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ABSTRACT

Numerous design environments for signal processing use specification languages with
semantics closely related to Synchronous Dataflow (SDF), a restricted form of dataflow that has
proven efficient for describing and compiling multirate signal processing algorithms. In SDF, as
in other forms of dataflow, a program is specified as a set of computations and a set of data-depen
dencies between these computations. This allowsa compilerfreedom to explore differentways to
sequence the computations, and to evaluate the associated tradeoffs, such as those involving
throughput, code size, and buffering requirements. To guide the scheduling process, compilers
may apply some form of "clustering", in which multiple computations are grouped together
according to different criteria. In this paper,we develop clustering techniques to synthesizemini
mum code size implementations of SDF programs, and we extend these to incorporate existing
heuristics for minimizing the amount memory required for buffering. We also develop formal
techniques to integrate arbitrary clusteringstrategies — havingarbitraryobjectives — into a min
imum code size scheduler.

1This research was supported by DARPA, AT&T Bell Laboratories, Semiconductor Research Corporation,
and the Office of Naval Research via the NavalResearch Laboratory.



Introduction

When synthesizing code for programmable digital signal processors (DSPs), a compiler

for a dataflow-based language often faces important tradeoffs between the amount of memory

required for program storage, the amount of memoryrequired for data storage, the frequency of

off-chip memory accesses, and the throughput. In this paper, we address these tradeoffs in the

context of Synchronous Dataflow (SDF) programming [10], a restricted form of dataflow pro

gramming in which the number of data items producedand consumed by each functional block is

known atcompile-time. SDF orclosely-related semantics underlie many software designenviron

ments for signal processing^, 4,6,7,11,12,13,14,15].

Figure 1 shows a simple SDF graph. The numbers at both ends of each arc designate the

rates at which blocks produce and consume data samples. For example, block Z consumes 20

samples from its input arc each time it is invoked, and Y produces 10 samples on its output arc.

The "10D" on the arc between Y and Z specifies 10 delays. Normally, we implement each delay

as an initial sample on the arc.

A majoradvantage of properly constructed SDF programs is thatwe canperform allof the

scheduling at compile time by means of periodic schedules, andthus we do not pay the overhead

of dynamic sequencing. By a periodic schedule, we mean a schedule that invokes each block at

least once, does not deadlock, and produces no net change in the number of samples queued on

any of the arcs. Thus, we can repeat a periodic schedule indefinitely, with only a fixed finite

amount of memory required for the buffers associated with the arcs in the system.

Techniques have been developed to automatically check an SDF graph for consistency,

and to determine the minimum number of times each block must be invoked in a periodic sched

ule for a consistent SDF graph [10]. For example, in figure 1, we must execute X twice, Y twice,

and Z once in a periodic schedule. We can compile an SDF graph by constructing a periodic

& kvAw^©
Fig 1. A simple SDF graph.
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Introduction

schedule for the graph and then replacing each instance of a block with the machine code segment

that implements that block in the target processor. This process is described in detail in [7,13].

The schedule determines to a large extent how much program and data memory will be

required. For example, for figure 1, the schedule XYZXY leads to the least total buffering cost

(over all schedules) since it consumes as many samples as possible from an arc before producing

new data on the arc. However, due to the irregularity in the schedule, we cannot organize any

loops in the target code. So, we must either duplicate the code blocks associated with blocks X,

and Y in the target code, or we must arrange for X and Y to execute through subroutine calls —

which results in less code duplication, but more subroutine call/return overhead. Thus, although

the schedule offers low data memory requirements, it induces higher program size or subroutine

penalty.

Another schedule for figure 1 is XYXYZ, which allows us to construct a loop in the target

code. The looping opportunity offered by this schedule is highlighted if we express the schedule

in the shorthand notation(2 XY) Z, wherea parenthesized term (n Ni N2 ... Nm) represents a loop

whose iteration count is /*, and whose loop body is ^ N2 ... N^. With this new schedule, we can

implement all of the repetition in the algorithm without code duplication. However the buffering

overhead is greater since none of the samples produced by block Y are consumed by Z until all

invocations of Y have fired.

Programmable DSPs typically have a rather limited amount of program and data memory

on chip, and there is usually a large speed penalty for accessing off-chip memory. For example,

the Motorola DSP56001 has an on-chip capacity of 512 instruction and 512 data words, and Star

Semiconductor's SPROC can store Ik instructions and Ik data. In the Motorola DSP56001, one

on-chipinstructionand two on-chip data words canbe accessed in parallel, while thereis only one

external memory interface. Thus, there is a speed penalty for accessing off-chip memory regard

less of how fast the external memory is. In this paper, we show how to minimize the program

memory requirement of an SDF graphby constructingloops in the targetcode, and we show how

to incorporate existing clusteringheuristics forreducing data-memory requirements into our min

imum code size scheduler in a way that preserves the optimality of the code-size minimization
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Subindependence

techniques. We demonstrate that this method for verifying the compatibility of a clustering deci

sion with code-size minimization objectives applies to arbitrary clustering candidates, not just

those that apply to buffer compaction. Another important application of "compatible clustering"

that we have implemented is clustering to increase the amount of data transfers that do not go

through memory — i.e. that take place only in registers.

Thus, we define a code scheduling framework that is centered on the goal of minimizing

code size, but that can also be formally extended to incorporate other considerations, such as

buffer compaction, as secondary objectives. Such a framework may not be suitable in some situa

tions. For example, if an application involves a small set of operations (instructions) and an

extremely large amount of data transfers, then the scheduler will probably have to consider data

memory consumption as the primary objective to arrive at an acceptable solution. However, pro

gram memory constraints are usually more difficult to satisfy than data memory constraints. One

reason for this is that data memory locations can be reused between noninterfering arcs [5],

whereas there is usually no efficient way to have code for different parts of a graph reside in the

same memory space. Also, it has been observed that schedules that are constructed solely for the

purpose of minimizing buffering costs typically offer few opportunities for looping [8], whereas

careful clustering can often be used to significantly reduce buffering requirements while maintain

ing a high degree of program compactness [1].

This type of biased scheduling framework is particularly suited for a goal-directed soft

ware synthesis environment, such as that described in [15]. However, we also believe that the

insights involved in these techniques will be helpful in developing or refining schedulers that treat

other objectives equally or with more priority than code size, but this area needs more investiga

tion.

Subindependence

In this section we define a form of precedence independence that can be exploited to

obtain an efficient algorithm for synthesizing optimally compact target programs. These tech-
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Subindependence

niques form the foundation of the scheduling framework defined in this paper. The theoretical jus

tification behind the developments in this and subsequent sections can be found in [2].

We define an optimally compact target program as one that corresponds to a schedule in

which each block appears only once, and we refer to such schedules as single appearance sched

ules. For example, recall the two schedules XYZXY and (2 XY)Z for figure 1 that we discussed

earlier. Blocks X and Y each appear twice in the first of these schedules, so this is not a single

appearance schedule. If we use this schedule, then we must implement the repetition of X and Y

in a schedule period by duplicating the associated code blocks or by inserting subroutine calls.

However, we see that the second schedule, (2 XY)Z is a single appearance schedule, and thus

with this schedule, we can implement all of the repetition in the algorithm through loops. This

enables in-line code generation without a code-space penalty.

Neglecting the possible overhead associatedwith the loops, we see that any single appear

ance schedule leads to a minimum code size implementation. The overheadassociated with loops

is normally small with today's programmable DSPs, which commonly offer a "zero-overhead"

looping facility. Also, loop overhead — in terms of code size — is independent of the amount of

repetition involved in the loop. This is in contrast to subroutine calls, which require at least one

extra instruction for each block invocation that occurs through a subroutine.

In this section we describe a necessary condition for an SDF graph to have a single

appearance schedule, and we describe how it leads to a strategy for constructing single appear

ance schedules whenever they exist, and in the next section we show how it forms the basis for

our scheduling framework. This necessary condition was developed independently, in a slightly

different form, by Ritz et. al. [16], although their application of the condition is quite different

from ours. Ritz. et. al. use these conditions in the context of an algorithm to synthesize single

appearance minimum activation schedules, which minimize the number of "context-switches"

between blocks. Forexample, in the schedule X(10 YZ) for figure 2, successive invocations of Y

©^—^—i©
Fig 2. An example used to illustrate minimum activation schedules.
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and Z are interleaved, and thus a separate activation is required for each invocation — 21 total

activations are required. On the other hand, the schedule X(10 Y)(10 Z) requires only three

activations — one for each block. In the objectives of [16], the latter schedule is preferable,

because in that particular code-generation framework, there is a large overhead involved with

each activation. With effective register allocation and instruction scheduling, such overhead can

often be avoided, however, as [13] demonstrates. So we prefer the former schedule, which has

less looping overhead and requires less data memory.

To understand the problem of constructing single appearance schedules, it is useful to

review the mannerin which iteration is specified in an SDF graph [9]. Figure 3 shows a simple

example of nested iteration. Here, Y must be invoked twice for every execution of X, and Z must

be invoked twice for every execution of Y. Two possible schedules for figure 3 are X (2 Y (2 Z)),

which is a single appearance schedule that corresponds to a nested loop, and X (2 YZ) (2 Z),

which is not a single appearance schedule.

A single appearance schedulecaneasilybe constructed for anacyclic SDF graph. We pick

a node at the root of the acyclic graph and schedule all invocations of this node in succession;

remove this node from the graph and pick aroot node of the remaining graph; schedule all invoca

tions of this node in succession;and so on until we have traversed all nodes in the graph. This pro

cess yields the schedule X (2 Y) (4 Z) for the example in figure 3.

Clearly this simple scheduling technique will always yield a single appearance schedule

for any acyclic SDF graph, although this will be the schedule that has the greatest buffering cost.

To construct single appearance schedules with lower buffering costs via nested loops, we can

apply the heuristic techniques of [1], but this must be done in a controlled manner to preserve

compactness. We will elaborate on this in section 5.

It can be shown that an arbitrary SDF graph hasa single appearance schedule if and only if

each strongly connected component1 considered separately has asingle appearance schedule. A

0^0^-J©
Fig 3. Nested iteration in an SDF graph.
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necessary condition for a strongly connected SDF graph to have a single appearance schedule is

illustrated in figure 4. The condition is that we must be able to partition the nodes into two subsets

•

•

•

Y~\ <*1 J"V1—•/ I
«2 i \

p u *rPa h
•

• 1

P-i is subindependent of P2 if:
For each ocj directed from P2 to P1t

(number of delays on cq) £ (number of samples consumed from oq each period).

Fig 4. An illustrated definition of subindependence.

such that one subset is precedence-independent of the other subset throughout a single schedule

period. We refer to this form of data-independence as subindependence.

Thus in a strongly connected SDF graph G, Pi is subindependent of P2 if all of the data

required by P^ from P2 for a single schedule period of G is always available at the beginning of

each schedule period. If this condition holds, then we can schedule G by scheduling all invoca

tions associated with P^ together, and then concatenating a schedule for all invocations in P2. This

simplifies the problem of constructing a single appearance schedule for G into the problem of

constructing single appearance schedules for Pi and P2 separately. By repeatedly applying this

type of decomposition, we can obtain a single appearance schedule whenever one exists.

Figure 5(a)illustrates how subindependence partitioning leads tosingle appearance sched

ules. Here, due to the two delays on the arc directed from block W to block X, the subgraph {X,

Y} is subindependent of the subgraph {W, Z}. Thus we can obtain a single appearance schedule

for the overall graph by constructing asingle appearance schedule for {X, Y} and concatenating a

single appearance schedule for {W, Z). But it is easy togenerate single appearance schedules for

1. A strongly connected component ofadirected graph is amaximal subgraph Cthat has the property that between every distinct
pair of nodes X ndY inC, there is directed path from X toY and adirected path from Y to X.
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Fig 5. Anexample of subindependence. In (a), {X, Y} is subindependent of {W, Z}. If we move
oneofthetwo delays to thebottom arc, as (b) depicts, then {X, Y} is no longer subindependent
of {W, Z}.

each of these two subgraphs, since they are both acyclic. Thus, we arrive atthe single appearance

schedule (2 X Y) W Z1 for figure 5(a).

We have implemented this decomposition process efficiently. To find a subindependent

partition of astrongly connected SDF graph G,we first remove all arcs from G with delay greater

than orequal to thetotal number of samples consumed from the arc in a single schedule period. It

can be shown that if theresulting graph G' is strongly connected, then there is no subindependent

partition for G, and if G' is notstrongly connected, then any root strongly connected component of

Gf is subindependent of the rest of G'.

This process is illustrated in figure 6. The column labeled repetitions in (b) lists the mini

mum numberof times eachnodein the graph of (a) must be repeated in a periodic schedule. From

this information, and from the number-of-samples consumed parameter of each arc, we see that

the number of delays on the arc from Y to W (25) exceeds the numberof samples consumed from

thisarc eachschedule period (20), and the number of delays on the arc from Z to X (20) equals the

number of samples consumed from this arc. Thus G' is the SDF graph shown in figure 6(c), and

the root strongly connected component {V, W} of G' is subindependent of the rest of the graph

{X,Y,Z}.

1. Note that we must repeat the minimalperiodic schedule XY for the subgraph{X, Y} twice. This is due to the iteration specified
by the arc directed from block W to block X.
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Subindependence

block repetitions

V 1

W 10

X 2

Y 20

Z 20

(b)

©nSu®

(d)

Fig6. Partitioning a strongly connected SDF graph based on subindependence.

We can generalize this decomposition technique to get more scheduling flexibility. If we

cluster each strongly connected component of G' then the resulting SDF graph is acyclic. This

clustering process is illustrated in figure 6(d). Here the strongly connected components {V, W}

and {X, Y} have been replaced by single nodes SCQ and SCC2respectively, and the SDF param

eters on the input and output arcs of each SCCj have been adjusted to reflect the total number of

samples produced or consumed through one invocation of the subgraph SCCj. For example, a

minimal periodic schedule for {X, Y} invokes Y 10 times, so the numberof samples produced on

the arc directed from Y to Z is adjusted by a factor of 10.

We canconstruct avalidschedule for thegraph in figure 6(a) by first constructing asched

ule for the acyclic clustered graph of figure 6(d), and then replacing each appearance of an SCQ

witha minimal periodic schedule for that subgraph. The clustered graph in figure 6(d) reveals all

possible subindependence partitions for the original graph: {SCQ} is subindependent of {SCC2,

Z}, and {SCQ, SCC2} is subindependent of {Z}. Since the subindependence partition affects the

final schedule, we see that clustering the strongly connected components allows the most flexibil-
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Loose and Tight Interdependence

ity for a subindependence-based scheduling algorithm. This is the form in which we have imple

mented subindependence partitioning.

3 Loose and Tight Interdependence

If we can partition a strongly connected SDF graph G into two subgraphs such that one

subgraph is subindependent of the other, then we say thatG is loosely interdependent, and if a

strongly connected SDF graph is not loosely interdependent, then we say that it is tightly inter

dependent. For example, the SDF graph in figure 5(a) is loosely interdependent. However, if we

move one of the two delays to the lower arc, then the resulting graph, depicted in figure 5(b), is

tightly interdependent — there is no way to partition this graph so thatone part of the partition is

subindependent of the other.

It can be shown that a tightly interdependent SDF graph never has a single appearance

schedule, and an arbitrary SDF graph has a single appearance schedule if and onlyif it contains no

tightly interdependent subgraphs. Thus, the graph in figure 5(b), and any SDF graph that contains

this as a subgraph, does not have a single appearance schedule.

Another important property of tight interdependence is that it is additive: the union of two

intersecting tightly interdependent SDF graphs is also tightly interdependent. Thus each SDF

graph has a unique set of maximal connected tightly interdependent subgraphs, which we call its

tightly interdependent components.

Finally, subindependent partitioning cannot "break up" a tightly interdependent compo

nent: if G is a strongly connected SDF graph, T is a tightly interdependent subgraph of G, and P^

is subindependent of P2 in G, then T is a subgraph of P-\, or T is a subgraph of P2. An important

consequence of this property is that for a given SDF graph, all subindependence-based decompo

sition techniques will terminate at the same subgraphs. With any subindependence partitioning

algorithm, we will be able to repeatedly decompose an SDF graph until we are left only with the

tightly interdependent components.

10 of 20
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Loose Interdependence Algorithms

For example, consider the technique described in section 2 where we remove arcs having

"sufficient" delay and then cluster the strongly connected components of the resulting graph G\

Since any root strongly connected component Ri of G' is subindependent, any tightly interdepen

dent component T is either completely contained in Ri or completely contained in the comple

ment (G* - Ri) of Ri1. If Ri = T, then we can decompose Ri no further —this branch of the

overall decomposition process terminates at Ri, and conversely if Ri properly contains T, then Ri

must be loosely interdependent (otherwise T would not be a maximal tightly interdependent sub

graph), so we can further subdivide Ri via subindependence.

Similarly, if (G' - Ri) contains T, and R2is a strongly connected component at the root of

(G' - Ri), then R2 contains T or (G' - Ri - R2) contains T. Clearly, by repeatedly applying this

process, we will eventually arrive at a strongly connected component Rn that contains T. Further

more, we will be able subdivide Rn further if and only if Rn properly contains T. Thus we see that

this recursive subindependence decomposition method terminates at each of the unique tightly

interdependent components of the original SDF graph.

Loose Interdependence Algorithms

Our memory-mimmizing scheduling framework is based on a class of scheduling algo

rithms that we call loose interdependence algorithms. Given any algorithm A^ for construct

ing a single appearance schedule for an acyclic SDF graph; any algorithm A2 that determines

whether a strongly connected SDF graph is loosely interdependent, andif so, finds a subindepen

dent partition; and any algorithm A3 thatconstructs a valid schedule for a tightly interdependent

SDFgraph, we define the loose interdependence algorithm associated with (A1f A2, A3), denoted

L(Ai, A2, A3), as the following algorithm:

Algorithm L(A1s A2, A3)

Input: an SDF graph G.
Output: a valid looped schedule SL(G) for G.

1. Strictly speaking, either the set ofnodes inTisa subset ofthe set ofnodes inRi,orit isa subset ofthe set ofnodes in (G* -
Ri).
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Loose Interdependence Algorithms

Step 1: For each node N in G, determine the minimum number of
times, q (N) , that N is invoked in a periodic schedule for G.
Step 2: Determine the strongly connected components
Gi, G2r ...f G8 of G.

Step3: Cluster Gu G2, ..., G8 and call the resulting graph Gf .
This is an acyclic graph.

Step4: Apply Ai to Gf; denote the resulting schedule S' (G) .
Step 5:

for i = l, 2, ..., s
Apply A2 to Gj;

if subgraphs X and Y are found such that X is
subindependent of Y in Gj,
then

•Recursively apply algorithm L to subgraph X; the
resulting schedule is denoted SL(X) .
•Recursively apply algorithm L to subgraph Y; the
resulting schedule is denoted SL(y).
•Let rx =gajf{q(N)|Nis a node in X}1.
•Let ry= gcd{q(N)|Nis a node in Y}.
•Replace the (single) appearance of Gj in S'(G)
with (rx SL(X)) (ry SL(Y) ).

else (Gj is tightly interdependent)
•Apply A3 to obtain a valid schedule Sj for Gj.
•Replace the single appearance of Gj in S with Sj.

end-if

end-for

Output S'(G).

Given a loose interdependence algorithm X= L(Ai, A2, A3), we refer to Ai, A2, and A3

respectively as theacyclic scheduling algorithm of A, thesubindependence partitioning algorithm

of X, andthe tight scheduling algorithm of X. The following useful properties of loose interdepen

dence algorithms are proved in [2].

Property 1: Efficient loose interdependence algorithms exist. In particular, there are loose

interdependence algorithms whose overall time complexity is quadratic in max(n, e\ where n is

the number of nodes in the input SDF graph, and e is the number of arcs.

1. This is the number of times that G invokes the subgraph X; "gcd" denotes the greatest common divisor.
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Property 2: Any loose interdependence algorithm constructs a single appearance schedule

when one exists.

Property 3: If B is a node in the input SDF graph G, and B is not contained in a tightly

interdependent component of G, then any loose interdependence algorithm schedules G in such a

way that B appears only once.

Property 4. If B is a node within a tightly interdependent component of the input SDF

graph, then the number of times that B appears in the schedule generated by a loose interdepen

dence algorithm is determined entirely by its tight scheduling algorithm.

Property 4 states that the effect of the tight interdependence algorithm (A3) is independent

of the subindependence partitioning algorithm (A2), andvice-versa. Any subindependence parti

tioning algorithm makes sure that there is only one appearance for each node outside the tightly

interdependent components, and the tight scheduling algorithm completely determines the num

ber of appearances for nodes inside the tightly interdependent components. For example, if we

develop a new subindependence partitioning algorithm thatis moreefficientin some way (e.g. it

is faster, or reduces data memory requirements more), we can substitute it for any existing sub-

independence partitioning algorithm without changing the "compactness" of the resulting sched

ules — we don't need to analyze its interaction with the rest of the loose interdependence

algorithm. Similarly, if we develop a new tight scheduling algorithm that schedules any tightly

interdependent graph more compactly than theexisting tight scheduling algorithm, we are guaran

teed thatusing thenew algorithm instead of theoldonewill lead to more compact schedules over

all.

Thus the class of loose interdependence algorithms defines a framework for implementing

memory-minimizing schedulers. We have freedom to experiment with the component algorithms

— the acyclic scheduling algorithm, subindependence partitioning algorithm, and tight schedul

ing algorithm — while the framework guarantees that the interaction of these algorithms will not

hinder the full code-size minimization potential offered by subindependence partitioning. For

example, the heuristic techniques of [1] can be incorporated into the acyclic scheduling algorithm

or the tight interdependence algorithm to produce large savings in buffering requirements, while

13 of 20
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Clustering in a Loose Interdependence Algorithm

maintaining code-size compactness. We have implemented such a combined program- and data-

memory minimizing scheduler within the software synthesis environment for DSP that we have

developed under Ptolemy [12].

Our observations suggest that for practical SDF graphs, tightly interdependent subgraphs

are rare, and thus for most applications, any loose interdependence algorithm generates optimally

compact schedules. However, we are investigating techniques to schedule tightly interdependent

SDF graphs compactly to provide a more general solution. Improved methods for handling tightly

interdependent components can be incorporated simply by replacing the tight scheduling algo

rithm of a loose interdependence algorithm.

5 Clustenng in a Loose Interdependence Algorithm

We refer to the process of consolidating subgraphs as atomic units for scheduling, as illus

trated in figure 6(d), as clustering. We have already shown in this paper how repeatedly clustering

based on subindependence leads to provably compact programs. In [1], we also apply clustering

to decrease data memory requirements for iterative schedules. In this section, we show that cer

tain clustering decisions can interfere with code-minimization goals, and thus that if any cluster

ing is to be incorporated into a loose interdependence algorithm — as a preprocessing step or as

part of one of the component algorithms Ai, A2, A3 — then the possible negative effect on code

compactness should be considered. We alsopresentexamples of how useful clustering techniques

can be adapted to work in accordance with code minimization objectives.

A clustering decision always degrades the code-compaction potential of an SDF graph if it

introduces a new tightly interdependent subgraph that is disjoint from the existing tightly interde

pendent components. For example, consider the acyclic SDF graph in figure 7(a), and suppose

that we cluster the adjacent nodes X and Y into the hierarchical node Q as shown in figure 7(b).

This is precisely the clustering that would be performed by the data-memory minimizing heuristic

of [1], which clusters the pairs of adjacent nodes that are invoked most frequently, provided that

the clustering does not introduce deadlock.
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Clustering in a Loose Interdependence Algorithm

Now it can easily be verified that figure 7(b) is tightly interdependent. Thus any schedule

based on this clustering decision will have more than one appearance of at least one block. In this

case, the subschedule for {X, Y} will appear twice. However, the original graph, figure 7(a), has a

single appearance schedule, since it is acyclic. So we see that although the clustering in figure 7

does not result in deadlock, it introduces a tightly interdependent subgraph, and thus it leads to

less compact schedules.

Similarly, clustering a node that is not in any tightly interdependent subgraph with part of

a tightly interdependent component can be detrimental. Such a cluster increases the extent of an

existing tightly interdependent component. This is illustrated in figure 8. In figure 8(a) {Y, Z}

forms a tightly interdependent component, and node X is not contained in any tightly interdepen

dent subgraph. From property 3 of loose interdependence algorithms, any loose interdependence

algorithm schedules figure 8(a) with only one appearance of X.

4 2D 2

(a) (b)

Fig7. A clustering decision that introduces tight interdependence.

(a) (b) (c)

Fig 8. A clustering decision that enlarges a tightly interdependent component.
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Now if we cluster X and Y, we obtain thehierarchical tightlyinterdependent SDF graph in

figure 8(b). It caneasily be verified that the onlyminimal periodic schedule for this SDF graph is

QZQ, which leads to the schedule XYZXY for figure 8(a). Thus, the clustering of X and Y

increases the minimum number of appearances of X in the schedule. This can be critical if X has a

very large code block because it would make in-line code impractical.

A cluster that introduces a new tightly interdependent component, as in figure 7, always

degrades code compactness potential: the optimally compact schedule for the clustered graph will

be larger than that of the original graph. However, extending a tightlyinterdependent component

is not always detrimental. As a simple example, it is not detrimental when the cluster is invoked

only once for each invocation of the enlarged tightly interdependent component.This is the caseif

the arc from X is directed to Z instead of Y, as shown in figure 8(c). Here, clustering X and Z

results in the schedule YXZY, which contains only one appearance of X and Z.

The possible introduction or enlargement of tightly interdependent components adds an

additional consideration when incorporating a clustering algorithm into a loose interdependence

algorithm. For example, consider theheuristic technique described in [1] for constructing looped

schedules with manageable buffering requirements. As described before, this technique repeat

edly clusters the pairs of adjacent nodes whose associated subgraphs have the highest invocation

count. Only clustering candidates that cause deadlock arerejected.

This technique can be applied to the acyclic scheduling algorithm of a loose interdepen

dence algorithm, but it must be modified to take into consideration whether or not a clustering

candidate introduces tightinterdependence (as in figure 7). This involves detecting whetherornot

the cluster introduces a strongly connected component in the originally acyclic graph, and then

repeatedly applying subindependence partitioning. If decomposition terminates at a tightly inter

dependent subgraph, the clustering candidate must be rejected.

This check is computationally expensive. An alternative is to simply disallow a cluster of

two adjacent nodes when thereis a path from the source node to the sink node that passes through

at least one other node. In such cases, the cluster will introduce one or more directed cycles in the

originally acyclic graph, and depending on the delays on the arcs involved, the resulting strongly
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connected component may be deadlocked, or it may contain a tightly interdependent subgraph.

For example in figure 7, this rule would reject the clustering of X and Y since there is a path

between these nodes that passes through Z.

This conservative but efficient rule can be applied outside of acyclic subgraphs with a few

more restrictions. If there are one or more arcs directed from a node X to another node Y, then it

can be shown that clustering X and Y does not introduce nor extend a tightly interdependent com

ponent if the following conditions hold1:

(1) Neither X nor Y is contained a tightly interdependent component.

(2) At least one arc directed from X to Y has zero delay.

(3) X and Y are invoked the same number of times in a periodic schedule.

(4) Y has no predecessors other than X or Y; that is, there is no arc directed from a node

other than X or Y to Y.

In other words, if conditions 1-4hold, andwe cluster X andY, then the tightly interdepen

dent components of the resulting graph are the same as those of the original graph. An important

special case occurs when the original graph has a single appearanceschedule. In this case, we can

apply any number of adjacent-node clusterings that satisfy 1-4, and the resulting graph will also

have a single appearance schedule.

One important practical use of this clustering rule is to increase the number of data trans

fers thatoccurin machineregisters, rather than through memory. Figure 9 shows a simple exam

ple. One possible single appearance schedule for the SDF graph in figure 9(a) is (10 X) (10 Y) Z

V (10 W). This schedule, which is the optimal schedule with respect to the minimum activation

criterionof Ritz. et. al. [16], is inefficient. Due to the loop that specifies ten successive invocations

of X, the data transfers between X andY cannottake place in machineregisters, and 10 words of

data-memory are required for the arc connecting X and Y. However, observe that conditions 1-4

hold for the pairs {X, Y} and {Z, V}. Thus we cansafely clusterthese pairs of nodes without can

celling the existence of a single appearance schedule. This clustering, shown in figure 9(b), leads

to the single appearance schedule (10 Cl2) ^1 (10 W) => (10 X Y) Z V (10 W). In this second

1. We emphasize that these conditions are sufficient, but not necessary.
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Fig 9. An example of clustering to make data transfers more efficient,

schedule, each sample produced by X is consumed by Y in the same loop iteration, so these data

transfers can occur through a single machine register. Thus, the clustering of X and Y saves 10

words of memory for the data transfers between X and Y, and it allows these transfers to be per

formed through machine registers, which will usually result in faster code.

We have implemented a clustering process based on conditions 1-4. This clustering algo

rithm can be performed very efficiently since it requires only local dataflow information — it uses

only the production, consumption and delay parameters of the arcs between the two candidate

adjacent nodes. Since many practical dataflow blocks — such as forks, gains, trigonometric func

tions, and a large class of filtering operations — have only one input, condition (4) is often satis

fied. Furthermore, since connected subgraphs of computations operating at the same sample-rate

are common [8], our clustering technique can be applied frequently in practice. Finally, from our

observations, most practical SDF graphs have single appearance schedules. Since clustering

based on conditions 1-4 preserves the existence of a single appearance schedule, it preserves opti

mal code compactness for the common case.

6 Conclusion

We have developed a code scheduling framework for compiling synchronous dataflow

graphs into compact target programs through the careful organization of loops, and for imple-
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menting other scheduling objectives, such as the minimization of buffering requirements, in a

manner that is guaranteed not to interfere with code compaction goals. We have defined a class of

SDF graphs called tightly interdependent graphs. Schedules for arbitrary SDF graphs can be con

structed such that each block that is not contained in a tightly interdependent subgraph appears

only once, and thus requires only one instance of its code block to appear in the target program.

Our framework defines a broad class of scheduling algorithms that construct such schedules.

Our observations suggest that the vast majority of practical SDF graphs do not contain any

tightly interdependent subgraphs, and thus that our scheduling framework guarantees optimal pro

gram compactness for most cases. However, we are also investigating how to schedule general

tightly interdependent subgraphs compactly. New techniques that are developed for tightly inter

dependent graphs can easily be incorporated within our scheduling framework, since the frame

work modularizes the scheduling of tightly interdependent subgraphs: the algorithm used to

schedule tightly interdependent subgraphs, called the "tight interdependence algorithm" never

interacts with other parts of the overall scheduling algorithm, and the tight interdependence algo

rithm completely determines the amount of program memory required for the tightly interdepen

dent subgraphs.
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