

Copyright © 1993, by the author(s).

All rights reserved.

Permission to make digital or hard copies of all or part of this work for personal or

classroom use is granted without fee provided that copies are not made or distributed

for profit or commercial advantage and that copies bear this notice and the full citation

on the first page. To copy otherwise, to republish, to post on servers or to redistribute to

lists, requires prior specific permission.

LANGUAGE, COMPILER, AND OPERATING

SYSTEM FOR THE CNN SUPERCOMPUTER

by

T. Roska, L. O. Chua, and A. Zarandy

Memorandum No. UCB/ERL M93/34

30 April 1993

LANGUAGE, COMPILER, AND OPERATING

SYSTEM FOR THE CNN SUPERCOMPUTER

by

T. Roska, L. O. Chua, and A. Zarandy

Memorandum No. UCB/ERL M93/34

30 April 1993

ELECTRONICS RESEARCH LABORATORY

College of Engineering
University of California, Berkeley

94720

LANGUAGE, COMPILER, AND OPERATING

SYSTEM FOR THE CNN SUPERCOMPUTER

by

T. Roska, L. O. Chua, and A. Zarandy

Memorandum No. UCB/ERL M93/34

30 April 1993

ELECTRONICS RESEARCH LABORATORY

College of Engineering
University of California, Berkeley

94720

Language, compiler, and operating system for the CNN
Supercomputer

T. Roska, L.O. Chua, A. Zarandy
Version 1.1

April 30, 1993

1 Introduction

The CNN Universal Machine and Supercomputer [10] is the first stored program analog com
puting array architecture. Its various implementations, in parts, show that for this new kind of
analogic computing we need all the esential programming tools which digital computers have,
though in different form.

Namely, we hnedd an analogic, algorithm (e.g. in a form of a flow diagram), a high level
language (e.g. the "Analogic CNN Language (ACL)"), a compiler, an operating system, and a
generated machine code. Although they are quite simple in our present phase of making these
machines, their existence suggest a similar development to the one we had in the. 1970's for
microprocessors.

The main difference is accounted for by the presence of analog array dynamics as the key
intruction/operation in the analogic. CNN algorithms [1-8]. In what follows, we outline the main
ideas and a simple implementation. Inclusively, we suggest a framework for the implementation
of a development system for CNN universal chips.

2 The analogic CNN algorithm

The analogic CNN algorithm consists of sequential and parallel algorithmic steps. These steps,
analog and logic, are implemented by using the following analogic algorithmic elements (E).

El: global input/output operations
E2: global CNN operations with specified cloning templates
E3: local storage
E4: local exchange of information between local memory units
E5: logical computations combining locally stored values
E6: conditional branching

The analogic CNN algorithm can be represented by a flow diagram containing the algorithmic
elements E1-E5. This list contains the simplest set of analogic algorithmic elements. The next
very simple example shows the basic, steps of operations.
Example

Given a black-and-white image. Consider the black pixels as +1 values, and the white ones
as -1 values.

Problem

Detect the horizontal zero-crossings. (In other words: extract the vertical edges.)
Solution

Let us solve the problem with the following analogic CNN algorithm:

- Detect black pixels with white direct horizontal right neighbor, and store the result.
- Detect the white pixels with black direct horizontal right neighbor, and store this result as

well.

- Apply a pixel by pixel logic "OR."function on the previous two result.

The flow diagram can be seen in Figure 1.

INPUT

TEM1 TEM2

OR

£
OUTPUT

Figure J. The flow diagram of the analogic CNN algorithm. The operation is demonstrated
by a simple example.

The templates used in the CNN algorithm are as follows:

TEM1 (Black-to-White)

A =

0 0 0 0 0 0

0 2 0 B = 0 0 -2

0 0 0 0 0 0

TEM2 (\Yhite_to_Black)

A =

0 0 0 0 0 0

0 2 0 , B = 0 -2 2

0 0 0 0 0 0

7 = -1.5,

; = -i.5,

The operation of the analogic CNN algorithm is also shown in Figure 1. The simple input
image is selected for the sake of better illustration.

3 The Global Analogic Program Unit (GAPU) executes the
analogic CNN algorithm

The analogic CNN algorithm is performed by the CNN array under the control of the Global
Analogic Program Unit (GAPU). We have to load the registers (APR, LPR, SCR) and the
GACU (Global Analogic Control Unit). In our example, there are represented as follows:

TEM1

TEM2

A B I
(0 00 020 00 0) (0 00 00-2 00 0) -1.5 | APR(l)

(0 0 0 0 2 0 0 0 0) (0 0 0 0-2 2 0 0 0) -1.5 | APR(2)

APR

The logic program register contains a single element, whose content is a 2-input OR opera
tion. The first two value of every triple are the two operands, the third is the logic result.

1 1 1 — 1 0 1 —0 1 1 —000 1 LPR(l)

LLU1(OR)
The cell circiut diagram for this simple example is shown below. The only analog memory
(denoted here by LAM) is the original LAM4 [10].

The switch configuration

of a single cell

logic
memory

output

analog
memory

switch

code 0 1 2 3 4 5

off on on off off off

on off ofT off off off

on off off on off off

off off ofT off on off

off off off off off on

load input &initial state from LAM(1) SO
start transient S1
store the result in LAM(2) S2
store LAM(2) in LLM S3
calculate the logic operation S4

Figure 2. The switch configuration of a CNN cell in our example.

The switch configurations coded and stored in a SCR specify the following actions:

SO: load input and initial state from LAM(l). i.e. the first element in the memory LAM
Si: start transient

S2: store analog output in LAM(2)
S3: send the analog output stored in LAM(l) to LLM(l) after shifting the LLM register by

one step right (LAOU is now just a single wire)
S4: activate the local logic unit

The specific switch configuration used in our simple algorithm can be seen in Figure 2. The
SCR is introduced to minimize the number of switch control wires. If we use three wires to
control the local communication and control unit (LCCU), the SCR stores the codes of the
different states, for example, as follows:

,S'0 51 52 53 54 55

wire! 0 10 10 1

uire2 0 0 110 0

wire* 0 0 0 0 11

The LCCU decodes the 3bit codesfrom among the 6 states of switch configurationsproviding
the cell functions described above.

begin;
reset;
load(TEM1);
load(TEM2);
load(PIC);

sel(SO); load input & Initial state from LAM(1)
sel(TEM1); tune TEM1
sel(S1); start the analog transient
sel(S2); store the result In LAM(2)
sel(S3); store LAM(2) In LLM
sel(SO); load Input & Initial state from LAM(1)
sel(TEM2); tuneTEM2
sel(S1); start analogtransient
sel(S2); store the result In LAM(2)
sel(S3); store LAM(2) in LLM
sel(OR); tune OR
sel(S4); calculate the logic operation
save(PIC);
end:

Figure 3. The intermediate machine code for the GACU. The first five and the last two in
structions (the uncommenled) are external I/O operations, the others are internal executable
instructions.

Now, let us define the macro machine code of the program, namely, the set of instructions
for the global analogic control unit (GACU) and the input-output macros. We have already
defined the contents of the registers APR, LPR, SCR. By selecting only a single item within a
register, all CNN cells will be controlled in the same way. By selecting for example a template
SEL(TEMi), the template elements (transconductans in the case of silicon implementation)
of every cell will be set to these given values. By selecting only a local logic, unit function,
SEL(LLU), the given truth table (or the PLA content) will be loaded into all cells. By selecting
only a switch configuration, SEL(Si), the appropriate switch position will be set in all cells.

Keeping all of this in mind, an intermediate control code of our CNN analogic program for
the GACU can be seen in Figure 3. The Appendix contains the detailed explanation of these
steps.

This program contains some complex operations, therefore it is an intermediate control code.
For example, the output is a sequence of several elementery steps. Therefore we have to represent
these by the elementary steps in the GACU. The final control code of the GACU contains the
sequence of these elementery steps. Of course, the GACU contains control logic hardware which
controls all the registers as well as the timing clocks. At least two clocks are needed: one for
the logic operations and one for the analog operations (for the local and propagating transients
as well as for the input/output row-wise control).

Analogic CNN algorithm

I
language

CNN-compiler

CNN-operating system

(final) control
code of GACU

Figure Jt. The steps from a conceptual analogic CNN algorithm to an executable control
code.

4 From the analogic CNN algorithm to the operating GAPU

Figure 4 shows the way how we can generate the codes of the GACU from the conceptual
description of an analogic CNN algorithm (or flow diagram).

4.1 The CNN language

Any algorithm, to be executed on a given hardware, should be described by an appropriate
language for a compiler. Such a language ("ACL") has been developed for the analogic. CNN
algorithm. The ACL is a quite simple language constructed by the following language elements:
- template and image declarations,
- analogic CNN operations,
- other commands (e.g. save output image in a background storage, display output, end of
program, etc).
The templates and the images are stored in standard file formats. Intermediate (temporal) im
ages are stored in the onchip local analog/logic memory (LAM/LLM). The syntax ofthe analog
CNN operation is the following:
OUTPUT = sub(TEM PLATE, INPUT, INITIALSTATE[, SPACE.VAR.THRESHOLD]).
If the initial state and the imput image are the same a "*" symbol can be used instead of re
peating the name. If the. analog transient is not efTected by one of the picture variables, the
"don't care" signal ("-") can be used. The syntax of the local logic operation is as follows:
RESULT = sub{LOGICAL.OPERATION,OPERANDl,OPERAND2).
Let us describe the previous analogic example in ACL program language.

k input =" example .img"; / * input image, declaration */
kTEMl ="bl2wh.tem"; /* template declaration */
k TEM1 =" wh2bl.tem";

left-edges = sub{TEM\, input, *); / * analog CNN operation * /
right-edges = sub(TEM2, input, *);
edges = sub(OR, lefi.edges, right-edges); / * logic operation * f

* so; (* save output * /
* end; / * end of program * /

A compiler can generate intermediate codes for different hardwares. For example the DU-
ALCOMP compiler [11] generates intermediate code for a CNN hardware accelerator board[ll].
Another code generator is under development for the CNN Univeral Chip.

4.2 The CNN operating system

The intermediate control code generated by a CNN compiler is generally not yet executable
because there are some frequently repeated operations which should be divided into elementary
steps (exacutable by the GACU). In our example, the executable machine code described in
Figure 3 contains an input instruction LOAD(PIC). To load an input image, except we have
on-chip photoreceptors, we need a sequence of row-wise loading of analog values from an outside

source (e.g. a camera or an analog RAM). Hence, LOAD(PIC) will be represented by a sequence
of elementary machine code instructions of the GACU controlling the row-wiseinput of an image
matrix. In addition to generating the executable code, the operating system maintains utilities,
as in case of digital microprocessor.

4.3 Adaptation and flexibility in programming

The CNN Universal Chip can perform two types of adaptations:

- cell by cell local adaptation, (e.g. the previously calculated local intensity average controls
the DC threshold (I) level)

- global programmed adaptation.

In the latter case, the GACU may have a global memory and arithmetic logic unit (ALU).
This global memory may contains the values of predefined cells (e.g. board cells to avoid side
effects).
In physical implementation the GACU may be realized as a simple microprocessor (e.g. 8080).

5 The CNN environment

The CNN Universal Chip, like the digital microprocessor, is not a stand alone unit. It demands
a digital computer as a user interface, analog and digital RAMs for data and program storage,
and sensor arrays as input sources. Using special sensor arrays, the CNN becomes capable of
solving various 21) or 3D problems. The CNN environment can be seen in Figure 5.

projector

camera(s)

microphone(s)

thermo sensors

EMW array

tactile array

chemical
sensor array

r n

analoa RAM Display

L

J i

ACNN2000

-0

-E

i486

analogic
ed progra

i

1

m

Digital
RAM

CNN universal chip
-O optical input
-E electronic input

Figure 5. The CNN environment

5.1 The CNN development system

Like all digital microprocessors, the analogic microprocessor, the CNN Universal Chip, needs a
development system. A development system has many functions. Just to tist a few:
- design of analogic algorithms,
- debugging these algorithms,
- compiling the algorithms and test machine code (for some well denned hardware),
- developing new compilers,
- testing working hardware prototypes.

The presently available "CNN Workstation, Version 5.1" (Figure 6.) [11] already provides
the first four functions. Having machine code for a new CNN hardware, especially for a new
CNN Universal Chip, additional hardware/software elements must be developed according to
the specification of the existing system.

CNN Worksation toolkit

CD 4 color monitors

CNN-HAC
accelerator 1stereo sound J

J converter ,
i

CNN chip
interface

PC
i486

i CNN i
1 operating J
| system ,

i microphone '
[array |

analogic
CNN
software
library

SW

CNN
simulator
/emulator

template
learning
/design

analogic
CNN
compiler
(ACL)

Figure 6. The CNN Workstation as a CNN microprocessor developing system.

Using our CNN Workstation, as a prototype we have summarized the framework of analogic
CNN algorithm development in Figure 7.

analogic CNN
software library

image library

template
learning

programs

hardware
interface/control

unit

Figure 7. The analogic CNN algorithm developing system.

6 Conclusion

In the present phase of development of CNN Universal Chips (essentially all parts of a CNN
Universal Chip is operating somewhere), it is clear that we will soon need all the tools for stored-
program analogic computing that were needed in the time when the first microprocessors were
developed. Some of these tools are available now, as we have outlined in this report.

7 Acknoledgements

The support of the grant INT 90-01336 ofthe National Science Foundation (incooperation with
the Hungarian Academy ofSciences) isacknoledged. Thanks are due to S. Zold and A. Radvanyi

for usefuD advices and discussions.

8 References

[I] L.O.Chua and L.Yang, "Cellular neural networks:Theory", IEEE Transactions on Circuits
and Systems, Vol.35, pp.1257-1272, 1988.

[2] L.O.Chua and L.Yang, "Cellular neural networks: Applications", IEEE Transactions on
Circuits and Systems, Vol.35., pp.1273-1290.

[3] T.Roska and L.O.Chua, "Cellular Neural Networks with Nonlinear and Delay-type Template
Elements" Proc. of IEEE Int. Workshop on Cellular Neural Networks and their
Applications CNNA-90, pp.1225, 1990. extended version in Int. J. Circiut Theory and
Applications, Vol.20.pp469-481, 1992.

[4] L.O.Chua, T.Roska, P.L.Venetianer and .Zarandy, "Some Novel Capabilities of CNN: Game
of Life and Examples ofMultipath Algorithms", Report DNS-3-1992, Dual and Neural
Computing Systems Res.Lab., Computer and Automation Institute of the Hungarian Academy
ofScienc.es, Budapest, 1992

[5] J.A.Nosek, G.Seiler, T.Roska, L.O.Chua, "Cellular neural networks: Theory and circuit
design", Report TUM-LNSTR-90-7, Technische Universitat Munchen Dec. 1990. also
Int. J. Circuit Theory and Applications, Vol.20.pp533-553, 1992.

[6] H.Harrer and J.A.Nosek, "Discrete time Cellular neural networks: Architecture Applications
and realization", Report TUM-LNSTR-90-12, Technische Universitat Munchen Nov. 1990.
also Int. J. Circuit Theory and Applications, Vol.20.pp453-467, 1992.

[7] J. Henseller and P.J Braspenning, "Membrain a Cellular neural network model based on
vibrating membrane," Int. J. Circuit Theory and Applications, Vol.20.pp483-496., 1992.

[8] A. Radvanyi, K. Halonen, T. Roska,"The CNNL simmulator and some time, varying
template", Report DNS-9-1991, Dual and Neural Computing Systems Res.Lab.,
Computer and Automation Institute of the Hungarian Academy ofScienc.es, Budapest, 1991

[9] L.O.Chua, T.Roska," The CNN Paradigm" IEEE Transactions on Circuits and Systems
Series I, March 1993.

[10] T. Roska, L.O. Chua,"The CNN Universal Machine: An Analogic Array Computer" IEEE
Transactions on Circuits and Systems, Series II March 1993

[II] "The CNN Workstation, Version 5.1, Users guide", MTA-SzTAKI Bp.1992.

10

9 Appendix

In the following figure series, the calculation process of our example for one single cell can
be seen. For the sake of simplicity, there is only one clock shown in the figures. The analog
transients settle down in 20 ns and the execution of the other instructions take 10 ns. In every
figure, the currently active parts of the circuit are denoted by grey lines. The figure series does
not contain individual figures for the template and logical operation tuning steps, but the. clock
indicates the time they elapsed.

11

LOAD INPUT & INITIAL STATE

FROM ANALOG MEMORY

uij -1V

SEUSG) SEL(SO)
SEL(TEM1) SEL(TEM2)
SEL(S1) SEL(S1)
SEL(S2) SEL(S2)
SEL(S3) SEL(S3)

SEL(OR)
SEL(S4)

logic
memory

output

analog
memory

code swO 12 3 4 5

SO off on on off off off

clock

10[ns]

12

THE ANALOG TRANSIENT

with TEM1 /s

SEL(SO) SEL(SO)
SEL(TEM1) SEL(TEM2)
SEL(S1)
SEL(S2)
SEL(S3)

SEL(S1)
SEL(S2)
SEL(S3)

SEL(OR)
SEL(S4)

clock

innn, .1
40[ns]

13

logic
memory

output

analog
memory

code swO 12 3 4 5

S1 on off off off off off

1 ••
y. ™

-1

-fh +—?

> JO 40 [ns]

STORE THE RESULT IN

THE ANALOG MEMORY

uii -1V

SEL(SO) SEL(SO)
SEL(TEM1) SEL(TEM2)
SEL(S1) SEL(S1)
SEL(S2) SEL(S2)
SEL(S3) SEL(S3)

SEL(OR)
SEL(S4)

logic
memory

output

analog

memory

code swO 12 3 4 5

S2 on off off on off off

clock

innnn
•>

t

50[ns]

14

TRANSFER THE RESULT

INTO THE LOGIC

MEMORY

u xu

•+ *<*> %~1JP<&-&
input

SW2 SW1

clock

logic
memory

analog
memory

code swO 12 3 4 5

S3 off off off off on offSEL(SO) SEL(SO)
SEL(TEM1) SEL(TEM2)
SEL(S1) SEL(S1)
SEL(S2) SEL(S2)
SEL(S3) SEL(S3)

SEL(OR)
SEL(S4)

innnnn
60[ns]

15

LOAD INPUT & INITIAL STATE

ANALOG MEMORY

uij -1V

SEL(SO) SELfSty
SEL(TEM1) SEL(TEM2)
SEL(S1) SEL(S1)
SEL(S2) SEL(S2)
SEL(S3) SEL(S3)

SEL(OR)
SEL(S4)

logic
memory

output

analog
memory

code swO 12 3 4 5

SO off on on off off off

clock

innnnnn
70[ns]

16

THE ANALOG TRANSIENT

with TEM2

SEL(SO) SEL(SO)
SEL(TEM1) SEL(TEM2)
SEL(S1) SEL(S1) , k
SEL(S2) SEL(S2)
SEL(S3) SEL(S3)

SEL(OR)
SEL(S4)

logic

memory

output

analog
memory

code swO 12 3 4 5

S1 on off off off off off

innnnnnnn
[ns]

100[ns]

17

STORE THE RESULT

IN ANALOG

MEMORY

"ii -1V

SEL(SO) SEL(SO)
SEL(TEM1) SEL(TEM2)
SEL(S1) SEL(S1)
SEL(S2) SEL(S2)
SEL(S3) SEL(S3)

SEL(OR)
SEL(S4)

clock

logic
memory

output

analog
memory

code swO 12 3 4 5

S2 on off off on off off

mnnnnnnnnn t

110[ns]

18

SHIFT LOGIC MEMORY

AND STORE THE RESULT

THERE

U X..
u

%t <$> o

s

Rx Ajoutput ^+

logic
memory

MNMNMNMMNAQMVMMUMMWMM

or

jp"""^

sw4

e^-

sw5

+1V

input

\ sw2

is
sw1

analog
memory

SEL(SO) SEL(SO)
SEL(TEM1) SEL(TEM2)
SEL(S1) SEL(S1)
SEL(S2) SEL(S2)
SEL(S3) SEL{S3)

SEL(OR)
SEL(S4)

code swO 12 3 4 5

S3 off off off off on off

clock

innnnnnnnnnn, :.
120 [ns]

19

CALCULATE THE LOGIC

RESULT

U:: x„

t.ffi'O/^"*-
input

\ SW2 i SW1

clock

analog
memory

code swO 12 3 4 5

S4 off off off off off on
SEL(SO) SEL(SO)
SEL(TEM1) SEL(TEM2)
SEL(S1) SEL(S1)
SEL(S2) SEL(S2)
SEL(S3) SEL(S3)

SEL(OR)
SEL(S4)

innnnnnnnnnnnn. t

140[ns]

20

	Copyright notice 1993
	ERL-93-34(1of2)
	ERL-93-34(2of2)

