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Abstract

In this paper we propose two open-loop control schemes for planning feasible paths for a mobile
robol with trailers. Both methods use sinusoidal inpuls. The first method uses sinusoids at
integrally relaled frequencies for systems in so-called chained form. This method is simple,
however, it only applies to mobile robots with one trailer and il makes no provision for obstacle
avoidance. The second method is very general in that it can be applied 1o systems which may not
be convertible 1o chained form. An initial path through the state space is generated using well-
known techniques from the literature (this path can be chosen to avoid obstacles if desired), then
@ feasible path is constructed which follows this nominal path arbitrarily closely. This method,
however, uses inputs of arbitrarily high amplitude and high frequency. We study the connections
betwcen the two methods. We also discuss the importance of coordinates, since the first of our
methods will only work on systems that can be pul inlo “chained” coordinales, and the tracking
resulls of the second method are shown to depend upon the coordinate system in which the
equations are expressed. We show that our system can be convertcd into an approzimate chained
form, and that the asymplotic sinusoids method works betler in these coordinates. Finally,
simulation resulls for a mobile robot with two trailers are presented.

1 Introduction

This paper investigates methods for planning collision-free paths for a mobile robot with trailers,
a popular and perhaps canonical example of a Nonholonomic Motion Planning problem.

The Nonholonomic Motion Planning problem concerns motion planning for systems which have
fewer degrees of freedom than configuration parameters. For example, simple mobile robots with
wheels generally have two degrees of freedom (linear and rotational velocities) and three parameters
to be controlled (two position parameters and one orientation parameter). While the classical tools
in (holonomic) motion planning come from computational and algebraic geometry (see [10]), the
nonholonomic motion planning problem demands the use of tools developed in nonlinear geometric
control theory (see the pioneering works [15, 17, 18], and [16] for an overview).
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The two types of constraints that will interest us in planning for mobile robots are position
constraints and velocity constraints. The position constraints generally arise from obstacles in the
configuration space, and can be expressed directly as limits on the allowable configurations of the
system. The velocity constraints, however, are expressed as constraints on the tangent space to
the configuration space. They will limit the directions in which the systemn can move at any point,
however, they do not necessarily reduce the reachable configuration space. In the case of r linked
bodies corresponding to r equations linear in the derivatives of the n configuration parameters,
these constraint equations determine what is called an (n — r)-distribution A on the configuration
manifold. According to Frobenius’ theorem (see for instance [22]), the equations are integrable
if and only if the distribution A is closed under the Lie bracket operation!. If the equations are
integrable the constraints are said to be holonomic and the system will be forced to move inside
a sub-manifold of the configuration space. If the equations are not integrable, the system is said
to be nonholonomic. In this case, the main question is : do the constraints reduce the accessible
configuration space ? :

The answer to this question is given by the controllability theorem for non-linear systems (see
for instance (26, 6]). The control Lie algebra associated with the distribution A, denoted by LA(A),
is the smallest distribution which contains A and is closed under the Lie bracket operation. If the
Lie algebra has full rank at a given configuration point ¢, then for any neighborhood A of ¢, there
exists a neighborhood A of ¢ whose points represent reachable configurations for the system moving
from c along an admissible path lying in A”. This condition is known as the “rank condition™; it
is a local condition. If the rank condition holds everywhere in the configuration space, then the
system is termed controllable. From the planning point of view, the main consequence is that the
existence of a collision-free path is characterized by the existence of a connected component in the
free (i.e., with neither collision nor contact) configuration space.

Therefore the decision problem of motion planning, that is, deciding whether or not a feasible
path exists, for controllable nonholonomic systems is the same as that for holonomic ones: the start
and goal positions must lie in the same connected component of the free configuration space.

The difference lies with the complete problem, since the controllability result is not constructive.
At this stage we could hope that the search for a solution to a nonholonomic system can be guided
by a collision-free path for the associated holonomic system. Indeed, thanks to the local property
above, a controllable robot can be steered close to any path as long as there is a “small gap” between
the reference path and the obstacles?. This idea has been refined into two different approaches. The
first one developed in [21] uses an explicit form of the shortest paths in order to approximate any
holonomic path of a car-like system. The second one uses sinusoidal in puts in order to compute such
approximations for some canonical systems [18] and general ones [24]. In this paper, we investigate
this second approach for the case of a mobile robot with trailers.

The paper is organized as follows. We first give a bricf description of a mobile robot gystem
and derive the kinematic equations that the system obeys. We also demonstrate explicitly that
the system is completely controllable. A coordinate change transforming the system of the mobile
robot with one trailer, into a special “chained canonical form” is presented. Systems in this form
can be steered using Murray and Sastry’s sinuoidal algorithm. We propose a new set of coordinates
for the two-trailer system corresponding to an approximate chained form.

A method originally proposed by Sussmann and Liu is used to generate a sequence of paths

'Let us recall that the Lie bracket of two vector fields .\ and Y’ is defined as [(X.Y]=08X.Y -a8Y.X.
2See [14] for these topological aspects.
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Figure 1: The mobile robot Hilare with 2 trailers.

for the two trailer system which converge to any desired trajectory. We show simulation results
demonstrating this convergence, and note the improved convergence results obtained with the
approximate chained form coordinates for certain desired paths.

2 The Two-trailer System

Consider a mobile robot such as Hilare® with two trailers attached, as in Figure 1. Each trailer
is attached to the body in front of it by a rigid bar, and the rear set of wheels of each body is
constrained to roll without slipping. The trailers are assumed to be identical, and to have a link
length of I. The connections between the bodies give rise o the following constraints:

2 = &i-1 —lcosb;
Yi = Yi-1—lsinb; (1)

i =1,2,...,n for the general n-trailer case. These constraints are integrable and will reduce the
dimension of the configuration space, since the positions (2, y;) for i > 1 can be expressed in terms
of 29, %000, ...,0;. The position and orientation of all the bodies can be specified by the n + 3
variables (g, ¥o,0,0)....,0,). We will take the length of each link to be one unit, i.e. I =1. We
have assumed that the bodies are connected between the midpoints of the two sets of rear wheels; it
should be noted that if the trailers are hitched behind the rear axle, the equations will not simplify
as shown here.

We assume that the wheels of the robot and trailers roll without slipping; this implies that the
velocity of each body in the direction perpendicular to its wheels must be zero. We model each pair
of rear wheels as a single wheel at the midpoint of the axle, and state the non-slipping conditions
in terms of coordinates as:

0 = &;sin@; — g; cosb;

Using the connection relations between the bodies (1), these three constraints become (for the
two-trailer system):

0 = a¢sinfy — Pocosby

3The Hilare family of mobile robots resides at LAAS in Toulouse, see for example {3, 4].
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0 = zosiné; - gocosh, + él
0 = igsind; — gy cosby + cos(f; — 0;)6; + 6,
These non-slipping constraints on the velocities of the system are nonholonomic, or nonintegrable.

They can be written more compactly as w(z)- & = 0 for the state vector 2 = (%0, Yo, 00,01,62) and
the following one-forms on @ = R2? x §! x 5! x §!:

Wi (.1') = [ sin 00 — CO8 00 0 0 0 ]
wo(z) = [ sinf —cosh O 1 0]
wa(z) = [ sinf, —cosf, 0 cos(d; —62) 1 ]

The co-distribution Q(2) = span{w;(z),ws(z),ws(x)} has dimension three and the state space Q
is of dimension five, so there exists a two-dimensional distribution A(z) = span{g;(x),g2(z)} such
that A = Q1 j.e.,

w(z)-g(z)=0, Ywe Q,Vge A

A simple calculation will show that the following vector fields g;. g2 form a basis for A:

cos 0
sin 8y 0
[ 0 g=]1 (2)
sin(Gp — 6;) 0
Sill(ol - 02) COS(00 - 01) 0
We can therefore formulate the mobile robot with two trailers as a control system,
& = g1(2)uy + g2(x)ug (3)

with the state x = (29, yo. 0y, 01.62) and the input vector fields g; and g, as defined ahove. This is
the dual representation of the constraints: the forms w(z) represent the constraints on the velocities,
and the vector fields g; represent the allowable velocities of the system. The two control inputs
correspond to the two instantaneous degrees of freedom for the system: u,, the driving velocity of
the lead car, and uj, the steering velocity of the front wheel.

The problem of finding a feasible path between one configuration and another can be reformu-
lated as a control problem: find inputs uy(t), u2(¢) which will steer the system from an initial state
z° to a final state 2/,

We recall the result from control theory [7] which states that a system of the form (3) is
completcly controllable, that is, given any x°,2/ € @, there exists a time T and an input u(-) :
[0.T] — R? which steers the system from state 2° at time 0 to state 2/ at time T, if the smallest
involutive distribution containing the input vector fields spans the tangent space to the configuration
space, i.e. system (3) is completely controllable if

inv(G) = inv(span{gy,g2}) = TQ (4)

To form inv(G') we add to the distribution G the Lie brackets of its elements

illV(G) = {91»92, [gls 92]7 [gls [glegﬂ]v [g29 [gla 92]]v o ‘}



The existence of five linearly independent vector fields in inv(G) will imply inv(G) = TQ and thus
complete controllability.
To simplify the notation somewhat, we define the vector fields g, g4, gs, g as follows:

93 = [91,99)

94 = [91,[91,9]]

gs = lg1,lg1,[0, g2]l] :

g6 = lo1,l91,[01,[9,92]]]] (5)

These vector fields have the following form: {g,, 92, g3, 94, 95,96} =

cos 8o 0 sin 6o 0
sin 8o 0 —cosfo 0
0 \ 1 . 0 , 0 '
sin(fo — 6,) 0 —cos(fo ~ 6,) -1
cos(fo — 6, )— sin(ﬂ; - 92) L} Bin(Oo - ol)sill(ox - 02) cos(01 - 02)
0 0
0 0
0 . 0
—cos(fo — 6;) -1
cos(o — 01 )[1 + cos(8; — 62)] 1+ cos(6; — 62)[1 + cos?(fo — 6;)]

The vector fields {¢1,...,95} are linearly independent on an open set
T
U= {(30» Yo, 00a 01902) : 00 - ol -';é :!:5}.

This can be checked by finding the determinant of the 5 x 5 matrix whose columns are the g;’s:

I T I
det | g1 92 93 91 g5 | = cos(fp — 6,)
[ I B

When this matrix has a nonzero determinant, it is full rank and its columns are linearly independent.
On the set U’ = Q — U = {(0.y0,00,61,602) : 8o — 6, = £3}, the vector field g5(2%) = 0. Consider
in its place the vector field g¢. The five vector fields {g1, g2, 93, 94, gs} are linearly independent on
U’; again, we check linear independence by taking the determinant of the following matrix:

A T I
det| g1 92 93 94 g6 | = =1 —cos?(6p — 6;)cos(fy — 62) = -1, VzelU'

Thus we have shown that at every point 2 € @, inv(G) = T,.Q and therefore the two-trailer system
is completely controllable.

The input vector fields for the one-trailer system are truncated versions of those for the two-
trailer system shown above, and controllability of this system is checked in exactly the same manner.
It can be shown that the general n-trailer system is also completely controllable; see Laumond [13]
for details.

Complete controllability implies that there exists a feasible path (a path satisfying the velocity
constraints) between any two points in the configuration space. The problem that we consider is
that of finding such a path.



3 Steering Systems in Chained Form

We digress slightly here to present an algorithm for steering systems which are in “chained canonical
form.” Although this special form may seem somewhat restrictive at first glance, we will show how
many systems can be put into this form using state feedback and an input transformation, and
then steered using a simple algorithm which we also describe here.

Consider a two-input control system of the form

& = g1(z)ur + ga()uz

where the state 2 = (zy,...,%,)7 and the input vector fields have the following very special form:

1) (0

0 1
22 0
Nn=\1 gz, g2=1 o (6)

xn.-2} \0)

It can be shown that systems of this form are completely controllable; and we outline here an
algorithm for steering. Given an initial state 2° and a desired final state 2/, choose a period T and

find the corresponding frequency w = %’%

Algorithm 1 (Step-by-step Steering with Sinusoids [19])

STEP 0. Set the inputs to be constant over the time interval [0,T],
uy = %(:r{ - %)
uz = H(af - 23)
This will drive z, and z3 to their desired final positions.
- STEP 1. Qver the time interval [T,2T), set the inputs to be
u; = asinwt
uy = 3 coswt
where a and B are chosen such that
a:g —-23(T) = -‘.i,—'gT
After this step, x3(2T) = 'ré its desired final value, and
#1(2T') = 24(T) = 2 and £2(2T) = 25(T) = 2§
are also at their desired final values.
STepP k. (k=2,...,n=2)
Over the time interval [kT, (k + 1)T), set the inputs to be
U = asinwt
uy = B cos kwt
where a and B are chosen such that

k
el 5 — zi42(kT) = ﬁ,‘,’%T
After Step k, states zy,23,...,Tk42 are in their desired final positions.

For € R", the total steering time is (n — 2)T. The required time can be reduced by initially
choosing a smaller value of T'.



Remark. Instead of steering each state separately, we could choose inputs of the form:

Uy = ag+oysinwt+ asinwyt + -+ ap_z sinw,_ot
u2 = fo+ Picoswit + P2c082wat + -+ + Bn_z cos(n — 2)w,_ot
over the time interval [0, T'] where T is a multiple of the periods corresponding to each w;, i.e. there

exist integers k; such that T = k,-«f,—",', t=1,...,n — 2, However, the computation required to find
the coefficients a;, 3; is much more complex. For example, in the four-state chained form:

£ = w
*2 = up
9':3 = T2U)
{l':4 = T3
the inputs would be of the form:
U = ag+ apsinwt+ azsinw,t

u2 = fo+ B1cosw;t + (3 cos 2wat

and after one period T, the states would be:

z)(T) = z{+ aoT

z:(T) = z3+fT

z3(T) = 23+ %;%T+ aoz3T + ""Tﬂ"T2 - %?‘l:r - “—:f—“T

z4(T) = =253+ ‘;i‘;’T+ aozdT + 0—3’;—gT2 + %T’ + °:l':f°T— m“’z‘T
+25ps  Sglors _ ot Seler  Sedhr
+“E?1T+ ‘;i’;’r - ‘;i‘? T

and there are certain noninterference conditions between the two frequencies that must be satisfied,
namely:

w1 # tw
wh # + 2&’2
W # :|: 30)2

Since the two frequencies must have a common period, we could choose a combination such as
2wy = wp or 2wy = 3w,, or more generally, qw; = w2, 2 #1,2,3.

The equations that need to be solved to find the coefficients a;, 3; are more complex for the
general n-state case, but there are more degrees of freedom in choosing the amplitude coefficients
than there are constraints on the final values of 2{(T'), and so it is possible to choose these coefficients
and use this method of steering. The advantage of the step-by-step method of Algorithm 1 is the
ease of presentation and implementation.

b |



Although the steering procedure presented above is useful only for systems in chained canonical
form, many systems can be put into this form through a coordinate change and state feedback. A
set of sufficient conditions for such a transformation to exist is detailed in [19]. These conditions
are not satisfied for all systemns, including the two-trailer mobile robot system which we consider in
this paper. Therefore, we state a generalization of the transformation proposition, using a relaxed
set of conditions which are sufficient for putting a system into an approximate chained form.

Proposition 1 (Transformation to Approximate Chained Form.)
Consider a two-input control system

£ = gi(z)u1 + g2()uz

with g1, 92 having the following special form on an open set:

n
;0
n(z)= 2+ E.‘Ji%
=2 '
n . ld
g2(z) = 2957
=2 ot

Consider some order-p approzimation of the input vector fields, §, and §,, where?
n(z) = §i(z)+0(z)*!
92(z) = ga(z) + O(x)H!
Define the distributions
A0 = spa"“{gl)g?’ a'd§|§29 ey a'dgl_2g2}
A; = span{gs,ad; go,..., a«lgﬁgg}

If for some open set U, Ag(z) = T.Q for all x € U end A, is involutive on U, then there exists a
local feedback transformation on U :

€ = ¢(2)
v = Pz
such that the transformed system is in order-p chained form, that is:
&b = v (7)
£2 = v

£ = & +0()PH!
b = En1vy + 0(6)°H?

*Here and in what follows, O(z)” means terms that are of order p or higher in z; more precisely, f(z) is of order
pin z, or O(2)", if:

im @
lim S = M, (M) < oo



Proof: (by construction). Consider first a distribution A’ = span{gs,ads, ga,...,ady" 2§,}. From
the special form of the input vector fields, it can be seen that none of the vector fields in A’ have
a component 32—1. Since Ag has rank n, A’ must have rank n — 1, and A’ is involutive because of
this special form.

Now, A, is involutive and of dimension n — 2, so there exists a function h : I/ — R such that

dh-Ay = 0
dhoa,dgl‘zgg = a(z)

where the function a(z) is bounded away from zero on U. We define the coordinate transformation
¢:2+— £ as

L = o (8)
§2 = Lz 2h

€1 = Lgh
fn = h

The Lie derivative that we have used in the definition of this coordinate change is defined as
follows: for a function 2 : Q — R and a vector field g(x) on @, the deriviative of h along g is
Lgh(z) = dh(2) - g(2). We denote repeated Lie derivatives by:

k - k- .
Lgh(z) = d(L, Th(z)) - g(z)
where the zeroth Lie derivative is defined as Lh(z) = h().

To verify that 8 is a valid change of coordinates, we calculate its Jacobean with respect to «
and show that it is nonsingular:

10 ...0
-2
2 dL=%h
oz =
dLy,h
dh

We multiply g% on the right by the nonsingular matrix whose columns are the independent elements
of Ao:

10 ... 0]
96 dLg;zlz
3, " Bl : [.‘71 g2 adg, g2 --- ady” 2.'72]
dLgh
dh
[ 1 0 0 cer 0]
* ta(z) * *
= |+ 0 za(z) :
P R
| * 0 - 0 a(z) |




where a(z) = dh - adj~ 2, is bounded away from zero by the definition of h.

Since the resulting matrix has rank n for all # € U, the two matrices %ﬁ and [Ag] must also
have rank n. Thus the coordinate transform we have described in (8) is valid on the open set U.

The approximate chained form follows from the involutivity of A;. Consider the coordinate
&, = h, and its derivative:

én (Lgyh)uy + (Lg,h)uy

dh - (§ + O(2)* ' )uy + dh - (G2 + O(2)**)u,
= (Lzh)us + (Lgh)uz + dh - O(z)?+! (ug + uz)

Noting that Lj h = £,y and that Lz h = 0, we see that

én = €p1t1 + O(E)‘H—l

The same procedure can then be applied to &,-1,...,&1, and it will be seen that the input trans-
formation

= W
ve = (Lo L3 2h)uy + (Lg, L 2h)uz
is necessary for the system in transformed coordinates to be in the order-p chained form (7). O
Remark. If the distribution Ay = T'Q and A, is involutive using the original vector fields

01,92 instead of their order-p approximations, then the procedure above will result in a system in
exact chained form.

4 Transformations to Chained Forms

For the mobile robot with one trailer, a transformation to exact chained form can be found using
Proposition 1. Recall that the state is = (zo, Yo, 00,0 ) and the input vector fields are:

cos 0

sin g _10

9= 0 g2 = 1
sin(6p — 6,) 0

Although these are not in the form that was assumed in the statement of the theorem, we can
divide g; by cos 8y (equivalent to a simple input transformation @; = u, cosfg)

1 0
tan fp 0
in(fo—61)
smc og . 0
Now we form the distributions
1 0 0 0
tan 6o 0 —sec? 6 0
Ag = span ' 0 1 | 0 0
umcosjﬂ 9;;01 ) 0 ::ss 9010 — sec? o



0 0
_ 0 —sec? 6,
A; = span 1 |- 0
0 =

We note that 1r
rankAo(z) = 4, Vz € {(zo, yo0,60,6;) : 6o # —2-}

and that A, is involutive. If we use the notation 93 = [91,92) then A; = span{g,, g3} and since

0
=2tanfp
[g2a98] COSO o

= 2tanfyg;
€ A,

Il

A, is involutive. It can be seen that the function
h:R?xS'xS' — R

I+siné
h(f'-‘oa Yo, 001 01) = [/ ]0g —_

cos 6,
will satisfy the conditions
dh - A 1 =0
dh - [glv [ylv gl]] # 0
We can now follow the steps given in Proposition 1 for finding the coordinate transformation
Sfi= 2o

_ cos(6p — 0;)sin{fp — 0,) — tan 6, sin?(fy — 6,)
- cos? @y cos 8,

Sill(ﬂo - 01)
cosfp cos @,

§2= L2h

E&s= Lys,h =tanby —

1+sind,

b= h =y-log cos 0,

There is also a corresponding input transformation (state feedback),

m = u
v _co8?(fo — 6y ) sin(fo — 01) 3sm 6, cos(6p ~ 6,)sin(fp ~ 01)
2 cos3 Ay cos 6, 2 cos3 8y cos3 6,
_2siu 0, 91113(01 ) 1

Uy Uz
cos3 @ coss ¢, cos? 0y cos 6

11



and the system equations in the new coordinates are in chained canonical form

&L = v
5.2 = v
& = &u
€ = &n

The step-by-step sinusoids method described in Algorithm 1 can now be used to steer this system
from any initial condition to any desired final position.

For the two-trailer system consisting of the car-like robot with two trailers, the conditions
of Proposition 1 are satisfied only for p = 1. We show here the transformation to approximate
(order-1) chained form.

We recall that the equations for this system are of the form

& = gi(x)ug + go(2)uy

where the state vector 2 = (zo, yo, bo, 61,0) and the input vector fields are

cos 0

sin 6y 0

9= 0 g2=1] 1
sin(f — 6;) 0

cos(fp — 6,)sin(6y — 6,) 0

Using the Taylor expansion for the sine and cosine functions up to terms of order 1,

sina = a+0(a)?

cos o 14+ 0(a)?

we see that the first-order approximations to the input vector fields g, and g, are:

1 0

6o 0

0= 0 g2=1]1
0o — 6, 0

0, -0, 0

These approximations are valid locally around 6y = 0,6, = 0,0; = 0. Using the notation

g3 = [§1,8]
ga = [§1,[§1,82])
g5 = [§1,[d1, [§1,§2)))

We find the distributions:

-~

A0 = spa,n{gl,ﬁg, g3, gﬂh gE}

12



( 1 0 0 0 0
6o 0 -1 0 0
= gpan { 0 1 0 0 0
0y — 6, 0 -1 -1 -1
L\ 6, -6, 0 0 1 2
A, = span{§,gs g}
(/0 0 0
0 -1 0
= span{ | 1 0 0
0 -1 -1
0 0 1

\

We note that Ag has full rank and that A, is involutive, since it is the span of constant vector
fields. We now search for a function

h:R*xS'x$'x8' — R
dh-A; = 0 (9)
dh-§5 ;é 0 (10)

and we see that
h(zo, y0,60,61,62) = yo — 6, — 6,

will satisfy the conditions (9) and (10).
We can now form the change of coordinates defined in the proposition as

&L= o
&= Lglh =0y — 26, + 0,
&= Lih =6,-06,
{'4 = I’§1 h = 02
&= h =y-6,-06,
and a state feedback of the form:
Mg = wy
v, = (L, Lg’lh)ul + (ngLglh)uz

cos(fo — 1) sin(6; — 6,) — 2sin(fy — 4,)
cos

u; + ug

will put the system into order-p chained form, p = 1.
In these coordinates, the differential equations look like:

& = vy

2 =

13



& = v sin(§a + £3) — cos(&; + £3)sin &5
° ' cos(§2 + 263 + &4)

€ = v cos(&2 + £3)sin €3
! ! cos(€z + 263 + &4)

& = v sin(§> + 263 + £4) — sin( + €3) — cos(€z + £3)sinés
: ' cos(&2 + 263 + &4)

which look quite complicated, but agree with the chained form to first order.

Because this is only an approximate chained form, the steering algorithm 1 cannot be used
to steer this system. The usefulness of this particular coordinate transformation will be shown in
Section 6

5 High-Frequency, High-Magnitude Sinusoids

Although the step-by-step sinusoids method presented in the previous section is an important result,
it is limited because not all systems can be transformed into the required chained canonical form
and because it makes no allowance for obstacle avoidance. Iu this chapter, we develop a method
for steering nonholonomic systems which is universally applicable to any completely controllable
drift-free system of the form

= Zgg(m)u; (11)
i=1

The results presented in this chapter were originally proposed by Sussmann and Liu [24, 25].

A sequence of inputs {w } will be constructed, which generates a sequence of feasible trajectories
x9(t). This sequence of trajectories will converge to a nominal trajectory 4(¢) in a sense to be made
precise in this section. This nominal path y(t) can be any differentiable tra jectory through the
state space Q, i.e. 7(1) € CY([0,T],Q). If desired, 7(t) can be chosen to avoid any obstacles that
may be present. In most cases, 7(t) will not be a feasible path, meaning that it will not satisfy the
nonholonomic constraints. We will see how it can he “approximated” with feasible trajectories.

The method described by Sussmann and Liu in [25] is quite complicated in its general form, and
8o in this paper we will present only those results which apply to the particular example we have
chosen, the system consisting of a car-like mobile robot with two trailers. The system equations
once again are:

¢ = gi(x)uy + ga(x)u,

where the state 2 = (zo0, 0, 60,6, 02)T and the input vector fields g; and g2 are

cos 0

sin 00 0

= 0 g2=]1
Sill( 00 - 01 ) 0

cos(6y — 0, )sin(8; — 6;) 0

5.1 P. Hall Basis

In order to present the results of Sussmann and Liu, we will need the definition of a P. Hall
basis [5], a basis for the Lie algebra generated by a set of vector fields. Because Lie brackets satisfy
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' skew-symmetry and the Jacobi identity, there are certain dependencies among them, for example

lgi g5l = ~[g5.9i
l9::[gis 98]} = —lg;,[gk, 9i]) — [gk, [gi 95])
A basis for the set of all Lie brackets of {g,,.. -»gm} must not include these linearly dependent
elements.
We will need the notion of the degree of a Lie bracket B = [B, B,], which is defined as the sum

of the degrees of its components, §(B) = §(B,) + 6(B;). If B is one of the generators of the Lie
algebra, then §(B) = 1. For our example system, the generators are {91,92} and we see

6(g1) = 6(92) =
6([91,92)) =

§([9, [91’92]]) =
6(lg2, (91, 92]]) =
6([g1,191,[91,92]]]) =

L R I R

We let B represent the set of all P. Hall basis elements. B can be ordered by a relation <, and
satisfies the following properties (for the two-generator case):

(PH1) g1<g:€8B
(PH2) If By, B; € B and é(B;) < §(B,), then B, < B,
(PH3) B =By, B,) € B if and only if

(a) By,B; € B, B, < B, and

(b) Bz = g) or g; or [B3,B4] where B3 < Bl

For the two-trailer system we are using for our example, we arbitrarily choose g; < g2. The
elements of the P. Hall basis up to degree 4 are thus

9

92
912= [91,92] =:g3
na2= [ol0,02]) =:g4
1a2= o [on (01,020l =:gs
9212=  [92,[01,02]] =:g96

921,12= [92,[01,[91,92)]] =:g-
92212= [92,(92,[01,92]]] =:¢8 (12)

* Note that we have assigned labels {93,...,98} to these basis elements to avoid using the long
indices that characterize each bracket, and that these labels do not correspond to the ordering of
the P. Hall Basis. We have chosen this seemingly arbitrary ordering because for our example system
of the mobile robot with two trailers, the brackets {91,92, 93, 94,95} are linearly independent and
therefore span the tangent space to the configuration space except where 6y — 6, = 3 We will be
using these 5 vector fields quite frequently in the sequel.
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We now define the vector fields B; their purpose will become clear in Section 5.2. These vector
fields are obtained by rﬁeversing the indices of the brackets in the P. Hall basis. For example, if
B = [:q,,[ghgg]] then B = [[g2,91],91]. The skew-symmetry properties of the Lie bracket imply
that B = £B. In fact,

B = B(-1)%B)-1 (13)

Using the same numbering scheme introduced in equation (12), the vector fields § in the P. Hall
basis previously described are:

g1 = g

g2 = g2

gs = l92, 91] = —g3
ga= o201l = g4
gs= [llg2 ). on)1] =95
ge =  [l92,91),92) = 96
gr= [llo2,91). 91}, 92) = —g7

ds = [llg2,91].92),92] = —gs

5.2 The Chen-Fliess Expansion

If the control inputs {ui(t)} to a system are known, then the P. Hall basis can be used to Write the
Chen-Fliess functional expansion of the system. The Chen-Fliess expansion is an infinite series with
one term for each bracket B € B, and coefficient functions which are iterated integrals of the inputs.
It is useful to work with the system in this form, since the convergence properties of the inputs and
trajectories can be easily seen. In this paper we will only state the main convergence result; the
reader is encouraged to consult [23] for more detail on the Chen-Fliess expansion, and [25] for the
proofs of the convergence results that are stated here.
Consider a drift-free control system of the form

T = zg,'(.'l:)u,' (14)

i=1

and a sequence of inputs {u;}7 defined on the time interval [0, T]. It can be shown that the sequence
of trajectories
m
= Zg;(m)u{ (15)
=1
will converge, under appropriate assumptions, to the solution of the Chen-Fliess functional expan-
sion,
% = E cg(u)(t)B (16)
BeB
After we have defined the functions cZ used in equation (16), we will show how to construct an
appropriate input sequence {u;}’ which will generate a given desired trajectory 2.
As described in Section 5.1, B is the P. Hall basis for the Lie algebra generated hy the vector
fields {g1,...,9gm}, and the B vector fields are related to the elements of the P. Hall basis as defined
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in equation (13). With every bracket B € B we will associate the two functions cg and Cp, both
of which depend on the input u(t) and which are defined as follows.
If B is one of the generating vector fields (B = g;), then we define cp to be the corresponding
input,
egi(u)t) =ui(t), 0<t<T

We define Cp to be the integral of cp,

| |
Ca(u)(t) = jo ep(u)(r)dr (17)

By definition, any bracket B # g; can be written as the Lie bracket of two other basis elements.
However, instead of considering a simple Lie bracket, we find the largest k£ such that B can be
written as

B = ad} B, (18)

where B, B, € B. We then define

en(u)(t) = [Ca,(u)1)]Fep, (u)(2) (19)

~and Cp is once again the integral of cg as in equation (17).
As mentioned earlier, we will be considering not just a single set of inputs {u;}, but a sequence
of these inputs {u;}’ indexed by the parameter j. We will define the functions c3'(u)(t) as

BN = <5 lim Ca(wi)(1) (20)

Note that one does not simply take the limit of cg(u?)(t) as j — 0o, but that we must first integrate
to get Cg(u’)(1), then take the limit, then differentiate. This is an important distinction.

The strategy for steering will be to find a sequence of inputs which generate a sequence of feasible
trajectories, which, in the limit, converge to a motion in only one bracket direction. Because
the system is completely controllable, the bracket directions will span the tangent space to the
configuration space. The derivative of any desired trajectory v(t) is therefore in the span of the
bracket directions,

() = ) be(t)B(~(1))
BeB
We will show how a sequence of inputs that will generate motion in each one of these bracket
directions B can be found, and then we simply sum these sequences together to get the total
motion. If certain noninterference conditions among the frequencies present in the inputs hold,
then the individual motions will also add due to a high-frequency superposition property that can
be shown to hold for inputs of this form, see [25].

We therefore consider these bracket directions one at a time; let us start with the simplest
bracket [g;, g2]. From our experiences with steering with sinusoids, we might postulate choosing an
input of the form:

u (1) = asinwt
ugz(t) = pPcoswt
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In fact the required input for asymptotic motion only in the [gy, g] direction is:

) = m(O)VFsinjot)
uy(t) = ma(t)V/7 cos(jwt) (21)
and the magnitude of the asymptotic displacement is a—11(#)72(t). This means that for any system
of the form
& = g1(z)ur + g2(x)u,
with inputs as described in equation (21), the sequence of trajectories =/ will converge to the
trajectory x° satisfying:
, n(t)na(2) :
2% = -(—2—3—(—[91,92](3)
To clarify some of the convergence results, we present the calculations for the relatively simple
case when 7,1, are constant functions of time. Similar results are obtained when these are time-

varying (and analytic) using integration by parts, see (25).
The first two coefficient functions are simply the inputs,

()= wm(t) =mnyFsin(jwt)
ca(t) = uz(t) = e/ cos(jut)

To find Cy, and Cy, we integrate,

11
Cpylt) = /O ¢y (T)dT

—M . J—ce
= —=cos(jwt)— 0
wyj U

t
Cplt) = /o con(T)dr

72 . 300
= ——=sin(jwt) —
w7
and note that as j — oo, these two functions will converge unifornily to zero. Now, g3 = [g1.92] =
adg, g2, and using Equation 19 as well as the functions just calculated, we can see that the coefficient
functions associated with g5 are:

Cgs(t) = Cgy(t) - cg(t)
= % cos?(jwt)
w

— ~—mnl 1 .
= — [2 +3 cos(2jwt)]

t
Cou(t) = [ cp(ryar
—migl, 1 L i T2
= ——[=t+— )] 5= -2y
” [2t+ Tiw sin(2jwt)) o
We note that the function Cy, is nonzero.
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We can write g4 as [g1,[g1,92]] = ad? g,, and therefore

) = 2(Col®)-cn(t)

— N 3
= i} cos”(jwt)
2 .
Co(t) = 2’::;-):% [sin(jwt) - %ain"(jwt)] =0

Likewise, Cy,,...,Cg == 0 uniformly on [0,T). Indeed, because of the fact that each input is
multiplied by j %, all functions Cp associated with brackets B with degree §(B) # 2, will converge
to zero in the limit. o

Using equation (20), we can see that with input sequences uJ, uJ as in equation (21),

o o M
g3 2

c%o = 0’ B # 93
From equation (16), it can be seen that the Chen-Fliess expansion in the limit looks like:

£ = €2 ga(a)
“and therefore, in the limit as j — oo, we will only get motion in the direction of the bracket
g3 = [92, ¢1].

This result can be extended to other brackets by noticing that if the inputs are all sums of

sinusoids with frequencies multiplied by j and magnitudes multiplied by j Fi?, that is

ui(t) = SFT 3 0 (1) sin(jwipt) + 5T 3 i g (1) cos(jwi gt)
p q

then Cp == 0 for all B such that §(B) # k+1. We will want to intelligently choose the frequencies
wp and w, so that exactly one of these functions Cp is nonzero.

If we again tried to draw a parallel with the step-by-step sinusoids method from Section 3, we
might predict that if there were only one frequency in each input, and w, = kwy, the function Cpg
would be nonzero for B = a,d; g2 and zero for all other brackets B. This conjecture turns out to be
true; in fact, after multiplying, integrating, and taking the limits, it can be seen that for inputs of
the form:

“{(‘) = nl(t)jri?ain(jwt)
w(t) = ma(t)j™T cos(jkwt)

the Chen-Fliess coefficient functions are

—1)*nk
F= e B=adge
g = 0, B # adk g,

These coefficients are the same as those in the chained-form, step-by-step sinusoids result from
Algorithm 1.
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5.3 Choosing the Control Inputs

From the derivations in the previous section, it can be seen that inputs which take the general
form of sums of sinusoids will result in many of the Chen-Fliess cocfficients asymptotically going to
zero, and the remaining coefficients having a simple, closed form. Here we present a. methodology
for choosing the specific sequence of input functions, {u;(t)}/, which will generate a sequence of
trajectories z7(t) converging to a desired trajectory 7(t). While doing this in detail for the two-
trailer system, we will also show some of the general theory.

Once again, we start with a controllable drift-free control system of the form

&= gi(z)u

i=1

and let B represent the P. Hall basis for the Lie algebra generated by the input vector fields
{91+--.,9m}. Consider all elements of B whose degree is less than or equal to some number d. This
number d is chosen to be large enough so that

span{BeB | §(B)<d}=T,Q VzeU

i.e. these brackets span the tangent space to the state space @} at every point in some open set U/
of interest. For convenience, we will label those brackets which have degree less than or equal to d
as {g1,-++y9ms.-.»gr}; the first m of these being the input vector fields g;. Note that necessarily
r>n=dimQ.

Now consider an “extended system” formulated on Q as

r
&= gi(x);
i=1
where we have again used the notation § = (—1)%9)-1g. This systein is also completely controllable;
by definition
spa’“{gls cresfmy . '19"} = TQ
Given any desired trajectory v(t), the system of equations

,
(1) = 3 air(t)ui(t) (22)
i=1
can be solved for the functions v;(t) using an inverse or pseudo-inverse method. The functions
(*1,...,1v;) are called the extended inputs. If r > n then there may be many different extended
inputs which will generate the same trajectory y(t).

The sequence of real inputs {u;}’ will be chosen so that the Chen-Fliess expansion has the
desired coefficients.-Recall that in the limit, the expansion will have the form

° = Y cFu)(t)B

BeB
= Y cXu)t)g + Y. cB(u)(1)B (23)
i=1 Ber
8(B)>d

20



and so by comparing equations (23) and (22), it can be seen from setting > = v, that the sequence
of inputs should be chosen so that the Chen-Fliess coefficients cp are related to the extended inputs
by:

GO = u(t), i=l...,r
Fu(t)= 0, §B)>d (24)

It can be verified that inputs which are sums of sinusoids of the following form will suffice:
. k K
uf = 3 mip(0)5%T sin(wigt) + 3 g (1) cos(juwi ot)
) q

Of course some care must he taken when choosing the frequencies w;,,w;, and the coefficient
functions 7;,5(2), i 4(t) s0 that the Chen-Fliess coefficient functions cg will be as defined in equa-
tion (24).

Returning to the two-trailer problem, it was shown in Section 2 that the set of brackets

{91,92,[91, 92, [91. [91, 92]). [91, [91, [91. 92]])}

will span the tangent space on the open set U/ = {(x0,0,00,61.6,) : 65 - 6, # +Z}. The maximum
degree of these brackets is 4; therefore we consider all elements of the P. Hall basis with degree less
than or equal to 4. In Section 5.1 it was shown that there are 8 of these brackets, {g1,...,9s}; they
were enumierated in equation (12). Now, given any desired trajectory y(t), we first need to find the
extended inputs {v;} which satisfy the equation

8
¥(t) = 3 ailr(1)vi()
i=1
Since 8 > 5 = dim Q, there will be many such extended inputs. However, since the set {gy,...,gs)}
will suffice to span, we can choose vg = v; = vg = 0, and be left with 5 equations and 5 unknowns.
We then solve uniquely for (v,...,vs):

n(t) | | -
: = | s1i(7v(1)) -+ gs(7(1)) 5(t)
vs(t) I | I
v(t) = G(7) (1) (25)

It should he noted that the matrix G(5) will be nonsingular for all paths y(1) € U.
The sequence of inputs which will result in the desired convergence properties has the form

Y2y, 1 sin(jwyt) + 53/ 3,2 sin(jwat) + §3/ 49 3sin(jwst) (26)

2,1 cos(jwit) + 5230z 5 cos(j2wst) + 73/ 41z 3 cos(j3wst)

ﬁ = mo+J

u%. = 1’2,0 + jl/2

and provided that certain noninterference conditions between wq,wq,w3 are satisfied, the corre-
sponding Chen-Fliess coefficient functions are

Cqg = My (27)
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€2 = 20 (28)

gy = —mé:,:'l (29)
2
M,2"12,2
3
32,3 A
cﬂs = 48&’% (31)
g = 0,i>5

Therefore, once the frequencies {w;,w2,w3} have been chosen to satisfy the noninterference condi-
tions (described in the following section), the functions ;. can be chosen so that the Chen-Fliess
coefficients given by equations (27)—(3!) are equal to the extended inputs (25), or

mol(t) = w(t)

mo(t) = vat)
ha(t)na(t) = —2wivs(t)
Matma(t) = 8Swivy(t)
R a()ma(t) = —48wdvs(1)

Note that even though the extended input {vy(2),...,vs(t)} is unique, there is still some freedom
in the choice of the functions #; .

5.4 Noninterference Conditions

In Sussmann and Liu’s paper, the noninterference conditions are formulated as independence re-
lations among various sets. Since the notation becomes cumbersome for the general case, we will
only describe the noninterference conditions for the example system. Of course these will be the
same as for any 5-state, 2-input system with

{91, 92:[91,92): (91, [91. g2]). [0, [0, (91, 92]1]}

linearly independent. These conditions are derived from the Chen-Fliess coeflicients.
Consider the inputs of equation (26), repeated here for convenience:

w] = mo+ s Pmasin(ert) + 5m 2 sin(jwat) + 53 i asin(jwst)
w) = mo+ 5" P, cos(jurt) + 532 cos(j2wat) + §3/ 112 3 cos(j3wat)
and define the two sets §;, 2, to be:
Ql = {:l:wl, :i:wz, :}:w3, :i:w.;}
Q, = {:hw; » 2w, £3w3, i4w4} (32)

Q; is the set of all frequencies contained in the input u;.
For any bracket B € B, we can define its first degree §; and its second degree #;. These degrees
correspond to the number of times the generating vector fields g; and g, respectively appear in the
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expression of the bracket. For example, if B = [¢,[g1,92]] then 6;(B) = 2 and §;(B) = 1. It is
easily seen that for every bracket B,

8(B) = 6,(B) + 62(B)

In order to generate motion in a bracket direction B with &, (B) = d; and 8;( B) = d, the sum
of d; of the frequencies in §; with d; of the frequencies in 2, must equal zero, that is

dy da
e+ (=0 (33)

p=1 9=1

with v, € Q; and {, € Q3. However, to prevent interference, there should be ezactly one such
combination {¥1,...,¥4,C1y...,(d, }°-
For all bracket directions B € B in which motion is not desired, there should be no combinations
vy € 1 and ¢, € §2; such that
§1(B) 62(B)
Z vp+ Z G=0
p=1 q=1
Consider, by way of example, the bracket B = [g1,[g1.92]], 61(B) = 2,82(B) = 1. It can be seen
that for the frequencies given in equation (32), the equation

nt+rt+a=0 (34)

is satisfied for 13 = vy = wq, and (; = —2w,. However, it must be verified that this is the only such
combination satisfying equation (34).

The bracket B = [g2,[¢1,92]],61(B) = 1,82(B) = 2 is a direction in which we do not wish to
move. Therefore, it must be checked that there do not exist frequencies v; € ;,(;,¢2 € 23 such
that

n+G+¢=0

If one takes the trouble to calculate all the coefficient functions ¢§ for the inputs {u;}’ as
given, it is easy to see how the noninterference conditions are derived from relations among the
various frequencies involved. For the coeflicient corresponding to a bracket with é;(B) = d; and
82(B) = dg, it can be seen that there will be d; copies of the function u; and da copies of the
function u; in the expression for cg(u)(t). The inputs u; and uz are sums of sinusoids; when they
are multiplied, new frequencies appear, corresponding to the sums and differences of the original
frequencies. The frequencies present in cp therefore will be all possible combinations of dy of the
frequencies from the set Q3 and d; of the frequencies from Q2. Recalling that all of the frequencies
are multiplied by the paramenter j, we see that if none of these combinations sum to zero, all the
terms will be divided by j when cp is integrated to find Cpg, and thus these terms will all go to
zero in the limit when c% is calculated. If, however, there is a zero-frequency term, it will not be
divided by j when cp is integrated to get Cp, in which case ¢ will be non-zero. It is an instructive
exercise to perform these integrations and realize how the inputs are interacting to give the desired
motions.

Sexcepting, of course, the combination {-v,,...,~v4,,=C1,...,—Ca,} which will also satisfy equation (33).
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5.5 Connections to Step-by-step Sinusoids

It is interesting to note the similarities between the extended input above and the corresponding
functions in the Murray and Sastry algorithm presented in Section 3. If we formulate the 5-
dimensional chained system as:

9= (19 07 fClasz,za)T

g2 = (0917 0’ 01 O)T
gs= (0,0,1,0,0)7 =adg,
94 = (Ov 0,0,1, O)T = a'd:l g2

9= (0,0,0,0,1)7 =addg,
then we would use the following inputs to get motion in each direction:
Uy = Az, = aT
uz =4 Azy = T

{ u) = asinwi

= aB
gy = fcoswt Azg T

= 2w

u; = asinwt _ o
{ uz = B cos 2wt Azq = EgT

{ %] = asinwt

-
uy = fcos 3wt Az = ﬁT

Compare these with the extended inputs described by equations (27)-(31), which are

€y = Tho
092 = 1’ 2 '0
M.a72,1
€3 = ——o
2wl
2
e = Mgzl
o 8w
3
c. = _Mams
gy = = 3
48“’3

Because of the special forms of the bracket directions in the chained system, Ax; is the same as
motion in the direction of the vector field g;. The differences in the minus signs result from the
definitions of the vector fields §;, and the factor of T is subsumed in the extended input ».

What is especially striking is that although Murray and Sastry’s result was only shown to work
for systems in chained form, the result we have stated is for any system in the form (11) such that
the brackets {g1, g2, ad,, g2, a&if,l g2, a,d:;1 g2} are linearly independent. The Murray and Sastry result

effectively used j = 1, whereas this scheme works in the limit as j — oo.

5.6 Summary of High-Frequency, High-Magnitude Sinusoids

Here we should note that we have not presented Sussmann and Liu’s algorithm exactly, but rather
used their idea of high frequency, high amplitude inputs and letting the parameter j — oo to
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eliminate the interference caused by trying to steer using sinusoids all at once. We have used only
two frequencies for each bracket direction; their algorithm uses n frequencies to generate motion in
the direction of a degree n Lie Bracket. Although it is not clear that a simplification such as ours
would work for every case, it does work for the systems discussed here, and indeed for any system
spanned by vector fields of the form {a,d;f1 g2}. Their complete theory is quite general and complex
and cannot be completely examined here. For a much more exhaustive treatment, see (25]).

One of the main advantages of the high-frequency sinusoids method presented in this section is
that the desired path can be chosen in advance, perhaps from a solution to the holonomic obstacle-
avoidance problem. Ideally, once the obstacle-free path is found, the parameter j in the inputs
could be chosen to be large enough so that the resulting feasible path is clear of obstacles.

However, it can be seen that when j increases, and the desired path is more closely followed,
the frequency and magnitude of the inputs increase. These inputs may not be realistic. Also, the
resulting paths are highly oscillatory, and the rate of convergence depends on the chosen path as
well as the choice of coordinates.

6 Applications and Simulations

In this section, we present some simulation results for the high-frequency sinusoids method of
Sussmann and Liu which was presented in the previous section. All of the simulations were done
using the program Simulate.in, a numerical integration routine in the Mathematica programming
environment. We have run simulations for two desired trajectories, using two different sets of
coordinates, and for various values of the parameter j to see how the convergence is realized in a
practical system.

6.1 The Parallel-Parking Trajectory

The first trajectory that we chose to simulate corresponds to a parallel-parking maneuver, moving
the lead car and both trailers sideways. We start with the trailers lined up directly behind the lead
car, 2° = (0,1,0,0,0) and try to move the entire system to a final position 2/ = (0,0,0,0,0), also
with the trailers aligned. See Figure 2 for the chosen trajectory.

To satisfy the non-interference conditions, we chose the frequencies wy = %, wo = g.a.ml w3z =1.
These were chosen by checking the conditions of Section 5.4 for these frequencies and all brackets
B with degree less than 4.

When we were choosing our desired trajectory, we wanted to be sure that we avoided the point
of singularity, §; = 6o+ 5. Therefore, to keep our inputs small enough, and the trajectory far away
from this point, we chose a linear parameterization of the straight path from 2° to 2/ along 100
seconds, We also scaled all the frequencies by -f%. Note that this straight-line path is not feasible
for the system.

We simulated the system in both the original coordinates and in the order-1 chained form coor-
dinates. We expected that the convergence properties would be improved by using the approximate
chained form, since the bracket directions that we are not trying to move in consist of only higher
order terms. The results that we have obtained confirm that hypothesis.

It can be seen that for both sets of coordinates, the desired path is more closely followed as
J goes from 1 to 100. The improved tracking for the transformed coordinates is remarkable. The
position error for the transformed coordinates at j = 1 is less than the error for the standard
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Figure 2: The Chosen Parallel-Parking Trajectory.

coordinates at j = 10. We have gained more than a factor of 10 in the frequencies neeeded to
achieve a given trajectory error merely by changing coordinates. There could conceivably exist
another set of coordinates in which the convergence would be even faster; however, it is not clear
how to go about searching for such a coordinate transformation.

In order to show the highly oscillatory nature of these paths, we have included one plot showing
the trajectories of all five states, see Figure 5. The desired trajectory is:

z(t) = 0
t
yit) = 1- ﬁﬁ
00(i) = 0
01(1) = 0
02(t) = 0

It can be seen that the actual trajectory stays near this path, but diverges from it many times.

It should be noted that one of the reasons that the transformed coordinates worked particularly
well along the parallel-parking trajectory was that the higher order terms were all very small along
the chosen path (§p = 6, = 6, = 0). From initial simulation results with other paths, these
coordinates do not seem to improve thé behavior of the convergence in general. However, it is
important to note how much the error can depend on the choice of coordinates.

6.2 The Corner Trajectory

In order to see how the steering algorithm worked on a perhaps more realistic trajectory, we decided
to have the car-like robot with trailers follow a path around a corner.

The desired trajectory was specified as driving straight for 50 seconds, then following the arc
of a circle through 90 degrees taking another 50 seconds, then straightening out again for the final
50 seconds of the trajectory. The simulation results follow for j = 10 and j = 100.

It is perhaps insightful to look at the plot of the (zq, yo) variables, the position in the plane of
the lead car, see Figure 6. In this figure, we have removed the scaling by time, and shown the actual
path in the z-y plane that the lead car follows. The trajectories of the two trailers are similar.

Notice that there are three parts to the trajectory, but since this is an open-loop strategy we do
not end up exactly where we hope to after the second segment (although in theory we could come
as close as we wished by increasing the value of j) so that the third segment, which should be a
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Figure 3: Position errors for various values of j, in standard (solid line) and transformed (dashed
line) coordinates. The error is calculated as the root-mean-square distance from the straight-line
parallel-parking trajectory.

Mosn crror slong the trajoctory
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Figure 4: Orientation errors for various values of j, in standard (solid line) and transformed (dashed

line) coordinates. The error is calculated as the root-mean-square distance (in radians) from the
desired parallel-parking trajectory, in which all angles are identically zero.
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j=10 j =100

Figure 6: The (o, yo) position of the lead car for two values of j, executing the corner turning
trajectory

simple straight line, is in the wrong direction because of the initial error. This problem is inherent
in any open-loop planning strategy.

It is interesting to note, that although the trailer angles are not at their desired positions after
the second segment, they converge to zero during the third segment. This is a result of an attribute
of this system of car-like robots with trailers which has not been fully exploited: symmetry and
anti-symmetry. If the home configuration is chosen so that all the trailers are aligned (6; = 8; = 6y),
then for a positive driving input (u) > 0) this configuration is stable in the sense that if the trailer
angles start off near zero they will approach zero as the lead car drives forward. However for u; < 0
(corresponding to the lead car backing up) this configuration is unstable; as the lead car backs up
the trailer angles will grow away from zero.

To illustrate how impractical the high-frequency sinusoids method can seem, we tried a simple-
minded approach to the problem of turning a corner using constant control inputs: drive straight
for 50 seconds ({u;, ug} = {35,0}), then turn the wheel while continuing to drive for the next 50
seconds, ({u1, 42} = {F,7%}), then straighten out the steering wheel and drive straight again to
finish off the path in the final 50 seconds ({uy, uz2} = {%,0}).

The resulting maneuver had the lead car following the desired circular arc trajectory exactly,
but the orientations of the trailers lagged behind the orientation of the lead car. Since the desired
trajectory had the trailers aligned with the lead car and this configuration is stable when the system
is driving forwards, the trailer angles did converge to the desired values during the third part of the
trajectory. The main difference between this approach and the high-frequency sinusoids is that in
the simplistic approach we are only concerned about the position and orientation of the lead car;
the trailers are just following behind. In the high-frequency sinusoids maneuver, we commanded
the trailer angles to be the same as the car angle throughout the entire path 8; = @, = 6. It is by
no means clear however that such a simplistic approach could be used for the reverse problem of
backing up around a coruer, or for the much more difficult problem of parallel-parking. For most
paths, the high-frequency sinusoids method must be used.
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7 Conclusions

In this paper, we presented and evaluated two different methods for steering car-like robots with
trailers; both methods used combinations of sinusoidal functions as inputs. The step-by-step sinu-
soids method, presented in Section 3, was shown to work for systems in a special chained canonical
form. A coordinate transformations to chained form was developed for the one-trailer system.

Since a conversion to chained form for the two-trailer system has not been found, an approximate
chained form was proposed. This set of coordinates was shown to be useful in the second steering
method.

The high-frequency sinusoids method, originally proposed by Sussmann and Liu [24], was pre-
sented in Section 5 in an abbreviated form. This method constructs a sequence of inputs {u;}/
which were sums of sinusoids of frequencies jwy with magnitudes j¥n, where 0 < o < 1. As the
parameter j goes to 0o, the sequence of trajectories {#7} generated by the inputs {;}/ converges
uniformly to a desired infeasible path y. This path 4 can be chosen initially to avoid ohstacles.
However, as the trajectories {z7} become closer to this desired path +, the inputs {u;}? increase
in both magnitude and frequency, making this an unreasonable method for steering a practical
system.

Some sample paths that were generated by the high-frequency sinusoids method were seen in
Section 6. As expected, the trajectories are highly oscillatory but do indeed converge to the desired
path as predicted by the theory. The convergence rates were shown to be much improved for the
approximate chained form coordinate system proposed herein. These results are significant in that
they are the first time (to the authors’ knowledge) that a control algorithm has been found for a
car-like robot with two trailers.

The advantage of the high-frequency sinusoids method is that it is completely general and can
be used for all systems and all trajectories. It does not seem to be a very practical method for
use in real systems, because of the very high-magnitude, high-frequency inputs that are required
and the highly oscillatory paths which result. If obstacles are present in the state space, however,
this may be a good method to use since the ohstacle-avoidance problem can be done in the much
simpler holonomic framework, and this obstacle-free path can then be approximated arbitrarily
closely.

Better algorithms could possibly be developed for this system by exploiting the inherent sym-
metry and anti-symmetry to advantage. It was shown in Section 6 that some trajectories can
be approximated much more realistically using a simplistic approach that exploits the stability
properties of certain trailer configurations. However, the number of such trajectories is very small.
Methods such as the two presented in this paper can be used as general path planners for mobile
robot systems with trailers, and indeed, any nonholomic systems.
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