stop,
blink_go,
countdown_abort,
setup_hours(integer),
setup_minutes(integer),
setup_go,
seconds_left(integer);

% the process body itself
loop

emit setup_hours(natural20_0);
emit setup_minutes(natural60_0);
emit setup_go;
await setup_done;
emit seconds_left(natural60_0) ;
emit countdown_go;
emit blink_go;
await countdown done;
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emit blink_stop;
await

case countdown_zero
case s3

end;

await

case s2

case s3

end;

trap WHILE in
loop

present s2 then

exit WHILE

end;

emit countdown_go;
emit blink_go;
await countdown_done;
emit blink_stop;
await

case countdown_zero
case s3

end;

await

case s2

case s3

end;

% an orphaned goto
nothing

end

end;

emit countdown_abort;
% an orphaned goto
nothing

end.

A.4.9 Entity: Timer, Architecture: Synch, Process: Beeper

module timer_beeper:

% type declarations
% subsumed by the predefined Esterel type
% type integer;
% subsumed by the predefined Esterel type
% type boolean;
% type domain is a singleton set
% type peep;

% constant declarations

% subsumed by the predefined Esterel constant
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% constant false: boolean;

% type domain is a singleton set
% constant peep: peep;
% subsumed by the predefined Esterel constant
% constant true: boolean;

input
si,

s2,

countdown_zero;

output

is_beeping(boolean);

% the process body itself
loop

emit is_beeping(false) ;
loop

await countdown_zero;
emit is_beeping(true);
await

case si

case s2

end;

emit is_beeping(false);
% an orphaned goto
nothing

end

end.

A.4.10 Entity: Timer, Architecture: Synch, Process: Blinker

module timer_blinker:

% type declarations
% subsumed by the predefined Esterel type
% type integer;
% subsumed by the predefined Esterel type
% type boolean;
% type domain is a singleton set
% type peep;

% constant declarations

% subsumed by the predefined Esterel constant
% constant false: boolean;

% type domain is a singleton set
% constant peep: peep;
% subsumed by the predefined Esterel constant
% constant true: boolean;
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input
per_second,
blink_stop,
blink_go;

output

is_beeping(boolean),
colon_showing(boolean);

% declarations of registers
var

colon := false: boolean

in

% the process body itself
colon := true;

emit colon_showing(colon);
loop

await blink_go;
emit is_beeping(true);
await

case blink_stop
case per_second

end;

trap WHILE in
loop

present per_second then
exit WHILE

end;

colon := not colon;

emit colon_showing(colon);
await

case blink_stop
case per_second

end;

% an orphaned goto
nothing

end

end;

% an orphaned goto
nothing

end

end.
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Appendix B

The Synchronous VHDL Subset

This appendixdocumentsthe grammatical aspects of the Synchronous VHDLsubset.There are two sections: the first sec
tion, Section B.l, lists the constructs which are included in the VHDL subset while the second section. Section B.2
describes the constructs which are not supported in the subset

The grammatical structure of the subset is defined without reference to the static correctness issues mentioned in Chapter
4. It should be noted that the grammatical structure documented in this appendix is much less important than the consis
tency issues described in the main body. This is because even within the grammatical structure shown in Section B.l one
can write nonsense programs through ^e use ofnon-causal signal assignments, recursion within subprograms, uses of
unconstrained array references and the like. The following sections then should be understood as a starting point for the
analyses described in Chapter4. That is all legal SynchronousVHDL descriptions must fall within the grammatical struc
ture described in Section B.l and they must not use any of the constructs described in Section B.2. In addition however,
legal programs just also obey the further restrictions documented in Chapter 4.

B.1 Supported Constructs

The following BNF describes the grammatical structure ofSynchronous VHDL Subset'*^

abstract_literal
; decimal_literal
I based literal

actual_designator
: expression
I signal_name
I variabie_name
I OPEN

actual_parameter_part
; parameter_association_list

actual_part
: actual_designator

42. The BNF notation used here is a modified foim of that which is found in Appendix A of VHDL-1076 Language Reference Manual
(LRM) [IEEE87].The notation used there documents the stmcture of VHDL language but is not in and of itself useful because its loose
notation makes it unsuitable for use in an LR(1) parser-generator such as yscc. The description presented here is a modified form of
theAppendixA presentation, modifiedto be acceptedby LR(1)parsergenerators. It is interesting to note that AppendixA of the LRM
is actuallynot part of the 1076standarditself; it is providedfor informational purposesonly ([IEEE87] page A-1). No part of the stan
dard actually documents the grammatical structure of the VHDL language.
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I function_name actual_designatbor

adding_operator
: ^+'

I

I '&'

aggregate

: element association list *)'

_element_association_list
; element_association
I element association list */' element association

alias_declaration
: ALIAS identifier ^' subtype_indication IS name

architecture_body
: ARCHITECTURE identifier OF entity_name IS

architecture_declarative_part
BEGIN

architecture_statement_part
END arciiitecture_optional_siiqple_name

architecture_declarative_part
: /* NULL */

I architecture_declarative_part block_declarative_item

architecture_statement_part
: /* NULL */

I architecture_statement_part concurrent_statement

array_type_definition
; unconstrained_array_definition
I constrained_array_definition

assertion_statement
: ASSERT condition

_optional_report
_optional_severity
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association_element
: formal_part EQGR actual_part
I actual_part

association_list
: association_element
I association list association element

attribute_declaration
: ATTRIBUTE identifier type_mark

attribute_designator
: attribute_simple_name

attribute_name
: prefix attribute_designator

Static_optional_paren_expression

attribute_specification
: ATTRIBUTE attribute_designator OF

entity_specification IS expression

base

: integer

base_specifier
: ^B'

I ^O'
I ^X'

base_unit_declaration
: identifier

/*
* These are handled in the scanner directly
*

* based_integer: extended_digit { [ underline ] extended_digit }
* based_literal; base *#' based_integer
* [ *.' based_integer ] *#' exponent

basic_character: basic_graphic_character | format_effector*
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' basic_graphic_character: upper_case_letter | digit I
special_character | space_character

7

binding_indication
: entity_aspect

_optional_generic_map_aspect
_optional_port_map_aspect

/*

* These are handled in the scanner
*

* bit_string_literal: base_specifier bit_value
* bit_value: extended_digit {[ underline ] extended_digit }
* /

block_configuration
: FOR block_specification

_use_clause_list
_configuration_item_list
END FOR \ '

block_declarative_item
: subprogram_declaration
I subprogram_body

I type__declaration
I subtype_declaration
I constant_declaration
I signal_declaration
I file_declaration
I alias_declaration
I component_declaration
I attribute_declaration
I attribute_specification
I configuration_specification
I disconnection_specification
I use clause

block_declarative_part
: block_declarative_item
I block_declarative_part block_declarative_item

block_header
: optional_generic_clause_generic_map

optional_port_clause__port_map
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block_specification
: name

I label _optional_index_specification

block_statement
: label ^'

BLOCK optional_paren_expression
block_header
block_declarativejpart
BEGIN

block_statement_part
END BLOCK label \ '

block_statement_part
: concurrent_statement
I block_statementjpart concurrent_statement

case_statement
: CASE expression IS

_case_statement_alternative_list
END CASE \ '

case_statement_alternative
: WHEN choices EQGR sequence_of_statements

_case_statement_altemative_list
: case_statement_alternative
I case statement alternative list case statement alternative

/*

* These are handled by the scanner
★

* character_literal: graphic_character
*/

choice

: simple_expression
I discrete_range
I simple_name
I OTHERS
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choices

: choice

I choices * I' choice

component_configuration
: FOR component_specification

_optional_use_binding_indication
_optional_block_configuration
END FOR \ '

coinponent_declaration
: COMPONENT identifier

_optional_generic_clause
_optional_port_clause
END COMPONENT \ '

component_instantiation_statement
: label ^'

name

_opt ional_gener ic_map__aspect
_optional_port_map_aspect

component_specification
: instantiation list name

composite_type_definition
: array_type_definition
I record_type_definition

concurrent_assertion_statement
: _optional_label_colon assertion_statement

concurrent_procedure_call
: _optional_label_colon procedure_call_statement

concurrent_s ignal_ass ignment_st atement
: _optional_label_colon conditional_signal_assignment
I _optional_label_colon selected_signal_assignment
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concurrent_statement
: block_statement
I process_statement
I concurrent_procedure_call
I concurrent_assertion_statement
I concurrent_signal_assignment_statement
I component_instantiation_statement
I generate statement

condition

: expression

condition_clause
: UNTIL condition

conditional_signal_assignment
: target LTEQ options conditional_waveforms

conditional_waveforms
: _waveform_when_condition_else_list

waveform

configuration_declaration
CONFIGURATION identifier OF name IS

configuration_declarative__part
block_configuration
END _optional_simple_name

configuration_declarative_j>art
: use_clause
I attribute specification

configuration_declarative_part
: configuration_declarative_item
I configuration_declarative_part configuration_declarative_item

configuration_item
: block_configuration
I component_configuration
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configuration_specification
: FOR component_specification USE binding_inciication

constant_declaration
: CONSTANT identifier_li3t

subtype_indication _optional_initial_value

constrained_array_definition
: ARRAY index_constraint OF subtype_indication

constraint

: range_constraint
I index constraint

context_clause
: context_item
I context clause context item

context_item
: library_clause
I use clause

/*

* This is handled in the scanner
*

* decimal_literal: integer [ . integer ] [ exponent ]
*/

declaration

: type_declaration
I subtype_declaration
I object_declaration
I file_declaration
I interface_declaration
I alias_declaration
I attribute_declaration
I component_declaration
I entity_declaration
I configuration_declaration
I subprogram_declaration
I package declaration
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design_file
: design_unit
I design_file design_unit

design_unit
: context_clause library_unit

designator
: identifier

I operator_syinbol

direction

: TO

I DOWNTO

discrete_range
: subtype_indication
I range

element_association
; _optional_choices_eqgr expression

elenient_declaration
: identifier_list element_subtype_definition

element_subtype_definit ion
: subtype_indication

entity_aspect
: ENTITY name _optional_identifier
I CONFIGURATION name
I OPEN

entity_class
: ENTITY

I ARCHITECTURE
I CONFIGURATION
I PROCEDURE
I FUNCTION
I PACKAGE
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entity_declaration
ENTITY identifier IS

entity_header
entity_declarative_jpart
_optional_entity__body
END simple_name

entity_declarative_item
; subprogram_declaration
I subprogram_body
I type_declaration
I subtype_declaration
I constant_declaration
I signal_declaration
I file_declaration
I alias_declaration
I attribute_declaration
I attribute_specification
I disconnection_specification
I use clause

entity_declarative__part
: entity_declarative_item
I entity_declarative_jpart entity_declarative_item

entity_designator
: simple_name
I operator_syinbol

ent ity_header
: _optional_generic_clause _optional_port_clause

entity_name_list
: entity_designator entity_designator_list
I OTHERS
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I ALL

entity_designator_list
: entity_designator
I entity_designator_list entity_designator

entity_specification
: entity_name_list *:' entity_class

entity_statement
concurrent_assertion_statement

I concurrent_procedure_ca11
I process_statement

entity_st a tenient_par t
: entity_statement
I entity_statement_part entity_statement

enumeration_literal
: identifier

I character literal

enumeration_type_definition
: *(* enumeration literal list *)'

enxameration_literal_list
: eniameration_literal
I enumeration literal list eniameration literal

exit_statement
: EXIT _optional_label _optional_when_condition

/*

* These will be taken care of by the scanner
*

* exponent: E [ + ] integer I E - integer
*/

expression
: relation and relation list
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I relation _or_relation_list
I relation _xor_relation_list
I relation NAND relation
I relation NOR relation

_and_relation_list
: /* NULL */

I AND relation and relation list

_or_relation_list
: /* NULL */

I OR relation or relation list

_xor_relation_list
: /* NULL */

I XOR relation xor relation list

/*

* These will be taken care of by the scanner
*

* extended_digit; digit I letter
*/

factor

: primary _optional_exponentiation
I ABS primary
I NOT primary

floating_type_definition
: range_constraint

formal_designator
: name

f o rmal_par amet e r_li s t
: interface list

formal_part
: formal_designator
I name formal_designator *)'
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full_type_declaration
: TYPE identifier IS type_definition

function_call
: name _optional_paren_actual_parameter_part

generate_statement
: label *:'

generate_scheme GENERATE
_concurrent_statement_list
END GENERATE _optional_label *;

concurrent_statement_list
: /* NULL */

I concurrent statement list concurrent statement

generation_scheme
: FOR parameter_specification
I IF condition

generic_clause
GENERIC generic_list *)'

generic_list
: interface list

generic_map_aspect
: GENERIC MAP ' {* association list

/*

* The scanner will take care of this
*

* graphic_character: basic_graphic_character |
* lower_case_character | other_special_character
*/

guarded_s ignal_specification
: signal_list *:' type_mark
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/*
* The scanner will take care of this
*

* identifier; letter { [ underline ] letter_or_digit }
*/

identifier_list
: identifier

I identifier list identifier

if_statement
IF condition THEN

sequence_of_statements
_elsif_list
_optional_else
END IF \ '

_elsif_list
: /* NULL */

I _elsif_list ELSIF condition THEN
sequence_of_statements

incomplete_type_declaration
: TYPE identifier '

index_constraint
: discrete_range_list ^)'

discrete_range_list
: discrete__range
I discrete_range_list discrete_range

index_specification
: discrete_range
I expression

index_subtype_definition
type_inark RANGE LEGR
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inciexed_name
: prefix expression list M

expression_list
: expression
I expression_list expression

instantiation_list
: label_list
I OTHERS
I ALL

label_list
: label

I label list label

/*

* These will be taken care of by the scanner
*

* integer: digit { [ underline ] digit }
*/

integer_type_definition
: range_constraint

interface_constant_declaration
: _optional_constant identifier_list ^:'

_optional_in subtype_indication
_optional_initial_value

interface_declaration
: interface_constant_declaration
I interface_signal_declaration
I interface variable declaration

interface_element
: interface declaration

interface_list
: interface element
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I interface list interface_element

interface_signal_declaration
; _optional_signal identifier_list *:'

_optional_mode subtype_indication
_optional_bu3 _optional_initial_value

interface_variable_declaration
; _optional_variable identifier_list *:'

_optional_mode subtype_indication
_optional_intial_value

i t e r a t ion__scheme
: WHILE condition

I FOR parameter_specification

label

: identifier

/*
* The scanner will take care of these
*

* letter: upper_case_letter | lower_case_letter
* letter_or__digit: letter | digit
*/

library_clause
: LIBRARY logical_name_list *;'

library_unit
: primary_unit
I secondary_unit

literal

: numeric_literal
I enumeration_literal
I string_literal
I bit_string_literal
I NULL
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logical_name_list
: logical_name
I logical_name_list logical_name

logical_operator
: AND

I OR
I NAND
I NOR
I XOR

loop_statement
: _optional_label_colon

_optional_iteration_scheme LOOP
sequence_of_statements
END LOOP _optional_label

miscellaneous_operator
: STARSTAR

I ABS
I NOT

mode

: IN

I OUT
I INOUT
I BUFFER
I LINKAGE

multiplying_operator
y*t

I V
I MOD
I REM

name

simple_name
operator_symbol
selected name

An Application of a Synchronous/Reactive Semantics to the VHDL Language 115 of 132



I indexed_name
I slice_neime
I attribute name

The Synchronous VHDL Subset

next_statement
: NEXT _optional_label _optional__when_condition

null_statement
: NULL

niameric_literal
: abstract_literal
I physical_literal

object_declaration
: constant_declaration
I signal_declaration
I variable declaration

operator_syinbol
: string_literal

options
: _optional_guarded _optional_transport

package_body
PACKAGE BODY simple_name IS
package_body_declarative_part
END _optional_simple_name

package_body_declarative_item
: subprogram_declaration
I subprogram_body
I t3^e_declaration
I subtype_declaration
I constant_declaration
I file_declaration
I alias_declaration
I use clause

116 of 132 AnApplication of a Synchronous/Reactive Semantics to the VHDL Language



The Synchronous VHDL Subset

package_body_declarative_part
: /* NULL */

I package_body_declarative_part package_body_declarative_item

package_declaration
PACKAGE identifier IS

package_declarative_part
END _optional_simple_name

package_declarative_item
: subprograin_declaration
I type_declaration
I subtype_declaration
I constant_declaration
I signal_declaration
I file_declaration
I alias_declaration
I component_declaration
I attribute_declaration
I attribute_specification
I disconnection_specification
I use clause

package_declarative_part
: package__declarative_itein
I package_declarative_part package_declarative_item

parameter_specification
: identifier IN discrete_range

physical_literal
: _optional_abstract_literal name

physical_type_definition
: range_constraint

UNITS

_unit_declaration_list
END UNITS

_unit_declaration_list
: base unit declaration
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_unit_declaration_list seconclary_unit_declaration

port__clause
: PORT ^ ^ port_list *)'

port_list
: interface list

port_map_aspect
: PORT MAP *(* association list

prefix
: name

I function call

primary

name

literal

aggregate

function_call
qualified_expression
type_conversion
allocator

expression *)'

primary_unit
: entity_declaration
I configuration_declaration
I package_declaration

procedure_call_statement
: name _optional_paren_actual_parameter_jpart

process_declarative_item
subprogram_declaration
subprogram_body
type_declaration
subtype_declaration
constant_declaration
variable_declaration
file declaration
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I alias_declaration
I attribute_declaration
I attribute_specification
I use clause

process_declarative_part
: process_declarative_item
I process_declarative_part process_declarative_itern

process_statement
: _optional_label_colon

PROCESS _optional_sensitivity_list
process_declarativejpart
BEGIN

process_statement_part
END _optional_label

process_statement_part
: sequential_statement
1 process_statement_part sequential_statement

qualified_expression
: type_mark expression
I type_mark *\" aggregate

range

: attribute_naine
I simple_expression direction siinple_expression

range_constraint
: RANGE range

record_type_definition
: RECORD

_element_declaration_list
END RECORD

_element_declaration_list
: element_declaration
I element declaration list element declaration
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relation

; simple_expression
_optional_relational_operator_simple_expression

relational_operator
*—f

I NOTEQ

I

I LEQ
I ^>'

I GEQ

return_statement
: RETURN _optional_expression

scalar_type_definition
: enuineration_type_definition
I integer_type_definition
I floating_type_definition
I physical_type_definition

secondary_unit
: architecture_body
I package_body

secondary_unit_declaration
: identifier *=' physical_literal

selected_name
: prefix *.' suffix

selected_signal_as s ignment
WITH expression SELECT
target LE options
selected waveforms

selected_waveforms
; _waveform_when_choices_list

waveform when choices

120 of 132 An Application of a Synchronous/Reactive Semanticsto the VHDL Language



The Synchronous VHDL Subset

_wavefonn_when_choices
: /* NULL */
I _waveform_when_choices waveform when choices

wavef o rm_when_choices
: waveform WHEN choices

sensitivity_clause
: ON sensitivity_list

sensitivity_list
: name list

_name_list
: name

I name list *,' name

sequence_of_statements
: sequential_statement
I sectuential_of_statements sequential_statement

sequential_statement
wait_statement
assertion_statement
s ignal_as s ignment_statement
variable_assignment_statement
procedure_call_statement
if_statement
case_statement
loop_statement
next_statement
exit_statement
return_statement
null statement

sign
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signal_assigninent_statement
: target GEQ _optional_transport waveform '

signal_declaration
: SIGNAL identifier_list ^'

subtype_indication _optional_signal_kind
_optional_initial_value

signal_kind
: REGISTER

I BUS

signal_list
: _name_list
I OTHERS
I ALL

s imple_express ion
: _optional_sign term _adding_operator_te3nn_list

_adding_operator_term_list
: /* NULL */

I _adding_operator_term_list adding_operator term

simple_name
: identifier

slice_name
: prefix *(* dixcrete_range *)'

/*

* The scanner is going to take care of these
*

* string_literal: { graphic_character }
*/

subprogram_body
: subprogram_specification IS

subprogram_declarative_part
BEGIN

s ubprogram_st atement_part
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END _optional_designator

subprogram_declaration
: subprogram specification

subprogram_declarative_item
subprogram_declaration
subprogram_body
type_declaration
subtype_declaration
constant_declaration
variable_declaration

I file_declaration
alias_declaration
attribute_declaration
attribute_specification
use clause

subprogram_declarative_j>art
: subprogram_declarative_item
I subprogram_declarative__part subprogram_declarative_item

subprogram_specification
PROCEDURE designator
_optional_paren_formal_parameter_list

I FUNCTION designator
_optional_paren_formal_parameter_list RETURN type_mark

subprogram_statement_part
: _sequential_statement_list

subtype_declaration
: SUBTYPE identifier IS subtype_indication *;

subtype_indication
: _optional_name type_mark _optional_constraint

suffix

: simple_name
I character_literal
I operator_symbol
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term

: factor _multiplying_operator_factor_list

_mult iplying_operato r_factor_list
: /* NULL */

I _multiplying_operator_factor_list multiplying_operator_factor

timeout_clause
: FOR expression

type_conversion
: type_mark expression

type_declaration
: full_type_declaration
I incomplete_type_declaration

type_definition
: scalar_type_definition
I composite_type__definition
I access_type_definition
I file_type_definition

type_mark
: name

unconstrained_array_definition
: ARRAY _index_subtype_definition_list M'

OF subtype_indication

_index_subtype_definition_list
: index_subtype_definition
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I index_subtype_definition_list index_subtype_definition

use_clause
: USE selected name list

_selected_name_list
: selected_name
I _selected_name_list selected_name

var iable_as s ignment_st atement
target COLONEQ expression

variable_declaration
: VARIABLE identifier_list *:' subtype_indication

_optional_initial_value

wait_statement
: WAIT _optional_sensitivity_clause

_optional_condition_clause
_optional_timeout_clause

_optional_abstract_literal
: /* NULL */

I abstract literal

_opt ional_block_configurat ion
: /* NULL */

I block_configuration

_optional_bus
: /* NULL */

I BUS

optional_choices_eqgr
choices EQGR

_optional_condition_clause
; /* NULL */
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_optional_constant
: /* NULL */

I CONSTANT

optional_constraint
: /* NULL */

I constraint

_optional_designator
: /* NULL */
I designator
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_optional_e1se
: /* NULL */
I ELSE sequence_of_statements

optional_entity_body
: /* NULL */

I BEGIN entity_stateirtent_part

optional_exponentiation
: /* NULL */
I STARSTAR primary

_optional_generic_clause
; /* NULL */
I generic clause

_optional_generic_clause_generic_map_aspect
: /* NULL */

I generic__clause generic_map_aspect

_opt ional_generic_map_aspect
: /* NULL */

I generic_map__aspect
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_opt ional_generic_map_aspect
: /* NULL */
I generic_map_aspect

optional_guarded
: /* NULL */
I GUARDED

_optional_identifier
: /* NULL */
I identifier

optional_in
: /* NULL */

I IN

_optional_index_specification
: /* NULL */
I index_specification *)'

optional_initial_value
: /* NULL*/

I COLONEQ expression

_optional_iteration_scheme
: /* NULL*/

I iteration scheme

_optional_label_colon
: /* NULL */

I label ^:'

_optional_label
: /* NULL */

I label

opt ional_mode
: /* NULL */

I mode
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optional_paren_actual_parameter_part
: /* NULL */

I actual_parameter__part ^)'

_optional_paren_expression
; /* NULL */

I expression *)'

_opt ional_paren_forma l_par amet e r_lis t
: /* NULL */

I formal_parameter_list

_optional_port_clause
: /* NULL */
I port__clause

_optional_jport_clause_port_map_aspect
: /* NULL */

I port_clause port_map_aspect

optional_port_map_aspect
; /* NULL */

I port_map_aspect

optional_port_map_aspect
: /* NULL */

I port_map_aspect

_optional_relational_operator_simple_expression
: /* NULL */

I relational_operator simple_expression

optional_report
: /* NULL */

I REPORT expression
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_optional_sensitivity_clause
: /* NULL */

I sensitivity_clause

_optional_sensitivity_list
: /* NULL */

1 sensitivity_list

_optional_severity
: /* NULL */

I SEVERITY expression

_optional_sign
: /* NULL */

I sign

_optional_signal
: /* NULL */

I SIGNAL

_optional_signal_kind
: /* NULL */

I signal kind

optional_simple_name
: /* NULL */

I simple_name

_optional_timeout_clause
: /* NULL */

I timeout clause

_optional_use_binding_indication
: /* NULL */

I USE binding_indication

opt ional_when_condit ion
: /* NULL */

I WHEN condition
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: /* NULL */

I VARIABLE

_use_clause_list
: /* NULL */

I use clause list
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_wavefonn_when_condit ion_else_list
: /* NULL */
I _waveform_when_condition_else_list waveform

WHEN condition ELSE

Unsupported Constructs

The constructs described in this section are defined in the full VHDL 1076 language standard but cannot be supported in
the Synchronous VHDL Subset Each ofthe constructs is shown along with asimple statement describing why the con
struct caimotbe supported.Chapter4 describesthese reasons in moredetail.

access_type_definition
: ACCESS subtype_indication

allocator

: NEW subtype_indication
I NEW qualified_expression
t

These two constructs cannot be supported because they are used provide dynamic memory allocation

disconnect_specification
: DISCONNECT guarded_signal specification

AFTER expression
9

This construct cannot be supported because itmanipulates the number ofdrivers attached to asignal. Itrepresents a
manipulation of the runtime data structures in the simulator.

_optional__transport
: /* NULL */
I TRANSPORT

9

The transport delay model is notsupported in thesubset

_optional_after_expression
; /* NULL */
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I AFTER expression
9

The after clause isnot supported because it isonly relevant for the inertial and transport delay models, neither ofwhich
are supported in the Synchronous VHDL subset

file_declaration
: FILE identifier subtype_indication IS

_optional_mode file_logical_name

f ile_logical_name
: expression

file_type_def init ion
FILE OF type_mark

Thethree constructs above cannot besupported because they provide an interface from thesimulator to theoperating sys
tem.

s ignal_ass ignment_st a t ement
: target GEQ _optional_transport waveform '

selected_waveforms
: __waveform_when_choices_list

waveform when choices

_waveform_when_choices
: /* NULL */

I _waveform_when_choices _waveform_when_choices

_waveform_when_choices
: waveform WHEN choices

waveform

: waveform_element
I waveform waveform element

wavef orm_element
: expression _optional_after_expression
I NULL _optional_after_expression
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_waveform_when_condition_e1se_list
: /* NULL */

I _waveform_when_condition_else_list waveform
WHEN condition ELSE

The use ofwaveform signal assignments isnotsupported inthe Synchronous VHDL subset because the waveform assign
ment implicitly uses thetransport delay model. The transport delay model isnotsupported inthesubset.

unconstrained_array_definition
: ARRAY _index_subtype_definition_list '

OF subtype__indication
t

_index_subtype_definition_list
: index__subtype_definition
I index_s\jbtype_definition_list index_subtype_definition

t

Unconstrained arrays are not supported in the Synchronous VHDL subset unless there isa way todetermine the bounds
which will actually be applied to the array. So, while not all unconstrained arrays are illegal, any use ofan unconstrained
array which cannot be assigned afixed bound atcompile time isnot legal. This restriction isdue the requirement for finite
state.

: WAIT _optional_sensitivity_clause
_optional_condition_clause
_optional_timeout_clause

9

The use of the timeout clause inthe wait statement isnot supported inthe subsetThe timeout clause refers toa time limit
and therefore is not a reactive construct thebehavior of the wait statement isnot defined in terms ofa reaction toevents
external to the process.
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