Copyright © 1993, by the author(s).
All rights reserved.

Permission to make digital or hard copies of all or part of this work for personal or
classroom use is granted without fee provided that copies are not made or distributed
for profit or commercial advantage and that copies bear this notice and the full citation

on the first page. To copy otherwise, to republish, to post on servers or to redistribute to
lists, requires prior specific permission.

QUADRATIC BOOLEAN PROGRAMMING
FOR PERFORMANCE-DRIVEN SYSTEM
PARTITIONING

by

Minshine Shih and Ernest S. Kuh

Memorandum No. UCB/ERL M93/19

8 March 1993
(Revised 23 November 1993)

QUADRATIC BOOLEAN PROGRAMMING
FOR PERFORMANCE-DRIVEN SYSTEM
PARTITIONING

by

Minshine Shih and Ernest S. Kuh

Memorandum No. UCB/ERL M93/19

8 March 1993
(Revised 23 November 1993)

ELECTRONICS RESEARCH LABORATORY

College of Engineering
University of California, Berkeley
94720

QUADRATIC BOOLEAN PROGRAMMING
FOR PERFORMANCE-DRIVEN SYSTEM
PARTITIONING

by

Minshine Shih and Ernest S. Kuh

Memorandum No. UCB/ERL M93/19

8 March 1993
(Revised 23 November 1993)

ELECTRONICS RESEARCH LABORATORY

College of Engineering
University of California, Berkeley
94720

Quadratic Boolean Programming for

Performance-Driven System Partitioning™

Minshine Shih and Emest S. Kuh
Department of Electrical Engineering and Computer Sciences

University of California, Berkeley, California 94720
November 23, 1993

Abstract

We discovered and mathematically proved that a partitioning problem under timing and capacity
constraints can be formulated exactly as a Quadratic Boolean Programming Problem. This new for-
mulation allows arbitrary component sizes, arbitrary capacities of partitions, arbitrary interconnection
costs and delay models between partitions. We then found a generalization/enhancement of Burkard’s
heuristic to efficiently solve the problem. Seven industrial circuits were used to compare our method
against two other heuristics based on the traditional approach of component interchanges. Test re-
sults showed the superiority of our new method in terms of both solution quality and CPU usage, for

problems under very tight Timing and Capacity Constraints.

*This work is supported by SRC Grant 93-DC-008

1 Introduction

Given a circuit or system consisting of interconnected components, there are two main types of partitioning
problems. The first type of partitioning problem does not have a fixed underlying partition topology and
therefore uses a “Ratio-Cut” cost function[9] as the objective. This is useful when we wish to determine
the structure of the circuit and discover the so-called “natural clusters” of the circuit. The second type
has a fixed, existing partition topology, which includes capacity for each partition, interconnection costs
and delay models between partitions. This is the case for FPGA-type of partitioning and some MCM
(Multi-Chip Module) types of partitioning problem, e.g. TCM (Thermal Conduction Module).

This paper will focus on the second type of partitioning problem. Each component in the circuit may
have variable size, reflecting the silicon area demand for realizing the component. On the other hand
each partition provides a fixed amount of Silicon area called the “capacity” of the partition. The Capacity
Constraints state that the total size of all components assigned to the same partition must be no greater
than the capacity of that partition. The Timing Constraints are stated as a set of maximum routing delay
allowed between a pair of components. These constraints are driven by system cycle time and can be
derived from the delay equations and intrinsic delay in combinational circuit components.

In this paper we will show that a partitioning problem under Timing and Capacity constraints can be
formulated exactly as a Quadratic Boolean Programming Problem. Although in the past there were some
attempts to formulate a partitioning problem as a Quadratic Assignment Problem([4][5][6] , these formu-
lations allow arbitrary partition capacities but restrict each component to be of equally size. Furthermore,
they cannot take Timing Constraints into considerations. Our new formulation allows arbitrary compo-
nent sizes, arbitrary capacities of partitions, arbitrary interconnection costs and delay models between
partitions. '

To solve the Quadratic Boolean Programming problem, we generalized and enhanced an existing
heuristic first proposed by Burkard[3], which he applied to solve the Quadratic Assignment Problem
(QAP). We found that the heuristic can be applied to a much more general class of problems instead of
just QAP’s. In his original paper the method can only solve problems with up to 50 components or so due
to the high computational complexity. We generalized his idea to handle additional Capacity Constraints
and Timing Constraints. Furthermore, in order to handle real circuits with hundreds or thousands of com-
ponents, we exploit the facts that (a); the number of partitions is very small compared to the number of
components, and (b); the interconnections between the components are quite sparse. Thus we can achieve

the speedup necessary to make it a practical method.

2 Problem Formulation and Applications

2.1 Input

The input to the problem includes the followings:

1. Descriptions of the Circuit:

1). J is a set of N circuit components. Let 3 € J be the index to the component.

2). s; is the size of component j, representing the silicon area component j requires.

3). Aisan N x N matrix, where a;;, is the number of interconnections from component j; to ja.

4). Dcisan N x N matrix, where Dc¢(j1,72) is the maximum signal routing delay allowed from
component j; t0 j».

II. Descriptions of Partitions:

1). I is a set of M partitions. Let: € I be the index to a partition.

2). ¢; is the capacity of partition 2.

3). Bis an M x M matrix, where b;;, is the cost of wire routing from partition 7, to ;.

4). D is an M x M matrix, where D(z,,12) is the routing delay from partition z, to ;. Notice that we
don’t assume any relationship between B and D in our formulation.

I1I. others:

1). P is an M x N matrix, where p;; is the cost of assigning component j to partition i.

A solution to the problem is an assignment A : J — I satisfying the following two sets of constraints:
C1: (Capacity Constraints)

Z s;<c¢ Viel
Vi A(5)=i

C2: (Timing Constraints)
D(A(j1), A(j2)) £ Dc(j1,42) Vi,j2€J

The objective is to

minimize a Y. pi; + B D @; bagyagy subjectto Cl, C2. (1)
Vi g A(F)=i Vit
If we introduce a matrix [z;;]mxn Of binary variables and let z;; = 1if A(j) = ¢,and z;; = 0

otherwise, then each A corresponds to a unique [z;;]axn such that T}, z;; = 1, Vj € J and vice versa.
We say that [z;;] satisfies a certain constraint iffits corresponding .A does. Now we can rewrite the problem

into:

C1: (Capacity Constraints)
N
Zsj:v.-j <¢g Viel

i=1

C2: (Timing Constraints)

‘D(ir,i2) £ Do(j1,d2) V(in,51) and (i2,52) st Zij = 1= Ty

C3: (Generalized Upper Bound Constraints)

M
Zm;,-:l VielJd

i=1

The transformation of C2 is obvious when we recognize the fact that z;; = 1 means component j is
assigned to partition i in the corresponding assignment A.

The objective (equation (1)) becomes

M N M N M N
minimize « Z Zp,-,-m;,- + B Z E Z Z @i birinTirsi Ti, Subjectto C1, C2, and C3.
i=1j=1 i1=1j1=1ix=1 ja=1

The first term in the cost function is associated with the (constant) cost of assigning a particular com-
ponent to a particular partition and is called the linear term in this paper. It is useful in the MCM/TCM
partitioning problem as described in the next section. The leading « is a scaling factor for this term.

The second term in the objective function is associated with the interconnection cost between compo-
nents. It is called the Quadratic term and can be used to model any type of interconnection cost metrics.
For example, when B is a matrix of all 1’s except all 0’s on the main diagonal, this term equals the total
number of wire crossings for the given assignment .A. When b;, ;, is the Manhattan distance from partition
i1 10 iz, this term equals the total Manhattan wire length. Similar arguments apply for quadratic wire length
or other forms of cost metrics. The leading 3 is a scaling factor for this term.

We define the Partitioning Problem described above as PP(a, §).

2.2 Applications and Special Cases
221 MCM/TCM Partitioning

Here we briefly discuss some issues involved in the high level TCM design process. The partitioning
process starts with an experienced designer manually assigning functional blocks (components) into TCM

chip slots. Since the initial assignment is largely based on intuition and experience rather than calculations

4

(not much data is available at this stage), there will be lots of constraint violations in the later stage. It is
desirable to reassign some components and remove the constraint violations in a way that causes minimum
“deviation” from the initial assignment. In other words, given a “initial” component assignment which
violates timing and capacity constraints, we want to find a “feasible (legal)” assignment that minimally
deviates from the initial assignment.

In a previous work[2] we calculated the deviation of a component by Manhattan distance between the
positions of the initial assignment and the final assignment, times the size of that component. This is due
to the consideration that a larger component should be less desirable to move. The overall deviation is the
sum of all individual component’s deviations.

Now assuming we have an initial component assignment Ainitiat : J — I and s; is the size of

component j. we can compute cost matrix P as the following:

pi; = 8; X Manhattan_distance(i, Ainitial(j))

As aresult, the linear term is exactly the total deviation from an initial assignment. Therefore P P(1,0)

is exactly the MCM/TCM partitioning problem described above. This problem is solved in[2].

2.2.2 Generalized Assignment Problem and Linear Assignment Problem

For a Partitioning Problem P P(1,0) with no C2 (Timing Constraints), it is called a Generalized Assign-
ment Problem. This problem has been intensively studied in the past 10 years and efficient heuristics have
been found to solve it[12].

For a Generalized Assignment Problem with M = N ands; = ¢; = constant, Vi € I and j € J,it
becomes the well known Linear Assignment Problem. In this case the assignment .A must be a permutation

p:J—J.

2.2.3 Quadratic Assignment Problem

For a Partitioning Problem P P(e,) with no C2 (Timing Constraints), but with M = N and s; =
¢; = constant, Vi € I and j € J, itis called a Quadratic Assignment Problem. This is the spe-
cial case where the assignment A must be a permutation p : J — J.

Despite extensive research on this problem, there had not been effective algorithms or heuristics to
solve it until recently[3]. Moreover, all existing methods can only handle problem sizes up to 50 compo-
nents. Therefore it is not possible to solve a VLSI-layout problem (e.g. gate array placement problem) as

a Quadratic Assignment Problem.

3 Transformation into Quadratic Form

Notice that any instance of PP(a,) can be transformed into an instance of pp (1,1) in the following
way: define pj; = apij, Vi,j and define af;, = Ba;;,, Vij1,j2. Now PP'(1,1) with the new matrices
P' = [p};] and A’ = [a!;] is equivalent to the original problem PP(«, 8). Therefore for simplicity of

notations, in the rest of this paper we only.treat problems in the form of PP(1,1).

3.1 Basic Transformation

Here we derive a relationship which has been used by Burkard[3] without justification.

We transform the 2-dimensional solution matrix [z;;] into a 1-dimensional column vector y of length
MN by defining y, = z;; forr = i + (j — 1) x M. We can imagine this transformation as a catenation
of all the columns in [z;;] matrix into a tall column vector y. Notice that this transformation is uniquely
determined, given a number 1 < r < MN there is a unique pair (i, j) satisfying r =7 + (j—1)x M and
vice versa. Thus y and [z;;] can be considered the same data but in different forms of “packaging”. We
say that y vector satisfies a certain constraint iff its corresponding [z:;] does.

We define P:'ljliu‘z = pi,; if 41 = 12 and j; = j2, and pl ;5 = O otherwise. By this definition, for
any fixed 7; and j; we get (since x;,;, is either O or 1)

PiainTinii = Tivjy (Piinivit) = Tivis O D PiyjuiniaTian
iz=1 jz=1
Now our cost function becomes:

Z E Piviy Tirgy + Z E Z Z Q5152 mzmtmxtm E E mim(z Z aJlsztltzwtmz+z Z pammzx'm

n=1j5=1 n=1 j1=142=1 jo=1 =1 =1 ia=1 =1 i2=1 jo=1

M N M N , MN
Z Z xiljl (Z Z (ajlﬁbiliz + pi]jlfzjz)xili2) z yrl(Z (aJlJZ 1142 + p‘lJltsz)yrZ)

1=1 =1 12=1 j=1 ri=l1 ra=1
where Q = [anz]MNxMN is defined by Qryr, = ajljzb‘1‘2+p:'1j1izjz where Ty = i] + (]1 — 1) x M and

Tg:iz-l-(jz—l)XM.

3.2 Transformation to Embed Timing Constraints

Now we have already transformed our original problem into:

minimize yTQy, subject to C1, C2, C3

where Q is our cost matrix.
Now we wish to embed the Timing Constraints C2 into cost matrix @ and solve a Quadratic Boolean

Programming Problem without Timing Constraints. We prove in Appendix the following theorem which

gives the construction m=thod explicitly to obtain a new cost matrix ' and that a solution to
minimize yTQ'y, subject to C1, C3

is exactly a solution to our original problem. Notice in the new problem we do not have C2 (Timing

Constraints).

Theorem 1 (Existence of Embedding) If Fx in nonempty, Q BPr(Q) is equivalent to Q BP(Q'), where
Q' = [g};] is defined by

q:'lrz =qnryy Y(r1,72) €ER, and qfl-,rz =U, VY(r,m)¢R,

where
MN MN

U is any number st. U>2x > D lgnml-

r=lry=1

For a precise definition of the terms used in the theorem, please refer to our Appendix.

Although theoretically correct, a straightforward implementation of the construction for Q' may result
in large values in the Q' matrix and introduce numerical inaccuracy for the optimization procedure follow-
ing it. Therefore we wish to find a larger class of Q which will serve the same purpose, i.e., a minimum
solution from the new problem (Q) is a minimum solution of our original problem (Q). This condition is

stated in the following theorem:

Theorem 2 (Sufficient Condition for Optimality of Solutions) Let Q be coincident to Q over R and a

minimum solutiony* of Q BP(Q) also satisfies y* € Fr. Theny* is also a minimum solution of @ B Pr(Q).

The idea here is to raise the cost §,,r, to some large value for those candidate assignments (%1, j;) and
(22, j2) in which Timing Constraints are violated. Therefore Timing constraints can be discarded and we
can solve the unconstrained (Timing) problem using the new cost matrix. The theorem says that no matter
how slightly you raise the values, as long as no timing violation exists in the solution, this solution is
guaranteed to be a minimum solution of the original problem. In experiments we set §r,r, = 50 for those
candidate assignments (%1, 7;) and (%2, j2) in which Timing Constraints are violated. And this value is high
enough for the optimization procedure to “reject” any timing violating assignments. We emphasize here

that the new problem after transformation is exactly equivalent to the original problem.

7

(o s | |4
N

|

Figure 1:
3.3 An Example

The long proof of equivalence between the original problem and our final form is omitted here. Interested
reader can refer to our Appendix for further reading. Here we use an example to illustrate the intuition
behind our derivation.

Suppose we have 3 components a, b, ¢ to be assigned into 4 partitions 1, 2, 3, 4, which are located as

a2 x 2 array as shown. There are five wires connecting a and b; 2 wires connecting b and c.

(0011 2]
050 0 1 o©
1021
A=1|50 2{; Dc={1 0 11; and B=D=
1 201
020 oo 1 0
211 0]
P, Py P
P, Py P
and P = a TH Sk
Py, Py P
| Paa Pap Pac |

Notice that B and D are just Manhattan distance matrices derived from the locations of the partitions
assuming adjacent partitions are distance 1 apart.

The cost matrix Q is: (“—" means zero entry)

It is clear that the big matrix has a special structure: we can think of it as a 3 X 3 matrix, each element
of this matrix is actually a 4 x 4 matrix. Each 4 x 4 matrix corresponds to an element in matrix A which
is located at the same relative position in A as the 4 x 4 matrix is located in the big matrix. For example,
A(b,c) = 2 and this element corresponds to the 4 x 4 matrix located at b row and ¢ column in the big
matrix. Discounting the effect of entries being assigned to 50 (for Timing violation), this 4 X 4 matrix is
the B matrix multiplied by the scaler A(b, c). This gives us a quick way of generating Q matrix directly
from A and B matrices.

Now we explain the effect of embedding Timing Constraints as a high cost entry in Q. Consider the
entry at row a, 2 and column b,3 which is 50. This entry corresponds to the assignment of assigning a
to 2 and b to 3. It is clear that the the delay between a and b will be D(2,3) = 2 which exceeds the
Timing Constraint between a and b: D¢(a,b) = 1. Therefore we set it to a high cost 50 to prevent it from

happening.

4 Quadratic Boolean Programming

Consider our last form of objective function:

minimize yTQy, subject to C1 and C3

where y is a column vector of binary values.

If we define our solution space S to be
S = {y| y satisfies C1 and C3}
we get our final form which is a Quadratic Boolean Program

. T’“
miny” y

This is an unconstrained Quadratic Boolean Programming problem in the solution space S with cost matrix

Q being embedded with Timing Constraints.

4.1 Linearization of Quadratic Boolean Programming

Notice that starting from this point we assume the cost matrix @ has non-negative elements. This is a valid

assumption for our partitioning problem.
Now let us define w to be a constant vector satisfying

MN
wrZZ‘jraya Vyes Vi1<r<MN

s=1

then we define for every solution vector u(¥) at iteration &

MN MN
© =Y Gl +oal and €9 =Y

r=1 r=1

The following theorem is due to Balas and Mazzola[1].

Theorem 3 Every optimal solution y* of

. T"‘
min
min y Qy

corresponds uniquely to an optimal solution of

MN
n‘gg z, such that z2> E nﬁk)yr - f(k)
y

r=1

10

(2)

(4)

4.2 Burkard’s Heuristic

Equation (4) provides a linearization of the Quadratic Programming Problem. However, directly solv-
ing equation (4) requires tremendous amount of storage and time. Therefore Burkard[3] proposed the
following heuristic.

STEP 1. Initialize k — 1,h® — 0V 1<r < MN

STEP 2. Compute bounds w, for 1 < r» < M N according to equation (2)

start with a solution u(V € S, setu® — u(® and 2* — (u*)TQu".

STEP 3. Compute

1 =3 g and €9 =3

r=1 r=1

STEP 4. Solve
= mi (k)
z ueg (Z_; i ur)

STEP 5. Compute "
k

max(L, |z — £P))

h,(.k) = hs.k-l) +

STEP 6. Solve

L (k) g (k+1)
: +
mip 2 Pl

STEP 7. If (u®+D)TQu+1) < 2* setu* «— uk+D and 2* « (u*)TQu*.

STEP 8. If k > Niterations Stop. Otherwise set k — k + 1 go to STEP3.

The overall heuristic is similar to a line search procedure and the user tan have precise control over
the total runtime. The search stops after a predetermined number of iterations. The best result seen so far

becomes the solution to this problem.

4.3 Generalization/Enhancement of Burkard’s Heuristic

In Burkard’s original paper he was solving for a Quadratic Assignment Problem, therefore the two mini-
mization subproblems in STEP 4 and STEP 6 are in fact Linear Assignment Problems (his solution space
S is the set consists of all possible permutations). In our problem, our solution space S consists of all
possible assignments which satisfy Capacity Constraints, i.e. the corresponding [z;;] matrices satisfy C1
and C3. Therefore in STEP 4 and STEP 6 we are actually solving Generalized Assignment Problems,
which are generalizations of Linear Assignment Problems. We use an existing heuristic due to Martello
and Toth[12] to solve the Generalized Assignment Problems.

11

When computing 7(*) vector in STEP 3, each 5{¥) takes M N multiplications and the total computation
for the whole vector is M2N2. If the number of partitions is close to the number of components, a single
iteration will take N* multiplications, which is impractical even for medium sized problems. However,
if the number of partitions is small, as it is always true for circuit partitioning problems, the computation
can be greatly reduced. Furthermore, if the interconnection matrix A is sparse, the cost matrix Q will be
sparse. Therefore the computations performed in STEP 3 are mostly multiplying zeros. We take advantage
of this fact and avoid these null operations altogether by using a sparse matrix technique. We never ex-
plicitly generate Q matrix, instead, only the non-zero elements of Q are retrieved on demand from a sparse
representation derived from connection matrix A. Therefore the summation only take place when both g,
and u(*) are nonzeros. Also since u{*) is binary, we only need addition operations and multiplications can
be avoided.

S Experimental Results

Since there is no existing method for comparison, we developed two partitioning methods based on Kernighan
& Lin[7] type of component interchange. The first one is a generalization of Fiduccia & Mattheyses’[8]
approach - GFM, moving one component at a time. Associated with each component are (M — 1) gain
entries, each entry representing the potential gain if that component is moved to the corresponding parti-
tion.

The second one is a generalization of Kernighan & Lin’s heuristic - GKL, switching a pair of com-
ponents at a time. Associated with each component are (N — 1) gain entries, each entry representing the
potential gain if that component is switched with the corresponding component.

Both methods start with an initial solution with no timing or capacity violations, and the subsequent
moves are allowed to take place only when they do not introduce timing or capacity violations. This will
guarantee that the final solution will be violation-free. Besides the generalization into M-way partitioning,
we also generalized the cost functions used in the gain computations. We allow arbitrary interconnection
cost (e.g. Manhattan wire length, quadratic wire length, or just total number of wire crossings) for GFM
and GKL.

A set of 7 industrial examples used in an earlier paper[2] were used to compare all 3 approaches. The
sizes of the circuits are shown in the Table I. In each circuit, the components correspond to functional
blocks in the high level design and have different sizes ranging about 2 orders of magnitude in the same

circuit. The number of partitions is 16.

12

Strictly speaking, the total number of Timing Constraints should be N2, where N is the number of
components, since there is a delay constraint in any pair of components in our general formulation. How-
ever in reality a large number of these constraints are involved with components which do not have actual
electrical connection or cycle time constraints between them. We discarded these constraints and only list
the total number of critical constraints in the table to show the degree of timing-criticality of the problem.

In our Quadratic Boolean Programming approach - QBP, each circuit runs 100 iterations. (Notice that
the solution quality is dependent on the number of iterations, the more CPU time spent, the better the
results.) In GFM, each circuit runs till no more improvement is possible. In GKL, we have to force the
algorithm to terminate after the first 6 outer loops due to excessive CPU runtime. Since any gain obtained
beyond the first 6 outer loops is insignificant, this cutoff strategy provides speedup without sacrificing
solution quality. ‘

For GFM and GKL, an initial feasible solution is needed in order to guarantee the feasibility of the
final solution. The fastest way to obtain a initial feasible solution is to use QBP algorithm with matrix B
set to all zeros. This will generate an initial feasible solution in a few iterations. This same initial solution
is used for all three approaches. In these tests we use total Manhattan wire length as our cost metric. Table
11 is results obtained by relaxing Timing Constraints and Table III is results with Timing Constraints. In
both tables the second column is the cost (total Manhattan wire length) of the initial solution. The third
column is the final cost from QBP, the fourth column is the percentage improvement, the fifth column is
the CPU time in seconds on DECstation 5000/125.

Among three methods, GFM spent the least CPU but produced the worst results, especially when
Timing Constraints are pfesent. On the other hand, QBP obtained the best quality results within reasonable
CPU time. The results from GKL are better than GFM because it explored a larger solution space at the
cost of using much more CPU time. Notice that both GFM and GKL need to start with an initial feasible
solution, (we actually obtained this initial solution by QBP), while QBP can start from any random solution.
In our separate experiments we discovered that QBP maintained the same kind of good results from any

arbitrary initial solution.

13

I. circuit descriptions:

ckt | # of components | # of wires | # of Timing Constraints
ckta 39| 8200 3464 |
cktb - 357 3017 1325
ckte 545 12141 11545
cktd 521 6309 6009
ckte 380 3831 3760
cktf | - 607 4809 4683
cktg 472 3376 3376
I1. Without Timing Constraints:

QBP
(- %)

GKL

circuits
=

ckta 12.2 || 17526 | 15.6 | 5443
cktb 8239 || 5996 27.2 | 434 " 6966 | 155185 || 6555 | 20.4 | 148.2
ckte 28210 || 20711 | 26.6 | 140.2 || 23185 | 17.8 | 37.1 || 20647 | 26.8 | 1192.0

cktd 14737 || 9724 | 34.0 | 97.1(12894 | 12.5|46.1 |[11780 [20.1 | 608.4
ckte 8524 || 6293 | 262 | 583 | 6746 209|208 || 6329 | 258 | 298.3
cktf 10498 || 5887 | 44.0 | 934 | 7589 | 27.7|24.1| 6643 | 36.7 | 514.1

cktg | 8138 | 5170 | 365 64.1“ 5925 272|155 | 5951 | 269 | 3547
1III. With Timing Constraints:

QBP [om GKL

circuits | start || final | (- %) | cpu " final { (- %) | cpu || final | (- %) cpu
ckta 20756 || 18233 | 122 | 892 (19341 | 6.8| 94 || 18262 | 120 | 394.4
cktb 8239 | 6482 | 213 | 445 7054 | 144 | 90| 7225 | 123 | 1217
ckte 28210 || 22228 | 21.2 | 139.3 |[26195 | 7.1 519 [21435 | 24.0 | 1887.5
cktd 14737 || 11278 | 23.5 | 100.7 || 13568 | 7.9 [27.6 || 12866 | 12.7 | 558.6
ckte 8524 | 6758 | 21.0| 58.0 | 7913 72 | 1.7 || 7218 | 153 | 230.0
cktf 10498 || 6916 | 34.1| 944 | 8294 | 21.0 (454 | 7627 | 273 | 4925
cktg 8138 || 5721 | 30.1| 659 | 6454 210|188 | 6014 | 26.1 [313.6

14

6 Conclusion

We discovered and mathematically proved the exact problem fonnulation/tranélation of the partitioning
problem under Timing and Capacity Constraints into a Quadratic Boolean Programming problem. We also

found an effective solution and demonstrated it through industrial examples.

References

[1] E. Balas and J.B. Mazzola, “Quadratic 0-1 Programming by a New Linearization,” Presented at the
joint ORSA/TIMS National Meeting, Washington, D.C. 1980,

[2] M. Shih, E.S. Kuh and R.-S. Tsay, “Integer Programming Techniques for Multiway System Parti-
tioning under Timing and Capacity Constraints” Memorandum No. UCB/ERL M92/81, University of
California at Berkeley, also to appear in EDAC 1993

[3] RE. Burkard and T. Bonniger, “A Heuristic for Quadratic Boolean Programs with Applications to
Quadratic Assignment Problems,” European Journal of Operational Research, 1983, 13, 372-386,

[4] E.R. Barnes, “An Algorithm for Partitioing the Nodes of a Graph,” SIAM Journal of Algebraic and
Discrete Methods, 1982, 3(4):541-550,

[5] E.R. Bamnes, A. Vannelli, and J.Q. Walker, “An New Heuristic for Partitioing the Nodes of a Graph,”
SIAM Journal of Discrete Mathematics, 1988, 1(3):299-305,

[6] T.Lengauer, Combinatorial Algorithms for Integrated Circuit Layout, 1990, Chap 6, pp:285-286,

[7] B.W. Kernighan and S. Lin, “An Efficient Heuristic Procedure for Partitioning Graphs,” The Bell
System Technical Journal, 49(2). Feb. 1970. pp. 291-307

[8] C.M. Fiduccia and R.M. Mattheyses, “An Linear Time Heuristic for Improving Network Partitions,”
Proc. 19th Design Automation Conference, 1982, pp. 175-181

[9] Y. Wei and C. Cheng, “Toward Efficient Hierarchical Designs by Ratio Cut Partitioning,” Proc. IEEE
Int. Conf. on Computer-Aided Design, 1989, pp. 298-301

[10] Y. Wei and C. Cheng, “A Two-Level Two-Way Partitioning Algorithm,” Proc. IEEE Int. Conf. on
Computer-Aided Design, 1990, pp. 516-519

15

[11] R.R. Tummala and E.J. Rymaszewski, “Microelectronics Packaging Handbook, Chap. 16” Van Nos-
trand Reinhold, 1989

[12] S. Martello and P. Toth, “Knapsack Problems” 1990, Chap 7, pp. 189-220

[13] M. Shih, E. Kuh and R. Tsay, “Performance-Driven System Partitioning on Multi-Chip Modules,”
Proc. Design Automation Conference, 1992, pp. 53-56

[14] K. Jomsten, M. Nasberg, “A new Lagrangian relaxation approach to the generalized assignment

problem,” European Journal of Operational Research 27, 1986, pp. 313-323

16

APPENDIX

This appendix includes all our original theoretical work on the transformation technique from a con-
strained Quadratic Boolean Programming Problem into an unconstrained Quadratic Boolean Pro-
gramming Problem. This technique can be applied to a general class of constraints as long as they can
be written in the form of a Region of Feasible Pairs (defined later).

We transform a constrained Quadratic Boolean Programming Problem into an unconstrained Quadratic
Boolean Programming Froblem by embedding the constraints into the quadratic cost matrix @ to form a
new constraint-embedded cost matrix Q. In our first theorem we will explicitly give the construction
method and prove the equivalence between the two problems. Although the existence of such an embed-
ding can be proven, the construction method in the first theorem may or may not produce values too large
and introduce numerical inaccuracy in the optimization procedure that follows it. Therefore we extended
our embedding method to a larger, more general set of constraint-embedded cost matrix §. In the second
theorem we will prove the sufficient condition for a minimum solution from the unconstrained problem to
be a minimum solution of our original constrained problem. The third theorem is a generalization of the
second, we discovered it after we gained some insight into the nature of the problem. It can be applied to
other constrained optimization problem as well. Although it resembles some existing penalty or barrier
methods, the underlying concept is quite different.

To make the appendix self-contained, we start with the general settings to be used in the rest of the

appendix.

1 General Settings

1.1 Basic Definitions

Let J and I be two non-émpty sets and [I| = M and |[J| = N.

Let [z:;}mxn be a matrix of binary values. Now define a binary column vector y of length MN by
yr = z;; wherer = i+ (j — 1) x M, 1 < r < MN. Notice that given r there is a unique (z,7)
corresponding to it and vice versa. The vector y is just a rearrangement of the elements of [z;;]. We refer
to these two different representations “[z;;]” and “y” with the understanding that they correspond to the

same solution. We say y satisfies certain constraints iff its corresponding [z:;] does.

1.2 The Partitioning Problem

In our application to the partitioning problem, we use [z;;] to represent an assignment A : J — I by
defining

zi;=1, ifA(j)=1 and z;;=0, otherwise.

As a consequence there is an additional constraint which is usually called Generalized Upper Bound
Constraints in related literature .
E.’B,’j =1, VYjeJ

=]
Notice that our general theorems do not require such a constraint on [z;;].
The “physical meaning” of any pairs (i1, j1), (2, j2) such that z;,;, = z;,;, = 1 is that component j, is
assigned to partition 7, and component j, is assigned to partition z,. Therefore the Timing Constraints for

the partitioning problem becomes
D(iy,12) < De(j1,j2), YV (41,51) and (i2,52) st iy =1 =245

As a conclusion, we have the following 3 sets of constraints for [z;;]

C1: (Capacity Constraints)

N
Zsj:c.-,- <uai, Viel

J=1

C2: (Timing Constraints)

D(i],iz) < DC(jlsj2)» v (ilajl) and (i21j2) st. x4 = 1= Tizja

C3: (Generalized Upper Bound Constraints)

M
2:0,7:1, ViedJ

=1

1.3 Definitions

Definition 1 (Region of Feasible Pairs) A Region of Feasible Pairs R is anarbitrary subsetof {(r1,72) | Vr1,7
r <MN and 1<r, < MN }. |

A set R defines a relation. We can imagine any ordered pair (r1,72) € R means r) and r; is in this

relationship, which means that r, is “Constraint Feasible” to ;. This relation is not necessarily reflexive,

symmetric or transitive. Therefore r; being “Constraint Feasible” to 72 does not have to imply r; being
“Constraint Feasible” to ry.

In the special case of Timing Feasibility relationship, we define (r1,2) € R if and only if
D(iy,2) < Dc (4, 52),

where 7y = iy + (j1 — 1) x M and 7, = 42 + (j2 — 1) x M. Therefore the “physical meaning” of r;
“Constraint Feasible” to r; is that component j, assigned to partition ¢, and component j2 assigned to

partition i, satisfies the timing constraint from j; to ja.

Definition 2 (Feasible Solution Set Over R) A Feasible Solution Set F over R is defined as
Fr={y €S|y = yr, = 1 implies (r1,m2) € R},

where S is our underlying solution space.

A solution vector y € Fx has the property that the 1-valued coordinates of y are all Constraint Feasible
to each other.

Again in the special case of Timing-feasibility, the solution space S is defined by
S = {y € {0,1}MN | y satisfies C1 and C3}.

And the “physical meaning” of y € Fr is that y satisfies all Timing Constraints. Therefore any solution
y € Fr is a feasible solution which satisfies C1, C2 and C3.

2 Problem Definitions

Let Q be an MN x M N matrix with real values, we define a regular Quadratic Boolean Programming

Problem
QBP(Q): miny’Qy
y€S

We define a Quadratic Boolean Programming Problem with a Region of Feasible Pairs R

QBPx(Q): min yTQy

2.1 Coincident Matrices

Let Q = [gr,roJarxn and @ = [G,,roJmxn be two real matrices.
Definition 3 (Coincident Matrices Over R) Q is coincident to Q over R if gryr, = Gryr, V(r1,m2) € R

Lemma 1 Let Q be coincident to Q over R, then yTQy = yTQy Vy € Fr.

Proof.

T MN MN
¥y Qy= Z yrn(z Gryr¥r;) = Z aryra»

ri=1 ra=1 V(ri,r2) st. yr=yr,=1
but since y € Fr, yr, = Yr, = 1 implies (r1,72) € R , therefore g,,r, = §r,r, because of coincidency and

the equation becomes

MN MN .
Z Griry = Z driry = Z yn(z ‘frxrzyrz) = yTQy-

Vrirz, st yr=yr,=1 Vryra, st yr =yr,=1 r1=1 ro=1

3 Embedding Theorems

Theorem 2 (Existence of Embedding) If Fx in nonempty, Q BPr(Q) is equivalent to Q BP(Q'), where
Q' = [g};] is defined by

q:';rz = Grira V(T],Tz) €ER, and Q:'lrz =T, V(T],T‘z) ¢ R,

where
MN MN
U is any number st. U>2%x Y. > |gnrl-
ri=1ra=1
Proof.

We notice that by definition, @ is coincident to @’ over R.
PART I: Let y3 be a minimum solution of Q B Pg(Q), see that y% is a minimum solution of Q BP(Q’).
Since y% is a solution of Q BPr(Q), y3 € Fr C S. Suppose on the contrary that there exists y € S

such that
yTQ'y < (¥y2)TQ'vx (1)

Case 1: If y € Fg, by Lemma we have yTQy = y7Q"y. Since y3 € Fr (by definition of y%) we also
have (y%)7Qux = (yr)7 Q'y%, now by inequality (1) we have

yTQy = y7Q"y < (y3)Q'vx = (v%) Quz,

the relationship between the first and last term and the fact that y € Fr contradicts that y, is a minimum
solution of Q BPr(Q).
Case 2: If y & Fxr, by definition of F we can find (r1,72) € R s.t.yr, = Yr, = 1. Now by definition
of @',
y'Q'y = Z qi.tz = ‘11'-11-2 + Z q:;tz

V(tlth)y 8.t y:1=y¢2=1 V(thtZ)#('lrrZ)v s.t. yl1=ytz=l

By definition of @’ the last expression is actually

MN MN - N
U+ Z q:,ez > Z z lgryr,| 2 v" Qu, Ww € {0, I}M
V(t1,82)#(r1r2), 8t Yo =y, =1 r=1rz=1

Letyp = v € {0,1}MN, we get
yTQ'y > (y2)"Qux = (¥2) Q¥
(The last equality is due to y3 € Fr.) Now this contradicts inequality (1).
PART II: Let y* be a minimum solution of Q BP(Q’), see that y* is a minimum solution of @B Pr(Q).
We first show that y* € Fg. Suppose contrary that y* ¢ Fx, then by a previous argument in Case 2,

PART I we have
¥)TQ'y* > vTQu, Vv e {0,1}MV. (2)

Since Fx is nonempty, there exists yr € Fz, by Lemma we have y%Qyr = y%Q'yr. But from

inequality (2) and letting yz = v we have
(¥")7Q'y" > y2Qyr = y2Q'y=

This contradicts that y* is a minimum of QBP(Q').
We then show that y* is indeed a minimum of @ BP(Q). Since y* € Fx we have

¥)7Qy* = (¥)TQ'y" < y"Q'y, WyeS

(the last inequality holds because y* is a minimum of @ BP(Q’).)

But for all y € Fx, by Lemma y”Qy = y7Q'y. Therefore we get
)7Qy" = () Qy <y Qy=y"Qy, VyeFr

Therefore y* is a minimum of Q@ BPx(Q). O

Theorem 3 (Sufficient Condition for Optimality of Solutions) Let Q be coincident to Q over Randa

minimum-s'oluti:o‘n y* of Q B P.(Cf})‘ also .sjatisﬁé.'s'y" € Fr. Theny* is also aminimum solution of QB Px(Q).
Proof. Proof by Con'radiction. Supp(;se.(.)n the contrary yg € Fr is a solution of QB Pz (Q) and that
yzQyr < (¥")7Qy" (3)
Since ygr € Fr, we have:
v Qur = ¥z Qy= (4)
By the given condition y* € Fz we also have
(v")7Qy" = ()" Qy" (5)
Combining (3),(4) and (5) we get
¥EQur = ¥%Qur < (")7Qy" = ()7 Qy"

~ The inequality between the first and last term contradicts that y* is a minimum of QBP(Q). O

Theorem 4 (General Sufficient Condition for Optimality of Solutions) Let f(y) = f(y),Vy € Fr C

S and y* minimize f over S. Suppose y* € Fr, then y* also minimizes f over Fx.

Proof. Suppose contrary that 3y € Fz and f(y) < f(y*) = f(v) = f(¥) < f(y*) = f(¥")
= y* does not minimize f over Fx = y* does not minimize f over S (contradiction)

O

Our original problem is in the form of:
minimize y'Qy, subject to C1, C2, C3

where f(y) = y7Qy and Q is our cost matrix.

Let Fr = {yly satisfies C1,C2,C3} and S = {yly satisfies C1,C3}, where S is the (larger)
solmion space without timing constraints. Now we construct a new cost matrix @ such that y7Qy =
yTQy Yy € Fr and obtain a minimizer y* of this new function yTQy in S. If y* also satisfies C2, by
the theorem we know that y* is also a minimizer of y* Qy over Fx. One intuitive way to construct Qisto
raise the cost g, to some large value for those candidate assignments (41, j1) and (42, j2) in which Timing
Constraints are violated. Then Timing constraints can be discarded and we can solve the unconstrained

problem using the new cost matrix §:
minimize yTQy, subject to C1, C3

The theorem tells us that no matter how much we augment the values in the cost matrix, as long
as no timing violation exists in the solution, this solution is guaranteed to be a minimum solution of the
original problem. In experiments we set this value to be 50. This value is high enough for the optimization
procedure to “reject” any timing violating assignments. We emphasize here that the new problem after

transformation is exactly equivalent to the original problem.

	Copyright notice 1993
	ERL-93-19

