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Figure 1: A system of interacting FSMs. The arrows indicate the communication between the FSMs. We
wish to characterize the input-output behavior for the shaded machine Ml.

minterms lie in the boolean space Bm and the output minterms lie in Bn. Synchronous

relations, thus, can be used to express constraints among output patterns for different input

minterms.

Synchronous relations arise naturally in manycontexts in the design of synchronous digital

systems. Consider a system of interacting finite state machines (FSMs) as in Figure 1. If we

wish to optimize the implementation of one of the component machines Ml, we can derive

the don't care sequences for this component based on its environment (the rest of the FSMs).

The input-output sequences will denote the specification for the component machine, and

will represent some flexibility in its implementation. Such finite sequences can be expressed

by synchronous relations. [RHS91] have showed how to obtain such finite behavior sequences

for the special case of two cascaded FSMs— one driving machine and the other driven. At

the end of Section 2.2 we will give an exampleof a situation where the don't care flexibility

for the FSM behavior can be expressed by synchronous relations, but not by any ordinary

boolean relation.

Instead of a network of FSMs as described above, we may wish to optimize a sequential

design at the gate levelcomprised of combinational elements and latches. In such a situation,

we wish to optimize a subcircuit based on the sequential implementation surrounding it.
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Abstract

Optimization for synchronous systems is an important problem in logic synthesis. However, the

full utilization of don't care information for sequential synthesis is far from being solved. Synchronous

boolean relations can represent sequential don't care information upto in synchronous systems. This

allows greater flexibility in expressing don't care information than ordinary boolean relations relating

input and output space. Synchronous relations can be used to specify sequential designs both at the finite

state machine level as well as at the level of combinational elements and latches. In this report we also

show that the synchronous relation formulation can also be used to find a minimal sum-of-products form

which implements a function compatible with an arbitrary set of boolean relations. The main objective

of this report is to present a heuristic approach to find a minimal implementation for a given synchronous

relation.

1 Introduction

This report is concerned with the problem of finding minimal cost implementations for syn

chronous relations. Synchronous relation express the input-output behavior of synchronous

systems. Using time-shifted variables it is possible to characterize sequences of input-output

behavior using these relations. This allows the specification of don't care sequences for se

quential designs; such a specification permits a strictly greater expressibility of don't care

information than the ordinary boolean relations [BS89].

A synchronous relation S is a boolean relation which relates sets (of size di) of input

minterms to sets (of size cfo) of output minterms, i.e. S C Bmdl x Bnd2, where the input

•This research was supported by NSF/DARPA Grant MIP-8719546, NSF Grant EMC-8419744 and by various grants from
BNR, California Micro Program, DEC, Intel, AT&T and Motorola.



Figure 2: Optimization of combinational sub-circuit using synchronous relations

Damiani and De Micheli ([DDM92a, DDM92b]) have shown that synchronous relations can

be derived to express the flexibility in such scenarios. They have also shown that synchronous

relations are capable of expressing strictly greater flexibility than ordinary boolean relations.

For an example of the use of synchronous relations at the gate-level design, consider the

example circuit from [DDM92a] (the upper circuit in Figure 2). For minimizing the left

half of the circuit so that the behavior of the total circuit is preserved, we can define a

synchronous relation between x and y. Using the time-shifted variables, this synchronous

relation captures the observability don't cares introduced for the specification of the left half

of the circuit. We can then minimize the left circuit using techniques described in this report.

An alternate implementation of the left half which preserves the behavior of the total system

is shown in the lower circuit. This cannot be obtained using Boolean relation minimization.

While this example illustrates the minimization of a combinational circuit using sequential

observability don't cares, we do not require that the minimization of synchronous relations

be restricted to combinational implementations.

Besides minimization for sequential circuits, synchronous relations can be used for other

applications where one needs to express constraints among sets of input-output minterms, for

example [KF92]. The relationship between synchronous relations and specifications where

such constraints occur has been explored in detail elsewhere ([SSB93]).



Once a synchronous relation S is given, the objective is to find a least cost implementation

whose functionality satisfies S. If the resulting implementation is pure combinational logic,

the implementation / : Bm —> Bn satisfies synchronous relation S C Bmd x Bnd, said

to be compatible, if and only if V(xJ,.. .,xd) : 5(x1,...,x£',/(x1),...,/(x<£)) = 1. The

traditional approaches used to find functions compatible with ordinary boolean relations

[BS89, WB91] cannot be used to find solutions for synchronous relations. This is because,

unlike synchronous relations, compatibility of a function with an ordinary boolean relation

cannot express constraints among outputs for different inputs1.

Damiani and De Micheli ([DDM92a]) have given a procedure to explicitly compute the

exact solution for a given synchronous relation. They have introduced additional variables

to express the constraints between outputs. The number of additional variables is equal to

the number of minterms in the input space (2m). First they extract the prime implicant for a

feasible compatible function. Then they express the synchronous constraints in terms of the

additional variables, and solve a binate covering step, similar to the procedure in [BS89]. We

believe with increase in depth d and number of input and output variables such an explicit

and exact approach will become infeasible. We will use a heuristic approach and use implicit

computation to solve the minimization problem.

In this report, we first consider the expressiveness of synchronous relations and show that

a hierarchy of expressiveness exists in terms of the depth d. While there might exist a set of

functions that cannot be represented by a given depth d, for any arbitrary set of functions,

there exists another depth d' > d which can represent the set. After that we present a

heuristic approach to minimize a compatible representation for a synchronous relation.

Our heuristic approach is similar to the approaches used for minimization of incompletely

specified functions (ESPRESSO) [BHMS84] or for minimization ofboolean relations (GYOCRO)

[WB91]. Specifically, we start with an initial representation in sum-of-products form and

iteratively modify it, always maintaining compatibility with the synchronous relation. We

always move in the direction of reducing the cost function and we manipulate only one cube

in the representation at a time. The procedure represents and manipulates the synchronous

relation and the compatible function implicitly using Binary Decision Diagrams (BDDs)

[Bry86].

1A function / : Bm — Bn is compatible with boolean relation R C Bm x Bn if andonly if VX : H(X,/(X)) = 1 [BS89].



(x\x*) (yx,y2)
(0,0)
(0,1)
(1,0)
(1,1)

{(0,0), (1,1)}
{(0,1), (1,0)}
{(1,0), (0,1)}
{(1,1), (0,0)}

Figure 3: Synchronous relation which expresses the don't care flexibility for Figure 2. For each value of
(x^x2), the synchronous relation is satisfied if (y\y2) assumes any of the values in the corresponding set.

In the section 2 we introduce some preliminaries which are required to understand our

formulation for the minimizer and present some theoretical results. We describe our mini

mization procedure in section 3 and present some results based on an implementation of the

procedure described in this report.

2 Preliminaries

2.1 Terminology

In this section, we introduce some concepts which will be required for our formulation of the

minimization of the implementation of synchronous relations.

Notation 1 The consensus operator applied to a function f with respect to a variable

x is denoted by Cxf, and is computed as Cxf = fx • fx- The smoothing operator Sx is

computed as Sxf —fx + fx-

Definition 1 A synchronous relation S of depth d is a subset ofBmd x Bnd. Let the input

variable be denoted by x = (xi,..., xm) and the output variables by y = (yu ..., yn). The

temporal values of the input and output variables at j —1 clock cycles before the current clock

cycle are denoted by xJ = (x{,... ,#£,) and yJ = (2/i> ••-?2/n)> respectively, where j varies
between 1 and d.

Example 2.1 For the sequential circuit shown in upper figure in Figure 2, we can use a

synchronous relation 5'(x1,x2,y1,y2) to express all the flexibility we have in implementing

the first sub-circuit with input x and output y such that the behavior of z in terms of x

remains unchanged. This synchronous relation is shown in Figure 3.
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Figure 4: Compatible functions f\ and /2 for synchronous relation in Figure 3.

Definition 2 For a given synchronous relation S, a function f : Bm —> Bn is said to be

compatible with S, denoted by f -< S, ifffor any d-vector of minterms (x1,..., x.d) € Bmd,

s(x\...y,f(xi),...j(xd)) = i

Example 2.2 For the synchronous relation in Example 2.1, there are exactly two functions

/i,/2 : B1 —• B1 which are compatible with 5(x1,x2,y1,y2). These two functions are shown

in Figure 4-

We have so far assumed that the depth of the input variables is the same as the depth

of the output variables. However, we can show that if we have a synchronous relation

where the input depth is larger than the output depth, we can construct an equivalent

synchronous relation with equal input/output depth so that a compatible function with

the new synchronous relation corresponds to a compatible function with the old relation.

Consider the synchronous relation 5i(x1,...,xdl+d2,y1,...,ydl) C Bm{dl+d^ x Bndx. This

synchronous relation relates the output variables over the last d\ cycles to the input variables

over the last (d\ -M2) clock cycles. From S\ we will construct a new synchronous relation 5*2

between a new variable z and y such that the variable z, at any time instant, is composed

of the the values of x over that last (d2 + 1) clock cycles, i.e. z* = (x*,... ,xl+d2). Let zj
denote xt+J. The relation 52 will have the same depth d\ for z and y. However, since each

zl represents (d2 + 1) time-shifted values of x, each x-7 may occur as many as (d2 + 1) times

in 5*2. We set the value of 52 whenever all these repeated variables are equal; else, S2 is

1 for all values of (y1,... ,ydl) (essentially a don't care). In other words, 52 corresponds

to 5i only when (z} = z*-^) for all valid values of i,j, k. If this condition is not true for
any minterm (z1,..., zdl), we allow any value of (y1,..., ydl) for such a minterm by setting



(x\xJ,x3) (yx,ya)
(0,-r)
(l.-l)
(1,0,0)
(1,1,0)

{(1,0), (0,1)}
{(i,i)}
{(0,0)}

{(0,1), (1,1)}

Figure 5: Synchronous relation S\ with unequal depths for x and y. A - denotes a don't care value (can be
either 0 or 1).

Sj(z1,...,z*vy1,...,y''1) to be 1. Thus we define S2 C £"•(*,+!)* x Bn</, as.

51(zJ,...,z01, zi',...,zi\,y\...,yd>)
52(z1,...,z"',y1,...,y''') = if nt, n%0 nzf-^-^d = »&), (i)

otherwise

In the above formulation, the limits for f] have been determined so that i and (i —k) lie

between 1 and d\, and j and (j + k) lie between 0 and d2. Also note again that z} denotes

xl+J. It is easily seen that a function is compatible with 52 iff an equivalent function is

compatible with S\. Unlike, the synchronous relations with equal depth, we will now have a

solution for y which may depend upon the values of x at the previous d2 clock cycles as well.

So, in effect, we have a sequential implementation for the synchronous relation. However,

the minimization procedure for finding a compatible function / remains unchanged.

Example 2.3 Here, we show an example of the above construction to derive a synchronous

relation of equal depths from a synchronous relation of unequal depths. Consider a syn

chronous relation 5i(x1,x2,x3,y1,y2) as shown in Figure 5. Here d\ = 2, d2 = 1. We will

construct a synchronous relation 52(z1,z2,y1,y2) such that any compatible function for S2

will represent a compatible function for S\. Expression (1) transforms to:

Sifz^zg^ySy2) if(z20 = z\),
52(z1,z2,y1,y2)= .

1 otherwise

The resulting synchronous relation S2 is shown in Figure 6.

(2)

In our minimization procedure we need to check the compatibility of a function with a

synchronous relation many times. A direct compatibility check, from Definition 2, requires

the evaluation of the function / at each of the d minterms for every ^-vector in the input

space. To reduce the cost of the compatibility check, we form a new relation which will



(z\z*) (y'.y"')
(00,0-) {(1,0), (0,1)}
(01,1-) {(1,0), (0,1)}
(10,01) {(i,i)}
(11,11) {(i,i)}
(10,00) {(0,0)}
(11,10) {(0,1), (1,1)}
(-0,1-) {(0,0), (0,1), (1,0), (1,1)}
(-1,0-) {(0,0), (0,1), (1,0), (1,1)}

Figure 6: Synchronous relation 52 with equal depths corresponding to synchronous relation S\ in Figure o.
The last two rows correspond to the don't care condition in the construction of 52-

enable us to do a compatibility check requiring the function evaluation only for a single

minterm for every (/-vector.

Definition 3 A relation R C Bmd x Bnd is called the nucleus of a synchronous relation

5 */i2(x1,...,xrf,y1,...,yd) = 1 if and only if for any (u\... ,ud) G Bmd there exists
(v1,..., vd) G Bnd which satisfies the following three conditions:

1. 5(u1,...,ud,v\...,vd) = l

2. Vj G{2,... ,d) : (u'* = x1) =* (v' = y1)

3. Vj € {1,... ,<*} : (uj = xj) =» {vj = yj)

The nucleus can be computed as

/t!(xl,...,xd,y1(...,yd) = Cllif...,u<Sv»,...lv< (^(u1,.. .,urf, v1,..., vd)
d d

n(K * x1) +(yi =y1)) JI((uj £ x»") +(v> =y')))

where (u ^ x) is the characteristic function given by £™=1(«a- 0 Xk) while (u = x) denotes

the complement of (u ^ x).

Note that the nucleus is computed only once at the beginning of the minimization proce

dure. The compatibility of a function is checked as described in the following theorem.

Theorem 2.1 A function f : Bm —• Bn is a compatible implementation of a synchronous

relation S if and only iffor any (x2,... ,xd) GBm^d~l\ there exists (y2,... ,yd) G j5n(d_1)

such that i?(x, x2,..., xd, /(x), y2,..., yd) = 1 for every x GBn, where R is the nucleus of
S.



Proof: [If]

Consider any arbitrary (ux,...,ud) G Bmd. We have to prove that

5(u1,...,ud,/(u1),...,/(ud)) = 1. By the assumption of the [If] part, there exists

(y2,...,yd) e Bn<d~^ such that Vx G Bn : i2(x,u2,...,urf,/(x),/(y2),...,/(yrf)) = 1.
Let x = u', i G {2,..., d}. Using Definition 3, there exists (v1,..., vd) G Bnd such that the

following three conditions hold:

(i)5(x,u2,...,ud,v1,...,vd) = l

(ii) Vi G{2,..., d} : (u' = x) =• (v* = /(x))

(iii) Vi€{2,...,rf}:(V = yi)

x = U* and (ii) => vl = /(ul). Combining this with (iii) we get, y' = /(u*).

Thus Vx G Bn : i?(x,u2,... ,ud,/(x),/(u2),... J(ud)) = 1. Using Definition 3,
5(u1,...,ud,/(u1),...,/(ud)) = l.

[Only if]

Consider any arbitrary (x2,..., xd) GB^"1). Let yj = /(x>),j G {2,..., d}. Given an

arbitrary x GBn, we have to prove that i?(x,x2,..., xd, /(x), y2,..., yd) = 1. Consider any

arbitrary (u1,..., ud) GBmd. Let vj = f(uj)J G{1,..., d}. Now,

(i) Since / ^ 5, S(u\..., ud. v1,..., vd) = 1

(ii) Vj G{2,..., d} : (u'" = x) =• (v> = /(u>) = /(x))

(iii) Vj G{1,..., d] : (u'" = xO => (vJ = /(uJ) = /(x') = yi)

Thus, from Definition 3, we have proved the required. •

Let T denote the a sum-of-products representation of the function /. Following are some

definitions regarding T which we will use in our presentation.

Definition 4 For a given synchronous relation S and a compatible representation T, a cube

c£ T is relatively prime in T if replacing c by any cube c D c results in an incompatible

representation. A compatible representation T is said to be relatively prime if every cube

of J- is relatively prime in J-.

Definition 5 For a given synchronous relation S and a compatible representation T, a cube

c G T is irredundant in T if removing c from T destroys the compatibility of T. A



compatible representation T is said to be irredundant if every cube of T is irredundant in

F.

Definition 6 For a given synchronous relation S and a compatible representation T, a cube

c* is said to be a feasible cube for c GT if T —{c} U {c*} is compatible with 5.

We also borrow the following notation from [WB91].

Notation 2 For a given representation T, a function f : Bm —»• Bn is uniquely defined,

where the algebraic expression of f is given by J7. Each cube c G J2', represents a product

term p, and is specified as a row vector with two parts, c = [1(c)\0(c)]. 1(c)j is Oifx]

appears in p, 1 if Xj appears in p, and 2ifx] and Xj do not appear in p. 0(c)j is i if p

is present in the algebraic expression off^\ else it is 0. M(c) denotes the set of minterms
that belong to the input space of cube c. The characteristic function F(x, y) for T is defined

as F = {(x,y) G Bm x Bn \ y = /(x)}. In this report, we frequently need to talk about the

representation for T —{c} where c is a cube in T. We denote the characteristic function of
this by Fc(x,y).

2.2 Solution space for synchronous relations

The set of functions that may be compatible with a given synchronous relation spans a

space which is larger than the space that existing combinational minimization methods can

explore. There is a hierarchy of various multi-output minimization methods based on the

solution space the desired function may lie in.

1. Completely specified functions. The function is exactly specified for each output, given

any input minterm.

2. Incompletely specified functions with don't care minterms. The function is completely

specified on a subset of input minterms and is allowed to take any valueon the remaining

minterms.

3. Incompletely specified functions with different don't caresfor different outputs. Here, for

any minterm, the don't cares may be specified for certain outputs only. The different

outputs are still independent and can be minimized independently.

10



4. Boolean relations. Each input minterm is associated with a set of output minterms. A

compatible function has to map each minterm to one of the values in the set. Unlike

the previous cases, the various outputs are correlated. However, the input minterms

are not correlated and any compatible function may independently choose the output

minterms for two distinct minterms.

5. Synchronous relations. Unlike any of the above formulations, the choice of output value

at an input minterm may constrain the choices for other minterms. A synchronous

relation can be thought of as a boolean relation with constraints. Later in this section

we will show that a synchronous relation can represent compatibility of a function with

an arbitrary set of relations.

The following theorem shows that the solution space for synchronous relations encom

passes the space for boolean relations, and hence, also the solution space covered by the first

three techniques.

Theorem 2.2 Given a boolean relation R G Bm x Bn, for any depth d > 1, there exists a

synchronous relation 5 G Bmd x Bnd such that a function f : Bm —» Bn is compatible with

R if and only if f is compatible with S.

Proof: Define synchronous relation 5 as S(x1,... ,xd,yJ,... ,yd) = []?=, R{x'.y').

[K]
Suppose / is compatible with R. Consider any d-vector of minterms (x1,... ,xd) G

Bmd. From the definition of compatibility for boolean relations, for all i G {1,...,</},

R(xiJ(xi)) = 1. Thus, nti^xSy1) = 1, and hence 5(x1,...,xrf,/(x1),...,/(xd)) = 1.
Hence, / -< 5.

[Only if]

Suppose / -< 5. Consider any mintermx G Bm. Since / -< 5, 5(x,..., x, /(x),.... f(x)) =

1. By the construction of 5, Hd=iR(x,f(x)) = 1. Therefore, R(x, f(x)) = 1, proving the
compatibility of / with R. m

Since synchronous relations appear to take input minterm correlations into account, one

might speculate that the solution space for synchronous relations can be just an arbitrary

set of functions. This leads to the following conjecture.

11
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Figure 7: Example where a synchronous relation is not equivalent to a set of relations

Conjecture: Given any arbitrary set of functions T = {/i, •••,//;} such that Vz G

1,...,&,/,• : I?m —> jB", for any depth d > 1, there exists a synchronous relation 5 G

Bmd x Bnd suc/i that / -< 5 t/ and on/?; if f € J7. Specifically, 5 m £/ie previous statement

is such that 5(xJ,..., xd, y1,..., yd) = I if and only if there exists i G 1,..., k such that

fi(xj) = Yj foralljel,...,d.
However, as the example 2.1 shows, the conjecture is false.

Example 2.4 Consider synchronous relations of depth 2. Let T = {/i,/2,/3 : B2 —> B1}

be the set offunctions defined in Figure 7. Let the synchronous relation 5 C B2x2 x Blx2 be

such that 5(x\x2,y1,y2) = 1 iffTf}=i(Mxi) = yj) for some { e U*2'3}- Let g - B2 ^ B1
be the function as defined in Figure 7. Clearly, g -< S, because for any two input minterms

there exists an fi which maps both to 0. Thus Vxx,x2 G B2 : 5(x1,x2,0,0) = 1. Thus it

is not always possible to include a chosen set of functions without allowing some additional

functions as well.

Increasing the depth of the synchronous relation increases the sets of functions the syn

chronous relation can span. This is illustrated by the following two results.

Theorem 2.3 Suppose we are given any arbitrary set of boolean relations 71 = {R\,..., Rf.}

such that Vz G 1,..., k, R{ G Bm x Bn. For any d > k, there exists a synchronous relation

5 G Bmd x Bnd such that f •< 5 if and only iff -< R{ for some R{ G71.

Proof: We construct a synchronous relation 5 such that 5(xx,..., xd, y1,..., yd) = 1 if and

only if n£=i Ri(xj, yj) = 1for some i G{1,..., k}.
[If]

Obvious from the construction of 5 - follow the proof of Theorem 2.2.

[Only if]

12



PS IN OUT

si 0 0 0 1 1

si 1 1 0 0 1

s2 0 0 0 1 1

s2 1 1 1 0 0

s3 0 1 0 0 1

s3 1 0 1 1 0

(b)

(a)

Figure 8: (a) Finite state machine Ml drives machine M2. (b) The specification for permitted output labels
on machine Ml, given that the behavior of the two-FSM system remains unchanged.

Suppose / -< 5. We want to show that / -< R{ for some R{ G 71. Suppose not. Then, for

all i G {1,..., &}, there exists x}- G Bm such that i2t(xt-,/(xt)) = 0. Consider the k-vector

of these minterms, (xi,..., x^). If d = k, since / •< 5, 5(xx,..., xd, /(x1),..., f(xd)) = 1.

However, YYj=1 i?t(xJ,yJ) = 0 for all i G {1,...,&}. This contradicts the definition of 5.

Hence, the proof follows for d = k. For d > k, the proof extends in an obvious way. •

Following the lines of the proof of Theorem 2.2, it is easy to show that synchronous

relations of depth d2 are strictly more expressive than synchronous relations of depth d\ < d2.

We now give an example of how synchronous relations arise naturally in the model of

interacting FSMs. Consider the two FSM system in Figure 8(a), where Ml drives M2 (i.e.

the output of Ml serves as the input for M2). Figure 8(b) shows the values the transition

edge outputs edges can take without changing the behavior of the entire system ([WB93]).

It can be verified that this table represents the complete characterization of the flexibility in

choosing these output labels. Using Theorem 2.3, we can construct a synchronous relation of

depth 4 which completely specifies the flexibility between the input space (PS, IN) and the

output space OUT. However, since the output space is correlated with the input space (for

example, OUT = 0 is related to (PSJNP) = (sl,0) if and only if OUT = 0 is related to

(PS,INP) = (52,0)), this flexibility cannot be expressed by a single boolean relation over

the space (PSJN,OUT).

13



3 Minimization of compatible representation

3.1 Problem statement

The problem solved in this report is: given a boolean synchronous relation 5 C Bmd x Bnd,

find a minimal representation T which is relatively prime, irredundant, and compatible with

5.

We start with an initial representation T compatible with 5. The cost function we use is

the number of product terms in the representation. We then iteratively apply ESPRESSO-like

procedures (REDUCE, EXPAND and IRREDUNDANT) to the sum of products until we cannot

reduce the cost function further. The basic idea of ESPRESSO is to manipulate only one

cube at a time and at all times the compatibility of the current representation with the

synchronous relation is maintained; we adopt the same philosophy. It is thus very possible

that our minimizer may get stuck in a local minimum. However, we guarantee that the

representation at the end will be relatively prime and irredundant.

The REDUCE operation takes one cube c from the function representation T and replaces

it by a minimum cube c* so that T —{c} U{c*} is compatible with the synchronous relation.

The replacing cube is minimum in the sense that it is a smallest cube among the set of cubes

that can be chosen to replace c. The replaced cube need not be contained in the original

cube. EXPAND does the reverse operation - it expands a cube to a maximum cube such

that it covers the most number of other cubes in T. The expanded cube is guaranteed to

be relatively prime. EXPAND (REDUCE) is iterated on all cubes of the representation, until

no cube can be expanded (reduced) further. After EXPAND, the IRREDUNDANT operation is

invoked. This just eliminates cubes which are irredundant, looking at one cube at a time.

3.2 Towards an initial representation

In this subsection we address the issue of finding an initial representation compatible with

the synchronous relation. Unfortunately, we do not have an efficient method of solving

this problem. However, in most cases where synchronous relation minimization is used to

incrementally modify the design, as in Figure 2. Typically we start with a given initial

compatible representation. Then we can use the minimization procedure of this report to

exploit the flexibility of the synchronous relation.

14



One algorithm for obtaining an initial representation is presented below. Intuitively, we

believe that algorithm is correct. However, we have not proved its correctness, because as

it is, the algorithm is inefficient - it iterates Bm times over the inner loop. The nucleus

operation in the following procedure is as defined in Definition 3.

procedure InitialRepresentation (S)

R 4= nucleus(S)

P(x, y) = 5X2(...iXd)y2i...)ydi?(x, x2,..., xd, y, y2,..., yd)

for all x G Bm do {

do {

5(x1,...,xd,y1,...,yd) = /?(x1,...,x'i,y1,...,yd)n-=1^(^\yj)
R <*= nucleus(S)

P(x,y) = ^...^^....yd^x, x2,..., xd, y, y2,..., yd)
} until (R = 5)

Choose y such that P(x,y) = 1

^<=^+(x,y)

P(x,y) = P(x,y)((x = x) =• (y = y))

}
return J-

Another worst-case exponential algorithm to obtain the initial representation can be ob

tained by using a brand-and-bound search. Although this may be exponential in the worst

case, in practice it can yield fast solutions This has been shown to be the case in [KF92],

where the objective is only to find an initial representation for a constrained boolean re

lation. It has been shown in [SSB93] that a constrained boolean relation is just another

representation for a synchronous relation of a multiple boolean relation.

3.3 Reduce

We define the maximally reduced cube just like for boolean relations ([WB91]).
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Definition 7 For a given representation T compatible with a synchronous relation 5 and

a cube c G T, a cube c~ C c is said to be the maximally reduced cube for c in J- if

T —{c} U{c-} is compatible with 5 and there is no cube cCc" such that T —{c} U {c} is

compatible with 5.

However, as we shall see in this section, our REDUCE procedure very naturally extends so

that a cube need not be contained in the original cube. Rather, the smallest replacement

cube can be found directly.

Definition 8 Given T, c and S as above, a cube c* is said to be a maximally decreased

cube for c in T if T —{c} U {c*} is compatible with 5 and there is no other cube c smaller

(has more literals) than c such that T —{c} U {c*} is compatible with S.

For incompletely specified functions (in ESPRESSO), there is a unique maximally reduced

cube c~. Also, for any cube c such that c" C c C c, replacing c by c preserves the compatibil

ity of the representation (continuity). For boolean relations (in GYOCRO), these uniqueness

and continuity hold for the input parts of the cube but are not true for the output parts.

When these properties hold, c can be reduced one literal (input or output for ESPRESSO and

input for GYOCRO) at a time and the maximally reduced cube is obtained. For GYOCRO, the

cube can be reduced one literal at a time for the input part but must be further maximally

reduced for the output part.

Since synchronous relations subsume boolean relations (as we showed in Theorem 2.2),

the examples which show the non-uniqueness and non-continuity of REDUCE for output parts

in boolean relations [WB91] hold for synchronous relations also. The following two examples

illustrate the non-uniqueness and non-continuity for the input part.

Example 3.1 Consider the two boolean relations R\,R2 C B2 x B1 as shown in Figure 9.

From Theorem 2.3 we can construct a synchronous relation 5 C B2x2 x Blx2 such that

a function is compatible with 5 iff it is compatible with either R\ or R2. We start with

representation T = {xi} which is compatible with S. Now J- can either be reduced to

{xqX\} or {x~qX\), both of which are maximally reduced and are compatible with 5. Thus the

maximally reduced cube is not unique in the input part.

Example 3.2 Consider the synchronous relation 5 such that any f : B2 —• B1 is compatible

with 5 iff f is compatible with either R\ and R2 as shown in Figure 10. Representation
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xes* Ri C B2 x Bl R2 C B2 x B1
00

01

10

n

{0}
{0}

{0,1}
{1}

{0}
{1}
{0}
{0}

Figure 9: Example where a maximally reduced cube (input part) is not unique

xeB2 Ri C B2 x B1 R2 C B2 x B1
00

01

10

n

{1}
{1}
{1}
{1}

{0}
{0}
{0}
{1}

Figure 10: Example where reduction is not continuous

T •= {1} is compatible with 5. Neither {x0} or {xi} is compatible with 5. However, if we

reduce further, {xoX\} is indeed compatible with 5.

First we describe how to compute the maximally reduced cube c~ for c G J~> We jump

directly from c to c~ without going through any of the intermediate cubes.

Consider the cube c to be maximally reduced in an iteration of REDUCE. We wish to find

the maximally reduced feasible cube for c. We will form a characteristic function h(w, u, y)

to represent the set of feasible cubes which are obtained by reducing c and maintain the

compatibility of the function. Consider the sets Wh = Uh = {i G {1, ••• ,m} | 7(c),- = 2},

and Yh = {j G{1,•••, n} | 0(c)j = 1}. Now, consider the boolean space B™ x B^ x B™

defined by the variables of Wh, Uh and Yh. For each minterm(w, u, y) G B^Wh^ x B^Uh^ x B^
we define a reduced cube c* as follows.

Hc')i =

2 if i G Wh, Wi = U{ = 1

1 if i G Wh, Wi = 0, U{ = 1

0 if i G Wh,Wi = l,Ui = 0

I(c)i lii^Wh

c* is undefined if Wi = U{ = 0 for i 6 W^. 0(c*)j = 1 if and only if ; G H and yj = 1.

Intuitively, W{ and ut- determine if the input part %is reduced or not, and if it is, the phase

to which it is reduced. j/t- determines if the output part i is reduced or not.
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Example 3.3 Consider the synchronous relation 5 C B2x2 x Blx2 described in Example

3.1. Consider the compatible representation T consisting of a single cube c = [12|1]. This
cube can be reduced in the the input bit x2 and also in the single output bit y\. Thus, the

sets Wh, Uh and Yh are {2}, {2} and {l}, respectively. Using the above definition for the

reduced cube c*, the minterm (w2,u2,y\) = (0,1,0) corresponds to c* = [1110].

Now let h: £|w^ x B^' x B™ -» B be a function such that /i(w, u,y) = 1 if and only
if the reduced cube c* is feasible. Thus, h(w, u, y) = 1 if and only if / -< 5 where for each

minterm x G Bm, f(x) = z and z G Bn is defined as:

Vi6{l,...,™}:„-{P' +» ttx6^'614' (3)
( rj otherwise

where the minterm f G Bn such that Fc(x, r) = 1.

Example 3.4 Consider, once again, the synchronous relation constructed in Example 3.1.

We will describe the function A(w,u,y) for the cube c = [12|1] with respect to the single-

cube compatible representation T —{xi}. From Figure 9, it is clear that the only feasible

reductions to the cube are c* = c, c* = [10|1] and c* = [11|1]. Thus h(w2,u2,yx) = 1 if and

only if (tua, t*2, Vl) G {(1,1,1), (1,0,1), (0,1,1)}.

Theorem 2.1 gives the conditions under which / -< 5 is true. Using the theorem,

A(w,u,y) = lifandonlyifforany(x2,...,xd) GBm^d-l\ there exists (y2,.. .,yd) GBn^-^
such that for all x G Bm, there exist z,r G Bn which satisfy the following three conditions:

1. fl(x,x2,...,xrf,z,y2,...,y<0 = l

2. Fc(x,p) = l

3. z is defined as in (3).

Now, using the definition of I(c*), the function h can be computed using BDDs as

Mw> u,y) = CX2^xdSy2^fyXxSz,r(R(x, x2,..., xd, z, y2,..., yd)Fc(x, r)H(w, u,y, x, z, r))

where H specifies condition (3) above and is computed as

H(w,u, y, x, z, r) = Hew* K*«' + *,•*,•) Uitwh(*&I(c)i) UjeYh(^Mrj + Vj)) Ujer&jWrj)
+ (Eiewh((xiWwi)(xi 0 Ui)) + £lWh(a;t- ©^(c),))Ilvi^i^)
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Once we calculate h(w, u,y), the maximally reduced cube corresponds to the minterm

(w,u,y) of h which has the minimum number of l's. This is because we have defined c* for

a (w,u,y) is such a way that a cube with more l's is larger than a cube with fewer l's. A

minterm with a minimum number of l's is given by a shortest path connecting the 1-leaf to

the root of the BDD for h(w, u,y), where the length of a BDD edge is 1 if the edge is the

then-edge and 0 is the edge is the else-edge. This follows from a proof given in [LS90].

Maximally decreased cube

The formulation described in this section to obtain a maximally reduced cube can be easily

extended to obtain a maximally decreased cube. Here we relax the restriction that the

replacing cube is contained in the replaced cube. To get the maximally decreased cube, we

only change the definitions for Wh, Uh and Yh, and then use exactly the same method as

above. The new definitions are: Wh = Uh = {1,..., m} and Yh = {1,..., n}. Effectively we

start from a tautology cube (instead of c) and then maximally reduce it. This modification

can produce a better solution to our problem but at the cost of extra processing.

3.4 Expand procedure

The aim of EXPAND is to replace a cube by a maximally expanded cube defined as follows.

Definition 9 For a given representation T compatible with a synchronous relation 5 and

a cube c G J7, a cube c+ D c is said to be the maximally expanded cube for c in J7 if

J7 —{c} U {c+} is compatible with 5 and the following two conditions hold:

1. if er(c+) C T —{c} denotes the maximal set of cubes such that J7 —{c} —cr(c+) U{c+}

is compatible, then there exists no cube c 3 c such that J7 —{c} U {c} is compatible and

k(c)|>|a(c+)|,

2. there exists no cube cD c+ such that T —{c} U {c} is compatible.

Definition 10 Given T, c and 5 as above, a cube c* is said to be a maximally increased

cube for c in J7 if T —{c} U{c*} is compatible with 5 and the following two conditions hold:

1. if a(c*) C J7 —{c} denotes the maximal set of cubes such that T —{c} —cr(c*) U{c*}

is compatible, then there exists no cube cD c such that T —{c} U{c} is compatible and

k(*)l>k(OI.
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2. there exists no cube c larger (has fewer literals) than c* such that T —{c} U {c} is
compatible and \o~(c) \> \cr(c*) \.

Replacing a cube by a maximally expanded or maximally increased cube, therefore, guar

antees that a maximal number of cubes are covered by the new cube and the new cube is

relatively prime with respect to the representation.

The EXPAND procedure follows on similar lines as ESPRESSO and GYOCRO. We have a

covering matrix C which represents the rest of the cubes in the representation. This matrix

is used to guide the expansion in a direction which facilitates the removal of as many cubes

as possible. We maintain two sets, % and C which respectively denote the literals that have

been raised and the literals that have been determined not to be raised.

Now we describe the operations used in EXPAND in some detail. For a more detailed

description the reader is referred to [BHMS84, WB91]. The ESSENTIAL operation finds

literals which cannot be raised during the current expansion and adds them to C. Cubes in

C which are impossible to be covered now are removed. The key operation in EXPAND is

MFC. This determines the directions for the expansion of the cube. As in GYOCRO, some

approximations are introduced in MFC to speed up the computation for the procedure. First,

the set cr(c), introduced in Definition 9, is computed greedily and not exactly. For each cube

p in C, we form a cube c by taking the partwise union of p and 71. Then we calculate a

maximally expanded cube c* for c using the procedure described in the next subsection, p

is selected such that the maximum possible cubes in C are covered by c*, and % is updated

to reflect the replacement of the current cube by c*. This procedure is iterated until no such

p can be selected for which c* will cover any more cubes in C. At this point, we greedily

expand the cube to a maximal feasible cube so that it is relatively prime.

Forming an expanded feasible cube

We describe how to form a maximally expanded cube c* D c starting from c. We use

a technique similar to the one used for REDUCE. Unlike REDUCE, we will need only two

variables, w and y, to represent the characteristic function for all feasible cubes obtained by

expanding c.

Using C, the lowering set defined earlier, we define the following sets:

Wk = {«€{l,---,m}|/(c)i^2,ig£}
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Wi = {ie{i,---,m}\iec}

Yk = {je{l,---,n}\O(c)j = 0,(j-rm)<ZC}

Yi = {i€{V--,n}|(i + m)6£}

Consider the boolean space B^Wk^ x B^ defined by the variables of Wk and Yk. For each

minterm (w,y) G B^Wk^ x i?'**', we define an expanded cube c* as follows.

_, ^ \ 2 if (i GW^,Wi = 1) or (i i (Wk UI*',))
( I(c)i otherwise

0(c*)j = 1 if and only if either (j GYk,yj = 1) or (j <£ Yk UYi). Let fc : B^Wk^ x B^*' -• B
be a function such that &(w,y) = 1 if and only if J7 —{c} U {c*} is compatible with the

synchronous relation. This means that &(w,y) = 1 if and only if / -< 5, where / : Bm —> £?n

is defined so that for each minterm x G Bm, f(x) = z and z G Bn is specified as:

*-,- + &• iixeM(c*),jeYk,

1 if xGM(c*),i^(n UK/), (4)

r, otherwise

where the minterm r G Bn is such that Fc(x, r) = 1.

Using Lemma 2.1 in a way similar to the formulation of h(w, u,y) in REDUCE, we can

formulate the computation of k as:

fc(w, y) = CX2^xaSy2^ydCxSZir(R(x,x2,...,xd, z,y2,..., y^i^x, r)Ar(w,y, x, z,r)) (5)

where K computes the relation between (w, y, x, z, r) as defined in (4). K is computed as:

A'(w,y,x,z,r) = Yli€Wk(wt + (x,e/(c),)) Uiew^1^) n^n^®^ + »>))IIi6y,(*J®ri)IlJ«ylkuyl)(*>)

If /?(w,y) = 0, then there exists no feasible cube for c. Otherwise, like in REDUCE, the

smallest feasible cube for c is given by the minterm (w,y) of k which has the fewest l's.

Such a minterm is found by performing a shortest path algorithm for the BDD of fc(w,y)

just as in REDUCE.

At the end of the expansion for each cube c, we would like to maximally expand the

current cube to make it relatively prime. So we have to find a maximal feasible cube now. In

order to do this, we do the same computation as above, except that we compute the longest

path in the BDD instead.
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A performance optimization

In each EXPAND loop (while expanding a particular cube for a particular representation), we

try to expand the cube many times - each time we try to cover another cube in the covering

matrix, we raise certain columns of 1Z and try to find a feasible cube, and each time we try

to add more columns to C while doing ESSENTIAL, we raise one column of 1Z and see if the

column is essential or not.

It is expensive to compute the function k(w,y) each time we try to expand the cube

represented by %. So we compute this function only once for each cube expansion relative

to a particular representation T. At the beginning of the loop we compute k(w, y) and then

iteratively modify it. As we enter the loop, 1Z is set to the the cube c, and C is set to the

null set. We, thus compute the initial &(w,y) using the value of c = c. Later, whenever we

move a literal to % or £, we use the following rules to modify k:

• If input literal i is moved to %, cofactor &(w,y) with W{. If output literal j is moved

to TZ, cofactor fc(w,y) with yj.

• If input literal i is moved to C, cofactor k(w, y) with wi. If output literal j is moved to

£, cofactor &(w, y) with yj.

One can easily verify the validity of the above rules from the expression for the BDD com

putation of &(w,y). Using this optimization gave us a speedup of 2 on some examples over

the naive implementation obtained by a direct modification of the GYOCRO code.

Maximally increased cube

As in REDUCE, we would like to remove the restriction about the relation between the cube

to be modified and the modified cube. Here, we remove the restriction that the expanded

cube contain original cube. We will, therefore, look for a maximally increased cube instead

of a maximally expanded cube. This is accomplished by using 7£ = <j> instead of c at the

start of the cube expansion for a particular cube and a particular representation.

3.5 Irredundant procedure

The IRREDUNDANT procedure looks at one cube c G T at a time. The cube is removed from

the representation if the function represented by T —{c} is compatible with the synchronous
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relation.

4 Results

We have implemented two versions of the minimizer. The first produces a minimally reduced

cube in REDUCE and a maximally expanded cube in EXPAND. In the second version, we do

not restrict EXPAND (REDUCE) in order that the replacing cube contains (is contained in)

the original cube. The two programs that implement these versions are called CHAI-REI and

CHAI-IDI, respectively.

Since no synchronous relation benchmarks exist, we constructed a few synchronous rela

tions by composing boolean relations as described in Lemma 2.2. Our minimizer was able

to jump from one relation to another in search for a smaller sum of products representation.

We performed an experiment to compare the computational efficiency of CHAI-x with

a boolean relation minimizer GYOCRO([WB91]). We composed each of our synchronous

relations from a single boolean relation using the method described in the Lemma 2.2.

We chose the depth of the synchronous relation to be 2. So given the boolean relation

R(x,y), we construct a synchronous relation 5 such that 5(x1,x2,y1,y2) is 1 if and only

if .^(x^y1) = i?(x2,y2) = 1. It must be noted that in composing the synchronous relation

this way, we double the number of input and output variables and square the number of

minterms in the input relation specification. For the initial representation, we used the

initial representation generated by GYOCRO. Note that we could have used the techniques

we discussed in Section 3.2 to obtain an initial representation. We selected the example

circuits where GYOCRO did not give the exact minimum representation to see if CHAI does

better.

The purpose of the experiment is to display the comptutational efficiency of CHAI. It is

not meant to be faster or better than GYOCRO for solving ordinary boolean relations. Since

the depth-2 sychronous relations for the experiments lie in a much larger space than the

boolean relations they are derived from, and CHAI uses the same basic approach as GYOCRO,

we expect CHAI to take much larger times and give almost identical solutions as GYOCRO.

However, through our experiments, we wish to show that computational times for CHAI are

not many orders of magnitude larger than those for GYOCRO. On the other hand, GYOCRO is

only a boolean relation minimizer, cannot minimize arbitrary synchronous relations whereas
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Name I/O
Input
PLA

GYOCRO CHAI-REI CHAI-IDI

# Time # Time # Time

int4 4/3 28 9 0.66 7 3.56 7 8.96

int8 4/3 25 9 1.53 8 4.92 8 10.96

cl7c 5/3 59 16 2.33 16 19.26 16 39.37

cl7d 5/3 54 16 2.21 15 33.54 15 76.75
cl7e 5/3 41 5 0.91 5 4.55 5 9.44

cl7g 5/3 82 7 1.32 7 4.54 7 7.82

cl7i 5/3 43 15 1.79 15 13.00 15 29.33

she2 5/5 56 10 7.55 11 44.85 10 82.81

she4 5/6 97 20 16.28 20 122.03 20 238.03

b9 16/5 186 270 300.0 ? ? ? ?

Table 1: Implementation results for chai

CHAI is a synchronous relation minimizer which can minimize arbitrary boolean relations

as well. Table 1 shows our experiments. The table shows the number of product terms in

the minimized representation and CPU time (in seconds) required on a DECstation 5900

for each of GYOCRO, CHAI-REI and CHAI-IDI. CHAI-REI is about 7 — 8 times slower than

GYOCRO; CHAI-IDI is about 2 times slower than CHAI-REI. Our minimizer could not even

read the input relation for the circuit b9. This example had 68940 product terms in the PLA

for the synchronous relation and we could not even construct the input synchronous relation,

possibly because of a poor BDD variableordering for the 42 variables (16 input and 5 output

for each depth). In Table 1, The number of products terms are slightly different for GYOCRO

and CHAI-REI for a few examples because GYOCRO expands the input and output parts

separately and thus may not actually get the maximum reduction. Our implementations

minimize both the input and the output parts together, albeit at a higher processing cost.

There are two reasons why CHAI is slower than GYOCRO. First, the check for compatibility

of a function (Theorem 2.1) is much more expensive - in GYOCRO, the compatibility check

is just a containment check. Second, CHAI cannot manipulate the input space one literal

a time as GYOCRO is able to do. There is one place where CHAI is able to perform better

than GYOCRO - in EXPAND, the function k(w,y) has to be computed only once for each

cube (relative to a given T). Thereafter, it can be iteratively modified by taking cofactors.

In GYOCRO, on the other hand, this cannot be done - only a smaller part of the equivalent

function can be iteratively modified.
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5 Conclusions

In this report we have shown the expressive power of synchronous relations and have shown

that they are more expressive than ordinary boolean relations. We have then presented

a heuristic method to find a minimal implementation for a synchronous relation iterating

from a given initial representation. We have also shown that the computing times for our

minimizer are feasible for small examples.

Forming an initial compatible representation efficiently still needs to be solved. However,

an initial representation need not be recomputed if one already starts with a given design

which is to be optimized.

A future line of research is to explore the ways in which synchronous relations can be

formed for a given system. It will also be useful to find out how sequential circuits should

be partitioned in order to get the maximum advantage from our minimizer.
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