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ABSTRACT. In this paper, we develop the machinery of exterior differential forms, more
particularly the Goursat normal form for a Pfaffian system, for solving nonholonomic motion
planning problems, i.e. planning problems with non-integrable velocity constraints. We
apply this technique to solving the problem of steering a mobile robot with n trailers. We
present an algorithm for finding a family of transformations which will display the given
system of rolling constraints on the wheels of the robot with n trailers in the Goursat
canonical form. Two of these transformations are studied in detail. The Goursat normal
form for exterior differential systems is dual to the so-called chained form for vector fields
tbat we have studied in our earlier work. Consequently, we are able to give the state
feedback law and change of coordinates to convert the N-trailer system into chained form.
Three methods for steering chained form systems using sinusoids, piecewise constants and
polynomials as inputs are presented.

The motion planning strategy is therefore to first convert the N-trailer system into
chained form, steer the corresponding chained form system, then transform the resulting
trajectory back into the original coordinates. Simulations and frames of movie animations of
the N-trailer system for parallel parking and backing into a loading dock using this strategy
are also included.
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1. INTRODUCTION

In the past few years there has been a great deal of interest in the generation of
motion planning algorithms for robots with nonholonomic or non-integrable velocity
constraints in cluttered environments. These constraints on the instantaneous veloc-
ities that can be achieved arise from the kinematics of the drive mechanisms of the
carts. This work has been a departure from the traditional robot motion planning
(see for example [6, 15, 18]) which concentrated on understanding the complexity
of the computational effort associated with planning trajectories for robots (with
no constraints on their instantaneous velocities) which would avoid both fixed and
moving obstacles. Unfortunately the motion plans arising from these more tradi-
tional methods often required sideways motion of robot carts with wheels, and as
was pointed out by Laumond, most mobile robots are not on castors [19, 20].

In this paper, we consider and solve the motion planning problem for a system
consisting of a car-like mobile robot pulling n trailers. This system has been an
important canonical example for the work on nonholonomic motion planning ever
since it was posed in [22, 28]. The nonholonomic constraints for this system arise
from constraining each pair of wheels to roll without slipping. Strictly speaking,
if an axle has a differential that keeps the pair of wheels rolling without slipping,
then each wheel turns a different amount in accordance with a simple geometric
relationship called the Alexander-Maddocks condition [1]. In our system we will
neglect this and model the wheels on an axle as being parallel.

The system of a car with n trailers has been viewed as a canonical example
because each trailer adds one dimension to the state space of the system (represent-
ing its angle with respect to the inertial frame) and one nonholonomic constraint.
Regardless of the number of trailers attached, the general system always has two
degrees of freedom, corresponding to the driving and steering directions of the front
car. It has been shown that every point in the state space is reachable, i.e. that the
system is completely controllable [22]. The question that is answered in this paper
is one of constructive controllability; explicit open loop controls for steering the car
with n trailers from an initial to a final position are given.

We first give a brief description of some of the previous work on this problem. A
more detailed review of the general nonholonomic motion planning problem can be
found in [29] or in a recent collection of papers [24]. A more detailed description of
the N-trailer problem and its variations can be found in [21].

Barraquand and Latombe [2] proposed a planner for cars with trailers in a clut-
tered environment, with an attempt at finding one with a minimal number of back-
ups. The main drawback to their approach was that it required a discretization of
the state space followed by an exhaustive search of all possible directions the robot
could go at each point. Consequently, the method became computationally infea-
sible for a large number of trailers. The method, however, worked well in a very
cluttered environment since the presence of many obstacles drastically reduced the
number of search directions. Related to this work is that of Divelbiss and Wen (8]
which uses gradient descent in a discretized input space. Obstacles can be incorpo-
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2 TILBURY, MURRAY, SASTRY

rated into their method using potential fields. The convergence properties of their
methods are currently under investigation.

Reeds and Shepp [30] proved an interesting result on the minimum length feasible
paths for a robot of the Hilare type with bounded turning radius. They showed that
the optimal length path belonged to a family of paths that consisted of segments
of straight lines and arcs of circles. It seems doubtful that such a method could be
generalized easily to a car with n trailers.

A paper by Murray and Sastry [29] studied motion planning for nonholonomic
systems, and focused attention on a specific class of systems in so-called “chained

form”:

B = oy

T3 = u

5:3 = TaUy

Zi:,. = Tp1U.

This class of systems was inspired by some early work of Brockett [3] on optimal
control of “canonical systems”. In [29], we gave sufficient conditions for converting
systems into chained form, and an algorithm (using sinusoids at integrally related
frequencies) for steering chained form systems. The theory was used to transform
the front-wheel drive car, a car with one trailer, and a hopping robot into chained
form, and to find feasible trajectories for these systems using the sinusoidal steering
algorithm. However, the car with two trailers did not fit the sufficient conditions
and was left an open problem. Recently Sgrdalen [32] showed that the system of
the car with n trailers could be put into chained form using the coordinates of the
n*® trailer (rather than those of the cab) for parameterizing the configuration space
of the system. :

Fernandes, Gurvits and Li [9] used numerical methods for solving constrained
optimal control problems associated with nonholonomic motion planning problems,
using a perturbation (of the cost functional) to make the singular optimal control
problem regular. In other work [10], they also suggested the use of input sinusoids
(as basis functions) in a Ritz approximation algorithm for steering nonholonomic
systems.

Sinusoids were also used in a method proposed by Sussmann and Liu [33], see
also Gurvits and Li [14]. Their method was completely general in that it applied
to any controllable nonholonomic system, and used asymptotically high frequency,
high magnitude sinusoids to achieve convergence. This method was applied to the
system of Hilare with two trailers in [35], but the paths generated were highly
oscillatory and impractical, owing to their use of high magnitude and frequency
sinusoids.

Divelbiss and Wen [8] have explored a computational approach to the N-trailer
problem, in which they discretize the system and use gradient descent in the (dis-
cretized) input space to generate a feasible path. Convergence properties of their
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method are currently under investigation, but the algorithm has demonstrated good
performance in simulation. They are also able to incorporate obstables into the
problem formulation, using potential field methods.

Several other methods have been proposed which used piecewise constant inputs
[16, 17, 26]. All of these worked best in the cases where the control Lie algebra is
nilpotent. Their extension to systems whose control Lie algebra is not nilpotent is
not fully satisfactory, requiring a large number of steps to come close to the goal
point.

Our current paper is some what different in style from most of the previous work.
Instead of focusing on the directions in which the system is allowed to move, namely
the two vector fields which correspond to the two degrees of freedom of the system,
we have defined the system from the constraints on its velocity. That is, instead of
looking at the control system

& = g1(z)ur + g2(2)u,

and the distribution spanned by the input vector fields A = {91, 92}, we consider
the exterior differential system orthogonal to this distribution, namely I = At =
{a',...,a""%}. In the context of motion planning, this is in some sense a very
natural framework since each o is a one-form defined on the tangent space to the
configuration space, and represents the constraint that the wheels on the i** axle
must roll without slipping.

This system I is called a Pfaffian system (of codimension 2); such exterior differ-
ential systems and their properties were first studied by Pfaff in the early 1800’s.
There exists a large body of work on Pfaff’s problem in the literature (see [4] for a
historical overview). The formulation of the N-trailer problem as an exterior dif-
ferential system allows us to draw on classical results by Goursat, Engel, Cartan,
and others on classification and canonical forms. Most of the relevant results in this
area are presented in abbreviated fashion in [4] and are reviewed in Section 2 of this
paper. The normal form for Pfaffian systems of codimension 2 that was proposed
by Goursat is in fact the dual of chained canonical form as defined above. As in the
work of Sgrdalen, the calculations for the Goursat normal form are simplified quite
considerably by using the coordinates of the last trailer instead of those of the cab
to parameterize the configuration space of the multi-trailer system.

After the crash course on exterior differential systems in Section 2, we examine
the Pfaffian system associated with a mobile robot towing n trailers. We show in
Section 3 that this system can be converted into Goursat’s normal form or equiva-
lently chained form. Section 4 is devoted to presenting methods for steering systems
in chained form. Three different methods are presented using as inputs sinusoids,
piecewise constant inputs (as in [26]) and polynomials. Finally, we apply some of
these steering methods to the N-trailers example, and display the results in Sec-
tion 5. There are movie animations of two of the trajectories; a two-trailer system
can be seen parallel-parking by viewing the upper right-hand corner of the odd
numbered pages (from the front of the paper to the back), and this same system
backing into a loading dock can be seen in the upper left-hand corner of the even
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4 TILBURY, MURRAY, SASTRY

numbered pages (from the back of the paper to the front).

2. A CrAsH COURSE ON EXTERIOR DIFFERENTIAL SYSTEMS

In this section we give a review of the tools available from the study of exterior
differential systems and show how to apply these tools to the problem of finding
a feedback transformation which converts a system into chained form. We present
only a very brief review of the necessary tools here, concentrating on the computa-
tions that must be performed. A much more detailed description can be found in
the monograph by Bryant et al. [4].

2.1. Exterior algebra. Let V be a vector space over R, which we also refer to
using the notation A'. We define a new vector space A? by defining the wedge
product as a skew-symmetric bilinear map which satisfies:

(@10 + aza3) A B = a;(a; A B) + az(e3 A B)
a A (181 + bsfz) = by(a A By) + by(a A B2)
aAha=0
aAfB==-FAa.

1)

That is, A is a bilinear, associative, distributive, non-commutative product mapping
A x A — A3, If {0;} is a basis for A!, then o; A 0;,1 < i< j< nisa basis
for A%. It follows that the dimension of of A2 is (3). An element of A? is called a
two-vector.

In a similar way, we define a p-vector § € A® by taking the wedge product between

p one-vectors and using the rules
(aa+b8B)AazA---Aey=aahagA---Aay+bfAazA---Aa,
oA Aap, =0 ifany o =01 # ]
a; A--- A a, changes sign if any two a; are interchanged.

AP consists of all p** order exterior products and has a basis given by {0, A---Ady, }
where {0;} is a basis for A! and the h;’s are ordered. A? is a vector space of dimension
(7 )- In particular, dim A” = 1 and dim A* = 0if k£ > n. For completeness, we define
the set of zero-vectors as A° = R.

The wedge product is a very powerful tool which can be used to great advantage
in calculations. We will make frequent use of the following facts:

Proposition 1. The vectors vy,...,v, € Al are linearly dependent if and only if
nA--Av, =0.

Corollary 1.1. Let {,v; € A'. IfEAz A---Av, =0 then

P
£= Za;v,- o; €R.

i=1
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Just as in the case of polynomials, it is often desirable to speak of a vector of mixed
order (or unknown order). Using the wedge product, one can define an algebra over
the set of exterior forms. Let A = A°@ A' @ ---@® A" and define multiplication

(== e fomom =l =]

between two elements of A using the wedge product. The wedge product is a

bilinear, associative, distributive, skew product which maps A" x A* — A"+ and
hence A x A — A. We say an element £ € A is homogeneous of order p if £ € A?;
i.e. it is a p-vector. A exterior form is non-homogeneous if it has components of
different orders.

K V is a vector space of dimension n, its dual, V*, is also a vector space of
dimension n. The exterior product over V* can be used to form the vector space
Q°(V) := A?(V*). An element o € Q* is called a p-form.

2.2. Differential forms. Given a manifold M of dimension n, the tangent space
of M at a point z is a vector space of dimension n, denoted T, M. The vector
space AP(T; M) consists of all p-vectors constructed from tangent vectors in T; M.
By attaching the vector space A?(T,M) to each point z € M, we get a bundle
structure on M, which we write as AP(M). Similarly, the bundle Q°(M) is defined
by using the dual space T; M. We call a element w € Q°(M) an exterior differential
p-form on M.

Relative to a local coordinate chart, we describe the tangent and cotangent bun-
dles by choosing a local basis:

i}

T:M = span{dz,,...,dz,},

T.M = span{ %,
1

where
LI
t 33:,- -
A p-form w on M can be represented in this basis as
“’(3') = Z we,-.-i,(z)dza, Aser A da:;,.
1<+ <ip

We say that w is smooth if the coefficient functions w;, .., are smooth functions of
z for any choice of coordinate chart.
Let Q(M) be the algebra of exterior differential forms on M. The ezterior deriva-

tive on (M) is the unique map d : Q" — Q"*! which satisfies the following prop-
erties:

(1) ¥ f € Q%(M) = C°(M) then df = 3 2Ldz,(relative to a local coordinate chart).

() H0eQ,0€Q thend(@Ad)=dIAo+(-1)8Ado.
(3) & =0.
These rules are extremely useful in computations.

We will make frequent use of the following lemma, which relates the exterior
derivative of a one-form to the Lie bracket between two vector fields.
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Lemma 2. Letw € Q(M) and let X and Y be smooth vector fields on M. Then
dw(X,Y) = Xw(Y) - Yw(X) - w([X,Y]).

Proof. It suffices to show that the lemma is true for a basis element, and hence for
w = fdg. On the one hand, we have

dw(X$ Y) = (df A dg)(X’ Y)
= df(X)dg(Y) — df(Y)dg(X)
= X(f)Y(9)-Y(N)X(g)-

Furthermore,
Xw(Y) - Yw(X) - w([X,Y])

= X(fY(9)) -Y(fX(9)) - f(XY(9) - YX(9))
= X(f)Y(9)-Y(F)X(9),

and the lemma is proved. O

This lemma gives the following version of Frobenius’s theorem.

Theorem 3 (Frobenius). Let A be a C* distribution of dimension k on M, an
n-dimensional manifold. A is involutive if and only if there ezist n — k linearly
independent one-forms w**,. .. ,w" which vanish on A and satisfy

dof= Y A  izk+1,...,n (2)

for some set of one-forms 6;.

Proof. The proof follows from application of Lemma 2 and Frobenius’ theorem for
vector fields. Let X,Y be two vector fields in A. Then

[X,Y]e A <= &'([X,Y])=0 i=k+1,...,n
since the w’s annihilate A. Now applying Lemma 2 we have
[X,Y]e A &= —-d'(X,Y)+ X' (Y)-Yu*(X)=0
= dW(X,Y)=0 i=k+1,...,n

It follows that dw' must have the form in equation (2) since dw is annihilated on all
vectors X,Y € A and {w**!,...,w"} form a basis for the space of one-forms which
annihilate A. O
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2.3. Pfaffian Exterior Differential Systems. Formally, an ezterior differential
system is given by an ideal T C Q(M) that is closed under exterior differentiation.
Recall that an ideal 7 satisfies

a€l,BeR(M) = oaAPel.

We will be primarily interested in the special case of exterior differential systems
which are generated by a set of nonholonomic constraints and we focus on that case
here.

A Pfaffian system is an exterior differential system which is generated by a set
of linearly independent one-forms. Let I be a codistribution spanned by a set of
linear independent one-forms {a‘}, i =1,...,s. The ideal generated by I is

I={I}={ceQ:oAa'---Aa" =0}.

For an ideal generated by a set of one-forms, each element in the ideal has the form
f = Z a,-,-o-" A a’
j=1

for some ¢’ € Q.

It is also possible to rephrase Frobenius’s Theorem in a concise way using ideals.
Let 7 be the ideal generated by {a',...,a’} and write dZ for the set consisting of
the exterior derivative of all elements of Z. We say that Z is integrable if there exist
functions h,,...,h, such that I = {dh,,.. .,dh,}. The Frobenius theorem asserts
that the following set of relationships hold:

7 is integrable <= dI CcZ
< do'Aa'A---Aa* =0

= da' =) ind for some 6}, i =1,...,s @)
i=1
<= do' =0 mod I.

The last relationship in equation (3) uses the notion of congruence. Given two
forms w, £ € Q, we write w = £ mod 7 if there exists an exterior form 7 € Z such
that w = £+ 7. If I is a set of one-forms (and hence not an ideal) then we write
w = £ mod I if there exist exterior forms a € I and 7 € Q such that w = E+nAa.
It follows that if I is the generator set for an ideal Z, then w mod Z = w mod 1.
In the case that 7 is generated by one-forms {e;}, we will often make use of the
relationship

wmodZ=0 <= w=) _f;Aa’ forsome; € Q.

Although conceptually simple, mod-ing out by a set of one-forms can sometimes
require considerable effort. For example, given the expression

dzy Adzy + dza A dzs mod dzg,

ennnn o
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it is easy to see that this is congruent to dz, Adz;. One merely sets all components
containing a factor of dzs to zero. However, for the expression

(dzy + dzs) Adz; mod dz; + dzs

this simple prescription will not work. The one-form must be rewritten in terms of
an appropriate basis. For example, the above expression can be rewritten as

(dz, + d2s) A (dz3 + dz3) — dzy A dzs mod dz, + dz,

and this is clearly congruent to —dz; A dzs. More generally, to compute w mod
a',...,a’, one must rewrite w in terms of a basis which includes the a’’s as elements.

2.4. The derived flag. Let I = span{w',...,w’} be a smooth codistribution on
M. The exterior derivative induces a mapping § : I — Q*(M)/I:

6:2— dimod I € Q*(M).
The mapping 6 is a linear mapping over C°(M):

6(fa+gB)=df Na+ fda+dgAB+gdf mod I
= fda+ gdf mod I

= f&(a) + 96(6).

It follows that the kernel of § is a codistribution on M (¢.e. at each point p € M,
the kernel of § is a linear subspace of T;M). We call this subspace I(!), the first
derived system of I:

IM =ker 6= {) € I:d\mod I = 0}.

We can represent I(!) using a set of one-forms, but it is important to note that the
basis for I) may not be a simple subset of the basis for I. Linear combinations of
basis elements (over the ring of smooth functions on M) must be searched to find
a basis for the derived system.

Since I") is itself a Pfaffian system, we can continue this construction and gen-
erate a nested sequence of codistributions

I=10 510 5...5 ), (4)

If the dimension of each I¥) is constant, then this construction terminates for some
finite integer N. In this case, we call equation (4) the derived flag of I and N the
derived length.

The derived flag describes the integrability properties of the ideal generated by
I. I I is completely integrable, then by Frobenius’s theorem we have J() = (),
i.e. the length of the derived flag is zero. In fact, I™) is always integrable since by
definition dI™™) mod I™) = 0. I™) is the largest integrable subsystem contained
in I. Thus if I™) is not empty, then there exist functions hiy...,h, such that
{dh;} C {I}. In the context of control theory, this means that the system is not
controllable since there exist algebraic functions which provide a foliation of the
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oo O

(z1,22)

FiGURE 1. Penny rolling on a plane. The state space is defined
by the (21,%1) position of the penny, z3, the angle of the penny
with respect to the reference frame, and z, the amount the penny is
rotated with respect to the vertical.

state space and it is impossible to move from one leaf of the foliation to another.
The converse of this controllability result is provided by Chow’s Theorem.

Theorem 4 (Chow). Let I = {a!,...,a’} represent a set of constraints and as-
sumed that the derived flag of the system ezists. Then, there ezists a path z(t)
between any two points satisfying o(z)i = 0 for all i if and only if there exists an
N such that I™™) = {0}.

Ezample 1. Consider the kinematic model of a penny rolling on a plane, as shown
in Figure 1. Let z € R* denote the configuration of the penny, with (z1,22) being
the location of the penny on the plane, z3 the angle that the penny makes with a
fixed line on the plane, and z4 the angle of a fixed radial line on the penny with
respect to the vertical. We take the radius of the penny as 1. The constraints for
the penny are that it roll in the direction it is pointing, with no slipping:

o' = cos z3dz, + sin z3dz, — dz, (5)

o’ = sin z3dz; — cos z3dz,. (6)
The exterior derivatives of a' and o are given by

da' = —sin 23 dz; A dz, + coszs dzs A dz, (7)
da® = cosz3 dzs A dz, + sin z3 dzj A dz,. (8)

It is easy to check that the following relationships hold

da' Aa' = —dz; A dzy A dzs + cos z3dzs A dzg A dz4 — sin z3dzy A dzs A day
da' A Aa? =0
do® Aa' Ao’ = —dzy Adzo Adzs A dzy # 0,
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and hence the derived flag has the form:

I(O) - {O!l, a?}
IM = {o'} (9)
I® = {0}.

The dimension of the derived flag is (2, 1,0), implying that the system is completely
controllable.

In control theory, Chow’s theorem is usually stated by asking that the involutive
closure of the distribution J* span the tangent space at each point z € M. The
connection between the Lie algebra formulation of Chow’s theorem and the exterior
differential system formulation is made with the following lemma.

Lemma 5. If I = At then IV = (A + [A, A])*.
Proof. Follows from Lemma 2. O

This lemma allows us to compute the derived flag for a system given the dis-
tribution A = I*. Define the nested set of distributions EyCE C---CEpn
as

Eo = A
E; = E;_y + [Ei-y, Ei4).

This sequence terminates if the dimension of each E; is constant, and it follows from
Lemma 5 that I¢) = Ef,

Remark 1. When doing computations with exterior differential systems, it is con-
venient to choose a basis of one-forms whose structure matches that of the derived
flag. We say that a basis {a'} is adapted to the derived flag if

I9 = {a!,.. .,a’},

where s; is a strictly decreasing sequence of integers. In other words, an adapted
basis is one in which the derived systems are calculated by dropping elements from
the end of the basis. An adapted basis can be calculated by computing the de-
rived flag and then choosing the basis elements starting with a basis for I™-1) and
proceeding backwards.

2.5. Pfaff’s problem and Engel’s theorem. The simplest type of normal form
for a nonholonomic system involves finding a normal form for a single constraint.

Theorem 6 (Pfaff’s problem). Suppose a is a one-form which satisfies (da)™+1A
a =0, (do)" Aa#0. Then there exist coordinates such that

a =dz; + Tadzs + - - + 25,dT4,,,.
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The proof uses a number of tools that are beyond the scope of this paper. In the
r = 1 case, the proof reduces to proving that there exist two functions f; and f,
which satisfy

dahaAdfy=0 alAdfy #0
an (10)
O!/\dfl/\dfg-:() dfll\dfgyéO.
Given f, and f;, @ can be scaled such that
a = df; + gdf, =: dz, + z,dzs.
The Pfaff theorem guarantees that these equations have a solution (it need not be
unique).
In the case of a single constraint in R3, Pfaff’s theorem shows that if the constraint
is non-integrable then the corresponding control system can be written in chained
form. This follows because if a is not integrable then da:A @ # 0 but (da)*Aa =0

by a dimension count. Therefore, we can apply Theorem 6 (with a relabeling of
coordinates) to conclude that

a = df3 — £,dE;.
A basis for the right null space of this constraint is then given by

0 0 d
TR T A

which is the chained form for two input vector fields in RS,
Engel’s theorem applies to the case of two non-integrable constraints in R%.

Theorem 7 (Engel’s theorem). Let I be a two-dimensional codistribution on R*
with dim I®) = 1 and dim I'® = 0. Then there ezist local coordinates such that

I = {d¢y — &3dfy, dés — &dE, ). (11)

Proof. Choose a basis I = {a', a®} which is adapted to the derived flag. It follows
that da' A o' # 0 and (da')* A ! = 0 (by dimension count). Hence we can use
Pfaff’s theorem to find coordinates such that o! = d¢, — EadE,.

To determine £;, we use the structure of 2. Since a! € IV), we have da' A a! A
a® = 0. But do! = —d§; A d€, and hence

o =adés+bdf, mod ol

Since o? # 0, it follows that we can not have both a and b = 0. We split the proof
into two cases.

Case 1: (a # 0). Since o® is only determined mod o, we are free to scale a? by
any nonzero function. Hence

%a’ = dés + %dfl mod o! (12)

cooag o
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and choosing §{; = —b/a yields a basis for the codistribution which is in Engel’s
normal form. Notice that the basis is a transformed version of the original basis,
namely,
o =0 = dfy — £3d&y
1

Qg = P +Aon = dfs - Ldéy
where A is chosen such that equation (12) becomes an equality.
Case 2: (b # 0). In this case we can scale a? so that

%a’ = %dfs +df mod .
Defining £, = —a/b gives the normal form

@ = dfy — E3dé,
@y = d§ — §dEs.

It turns out that this normal form is diffeomorphic to Goursat form via the following
change of coordinates:

m=2E&

m=-§ o' = dny — nsdn,
= -6 = o = dns — nydm.
=& —&&s

Hence the transformed basis is in Engel’s normal form. [

2.6. Goursat normal form. We now turn to the more general case of n — 2
constraints on an n-dimensional manifold M. Let I be a codistribution on M
whose derived flag satisfies dim I®) = n — i — 2.

Theorem 8 (Goursat normal form). Let U be an open subset of R* and I =
{a,...,0%} be a collection of s = n — 2 smooth, linearly independent one-forms
defined on U. If there ezists a one-form w # 0 mod I such that

do' = —*' A7 mod o',...,a¢ i=1,...,5—1
do’ #0 mod I
then there ezists a set of coordinates £ such that

I= {dfn - ‘En-ld{h”'sdfs _£2d61}°

(13)

A few comments on the statement of this theorem are in order. The conditions
of the theorem require the existence of a special basis {c’} and a special one-form
7. A quick calculation shows that the basis {o’} is adapted to the derived flag of
the system and hence if we start with an adapted basis, the real requirement is
the existence of a one-form 7 which satisfies the congruences. Determining 7 can
involve a further scaling of the adapted basis which preserves the adapted structure
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(see Section 3.2 for an example). For most examples, 7 can be determined by a
combination of physical insight and repeated guessing.

A complete proof of this theorem can be found in [4]. It can be summarized in
the following algorithm for converting a system into Goursat form (see [12] for the
feedback linearization version of this algorithm, on which this is based).

Algorithm 1. Given a codistribution I = {w',...,w*} with s = n — 2, the following
steps are required:
(1) Construct a basis I = {a',...,a’} which is adapted to the derived flag.
Check the Goursat congruences to ensure they are satisfied for some .
(2) It follows from the congruences that o! and o? satisfy do' A a' A 0? = 0
and hence the proof of Engel’s theorem can be used to find coordinates such

that

o' = dE, - £, dE,

o= dfp1 — Ea-adb:.
This may involve finding a new basis which preserves the adapted structure,
as well as a change of coordinates, to convert between the two normal forms
in the proof of Engel’s theorem.

(3) The remaining coordinates are determined by simple differentiation. Given

& we determine ;_, by algebraically solving the equation

o™t = dg + £_1dE, mod ol ..., o™,

The proof of Goursat’s theorem is to essentially show that this equation
always has a solution.

Ezample 2. Consider again the rolling penny from the previous example. The basis

1

o = cos 23dz; + sin z3dz, — dz,

Al A2
I= {a ) & } 2 .
o’ = sin z3dz, — cos z3dz,

was shown to be a basis adapted to the derived flag.

Next, we search for a one-form x which satisfies the Goursat congruences. Since
this system is low dimensional, the algebra needed to find « is straightforward.
Define o® and a* so as to complete the basis:

o® = cos z3dz, + sin z3dz,

at =dz;.
7 must satisfy

da! = —a’ A® mod o; (14)
Setting 7 = Aza® + \a?, equation (14) gives

A3=0

/\4=1 = 7l'=d23.

[= o J o Jow [ o= ]
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We now proceed to apply the algorithm for converting the system to Goursat
form. In this case, only the Engel’s step is required. We begin by solving Pfaff’s
problem. The first partial differential equation to be solved is da! A a! A df, = 0,
which yields

(—dz1 Adzs A dzg — sin z3dzy A dzs A dzg + cosz3dzs A dzs A dzs) A df; = 0.

This equation has a trivial solution given by f; = z3. The second partial differential
equation, a! A df; A df; = 0, then becomes

(cos zzdz, A dzs + sin 23dz; A dzg + dzg A dzs) A df; = 0,

which has a solution given by f; = 2, cosz3 + z,sin z5 — z,.
Finally, we solve for the remaining coordinate by finding functions a@ and b such
that

a! = adf, + bdf,.
This is a completely algebraic problem which has a solution given by
a = z,8inz3 — T, CO8 23
b=1.
Combining all of these calculations, we define

& =z3

Es = =2 sin T3+ Z2CO8 3

§s =2, co823 + 238in23 — 2,4
which gives a! = df, — £3d¢,.

We now define £; by examining a?. From the proof of Engel’s theorem we must
have

a® = adfs + bdf;, mod ol.
Performing all calculations in the original coordinates, this relationship becomes
sin z3dz; — cos z3dz, =
a(- sin zsdz; + cos z3dz; — (2, cO8 T3 + 5 8in 23)dzs) + bdzs mod ol

from which it follows that a = —1 and b = —(2, cos 3 + z, sin z3). This is case 1 in
the proof of Engel’s theorem and hence

€2 = b/a = (z, cosz3 + z;5in z3)

and @®> = —o? is the new basis element. This completes the change of basis and
change of coordinates, and the resulting system is in Goursat normal form.

A more complex example, the N-trailer system, is the subject of Section 3.
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2.7. Converting systems to chained form. Chained form is dual to the Gour-
sat normal form presented above. That is, a system with constraints in Goursat
normal form can always be written as a control system in chained form by choosing

a 0 0

91—5;;+zza—%+---+$n-1a
=9
g2 = azzﬁ

which forms a basis for the distribution annihilated by I. Thus, we can formulate
the problem of finding a basis for the constraints which is in Goursat form as the
problem of finding a feedback transformation to convert a system to chained form

The Goursat congruences are somewhat unsatisfying since they require the exis-
tence of a one-form 7. Necessary and sufficient conditions for the existence of such
a m, and hence for converting a set of constraints into Goursat normal form, were
presented in [27]. We summarize the main result here.

Let I = span{w!,...,w’} be a codistribution on R" and write A = I for the
distribution which spans the null space of the codistribution. We define two nested
sets of distributions:

EFo=A Fp=A
E;, = Ey + [Ey, Ey) F\ = Fy + [Fy, Fy]
E;, = Ey + [Ey, Ey] F=F +[R, F (15)

Ei+1 = Ei + [E.‘, Ei] E’+1 = R’ + [E’, Folo

Under the assumption that each distribution is constant rank, the two sequences
have finite length (possibly different).

The filtration {F;} is the the one which usually appears in the context of nonlinear
controllability and feedback linearization. In particular, F} consists of all brackets up
to order i. The distribution E; also contains all brackets of order , but may contain
additional Lie products of higher order. This is due to the recursive construction of
E;, as opposed to the iterative construction of F;. The filtration E; is precisely the
sequence of distributions which is perpendicular to the derived flag of I = A*.

Theorem 9 ([27]). Given a 2-dimensional distribution A = I* such that
dmE; =dimF; =i+ 2 1=0,...,n -2,
there exists a basis {,...,a’} for I which is in Goursat normal form.

This theorem allows us to completely characterize the set of systems which are
equivalent to a system in chained (or Goursat) form in the case that the relative
growth vector of the system is ¢ = (2,1,...,1). It can be shown that the N-trailer
problem satisfies the conditions of Theorem 9 and hence it can be converted to
chained form.

= ] =]
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F1GURE 2. The mobile robot Hilare with n trailers.

3. THE MOTION PLANNING PROBLEM FOR THE N-TRAILER SYSTEM

In this section, we define the Pfaffian system (set of one-forms which represent
the velocity constraints) for the N-trailer problem and calculate its derived flag.
We then show how the system can be converted into either Goursat normal form
(following Theorem 8 and Algorithm 1) or its dual, chained form. Although the
calculations in this section assume a particular configuration of the mobile robot
and trailer system, we will show that our model is general enough to encompass
not only the specific choice we have made but also a front-wheel drive car pulling
trailers and the luggage trains found in airports.

3.1. The system of rolling constraints and its derived flag. Consider a
mobile robot such as Hilare’ with n trailers attached, as in Figure 2. Each trailer
is attached to the body in front of it by a rigid bar, and the rear set of wheels of
each body is constrained to roll without slipping. The trailers are assumed to be
identical, but to have possibly different link lengths L;. The z,y coordinates of a
midpoint between the two wheels are referred to as (2i, ;) and the hitch angles
(all measured with respect to the horizontal) are 6;. The connections between the
bodies give rise to the following constraints:

Ty = Tj-q— L,' cos 9,-
Y = Yi-1— Lisiné;, (16)

1= 1,2,...,n for the general case with n trailers. These constraints are holonomic
and will reduce the dimension of the configuration space, since the positions (z;, ;)
for ¢ > 1 can be expressed in terms of zg, o, by, ... , 6;. By symmetry, (z;,y;) for
i < n can also be expressed in terms of z,,,y,,6,,0,_1,...,6;. For our purposes it
will be far more useful to use as configuration space variables the z,y coordinates of
a point on the n'* trailer and the n + 1 hitch angles: 2,,Yn,0n,...,0 because the
calculations that follow are vastly simplified.? We will refer to the state space as
& = (£ Uoes Bnoie Sy ). We have assumed that the bodies are connected between

!The Hilare family of mobile robots resides at LAAS in Toulouse, see for example [7, 13].

*The intuition for this comes from the oft repeated dictum: “when backing up a car with
a trailer, keep your eye on the hind part of the trailer”. Of course, the generalization to
this dictum is: when driving a car with n trailers keep your eye on the endpoint of the n*”
trailer
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the midpoints of the two sets of rear wheels; it should be noted that if the trailers
are hitched behind the rear axle, the equations will not simplify as shown here.

The wheels of the robot and trailers are constrained to roll without slipping; this
implies that the velocity of each body in the direction perpendicular to its wheels
must be zero. We model each pair of rear wheels as a single wheel at the midpoint
of the axle, and state the non-slipping conditions in terms of coordinates, beginning
with the n** trailer:

0=z,siné, — g, coséb,. (17)

Equation (17) models the fact that the velocity perpendicular to the wheels is zero.
In the language of one forms we write this as

' (ZpyYnyOny .- - ,00) = 8in 0, dz,, — cosf,dy,. - (18)

To write the other rolling constraints, we define v; to be the magnitude of the
velocity of the i** trailer. The direction of motion of the (i + 1)** trailer and
consequently the direction of v;4,, if its wheels are rolling without slipping, is along
the direction of the hitch joining the (i +1)* body to the i** body. Since the bodies
are linked together by rigid rods, it follows that the projection of v; onto the line of
the hitch is equal to v;y;. Thus, we have that

vi41(2) = cos(fiy1 — 6:)v;(2). (19)
Also, we have that the velocity of the n** trailer v, is given by
va(2) = cosb,2, + sin 0,7,. (20)

In the sequel we will need to use v, as a one form (i.e. we will need to use v,dt)
and we denote this by abuse of notation as:

vp(2) = cosb,dz, + sin 6,dy,. (21)

We may now recursively write down the rolling without slipping constraints for all
the trailers. The velocity of each trailer has a component due to the velocity v;,,
of the previous trailer and a component L;,,6;;, due to the rotation of the hitch.
The relative geometry of this situation is illustrated in Figure 3. The component of
V41 in the direction perpendicular to the wheel base is v;4,sin(8; — 6;4,) and the
component of L;,10;4, in this direction is L;;,6;4; cos(6; — 0;4,). If the #** trailer
rolls without slipping then we must have

0= L;+1é;+1 COS(9,'+1 - 0,) - Viq sin(0,-+1 - 0.'). (22)
Dividing through the equation (22) by cos(#;,, — 6;) yields the form constraint for
n—-1>¢>0:

a”+l"(z) = L;+1d0.’+1 - ta.n(0;+1 - 0,‘)'0".',4 = 0. (23)

Note that we have used the one form version of %41 in equation (23).
The forms o'(z), a*(z),...,a"t(z) represent the constraints that the wheels of
the n**, (n — 1), ..., 0 trailer (i.e. the cab), respectively roll without slipping.

[= = =]=i= =]
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FIGURE 3. Showing the definitions of the angles and velocities of
the #** trailer

They are given by the formulas (23) with the recursion relations (19). Thus, the
Pfaffian system for the N-trailer problem is:

I = span{a’,o?,...,a"*}. (24)
The following theorem gives the derived flag associated with this Pfaffian system.

Theorem 10 (Derived Flag for the N-trailer Pfaffian system). Consider the
FPfaffian system of the N-trailer system (24) with the one forms o} defined by equa-
tions (18) and (23). The one-forms o are adapted to the derived flag in the fol-
lowing sense:

I® = span{al,a?,...,a", a1}
IM = span{e!,e?,...,a"}
: (25)
I™ = span{a'}
I+ = {0},

Proof. The proof is by recursion starting from the bottom of the flag of (25). Indeed
for the first step, we compute da! to be d(sin 8,dz,, — cos 6,dy,), namely:

do! cos 0,d0, A dz, + sin 0,,d6,, A dy,
(- cos8,dz, — sin Ondy,) A db,
—v, A d6,.

From Equation (21) it follows that da’ # 0 mod a!. This establishes the last two
steps of the derived flag above. For the preceding step, we note that the form o is
given by

o? = Lodb,, — tan(f, — 0,_, )v,.
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This yields that df, is proportional to v, mod o?®. Consequently, we have that
da! = —v, A df, is equal to 0 mod a3. This establishes that

[ =l =)

I™-Y = gpan{a?,a?} =
I™ = gpan{a'} (26)
Itn+1)  — {0}.
For the i** step of the recursion proof, we assume that we have shown that
I"=#3) = gpan{al,o?,...,a’"}
' (27)

I™ = span{a'}
I~ = {0},

We need to show that do’ = 0 mod o',...,0""}, 0. To verify this it is useful to
have the following preliminary lemma:

Lemma 11. For the one forms v; we have that
dv,.; =0 mod o!,a?,..., o't (28)
Proof. Start first with dv, = d(cos8,dz, + sin 6,dy,):

—6in 8,df, A dz, + cos ,d0, A dy,
(sin 8,dz,, — cos 6,dy,) A db,
0 mod al.

dv,

mnu

Thus dv, = 0 mod o!.
From v,_; = v, sec(f, — 6,_,) it follows that

dv,_y = dv, sec(d, — 0,,_,) + sec(b,, — On—1) tan(b, — 6,_1)v, A (d6, — db,_,).

The first term is zero mod a! since dv, = 0 mod a!. The second term is zero mod
o? since v, is proportional to df, mod o? and the third term is zero mod a® since
v, is proportional to 6,,_; mod a®. Thus, we have that

dv,_; =0 mod a!,a? ab.
Proceeding recursively, we have that
dv,—; =0 mod a',a?,...,a't?,
which completes the proof of the lemma. [J
We will also need to make use of the relations:

do, =v, mod o?
db; = v, mod o"—+2 (29)
don_,'+2 = Uy mod a‘.

These follow directly from the definition of the of in Equation (23) and the linear
dependence of the one-forms v;, given in Equation (19).
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Continuing with the proof of the theorem, we now begin the calculation for

do' = d(Ln—i+2don—i+2 —tan(f_;12 — 9n-s+1)'0n-i+z)
= —8eC*(Bn—isa — Onis1)(dOn—isa — dBp_i41) A Vpoigs
—tan(Bn—iss — Onit1)dVn_iy2.

This express:on has three terms. By equation (28), we have that dv,_;., = 0
mod a',...,e’. Also by the proportionality of the df; to v, (29) and the linear
dependence of the v;’s (19), we have that do,._.+2/\v,.-,+, = 0 mod a and df,_;.; A
Vn—i+z = 0 mod o~!. Thus, we have that do’ = 0 mod a?,a?,... , o’ which implies
that the derived flag has the form

I+ = (o1 . &'},
as stated. O

We note that the I(**!) = {0} implies that the N-trailer system is completely
controllable (by Chow’s theorem).

3.2. Conversion to Goursat Normal Form. In the preceding subsection, we
have shown that the ideal generated by o!,...,a"*! defined in equations (18) and
(23) is adapted to its derived flag in the sense of (25). It remains to check whether
the o' satisfy the Goursat congruences and if they do, to find a transformation that
puts them into the Goursat canonical form.

Theorem 12 (Goursat Congruences for the N-trailer system). Consider the
Pfaffian system associated with the N-trailer system (24) with the one-forms of de-
fined by equations (18) and (23), repeated below:

al. (z) = sinb,dz, — cosb,dy,
a'(z) = Lyi+2d0p_ip3 — tan(0n itz — On_iy1 )
i=2,...,n+1.°

There ezists a change of basis of the one forms o to & which preserves the adapted

structure, and a one-form © which satisfies the Goursat congruences for this new
basis:
=i

d@* = -&"'Ar modal,...,a
da"*! # 0 mod I.

The one-form which satisfies these congruences is given by

i=1,...,n

7 = cosb,dz,, + sin8,dy,,
and is equivalent to v,, the velocity form of the n*® trailer.

Proof. The outline for the proof is first to determine a suitable one-form 7 from
the first Goursat congruence, da' = ~a® A 7. Then we construct the new basis
elements &' one at a time such that they satisfy the rest of the congruences. For
this example, we find that these new basis elements are multiples of the original
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basis elements, and since the original basis is adapted to the derived flag, the new
basis is also adapted.
We determine 7 by following the same procedure as in Example 2. We complete |_

cooon 6

the basis of {a!,...,a"*'} with

n+2

o = cosf,dz, + sinf,dy, = v,
n+3

44 = d00.

Note that a"+? = v,, the velocity form of the last trailer. We then set 7 = \,0™*2 +
A2a"*3 and solve for Ay, A; using

do' = —a’ A1 mod o.
Calculating the exterior derivative of a!,
da' = cos6,df, A dz, + sin 8,d0, A dy, = db, A v,, (30)
and then examining o? A 7,
a® Aw = (Lndf, — tan(f, - On-1)vn) A (M, + A2dbp),
we see that if we choose A, = 1,; = 0, then
& Ar=L,d, Av, = L,do".

We note here that we could have chosen A, = —1 /Ln, but instead we will define a
new basis element &* = —(1/L,)a’. Then the one-form 7 = v, will satisfy

da' = -a* A .

We now continue this procedure to find the rest of the transformed basis. Taking
the exterior derivative of &2,

ds* = d(~d8, + 7~ tan(By — Ou_y)un)
= Li sec’(0p — 0,1 )(db, — db,_,) A v, — :Ll—ta.n(o,, = 0,-1)dvy,

and noting that

vaAdl, = 0 mod &®
dv,

0 mod o!,

it can be seen that

da’ = _Li sec’(6, — 0,_,)d0,_, Av, mod o!,&>.

Also, since
a?® Am = L,._ldﬂ -1 A vy,

a choice of
3 1

*= LnLn—l

sec?(0, — 0,-)a®
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will result in the congruence:
da’= -a° A7 mod o', &>

Since the new basis we are defining is merely a scaled version of the original basis,
mod-ing out by o' or & is equivalent.
Continuing, we find

d&s = d(i secz(e,. ./ _1)d9,,_1 - 1 sec2(9,, - 0,;_1) ta.n(e,._l - ,._2)1),,_1).
Ln LnLn-l (31)

Referring to Lemma 11 and Equation (29), we see that the following congruences
hold,

db,Av, = 0 mod o®
db,_sAv, = 0 mod o®
dl, A db,_,
dv,_,

0 mod o?,0®
0 mod o!,a?, 03,

nm

and that using these, Equation (31) can be reduced to

da® = sec’(0p — On—1) 5ec*(0p—y — Op—3)d0,_3 A v,_, mod o!,a?,a"

LnLn-l

I sec®(0, — 0,1 ) sec®(0p_y — 0,_5)d0,_5 A v, mod o!,a?,as.
niin-1

In the second expression we have written v,_, in terms of v,. Also, a* AT =
L,_2db0,_s A v,, so if we define

=4

& 8ec®(0p — On—1) 5ec*(0py — O,_3)a?,

e S
- LnLn—an-Z

then the congruence

dé® = -a*Am mod o, &, ad
results.
In general, we assume that & has been defined as
i (=1y? i-1 i-2 2 . R
& = sec’~ (fp—1 — 0,,) 8ec’ (63 — O,—) - - -8€C (On-iys — On_ir3)a’.
I’n fe Ln—i+2 :

Using the congruences

dbn_iAdby_;y; = 0 mod o't? oft?
db,_; A v, 0 mod o't?
dv,_; = 0 mod o!,...,a't?,
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we can show that

S (=1 i-1 _ -2 _
do' =———~——sec*~1(0,-, — 0,) sec (0n—z — 6,-1)

om oo f o {om B o ]

Ln fe Ln-i+2

8C*(Bn—it3 — Onit2) 86c%(Onoipz — On_i31)d0n_s 41 A Vp_iss
mod o', &?,...,a"
(1)
Ly-+Lp_iya
8eC>(On—i43 — Onit2) Bec?(By_ipy — Onmig1)dOn_iy1 A v,

sec’ (01 — 0,) sec™ (Bp_g — B,_y) - -

mod o!,&?,...,&
=-a* Av, mod ',&,...,&.
All that remains now is to demonstrate that
da"*t' #£0 mod I.

From the above analysis, we know

d&n-f-l = L(——I)L sec”'“(o,,_l - 0,,) .. '8803(02 - 91) secz(al - 00)d00 A v,
TR A

mod o!,...,a"t!
which is nonzero. O
Now that we have shown that the one-forms of do satisfy the Goursat congru-
ences, we can follow the steps of the algorithm of Section 2 to find the coordinate
transformation that will result in Goursat normal form. Following Algorithm 1, in
step 2 we look for possibly non-unique functions f1, f2 which satisfy (10), namely
do' Aa' Adfy =0 o' Adfy £0
A A =0 T dfyAdf, #0.
Since o' = sind,dz, — cosf,dy, and do’ = — cos 0,dz, A db, —sinf, A d6,, it
follows that da' A ! = dz, Ady, A df,. Thus J1 may be chosen to be any function
of z,,yn, 0, exclusively. We now proceed to explain two different solutions of the
equations (10):
Transformation 1: Coordinates of the N** trailer. In a choice motivated by
Serdalen [32] we choose f, = z,. Then, the second equation of (10) becomes

8in 6pdz, Ady, Adfs =0
with the proviso that df; A df; # 0. A non-unique choice of f, is
f2 = yn.
For the change of coordinates, we choose

n= fi(z) =2,
Zns = fo(Z) =y

(10)
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The one form a! = 0 may be written by dividing through by sin 6, as

a! = dy, +tanb,dz,
= dzpy3 — Znyadz,

so that
Z”.'..g = —tan 0,,.

By the proof of Engel’s theorem, we now need to find a(z), 5(z) so that:

o = a(z)dzaes + b(z)d2, mod a!
= —a(z)sec?(0,)dd, + b(z)dz, mod al.

But o? = L,df, — tan(f, — 6,-,)v,. Hence, we have that

_ =L, _ —tan(6, —0,_,)
a(2) = sec2 0, b(z) = cosf, ’
and we may write
—b(z
an = dzn+2 - a(i))dzl.

Now, we define
Zouy = — b(z) _ tan(6, — 0,_,) cosé,
n+l «— a(z) - L" -

The remaining coordinates are found by solving the equations

o =dzy_ips — Zp_ipadz; mod a!,...,0f"!

for i > 2. The details are not particularly insightful and are omitted here.
Transformation 2: Coordinates of the origin seen from the last trailer.
Yet another choice for f, corresponds to writing the coordinates of the origin as seen
from the last trailer. This is reminiscent of a transformation used by Samson [31]
in a different context, and is given by

z := fi(z) = 2, cosb, + y, sinb,.

This has the physical interpretation of being the origin of the reference frame when
viewed from a coordinate frame attached to the n** trailer. It satisfies the first of
the equations of (10) simply by virtue of the fact that it is a function of z,, y,, ,.
It may be verified that a choice of f, (non-unique—we got it by guess work!) given
by
Zp43 = fa=2z,5in6, — y,cos b, — 6,z
satisfies
a' Adfy Adfy = 0.

The remaining coordinates z, .. . , 2,43 corresponding to this transformation may
be obtained from the same procedure as in the previous solution. The details are
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tedious.? In the next subsection, we discuss yet another technique for obtaining the
coordinates for the Goursat normal form.

3.3. Conversion to Chained Form. In the previous section, we described a
method for converting the N-trailer exterior differential system into Goursat normal
form. Recalling from Section 2 that the dual of Goursat normal form is chained
form, we now show how a similar procedure can be used to transform the the
nonholonomic control system corresponding to the N-trailer system into chained
canonical form.

We note that an exterior differential system on R" of codimension 2, given by

I ={a'(z),...,a""%(2)},
is dual to a two-input nonholonomic control system:

I: 2= g0(2)u+ 9s(2)us (32)

where the vector fields g;(z) span a 2-dimensional distribution A which is annihi-
lated by the one-forms o*: .
a'(z)-g;(z)=0.

When we transform an exterior differential system into Goursat normal form, we
only perform a coordinate transformation z = f(z). There is no input per se to
a formal exterior differential system, although we can speak of the two degrees of
freedom of the system, given by the distribution A = J*.

The procedure for transforming a nonholonomic control system such as (32) into
chained form requires both a coordinate transformation and state feedback. Al-
though for the most general case, a state feedback is given by

i = a(z) + b(z)u,

for drift-free nonholonomic systems it is easily seen that a(z) = 0. (If this were
not the case, the state feedback would add a drift term to a drift-free system and
could not result in a chained form.) The purpose of the state feedback & = b(z)u is
therefore to transform the basis of the distribution A into chained form in the new
coordinate system:
_ a 0 0
G1(2) = Fr +z3%+ “-+Zn-1a
a (33)
9x(2) = Fre
In this section, we follow through the calculations for transforming the nonholo-
nomic control system of the N-trailer problem into chained form. Although some
of the details are very similar to what has already been presented in Section 3.2, we
want to highlight the distinctions between the exterior differential and the vector
field formulations of the system, and we feel that an involved discussion is merited.

3Readers interested in the details of the transformation may obtain it from the first
author by email or regular mail.

o000 O
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First, we will find a basis for A = I* and show that the two vector fields which
we choose as the basis have a physical meaning in the multi-trailer robotic system.
We then consider the problem of putting the N-trailer control system into chained
form: given the two vector fields g;, g, and inputs u,, us, with the system defined
as

& = gi(z)u1 + ga(z)ua,
find a coordinate transform 2 = f(z) and an input transformation @ = b(z)u such
that the system

2 = g1(2)iy + g2(2)4s
is in chained form, i.e. §(2),§a(2) are of the form (33). We present the two coor-
dinate transformations which were defined in the previous section along with the
required input transformations, showing that as expected they result in a chained

form system, and we also demonstrate that these coordinate transformations are
local diffeomorphisms.

Proposition 18. Consider an N-trailer system with n+1 rolling constraints of = 0,

a'(z) = sinb,dz, — cosf,dy, =0
"7 (2) = Lipadfiy —tan(fiyy — 6)i4 =0 i=0,...,n—1,
where the v; are as specified in (19). A basis for the distribution A which is anni-
hilated by these one-forms {a*,...,a*'} is given by

cos 8, 0
sind, 0
T tan(f,-, — 6,) 0
9 = . 92= 1 .
Ll_l H?=2 896(0'_1 - 0.) tan(oo - 91) 0
i 0 . | 1]

Proof. For the proof, we will derive the constraints o in a different way than was
done in Section 3.1. The set of constraints that we use here comes from the condition
that the pair of wheels on the #*® trailer cannot slide sideways; see Figure 4 for the
definition of the variables associated with the i*® trailer. The linear velocity of the
i*® body is v; = #; cos 0; + 9 sin 6; and the velocity of the trailer in the direction
perpendicular to the wheels is v;* = &;sin 6; — §; cos 6;. The non-slipping constraint
requires that v = 0.

As stated in the beginning of Section 3.1, (z;,;) can be expressed in terms of
(zrn Yn, 0’1’ te 0:'):

Z; = 2y + Liyicosb;y,
Ys Yi+1 + Liyysin 6,4,

to determine that
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FIGURE 4. The i** body, showing the velocities. The velocity v; is
defined to be in the same direction the wheels are pointing, and so
the velocity perpendicular to this direction, v, must be zero if the
rolling constriants are to be satisfied.

v} = &, 8in 0; — §, sin 6; — 3" Licos(8; — 6, )6,
k=i+1

Once again we will abuse notation and also use v} to refer to the one-form:

v = sin 6;dz,, — sinGidy, — 3 L, cos(6; — 0;)db;.

k=i+41
Remark 2. The one-forms defined by these velocity constraints
W= v,'l‘_,-“ =0, i=1,...,n+1

are also adapted to the derived flag. Indeed, since the one-forms of as defined in
Equation (23) are adapted to the derived flag, and the relations between the ' and
the o' are “triangular,”

=1
W' =o'+ ciaf,
k=1
for some coefficient functions cf, it follows that the w* are adapted to the derived
flag as well.

Because {w!,...,w"*+!} form an n + 1 dimensional co-distribution © on T*M ,
there exists a 2-dimensional distribution A on M which is annihilated by . A
basis for this distribution is given by two linearly independent vector fields g,, g,
which satisfy:

W'(z)-gi(z)=0 Vi=0,...,n, j=1,2.
Since none of the w* have a term dfy, one of the vector fields in A can be chosen to
be

gz=a—oo-
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It can be verified that choosing the other vector field

6 . 0 n 1 n a
g1 = cos 0,,% + sin o"c'i_y,, + ; L—ktan(ok_l - 9;,)‘.::[11 sec(6;_, — 0,-)80':

will result in w*-g; = 0 Vi. In a more familiar notation, these two vector fields are
written as

i cosf, ] F 0]
sin 6, 0
E% ta.n(0,._1 —-— 0") 0
= . 2= .1,
- [T sec(f;_, — 6;) tan(8, — 6,) 0
X 0 | | 1]

where the coordinates are written in the order z = (2, ¥n, 0, ... , o).

Although there are many different choices of g;,g, which will span A, the two
which we have picked are natural in the sense that when the nonholonomic control
system is written as:

& = g1(z)uy + go(2)us

the input functions have the physical meanings: u, = v, is the linear velocity of the
n** trailer, and u, = w is the rotational velocity of the lead car. From a practical
point of view, we have control only on the velocity v, of the lead car given in terms
of v, by

vo = sec(6p — 0,) sec(f; — 6;) - - -sec(f,—; — 0,)v,.

This is merely an input transformation, and will not change any of the properties
of the chained form system. [

We will now derive the coordinate transformations and changes of input required
to put the system into chained form, as was discussed in Section 2.7. Recall that a
system in chained canonical form is defined to be

‘él = U

ZZ = U

3 = 2w
é’m = Zp-1%.

We note that the functions z(¢) and z.,(t) will completely define all the state
variables of a chained-form system,? since the other m — 2 states and the two inputs

4As this paper was being finished it was pointed out to the authors that this situation is
referred to by Fliess et al. as flat outputs [11].
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can be determined from the equations:

U = 4
2 = é.-+1/u1 i=m—1,...,2 (34)
Uz = 2.'3.

Consequently, a coordinate transformation into chained form is completely defined
by the first and last coordinates of the chain, z; and z,,, as functions of the original
coordinates z along with equation (34). (The fact that such a transform exists
follows from our having verified the Goursat congruences for the o in the previous
subsection.) It does need to be checked that the transformation which results from
equation (34) is a valid diffeormorphism. In general, there are many possible trans-
formations into chained form; two are presented here. These two are exactly the
same as those discussed in the previous subsection in the context of the Goursat
normal form.

Transformation 1: Coordinates of the N** trailer. Originally proposed by
Serdalen [32], and also used in the previous section, is as follows:

5 = 24

Zn43 = Yno
The corresponding input transformation is:
U = 2 = co8f,v, = cos(p — ;) cos(; — 0;) - -cos(f,-, — 0, )vo.

The other input %, = %, is a quite complicated function of z, Vg, w for the general
case with n trailers. However, it is easily verified that

0u
8_(.: # 0,
implying that the input transformation % = b(z)u is nonsingular. The remaining
coordinates z = f(z) are defined using equation (34); Mathematica code which
generates these coordinates symbolically is given in Appendix A.

It can be checked that this coordinate transformation is valid by looking at the
Jacobian,

1 0]0 0

0 1(0 --- 0
[Q]=00* 0
0z : )

_00* *J

where the coordinates are written in the order: z = (ZnsYny OnyOniy. .. ,6p), 2 =
(21, Zn43, Zn42, - . - , 22) and * represents any nonzero function. The ordering of the
z coordinates was chosen to put the Jacobian matrix in a lower-triangular form,
thereby highlighting its nonsingularity. That the Jacobian is nonsingular implies
that the map f: 2z — z is a local diffeomorphism.

(= =l =f=i= =]
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It should be noted that this coordinate transformation is only defined locally.

Since its definition requires a division by u,, if any of the factors in u, are zero,
the transformation is undefined for that particular configuration. For example, if
6 = m/2, corresponding to the last trailer being at right-angles with the coordinate
frame, this coordinate transformation is no longer valid. In addition, if the i** trailer
is jack-knifed, that is to say, for some 1 < i < n, 6; = 6;_; £ 7/2, the coordinate
transformation is also singular.
Transformation 2: Coordinates of the origin as seen from the last trailer.
Another coordinate transformation which also has some singularities but will allow
the trailer to be at any orientation with respect to the coordinate frame, was also
detailed in the previous section in the forms version; we define it here as:

2 = gz,co80,+y,sinb,

2n43 = Z,8in0, — y,cosb, —0,2.

The input transformation and the rest of the coordinates follow from Equation (34),
Mathematica code which generates both the coordinate and input transformations
is given in Appendix A. Once again, it can be verified that the input transformation
has the form:

(a)=0l) aial(2)

with b, ; and b; ; nonzero functions of z. This implies that the input transformation
is nonsingular.

We can show that this coordinate transformation is nonsingular by looking at its
Jacobian:

[ cos8, sinf, = |0 0
sinf, —cosf, =*
[ Q ]= 0 0 =110 0
0z’ 0 0 * | * 0
|0 0 * | * * |

where the coordinates are written in the order: z = (ZnsYns0nyOn-1y...,6p) and
z = (21,2043 Zn42,++ , 23) and * represents any nonzero function. Again, since
the Jacobian is nonsingular, the map f : z — z is a local diffeomorphism. The
singularities in this transformation also occur when division by u, is undefined.
This happens when the expression

Ly + (ycosf, — zsinb,) tan(d, — 6,.,) = 0,

and also when any of the trailers is jack-knifed.
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FIGURE 5. The front-wheel drive car with n trailers. This model is
similar to that of Hilare 2 with an extra axle added to the front of
the first body in the chain.

3.4. Generalizations. Thus far, we have concentrated our attention on the ex-
ample of the Hilare mobile robot pulling a chain of trailers. In this section we
demonstrate that this model is equivalent (under a coordinate transformation and
state feedback) not only to the more familiar system of a front-wheel drive car
pulling trailers, but also to the luggage trains commonly found in airports.

The model of the front-wheel drive car is shown in Figure 5. In comparison with
the Hilare model, we have added another axle to the front body of the chain, and
a variable ¢ representing the angle of the front wheels with respect to the car. The
length of the wheelbase of the lead car is defined to be L.

The equivalence between the two models is most easily seen by looking at the
form constraints. Each constraint corresponds to one axle rolling without slipping.
Hilare with n trailers has n + 1 axles; the car with n trailers has n + 2 axles, and
its Pfaffian system is therefore equivalent to that of Hilare pulling n + 1 trailers.

Of course, the states and inputs that we define for the car system are slightly
different. By convention, we define the angle of the front axle relative to the car
instead of relative to the coordinate frame. This angle ¢ is merely 6, — 6, on the
Hilare system. The velocity input is the same, assumed to be the linear velocity
of the first body (we can define it at either the front or rear axle depending on
whether our car is front-wheel drive or rear-wheel drive), but the rotational input
is usually taken as w’ = ¢ the steering wheel velocity. Since in the Hilare case, we
can control the velocity of the first body w = 8, state feedback can be used to
reconcile these differences. As mentioned in the proof of Proposition 13, there are
many choices of vector fields orthogonal to a given Pfaffian system with each choice
having a different physical meaning.

The luggage carts used at most airports are also equivalent to the Hilare model.
Each trailer on the luggage cart train has two sets of wheels; the front axle can
spin freely about its center but the back axle is constrained to be aligned with the
trailer (see Figure 6). Here again we have defined the angles of the front wheels
with respect to each trailer, but looking at the form constraints it is easily seen
that the cab with n luggage trailers is equivalent to a front-wheel drive car with 2n
one-axle trailers. Again, a coordinate transformation is needed, since in the model
of the luggage carts we define the angle of the front wheels of the trailers relative
to the trailer instead of relative to the coordinate frame.

coooc o




32 TILBURY, MURRAY, SASTRY

FIGURE 6. A car pulling n luggage carts. Each trailer has two axles;
the front axle is free to spin about its midpoint but the rear axle is
constrained to be aligned with the body of the trailer.

4, STEERING CHAINED FORM SYSTEMS

Now that we have seen how to transform an N-trailer system into chained form,
we examine various methods for steering chained form systems:

2:'1 = w0

Z-'g = 1Us

Z3 = 2ty (35)
Z.m = Zp-1lYs.

We assume an m-state system, and note that Hilare with n trailers has n+ 3 states,
a car with n trailers has n + 4 states, and a car with n luggage trailers has 2n + 4
states.

The problem that we address in this section is: Given a system in chained form
with an initial state 2° and a goal state 2/, find some control inputs (), ua(t)
which will steer the system from 2° to 2/ after some time T. The application of
these results to the problem of steering the mobile robot with multiple trailers is
covered in the next section.

We present three methods to steer the chained form system:

(1) Sinusoidal inputs
(2) Piecewise constant inputs
(3) Polynomial inputs

4.1. Sinusoidal inputs. The first steering method that we consider uses sinu-
soidal inputs. Steering chained form systems with sinusoids was originally proposed
by us in [29]. The method that we have developed here is different from the original
algorithm in that it steers all the states in one step, instead of one state at a time.

Given an m-state chained form system, it is easily seen that the first two states, z;
and z3, can be steered from their initial to their final positions using constant inputs
over any time period T'. Of course, the states zs,... , 2,, will drift as a consequence
of this.
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By direct integration, it may be verified that a combination of out of phase
sinusoids applied to the inputs,

ul(t) = asinwt ‘Uz(t) = ﬂCOS wt =] (= =1=1=1=R=)

over one period T' = 27 /w, will cause a motion in the z3 variable as follows:
zn(T) = x(0)
z(T) = 2(0)
ap
#(T) = #5(0)+ 2.

The states 24,...,2, will drift in some fashion. Further, using inputs with u,
having k times the frequency of u,, namely:

() = asinwt uz(t) = B cos kwt

applied over one period T = 27 /w, will result (as may be verified directly by inte-
gration) to be

z2(T) = =z(0)

ze41(T) = z41(0)
ofp

243(T) = 2142(0) + R

The intuition behind this steering scheme lies in the different levels of Lie brackets.
If we consider the input vector fields 91, 932, we note that [g,,¢;]) = [0010-. -0]7,
precisely in the z3 direction. Motion in this first level Lie bracket is generated by
cycling between the two input vector fields in a continuous manner described by the
out of phase sinusoids. To get motion in the second level Lie bracket, [g1,[91,92]] =
[00010---0)7 or equivalently the z, direction, the input u, completes two cycles
for one cycle on u;. More generally, motion in the ad:‘ gz = [0--+1..-0]7 or the
Zx42 direction is achieved by using k times the frequency of %, on u,.

The Murray and Sastry steering algorithm is step-by-step: It first steers z;, 2,
to their final position using constant inputs, disregarding the other states. Then it
steers z3 to its desired final position using sinusoids, 2;, 2, will return to their final
values. Now z, can be steered, and similarly on down the chain, until all states are
at their final positions. This is a simple algorithm that is easy to implement, but
can be time-consuming when there are many states to be steered.

We propose instead an “all-at-once” sinusoids method, combining all the frequen-
cies on u; together in one step,

% = ag+ a;sinwt
Uz = bg+bcoswt+bycos2wt+ -+ b,y cos(m — 2)wt. (36)

It is no longer as simple to choose appropriate values for the parameters (ay, a,, by,
-+ ybm—2) because of the drift that we were able to ignore when we considered
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each state individually. However, it is still possible to integrate the chained form
equations sequentially, finding 2(t), 23(2), 23(2), . - - , 2m(t) Which result from the in-
puts (36) above. The state z(t) is a function of the initial condition 2° as well as the
input parameters ay, a;,bo, ... ,bn-2. If we evaluate 2(T), with T = 27 /w, all the
sinusoidal functions will evaluate to either 0 or 1. By setting 2(T) = 2/ we get a set
of m polynomial equations in the (m + 1) input parameters (ao, ay, bo, . . . »Om—2).
The following proposition guarantees the existence of solutions to these equations
at least locally around 2°.

Proposition 14. Consider an m-state chained form system with initial and final
states 2%, 2/, If|2°—2’| < 6 small, then there ezist input parameters (o, ay, by, . . . , bm-2)
such that the inputs

% = @ap+ a;sinwt

uz = bo+ by coswt + bycos 2wt + -+ + b3 cos(m — 2)wit
will steer the system from 2° to z/ in time T = 27 /w.
Proof. Consider the map

¢z0 : R™ — R™

which takes values in the parameter space (ag, by, - - . ,b,,) and maps them to values
in the state space (2{,..., /). We define ¢,0(ay, by, ... , b,) to be the value of 2(T')
when the chained form system (35) is integrated starting at the initial condition 2°
and applying the inputs (36) over the time period [0,T]. We choose a; # 0. We
will show that ¢,. is a local diffeomorphism by looking at its directional derivatives,
and demonstrating that the Jacobian of ¢,. is nonsingular.

Let {e;}iZ, be the standard basis for R™ and let € be small. Set a; # 0. Now
consider the input parameterized by ee,,

%, = €+ a, sinwt uy = 0.
Integrating the chained form equations and evaluating it at time T will give
Pz0(€er) = 2° + [T 0 ofe)---o(e)]T

where o(¢€) represents terms that are of linear and higher order in e.
Now consider the input parameterized by ee,

u; = a, sinwt Uy = €.
We integrate and evaluate at T as before,
$:o(€e3) = 2° + [0 €T o(e)---o(€)]”.

In this case it may be verified that o(¢) terms are linear in €. In general, for an
input parameterized by ee;,

2 = @y sinwt  uy = ecos(k — 2)wt,
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FIGURE 7. The inputs and state trajectories for a six-state, chained
form system, steering from (-10,-7,-2,2,4,8) to the origin. The input
¢, is sinusoidal of one period; u, is a sum of sinusoids, of which the
highest frequency is 4w.

the directional derivative of ¢ in the e, direction is given by:
$o(eer) = 2°+[0---0 p(e) o(e)---o(e)]T,

where

ar~%¢

P9 = F )y

These m directional derivatives are seen to be linearly independent; implying
that the Jacobian of ¢,. is nonsingular, and that ¢,o is a local diffeomorphism. [J

Remark 3. We have dealt with the overparameterization of the input (m + 1 pa-
rameters: ao,ay, b, ... ,bm—3 and m states) by initially choosing a value for a, and
then solving the m equations for the remaining m input parameters.

We note here that by choosing a fixed value for a;, we are requiring u; to go
through one period. Since u; roughly corresponds to the driving input in a mobile
robot system, paths planned using the sinusoidal method generally have one back-
up or speed reversal, corresponding to the zero-crossing of u;. Parallel-parking type
maneuvers seem particularly well-suited to sinusoidal trajectories.

Remark 4. Appendix A contains Mathematica code which symbolically integrates
the chained form system and solves for the input parameters @o, b0y ... bm_g in
terms of a,,w, and the initial and final states 22, 2/.

A sample of the input functions and state trajectories for a sinusoidal steering
problem is shown in Figure 7. There are six states, in chained form, steering from
an initial position of (21, 2, 23, 24, 25, 25) = (~10,-7, -2, 2,4, 8) to the origin. The
parameters were chosen to be T = 10 seconds and a, = 67.—".

4=a= (=]




36 TILBURY, MURRAY, SASTRY

4.2. Piecewise Constant Inputs. The second method we investigate for steering
chained form systems uses piecewise constant inputs. This method was originally
proposed by Monaco and Normand-Cyrot [26], and was inspired by multirate digital
control. It is most easily understood in the context of nonholonomic motion planning
simply as piecewise constant inputs.

Consider holding the inputs u;, and u, constant over some small time period [0, §),

D= . Te0D

The chained form state equations can then be integrated, and evaluated at time &
to yield

Zl(s) 21(0) + ul,ls
23(5) = 22(0) + 11,2,15 _

_ - 6
23(8) = 23(0)+ 23(0)uy 16 + u1,1“2,1?

m—1

- - )
Zm(6) = 2zm(0) + Zn-1(0)u1 06 + -+ - + ug Uy 2m- (37)

We can now consider another pair of constant inputs on the time interval [6,28),

ul(r) = ul'g Z oF
'llz(T) = 11.3,2. TE [6, 26)

Integration of the state equations gives us z(28) as a function of 2(5), u, 3, 45 5. Using
z(6) from equation (37), we get an expression for #(26) in terms of 2(0), uy,y, uy 4,
U3,15 Uz,3. This procedure of piecewise integration and substitution can be repeated
as many times as necessary.

For path planning, we choose to keep u, at a constant value over the entire
trajectory. We therefore iterate the equations (37) m —1 times so as to have exactly
m parameters for which to solve: u;,u3,,...,%m-1. The total time needed for
steering is § = (m — 1)§. Although 6 can be chosen arbitrarily, a smaller time § will
result in larger inputs u to achieve the same path.

The m equations which result from setting z(0) = 2° and 2(§) = 2 are polynomial
(of order m~2) in u; but are linear in U219« -+ y Uz m—1. SiNce ¥, is easily determined
from
2] - 20

)
the remaining m — 1 linear equations can be solved for u; quite easily. This is
one of the reasons that we propose keeping u, constant over the entire trajectory;
if u, varied, we would need to solve high-order polynomial equations in the u,;
parameters.

U =
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FicuRe 8. Sample inputs and state trajectories for steering a six-
state chained form system with Piecewise Constant inputs. The
initial position is (-10,-7,-2,2,4,8) and the goal point is the origin.

Remark 5. Appendix A contains Mathematica code which will symbolically inte-
grate the chained form equations, and solve for the input values Uy, Uz in terms of
the initial and final states z°, 2. The code is written for a six-state system, but the
generalization to any number of states is straightforward.

It should be noted that if z/ = 20, or the initial and final states agree in the first
coordinate, this method as stated so far will fail to yield a solution. From looking at
the chained form equations, it is obvious that if u, = 0, only the second state z, can
move; all other states must remain stationary. In practice, this case is dealt with by
planning two paths, the first of which takes the initial condition to an intermediate
state, the second of which joins the intermediate state with the goal position. The
concatenation of these two paths is a valid trajectory between the start and goal.
Our algorithm chooses the intermediate point 2™ halfway between the initial and
final points in all coordinates except the first, which we choose to be offset from the
starting position by a constant amount,

7 = (=202 k=2..,m
2 = 2z} + const.

The constant offset can be adjusted to fit the situation.

The procedure detailed in the previous paragraph is used when a parallel-parking
trajectory is desired for the mobile robot with trailers, since the 2! direction in
chained form corresponds to “sideways” in the original coordinates. We have found
it practical to choose the constant offset at approximately twice the length of the
entire robot and trailer system. A smaller offset will result in tighter turns and
more lateral motion. If there are obstacles in the field, this constant offset gives a
parameter that can be adjusted in an effort to avoid collisions.

Another reason for choosing u, to be constant over the entire trajectory is that in
the mobile robot and trailer system, this input is roughly equivalent to the driving
velocity. Because of the coordinate transformation that maps u; to the actual

@‘%i:cca [=)
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velocity vo, the actual velocity of the robot will not be constant, but in most cases
it will not cross zero and change sign. This means that the robot will not have to
execute backing-up maneuvers to achieve its final goal position.

The main drawback of the piecewise constant inputs is the discontinuity of u,.
The models used in this paper are purely kinematic using as inputs the driving
and steering velocities. In a real robot system, the inputs are not velocities but
accelerations, or torques. When a path satisfying the velocity constraints is found,
the input velocities need to be differentiated to find the corresponding accelerations.

Of their very nature, the piecewise constant tra, jectories are not differentiable at the
switching points.

4.3. Polynomial inputs. Yet another possibility for steering systems in chained
form is to use polynomial inputs:

2 = 1

U3 = Cot ittt Cmogt™

This approach has the advantage of a constant input on u; with the added advantage
of the differentiability of u,.

The time needed to steer the system from 2° to 2/ is determined by the change
desired in the first coordinate,

T=z -2

Once T has been found, the state equations (35) can be integrated using the initial
condition z(0) = 2°,

z(t) = z2(0)+t
-t2
z(t) = 2(0)+cot + c1T+ ceed

Cm_gtm_l
m-—1

m-2 k!ckti-i-k-l i=1 -k

Z;(t) = z,-(O) + m + ; '(z_—k)lzk(())

k=0

Evaluating the foregoing at time 7' and setting 2(T) = 2/ yields a total of m — 1
equations affine in the m — 1 variables ¢y, ... , cp_s,

M(T) + £(2(0),T) =

Cm-2 2,{‘

- S8y
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FIGURE 9. Sample trajectories and input traces for steering with
Polynomial inputs. The initial position is (-10,-7,-2,2,4,8) and the
goal point is the origin.

where the matrix entries M; ;(T) have the form:

G-y
A WY

It may be shown that this matrix is nonsingular for T' # 0.

Note that if 2/ — 2} < 0, then we get a solution which gives a negative time
period. This situation is easily remedied by choosing u; = —1 (see Appendix A for
the Mathematica code which solves this problem).

As in the case of steering with piecewise constant inputs, this method will yield
10 solution when z{ — z0 = 0. We follow the same procedure outlined in Section 4.2
to deal with this case.

4.4. Other choices. Because of the simple form of the chained form system, many
different classes of input functions other than the three described above could be
used to steer systems in this form. The chief requirement is that there should be at
least as many parameters in the input functions as there are states. For multi-trailer
systems, a desirable characteristic of the input functions is that u;, have few or no
zero-crossings since these will correspond to fewer backups. In fact, the number of
backups needed to complete a manoeuvers may be taken as a measure of complexity
of an input class.

5. SIMULATIONS AND OBSERVATIONS

We now have an extensive toolbox from which to choose for steering an N-trailer
system. With two different coordinate transformations into chained form, and at
least three different methods for steering the system once it is in chained form, we
can try to pick the best combination of coordinate transformation and input type
for each start and goal point. There is as yet no formal way to define when one path
is “better” than another, but as we mentioned earlier, we tend to think of desirable
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paths as those that have few backups and do not stray too far from the vicinity of
the start and goal points.

One of the things that must be considered is coordinate singularities. Although we
have shown that all three methods proposed here will find a path between any start
and goal points in the chained form coordinates, there is no guarantee that this path,
when transformed back into the actual coordinates, will avoid the transformation
singularities. This must be checked for each desired path. If a singularity does result,
another steering method might yield a valid path, or perhaps an intermediate point
will need to be chosen, and the path planned in two or more steps.

In Figures 10 and 11, we show two different paths for a front-wheel drive car with
two trailers. We have chosen the wheelbase of the car to be L, = 0.5 units, and
each trailer to have a length of L, = L3 = 2 units. Each path was generated using
techniques described in this paper: first, transforming the start and goal points into
the chained form coordinates; second, steering the chained form system using one
of the methods from Section 4; and finally, transforming the trajectory back into
the original coordinates.

The trajectory shown in Figure 10 represents the truck backing into a loading
dock. The initial condition is (z3, ys, 03,03, 0:,0,) = (10,10,0,0,0,0) and the final
position is (0,0,%,%,%, I). Coordinate transformation 2 is used, since the first co-
ordinate transformation is singular at the goal position. In the figure, we have
presented the trajectory of the front of the car (zo,%o) instead of the back of the
second trailer (z3,ys) to amplify the difference between the two steering methods;
the trajectories of the second trailer are virtually identical.

In Figure 11 we again have chosen to present the path taken by the front car.
Here we have used two different coordinate transformations with the same steering
method. The trajectories in the chained form coordinates are identical; however, a
difference can be seen in the physical coordinates. Once again, the trajectory traced
by the rear of the second trailer is very similar in both cases. Some scenes from a
movie animation of this trajectory are shown in Figure 12; in the movie we present
the coordinates derived from transformation 1.

With the sinusoidal steering method, there is one parameter that can be adjusted
independently of the start and goal positions; this is the magnitude of the sinusoid
on the first input, or a, in the terminology of Section 4.1. In constructing this movie,
we examined several different values of a,; a larger value of a; will correspond to
the car driving out farther before it starts backing into the space. We were able to
choose a value for this parameter so that the car and trailer system did not hit any
of the obstacles along its path.

6. SUMMARY AND FUTURE WORK

In this paper we applied the machinery of exterior differential systems to the N-
trailer problem. We showed that the multi-trailer system could be put into Goursat
normal form, and that this is the dual to chained form. We solved the motion
planning problem for the mobile robot pulling » trailers by converting the kinematic
equations into chained form, and steering the chained form system from and initial
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FiGURE 10. Backing a car with two trailers into a loading dock. We
show here trajectories found by two different steering methods for
the same initial and final conditions. The solid line corresponds to
the piecewise constant inputs and the dashed line to the polynomial
inputs. The z,y trace of the front of the car is shown, since the tra-
Jjectory of the rear trailer is virtually identical in the two cases. Both
trajectories use the second coordinate transformation. The input v,
is the dotted line in both graphs. Clips from a movie simulation of
this trajectory can be seen in Figure 13 and the movie can be viewed
on the left hand pages of this paper.

Path taken by the car

16

FIGURE 11. Parallel-parking a car with two trailers using sinusoids.
the trace of the front car is shown for two different choices of coor-
dinates: Transformations 1 (solid line) and 2 (dashed line). We also
see how the steering input differs on with the two transformations,
although for this path, the driving input v, (dotted line) is similar
in both cases.
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FIGURE 12. Scenes from a movie animation, showing the front-wheel
drive car with two trailers (a six-state system) parallel-parking in the
presence of obstacles. Sinusoidal inputs were used for steering, and
the magnitude of the periodic part of the driving input (a; in the
terminology of Section 4) was adjusted so that the obstacles were
avoided. The first coordinate transformation was used. The entire
movie animation can be seen on the right-hand pages of this paper.
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FIGURE 13. These are scenes from a movie animation, showing the
front-wheel drive car with two trailers backing into a loading dock.
Piecewise constant inputs were used to steer the chained form sys-
tem. The entire movie simulation can be viewed on the left-hand

pages of this paper.



44 TILBURY, MURRAY, SASTRY

to a final position, then converting the trajectory back into the original coordinates.
Three different methods for steering chained form systems were proposed.
The work done in this paper has several natural avenues of continuation:

(1) The generation of trajectories for the N-trailer system in an environment
cluttered with obstacles. This line of work has been started in [25] where
the authors considered the motion of a single Hilare-like robot in a clut-
tered environment. Another approach for a Hilare-like robot was defined
in [23]. Other methods for obstacle avoidance which use optimization based
approaches may be found in [8, 9).

(2) The stabilization of open loop trajectories. The trajectories generated by
our method need to be stabilized, perhaps using a technique such as that
outlined in [36]. There has also been considerable interest in stabilizing
nonholonomic systems not to trajectories but to points. Although from
Brockett’s necessary condition [3] it follows that such stabilizing control laws
cannot be both C° and time-invariant, methods using either discontinuous
or time-varying feedback have been suggested. One approach to stabilizing
chained form nonholonomic systems is given in [34].

(3) Generalized Goursat type canonical forms for exterior differential systems
for higher codimension systems are discussed in [12, 27] and were useful in
transforming to chained form a firetruck system. The firetruck has three
inputs: driving and steering in the front and another steering wheel at the
tiller [5] (multi-input chained form systems are also discussed in [29]). This
work is as yet far from complete since there is a very large number of different
possibilities for the normal form in this instance.

(4) There are several examples of nonholonomic systems whose constraints fail
to meet the conditions of the Goursat normal form, for example, the system
modeling a circular finger tip rolling on a planar face [29]. The problem of
steering such systems remains an open one. .
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APPENDIX A. MATHEMATICA CODE
(* 3trailer.m D. Tilbury November 30,1992

* Defining the coordinate transformation for the system of Hilare D.eesn coeon o
* with three trailers (equivalent to a car with 2 trailers).
*)

(* Definitions of the gradient, Jacobian, and the state vector *)
grad[x_,vect.] := Table[D[x,vect[[jj11],jj,Length[vect]l];

Jac[x_, vect.] := Table[D[x[[il],vect[[j]1]],i,Length[x],j,Length[vect]];
q = {x,y,th3,th2,th1,th0};

(* The input vector fields g1 and g2 *)

gl ={Cos[th3], Sin[th3], Tan[th2-th3]/L3, Tan[thi-th2] Sec[th2-th3]/L2,
Tan[thO-th1] Sec[thi-th2] Sec[th2-th3]/L1 , 0 };
g2={0,0,0,0,0,1};

(* The derivative of the state: the two inputs here are vn, the linear
* velocity of the last body, and omega, the rotational velocity of the
* first body (Hilare)

*)

dg = g1 vn + g2 omega;

(* First define z1 and 26, the first and last chained form coords. %)
(* Coordinate Transform 1 *)

zl = x;

26 = y;

(* Coordinate Transform 2
z1 = x Cos[th3] + y Sin[th3];
26 = x Sin[th3] - y Cos[th3] - th3 z1; *)

(* ul is then the derivative of z1, and we coax Mathematica to apply
* a useful trig identity *)
ul = grad[zi,q).dq /. a- Sin[x]"2 + a_ Cos[x.]"2 -> a;

(* Define z5, z4, 23, 2z2 from the derivatives of z6, 25, z4, z3 %)

25 = Together[Expand[grad[z6,q].dq/u1l];
z4 = Factor[grad[z5,q].dq/ull;

23 = Together[grad[z4,q].dq/ull;

22 = Together[grad[z3,q].dq/ull;

(* then find u2 = dz2 *)
u2 = grad[z2,q].dgq;
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(* sinusoids.m D. Tilbury November 17, 1992 ,
* Here we take a 6-state system in single-chained, 2-input form
* and steer it with sinusoids in one step (over one period).

*)

(* Set up the initial and final points *)
x0 = {x01,x02,x03,x04,x05,x06};
xf = {xf1,xf2,xf3,xf4,x£5,x£6};

(* Choose the inputs to be sums of sinusoids *)

uift] := a0 + al Sin[w t];

u2[t.] := b0 + bl Cos[w t] + b2 Cos[2 w t] + b3 Cos[3 w t]
+ b4 Cos[4 w t];

(* Calculate the states as functions of time %)

ete[k_] := Expand[k, Trig->Truel;

x1[t.] := x0[[1]] + Integrate[ul[tau],tau,0,t];

x2[t] := x0[[2]] + Integrate[u2[tau],tau,0,t];

x3[t.] x0[[3]] + Integrate[ete[ui[tau] x2[taul],tau,0,t]
x4[t.] := xO0[[4]] + Integrate[ete[ui[tau] x3[taul],tau,0,t]
x5[t.] := xO[[5]] + Integrate[ete[ui[tau] x4[taul],tau,0,t]
x6[t.] := x0[[6]] + Integrate[ete[ui[tau] x5[taul],tau,0,t]

.
noonnaoan

(* Set the time period to be T *)
T = 2 Pi/w;

(* The coefficients a0, b0, and bl can be solved for individually.

* Due to interference, the coefficients b2, b3, and b4 must be

* found together. All of these coefficients will be in terms of

* w and al, both of which are free.

*)

Solve[x1[T]==xf1,a0] >>> ss_inputs.m

Solve[x2[T]==x£2,b0] >>> ss_inputs.m

Solve[x3[T]==xf3,b1] >>> ss_inputs.m

Solve[{x4[T]==xf4, x6[T]==x£5, x6[T]1==x£6},{b2,b3,b4}] >>> ss_inputs.m
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(* Piecewise.m D. Tilbury November 17, 1992

* Here we take a 6-state system in single-chained, 2-input form
* and steer it with Piecewise constant controls over 5 steps,

* d = deltabar = delta/5

*)

D EE0 oo on 8

(* First calculate the states after one step, using constant controls
*)

x1[i] := x1[i-1] + d ui[i];

x2[i] := x2[i-1] + 4 u2[i]l;

x3[i.] := x3[i-1] + d x2[i-1] ui[i] + d~2 w2[i] u1[il/2;
x4[i] := x4[i-1] + d x3[i-1] u1[i] + d~2 x2[i-1] ui[i]~2/2 +
d~3 ui[il~2 u2[i]/3!;

x6[i] := x5[i-1] + d x4[i-1] ui[i] + d~2 x3[i-1] uwi[i]~2/2 +
d~3 x2[i-1] u1[i]~3/3! + d~4 ui[i]~3 u2[il/4!;

x6[i] := x6[i-1] + d x5[i-1] ui[i] + d~2 x4[i-1] ui[i]~2/2 +
d°3 x3[i-1] u1[i]~3/3! + d~4 x2[i-1] ui[i]~4/4! +

d°5 ui[i]l~4 u2[il/s5!;

(* Then we iterate for § steps, *)
x1T = Expand[x1[5]];

x2T = Expand[x2[5]];
x3T = Expand[x3[5]];
x4T = Expand[x4[5]];

x5T = Expand[x5[6]];
x6T = Expand[x6[5]];

(* We define ul to be constant over all § time periods *)
uif2] := ui[1]; wi[3] := ui[1]; ui[4] := uif1]; ui[5] := ui[1];

(* And now we solve for the input magnitudes *)
Solve[{z1T == xf1},{u1[1]}] >>> pc_inputs.m

(* We know that xiT are linear in the inputs u2[i], namely

* final = Matrix.input2 + constant

* 80 we set goal = final and solve for the magnitudes of input2:
* solution = Inverse[Matrix].(goal - constant)

*)

input2 = {u2[1], u2[2], u2[3], u2[4], u2[6]};

final = { x2T, x3T, x4T, x5T, x6T };

goal = { xf2, x£3, xf4, xf5, x£6 };

Matrix = Jac[final,input2];

constant = final - Matrix.input2;

solution = (Inverse[Matrix].(goal - constant)) >>> pc_inputs.m
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(* polynomial.m D. Tilbury January 14, 1992

* Here we take a 6-state system in single-chained, 2-input form
* and steer it with Piecewise constant controls over § steps,

* We do two cases: ul =1, ul = -1;

*)

(* Set up the initial and final conditions *)
x0 = {x01,x02,x03,x04,x05,x06} ;
xf = {xf1,x£2,x£3,xf4,x£6,xf6};

(* Choose the inputs to be polynomials *)

(x uilt] := 1 %)

uift] := -1;

u2ft.] := b0 + bl t + b2 t°2 + b3 t~3 + bl t°4;

(* Calculate the states as functions of time *)
x1[t] := x0[[1]] + Integrate[ui[tau],tau,0,t];
x2[t.] := x0[[2]1] + Integrate[u2[tau],tau,0,t];
x3[t] := x0[[3]] + Integrate[ui[tau] x2[tau],tau,0,t]
x4[t] := xO0[[4]] + Integrate[ui[tau] x3[tau],tau,0,t]
x6[t.] := x0[[6]] + Integrate[uil[tau] x4[tau] ,tau,0,t]
x6[t.] := x0[[6]] + Integrate[ui[tau] x5[tau],tau,0,t]

(* The time needed to steer is determined by the first state *)
Solve[x1[T] == xf1, T] >>> poly_inputs.m

(* Now we can solve for the desired coefficients.
* We know that final = Matrix.coeffs + const

* Therefore, setting goal = final, we find

* coeffs = Inverse[Matrix].(goal - const)

*)

coeffs = { b0, b1, b2, b3, bd };

final = {x2[T],x3[T],x4[T],x5[T] »x6[T1};

goal = { xf2, xf3, xf4, x£5, xf6 };

Matrix = Jac[final,coeffs];

const = final - Matrix.coeffs;

solution = Inverse[Matrix].(goal - const) >>> poly.inputs.m
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