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Control Strategies for Mobile Robots with Trailers'

D. Tilbury, J-P. LaumonclJ R. Murray} S. Sastry, G. Walsh

Electronics Research Laboratory
Department of Electrical Engineering and Computer Science

University of California Berkeley, CA 94720

Abstract

In this paper we propose two open-hop control schemes for planning feasible paths for a mobile
robot with trailers. Both methods use sinusoidal inputs. The first method uses sinusoids at
integrally related frequencies for systems in so-called chained form. This method is simple,
however, it only applies to mobile robots with one trailer and it makes no provision for obstacle
avoidance. The second method is very general in that it can be applied to systems which may not
be convertible to chained form. An initial path through the state space is generated using well-
known techniques from the literature (this path can be chosen to avoid obstacles ifdesired), then
afeasible path is constructed which follows this nominal path arbitrarily closely. This method,
however, uses inputs ofarbitrarily high amplitude and high frequency. We study the connections
between the two methods. We also discuss the importance ofcoordinates, since the first of our
methods will only work on systems that can be put into "chained" coordinates, and the tracking
results of the second method are shown to depend upon the coordinate system in which the
equations are expressed. We show that our system can be converted into an approximate chained
form, and that the asymptotic sinusoids method works better in these coordinates. Finally,
simulation results for a mobile robot with two trailers are presented.

1 Introduction

This paper investigates methods for planning collision-free paths for a mobile robot with trailers,
a popular and perhaps canonical example ofa Nonholouomic Motion Planning problem.

The Nonholonomic Motion Planning problem concerns motion planning for systems which have
fewer degrees of freedom than configuration parameters. For example, simple mobile robots with
wheels generally have two degrees offreedom (linear and rotational velocities) and three parameters
to becontrolled (two position parameters and one orientation parameter). While the classical tools
in (holonomic) motion planning come from computational and algebraic geometry (see [10]), the
nonholonomic motion planning problem demands the use of tools developed in nonlinear geometric
control theory (see the pioneering works [15, 17, 18], and [16] for an overview).
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The two types of constraints that will interest us in planning for mobile robots are position
constraints and velocity constraints. The position constraints generally arise from obstacles in the
configuration space, and can be expressed directly as limits on the allowable configurations of the
system. The velocity constraints, however, are expressed as constraints on the tangent space to
the configuration space. They will limit the directions in which the system can move at any point,
however, they do not necessarily reduce the reachable configuration space. In the case of r linked
bodies corresponding to r equations linear in the derivatives of the n configuration parameters,
these constraint equations determine what is called an (n - redistribution A on the configuration
manifold. According to Frobenius' theorem (see for instance [22]), the equations are integrable
if and only if the distribution A is closed under the Lie bracket operation1. If the equations are
integrable the constraints are said to be holonomic and the system will be forced to move inside
a sub-manifold of the configuration space. If the equations are not integrable, the system is said
to be nonholonomic. In this case, the main question is : do the constraints reduce the accessible
configuration space ?

The answer to this question is given by the controllability theorem for non-linear systems (see
for instance [26,6]). The control Lie algebra associated with the distribution A, denoted by LA{A),
is the smallest distribution which contains A and is closed under the Lie bracket operation. If the
Lie algebra has full rank at agiven configuration point c, then for any neighborhood N* ofc, there
exists aneighborhood Mofcwhose points represent reachable configurations for the system moving
from c along an admissible path lying in A/7. This condition is known as the "rank conditioir; it
is a local condition. If the rank condition holds everywhere in the configuration space, then the
system is termed controllable. From the planning point of view, the main consequence is that the
existence of a collision-free path is characterized by the existence of a connected component in the
free (i.e., with neither collision nor contact) configuration space.

Therefore the decision problem of motion planning, that is, deciding whether or not a feasible
path exists, for controllable nonholonomic systemsis the same as that for holonomic ones: the start
and goal positions must lie in the same connected component of the free configuration space.

The difference lies with thecomplete problem, since the controllability result isnotconstructive.
At this stage we could hope that the search for asolution to anonholonomic system can be guided
by acollision-free path for the associated holonomic system. Indeed, thanks to the local property
above, acontrollable robot can be steered close toany path as long as there is a"small gap" between
the reference path and the obstacles2. This idea has been refined into two different approaches. The
first one developed in [21] uses an explicit form of the shortest paths in order to approximate any
holonomic path ofacar-like system. The second one uses sinusoidal inputs in order tocompute such
approximations for some canonical systems [18] and general ones [24]. In this paper, we investigate
this second approach for the case of a mobile robot with trailers.

The paper is organized as follows. We first give a brief description of a mobile robot system
and derive the kinematic equations that the system obeys. We also demonstrate explicitly that
the system is completely controllable. A coordinate change transforming the system of the mobile
robot with one trailer, into a special "chained canonical form" is presented. Systems in this form
can besteered using Murray and Sastry's sinuoidal algorithm. We propose a new set of coordinates
for the two-trailer system corresponding to an approximate chained form.

A method originally proposed by Sussmann and Liu is used to generate a sequence of paths
'Let us recall that the Lie bracket of two vector fields A" and Y is defined as [A", Y] =dX.Y - dY.X.
2See [14] for these topological aspects.
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Figure 1: The mobile robot Hilare with 2 trailers.

for the two trailer system which converge to any desired trajectory. We show simulation results
demonstrating this convergence, and note the improved convergence results obtained with the
approximate chained form coordinates for certain desired paths.

2 The Two-trailer System

Consider a mobile robot such as Hilare3 with two trailers attached, as in Figure 1. Each trailer
is attached to the body in front of it by a rigid bar, and the rear set of wheels of each body is
constrained to roll without slipping. The trailers are assumed to be identical, and to have a link
length of /. The connections between the bodies give rise to the following constraints:

Xi = .r;_i — IcosBj

Vi = yi-i-lsin$i (1)

* = l,2,...,n for the general n-trailer case. These constraints are integrable and will reduce the
dimension of the configuration space, since the positions (a;,, y,) for t > 1 can be expressed in terms
of x0,yoi0o,...,0i. The position and orientation of all the bodies can be specified by the n + 3
variables {xo,yo,0oi0\<. ..,*n)- We will take the length of each link to be one unit, i.e. 1= 1. We
have assumed that the bodies are connected between the midpoints of the two sets of rear wheels; it
should be noted that if the trailers are hitched behind the rear axle, the equations will not simplify
as shown here.

We assume that the wheels of the robot and trailers roll without slipping; this implies that the
velocity of eachbody in the direction perpendicular to its wheels must be zero. We model each pair
of rear wheels as a single wheel at the midpoint of the axle, and state the non-slipping conditions
in terms of coordinates as:

0 = stisin B{ - y, cos 0t-

Using the connection relations between the bodies (1), these three constraints become (for the
two-trailer system):

0 = xq sin 0o - itocos 0O

'The Hilare family of mobile robots resides at LAAS in Toulouse, see for example [3, 4].



0 = xqsin 0i - y0cos B\ + 0X

0 = xqsin 02 - y0 cos02 + cos(0i - 02)0i + 02

These non-slipping constraints on the velocities of the system are nonholonomic, or nonintegrable.
They can be written more compactly as u{x) •x = 0 for the state vector x = (x0iyo,B0,Bi,B2) and
the following one-forms on Q = R2 x S1 x S1 x Sl:

wi(ar) = [ sin0O -cos0o 0 0 0 ]
lj2(x) = [ sin0i -cos0i 0 1 0 ]
t^sM = [ BlnB2 -cos02 0 cos(0i-02) 1 ]

The co-distribution Q(x) = Bpan{u^(£),<j2(&)i<43(ff)} has dimension three and the state space Q
is of dimension five, so there exists a two-dimensional distribution A(<r) = span{</i(.r),</2(a\)} such
that A = ttx, i.e.,

u(x) >g(x) = 0, Vu>€ft,Vflr€A

A simple calculation will show that the following vector fields g\.g2 form a basis for A:

9i =

COS 0o
sin 0o

0

sin(0o - 0i)
\ sin(0i-02)cos(0o-0i) J

92 =

/0\
0

1

0

We can therefore formulate the mobile robot with two trailers as a control system,

x = gi{x)ui +g2{x)u2

(2)

(3)

with the state x = (#o*2/o«0o»0i»02) and the input vector fields g\ and g2 as defined above. This is
the dual representation of the constraints: the forms u{x) represent the constraints on the velocities,
and the vector fields </,- represent the allowable velocities of the system. The two control inputs
correspond to the two instantaneous degrees of freedom for the system: «i, the driving velocity of
the lead car, and u2, the steering velocity of the front wheel.

The problem of finding a feasible path between one configuration and another can be reformu
lated as a control problem: find inputs ui(*),«2(0 which will steer the system from an initial state
a:0 to a final state xf.

We recall the result from control theory [7] which states that a system of the form (3) is
completely controllable, that is, given any x°,x* G Q, there exists a time T and an input «(•) :
[0,T] -*« R2 which steers the system from state x° at time 0 to state x* at time 7\ if the smallest
involutive distribution containing the input vector fields spans the tangent space to the configuration
space, i.e. system (3) is completely controllable if

inv(G) = inv(spaii{0i,02}) = TQ

To form inv(<7) we add to the distribution G the Lie brackets of its elements

inv(G) = {fifi,fif2» fallal* bi,[flfi,y2]Mflf2,bi»flf2]]»-..}

4

(4)



The existence of five linearly independent vector fields in inv(<7) will imply \nv{G) = TQ and thus
complete controllability.

To simplify the notation somewhat, we define the vector fields 03,04,05,06 as follows:

93 = [<7l>02]

94 = [01, [01,02]]
95 = [01, [01, [01,02]]]

06 = [01, [01, [01, [01,02]]]]

These vector fields have the following form: {01,02,03,04,05,06} =

/ COB 00

sin 0o
0

sin(0o-0i)
\ cos(0o - 0i) - sin(0i - 02) /

/

1

0

w

- cos(0o - 0i)
\ cos(0o - 0l)[l+ CO8(0i - 02)] /

\

( 0 \ / sin 0O \
0 — cos 0o

0

—cos(0o —0i)
\ sin(0o-0i)sm(0i-02) /

/ 0

0

0

-1

0

0

0

-1

\ cos(0i -02) /

\

\ 1+ COS(0j - 02)[1 + cos2(0o - 01)] /

The vector fields {g\,..., 05} are linearly independent on an open set

(5)

JT.V={(a:o,yo,^o,0i,02) :0o - 01 ^ i^}.

This can be checked by finding the determinant of the 5x5 matrix whose columns are the gfs:

I I I I I
det 01 02 03 04 05

I I I I I

= cos(0o-0i)

When this matrix has a nonzero determinant, it is full rank and its columns are linearly independent.
On the set (/' = Q - (/ = {(a?o,yo,0o,0i,02): 0O - 01 = ±f}, the vector field 05(*°) = 0. Consider
in its place the vector field ge. The five vector fields {01,02,03,04,06} are linearly independent on
U'\ again, we check linear independence by taking the determinant of the following matrix:

det
I I I I I

01 02 03 04 06

I I I I I
= _1 _ cos2(0o - 0i) cos(0t - 02) = -1, Vx € U'

Thus we have shown that at every point a; € Q, inv(G) = TXQ and therefore the two-trailer system
is completely controllable.

The input vector fields for the one-trailer system are truncated versions of those for the two-
trailer system shown above, and controllability of this system is checked in exactly the same manner.
It can be shown that the general n-trailer system is also completely controllable; see Laumond [13]
for details.

Complete controllability implies that there exists a feasible path (a path satisfying the velocity
constraints) between any two points in the configuration space. The problem that we consider is
that of finding such a path.



3 Steering Systems in Chained Form

We digress slightly here to present an algorithm for steering systems which are in "chained canonical
form." Although this special form may seem somewhat restrictive at first glance, we will show how
many systems can be put into this form using state feedback and an input transformation, and
then steered using a simple algorithm which we also describe here.

Consider a two-input control system of the form

x = gi(x)ui-r g2(x)u2

where the state x = (jci, .. .,arn)T and the input vector fields have the following very special form:

0i =

1

0

x2

*3

V *n-2 J

02 =

1

0

0

Vo/

(6)

It can be shown that systems of this form are completely controllable; and we outline here an
algorithm for steering. Given an initial state x° and a desired final state x*', choose a period T and
find the corresponding frequency u; = ?jr.

Algorithm 1 (Step-by-step Steering with Sinusoids [19])

Step 0. Set the inputs to be constant over the time interval [0, J'],
«, = £(*{-arf)
u2 = \{x{ - x%)

This will drive x\ and x2 to their desired final jwsitions.
Step 1. Over the time interval [T,2T], set the inputs to be

«i = a sin ut
u2 = (3 cos u)t

where a and j3 are chosen such that

xi-x3{T) = ^T
After this step, xz(2T) = .T3 its desired final value, and

Xi(2T) = X!(T) = x{ and x2{2T) = x2(T) = x{
are also at their desired final values.

Step k. (k = 2,...,n-2)
Over the time interval [A,T,(fc+ l)T], set the inputs to be

u\ = ash\u)t
«2 = 0 cos kut

where a and f3 are chosen such that

After Step k, states xi, x2,..., fffc+2 ore in their desired final positions.

For x G Rn, the total steering time is (n —2)T. The required time can be reduced by initially
choosing a smaller value of T.

6



Remark. Instead of steering each state separately, we could choose inputs of the form:

«i = <*o + «i sinuit + a2 sinu2t -\ h a„_2 sina>n_2*

«2 = 0o + ft cosu>i* + /?2 cos2o>2< + •••+ 0n-2 cos(7i - 2)u;n_2/

overthe time interval [0,T] where T is a multiple of the periods corresponding to each u>,-, i.e. there
exist integers k{ such that T = *,•££, t = 1,.. .,n - 2. However, the computation required to find
the coefficients a,-,/?, is much more complex. For example, in the four-state chained form:

JFi = Mi

x2 = m2

*3 = 32«1

£4 = *3Mi

the inputs would be of the form:

Ui = O"o + 01 sill u}\ t -f 0:2sin u>2t

«2 = 0o + 01 cos u>i t + 02 cos 2u>2*

and after one period 7\ the states woidd be:

*\{T) = xl + aoT
x2{T) = *S + #>r

«4(D = ^+^r+aogor+^r2 +^T3+Qia2/?0r-aiCT2/?1r
8a>2 2 0 u;ia>2 1u\u)2

{Q'QQ'101 T2 _ 0-0^100^,2 _ OQO-20Or2 30^00^, 3or^0p
4wi 2u>! 2w2 4w2 4a>5

,»o0iT , "002- "101^

and there arecertain noninterference conditions between thetwo frequencies that must besatisfied,
namely:

u>i ^ ± U>2

u>i ^ ± 2u>2

Wi ^ ± 3u>2

Since the two frequencies must have a common period, we could choose a combination such as
2u>i = lj2 or 2u>i = 3u>2, or more generally, 0u>i = pu2,£ ^ 1,2,3.

The equations that need to be solved to find the coefficients a,-,0t- are more complex for the
general n-state case, but there are more degrees offreedom in choosing the amplitude coefficients
thanthere areconstraints onthefinal values ofX{(T), and soit ispossible to choose these coefficients
and use this method ofsteering. The advantage of the step-by-step method ofAlgorithm 1 is the
ease of presentation and implementation.



Although the steering procedure presented above is useful only for systems in chained canoniral
form, many systems can be put into this form through a coordinate change and state feedback. A
set of sufficient conditions for such a transformation to exist is detailed in [19]. These conditions
are not satisfied for all systems, including the two-trailer mobile robot system which we consider in
this paper. Therefore, we state ageneralization of the transformation proposition, using a relaxed
set of conditions which are sufficient for putting a system into an approximate chained form.

Proposition 1 (Transformation to Approximate Chained Form.)
Consider a two-input control system

* = 0i(*)«i -rg2{x)u2

WM 01,02 having the following special form on an open set:

i=2 UXt

n d
02(*)= £ 0277-

Consider some order-/) approximation ofthe input vector fields, gx and g2t where4

0i(*) = 0i(.T) + O(.<rrM

02(*) = 02(*) + 0(*)p+1

Define the distributions

A0 = span{£i,(/2,ad5l$2,.. .,ad?-2£2}

Ai = span^ad^ adjf3^}

Iffor some o/x>n set U, A0(x) = TXQ for all x € U and Ax is involutive on U, then there exists a
local feedback transformation on U:

"* = #*)
m = /3{x)v

such that the transformed system is in order-p chained form, that is:

L = Vi (7)
& = v2

& = &*i+0(0"+"

L = tn-lVi+0UY+1
4Here and in what follows, 0{x)p means terms that are of order por higher in x; more precisely, fix) is of order

p in x, or 0(x)p, if: *

fa Jlfljjjjl . „, |M|<oo
*-o \\x\\f ' '



Proof: (by construction). Consider first a distribution A' = span{02,ad5l^2,...,adj~202}. From
the special form of the input vector fields, it can be seen that none of the vector fields in A' have
a component g|-. Since A0 has rank n, A' must have rank n- 1, and A' is involutive because of
this special form.

Now, Ai is involutive and of dimension n - 2, so there exists a function h : U —• R such that

dh • Ai = 0

dh •ad£"202 = a(x)
where the function a(x) is bounded away from zero on V. We define the coordinate transformation
<f>: x •-• £ as

£i = xi (8)

£n-l = L^h

in = h

The Lie derivative that we have used in the definition of this coordinate change is defined as
follows: for a function h : Q -»• R and a vector field g(x) on Q, the deriviative of h along g is
Lgh{x) = dh(x) •g(x). We denote repeated Lie derivatives by:

Lkgh{x) = d{Lkg-ih(x)).g{x)
where the zeroth Lie derivative is defined as L^h[x) = h(x).

To verify that 8 is a valid change of coordinates, we calculate its Jacobean with respect to x
and show that it is nonsingular:

1 0 ... 0

Ox

dL^h

dLfch
dh

We multiply |£ on the right by the nonsingular matrix whose columns are the independent elements
of A0:

2-i*> =

1 0 ... 0

dV£*h

dLfah
dh

1 0

* ±a(x)

* 0

[01 02 ad5l02

±a(x)

0 a{x)

a<£-2iM



where a(x) = dh •ad£~2<J2 is bounded away from zero by the definition ofh.
Since the resulting matrix has rank n for all a: € T/, the two matrices |^ and [A0] must also

have rank n. Thus the coordinate transform we have described in (8) is valid on the open set U.
The approximate chained form follows from the involutivity of Ai. Consider the coordinate

£n = ft, and its derivative:

in = (L91h)ui + {Lg2h)ti2
= dh •(jfi + 0{XY+1 )Mi + dh •(02 + 0(X)P+1 )M2
= (Lhh)ux -I- (Lhh)u2 + dh •0(x)<+l(ui + u2)

Noting that Lgxh = £n_i and that L§2h = 0, we see that

£n = £n-ll>l+O(0'+1

The sa 111e procedure can then be applied to £n-i,« • •,&, and it will be seen that the input trans
formation

V\ = Mi

v2 = (LgiLn§;2h)u1 + (Lg3Ln§;2h)u2
is necessary for the system in transformed coordinates to be in the order-/> chained form (7). •

Remark. If the distribution Ao = TQ and Ai is involutive using the original vector fields
01,02 instead of their on\er-p approximations, then the procedure above will result in a system in
exact chained form.

4 Transformations to Chained Forms

For the mobile robot, with one trailer, a transformation to exact chained form can be found using
Proposition 1. Recall that the state is x = (#0,00,^0, #i) and the input vector fields are:

\ /0\
0

1
0i =

COS #o
sin #o

0

\ sin(0o-0i) /

Although these are not in the form that was assumed in the statement of the theorem, we can
divide g\ by cos0o (equivalent to a simple input transformation 1*1 = Mi cos#o)

02 =

Now we form the distributions

'/

Ao = span •

A

\
0

101 =

1

tan Bo
0

gin(flo-fli)

02 =

V

1

tan Bo
0

8111(00-01)

COS0Q

^ /COS 0Q

\ (0\
0

/

*

1
1

/ yo) \

10

0 \
- sec2 0O

0
COS 01

/

M

-sec2#0 /,



0

/ o \)
- sec2 B0

0
CO801 .

\ COS2 0O / <

Ai = span <
1

We note that

rankAo(ar) = 4, V* €{(s0,2/o,0O,0i): B0 ± J}
and that A, is involutive. If we use the notation g3 = \gug2] then Ai =spanfo^} and

[02,03] =

/ 0 \
-2 tan 0n

cos'-10o
0

2 tan 0n cos 0i /
\ cos2 0O /

= 2 tan 0O03

€ A,

Ai is involutive. It can be seen that the function

A:R2x51x51 —* R

will satisfy the conditions

J./„. n a » i 1 + Sill 0ih{x0, j/o, 0o, 0i) = y - log —•——-
cos 01

since

dh- Ax = 0

<*M0i, [01,02]] ^ 0

We can now follow the steps given in Proposition 1for finding the coordinate transformation

£1 = *o

6= L]xh =^

6 = Lgih =tan0o-Sm(;°-*'>
cos 0o cos 01

c _ 1. 1 1 + sin 0i£4 = /, = y _ Jog -—l
COS 01

- 0i)sin(0o - 0i) - tan 0i sin2(0o - $i)
cos20Q cos 0i

£4= ft = w-log -—l-
cos 01

There is also a corresponding input transformation (state feedback),
t'i = «i

t,2 = COS2(0Q-01)8^(00-^)^ 3sin2 01 COS(0q - 0i) sin2(0o - 0! )
cos3 0O cos 0i Ul 2cos3 0O cos3 0i Ulcos3 0O cos 0i Ul ' 2cos3 0O

2sin2 0! sin3(0! -0O) 1
cos3 0O cos3 0, Wl + cos2 0O cos 0, "2

11



and the system equations in the new coordinates are in chained canonical form

(1 = *>i

& = v2

6 = &t>i

U = 6^1

The step-by-step sinusoids method described in Algorithm 1can now be used to steer this system
from any initial condition to any desired final position.

For the two-trailer system consisting of the car-like robot with two trailers, the conditions
of Proposition 1 are satisfied only for p= 1. We show here the transformation to approximate
(order-1) chained form.

We recall that the equations for this system areof the form

x = 0i(.t)mi +02(a:)M2

where the state vector x = (aro,0o,0o,0i,02) and the input vector fields are

/ cos 0O \

01 =

cos 0o
sin 0o

0

8111(00-0!)
\ cos(0o - 0i)sin(0i - 02) )

02 =

0

1

0

Using the Taylor expansion for the sine and cosine functions up to terms of order 1,

sinq = a + 0(a)3
cosa = l + 0(a)2

we see that the first-order approximations to the input vector fields gi and g2 are:

01 =

1

So
0

0o - 0i
V 01 - 02 /

02 =

/o\
0

1

0

V o y

These approximations are valid locally around 0O = 0,0, = O,02 = 0. Using the notation

03 = [01,02]

04 = [01, [01,02]]

05 = [01, [01, [01,02]]]

We find the distributions:

Ao = span{jfi,p2,03,04,05}

12



7 * \ f°\
Bo 0

= span < 0 1

0o-0i 0
A 0i-02 J \ 0 /

Ai = 8pan{02,03,04}
( /o\

0

1

0

l\o/

= span<

/ o\
-1

0

-1

V o/

/ 0\
-1

0

-1

V o/

0

0

-1

V i/J

/ 0 \
0

0

-1

\ 1/

/ o \1
0

0

-1

V 2/j

We note that A0 has full rank and that Ai is involutive, since it is the span of constant vector
fields. We now search for a function

h : R2 x 51 x S'1 x S1 —+ R

dh • Ai = 0

dh>g5 t£ 0

and we see that

^0,00,00,01,02) = 0o-0i-02

will satisfy the conditions (9) and (10).
We can now form the change of coordinates defined in the proposition as

& = *o

6= Lzhh =00-20! +02
6= L2hh =0i-02
&= L§lh =02

& = h = y - 0i - 02

and a state feedback of the form:

Vi = Mi

v2 = (LgiLzSlh)ul-r(Lg2Llh)u2
cos(0p - 0i) sin(0i - 0i) - 2sin(0o - 0i)

cos 0o

will put the system into order-/!) chained form, p = 1.
In these coordinates, the differential equations look like:

ii = fi

6 = t>2

13
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(9)

(10)



6.

-. .. sin(6 + 6) - cos(6 + e3)sm£3
fi

<*»(&+2&+&)

cos(6 + 6)sin&
cos(6+ 2^3 + ^4)

= t»i

fc = t-A si"fo +^ +M- sin(6 +fe) - cosfo +£3) sin£3
cos(6 + 26 + ^4)

which look quite complicated, but agree with the chained form to first order
Because this is only an approximate chained form, the steering algorithm 1cannot be used

to steer this system. The usefulness of this particular coordinate transformation will be shown in
section 6

5 High-Frequency, High-Magnitude Sinusoids

Although the step-by-step sinusoids method presented in the previous section is an important result,
it is limited because not all systems can be transformed into the required chained canonical form
and because it makes no allowance for obstacle avoidance. In this chapter, we develop a method
for steering nonhokmomic systems which is universally applicable to any completely controllable
drift-free system of the form

m

01 =

5.1 P. Hall Basis

i-1

/ cos0O
sin 0O

0

sin(0o-0i)
\ cos(0o - 0i)sin(0i - 02) /

(11)

The results presented in this chapter were originally proposed by Sussmann and Liu [24, 25]
j* ™rnCe °f iU1>UtS {MJ) WU1 be con8tructed* which generates asequence of feasible trajectories

x {t). This sequence of trajectories wiU converge to a nominal trajectory 7(/) in a sense to be made
precise in tins section. This nominal path 7«) can be any differentia ble trajectory through the
state space Q, i.e. 7(*) € C*{[0,TlQ). If desired, 7(*) can be chosen to avoid any obstacles that
may be present. In most cases, 7«) will not be afeasible path, meaning that it will not satisfy the
nonholonomic constraints. We will see how it can be "approximated" with feasible trajectories.

1he method described by Sussmann and Liu in [25] is quite complicated in its general form, and
so 111 this paper we will present only those results which apply to the particular example we have
chosen, the system consisting of a car-like mobile robot with two trailers. The system equations
once again are: *

* = gi(x)ui -rg2(x)u2

where the state x= (aro,0o,0o,0i,02)r and the input vector fields 9l and g2 are

02 =

/0\
0

1

0

\o/

In order to present the results of Sussmann and Liu, we will need the definition of a P. Hall
basis 15], a basis for the Lie algebra generated by aset of vector fields. Because Lie brackets satisfy
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skew-symmetry and the Jacobi identity, there are certain dependencies among them, for example

\Si*9j] = -[0j,0i]
[0i>[0j>0*]] = -[0j,[0fc,0i]]-[0*,[0,-,0j]]

A basis for the set of all Lie brackets of {01,...,gm] must not include these linearly dependent
elements.

We will need thenotion ofthe rfe0nee ofa Lie bracket B = [Bt, B2], which is defined as the sum
of the degrees of its components, 6(B) = 6(Bi) +6(B2). If B is one of the generators of the Lie
algebra, then 6(B) = 1. For our example system, the generators are {01,02} and we see

*(9i) = S(g2) = 1

*([0i,02]) = 2

*([0i> [01,02]]) = 3
*([02, [01,02]]) = 3

6([9u [01, [01,02]]]) = 4

We let Brepresent the set ofall P. Hall basis elements. Bcan be ordered by arelation <, and
satisfies the following properties (for the two-generator case):

(PHI) 01 < 02 €5
(PH2) If Bx, B2 € B and 6(BX) < 6(B2), then Bx < B2
(PH3) B = [BU B2] € B if and only if

(a) BuB2eB, Bx < B2 and
(b) B2 = 5i or g2 or [i?3, B4] where B3 < Bx

For the two-trailer system we are using for our example, we arbitrarily choose gi < g2. The
elements of the P. Hall basis up to degree 4 are thus

01

02

01,2= [01,02]

01,1,2= [01, [01,02]]

01,1,1,2= [01, [01, [01,02]]]
02,1,2= [02,[01,02]]

02,1,1,2= [02, [01, [01,02]]]
02,2,1,2= [02, [02, [01,02]]]

15

03

04

05

06

07

08 (12)

Note that we have assigned labels {03,...,0s} to these basis elements to avoid using the long
indices that characterize each bracket, and that these labels do not correspond to the ordering of
the P. Hall Basis. We have chosen this seemingly arbitrary ordering because for our example system
of the mobile robot with two trailers, the brackets {01,02,03,04,05} are linearly independent and
therefore span the tangent space to the configuration space except where 0O - 0i =f. We will be
using these 5 vector fields quite frequently in the sequel.



We now define the vector fields B\ their purpose will become clear in Section 5.2. These vector
fields are obtained by reversing the indices of the brackets in the P. Hall basis. For example, if
B = [01 >[01*02]] then B = [[02,0i],0i]« The skew-symmetry properties of the Lie bracket imply
that B = ±B. In fact,

B = ^(-l)^-1 (13)

Using the same numbering scheme introduced in equation (12), the vector fields g in the P. Hall
basis previously described are:

01 = 01

02 = 02

03 = [02,0l] = "03

04 = [[02,0l], 0l] = 04

05 = [[[02,0l], 0l], 0l] = -05

06 = [[02,0l], 02] = 06

07 = [[[02,0l], 0l], 02] = -07

08 = [[[02,0l], 02], 02] = "08

5.2 The Chen-Fliess Expansion

If the control inputs {u,*(t)} to a system are known, then the P. Hall basis can be used to write the
Chen-Fliess functional expansion of the system. The Chen-Fliess expansion is an infinite series with
one term for each bracket B € B, and coefficient functions which are iterated integrals of the inputs.
It is useful to work with the system in this form, since the convergence properties of the inputs and
trajectories can be easily seen. In this paper we will only state the main convergence result; the
reader is encouraged to consult [23] for more detail on the Chen-Fliess expansion, and [25] for the
proofs of the convergence results that are stated here.

Consider a drift-free control system of the form

m

x= ^2gi(x)ui (14)
1=1

and a sequence ofinputs {ui}j defined on the time interval [0,T]. It can be shown that the sequence
of trajectories

m

*j" =5>(*K (15)
«=i

will converge, under appropriate assumptions, to the solution of the Chen-Fliess functional expan
sion,

*°° = X>B (ttX<)£ (16)

After we have defined the functions eg* used in equation (16), we will show how to construct an
appropriate input sequence {«,}•' which will generate a given desired trajectory .tcc.

As described in Section 5.1, B is the P. Hall basis for the Lie algebra generated by the vector
fields {01,.. .,0m}, and the B vector fields are related to the elements ofthe P. Hall basis as defined
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in equation (13). With every bracket B € B we will associate the two functions cb and C'b, both
of which depend on the input u(t) and which are defined as follows.

If B is one of the generating vector fields (B = 0;), then we define cb to be the corresponding
input,

cgi(u)(t) = Ui(t), 0<t<T

We define Cb to be the integral of cb,

CB(u)(t)= /"cB(u)(r)rfr (17)
Jo

By definition, any bracket B ^ 0,- can be written as the Lie bracket of two other basis elements.
However, instead of considering a simple Lie bracket, we find the largest k such that B can be
written as

B = *dBlB2 (18)

where B\,B2 € B. We then define

cB(u)(t) = ±[CBl(u){t)]kcIh(u){t) (19)

and Cb is once again the integral of cb as in equation (17).
As mentioned earlier, we will be considering not just a single set of inputs {«•;}, but a sequence

of these inputs {m;}-7 indexed by the parameter j. We will define the functions cg'(w)(*) as

cf(«)(/)=^lhnCB(«>)(/) (20)
at j-*<x>

Note that one does not simply take the limit of cs{u^)(t) as j —• oo, but that we must first integrate
to get Cb{uJ){1)-, then take the limit, then differentiate. This is an important distinction.

The strategy for steering will be to find a sequence of inputs which generate a sequence of feasible
trajectories, which, in the limit, converge to a motion in only one bracket direction. Because
the system is completely controllable, the bracket directions will span the tangent space to the
configuration space. The derivative of any desired trajectory 7(/) is therefore in the span of the
bracket directions,

m = E ww7(«)i

We will show how a sequence of inputs that will generate motion in each one of these bracket
directions B can be found, and then we simply sum these sequences together to get the total
motion. If certain noninterference conditions among the frequencies present in the inputs hold,
then the individual motions will also add due to a high-frequency superposition property that can
be shown to hold for inputs of this form, see [25].

We therefore consider these bracket directions one at a time; let us start with the simplest
bracket [01,02]' From our experiences with steering with sinusoids, we might postulate choosing an
input of the form:

u\(i) = crsin art

u2{t) = (3 cos u>t

17



In fact the required input for asymptotic motion only in the [gug2] direction is:

u{(t) = T}l(t)y/j8m(ju;t)
w2(*) = %(<)V7cos(jurf) (21)

and the magnitude of the asymptotic displacement is ^mMmW- This means that for any system
of the form

x = 0i(s)mi +02(a)«2

with inputs as described in equation (21), the sequence of trajectories xj will converge to the
trajectory x°° satisfying:

*oo _ m(t)i)2(t)r ,, .x = —2^—m,92\{x)
To clarify some of the convergence results, we present the calculations for the relatively simple

case when 7/1,772 are constant functions of time. Similar results are obtained when these are time-
varying (and analytic) using integration by parts, see [25].

The first two coefficient functions are simply the inputs,

c5i(0= t*iW =»/iv/7sin(ja;/)
c92(t) = u2(t) = t]2y/j cos(jut)

To find Cgi and C92 we integrate,

C9l(t) = fcgi(T)dT
Jo

/l / • J v J—00 „
zos(ju)t)—>0UJy/j

Cg,(t) = / cg2(r)dT
Jo

isintfurt)'—0

and note that as j -+ 00, these two functions will converge uniformly to zero. Now, g3 = [01,02] =
adi7l02, and using Equation 19 as well as the functions just calculated, we can see that the coefficient
functions associated with 03 are:

**W = Cgi(t)-cg2(t)
= lMcos2(iu;<)

=^[^1^(2^))
C9z(t) = / c53(r)rfr

Jo

= zmmfe + 1 M2j^)\ ^=5 -limit
u l2 4ju> w n 2u

We note that the function C93 is nonzero.
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We can write g4 as (ffi.Isi,^]] =ad^, and therefore

C«W = ^•[«»(i'-«)-isin3(ia.0]^0
2w3j2 «5

Likewise, Cg&,...,CgB '-=3 0 uniformly on [0,T]. Indeed, because of the fact that each input is
multiplied by ja, all functions CB associated with brackets Bwith degree 6(B) ^ 2, will converge
to zero in the limit.

Using equation (20), we can see that with input sequences u{,u{ as in equation (21),
oo _UlUl
33 2u>

cb = 0, B±gz

From equation (16), it can be seen that the Chen-Fliess expansion in the limit looks like:

*°° = « &(*)

and therefore, in the limit as j —• oo, we will only get motion in the direction of the bracket
03 = [02,0i]-

This result can be extended to other brackets by noticing that if the inputs are all sums of
sinusoids with frequencies multiplied by j and magnitudes multiplied by j*+7, that is

uj(t) =j* £ »fc>(0 *™(M,Pt) +i1*1 £ «M<) «*(M«t)
P q

then CB ^ 0for all Bsuch that 6(B) ^ fc +1. We will want to inteUigently choose the frequencies
u>p and uq so that exactly one of these functions Cb is nonzero.

If we again tried to draw a parallel with the step-by-step sinusoids method from Section 3, we
might predict that if there were only one frequency in each input, and u>2 = kuju the function Cb
would be nonzero for B = *dgig2 and zero for all other brackets B. This conjecture turns out to be
true; in fact, after multiplying, integrating, and taking the limits, it can be seen that for inputs of
the form:

«i(<) = mttWfc Bm(jvt)
«2(0 = mtyj1*1 coB(jkut)

the Chen-Fliess coefficient functions are

-oo _ (-l)**7i*V2 n _ 0J* „
CB - M(2uJ* ' £ = adfll02
c% = 0, B?*dkgig2

These coefficients are the same as those in the chained-form, step-by-step sinusoids result from
Algorithm 1.
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5.3 Choosing the Control Inputs

From the derivations in the previous section, it can be seen that inputs which take the general
form of sums of sinusoids will result in many of the Chen-Fliess coefficients asymptotically going to
zero, and the remaining coefficients having a simple, closed form. Here we present a methodology
for choosing the specific sequence of input functions, {wi(*)}J, which will generate a sequence of
trajectories x*(i) converging to a desired trajectory j(t). While doing this in detail for the two-
trailer system, we will also show some of the general theory.

Once again, we start with a controllable drift-free control system of the form

m

x = ^2gi(x)ui
»=i

and let B represent the P. Hall basis for the Lie algebra generated by the input vector fields
{.01, •••,0m}« Consider all elements of B whose degreeis less than or equal to some number d. This
number d is chosen to be large enough so that

span{jB e B | 6(B) < d] = TTQ Va? € U

i.e. these brackets span the tangent space to the state space Q at every point in some open set U
of interest. For convenience, we will label those brackets which have degree less than or equal to d
as {01,.. .,0m, •• .,0r}; the first m of these being the input vector fields </,. Note that necessarily
r > n = dim Q.

Now consider an "extended system" formulated on Q as

r

x = 5Z^(,^,^,**
1=1

where we have again used the notationg = (-if^^g. This system is also completely controllable;
by definition

span{0i,...,0m,...,0r} = TQ

Given any desired trajectory 7(<), the system of equations

W) = EM7WW<) (22)
»=i

can be solved for the functions v,(f) using an inverse or pseudo-inverse method. The functions
(t'i,...,t>r) are called the extended inputs. If r > v then there may be many different extended
inputs which will generate the same trajectory 7(f).

The sequence of real inputs {m,}j will be chosen so that the Chen-Fliess expansion has the
desired coefficients.-Recall that in the limit, the expansion will have the form

*°° = 52c%(u)(t)B
B€B

= £<£(u)(O0.- + E <%(*)(*)* (23)
1=1 B€B

6{B)>d
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and so by comparing equations (23) and (22), it can be seen from setting x* =7, that the sequence
of inputs should be chosen so that the Chen-Fliess coefficients cB are related to the extended inputs
by:

WW= *>.(<), t = l,...,r
Cb(«)(0= 0, 6(B) >d (24)

It can be verified that inputs which are sums of sinusoids of the following form will suffice:

ui =J2 »/.-,p(0i^T sm(MtPt) +]T 7/tt9(/)i^ co8(Mtgt)

Of course some care must be taken when choosing the frequencies u>,,p,u>,,9 and the coefficient
functions ty,p(0, »M0 so that the Chen-Fliess coefficient functions eg will be as defined in equa
tion (24).

Returning to the two-trailer problem, it was shown in Section 2 that the set of brackets

{01,02, [01,02], [01, [01,02]], [01, [01, [01,02]]]}

will span the tangent space on the open set U={(*„, j,0, Bo,BuB2)iB0-Bx jL ±%). The maximum
degree of these brackets is 4; therefore we consider all elements of the P. HaU basis with degree less
than or equal to 4. In Section 5.1 it was shown that there are 8of these brackets, {</,,...,g8}; they
were enumerated in equation (12). Now, given any desired trajectory 7«), we first need to find the
extended inputs {v,} which satisfy the equation

8

7(<) = X>(7(<)M(<)
1=1

Since 8>5=dimQ, there will be many such extended inputs. However, since the set {gu...,#5}
will suffice to span, we can choose v6 = v7 = v6 =0, and be left with 5equations and 5unknowns.
We then solve uniquely for (i>i,..., v5):

Mt)

L v5(t) J

«(o = tfw'w)

I I
0i(7(O) ••• 05(7(0)

-i-l r
1

i(0

(25)

It should be noted that the matrix #(7) will be nonsingular for all paths 7(/) € U.
The sequence ofinputs which will result in the desired convergence properties has the form

ui = mja +J1/2m,i sin(M0 +i2/V,2sin(iw20 +J3/4Vi,3sin(M0
«2 = ffc.0 +i1/2»/2,i cos(ju;i0 +i2/372,2 cos(J2u;20 +J3/4»/2,3 cos(J3o;3/)

(26)

and provided that certain noninterference conditions between u>i,u>2,u>3 are satisfied, the corre
sponding Chen-Fliess coefficient functions are

c9i = m,o

21

(27)



C92 = ^2,0 (28)

em = -Ig* ,29,

c„ =%|i (30)

'* = —45i" <31)
'9% = 0, t > 5

Therefore, once the frequencies {u>i,u>2,W3} have been chosen to satisfy the noninterference condi
tions (described in the following section), the functions 77;,* can be chosen so that the Chen-Fliess
coefficients given by equations (27)—(31) are equal to the extended inputs (25), or

*?i,o(0 = »i(0
»/2,o(0 = v2(t)

ih.i(t)i»,i(<) = -2u>ii>3(0
»7l,2(OT/2,2(0 = &4v4{t)
»/l,3(0V2,3(0 = -48wgt75(<)

Note that even though the extended input {vi(0,---,vs(0} *s unique, there is still some.freedom
in the choice of the functions 7/,^.

5.4 Noninterference Conditions

In Sussmann and Liu's paper, the noninterference conditions are formulated as independence re
lations among various sets. Since the notation becomes cumbersome for the general case, we will
only describe the noninterference conditions for the example system. Of course these will be the
same as for any 5-state, 2-input system with

{01,02, [01,02], [01, [01,02]], [01, [01, [01,02]]]}

linearly independent. These conditions are derived from the Chen-Fliess coefficients.
Consider the inputs of equation (26), repeated here for convenience:

«i = »/i,o + J1/2Vi,i sin(jwi0 + j2/3m,2 8hi(ju2t) + j3/V,3 sin '̂u^O
u2 = V2,o + i1/2'/2,i cos(ju;i/) + j2/3772,2 cos(j2u>20 + i3/4»/2,3 cos(j3u;3/)

and define the two sets Q\,Q2 to be:

fii = {±o>i,±o;2,±u;3,±u;4}

Q2 = {±wi,±2u>2,±3u;3,±4u;4} (32)

ft, is the set of all frequencies contained in the input u,-.
For any bracket B € 5, we can define its first degree £1 and its second degree 62. These degrees

correspond to the number of times the generating vector fields gi and g2 respectively appear in the

22



expression of the bracket. For example, if B = [01,(01,02]] then 61(B) = 2 and 62(B) = 1. It is
easily seen that for every bracket JB,

6(B) = 6i(B) + 62(B)

In order to generate motion in a bracket direction B with 6\(B) = rfi and 62(B) = d2, the sum
of d\ of the frequencies in &i with d2 of the frequencies in 122 must equal zero, that is

X>P +EC, =0 (33)
p=l 9=1

with up € fti and (q € ^2- However, to prevent interference, there should be exactly one such
combination {u\,..., u^, Ci, •••, Cd2 }5-

For all bracket directions B € B in which motion is not desired, there should be no combinations

up € Hi and (,*9 € 1^2 such that
S^B) S7(B)

E "p+ E Cg =0
p=l 9=1

Consider, by way of example, the bracket B = [0i,[0i,02]],^i(#) = 2,62(B) = 1. It can be seen
that for the frequencies given in equation (32), the equation

"i + "2 + Ci = 0 (34)

is satisfied for u\ = u2 = u>2, and £i = -2u>2- However, it must be verified that this is the only such
combination satisfying equation (34).

The bracket B = [02, [01,02]],M#) = l*fa(B) = 2 is a direction in which we do not wish to
move. Therefore, it must be checked that there do not exist frequencies u\ € 12i<Ci«€2 € il2 such
that

v\ + Ci + C2 = 0

If one takes the trouble to calculate all the coefficient functions eg* for the inputs {W|}J as
given, it is easy to see how the noninterference conditions are derived from relations among the
various frequencies involved. For the coefficient corresponding to a bracket with b\(B) = d\ and
62(B) = «?2» it can be seen that there will be d\ copies of the function t*i and d2 copies of the
function u2 in the expression for cs(u)(t). The inputs u\ and u2 are sums of sinusoids; when they
are multiplied, new frequencies appear, corresponding to the sums and differences of the original
frequencies. The frequencies present in cb therefore will be all possible combinations of rfi of the
frequencies from the set Q\ and d2 of the frequencies from 1^2. Recalling that all of the frequencies
are multiplied by the paramenter j, we see that if none of these combinations sum to zero, all the
terms will be divided by j when cb is integrated to find Cb, and thus these terms will all go to
zero in the limit when eg* is calculated. If, however, there is a zero-frequency term, it will not be
divided by j when cb is integrated to get Cb, in which case eg will be non-zero. It is an instructive
exercise to perform these integrations and realize how the inputs are interacting to give the desired
motions.

^excepting, of course, the combination {—ui,..., -i/d,, —Ci» •••>—Crfa) which will also satisfy equation (33).
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5.5 Connections to Step-by-step Sinusoids

It is interesting to note the similarities between the extended input above and the corresponding
functions in the Murray and Sastry algorithm presented in Section 3. If we formulate the 5-
dimensional chained system as:

01= (l,0,xux2,x3)T
02= (0,l,0,0,0)r
03= (0,0,1,0,0)T =ad5lflf2
04= (0,0,0,l,0)r =ad*1</2
05= (0,0,0,0,l)r =ad3,1</2

then we would use the following inputs to get motion in each direction:

Mi = a Ax\ = qT

m2 = /? Ax2 = 0T

u2 = pcosvt 2u/

f «i =asina>* _ <££
\ u2 = (3cos2u>t ^i-sP1
j «i =asinu>/ _ c£q
\ M2 = /?cos3u>* ^5" 4***1

Compare these with the extended inputs described by equations (27)-(31), which are

C9X = *?i,o

c92 = 7/2,0

*|1.1?72,1

{

C53 — ~

C9A =

2u>i

?/lt2T72,2

8u>|

c = jfijto*
"•9b

4M

Because of the special forms of the bracket directions in the chained system, Aar,- is the same as
motion in the direction of the vector field #. The differences in the minus signs result from the
definitions of the vector fields ft, and the factor ofT is subsumed in the extended input v.

What is especially striking is that although Murray ajid Sastry's result was only shown to work
for systems in chained form, the result we have stated is for any system in the form (11) such that
the brackets {0i,02,ad5l^2,ad^1<72,adJ1</2} are linearly independent. The Murray and Sastry result
effectively used j = 1, whereas this scheme works in the limit as j -*• oo.

5.6 Summary of High-FVequency, High-Magnitude Sinusoids

Here we should note that we have not presented Sussmann and Liu's algorithm exactly, but rather
used their idea of high frequency, high amplitude inputs and letting the parameter j -* oo to
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eliminate the interference caused by trying to steer using sinusoids all at once. We have used only
two frequencies for each bracket direction; their algorithm uses n frequencies to generate motion in
the direction of a degree n Lie Bracket. Although it is not clear that a simplification such as ours
would work for every case, it does work for the systems discussed here, and indeed for any system
spanned by vector fields of the form {ad*^}- Their complete theory is quite general and complex
and cannot be completely examined here. For a much more exhaustive treatment, see [25].

One ofthe main advantages ofthe high-frequency sinusoids method presented in this section is
that the desired path can be chosen in advance, perhaps from a solution to the holonomic obstacle-
avoidance problem. Ideally, once the obstacle-free path is found, the parameter j in the inputs
could be chosen to be large enough so that the resulting feasible path is clear of obstacles.

However, it can be seen that when j increases, and the desired path is more closely followed,
the frequency and magnitude of the inputs increase. These inputs may not be realistic. Also, the
resulting paths are highly oscillatory, and the rate ofconvergence depends on the chosen path as
well as the choice of coordinates.

6 Applications and Simulations

In this section, we present some simulation results for the high-frequency sinusoids method of
Sussmann and Liu which was presented in the previous section. All of the simulations were done
using the program Simulate.m, a numerical integration routine in the Matliematica programming
environment. We have run simulations for two desired trajectories, using two different sets of
coordinates, and for various values of the parameter j to see how the convergence is realized in a
practical system.

6.1 The Parallel-Parking Trajectory

The first trajectory that we chose to simulate corresponds to a parallel-parking maneuver, moving
the lead car and both trailers sideways. We start with the trailers lined up directly behind the lead
car, x° = (0,1,0,0,0) and try to move the entire system to a final position x* = (0,0,0,0,0), also
with the trailers aligned. See Figure 2 for the chosen trajectory.

To satisfy the non-interference conditions, we chose the frequencies u>i = |, u>2 = §,and u>3 = 1.
These were chosen by checking the conditions of Section 5.4 for these frequencies and all brackets
B with degree less than 4.

When we were choosing our desired trajectory, we wanted to be sure that we avoided the point
ofsingularity, 0X = 0O± |. Therefore, to keep our inputs small enough, and the trajectory far away
from this point, we chose a linear parameterization ofthe straight path from x° to x? along 100
seconds. We also scaled all the frequencies by fg. Note that this straight-line path is not feasible
for the system.

Wesimulated the system in both the original coordinates and in the order-1 chained form coor
dinates. We expected that the convergence properties would be improved by using the approximate
chained form, since the bracket directions that we are not trying to move in consist ofonly higher
order terms. The results that we have obtained confirm that hypothesis.

It can be seen that for both sets of coordinates, the desired path is more closely followed as
j goes from 1 to 100. The improved tracking for the transformed coordinates is remarkable. The
position error for the transformed coordinates at j = 1 is less than the error for the standard
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Figure 2: The Chosen Parallel-Parking Trajectory.

coordinates at j = 10. We have gained more than a factor of 10 in the frequencies neeeded to
achieve a given trajectory error merely by changing coordinates. There could conceivably exist
another set of coordinates in which the convergence would be even faster; however, it is not clear
how to go about searching for such a coordinate transformation.

In order to show the highly oscillatory nature ofthese paths, we have included one plot showing
the trajectories of all five states, see Figure 5. The desired trajectory is:

x(t) = 0

y(t) = l-

0o(t) = 0

*i(t) = 0

e2(t) = 0

t

100

It can be seen that the actual trajectory stays near this path, but diverges from it many times.
It should be noted that oneof the reasons that the transformed coordinates worked particularly

well along the parallel-parking trajectory was that the higher order terms were all very small along
the chosen path (0O = 0\ = 02 = 0). From initial simulation results with other paths, these
coordinates do not seem to improve the behavior of the convergence in general. However, it is
important to note how much the error can depend on the choice of coordinates.

6.2 The Corner Trajectory

In order to see how the steering algorithm worked ona perhaps more realistic trajectory, we decided
to have the car-like robot with trailers follow a path around a corner.

The desired trajectory was specified as driving straight for 50 seconds, then following the arc
ofa circle through 90 degrees taking another 50 seconds, then straightening out again for the final
50 seconds of the trajectory. The simulation results follow for .;' = 10 and j = 100.

It is perhaps insightful to look at the plot of the (x0, yo) variables, the position in the plane of
the lead car, see Figure 6. In this figure, we have removed the scaling bytime, and shown the actual
path in the ar-w plane that the lead car follows. The trajectories of the two trailers are similar.

Notice that there are three parts to the trajectory, but since thisis an open-loop strategy we do
not end up exactly where we hope to after the second segment (although in theory we could come
as close as we wished by increasing the value of j) so that the third segment, which should be a
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Figure 3: Position errors for various values of j, in standard (solid line) and transformed (dashed
line) coordinates. The error is calculated as the root-mean-square distance from the straight-line
parallel-parking trajectory.
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Figure 4: Orientation errors for various values of j, in standard (solid line) and transformed (dashed
Une) coordinates. The error is calculated as the root-mean-square distance (in radians) from the
desired parallel-parking trajectory, in which all angles are identically zero.
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Figure 5: Steering the System in Standard Coordinates, j = 10. The desired trajectory is the
straiglii line (0.1 —y^. 0.0.0). As j increases, the trajectory becomes closer to the desired straighl
line, but oscillates about it at a higher frequency.
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i = 10 j = 100

Figure 6: The (ar0,2fo) position of the lead car for two values of j, executing the corner turning
trajectory

simple straight fine, is in the wrong direction because of the initial error. This problem is inherent
in any open-loop planning strategy.

It is interesting to note, that although the trailer angles are not at their desired positions after
the second segment, they converge to zeroduring the third segment. This is a residt of an attribute
of this system of car:like robots with trailers which has not been fully exploited: symmetry and
anti-symmetry. If the homeconfiguration is chosen sothat all the trailers arealigned (0i = 02 = 0O),
then for a positive driving input («i > 0) this configuration is stable in the sense that if the trailer
angles start off near zero they will approach zero as the lead car drives forward. However for «i < 0
(corresponding to the lead car backing up) this configuration is unstable; as the lead car backs up
the trailer angles will grow away from zero.

To illustrate how impractical the high-frequency sinusoids method can seem, we tried a simple-
minded approach to the problem of turning a corner using constant control inputs: drive straight
for 50 seconds ({111,1*2} = {^,0}), then turn the wheel while continuing to drive for the next 50
seconds, ({ui,u2} = {55, jjjg}), then straighten out the steering wheel and drive straight again to
finish off the path in the final 50 seconds ({«i,«2} = {^,0}).

The resulting maneuver had the lead car following the desired circular arc trajectory exactly,
but the orientations of the trailers lagged behind the orientation of the lead car. Since the desired
trajectory had the trailers aligned with the lead carand this configuration is stable when the system
is driving forwards, the trailer angles did converge to the desired values during the third part of the
trajectory. The main difference between this approach and the high-frequency sinusoids is that in
the simplistic approach we are only concerned about the position and orientation of the lead car;
the trailers are just following behind. In the high-frequency sinusoids maneuver, we commanded
the trailer angles to be the same as the car angle throughout the entire path 0\ = 02 = 0O. It is by
no means clear however that such a simplistic approach could be used for the reverse problem of
backing up around a corner, or for the much more difficult problem of parallel-parking. For most
paths, the high-frequency sinusoids method must be used.

29



7 Conclusions

In this paper, we presented and evaluated two different methods for steering car-like robots with
trailers; both methods used combinations of sinusoidal functions as inputs. The step-by-step sinu
soids method, presented in Section 3, was shown to work for systems in a special chained canonical
form. A coordinate transformations to chained form was developed for the one-trailer system.

Since a conversion to chained form for the two-trailer system has not been found, an approximate
chained form was proposed. This set of coordinates was shown to be useful in the second steering
method.

The high-frequency sinusoids method, originally proposed by Sussmann and Liu [24], was pre
sented in Section 5 in an abbreviated form. This method constructs a sequence of inputs {«,}J
wluch were sums of sinusoids of frequencies juk with magnitudes jai)k, where 0 < cr < 1. As the
parameter j goes to oo, the sequence of trajectories {xJ} generated by the inputs {«»}J converges
uniformly to a desired infeasible path 7. This path 7 can be chosen initially to avoid obstacles.
However, as the trajectories {sJ} become closer to this desired path 7, the inputs {u,}-7 increase
in both magnitude and frequency, making this an unreasonable method for steering a practical
system.

Some sample paths that were generated by the high-frequency sinusoids method were seen in
Section 6. As expected, the trajectories are highly oscillatory but do indeed converge to the desired
path as predicted by the theory. The convergence rates were shown to be much improved for the
approximate chained form coordinate system proposed herein. These results are significant in that
they are the first time (to the authors' knowledge) that a control algorithm has been found for a
car-like robot with two trailers.

The advantage of the high-frequency sinusoids method is that it is completely general and can
be used for all systems and all trajectories. It does not seem to be a very practical method for
use in real systems, because of the very high-magnitude, high-frequency inputs that are required
and the highly oscillatory paths which result. If obstacles are present in the state space, however,
this may be a good method to use since the obstacle-avoidance problem can be done in the much
simpler holonomic framework, and this obstacle-free path can then be approximated arbitrarily
closely.

Better algorithms could possibly be developed for this system by exploiting the inherent sym
metry and anti-symmetry to advantage. It was shown in Section 6 that some trajectories can
be approximated much more realistically using a simplistic approach that exploits the stability
properties of certain trailer configurations. However, the number of such trajectories is very small.
Methods such as the two presented in this paper can be used as general path planners for mobile
robot systems with trailers, and indeed, any nonholomic systems.
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