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Abstract

We discovered and mathematically proved thata partitioning problem undertiming and capacity

constraints canbe formulated exactly as a Quadratic Boolean Programming Problem. This new for

mulation allows arbitrary component sizes, arbitrary capacities of partitions, arbitrary interconnection

costs and delay models between partitions. Wethen found a generalization/enhancement of Burkard's

heuristic to efficiently solvethe problem. Seven industrial circuits were used to compare ourmethod

against two other heuristics based on the traditional approach of component interchanges. Test re

sults showed the superiority of ournew method in terms of bothsolution quality and CPU usage, for

problems undervery tightTiming andCapacity Constraints.

'This work is supported by SRC Grant93-DC-008



1 Introduction

Given acircuit orsystem consisting of interconnected components, there are two main types of partitioning

problems. The first type of partitioning problem does not have a fixed underlying partition topology and

therefore uses a"Ratio-Cut" cost function[9] as the objective. This is useful when we wish to determine

the structure of the circuit and discover the so-called "natural clusters" of the circuit. The second type

has a fixed, existing partition topology, which includes capacity for each partition, interconnection costs

and delay models between partitions. This is the case for FPGA-type of partitioning and some MCM

(Multi-Chip Module) types of partitioning problem, e.g. TCM (Thermal Conduction Module).

This paper will focus on the second type ofpartitioning problem. Each component in the circuit may

have variable size, reflecting the silicon area demand for realizing the component. On the other hand

each partition provides afixed amount ofSilicon area called the "capacity" ofthe partition. The Capacity
Constraints state that the total size of all components assigned to the same partition must be no greater

than the capacity of that partition. The Timing Constraints are stated as aset ofmaximum routing delay
allowed between a pair of components. These constraints are driven by system cycle time and can be

derived from the delay equations and intrinsic delay incombinational circuit components.

In this paper we will show that apartitioning problem under Timing and Capacity constraints can be

formulated exactly as aQuadratic Boolean Programming Problem. Although in the past there were some

attempts to formulate apartitioning problem as aQuadratic Assignment Problem[4][5][6] , these formu
lations allow arbitrary partition capacities but restrict each component to be ofequally size. Furthermore,

they cannot take Timing Constraints into considerations. Our new formulation allows arbitrary compo

nent sizes, arbitrary capacities of partitions, arbitrary interconnection costs and delay models between

partitions.

To solve the Quadratic Boolean Programming problem, we generalized and enhanced an existing

heuristic first proposed by Burkard[3], which he applied to solve the Quadratic Assignment Problem

(QAP). We found that the heuristic can be applied to amuch more general class of problems instead of

just QAP's. In his original paper the method can only solve problems with up to 50 components or so due

to the high computational complexity. We generalized his idea to handle additional Capacity Constraints

and Timing Constraints. Furthermore, in order to handle real circuits with hundreds or thousands ofcom

ponents, we exploit the facts that (a); the number ofpartitions is very small compared to the number of
components, and (b); the interconnections between the components are quite sparse. Thus we can achieve

the speedup necessary to make it a practical method.



2 Problem Formulation and Applications

2.1 Input

The input to the problem includes the followings:

I. Descriptions of the Circuit:

1). J is a set of N circuit components. Let j e J be the index to the component.

2). Sj is the size of component j, representing the silicon area component j requires.

3). A is an N x N matrix, where ajlJ2 is thenumber of interconnections from component ji to j2.

4). Dc is an N x N matrix, where Dc{j\,h) is the maximum signal routing delay allowed from

component j\ to J2.

II. Descriptions of Partitions:

1). / is a set of M partitions. Let i'. e I be the index to a partition.

2). c, is the capacity of partition i.

3). B is an M x M matrix, where 6llt2 is the cost of wire routing from partition i\ to h.

4). D is an M x M matrix, where D(i\, ii) is the routing delay from partition i\ to ii. Notice that we

don't assume any relationship between B and D in our formulation.

III. others:

1). P is an M x iV matrix, wherept-7 is thecost of assigning component j to partitioni.

A solutionto theproblem is an assignmentA : J —• J satisfyingthe following two sets of constraints:

CI: (Capacity Constraints)

C2: (Timing Constraints)

S s3 —c* V* ^ I
Vi,-4(j)=t

D(A{ji), Ah)) < DcUuh) Vj,,i2 € J

The objective is to

minimize a ]T py + 0 £3 aiiJ2 ^*(iiM(i*) subject to CI, C2. (1)
Vi*.i,>4(i)=t Vji,j2

If we introduce a matrix [xsj]mxn of binary variables and let x,j = 1 if A(j) = i, and x$J = 0

otherwise, then each A corresponds toa unique [x{j]mxn such that Y^ii\ xij = 1? Y; GJ and vice versa.

We saythat[a?y] satisfies acertain constraint iffitscorresponding ^4 does. Now wecanrewrite theproblem

into:



CI: (Capacity Constraints)

N

y^ SjXij < Ci Vz G /
i=l

C2: (Timing Constraints)

•D(ii,i2) < DcUiJi) V(m,Ji) and (ii,ji) s.t. xitjl = 1 = xi2Jl

C3: (Generalized Upper Bound Constraints)

M

5>y=l VJGJ
i=l

The transformation of C2 is obvious when we recognize the fact that x{j = 1 means component; is

assigned topartition i in thecorresponding assignment A.

The objective (equation (1)) becomes

M N M N M N

minimize a J^^PijXij + ^ ^ E J2 ahhhixhxiihxiiJi subject to CI, C2, and CI.
x— 1 j-1 »*1 = 1 j\ = 1 »2=1J2=1

The first term in the cost function is associated with the (constant)cost of assigning a particularcom

ponent to aparticular partition and is called the linear term in this paper. Itis useful in the MCM/TCM
partitioning problem as described inthe next section. The leading a isa scaling factor for this term.

The second term in the objective function is associated with the interconnection cost between compo

nents. It is called the Quadratic term and can be used tomodel any type of interconnection cost metrics.

For example, when B is a matrix ofall Ts except all O's on the main diagonal, this term equals the total

number ofwire crossings for the given assignment A. When &„,t2 isthe Manhattan distance from partition

ii to z2, this term equals the total Manhattan wire length. Similar arguments apply for quadratic wire length

or other forms of cost metrics. The leading (3 is a scaling factorfor this term.

We define thePartitioning Problem described above as PP(a, 13).

2.2 Applications and Special Cases

2.2.1 MCM/TCM Partitioning

Here we briefly discuss some issues involved in the high level TCM design process. The partitioning

process starts with an experienced designer manually assigning functional blocks (components) into TCM

chip slots. Since the initial assignment islargely based on intuition and experience rather than calculations



(not much data is available at this stage), there will be lots of constraint violations in the later stage. It is
desirable to reassign some components and remove the constraint violations in away that causes minimum

"deviation" from the initial assignment. In other words, given a "initial" component assignment which

violates timing and capacity constraints, we want to find a "feasible (legal)" assignment that minimally

deviates from the initial assignment.

In aprevious work[2] we calculated the deviation ofacomponent by Manhattan distance between the

positions ofthe initial assignment and the final assignment, times the size ofthat component. This isdue

tothe consideration that a larger component should beless desirable tomove. The overall deviation is the

sum of all individual component's deviations.

Now assuming we have an initial component assignment Ainitiai : J —• I and sj is the size of

componentj. we can compute cost matrix P as the following:

Pij = sj x Manhattanjdistance(i,Ainitiai(j))

As a result,the linear termis exactlythe totaldeviation froman initialassignment. Therefore PP(1,0)

is exactly the MCM/TCM partitioning problem described above. This problem is solved in[2].

2.2.2 Generalized Assignment Problem and Linear Assignment Problem

For a Partitioning Problem PP( 1,0) with no C2 (Timing Constraints), it is called a Generalized Assign

ment Problem. This problem has been intensively studiedin the past 10 years and efficient heuristics have

been found to solve it[12].

For a GeneralizedAssignment ProblemwithM = N andsj = c, = constant, Vi e I and j G J, it

becomes the well known Linear AssignmentProblem. In this case the assignment A must be a permutation

V?: J —> J.

2.2.3 Quadratic Assignment Problem

For a Partitioning Problem PP(a, /?) with no C2 (Timing Constraints), but with M = N and Sj =

c, = constant, Vz G / and j G J, it is called a Quadratic Assignment Problem. This is the spe

cial case where the assignment A must be a permutation y?: J —• J.

Despite extensive research on this problem, there had not been effective algorithms or heuristics to

solve it until recently[3]. Moreover, all existing methods can only handle problem sizes up to 50 compo

nents. Therefore it is not possible to solve a VLSI-layout problem (e.g. gate array placement problem) as

a Quadratic Assignment Problem.



3 Transformation into Quadratic Form

Notice that any instance of PP(a,{3) can be transformed into an instance of PP'(1,1) in the following

way: define p^ = apij, ViJ and define a'jxh = j3ajlJ2, V/i, j2- Now PP'(1,1) with the new matrices

P' = [p'ij] and A' = [a'h] is equivalent to the original problem PP(a,/?). Therefore for simplicity of

notations, in the restof this paper we only treat problems in the form of PP(1,1).

3.1 Basic Transformation

Here we derive a relationship which has been used by Burkard[3] without justification.

We transform the 2-dimensional solution matrix [sl<7] into a 1-dimensional column vector y of length

MN bydefining yr = xi5 for r = i + (j - 1) x M. We can imagine this transformation as acatenation

of all the columns in [xtJ] matrix into atall column vector y. Notice that this transformation is uniquely

determined, given anumber 1< r < MN there is aunique pair (ij) satisfying r = i -}- (j - 1) x Mand

vice versa. Thus y and [jr#] can be considered the same data but in different forms of"packaging". We

say that y vector satisfies acertain constraint iff its corresponding [a?#] does.

We define p'hjli2J2 = &lh if ii = i2 and jx = j2, and j/iljli2Jl = 0otherwise. By this definition, for
any fixed i\ and j\ we get (since x^-, is either0 or 1)

M N

Phjixhji = ^iiii(PtiJi^iiii) = xiiji 2^ 2^ P«1J1«2J2X,'*»
«2=1 J2=l

Now our cost function becomes:

M N M N M N M N M N M N

E E PilhXil3l + E E E E 0>ixhKhXilkXilh = E E *uil(E. E GiuA^Zfe+Z-, 2-/ rfiii«'2j2X»*2i2)
M=lji=l «l=lil=l*2=li2=l M=lj'l=l «2=lj2=l »2=li2=l

M N M N MN MN ;

= E E *m*(E EKiAm +Pilili2h)*i2h) = E 2/n(E(aiii2^.-2 +PMi1i2J2)2/r2) = y Qy
«1 =1Ji=l i2=l J2=l rl=l r2=l

where Q= [gnrjAfNxMN is defined by $nr2 =^^ where n = ii+(ji-l)xAf and

1*2 = «2 + (J2 - 1) x M.

3.2 Transformation to Embed Timing Constraints

Now we have already transformed ouroriginal problem into:

minimize yTQy, subject to CI, C2, C3



where Q is our cost matrix.

Now we wish to embed the Timing Constraints C2into cost matrix Qand solve a Quadratic Boolean

Programming Problem without Timing Constraints. We prove in Appendix the following theorem which
gives the construction method explicitly to obtain anew cost matrix <?' and that a solution to

minimize yTQ'y, subject to CI, C3

isexactly a solution toour original problem. Notice in the new problem we do not have C2 (Timing

Constraints).

Theorem 1 (Existence of Embedding) Iff* innonempty, QBPn(Q) is equivalent toQBP(Q'), where

Q' = [^y isdefined by

C2 = ?nr2, V(r!,r2)€ft, and q'nr2 = U, V(n,r2)£ft,

where
MN MN

U is any number s.t. U > 2 x ^2 E knr2|-
ri=l T2=l

For a precise definition of the terms used in the theorem, please refer to our Appendix.

Although theoretically correct, a straightforward implementation of the constructionfor Q'mayresult

in large values in the Q'matrix and introducenumerical inaccuracyfor the optimizationprocedure follow

ing it. Therefore we wish to find a larger class of Q which will serve the same purpose, i.e., a minimum

solution from the new problem (Q) is a minimum solution of our original problem (Q). This condition is

stated in the following theorem:

Theorem 2 (Sufficient Condition for Optimality of Solutions) Let Q be coincident to Q over H and a

minimumsolutiony* ofQBP(Q) alsosatisfies y* e Tn. Then y* isalsoa minimum solution ofQBP%(Q).

The idea here is to raise the cost qrin to some large value for those candidate assignments (h,j\) and

(hiji) in which Timing Constraints are violated. Therefore Timingconstraints can be discarded and we

can solve the unconstrained (Timing) problem using the new cost matrix. The theorem says that no matter

how slightly you raise the values, as long as no timing violation exists in the solution, this solution is

guaranteed to be a minimum solution of the original problem. In experiments we set qrir2 = 50 for those

candidateassignments (z'i, j\) and (22, ji) in which TimingConstraints are violated. And this valueis high

enoughfor the optimization procedure to "reject" any timing violating assignments. We emphasize here

that the new problem after transformation is exactlyequivalent to the original problem.



Figure 1:

3.3 An Example

3 4

1 2

The long proofof equivalence between theoriginal problem and ourfinal form is omittedhere. Interested

reader can refer to our Appendix for further reading. Here we use an example to illustrate the intuition

behind our derivation.

Suppose we have 3 components a,b, c to be assigned into 4 partitions 1,2, 3,4, which are located as

a 2 x 2 array as shown. There are five wires connecting a and 6; 2 wires connecting band c.

A =

0 5 0

5 0 2

0 2 0

Dc =

0 1 oo

1 0 1

oo 1 0

and B = D =

and P =

Pla Pi6 Pic

P2a P26 P2c

Pia P36 P3c

P*a Pfo Pac

0 112

10 2 1

12 0 1

2 110

Notice that B and D are just Manhattan distance matrices derived fromthe locations of the partitions

assuming adjacent partitions are distance 1 apart.

The cost matrix Q is: ("-" means zero entry)



a a a a

12 3 4

6 6 6 6

12 3 4

c c c c

12 3 4

a 1

a 2

a 3

a 4

P\a — ~ ~

— Pla — ~

— ~ P3a ~

— — — P4a

- 5 5 50

5 - 50 5

5 50 - 5

— — — — •

6 1

b 2

b 3

6 4

- 5 5 50

5 - 50 5

5 50 - 5

50 5 5 -

Pib - - -

— pib — -

- — P3b -

— — — PAb

- 2 2 50

2 - 50 2

2 50 - 2

50 2 2 -

c 1

c 2

c 3

c 4

2 2 50 Pic — — —

— P2c — —

— — P3c ~

— — - P4c

— — — —

2 - 50 2

2 50 - 2

50 2 2 -

It is clearthat the big matrix has a special structure: we can think of it as a 3 x 3 matrix, each element

of this matrix is actually a 4 x 4 matrix. Each 4x4 matrixcorresponds to an element in matrix A which

is located at the samerelative position in A as the 4 x 4 matrix is located in the big matrix. For example,

A(b, c) = 2 and this element corresponds to the 4 x 4 matrix located at 6 row and c column in the big

matrix. Discounting the effect of entries being assigned to 50 (for Timing violation), this 4x4 matrixis

the B matrix multipliedby the scaler A(b,c). This gives us a quick way of generating Q matrix directly

from A and B matrices.

Now we explain the effect of embedding Timing Constraints as a high cost entry in Q. Consider the

entry at row a, 2 and column 6,3 which is 50. This entry corresponds to the assignment of assigning a

to 2 and 6 to 3. It is clear that the the delay between a and 6 will be D(2,3) = 2 which exceeds the

TimingConstraint between a and6: Dc(a, 6) = 1. Therefore we set it to a highcost 50 to prevent it from

happening.

4 Quadratic Boolean Programming

Consider our last form of objective function:



minimize yTQy, subject to C\ and C3

where y is a column vector of binary values.

If we define our solution space S to be

S —{y\ y satisfies CI and C3}

we getour final form which is a Quadratic Boolean Program

rmnyTQy
y€S

This is an unconstrained Quadratic Boolean Programmingproblem in the solution space 5 with cost matrix

Q beingembedded with Timing Constraints.

4.1 Linearization of Quadratic Boolean Programming

Notice that starting from this point we assume the cost matrix Qhas non-negative elements. This is avalid

assumption for our partitioningproblem.

Now let us define w to be a constant vector satisfying

MN

<*>E$r.y. V*€'5 Vl<r<MiV (2)
«=i

then we define for every solution vector u^ atiteration k

MN MN

„<*> =£ ?„«<*>+".«<*> and {« =!>«« (3)
r=l r=\

Thefollowing theorem is due to Balas andMazzola[l].

Theorem 3 Every optimal solutiony* of

rmnyTQy
y€S

corresponds uniquely toan optimal solution of

MN

minz, such that z > V n^yr - f(fc) (4)
*s r=l

10



4.2 Burkard's Heuristic

Equation (4) provides a linearization of the Quadratic Programming Problem. However, directly solv

ing equation (4) requires tremendous amount of storage and time. Therefore Burkard[3] proposed the

following heuristic.

STEP 1. Initialize k «- 1,h<® «- 0 V 1 < r < MN

STEP 2. Compute bounds uT for 1 < r < MN according to equation (2)

start with a solution u^ e S, set u* <- u^ and z* <- (u*)TQu*.

STEP 3. Compute
MN MN

r=l r=l

STEP 4. Solve

2=n?5(E77rfc)^r)
U€5 !=1

STEP 5. Compute
r?(fc)

max(l,|z-£(*)|)

STEP 6. Solve
MN

mm^W*1)
tt€S r=l

STEP 7. If (w(fc+1))TQw(fc+1) < 2* set u* ♦- u<fc+1) and 2* «- (u*)TQu\

STEP 8. Iffc > Niterations stop. Otherwise set fc <- fc + 1 go to STEP3.

The overall heuristic is similar to a line search procedure and the user can have precise control over

the total runtime. The search stops after a predeterminednumber of iterations. The best result seen so far

becomes the solution to this problem.

4.3 Generalization/Enhancement of Burkard's Heuristic

In Burkard's original paper he was solving for a Quadratic Assignment Problem, therefore the two mini

mization subproblems in STEP 4 and STEP 6 are in fact Linear Assignment Problems (his solution space

S is the set consists of all possible permutations). In our problem, our solution space 5 consists of all

possible assignments which satisfy Capacity Constraints, i.e. the corresponding [a^] matrices satisfy CI

and C3. Therefore in STEP 4 and STEP 6 we are actually solving Generalized Assignment Problems,

which are generalizations of Linear Assignment Problems. We use an existing heuristic due to Martello

and Toth[12] to solve the Generalized Assignment Problems.

11



When computing 7?W vector in STEP 3,each 77Wtakes MN multiplications andthetotal computation

for the whole vector is M2N2. If the number of partitions is close to the numberof components, a single

iteration will take N4 multiplications, which is impractical even for medium sized problems. However,

if the number of partitions is small, as it is always true for circuit partitioning problems, the computation

can be greatly reduced. Furthermore, if the interconnection matrix A is sparse, the cost matrix Q will be

sparse. Therefore the computations performed in STEP 3 are mostly multiplying zeros. We take advantage

of this fact and avoid these null operations altogether by using a sparse matrix technique. We never ex

plicitly generate Q matrix, instead, only the non-zero elements ofQ are retrieved on demand from a sparse

representation derived from connection matrix A. Therefore the summation only take place when both qra

anduW are nonzeros. Alsosince u^ is binary, weonly need addition operations and multiplications can

be avoided.

5 Experimental Results

Since there is no existing method for comparison, we developed two partitioning methods based on Kemighan

& Lin[7] type of component interchange. The first one is a generalization of Fiduccia & Mattheyses'[8]

approach - GFM, moving one component at a time. Associated with each component are (M —1) gain

entries, each entry representing the potential gain if that component is moved to the corresponding parti

tion.

The second one is a generalization of Kemighan & Lin's heuristic - GKL, switching a pair of com

ponents at a time. Associated with each component are (N —1) gain entries, each entry representing the

potential gain if that component is switched with the corresponding component.

Both methods start with an initial solution with no timing or capacity violations, and the subsequent

moves are allowed to take place only when they do not introduce timing or capacity violations. This will

guarantee that the final solution will be violation-free. Besides the generalization into M-way partitioning,

we also generalized the cost functions used in the gain computations. We allow arbitrary interconnection

cost (e.g. Manhattan wire length, quadratic wire length, or just total number of wire crossings) for GFM

and GKL.

A set of 7 industrial examples used in an earlier paper[2] were used to compare all 3 approaches. The

sizes of the circuits are shown in the Table I. In each circuit, the components correspond to functional

blocks in the high level design and have different sizes ranging about 2 orders of magnitude in the same

circuit. The number of partitions is 16.

12



Strictly speaking, the total number of Timing Constraints should be N2, where N is the number of

components, since there is adelay constraint in any pair of components in our general formulation. How

everin reality a large number of these constraints are involved with components whichdo not have actual

electrical connection orcycle time constraints betweenthem. We discarded these constraints andonly list

the total number of critical constraints in the table to show the degree of timing-criticality of the problem.

In ourQuadratic Boolean Programming approach - QBP, each circuitruns 100iterations. (Notice that

the solution quality is dependent on the number of iterations, the more CPU time spent, the better the

results.) In GFM, each circuit runs till no more improvement is possible. In GKL, we have to force the

algorithm to terminate after the first 6 outer loops dueto excessive CPU runtime. Since any gain obtained

beyond the first 6 outer loops is insignificant, this cutoff strategy provides speedup without sacrificing

solution quality.

For GFM and GKL, an initial feasible solution is needed in order to guarantee the feasibility of the

final solution. The fastest way to obtain a initial feasible solutionis to use QBP algorithmwith matrix B

set to all zeros. This will generate an initial feasible solutionin a few iterations. This same initial solution

is used for all three approaches. In these tests we use totalManhattan wire length as our cost metric. Table

II is results obtained by relaxing Timing Constraints andTable III is results with Timing Constraints. In

both tables the second column is the cost (total Manhattan wire length) of the initial solution. The third

column is the final cost from QBP, the fourth column is the percentage improvement, the fifth column is

the CPU time in seconds on DECstation 5000/125.

Among three methods, GFM spent the least CPU but produced the worst results, especially when

TimingConstraints are present On the otherhand, QBPobtained the best qualityresultswithinreasonable

CPU time. The results from GKL are better than GFM because it explored a larger solution space at the

cost of using much more CPU time. Notice that both GFM and GKL need to start with an initial feasible

solution, (we actually obtained this initial solutionby QBP), while QBP can startfrom any random solution.

In our separate experiments we discovered that QBP maintained the same kind of good results from any

arbitrary initial solution.

13



I. circuit descriptions:

ckt # of components # of wires # of Timing Constraints

ckta 339 8200 3464

cktb 357 3017 1325

cktc 545 12141 11545

cktd 521 6309 6009

ckte 380 3831 3760

cktf 607 4809 4683

cktg 472 3376 3376

II. Wit!hout Timing Constraints:

QBP GFM GKL

circuits start final (-%) cpu final (•%) cpu final (-%) cpu

ckta 20756 17457 15.9 86.8 18894 9.0 12.2 17526 15.6 544.3

cktb 8239 5996 27.2 43.4 6966 15.5 18.5 6555 20.4 148.2

cktc 28210 20711 26.6 140.2 23185 17.8 37.1 20647 26.8 1192.0

cktd 14737 9724 34.0 97.1 12894 12.5 46.1 11780 20.1 608.4

ckte 8524 6293 26.2 58.3 6746 20.9 20.8 6329 25.8 298.3

cktf 10498 5887 44.0 93.4 7589 27.7 24.1 6643 36.7 514.1

cktg 8138 5170 36.5 64.1 5925 27.2 15.5 5951 26.9 354.7

III. With Timing Constraints:

QBP GFM GKL

circuits start final (-%) cpu final (-%) cpu final (•%) cpu

ckta 20756 18233 12.2 89.2 19341 6.8 9.4 18262 12.0 394.4

cktb 8239 6482 213 44.5 7054 14.4 9.0 7225 123 121.7

cktc 28210 22228 21.2 139.3 26195 7.1 51.9 21435 24.0 1887.5

cktd 14737 11278 23.5 100.7 13568 7.9 27.6 12866 12.7 558.6

ckte 8524 6758 21.0 58.0 7913 7.2 11.7 7218 153 230.0

cktf 10498 6916 34.1 94.4 8294 21.0 45.4 7627 273 492.5

cktg 8138 5721 30.1 65.9 6454 21.0 18.8 6014 26.1 313.6
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6 Conclusion

We discovered and mathematically proved the exact problem formulation/translation of the partitioning

problem underTiming and Capacity Constraints into aQuadratic Boolean Programming problem. We also

found an effective solution and demonstrated it through industrialexamples.
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APPENDIX

This appendix includes all our original theoretical work on the transformation technique from a con

strained Quadratic Boolean Programming Problem into an unconstrained Quadratic Boolean Pro

gramming Problem. This technique can be applied to a general class ofconstraints as long as they can

be written in the form of a Region ofFeasiblePairs (defined later).

We transform aconstrained Quadratic Boolean Programming Problem into anunconstrained Quadratic

Boolean Programming Problem by embedding the constraints into the quadratic cost matrix Qto form a

new constraint-embedded cost matrix Q'. In our first theorem we will explicitly give the construction

method and prove the equivalence between the two problems. Although the existence ofsuch an embed

ding can be proven, the construction method in the first theorem may ormay not produce values too large

and introduce numerical inaccuracy in the optimization procedure that follows it. Therefore we extended

our embedding method to alarger, more general set ofconstraint-embedded cost matrix Q. In the second
theorem we will prove the sufficient condition for aminimum solution from the unconstrained problem to

be a minimum solution ofour original constrained problem. The third theorem is a generalization of the

second, we discovered it after we gained some insight into the nature of the problem. Itcan be applied to

other constrained optimization problem as well. Although it resembles some existing penalty orbarrier

methods, the underlying concept is quite different.

To make the appendix self-contained, we start with the general settings to be used in the rest ofthe

appendix.

1 General Settings

1.1 Basic Definitions

Let J and I be two non-empty sets and \I\ = M and \J\ = N.

Let [xij]MxN be a matrix ofbinary values. Now define a binary column vector y oflength MN by
yr = xij where r = i + (j - 1) x M, 1 < r < MN. Notice that given r there is a unique (i, j)
corresponding to itand vice versa. The vector yis just a rearrangement ofthe elements of[a?y]. We refer
to these two different representations "[x,;]" and "y" with the understanding that they correspond to the

same solution. We say y satisfies certain constraints iffits corresponding [x,j] does.



1.2 The Partitioning Problem

In our application to the partitioning problem, we use [x,j] to represent an assignment A : J —• J by

defining

Xij = 1, ifA(j) = i and xl<7- = 0, otherwise.

As a consequence there is an additional constraint which is usually called Generalized Upper Bound

Constraints in related literature
M

i=i

Notice that ourgeneral theorems do notrequire such a constraint on [xl-7].

The "physical meaning" ofany pairs (i\, j\), (z2, ji) such that xtlil = xi2J2 = 1is that component jx is

assigned topartition i\ and component J2 is assigned to partition i2. Therefore the Timing Constraints for

the partitioning problem becomes

D{i\,i2) <Dc(j\,ji), V (ti,ji) and (i2,j2) s.t. xidl = 1 = xi2J2

As a conclusion, we have the following 3 sets of constraints for [xfJ]

CI: (Capacity Constraints)

N

^2sjXij<Ci, Vi€ I

C2: (Timing Constraints)

D(iui2)<Dc{juh)i v (2'i>i0 and (12J2) s.t. xhjl = I = xi2J2

C3: (Generalized Upper Bound Constraints)

M

£xy = l, VjGJ
i=i

1.3 Definitions

Definition 1 (Region of Feasible Pairs) ARegion ofFeasible Pairs U isan arbitrary subsetof{(n, r2) |Vn, r

ri < MN and 1 < r2 < MN }.

A set 11 defines a relation. Wecan imagine any ordered pair (n, r2) G H means n and r2 is in this

relationship, which means that n is "Constraint Feasible" to r2. This relation is not necessarily reflexive,



symmetric or transitive. Therefore n being "Constraint Feasible" to r2 does not have to imply r2 being
"Constraint Feasible" to n.

In the special case ofTiming Feasibility relationship, we define (n, r2) GU ifand only if

D(ii,i2) <Dc(JuJi),

where n = i\ + (ji - 1) x M and r2 = i2 + (j2 - 1) x M. Therefore the "physical meaning" of n
"Constraint Feasible" to r2 is that component j\ assigned to partition i\ and component j2 assigned to

partition i2 satisfies the timing constraint from j\ to j2.

Definition 2 (Feasible Solution SetOver 11) AFeasible Solution Set T over 11 is defined as

fn = {y€S\yn= yri = 1 implies (rur2) € 11},

where S is our underlying solution space.

Asolution vector y e Tn has the property that the 1-valued coordinates ofyare all Constraint Feasible

to each other.

Again in thespecial case ofTiming-feasibility, the solution space 5 is defined by

S = {y€ {0,1}MN | y satisfies CI and C3}.

And the "physical meaning" ofyefn is that y satisfies all Timing Constraints. Therefore any solution

y € Tn is a feasible solutionwhich satisfies CI, C2 and C3.

2 Problem Definitions

Let Qbe an MN x MN matrix with real values, we define aregular Quadratic Boolean Programming

Problem

qbp(Q) : ™$yTQy

We define a QuadraticBoolean Programming Problem with a Region of Feasible Pairs H

QBPfc(Q) : min yTQy



2.1 Coincident Matrices

Let Q = [qrir2]MxN and Q = [qrir2]MxN be two real matrices.

Definition 3 (Coincident Matrices Over 11) Q is coincident to Q over 11ifqnr2 = 5rir2 V(n, r2) e H

Lemma 1 Let Q be coincident to Q over K, then yTQy = yTQy Vy € Fn-

Proof.
MN MN

yTQy =Y,Vri(J2 ?r,r22/r2) = £ ?r,r2,
ri=l r2=l V(n,r2) e.t. yri=yP2=l

but since y 6 Tn* yrx = yr2 = 1 implies (ri,r2) G ft, therefore qrir2 = gnr2 because of coincidency and

the equation becomes

MN MN

J2 «nra = S &vi = £ ^» (£ ?nr22/r2) = yTQy•
Vri,r2, a.t. yrjsyrjsl Vri,r2, a.f. yri=yr2=l ri=l r2=l

D

3 Embedding Theorems

Theorem 2 (Existence of Embedding) IfTn innonempty, QBPn(Q) is equivalent toQBP(Qf), where

Q' = Wij] &defined by

C2 = 9nr2, V(r,,r2)eft, and q'nr2 = U, V(r,,r2)£ft,

where
MN MN

U is any number s.t. U> 2 x ^ ^ \qrir2\-
n=l r2=l

Proof.

We notice that by definition, Q is coincident to Q' over H.

PART I:Let j/£bea minimum solution ofQBP<r(Q), see that y^ isaminimum solution of QBP(Q').

Since s/£ is a solution of QBP%{Q), y^e^nC S. Suppose on the contrary that there exists y e S

such that

yTQ'y < {y'nfQ'v'n U)



Case 1: Ify e Tn,by Lemma we have yTQy = yTQ'y. Since y^ GFn (by definition ofy$) we also

have (yn)TQyk = (yi.)TQ'yh now by inequality (1) we have

yTQy = yTQ'y < (ynfQYn = (vi)TQv*,

the relationship between the first and last term and the fact that y e F-h contradicts that y^ is a minimum

solution of QBPn(Q).

Case 2:lfy£ Tn,by definition ofTn we can find (n, r2) £ 11 s.t. yri = yr2 = 1. Now by definition

ofQ',

yTQ'y = S 0*1*2 = 0nr2 + S 0*1*2
V(*i,*2), «.*. ytl=yt2=l V(*i,«2)ifc(ri,r2), *•*• Vtx=Vt2=\

By definitionof Q' the last expression is actually

MN MN

u+ E «U > E E lw.1 > «TQ». we {0,1}""
V(«i,«2)^(n,ra), «.*. y*,=ye2=l r,=l r2=l

Lety£ = v e {0,1 }M7V, we get

yTQ'y > (yn)TQy*n = (yiftfy*

(The last equality is due to y^ € J7-*.) Now this contradicts inequality (1).

PART II: Let y* be aminimum solution ofQBP(Q% see that y* isaminimum solution ofQBPn{Q).

We first show that y* e Tn- Suppose contrary that y* 0 Tn, then by a previous argument in Case 2,

PART I we have

{y*)TQY>vTQv, Vve{0,l}MN. (2)

Since Tn is nonempty, there exists yn e T-n, by Lemma we have ynQyn = ynQ'yii- But fr°m

inequality (2) and letting yn = vwe have

{y*)TQY > ylQyn = ylQ'yn

This contradicts that ym is a minimum of QBP(Q').

Wethen show that y* is indeed a minimum of QBPn(Q). Since j/* € ^w we have

tf)TQy* = (jf )TQV < yTQ'v, Vy G5

(thelast inequality holds because y* is a minimum of QBP(Q').)



Butforally GTn, byLemma yTQy = yTQ'y. Therefore we get

{y*)TQy* = (y*)TQ'y* < yTQ'y = yTQy, Vy e Tn

Therefore y* is a minimum of QBPn(Q). •

Theorem 3 (Sufficient Condition for Optimality of Solutions) Let Q be coincident to Q over 11 and a

minimumsolutiony*ofgBP(Q)alsosatisfiesy*efn.

Proof. Proof by Contradiction. Suppose on the contrary yn GTn is a solution ofQBPn(Q) and that

ylQyn < (y*)TQy* (3)

Since yn G ^Ve, we have

ynQyn = VnQyn (4)

By the given condition y* Gf^we also have

{y*)TQy* = (y*)TQy* (5)

Combining (3),(4) and (5) we get

ylQyn = ylQyn < (y*)TQy* = (y*)TQy*

The inequality between the first and last term contradicts that y* isa minimum ofQBP(Q). •

Theorem 4 (General Sufficient Condition for Optimality of Solutions) Let f{y) = f(y),Vy G?n Q

S and y* minimize f over S. Suppose y* GFn, then y* also minimizes f over Tn-

Proof. Suppose contrary that 3y GFn and f(y) < f(y*) => f(y) = f(y) < f(y*) = /(j/*)
=*• y* does not minimize / over Tn => y* does not minimize / over S (contradiction)

•

Our original problem is in the form of:

minimize yTQy, subject to CI, C2, C3

where f(y) = yTQy and Qis ourcost matrix.

7



Let Tn = {y\y satisfies C1,C2,C3} and S = {y\y satisfies C1,C3}, where 5 is the (larger)

solution space without timing constraints. Now we construct anew cost matrix Q such that yTQy =
yTQy Vy GTn and obtain aminimizer y* of this new function yTQy in S. If y* also satisfies C2, by

the theorem weknow that y* is also aminimizer of yTQy over Tn- One intuitive wayto construct Q is to

raise the cost qrxr2 tosome large value for those candidate assignments (i\, j\) and (i2, j2) inwhich Timing

Constraints are violated. Then Timing constraints can be discarded and we can solve the unconstrained

problemusing the new cost matrix Q:

minimize yTQy> subject to CI, C3

The theorem tells us that no matter how much we augment the values in the cost matrix, as long

as notiming violation exists in the solution, this solution is guaranteed to be aminimum solution of the

original problem. In experiments weset this value tobe50. This value ishigh enough for the optimization

procedure to "reject" any timing violating assignments. We emphasize here that the new problem after

transformation is exactly equivalent to the original problem.
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