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Chapter 1

Introduction

The trend in database applications is that databases are becoming orders of mag

nitude larger and user queries are becoming more and more complex. This trend is driven

by new application areas such as decision support, multi-media applications, scientific data

visualization, and information retrieval. For example, NASA scientists have been collecting

terabytes of satellite image data from space for many years, and they wish to run vari

ous queries over all the past and current data to find relevant images for their research.

As another example, several department stores have started to record every product-code-

scanning action of every cashier in every store in their chain. Ad-hoc complex queries are

run on this historical database to discover buying patterns and make stocking decisions.

It has become increasingly difficult for conventional single processor computer sys

tems to meet the CPU and I/O demands of relational DBMS searching terabyte databases

or processing complex queries. Meanwhile, multiprocessors based on increasingly fast and

inexpensive microprocessors have become widely available from a variety of vendors in-



eluding Sequent, Tandem, Intel, Teradata, and nCUBE. These machines provide not only

more total computing power than their mainframe counterparts, but also provide a lower

price/MIPS. Moreover, the disk array technology that provides high bandwidth and high

availability through redundant arrays of inexpensive disks [37] has emerged to ease the I/O

bottleneck problem. Because relational queries consist of uniform operations applied to

uniform streams of data, they are ideally suited to parallel execution. Therefore, the way

to meet the high CPU and I/O demands of these new database applications is to build

a parallel database system based on a large number of inexpensive processors and disks

exploiting parallelism within as well as between queries.

In this chapter, we first introduce the issues in query processing on parallel database

systems that will be addressed in this thesis. Then, related previous work on parallel

database systems, especially work on parallel query processing is surveyed. The last section

of this chapter presents an outline of the rest of this thesis.

1.1 Query Processing in Parallel Database Systems

One of the fundamental innovations of relational databases is their non-procedural

query languages based on predicate calculus. In earlier database systems, namely those

based on hierarchical and network data models, the application program must navigate

through the database via links and pointers between data records. In a relational database

system, a user only specifies the predicates that the retrieved data should satisfy in a rela

tional query language such as SQL [26], and the database system determines the necessary

processing steps, i.e., a query plan automatically. Since there may be many possible query



plans which differ by orders of magnitude in processing costs (see [27] for an example), the

key of database query processing is to find the cheapest and fastest query plan.

1.1.1 Conventional Query Processing

Conventional query processing assumes a uniprocessor environment and query

plans are executed sequentially. A query plan for a uniprocessor environment is called

a sequential plan. The common approach to optimization of sequential plans is to exhaus

tively or semi-exhaustively search through all the possible query plans, estimate a cost for

each plan, and choose the one with minimum cost, as described in [47]. A sequential query

plan is a binary tree of the basic relational operations, i.e., scans and joins. There are

two types of scans: sequential scan and index scan. There are three types of joins: nest-

loop, mergejoin and hashjoin. Hashjoin is only useful given a sufficient amount of main

memory [48], hence has not been widely implemented until recently. All other scan and

join operations, as described in any database textbook such as [30], are applicable in any

environments. At run time, the query executor processes each operation in a plan sequen

tially. Intermediate result generation is avoided by the use of pipelining, in which the result

tuples of one relational operation are immediately processed as the input tuples of the next

operation.

IBM's System R requires the inner relation of any join operation to be a base table

(i.e., a stored, permanent relation) [47]. The resultingquery plans are called deep tree plans.

The rationale is that this restriction allows the use of an existing index on the inner relation

of a join to speed up the join processing and reduces the search space of plans significantly.

In contrast to System R, both the university version and the commercial version of Ingres



a deep tree plan a bushy tree plan

Figure 1.1: Deep Tree Plan v.s. Bushy Tree Plan

allow query plan trees of all shapes, i.e., busky tree plans [59, 29]. Figure 1.1 shows an

example of a deep tree plan and a bushy tree plan for the same four-way join query.

There are advantages and disadvantages for both deep and bushy tree plans. Ap

parently, query optimization becomes more difficult as the set of possible plans grows. The

set of bushy tree plans is a superset of the set of deep tree plans, and is larger by several

orders of magnitude. More precisely, the number of all possible deep tree plans is n! for an

n-way join query, whereas the number of all possible bushy tree plans is n! x Cn~i, where

Ck represents the fc-th Catalan number which counts the number of ordered binary trees

with k nodes 1. Hence, restricting query plans to deep tree plans significantly reduces the

search space for query optimization. On the other hand, the optimal bushy tree plan may

be cheaper than the optimal deep tree plans. In [20], Graefe shows through simulations

that bushy tree plans do not demonstrate much advantage over deep tree plans when the

number of relations in a query is relatively small (< 10), but show significant advantage

when the number of relations is large. This result justifies the design decision of System R

1Cn-x counts all possible arrangements of the interior nodes, i.e., join operations. There are also n!
ways to arrange the leaf nodes, i.e., the base relations. Therefore, the number of all possible bushy trees is
n! x Cn-i. Knuth shows in [28] that Ck =^r^&-



of using deep tree plans for queries with a small number of relations. However, a deep tree

plan eliminates the possibility of executing two joins in parallel. Therefore, it is important

to consider bushy tree plans in a parallel database system so that parallelism between joins

in the left subtree and those in the right subtree can be exploited. In this thesis, general

bushy tree plans are considered to exploit parallelism.

Query optimization usually takes place at compile time. However, in a roulti-user

environment, many system parameters such as available buffer size and number of free

processors in a parallel database system remain unknown until run time. These changing

parameters may affect the cost of different query plans differently. Thus, we cannot simply

perform compile-time optimization based on some default parameter values. This issue of

query optimization with unknown parameters will be addressed in this thesis.

1.1.2 Parallel Query Processing

As we can see from the previous subsec a, each sequential plan basically specifies

a partial order for the relation operations. We call a query plan for a parallel environment a

parallel plan. If a parallel plan satisfies the same partial order of operations as a sequential

plan, it is called a parallelization of the sequential plan. Obviously, each parallel query

plan is a parallelization of some sequential query plan and each sequential plan may have

many different parallelizations. Parallelizations can be characterized in the following three

aspects.

• Form of Parallelism



We can exploit parallelism within each operation, i.e., intra-operation parallelism

and parallelism between different operations, i.e., inter-operation parallelism. Intra-

operation parallelism is achieved by partitioning data among multiple processors and

having those processors execute this same operation in parallel. Since intra-operation

depends on data partitioning, it is also called partitioned parallelism. Inter-operation

parallelism can be achieved either by executing independent operations in parallel

or executing consecutive operations in a pipeline. We call parallelism between inde

pendent operations independent parallelism and parallelism of pipelined operations

pipelined parallelism.

• Unit of Parallelism

Unit of parallelism refers to the group of operations that is assigned to the same

processor for execution. We also call a unit of parallelism a plan fragments since it is

a "fragment" of a complete plan tree. In theory, a plan fragment can be any connected

subgraph of a plan tree.

• Degree of Parallelism

Degree of parallelism is the number of processes that are used to execute a plan

fragment. In theory, the degree of parallelism can be greater than the number of

available processors.

Figure 1.2 shows an example parallel plan. It illustrates the above three aspects

for a parallelization of a mergejoin plan. As we can see, one input to the mergejoin is

a sequential scan followed by a sort and the other input is an index scan. We choose to



pipelined parallelism
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Figure 1.2: An Example Parallel Plan

parallelize the sequential scan and the sort together in the same plan fragment while the

mergejoin and the index scan are parallelized in separate plan fragments. The sequential

scan and sort are parallelized among three processes, i.e., the degree of parallelism is equal

to 3. Each process scans one third of relation R\ and sorts the qualified tuples from

the sequential scan. Similarly the index scan is parallelized between two processes, each

scanning half of relation R2. (The details of how to parallelize a sequential scan or index scan

will be described in Chapter 2.) These processes all pipeline their output to the mergejoin

process. This parallelization includes all three forms of parallelism. There is partitioned

parallelism within the sequential scan and sort on relation R\ and the index scan on relation

#2- The sequential scan and sort on R\ and the index scan on R2 also run in parallel with

independent parallelism, pipelining results into the mergejoin with pipelined parallelism.

Parallel query processing introduces many new issues. The important issues are

how to reduce the search space of possible parallel plans which is orders of magnitude larger
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than the search space of sequential plans, how to schedule the processing of multiple plan

fragments in an optimal way, and how to allocate main memory among multiple parallel

plan fragments optimally. This thesis presents an integrated solution that addresses all

these new issues.

1.2 An Overview of Previous Work

In the past decade, an enormous amount of work has been done in the field of

parallel database systems. In the early days, most database machine research had fo

cused on specialized, often trendy, hardware such as CCD memories, bubble memories,

head-per-track disks, and optical disks. However, none of these technologies fulfilled their

promises [8]. Parallel database systems did not become a success until the widespread adop

tion of the relational model and the rapid development of processor and disk technology.

Now parallel database systems can be constructed economically with off-the-shelf conven

tional CPUs, electronic RAM, and moving-head magnetic disks. To date, many successful

parallel database systems have been developed both in the commercial marketplace and in

research institutions, as will be described in this section.

Parallel database systems would not have enjoyed such a big success of today

had there not been a wealth of research results contributed by many researchers in this

field. This section will only survey those works that are most relevant to this thesis. As

pointed out in [50], there are three main architectures for parallel database systems: shared

disk, shared nothing, and shared everything. Each of these three architectures has different

characteristics for parallel query processing. In this thesis, we will concentrate on the shared



everything architecture. Because shared disk has not been a popular approach and there has

been little work done specifically for that architecture, we will not discuss the shared disk

architecture in this thesis. Interested readers are referred to IBM's IMS/VS Data Sharing

product [52] and DEC's VAX Rdb/VMS products [31] for more details about shared disk

systems. Most previous research on parallel query processing is done in the context of

the shared nothing architecture. Therefore, besides the shared everything architecture, we

will also survey works on the shared nothing architecture. Section 1.2.1 first introduces

the shared nothing architecture and describes parallel query execution in a shared nothing

system. Then, Section 1.2.2 discusses the shared everything architecture and introduces

XPRS, a prototype system which all the work in this thesis is based on. Last, Section 1.2.3

surveys previous work on parallel query optimization.

1.2.1 Shared Nothing Systems

The Shared Nothing Architecture

With a shared nothing system, each processor owns a portion of the database

and only that portion may be directly accessed or manipulated by that processor. A two-

phase commit protocol [49] is required to coordinate a transaction commit which involves

multiple nodes. Examples of shared nothing systems include Tandem's NonStop SQL [56],

Teradata's DBC/1012 [55], MCC's Bubba [7] and University of Wisconsin's Gamma [17].

The key to parallelism in a shared nothing system is based on the concept of

declustering. Declustering a relation involves distributing its tuples among multiple nodes

according to some distribution criteria such as applying a hash function to the key attribute
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of each tuple. Declustering has its origin in the concept of horizontal partitioning initially

developed as a data distribution mechanism for distributed DBMS [43]. After declustering,

each processor in a shared nothing system is in charge of a portion of the database residing

on its local disk drives. This enables the DBMS software to exploit the I/O bandwidth

reading and writing multiple disks in parallel.

There are three basic declustering schemes: range partitioning, round-robin and

hashing as illustrated in Figure 1.3. Range declustering maps tuples with a key value in a

certain range to a certain disk. Round-robin declustering maps the i'th tuple or page to

disk i mod n (where n is the number of disks). Hashing declustering assigns tuples to disks

according to a hash function. Among the shared nothing systems, Teradata only supports

round-robin and hashing, while Tandem, Bubba and Gamma supports all three declustering

schemes.

For example, suppose that an employee relation is declustered among 5 sites using

range partitioning on the salary attribute as follows:

Site 1

Site 2

Site 3

Site 4

Site 5

salary < 10K
10K < salary < 20K
20K < salary <30K
30K < salary < 40K

salary > 40K.

In this case, a query to find all the employees who earn $25K will be processed only at

Site 3. In general, range partitioning can restrict the processing of a query to a minimum

number of processors, which complicates the issue of load balancing. Unless salaries of

employees are uniformly distributed and queries on salary ranges are likewise uniform, the

five sites in the system will not have an equal amount of work to do, and the entire system
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Figure 1.3: Three Basic Declustering Schemes

will bottleneck on the overloaded processor.

The load balancing problem has prompted people to favor round-robin and hashing

declustering. However, hashing or round-robin declustering will almost guarantee that all

five processors will execute every query (except for an exact-match query on the hashed

attribute). For a query that only returns a single tuple, this will result in 5 times as much

work as necessary, which will certainly hurt transaction processing performance.

Another problem of a shared nothing system is the communication overhead.

When a query is executed in parallel on multiple systems, there is inevitable communi

cation among the systems to synchronize multiple computation. At the same time, data

must often be sent from one system to other systems to gain parallelism. For example,

to perform a join in parallel among multiple nodes, one of the join relations may need to
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be broadcasted to all the participating nodes. This generates more traffic on the network.

When the degree of declustering is increased, the response time of individual queries will

decrease at first because of higher parallelism, but after a certain point, the response time

will increase because the communication overhead has become a significant fraction of the

overall execution cost. This problem has prompted Bubba to advocate declustering only to

a subset of the disks to reduce communication cost [12]. However, this also raises a number

of new issues for physical database design. In Bubba, in addition to selecting a declustering

strategy for each relation, the number of disks over which a relation should be declustered

must also be decided. Copeland, et al. describe in [12] an approach based on the heat of

a tuple, i.e., the access frequency of the tuple over some period of time, which balance the

frequency with which each disk is accessed rather than the actual number of tuples on each

disk.

Parallel Query Execution in Gamma

We describe how query execution can be parallelized through the particular im

plementation in Gamma, which is representative for shared nothing systems. As is pointed

out in [21], there are two models for parallelizing relational queries, i.e., the bracket model

and the operator model. Gamma adopts the bracket model. The operator model will be

described in the next subsection.

In the bracket model, there is a generic template process for each type of operations

that can receive and send data and can execute exactly one operation at any point of time.

A schematic diagram of such a template process for join operations is shown in Figure 1.4.

The code that makes up the generic template calls the code for the operation which then
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join processing code

Figure 1.4: Bracket Model of Parallelization

controls execution; network I/O on the receiving and sending sides are performed as service

to the operation on request, implemented as procedures to be called by the operation. The

operation is surrounded by the generic template code which shields it from its environment.

The algorithms for the relational operations are still written as if they were to be run on a

uniprocessor.

In Gamma, this generic template is implemented through a structure called a split

table. As shown in Figure 1.5, the input to an operator process is a stream of tuples and

the output is a stream of tuples demultiplexed to multiple subsequent operator processes

indicated in the split table. The split table defines a mapping of values to a set of destination

processes. Figure 1.6 gives an example of a split table for the execution of a join operation

using four processors. Each process producing tuples for the join will apply a hash function

to the join attribute of each output tuple to produce a value between 0 and 3. This

value is then used as an index into the split table to obtain the address of the destination

process that should ^ceive the tuple. Each operation can be executed by multiple parallel

processes and processes executing different operations are connected together via the split

tables. Overall, queries are executed in a data flow fashion by these parallel processes, each
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Table
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Figure 1.5: Generic Template for Parallelization in Gamma

Value Destination Process

0 (Process #3, Port #5)
1 (Process #2, Port #13)
2 (Process #7, Port #6)
3 (Process #9, Port #15)

14

Figure 1.6: An Example Split Table

executing a single relational operation. In other words, tuples are pipelined between the

parallel processes as soon as they are made available by an operation. In Gamma, each

query also has a scheduler process that creates and terminates all the operator processes for

executing the query. It is also responsible for the flow control between any processes that

are in a producer-consumer relationship. See [17] for more details about the parallelization

scheme of Gamma.

One problem with the bracket model is that each thread of control needs to be

created. This is typically done by a separate scheduler process which requires software

development beyond the actual operators, both initially and for each extension to the set

of query processing algorithms. Thus, the bracket model seems unsuitable for an extensible

system. In the bracket model, there are different generic template processes for different
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types of operations. For example, the template process for joins must listen to two input

ports, while the template process for scans only need to listen to one input port. These

operation-specific templates constraint the unit of parallelization as a single operation.

Therefore, one operation has to pay the overhead of inter-process communication (IPC) to

call another operation, whereas if more than one operations can be executed in the same

process, operations can call each other much more efficiently by simple procedure calls.

Next, we discuss the shared everything systems including XPRS and Volcano.

The operator model of parallelization will be described with the Volcano system since it is

originally proposed for that system.

1.2.2 Shared-Everything Systems

In a shared everything system, main memory, in addition to disks, is also shared

across all the processors, making system management and load balancing much easier.

An example of shared everything systems is University of California at Berkeley's XPRS

system [41] which we will describe in details throughout this thesis.

In the context of query processing, the main advantage of a shared nothing sys

tem is its scalability. It may be possible to scale a shared nothing systems to hundreds,

even thousands of processors. The main disadvantage of a shared nothing system is the

communication overhead. Contrarily, a shared everything system has the advantage of no

communication overhead and easy load balancing, but is limited on scalability. Ultimately

bounded by the internal bus bandwidth, usually a shared everything system can at most

scale up to tens of processors. However, a shared everything system can be used as a node

in a shared nothing system to reduce the number of nodes and increase efficiency.
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Figure 1.7: The Overall Architecture of XPRS

In this subsection, we discuss the shared everything architecture through the XPRS

system, which this thesis is based on. We also describe another shared everything system,

the Volcano system of University of Colorado at Boulder to introduce the operator model

for parallelizing relational queries.

The Architecture of XPRS

XPRS (extended Postgres on Raid and Sprite) of University of Californiaat Berke

ley is a multi-user parallel database system based on the POSTGRES next-generation

DBMS [51]. It is implemented on a shared memory multiprocessor and a disk array as

shown in Figure 1.7. An initial design of XPRS can be found in [41] and the underlining

rehable disk array RAID is described in [37]. Currently, XPRS is operational on a Sequent

Symmetry system running Dynix operating system with 12 processors and 7 disks.

A shared everything system has two major advantages over a shared nothing sys-
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tern. First, there are nocommunication delays because messages are exchanged through the

shared memory, and synchronization can be accomplished by cheap, low level mechanisms.

Second, load balancing is much easier because the operating system can automatically al

locate the next ready process to the first available processor. The simulation results in [2]

show that a shared everything system will outperform a shared nothing system with an

equivalent number of processors, disks and megabytes of main memory by as much as a fac

tor of two. As will be described in the rest of this thesis, XPRS is designed and implemented

to take full advantages of the shared everything architecture.

Database applications are often I/O intensive. In order to keep up with the I/O

requests from multiple processors, XPRS uses a disk array to eliminate the I/O bottleneck.

All relations are striped [45] sequentially, block by block, in a round-robin fashion across the

disk array to allow maximum I/O bandwidth. Figure 1.7 only shows the non-redundant disk

array configuration, i.e., RAID Level0 as classified in [37], which is the default configuration

for XPRS. XPRS also supports other disk array configurations. Performance implications

of running XPRS on other disk array configurations will be discussed in Chapter 5.

The goals of XPRS are high performance and high availability. This thesis only

deals with the high performance aspects of XPRS. Discussions on the high availability

aspects of XPRS can be found in [53]. XPRS is designed to achieve high performance for

both transaction processing and complex ad-hoc queries through parallelism within each

individual query as well as between different queries.
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Parallel Query Execution in Volcano

The Volcano query processing system is also a shared everything system. It tries to

combine extensibility with parallelism and introduced the operator model of parallelization

to overcome the problems of the bracket model. The basic idea is to encapsulate all the

issues of parallalization into a single operator, which is called the exchange operator in

Volcano [21].

In Volcano, each operator is implemented as a iterator, i.e., it supports a simple

open-next-close interface similar to conventional file scans. For a given query plan, calling

open for the root operator results in initializations of execution states e.g., allocation of a

hash table, and open calls for all its inputs. After all iterators in a query plan are initialized

recursively, the query is processed by calling next for the root operator repeatedly until

it fails with an end-of-stream indicator. Finally, the close call recursively shut down all

iterators in the query plan.

The exchange operator is also implemented as an iterator, but it has a special

set of open, next and close procedures. An open call to an exchange operator will create

one or more child processes. The parent process will serve as the consumer and the child

processes will serve as the producers. Proper communication channels between the parent

process and child processes will also be set up by the open call. For a next call to the

exchange operator, the parent process will try to get the next tuple from the communication

channels from the child processes. Meanwhile, the child processes will be executing some

operations in parallel, packing the result tuples into packets and sending the packets to the

parent process. Flow control is also exercised in the exchange operator to keep the child
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processes from overflowing the communication buffers. Finally, when a close call comes to

the exchange operator, the parent process will send a message to the child processes telling

them to clean up and terminate.

The advantage of implementing the exchange operator as an iterator is that it can

be inserted at any one place or multiple places in a complex query plan. Figure 1.8 shows

a query plan that includes both relational operators, i.e., scans and joins, and exchange

operators. An open call to the top exchange operator by the starting process will create

some processes to process ae plan fragment consisting of the hashjoin, the nestloop join

and the index scan. These new processes will in turn call open to the exchange operators

above the two sequential scans which creates multiple processes to process the sequential

scans. In this way, all the parallel processes and communication channels between them are

set up. Then the query plan will be processed in parallel by these processes. As we can

see, the exchange operator can support not only different units of parallelism, namely single

operations or multiple operations (depending on where it is inserted), but also different

forms of parallelism, i.e., pipelining between operations (e.g, between the sequential scans

and the hashjoin), parallelism between operations (e.g., between the two sequential scans)

and parallelism within operations (e.g., within each sequential scan). More details about

the exchange operator are discussed in [21].

In summary, parallelization involves many new issues, such as, creation and termi

nation of parallel processes, establishment of communication channels, flow control between

asynchronous processes, etc. The bracket model tries to deal with these issues in a sched

uler and the template processes for different operation types. Therefore, these issues are
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Figure 1.8: Query Plan with Exchange Operators

not encapsulated in one single module, which complicates extensions to the system. On

the other hand, in the operator model, all the issues about parallelization are dealt with in

one operator. The rest of the system can be implemented as in a conventional uniprocessor

environment, without concerning with parallelization issues.

There is also a large amount of work that has been done on parallelizing specific

relational operations, which we will not cover in this thesis. Interested readers are referred

to [3] and [57] for some early work on parallel execution of relation operations, [4] and [35]

for sorting, [14], [33] and [58] for hashjoins, also [58] for mergejoins.

1.2.3 Optimization Algorithms

After we understand the parallelization of relational queries, the next question is

how to optimize all the possible parallelizations. In XPRS, we are have focused on two main

issues in this optimization problem, i.e., dealing with compile-time unknown parameters and

20
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the large search space of parallel plans. In a multi-user environment as XPRS, parameters

such as the amount of available buffer space and number of free processors are unknown at

compile time. Therefore, compile-time optimization must generate plans for an uncertain

run-time environment. Second, the number of possible parallel query execution plans is so

enormous that any exhaustive search algorithm is impractical. As a result, the search space

must be heuristically reduced. Previous work on these tv/o issues will be surveyed below.

Dealing with Unknown Parameters

Most current database systems avoids the unknown parameter problem by making

certain assumptions about values of system parameters (e.g., number of available buffers).

However, at run time these assumptions may be violated because the run-time workload

is unpredictable. When these assumptions are violated, queries need to be re-optimized to

avoid performance degradation.

To redu the need for re-optimization, some researchers have studied the problem

Oi jtimizing queries with unknown parameters. The earliest significant work in this area is

presented in [22], which discusses the implementation of dynamic query plansin the Volcano

optimizer generator. The main idea is to introduce choose-plan nodes to generate multiple

query plans, consequently, the run-time system must go through a decision tree to choose

a plan according to the current system parameters. The proposal is to introduce choose-

plan nodes at all places in a plan where the choice of subplans underneath is sensitive to

the values of system parameters. This work introduces many important concepts related

to query optimization with unknown parameters, but does not include a complete search

strategy to identify the dynamic plans and the places where the choose-plan operator should
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be placed.

The Starburst project has also considered incorporating a second optimization

phase that chooses plans at run time [23], but no technique has been developed to find

those plans. Also, [13] uses an integer programming model to optimize queries in a trans

action processing environment and their buffer allocations simultaneously. However, in the

end, only one plan is produced per query, and that plan is susceptible to changes in the

environment.

The most recent work is presented in [24], which proposes a general framework

for dealing with unknown parameters in query optimization. The buffer size parameter is

considered in depth to illustrate the general approach, which is based on randomized query

optimization algorithms, such as Simulated Annealing [25] and Iterative Improvement [54].

In a randomized query optimization algorithm, the query plan space is represented as a

state transition graph with each state corresponding to a query plan and each transition

corresponding to an event such as change of join orders or join methods. A local optimal

plan is a plan that has lower cost than all its adjacent plans in the state transition graph.

A randomized query optimization algorithm randomly walks through the state transition

graph finding local optimal plans and returns the minimum-cost local optimal plan that is

ever visited. In the approach proposed in [24], there is a co-routine to optimize the query

plans for each value of an unknown parameter with a randomized algorithm. The key idea

of this approach is to have sideways information passing among the co-routines, i.e., for

each co-routine to let other co-routines know the minimum cost plan that it has visited.

The depth of sideways information passing is defined as the number of co-routines which
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each co-routine pass information to. The paper shows through experiments that for the

buffer size parameter, Iterative Improvement with sideways information passing ofdepth 1

is the most effective randomized optimization algorithm. The problem with this approach

is that it is only applicable to randomized algorithms and cannot be incorporated into

existing conventional query optimizers. This is because if a deterministic algorithm is used,

every co-routine will make the same move at each step, which renders sideways information

passing useless.

Optimizing Parallel Execution Plans

There has been little work done on this topic. To date, no query optimizers

consider all parallel algorithms for each operator and all possible query plans. The main

difficulty of this optimization problem is the enormous search space of all possible parallel

query plans.

In [9], Bultzingsloewen outlines six key issues in query optimization in loosely or

tightly coupled multiprocessors with private disks and sketches the optimization strategy

that was being implemented for the KARDAMOM database machine. However, the paper

does not give any details about how to cut down the size of the search space of parallel

query plans.

Schneider and DeWitt present in [46] an experimental analysis of the query pro

cessing tradeoffs among left-deep and right-deep tree plans in a shared-nothing enironment.

An important finding is that right-deep trees are superior givensufficient memory resources.

However, there is no analytical cost expression which can be used by an optimizer to decide

whether and when to switch from a left-deep tree to a right-deep tree. Moreover, no algo-
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rithms are proposed for determining the degree of parallelism for each parallel operation.

In [36], Murphy and Shan propose an algorithm to parallelize a given sequential

plan to achieve minimum duration time with computational resource requirements less

than the given system bounds in a shared memory environment. It does not address the

problem of how to choose a sequential plan to parallelize, and it assumes that the amount

of available resources is known and therefore the algorithm cannot be used at compile time

for a multi-user environment. Moreover, the algorithm includes testing a series of target

duration times starting from the lower bound and therefore might be too expensive for

run-time optimization.

Lu, et al. propose in [32] an optimization algorithm that considers bushy tree

plans and inter-operation parallelism. The algorithm only handles synchronized bushy tree

plans, i.e., those without pipelining between joins, and uses a greedy algorithm to choose a

bushy tree plan that always tries to join as many pairs of relations as possible in parallel

for each step. This maximum inter-operation parallelism approach may not be a good

way to parallelize a query plan. A careful balance between inter-operation parallelism and

intra-operation parallelism need to be maintained.

1.3 Overview of This Thesis

In summary, extensive research and development have been done on paralleliza

tions of relational query executions. There are two main approaches: the bracket model

used in Gamma which provides a generic template process that controls the parallel exe

cution of single operations, and the operator model used in Volcano which encapsulate all
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the parallelization issues within an operator. The operator model is obviously cleaner and

supports automatic parallelism of any new operator added to the system. In fact, Gamma

has also recently adopted the operator model and introduced a merge operator and a split

operator to encapsulate parallelism issues [15]. In XPRS, parallelization of relational oper

ations is not the main focus. Our emphases have been put on parallel query optimization,

parallel task scheduling and memory allocation strategies. There have been little work done

on these topics. In the following three chapters, we will present our solutions to each of these

problems integrated in the XPRS environment, which constitutes a complete approach to

parallel query processing.

In the following chapter, the design and implementation of parallel query pro

cessing in XPRS is described along with some performance figures from our operational

prototype. We propose a two phase optimization strategy that solves the unknown param

eter problem and significantly reduces the search space of parallel query plans while still

preserving the optimality of resulting plans. Experiment results through XPRS benchmarks

are shown to verify the effectiveness of this optimization strategy.

Most parallel database systems such as Gamma and Bubba only consider intra-

operation parallelism. On the other hand, XPRS exploits both intra-operation parallelism

and inter-operation parallelism. In such an environment, there may be multiple tasks (con

sisting of relational operations) that are ready to run at the same time and an optimal

processing schedule need be determined for these tasks such that the total processing time

is minimized. The task scheduling problem in parallel query processing is introduced in

Chapter 3. Our solution to the problem is an adaptive scheduling algorithm which is based
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on the concept of IO-CPU balance point that maximizes system resource utilizations. It

tries to execute IO-bound and CPU-bound tasks at their balance point and dynamically

adjusts parallelism to keep running at the balance point when workload changes.

Main memory is also one of the most important resources in parallel query pro

cessing along with processors and I/O bandwidth. When multiple tasks are running in

parallel, the problem of how to optimally allocate a limited amount of memory to these

tasks arises. The memory allocation problem for parallel hashjoin operations is studied in

Chapter 4. A theorem is developed for determining the optimal memory allocation between

parallel hashjoins. A mechanism for dynamic memory allocation adjustment is designed so

that the optimal memory allocation can be preserved when workload changes. Integration

of our memory allocation strategy with the task scheduling algorithm is also described.

Up to Chapter 5, this thesis only considers one particular disk array configuration,

the RAID Level 0 or the simplex configuration. Chapter 5 completes the discussion on

parallel query processing by studying the performance of different disk array configurations

in a parallel query processing environment. XPRS supports three different disk array con

figurations: simplex, mirror disks and parity arrays. Experiment results have been obtained

from XPRS to illustrate the performance tradeoffs between these disk array configurations.

Chapter 5 reports these experiment results.

Last, our conclusions and discussions on future research directions are offered in

Chapter 6.
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Chapter 2

Optimization of Parallel Query

Execution Plans

The goal of parallel query optimization is to find the optimal parallel query execu

tion plan for any given user query. As discussed in the previous chapter, the main difficulties

in this optimization problem are the compile-time unknown parameters such as available

buffer size and number of free processors,and the enormous search space of possible parallel

plans. In this chapter, we will present the XPRS solution to this problem, a two phase opti

mization strategy, along with experimental evidence from XPRS benchmarks that supports

the effectiveness of this strategy. Considering inter-operation parallelism requires a solution

to the task scheduling problem, which is the topic of the next chapter. For ease of presen

tation, this chapter only considers intra-operation paralleUsm. A more complete approach

that considers both intra-operation and inter-operation parallelism will be described in the

next chapter after the task scheduling problem is solved.
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This chapter is organized as follows. Section 2.1 defines the optimization problem

and presents our two phase optimization strategy along with the hypotheses that it is

based on. Section 2.2 then discusses the performance of parallelizations of a sequential plan

and presents the overall architecture for parallel query processing in XPRS. Section 2.3

then describes some experiments that we have performed on XPRS which largely verify

the hypotheses that our two phase optimization strategy is based on. Last, Section 2.4

summarizes the whole chapter.

2.1 Optimization of Parallel Plans

This section defines the optimization problem, presents our two phase optimiza

tion strategy and the hypotheses that it is based on, and gives our intuition behind the

hypotheses. Experimental verifications of these hypotheses will be provided in Section 2.3.

We also demonstrate the necessity to dynamically adjust plans at run time according to

available buffer sizes and introduce a choose node to implement the plan adjustment.

2.1.1 The Optimization Problem

The overall performance goal of a parallel database system is to obtain maximum

throughput as well as minimum response time in a multi-user environment. The objective

function that XPRS uses for query optimization is a combination of resource consumption

and response time as follows:

cost = resource.consumption + wx respouseJtime.
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Here w is a system-specific weighting factor. A small w mostly optimizes resource consump

tion, while a large w mostly optimizes response time. Resource consumption is measured

by the number of disk pages accessed and number of tuples processed, while response time

is the elapsed time for executing the query.

Our optimization problem is to find the parallel plan with minimum cost among all

possible parallelizations of all possible sequential plans of a query. Suppose P is a sequential

plan and let PARALLEL(P) be the set of possible paralleUzations of P. Suppose Q is a

given query and let SPLAN(Q) be the set of sequential plans of Q. Then PPL AN{Q),

the set of parallel plans of Q, is given by

PPLAN(Q) = (J PARALLEL(P).
P€SPLAN(Q)

PPLAN(Q) is the search space to explore for intra-query parallelism.

In a multi-user environment, many system parameters that affect query execution

cost are unknown at compile time. In XPRS, we specifically consider two of such parameters:

available buffer size, NBUFS and number of free processors, NPROCS. Buffer size not

only affects the buffer hit rate but also determines the number of batches in a hashjoin [48].

The number of free processors determines the possible speedup of query execution. For

ease of exposition, in the following formulation, we assume that the buffer size and number

of free processors are fixed during the execution of a single query. As we will describe in

Section 2.2.3, our operational prototype only fixes these parameters during the execution

of individual plan fragments.

For PP <E PPLAN(Q), let Cost{PP, NBUFS, NPROCS) be the cost of the
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parallel plan PP given NBUFS units of buffer space and NPROCS free processors. Our

optimization problem is to find,

min{Cost(PP,NBUFS,NPROCS)\PP € PPLAN(Q)}.

There are two major difficulties in this problem. First, the search space PPLAN(Q)

is orders of magnitude larger than SPLAN(Q); therefore query optimization by exhaustive

search [47] is impractical. Second, the dynamic parameters, NBUFS and NPROCS are

unknown until query execution time; therefore compile-time optimization must deal with

these unknown parameters. Our goals are to reduce the search space of parallel plans by

heuristics and to perform as much compile-time optimization as possible.

2.1.2 Two Phase Optimization

We achieve, our goals by the following two phase optimization strategy.

Let BPP(Q, NBUFS, NPROCS) be the best parallel plan for query Q given

NBUFS units of buffer space and NPROCS free processors, BP(Q, NBUFS) be the best

sequential plan for Q given NBUFS units of buffer space, and Cost(P,NBUFS) be the

cost of a sequential plan P given NBUFS units of buffer space.

• Phase 1. Find the optimal sequential plan assuming that the entire buffer pool is

available, i.e., find BP(Q,ALLBUFS) where ALLBUFS is the size of the whole

buffer pool.

• Phase 2. Find the optimal parallelization of the optimal sequential plan, i.e., find

min{cost(PP,NBUFS,NPROCS) \ PP € PARALLEL(BP(Q, ALLBUFS))}
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where NBUFS and NPROCS are the run-time available buffer size and number of

free processors.

Because we have a fixed buffer size ALLBUFS in Phase 1, it can be performed

at compile time. Phase 2 still has to be performed at run time, because it takes the run

time parameters NBUFS and NPROCS into account and tries to dynamically determine

the best parallelization of the sequential plan chosen in Phase 1. As we can see, this

two phase optimization strategy overcomes the difficulties in our optimization problem,

because it provides a nice partitioning between compile-time optimization and run-time

optimization and significantly reduces the search space by restricting to the parallelizations

of one particular sequential plan. The effectiveness of this strategy is basedon the following

two hypotheses for a shared everything environment.

1. The Buffer Size Independent Hypothesis

The choice of the best sequential plan is insensitive to the amount of buffer space

available as long as the buffer size is above the hashjoin threshold, i.e.,

Cost(BP(Q,NBUFS),NBUFS) « Cost(BP(Q,NBUFS'),NBUFS)t

where NBUFS £ NBUFS', NBUFS > T, NBUFS' > T, and T is the hashjoin

threshold.

As we will discuss in details in the next subsection, certain exceptions to the above

hypothesis do exist; however, they can be localized within specific operations and han

dled with a mechanism that dynamically chooses the implementation of an operation

at run time according to real buffer sizes.
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2. The Two Phase Hypothesis

For a shared everything environment where only intra-operation parallelism is ex

ploited, the best parallel plan is a parallelization of the best sequential plan, i.e.,

BPP(Q, NBUFS, NPROCS) € PARALLEL{BP(Q< NBUFS)).

We will verify these two hypotheses with experiment results in the Section 2.3.

2.1.3 Introduction of Choose Nodes

We have identified two situations in the execution of single operations that may

cause problems with the buffer size independent hypothesis. One is choosing between an

indexscan using an unclustered index and a sequential scan. The other is choosing between

a nestloop with an indexscan over the inner relation and a hashjoin. These two situations

are not necessarily the only problematic cases, but they are the only cases that we have

discovered among a wide variety of queries as will be described in Section 2.3.1. Moreover,

the choose nodes that we are about to introduce are a general mechanism and can deal with

any additional cases as they are discovered.

We will show the two problematic cases that we have found by plotting the exe

cution costs of some sample queries against varying buffer sizes. In general, the cost of a

sequential plan is measured by resource consumption [47], which is a linear combination of

I/O cost and CPU cost as follows,

Cost = #pageJo -f c x #tuplesjprocessed.
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Figure 2.1: Cost of SeqScan v.s. IndexScan

Here c is another system-specific weighting factor. Since buffer sizes only affect the I/O

cost of query execution, we will only plot the I/O costs (i.e., number of page I/Os) of query

executions in the examples below.

• Sequential Scan versus Index Scan

A sequential scan only needs one buffer page and additional buffer pages do not reduce

query execution cost. However, the cost of an indexscan using an unclustered index

is very sensitive to buffer size. If there is enough buffer space to hold all the pagr

that need to be ft _hed during t; ndexscan, then we only need to read each of thot

pages once. Therefore, with sufficient buffer space, if an indexscan touches less than
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all pages, it will have lower cost than a sequential scan. On the other hand, with few

buffers, an indexscan may end up fetching the same page from disk many times and

becomes more expensive than a sequential scan. Figure 2.1 gives an example of this

situation by plotting the cost of each plan versus buffer size for the following selection

query on a 10,000-tuple relation from the Wisconsin benchmark:

retrieve (tenkl.all) where tenkl.ul > 110 and tenkl.ul < 510.

The I/O costs of this query are measured from real executions of this query sequen

tially (in a single process) on XPRS configured with different buffer sizes. Obviously,

when the two curves cross, we require a mechanism to switch from a sequential scan,

to an index scan, or vice versa. Note that this situation does not always happen.

In most cases, the two curves are far apart and do not cross each other. This situ

ation only arises for a certain selectivity range which causes these two curves to be

close together. The example query in Figure 2.1 is carefully selected to illustrate this

situation.

• Hashjoin versus Nestloop

A similar situation occurs in choosing between a nestloop with an indexscan over the

inner relation, which we will refer to as an indexjoin, and a hashjoin. With sufficient

buffer space, an indexjoin will fetch ultimately all the pages in the outer relation and

all the pages in the inner relation that match some tuple in the outer relation plus

a small number of index pages. On the other hand, a hashjoin will need to fetch all

the pages in both the outer and inner relations. If the join selectivity is small, the
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indexjoin plan may not need to fetch all the pages in the inner relation and therefore

will have a lower cost than the hashjoin plan. On the other hand, with few buffers,

the indexscan in indexjoin may have to fetch the same page many times and cause the

indexjoin to become more expensive than a hashjoin. Figure 2.2 shows an example of

a "cross over" point between indexjoin and hashjoin of the following carefully selected

join query between two Wisconsin benchmark relations:

retrieve (onek.all, tenkl.all) where onek.ul = tenkl.alO.

Again, this situation only occurs for a certain range of join selectivities.

To solve these "cross over" problems, we introduce a new choose node into query
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plans, which can choose between the two join or two scan methods depending on which

side of the cross over point the actual buffer size belongs to. Now we modify the buffer size

independent hypothesis as follows.

Modified Buffer Size Independent Hypothesis

The choice of the best sequential plan with choose nodes is insensitive to the amount

of buffer space available as long as the buffer size is above the hashjoin threshold, i.e.,

Cost(BCP(Q, NBUFS), NBUFS) a Cost(BCP(Q, NBUFS'), NBUFS),

where BCP(Q, NBUFS) is the optimal sequential plan ofQ under buffersize NBUFS with

choose nodes, NBUFS ? NBUFS', NBUFS > T, NBUFS' > T, and T is the hashjoin

threshold.

2.1.4 Intuition Behind Hypotheses

Now we explain the intuition behind these hypotheses. Let us first consider the

buffer size independent hypothesis for a single operation, i.e., a scan or a join. If there are no

indices that can be used to facilitate the operation, the hypothesis obviously holds, because

only a sequential scan plan is possible for scans and a hashjoin plan is always optimal for

joins as long as the buffer size is above the hashjoin threshold [48]. This is why requiring

the buffer size to be above the hashjoin threshold is important. Otherwise, a hashjoin plan

may not be possible and the optimal plan can be either nestloop or mergejoin depending

on the situation [6], thus, the hypothesis may not hold for two-way join queries. If there

are indices defined on a selection or join attribute, usually we want to take advantage of

the indices to form plans that involve index scans, and the problematic cases described
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above may occur. However, we can deal with all the problematic cases by encapsulating

all the necessary plan switching in a choose node. Therefore, with choose nodes, the buffer

size independent hypothesis is guaranteed to hold for all single operations. Furthermore,

we postulate that this remains to hold for complete query plans consisting of one or more

operations. Section 2.3.2 will show that this is generally true with only small errors.

The two phase hypothesis only holds for a sha< ' everything environment and only

for intra-operation parallelism. In a shared nothing environment, communication cost must

also be considered. Thus, the hypothesis may become false because the optimal sequential

plan may incur excessive communication cost when parallelized and therefore its paralleliza

tion can only be a sub-optimal parallel plan. For example, in an optimal sequential plan,

relation R\ and relation R2 are joined first. However, if the relevant tuples of R\ and R2 are

declustered among different sites, it may save a lot of communication overhead if the join

of #1 and R2 is delayed to a later stage of the plan when many tuples are already filtered

out. Therefore, the two phase hypothesis is not always true in a shared nothing environ

ment. The two phase hypothesis may also become false when inter-operation parallelism

is considered. As will be shown in the next chapter, inter-operation parallelism between

an IO-bound operation and a CPU-bound operation can achieve better resource utilization

than only intra-operation paralleUsm. Therefore, a bushy plan that contains a mixture

of independent IO-bound and CPU-bound operations may become cheaper than the op

timal sequential plan when parallelized. On the other hand, if we only consider a shared

everything environment and intra-operation paralleUsm, as we will show in Section 2.2.2,

each sequential plan can be paralleUzed without incurring any extra resource consumption.
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