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Abstract

Analog Behavioral Simulation and Modeling

by

Edward W. Y. Liu

Doctor of Philosophy in Electrical Engineering and Computer Sciences

University ofCalifornia at Berkeley

Professor Alberto Sangiovanni-Vincentelli, Chair

We propose a top-down, constraint-driven approach to designing complex mixed signal

circuits. Tb support the proposed design methodology, we develop system simulation

algorithms and behavioral models for many types ofanalog systems and components.

In analog systems, the nominal circuit functions are usually very simple, and system

malfunctions are most often due to second order effects caused by noise and process

variations. Therefore, behavioral models at all levels must capture second order effects

for constraint translation in top-down design. Using traditional circuit simulation and

macromodeling approaches, it is very difficult to simulate frequency domain effects,

noise effects, or effects due to process variations because all models are deterministic.

As a result, we propose a new strategy for behavioralsimulation and modeling for the

design and verification of systems in the presence of noise effects and effects due to

process variations.

In addition, we propose a behavioral representation forNyquist data convert

ers. The representation captures the behaviorof a memoryless Nyquist data converter,

including statistical variations. Tb describe noise effects, a joint probability density

function is used, lb describe process variations effects on the converter transfer func

tion, a Gaussian model is used.

Besides applications in verification, the proposedconverter behavioral model

also provides critical information for design engineers toevaluate the testability ofthe
design at an early design stage and for test engineers to choose the optimum testing
strategy after design. Tb achieve that goal, we propose a strategy for testing all DC
performance of Nyquist data converters including offset error, full scale gain error,
integral nonlinearity, and differential nonlinearity.



Finally, we focus on noise modeling and simulation for mixed-mode sampled-

data systems. We present a "direct" noise analysis approach for mixed mode systems,

and compare our approach with the traditional Monte Carlo approach. The approach

is approximate and computes noise effects by performing arithmetic on a finite num

ber of moments of distribution functions that characterize electronic noise. One key

advantage of this approach is its ability to compute low error probabilities.

Prof. Alberto Sangiovanni-Vincentelli
Thesis Committee Chairman
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Chapter 1

Introduction

Ll Top-Down Constraint-Driven Design Methodology

System design and verification using traditional simulators such as SPICE is

oftenimpossible due to the long simulation times. Because the inner loops of circuit

simulators are linear equation solvers, the simulation time is estimated to increase as

0(n1,5)[44], where n is the number ofnodes in the circuit. Besides, as the circuit size
increases, more simulations are required to estimate system performances affected by
noise or process variations.

lb circumvent the design and verification problems associated with traditional

simulators, weproposea top-down constraint-driven approach[10,11] to designing

complexmixed signal circuits, where abstraction and successive design refinement are

key. Previously, several designmethodologies[60,25] have been proposedforhigh level

synthesis ofdigital circuits. For example, the System Architect's Workbench[60] takes

as input a behavioral description of a system to be designed, along with a set of con

straints, and produces a set of register-transfer modules and a control sequence table.

The ADAM[25] system is designed to unify a number of design automation programs

into a single framework. The goals ofADAM are to produce correct, testable implemen

tations representing a range of tradeoffs, to allow varying degrees ofuser interaction,

to allow design to proceed incrementally starting from a partially complete initial

design, and to meet several kinds of constraints. ADAM uses both hard-coded and

knowledge-based techniques to achieve these goals. In the analog domain, OASYS[22]

is a hierarchically structured framework for analog circuit synthesis. Analog circuit



topologies are represented as a hierarchy of templates of abstract functional blocks

each with associated detailed design knowledge. Mechanisms are described to select

from among alternate design styles, and to translate performance specifications from

one level in the hierarchy to the next lower, more concrete level.

In contrast, our methodology assists the hierarchical generation ofthe design

by providing a rigorous procedure based on interactive and automatic tools. Given a set

of circuit specifications (circuit characteristics, design rules, technology information,

operating specifications, etc.), a mapping is made to schematics or to layout.

Given a library ofn architectures, the first operation that must be performed

is architectural selection. Simulators and optimizers are used to aid the decision

making process. For high-level blocks, a behavioral simulator may be employed. For

low-level circuits a circuit simulator such as SPICE may be run. For an architecture

where no simulators exist (e.g. a pre-made cell) the "simulator" could just be a list

of performance specifications. If a suitable architecture cannot be found, then this

selector must return to the upper node the fact that the selection has failed. If a

standard cell (pre-designed cell) was chosen then a successful return to the upper node

is made.

Given the set of specifications, 5, for the particular architecture chosen we

proceed to map 5 to a set of specifications, T, for each of the component blocks or

subsystems. At the higher levels of the decomposition when the architectural details

of the subsystems have yet to be determined the goal of the mapping is to choose

T constrained by 5 in such a way as to maximize flexibility that is a function of

the degree of freedom in designing the subsystems. Currently, heuristics are used

to characterize this flexibility as a function of T. Once the problem has been set up,

it is given to a nonlinear optimizer where the constraints are evaluated using the

behavioral simulator. The user can, ofcourse, also do the partitioning. Ifthis problem

is not found to be feasible, another architecture must be chosen.

These subsystems are then expanded in the same manner, thus recursively

expanding the design hierarchy until the complete architecture has been determined

(i.e. a full schematic is available). Then these subsystems return a set of actual

component specifications based on the full schematic. If the returned specifications

fail to meet the criteria, T, set by the mapping function, and combined fail to meet 5,

as evaluated by the behavioral simulator, then the flow of control is returned to the



mapping function where a new mapping can be attempted. If all is successful, then

two optionsareavailable. Wecaneither proceed with the layout or stophere returning
only the full schematics.

In creating the layout, the first step is the generation of the constraints for

the assembly. This can be done by the user, or accomplished automatically with

design tools. As before, if this step fails, the flow control is returned to the mapping
function. If it is successful, then constraint-driven physical assembly is performed.

If this fails to meet its constraints then an alternate set of assembly constraints

is derived. If the physical assembly is successful (i.e. the entire chip, system, or

subsystem has been routed and is ready for use), then only the final verification

step remains. This step includes full extraction of the circuit including all relevant

parasitics. Simulations are then performed with the data using the same simulator

used in the architectural selection phase, but this time with the incorporation of allof

the extracted layout parasitics to verify subsystem and system level performs in the

presence of parasitics. Finally, a summary of the expected performances is generated.

If all of the specifications are met, the flow control is returned to the upper node, and

the design is complete.

This final verification/extraction phase also aids in testing by sending infor

mation to a database which can be used later by the tester. It is also at this stage

where additional hardware can be considered to ease the testing or even alternative

architectures can be suggested which are less costly to test. This information can be

fed back to the mapping function, or even to the architectural selection function.

We believe that our design methodologyis significantly different from the ones

currently employed by circuit designers. Today, a typical design cycle starts with a set

ofspecifications for an integrated circuit drawn in conjunction with the customer. The

designer takes these specifications and performs a first level decomposition based on

simulations for nominal behavior. The partitioning is accomplished based mostly on

the experience ofthe designers. Typically, today, designers then resort to a bottom-up

approach. Low level circuits are built, tested, verified, and assembled hierarchically

from the bottom-up until the first level decomposition blocks are reached. The main

problem with this design technique is that ifthe final blocks fail to meet specifications,

the entire circuit has to be redesigned, possibly all the way from the bottom again.

This can be very time consuming and costly. A typical solution to this problem is



designing with overconstraints on the lower blocks. This, however, is also costly, be

cause a non-optimal solution is usually reached. Our methodology attempts to prevent

these problems. We use behavioral simulations for early verification and design space

exploration to leverage the expertise of the designer at its best. Each of the lower

blocks is constrained as the tree is descended to match the performance specifications.

Thus, at any time, we are reasonably certain that the original specifications are being

met. We need not go to the bottom of our design and back up before realizing that a

costly mistake has been made. Due to simplifying abstractions such as no wiring and

parasitics capacitances and resistances made during top-down design, we perform a

final bottom-up verification step in which the circuit is extracted and simulated in the

presence of all parasitics.

L2 Behavioral Simulation for Top-Down Design

As shown in Section 1.1, our design methodology rely on accurate circuit

modeling at each step of design refinement and the ability to propagate constraints

step by step. As a result, we do not need to verify top level system performance from low

level implementation details such as SPICE simulation of the entire system. Rather,

we need to guarantee correct translation of one level of specification constraints to a

set of lower level specification constraints.

In analog systems, the nominal circuit functions are usually very simple, and

system malfunctions are most often due to second order effects caused by noise and

process variations. As a result, system constraints are usually specified in terms ofthe

maximum amount ofsecond order effects allowed such as signal-to-noise ratio and total

harmonic distortion. In turn, component constraints are usually specified in terms of

basic statistical effects such as random offsets and mismatches. Therefore, behavioral

models at all levels must capture second order effects for constraint propagation in
top-down design.

The tools for constraint translation are the behavioral models at each level,

the behavioral simulator, and a local selector or designer, which will produce

specification constraints for the lower levels, using the behavioral simulator. A mixed

analog/digital system is represented by a hierarchy of behavioral models as shown in

Figure 1.1 in which the level ofabstraction increases from the implementation details



at the bottom to an abstract mathematical model at the top. Each data node in this

model hierarchy is a mathematical behavioral representation. For the bottomlevels,

the simulationscanuse SPICE,logic simulators,orother hardware specific simulators.

For higher levels, the simulations are behavioral and not hardware specific.

c System

i
D more abstract

Behavioral simulator

[component j [ component j f componentJ

(component J f componentJf component j

spice spice spice

[ netlist j [ netlist j ( netlist J more detail

Figure 1.1: Model Hierarchy

Tb verify the design, we propose a final bottom-up verification step. The

first phase in this step is component extraction where a schematic with parasitic

resistances and capacitances is produced from layout. Then, in the component iden

tification/data fitting phase, performances of individual circuit components will be

determined using SPICE simulation. The performances are analyzed through a series

ofdata analysis to fit parameters for behavioral models ofthe components. This identi

fication/data fitting procedure is then repeated for components higher in the hierarchy

until the top level system is verified.

L3 Organization of thesis

Behavioral simulation algorithms and behavioral representations for many

types of mixed analog/digital circuits have been researched[33,31,30,32]. This thesis

presents a behavioralrepresentation for theclass ofNyquist data converters, an analog



system verification strategy using behavioral simulation, a testing strategy for data

converters using behavioral simulation, and noise models and simulation algorithms

for mixed-mode sampled-data systems. With the experience gained from the work

presented in this thesis, we plan to developa comprehensive software environment for

the behavioral modeling and simulation ofmixed-mode systems.

Previous work in circuit simulation and modeling is presented in Chapter 2,

followed by some background material on statistics in Chapter 3. Then, a behavioral

representation for the class of Nyquist data converters is presented in Chapter 4, fol

lowed by an analog system verification strategy using behavioral simulation (Chapter

5), a testing strategy for data converters using behavioral simulation (Chapter 6),

and noise models and simulation algorithms for mixed-mode sampled-data systems

(Chapter 7). Finally, a conclusion is presented in Chapter 8.

L4 Conclusion

System design and verification using traditional simulators such as SPICE

is often impossible due to the long simulation times. Tb circumvent the design

and verification problems associated with traditional simulators, we propose a top-

down, constraint-driven approach[10, 11] to designing complex mixed signal cir

cuits, where abstraction and successive design refinement are key. Tb support the

proposed top-down design methodology, we are developing system simulation algo

rithms and behavioral models for many types ofanalog components such as converters,

phase-locked loops, and niters that capture second order effects.



Chapter 2

Previous Work

2.1 Circuit simulation

Mostpopular circuit simulators today are based on SPICE[44] developed at
U. C.Berkeley. The user inputs a circuit netlist that describes the connectivity ofthe

components. The components are modeled with a network of basic circuit elements

such as inductors, capacitors, resistors, and controlled sources that are described by

differential equations. The circuit is simulated either in the time or frequency do

mains. In time domain simulation, the set of nonlinear differential equations are

solved numerically given some initial conditions. In frequency domain simulation, the

circuit is linearized at the operating point and the resulting (frequency dependent)

linear equations are solved for the small signal circuit behavior as a function of fre

quency. The SPICE simulator analyze analog circuit noise in the frequency domain.

SPICE linearizes the circuit at the operating point, adds sinusoidal sources in parallel

to the noisy elements, and analyze the resulting AC equivalent circuit.

Although small circuits can be verified using circuit simulation, verification

of larger circuits is infeasible due to the need for longer simulation time. Because

the inner loops of circuit simulators are linear equation solvers, the simulation time

is estimated to increase as 0(rc1,5)[44], where n is the number of nodes in the circuit.

Besides, as the circuit size increases, more simulations are required to estimate system

performances affected by noise or process variations.

- Tb address the problem of long simulation time, a new generation of circuit

simulators have been developed in the 1980's. Rather than solving the linear equa-
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tions directly, simulators such as SPLICE1[47], solves the equations iteratively using

relaxation techniques. The idea of the iterative method can also be applied at the

waveform level (voltage as a function of time). In simulators such as RELAX2.1[61],

initial guesses are made for waveforms on each circuit node, then the waveforms are

modified iteratively until they converge to the correct waveforms. Although iterative

solutions provide good performance for specific types of circuits such as digital MOS

circuits, they are deficient for analog simulation because of tightly coupled feedbacks

in analog circuits. The reason is that although each iteration is fast, a large number

of iterations are needed for convergence in tightly coupled circuits.

2.2 Macromodeling

2.2.1 Macromodeling for circuit simulation

One approach to address the problem of long simulation time is macromodel

ing in circuit simulation[13, 40, 2, 36, 4,18, 56]. Macromodels constructed from a

set ofbasic circuit elements in circuit simulators such as resistors, capacitors, induc

tors, and controlled sources approximate the transient behavior of circuits. Because

a macromodel is simpler than the original circuit, simulation time is reduced at the

expense of accuracy.

For example, the operational amplifier (opamp) circuit shown in Figure 2.1 is

modeled by the macromodel[8] shown in Figure 2.2. The opamp with nine nonlinear

transistors is modeled by a simpler network ofa nonlinear-controlled current source, a

DC voltage source, a resistor, and a capacitor. The nonlinear-controlled current source,

gml, represents the transconductance ofthe nonlinear input differential pair. The DC

voltage source sets the DC output bias. The resistor, rim, and capacitor, elm, represent

the output resistance and capacitance at the output node, respectively.

The elements values are tuned to minimize the difference between macro-

model and actual circuit outputs. In [81, the difference is defined as

1 fTc(m,iu/) =-jf) || v2(t) - Vl(t) ||2 dt (2.1)

where m is a macromodel, iw is an input waveform, T is the time duration for the

comparison, v2 is the output from the macromodel m, and vi is the output from the



actual circuit. This difference makes it possible to quantify the accuracy of a macro-
model. In particular, the best macromodel in a collection M is the one that minimizes

such a difference for worst case input. Mathematically, the task of finding the optimal
macromodelis equivalent to solvinga min-max problem

min(max c(m, iw))

where M is a collection of macromodels and U is a set ofinput waveforms.

Vdd

i«CM>

input

Figure 2.1: Schematic ofa CMOS operational amplifier

input output

(2.2)

Figure 2.2: Macromodel of a CMOS operational amplifier

The architecture of macromodels are developed by designers based on expe

rience. Macromodel component values are tuned either manually or automatically.

Manually tuned macromodels have been available for SPICE for specific types of cir

cuits such as opamps by Boyle[4], comparators by Getreu[18], and phase-locked loops

by Tan[56]. In these cases, the macromodel values are hand tuned to minimize the

error. As a result, the accuracy of the macromodel can neither be quantified nor con

trolled. On the other hand, Casinovi[8] proposed algorithms for solving (2.2) based on



10

an extension ofthe Hamiltonian formulation of a classical optimal control problem. In

this approach, the accuracy of the macromodel can be quantified and controlled.

Macromodeling has been implemented in commercial circuit simulators such

as PSPICE[131 and HSPICE[40]. In PSPICE, the "Analog Behavioral Modeling"

(macromodeling) option allows for flexible description of electronic components in

terms of a transfer function described by a formula or table. For non-linear com

ponents, the transfer function describes the instantaneous relation between the input

and output. For linear components, the transfer function describes the behavior in the

frequency domain. This macromodeling capability is simply an extension of the basic

nonlinear controlled voltage and current sources in traditional circuit simulators.

In HSPICE[40], macromodels offer a higher level ofabstraction and a speedup

over the lower level description of an analog function. As in PSPICE, these elements

are voltage or current sources described by functions. In HSPICE, the functions can

include nodal voltages, element currents, time, or user defined parameters.

2.2.2 Macromodeling for Mixed Analog/Digital Simulators

Simulators such as [17, 50, 91 have a simulation engine for mixed ana

log/digital circuits, as well as a more flexible macromodeling capability. The SABER

simulator[17] uses the MAST language as input. The circuit is described as a network

of templates using MAST. Each template defines a component's behavior using differ

ential equations or equations relating timing of events. The interface nodes satisfy

KirchofPs voltage law (KVL) and KirchofFs current law (KCL), thus loading between

components are handled. As a result, each template is a user defined macromodel

similar to traditional macromodeling. The difference is that while a macromodel is

defined by a network ofbasic components, a template is defined by a set ofdifferential

equations. However, this distinction is largely irrelevant from a mathematical point

ofview and is only related to the formalism used to input data.

Tb illustrate modelingusing SABER, the equations representing a comparator[36]
is presented below,

dV<i Vc
/mi +Im2 =Ct-%- +-j +Ibias (2.3)

dV-iFVmJm) ~<?i(Vi) =C^ (2.4)



where

<Wi) - G8(V0) =CL^

/mi = f(VM)

IM2 = /(^n2)

11

(2.5)

(2.6)

(2.7)

(2.8)

and the functions G\, G2, and G$ are nonlinear functions whose values are stored

in tables. The output voltage is Vq. Tb show the fact that modeling in SABER is

equivalent to macromodeling, a traditionalmacromodel representing the same circuit
is shown in Figure 2.3.

<><£> i"T*4> 'BIAS

lol'fCVini) W^bs) ^

Gl<Vi>

°2(Vl> <j\ -T- Cl\£> <W0>

Figure 2.3: Schematic of a comparator macromodel

iMACSIM[50] is a multi-level, mixed-domain simulator. At the highest level

is "behavioral" simulation which is used when the function ofa block is known, but its

detailed structure is undefined yet. The individual blocks can be described in terms of

s-domain or z-domain transfer functions and their interaction described using signal



12

flow diagrams that include summers, multipliers, etc. Blocks can also be described in

the "C"language. At the functional level, macromodels such as switches and controlled

sources may be used. At the circuit level, electrical simulation is performed using a

relaxation based method[48].

2.2.3 Limitations of Circuit Simulation and Macromodeling

Although macromodels reduce simulation time, they are not satisfactory to

solve analog system problems. For example, the element values for the macromodel

shown in Figure 2.2 are optimized for specific input waveforms and output responses.

Ifwe desire to model different responses (e.g. opamp slewing) under a new set of input

conditions (e.g. fast switching), then the macromodel accuracy is not guaranteed.

Error bounds cannot be established during model construction because inputs are

unknown.

In addition, a macromodel accurate for a variety of input conditions typically

has from a third to a half of the number of elements of the original circuit. Conse

quently, the simulation time reduction is small. Moreover, great expertise is needed

to devise the macromodel. Also, there are limited tools for extracting parameters for

macromodels. Casinovi[8] proposed a methodology for automatic macromodel con

struction and Ma[34] presented model generation and validation tools for iMACSIM.

Furthermore, using the circuit simulation and macromodeling approaches, it

is very difficult to simulate frequency domain effects, noise effects, or effects due to

process variations. The reason is that the models are deterministic and focus on the

time domain circuit behavior. Yet, verification of system performance in the presence

ofnoise and process variation effects are crucial.

2.3 Special Purpose Simulators

2.3.1 Simulators for switched-capacitor networks

For simulating specific classes ofcircuits such as switched-capacitor networks,

special purpose simulators[15, 351 are more efficient than general purpose circuit

simulators. SWITCAP[15] is a program for the exact analysis of linear networks

containing ideal capacitors, independent and dependent voltage sources, and switches
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from which macromodels of components are constructed. Its applications include
simulation of switched-capacitor filters and charge redistribution systems, such as

several types ofA/D and D/Aand PCMencoders and decoders[39,58]. The simulation

algorithm is basedonchargeconservation equations before and after switching states
and KirchhofFs voltage law (KVL). As a result, the network variables to be solved for

are the voltages and charges. The network equations are formed from the network

topology and element values. Then, the network equations can be solvedin the time
or frequency domain.

The advantage ofSWITCAP is its ability to handle both frequency and time

domain analyses. Thedisadvantage, however, is that the network must belinear. Key

elementsofswitched-capacitor circuitssuchas opampsand comparators are nonlinear.

Moreover, only primitiveelements are available, so the task of circuit modeling falls
entirely on the user. Finally, process variations are not considered.

2.3.2 Simulators for sampled-data systems

MIDAS[62] is a behavioral simulator for mixed-mode sampled-data systems.

In MIDAS, a sampled-data system is modeled as a graph ofprimitive component mod

els such as comparators, delays, and adders. Each cycle in the graph must be broken

by at least one delay element. After initialization, each component is executed accord

ing to their topological order in the graph. At the end of the time domain simulation,

special components are available for data analysis such as spectral estimation.

The disadvantages of MIDAS are that couplings between components are

not considered, continuous-time domain simulations are not supported, and process

variations are not considered. Also, noise effects are estimated only using Monte Carlo

techniques which may be inadequate for estimation of rare events (Chapter 7).

2.4 Conclusion

Traditional circuit simulators are inadequate for large analog circuits due to

the long simulation time. Using the circuit simulation and macromodeling approaches,

it is very difficult to simulate frequency domain effects, noise effects, or effects due to

process variations because all models are deterministic. Special purpose simulators
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are more efficient than general purpose circuit simulators. Some[35]handle frequency

domain and noise simulations, while others[62] perform only time domain simulations

and rely on spectral estimation techniques and Monte Carlo simulations for estimat

ing frequency response and noise effects, respectively. But, none considers process

variation effects. As a result, a new strategy for behavioral simulation and modeling

is necessary to verify system performance in the presence ofnoise effects and effects

due to process variations.
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Chapter 3

Thesis Background

3.1 Introduction

This chapter provides some statistical background required to appreciate the

contents of the succeeding chapters which constitute the main contribution of this

thesis. An overview of sample space, events, probabiUty, random variables, jointly

distributed random variables, random vectors, and random processes willbe provided

below.

3.2 Sample Space and Events

Consider an experiment whose outcome is unpredictable. The set of all pos

sible outcomes is known as the sample space[45] denoted by S. For example, the

sample space for the experiment of a roll of a die is

S = {1,2,3,4,5,6} (3.1)

An event is any subset E of the sample space, and E occurs if the outcome of the

experiment is contained in E. For example, the event for odd outcomes in the previous

experiment is

£ = {1,3,5}' (3.2)

The event E occurs if the outcome of the experiment is 1, 3, or 5.
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3.3 Axioms of Probability

Following [45], we use an axiomatic definition of probability. Consider an

experiment whose sample space is S. For each event E of the sample space, we define

a number P(E), the probability of event E, that satisfies the following three axioms.

Axiom3.3.10<PCE)<l

Axiom 3.3.2 P(S) = 1

Axiom 3.3.3 For any sequenceofmutually exclusive events £i, £2,. ••

oo oo

t=l »=1

The axioms are simple and intuitive. For example, axiom 3.3.1 states that P(E) is

between 0 and 1. Axiom 3.3.2 states that the outcome must be in the sample space.

Axiom 3.3.3 states that for any sequence ofmutually exclusive events the probabiUty

ofat least one of these events occuring is the sum of their respective probabilities.

A more intuitive meaningofprobability is that P( E) is the limiting percentage

ofevent E occuring as the experiment repeats indefinitely.

P(E) = lim ^ (3.4)

where n(E) is the number of times in the first n repetitions of the experiment that

the event E occurs. The definition is justified in [45] using the Strong Law of Large

Numbers and Axioms 3.3.1, 3.3.2, 3.3.3.

3.4 Random Variable

Oftenwe are interested in some numerical value associated with experimental

outcomes. Therefore, we define a random variable as a real-valued function with

domain the sample space, S. For example, we may be interested in the numerical

outcomes of rolling dice. So, we define a random variable, Y, that takes on values

{1,2,3,4,5,6}. The variable takes onreal value i whenthe outcome ofthe experiment

is i. Assuming a fair die, eachpossible outcomes are equallylikely, so the probabilities
P(Y = i) = I
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In the previous example, the random variable isdiscrete because its setofpos
sible values is either finite or countably infinite. However, there are random variables

whose possible values are not countable. We take the definition for a continuous

random variable from [45],

Definition 3.4.1 X is a continuous random variable ifthere exists a nonnegative func
tion, /, defined for all real x e (-oo, oo), having the property that for any set B ofreal
numbers

P{X 6B}= [ f(x)dx (3.5)
JB

The function, /, is called the probability density function of the random variable,

X. According to(3.5), the probabihty that X will bein B canbeobtained byintegrating
the probabihty density function overthe set B. For example,

rbP{a<X<b}= f(x)dx (3.6)
Ja

The probabiUty density function completely characterizes the random variable because

all probabihty statements about X can be answered in terms of /. For example, the
cumulative distribution function[45], F(), of a random variable, X, is denned for

all real numbers 6, -oo < b < oo, by

F(b) =P{X <b}= fb f(x)dx (3.7)
J—oo

The expected value of g(X), where g(-) is any real-valued function is

E[g(X)] = f" g(x)f(x)dx (3.8)
J—oo

F[g(X)] gives, the limiting value of g(X) as the experiment repeats indefinitely. The

nth order moment is
/oo

xnf(x)dx (3.9)
-oo

The mean of random variable, X, is the first order moment

/oo

xf(x)dx (3.10)
-oo

The variance ofrandom variable, X, is

var(X) = E[X2} - E[X]2 (3.11)
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3.4.1 Normal Random Variable

A random variable used throughout the later chapters is the normal, or

Gaussian, random variable. A random variable, X, is normally distributed, with

parameters \i and a if the probabiUty density function of X is given by

1 -(X-Ji)2
f(x) = . e 2«r2 ,-00 < x < 00 (3.12)

V27T<7

The cumulative distribution function of a normal random variable is

m=/I}{x)dx=Q (rr) (3,13)
where Q(-) is a standard mathematical function defined as

Q(x)= I* -$=e-idu (3.14)
J-oo y/2ir

3.5 Jointly Distributed Random Variables

Following [45], we define, for any two random variables X and Y, the joint

cumulative probability distribution function ofX and Y by

F{a, b) = P{X < a, Y < 6}, -oo < a, 6 < oo (3.15)

We say that X and Y are jointly continuous if there exists a function f(x, y) denned

for aU real x and y, having the property that for every set C ofpairs ofreal numbers

P{(X,Y) €C} = / / f(x,y)dxdy (3.16)
J J(x,y)eC

The function f(x, y) is called the joint probability density function of X and Y.

The joint probabiUty density function completely characterizes the random variables

X and Y because all probabiUty statements about X and Y can be answered in terms

of/. In [45] it is shown that the joint probabiUty density function and joint cumulative

distribution function are related by

The probabiUty density functions of X and Y can be obtained using

/oo

f(*,v)dy (3.18)
-co
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fy(y)= f f(x,y)dx (3.19)
J—oo

The expectation of a function g(X, Y) is given by

E[g(X,Y)] = f°° (°° g(x,y)f{x,y)dxdy (3.20)
J—oo «/—oo

Thecovariance ofrandomvariables X and Y, denoted by Cov(X, Y), is dennedas

Cov(X, Y) = E[(X - E[X])(Y - E[Y])] = £[XY] - E[X]E[Y\ (3.21)

From[45], if X and Yhave a joint probabiUty densityfunction f(x, y),then the condi

tional probability density function of X, given that Y = y, is defined for all values

of y such that /y(y) > 0, by

fx,rixM=iM$ : (3-22)
The use ofconditional densities allows us to define conditionalprobabiUties ofevents

associated with one random variable when we are given the value of a second random

variable.

The random variables in a joint distribution can be neither jointly continuous

norjointly discrete. For example,X can be a continuous randomvariable with density

function fx, while Y can be a discrete random variable. The joint density function is

f(X, Y). In this case, the conditional density of X given that Y = y is given in [45] by

fx\Y(x\y) =f(X,Y =y)= P{Yp={Y^^X]fx(x) (3.23)
3.5.1 Independent Random Variables

The continuous random variables X and Y are said to be independent[45] if

f(x,y) = fx(x)fy(y) (3.24)

in which case for any functions h and g

E[g(X)h(Y)] = E[g(X)]E[h(y)] (3.25)

and Cov(X,Y) = 0 from (3.21).
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3.6 Random Vector

Whereas scalar random variables take on values on the real line (Section

3.4), the values of vector-valued random variables are points in a real-valued higher

dimensional space (i2m)[49]. In Section 3.5 we considered the case for m = 2. Now we

consider the case for m > 2. The probabiUty law for vector-valued random variables is

specified in terms ofa joint cumulative distribution function

Fxl Xm(xi, •. .,3m) = P{(XX < Xi) . ..(Xm < Xm)} (3.26)

The joint probabiUty density function, fxi,...txm{xi, •••, xm), of an m-dimensional ran

dom vector is the partial derivative of the cumulative distribution function,

dmfxx jrm(*i,...,*m) = dx dx Fxx,...,xm(x\,->->Xm) (3.27)

Expected values of a function of the random vector are evaluated using multiple inte

grals. For instance, if m = 4,
/oo roo foo ^oo

III fxlt...,xm(xi,...,Xm)dxidx2dx3dx4 (3.28)
•oo J—oo J—oo J—oo

For convenience, the m variables can be represented as components ofan mxl column

vector X,

r «i
X =

The mean vector, fix, is defined as

fix = E[X] =

E[Xl]

. E[xm] _

The covariance matrix, Ex, an m x m matrix is defined as

'X\X\ X\X2

EX = EIXX7) - fix fix =
'X^Xl x^X2,

X\Xm

Gx2Xm

. Vxmxi crxmx2 - • • axmxm J

where <rXiXj = Cov(xi,Xj). If Ex is diagonal, then the components of A" are uncorre-

lated.

(3.29)

(3.30)

(3.31)
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3.6.1 Multivariate Normal Distribution

A random vector used throughout the later chapters is the normal random

vector, or multivariate normal random variable. A random vector, X, is normaUy

distributed with parameters fix and Ex,

X ~normal{fjLx,Ex) (3.32)

if the probabiUty density function of X is given by

fx{x) = ^ rc-K*-Mx)T27x,<*-M*) (3.33)
(2t)2\Ex\*

The normal random vectorhas many useful properties. For example, if Ex is diagonal,

then the components of X are independent in additional to being uncorrected. Also,

if A is a k x m matrix of rank k, then Y = AX has a fc-variate normal distribution

with[49]

fiy = AfiX (3.34)

EY = AEXAT (3.35)

3.7 Random Process

A random variable is a mapping from the sample space, S, to a real value.

Similarly, a random process or stochastic process is a mapping from the sample

space, S, to a waveform. Tb every outcome A e S, we assign a waveform using

X(t,A) (3.36)

FoUowingthe notations in [49], we omit Aand write a random process simply as X(t).

The mean of X(t) is the expected value of the random variable X(t),
/oo

AX{ttA)dA (3.37)
-oo

The autocorrelation of X(t), denoted by Rxx(h->h\ is the expected value of the

product X*(*i)X(*2),

Rxx{h,t2) = E[X*(h)X(t2)] (3.38)

where *denotes complex conjugate. The autocovariance ofX(t), denoted by Cxx(h, h),

is denned as

Cxx(h,t2) = Rxx(hM) - Vx(h)pxih) (3.39)
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3.7.1 Stationarity

According to definitions in [49], a random process is strict sense station

ary if all of the distribution functions describing the process are invariant under a

translation in time. A random process is wide sense stationary if the mean and

autocorrelation function are invariant under a translation in time. Hence, the mean

is constant and the autocorrelation function depends only on the time difference,

E[X(t)] = fix (3.40)

E[X*(t)X(t + r)] = RXX(r) (3.41)

3.7.2 Power Spectral Density

The power spectral density or spectrum, S(f), describes the power dis

tribution of a random process in the frequency domain. For a wide sense stationary

signal, it can be shown[49] that the power spectral density is the Fourier transform of

the autocorrelation function.

/oo

Rxx(r)e-^Tdr (3.42)
-oo

Given the power spectral density, the autocorrelation function is obtained as
/oo

SU)J2*irdf (3.43)
•oo

3.7.3 Time samples of random processes

Suppose X(t) is a random process with power spectral density S(f). For a

specific t, X(t) is a random variable. Therefore, the result of sampling a random

process at t is a random variable. Suppose we take m samples of X(t) at uniform

mterval T starting from T. The result is a m-dimensional random vector, Y, with

mean vector, fiy, given by

" Px{T)
fiy = (3.44)

mfiX(mT) .

and covariance matrix given by

Er(iJ) = CXx{iT - jT) (3.45)
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4.1 Background

Data converters convert the continuous-time, continuous-ampUtude analog

signals in the outside world to discrete-time, discrete-amplitude digital signals in

electronic systems, and vice-versa. The behavior of a converter is affected by two basic

statistical effects: (1) noise, (2) process variations. Noise can be of different sources,

e.g, thermal noise, nicker noise, shot noise, and noise coupled from digital circuitry.

Noise can cause the same chip to behave differently even if the same inputs are ap

plied. Process variations cause different chips of the same circuit to have different

behavior. Tbcharacterize these unintended, second order effects, traditional user spec

ifications include static specifications such as integral nonlinearity (INL), differential

nonlinearity (DNL), gain error, offset error, and probabiUty of error due to noise, and

dynamic specifications such as signal-to-noise ratio as a function of input frequency

or input ampUtude. The static specifications are for moderate speed converters that

can be treated as memoryless (e.g. output does not depend on past inputs), while

the dynamic specifications are important for high speed converters, where output can

depend on past inputs. In this research, we focus on modeling a memoryless converter

for static performance specifications.

Previously, Ruan[46] proposed different behavioral models for different types
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of A/D converter architectures. One drawback is that the architectural dependence

necessitates derivation of a new model for any changes in the converter architecture.

Another drawback is that the model is deterministic. For example, a deterministic

model can be expressed mathematically as

code = A(Vin,%) (4.1)

where code is the output code, A is a function, Vin is the input, and v is a set of m

parameters. There are two problems with this behavioral modeling approach; namely,

• Worst case analysis must be used to find worst case converter performance.

For example, 2m simulations are needed to find the worst case. For a typical

converter, m can be very large, making worst case analysis infeasible.

• Noise effects are not modeled, so signal-to-noise ratio cannot be calculated.

4.2 New Data Converter Behavioral Model

In contrast to the traditional deterministic model, we derive a stochastic con

verter model that include noise and process variation effects as foUows. A memoryless

Nyquist A/D operating at a certain environment such as fixed sampling frequency and

temperature can be described by its transfer curve, which plots the output code on the

range against the input continuous value on the abscissa. Assuming an A/D has N bits

ofresolution, is designed to be monotonic and has no missing codes, the transfer curve

can be characterized by 2N - 1 real numbers in a vector, t, representing the values of

the transition points U, i = 1...2N -1. Dueto statistical process variations, the trans

fer curve t has a statistical distribution. Due to noise, an A/D produces a wrong output

with a non-zero probability. For example, if the input is near a transition point, the

probabiUty of getting a wrong output code, the code at the other side of the transition

point, is non-zero. As a result, the noise effects depend on the input, and they become

more significant as the input gets closer to a transition point. MathematicaUy, this

is represented by a probabiUty distribution function of the output codes for any input

value. Our behavioral model captures this noise effect by a joint probabiUty density

function of the input K„ and the output code for a given realization of the transfer

curvet,

f(codeyVin,t) (4.2)
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From the above equation, which describes the behavior of any memoryless A/D due

to noise and process variations completely, we can extract aU information about the

converter.

In our model, noise and process variation effects are separated. The distribu

tion t captures process variation effects, while the joint density function /(•) captures

noise effects. The function /(•) is computed using either direct techniques[32]or Monte

Carlotechniques. The process variation effects can be derived by making assumption:

Assumption 4.2.1 Process variations are the cumulative effects of many integrated

circuitfabrication steps. Thus,weassumethat thedistributionoftheprocessvariations,

v, is multivariate normal.

Next, we propose a Gaussian model, as weU as a non-Gaussian model for the distribu

tion t. The Gaussian model is derived from making the foUowing assumption:

Assumption 4.2.2 In general, an A/D is designed to be insensitive to process varia

tions which are relatively small. Thus, the transition points, t, change relatively little

with respect toprocessvariations. Hence, weassumethat t changeslinearlywith respect

to the process variations:

'=£» +* (4-3)
where visa random vector ofparameters, corresponding to process variations such as

offsets and mismatches incomponents, and f£ isa sensitivity matrix.

From assumption 4.2.1 and (4.3), the covariance matrix oft is given by

where Ev is the covariance matrix of v. Thus, the distribution of t is

t ^ normal(fit,Et) (4.5)

In general, the rank rt of Et is much less than full rank since not all the

transition points are independent. In other words, any reaUzation oft must faU into a

space spanned by rt independent basis vectors. A set ofsuch independent basis vectors

can be found by the singular value decomposition of Et. MathematicaUy,

Et = UtEctU? (4.6)
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where Ut is an 2N -1 x rt transformation matrix, Ect is an rt x rt diagonal matrix, and

rt is the rank of E^. The columns of Ut are caUed the error signatures [53] and form a

set oforthonormal vectors spanning the error space. For storage and computational

efficiency t is expressed as the following equation instead of (4.3),

t = Utct + fit (4.7)

where ct ~ normal(0,Ect) is a zero mean multivariate normal distribution with r

statisticaUy independent variates. TypicaUy, r < m, so (4.7) uses less computational

resources than (4.5). The parameters Ut and fit are unique for each A/D architecture,

while the distribution c represents a mixture of the relevant process variations.

Summarizing, our entire Gaussian A/D model consists of three equations,

/(code,Vin, t), i = realization(t)

t ~ normal(fit,Ect) = Utct + fit

normal(0, Ect)ct

(4.8)

(4.9)

(4.10)

For cases where assumption (4.2.2) does not hold, we propose a non-Gaussian

model. In such cases, the Gaussian model can be extended to a non-Gaussian model

by appending a nonlinear filter to create the non-Gaussian distributions[5, 6]. Figure

4.1 shows a block diagram of a nonlinear model where the zero mean Gaussian error,

e = Utct, is being filtered to model a non-Gaussian error. For example, to model an

A/D Model
Nonlinear filter

-k4

h€K«

Figure 4.1: Nonlinear model for data converters

error with third order non-Gaussian statistics[571, a quadratic filter b is used in the

foUowing equation for t as a replacement for (4.9),
/oJV'_i f2^ —1

j b(t~u,t- v)e(u)e(v)dudv (4.11)
where e = Utct, b is the two-dimensional impulse response of the quadratic filter,

and 2^ - 1 is the number of transition points. Although the non-Gaussian model
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is more general, its use is limited because from our experience of modeling many

converters most converters are adequately represented by a Gaussian model. Secondly,

a Gaussian model is computationally more efficient than a non-Gaussian model.

After presenting the complete A/D model, we develop a similar D/A model

using the same strategy. The resulting Gaussian D/A model is,

t = Utct+fit + z (4.12)

ct ~ normal(0, Ect) (4.13)

z ~ normal(0, Ez) (4-14)

where t is an 7i-dimensional vector and z is an n-dimensional vector representing

additive noise in D/A outputs. Tb extend the Gaussian D/A model to a non-Gaussian

model, we replace (4.12) by the foUowing,

t = nt + Utct + z+ / b(t - w, t - v)e(u)e(v)dudv (4.15)

where 2N is the number ofD/Ainput codes.

4.3 Calculation of System Performance

Using the model, we propose a novel strategy to calculate system performance.

The performance of a converter is computed in two steps. First, the convertermodel pa

rameters are extracted from the circuit. Then, the converter performance is computed

using only the model parameters since the model captures the converter behavior. The

advantage of this strategy is that the model parameters are only extracted once, but

used many times to calculate system performance. The foUowing definitions iUustrate

how system performance parameters can be computed from the proposed D/A model

parameters.

Definition 4.3.1 The ideal output vector, L, of a D/A converter is an n-dimensional

vector, where the ith component of L, L(i), represents the desired output for input code

i,n = 2N, and N is the numberofbits.

Definition 4.3.2 The output vector, t, of a D/A converter is an n-dimensional vector,

where the ith component oft, t(i), is theoutput for inputcode i.
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The output vector, t, is identical to that in the model equation (4.12) with noise z = 0.

TheoreticaUy, t is sufficient to describe the converterbehavior due to process variations.

Nevertheless, designers traditionaUy used a different set of specifications which can

be derived easily from t AUof them are described as follows,

Definition 4.3.3 Offseterror is t(l) - 1(1).

Definition 4.3.4 Full scale gain erroris t(n) - L(n) + L(l) - t(l).

The integral nonlinearity is the deviation of the output from the ideal value after

compensation for the gain and offset errors.

Definition 4.3.5 The integral nonlinearity vector, s, of a D/A converter is an n-

dimensional vector

s(i) = at(i) + 6 - L{i) (4.16)

where a, b are constants such that 3(1) = s(n) = 0.

Intuitively, Definition 4.3.5 means that we transform t using constants a and b such

that the two end-points are ideal. In this case, we have adopted the more popular

end-point method for linear error compensation!141, instead of the less popular least

square method. The motivation behind the transformation is to compensate for the

offset and gain errors before calculation of nonlinearity. In many appUcations, offset

and gain errors are irrelevant as they do not contribute to distortion.

Lemma 4.3.1 Integral nonlinearity is given by

L(n) -1(1)
s(i) =

ds .

Lt(n) - t(l) J

The sensitivity matrix ofthe integral nonlinearity to output vector is given by

(t(i) - *(1)) + X(l) - L(i) (4.17)

[ (Un)-L(l))(t(i)-t(n)) • , - . -
(*(n)-t(l))2 «7=1,7* J -I

0 t ^ 1,71 j ^ 1,2,71

t£N$ i*l,» i =i (4-18)
0 t' = l,n j = l...n
(Un)-L(i))(t(i)-Ui)) i,1 .

(*(n)-t(l))2 3^1,71 J-n

where |f(ij) isthe entry at the ith row and jth column ofthe sensitivity matrix, If.



29

Proof. Solving for a,b using constraints in Def. 4.3.5 yield (4.17). Equation (4.18)
foUows from differentiation of(4.17). •

Using a first order Taylor approximation of s as a function of t,

ds,, . dsrT

we find the integral nonlinearity has distribution,

s ~ normal(fis, Es) (4.20)

where ^s = s(t), at t = fit using (4.17) and Es = ff£,ffT at s = fis. In general, the
rank rs of Es is much less than fuU rank since not aU the INL errors are linearly
independent. In other words, any reaUzation of s must faU into a space spanned by

rs independent basis vectors. A set of such independent basis vectors can be found by

the singular value decomposition of E3. MathematicaUy,

Es = UsEcsUj (4.21)

where Us is a 2N x rs transformation matrix, Ecs is an rs x rs diagonal matrix, and
rs is the rank of EC3. The columns of Us are called the INL signatures and form a

set of orthonormal vectors spanning the INL space. For storage and computational

efficiency s is expressed as the foUowingequation,

s = U9cs + fis (4.22)

where cs ~ normal(Q, Ecs) is a smaU, zero mean multivariate normal distribution with

rs statistically independent variates.

The motivation behind finding the distribution of s is that INL is an important

user constraint. By using the distribution of 5, bounds on s can be determined quickly

and made to fit user constraints during design.

Definition 4.3.6 The ±kcr INL bounds are

s±kc(i) = /*.(0± ky/Ea(i,i). (4.23)

These bounds are useful for design since any reaUzation ofs wiU have a high probabiUty

of falling within the kcr bounds if k > 2. Furthermore, once the design is done, circuit

yield can be estimated by Monte Carlo integration over the distribution s.
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In addition, the contribution of INL from each component can be precisely

calculated. The INL contribution matrix, ps, is denned as the cross-covariance between

the INL vector s and component variation vector v. An entry at p3(i,j) represents the

contribution from component variation vj to the INL ofcode i, s,-. For example,

Definition 4.3.7 ps = E[svT]

Lemma 4.3.2 p, = §fjj^v

Proof. Using (4.19), we have

Ps =Elsv1] =E[(^(t - fit) +fisV} (4.24)

^ =jB[SSUvT] +i;[^T] (4'25)
ds dt „ ,. _ _xPs =^TvSt (4.26)

since v has zero mean, and E[vvT] = Ev. m

Another useful piece of information to designers is the contribution to INL

signatures from each component. Using this information, the importance of each

component can be ranked, and the worst component can be pinpointed for redesign.

The INL signature contribution matrix, qa, is defined as the cross-covariance between

the vector cs and component variation vector v. An entry at qs(i,j) represents the

contribution from process variable Vj to the magnitude of signature i, c,-. For example,

Definition 4.3.8 qs = E[csvT]

Lemma 4.3.3 qs = if-ifs*^

Proof. Using (4.19), (4.22) and (4.3), we have

^.-^-M,)-^!^ (4.27)
^^]=ElU-ft^] =ur^Sv (4.28)

using the definition. •

Besides INL, designers are also interested in differential nonlinearity, DNL,
denned as foUows,

and using (4.3), we have
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Definition 4.3.9 Thedifferentialnonlinearityvector, d, ofaD/A converter isann-1-

dimensional vector obtained bya firstorder difference of the integral nonlinearity s.

d = D+s (4.29)

where D+ is an n - 1 by n matrix called the first order difference operator,

!>+(«, i)=<

-1 i = j

1 i = j - 1 (4.30)

0 else

As DNL is a linear transformation of INL, most results related to INL carry over to

DNL immediately. For instance, the differential nonlinearity has distribution,

d ~ normal(fid, Ed) (4.31)

where fid = D+s, Ed = D+ESD+. In general, the rank rj of Ed is much less than ftdl

rank since not aU the DNL errors are independent. In other words, any reaUzation

of d must faU into a space spanned by rj independent basis vectors. A set of such

independent basis vectors can be found by the singular value decomposition of Ed.

Mathematically,

Ed = UdEcdUj (4.32)

where Ud is an 2N -1 x rj transformation matrix, Ecd is an rj x rd diagonal matrix,and
rd is the rank of Ecd- The columns of Us are called the DNL signatures and form a

set of orthonormal vectors spanning the DNL space. For storage and computational

efficiency d is expressed as the foUowing equation,

d = Udcd + fid (4.33)

where Cd ~ normal(Q, Ecd) is a smaU, zero mean multivariate normal distribution with

rd statisticaUy independent variates.

Definition 4.3.10 The ±kcrDNL bounds are:

d±ka{i) =fid(i) ±ky/Ed(i,i). (4.34)

These bounds are useful for design since any reaUzation ofdwiUhave a high probabiUty

of falling within the ka bounds if k > 2. In addition, the contribution of DNL from

each component is defined similarly as the DNL contribution matrix, pd.
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Definition 4.3.11 pd = E^v7]

Lemma4.3.4 pd = D+ft^Ev

Proof.

pd = E[dvT] = E[D+svT] = D+E[svT] (4.35)

from (4.29) and (4.26). •

The DNL signature contribution matrix, qd, is denned as

Definition 4.3.12 qd = E[cdvT]

Lemma 4.3.5 qd = U^D+^EV

Proof. Using (4.33), (4.29), (4.19) and (4.3), we have

dsf . rr-ln 98 dt-R(t-^t) = Vi D+--cd =V^D&t - *) =UfD+Zgv (4.36)

«=E[cdvT] =E[V?D^y\ =V?D^2V (4.37)
using the definition. •

Traditionally, more complex converter specifications such as yield, harmonic

distortion and signal-to-noise ratio are obtained from chip data since simulations are

computationaUy infeasible for these system specifications. However, using the pro

posed model these specifications can be estimated efficiently. For example, yield is

typicaUy defined as the fraction ofcircuits that have INL and DNL within some bounds,

s-max and dmaXi respectively. Therefore, yield is obtained by Monte Carlo integration

over a region in distributions, s and d. Using (4.19) and (4.29), the regions are

ds\-^Utct +fis\<smax (4.38)

ds
\D+(—Utct + fis)\ < dmax (4.39)

In the Monte Carlo simulations, many reaUzations of ct are generated from a random

number generator, some of which are labeled success if they faU inside both regions.

"Weld is estimated from the fraction of success over a finite number of reaUzations.

Two other useful system performance parameters are harmonic distortion

and signal-to-noiseand distortion ratio, S/(N+D). These parameters are denned in the
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Figure 4.2: System setup for distortion and noise measurements

context of a simple A/D-D/Atest system shown in Figure 4.2 in which one component

is ideal and the other non-ideal component is under evaluation. Harmonic distortion

describes the harmonic content of the near sinusoidal output generated from a sinu

soidal input. Traditional time domain simulations and spectral estimation techniques

employed for this calculation are inefficient because a long time domain simulation

is required for a confident estimate of the spectrum. As a result, we propose a di

rect approach. First, the composite static system transfer function, T(-), relating the

instantaneous input and output is obtained from the static transfer functions of the

D/Aand A/D. Assuming x(i) corresponds to 2N - 1 A/Dtransition points and y(i) cor

responds to 2N D/Aoutput values, the transfer fimction T(-) has the shape shown in

Figure 4.3. Then, the transfer function is expressed as a Taylor expansion ofthe input,

analog
output

(x(i+1),y(i+1))

(x(i), y(D)

analog input

Figure 4.3: Composite transfer function of A/D-D/A system

Na

T(x) = Y,aU)xJ~1 + <x)
3=1

(4.40)
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where a is an Na dimensional vector ofpower series coefficients and e(-) is the residual

corresponding to higher order terms. A least square estimate ofa is obtained by Unear

regression over the points

K0,g(i) +f +1)),»- =i-2"-i (4.41)

From Unear regression theory[5], the optimal least square fit corresponds to

a = {XTX)-1XTD1y (4.42)

where X(i,j) = z(i)J_1 is an 2N - 1by Na matrix and D± is an 2N - 1by 2^ transfor

mation matrix given by

0.5, i = j

Di(iJ)=l 0.5, j =i+l (4.43)
0, else

The ampUtudes, V, of the first seven output sinusoids, including DC, are

v(0) =2® +2^*1 +37<6)
8 32

V(l) =«(l) +*f+*f
V(2) =^ +2ffi +21a(6)

16

vw- —+ -ig"
F(4) =̂ ) +3g)

V(6) =§

(4.44)

(4.45)

(4.46)

(4.47)

(4.48)

(4.49)

(4.50)

According to the definitionof harmonic distortion, the ith harmonic distortion param

eter is

HDi =y£,fori>l (4.51)
Ignoring higher order harmonics, the total harmonic distortion[14] in decibels is esti

mated to be

TED = 20/05
YV(2)2 +7(3)2 +V(4)2 +V(5)2 +V(6)2

V(l)
(4.52)
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The mean and standard deviation of aU harmonic distortion parameters arecomputed

using a small number ofMonte Carlo simulations from which the Za worst case values

are estimated.

The final performance specification is signal-to-noise and distortion ratio,

S/(N+D). The fuU scale sinusoidal input, u, has probabiUty distribution function,

fu(u)=l "VH^M"--^)2 (4.53)
0, else

The output noise and distortion error energy is given by the D/A output plus noise

minus the Unear components

(DA(c) + z(c) - o(0) - a(l)uf (4.54)

where DA(-) is the D/A transfer function, cis the output code from A/D, and z(-) is the

D/A noise. When A/D noise is considered also, then we have the sum over aU possible

A/D output codes
2N

£(£A(c) + z(c) - a(0) - a(l)u)2fc(u, c, t) (4.55)
c=l

where fc is the joint probabiUty function given by (4.8). The total error is the integral

of the above over the entire input range,
rVref

^2(DA(c) + z(c) - a(0) - a(l)u)2fc(u, c, T)fu{u)du (4.56)
Jo'0

Although the above expression describes completely the errors from noise and dis

tortion, the special case of noiseless converters is also useful because it provides a

performance upper bound. The total error energy without noise can be expressed as

/ (T(u) - a(0) - a(l)u)2fu(u)du (4.57)
Jo

The signal energy is given by

i (a(l)uYfu(u)du (4.58)
o

Therefore, S/(N+D) is the ratio ofthe quantities defined above in decibels. A standard

measure ofeffective converter resolution is the effective number ofbits[14],

^t0-1™ (4.59)
6.02 v '

The mean and standard deviation ofthe above parameters are estimated using a smaU

number ofMonte Carlo simulations from which the 3a- worst case values are estimated.
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4.4 Model Validation

A model must be verified against measurements to test its vaUdity. Our

model,

/(code, Vin, £), ?= realization(t) (4.60)

describes the behavior of any memoryless A/D due to noise and process variations

completely. However, in our more specific Gaussian model, the Gaussian assumption

of t must be verified. Therefore, we need to verify process variation effects in (4.9) by

verifying t has the multivariate normal distribution for a variety of converter types.

The verifications are done using Monte Carlo simulations with SPICE, as weU as

real chip data. Assuming typical process variations such as standard deviation of

transistor length and width being 0.05^m and standard deviation of resistor value

being one percent, Monte Carlo simulations ofa 10 bit current-switched D/A converter

consisting of 1068 transistors and 345 parasitic resistors have been performed for

randomly selected input codes. The random codes are obtained using a uniformly

distributed random number generator on an Hewlett Packard 42S calculator.

The output current distributions for aU such simulations match weU with the

normal distribution, as verified by the quantile-quantile plots in Figure 4.4 and Figure

4.5 for randomly selected input codes 100 and 900, respectively. Each point on the

graph represents a comparison between the cumulative distribution function of the

output current and that of the normal distribution. Perfect matches fall in a straight

line, validating components of the output current vector, t, have normal distributions.

Another impUcation of the A/D model is that the errors of a converter can be

decomposed into its errors signatures. Tb verify that errors signatures are sufficient

to characterize an actual A/D, we obtained the measured error, £- fit, of a fabricated

cycUc A/D[38], and try to fit the measured data, i, with a Unear combination of error

signatures using Unear regression techniques

t=IH + Ut& + 6 (4.61)

where we solve for c, an unknown reaUzation ofcthat minimize the measurement noise

1\S\|2, where || • ||2 denotes the inner product of a vector with itself. Figure 4.6 shows
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Figure 4.4: Quantile-quantile plot of output distribution vs. normal distribution for

code=100

c881.0E-6rr
•| 880.5E-6^
I 880.0E-6-!
1 879.5E-6-!
| 879.0E-6H
5 878.5E-6^

•g 878.0E-6^

•3 877.5E-6^

° 877.0E-6 I i i i i I i i i i I i i i i I i i i i I

-2-10 1 2

Gaussian distribution

Figure 4.5: Quantile-quantile plot of output distribution vs. normal distribution for

code=900
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the curve i - fit matches weU with the curve Uc, proving that the model sufficiently

captures the A/D behavior.

B 0.1-
o
>

LLI
0E+0

-0.1-

Input

Figure 4.6: Comparison ofmeasured and model generated errors

4.5 Conclusion

We have presented a behavioral representation of Nyquist data converters.

The representation captures the behavior of a memoryless Nyquist data converter,

including statistical variations. The variations are classified into noise and process

variations according to how these non-ideaUties affect the converter behavior. Tb

describe noise effects, a joint probabiUty density function is used. Tb describe process

variations effects on the converter transfer function, a Gaussian model is used.

Using the behavioral representation, a new strategy to estimate system per

formance is developed. The performance specifications of a converter, including offset

error, ftu! scale gain error, INL, DNL, harmonic distortion and signal-to-noise ratio,

are estimated in two steps. First, the converter model parameters are extracted from

the circuit. Then, the converter performance is computed using only the model pa

rameters since the model captures the converter behavior. Given that the behavioral

model is vaUd, offset error and gain error are computed exactly, while INL and DNL are
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approximated using first order Taylor approximation. Worst case harmonic distortion

and signal-to-noise ratio are approximated using Monte Carlo simulations.

From SPICE simulations, the distribution ofD/A errors for a 10-bit converter

were shown to agree weU with the Gaussian distribution; thus, vaUdating our Gaus

sian error assumption. Furthermore, behavioral simulation results agree weU with

measurements for an 8-bit cycUc A/D converter[38]; thus, vaUdating the behavioral

model.
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Chapter 5

Analog System Verification using

Behavioral Simulation

5*1 Background

We have proposed a constraint-driven, top-down design methodology for mixed-

mode systems[10] that is supported by analog design tools. An integral part of such

methodology is the complete verification of the synthesized circuit in the presence of

layout parasitic resistances and capacitances due to routing, supply variations, and

coupling. Because parasitics degrade analog system performance, it is crucial to verify

by simulation as completely as possible the circuit functionaUty in the presence of

these second order effects.

Existing design methodologies, manual or automatic [26, 7, 1], use SPICE

simulations to verify the final designs at the transistor level. Unfortunately, SPICE

simulations often fail for larger systems due to non-convergence or unreasonable com

putational cost. For example, to simulate process variations of a circuit, designers

traditionaUy use worst case analysis. In this approach, designers simulate aU, 2M,

process corners where M is the number of process variables. In a large system such

as a 10 bit D/A with 600 matched transistors, the number of process corners reaches

an astronomical 2600, rendering exact worst case analysis impossible. Consequently,

designers simulate a subset of the process corners, but no general algorithm has been

proposed for choosing the subset.
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Due to the difficulties, several behavioral simulation approaches have been

proposed earher[36, 46]. Unfortunately, they do not take into account loading para

sitics and must also use worst case analysis to compute process variation effects.

In some design methodologies such as standard ceUanalog designs, designers

verify each ceU extensively by SPICE simulation. Yet, the final system of intercon

nected ceUs may fail due to interconnect parasitics or ceU interactions.

5.2 Verification Tasks in Top-Down Design

In contrast, our top-down design methodology[10] decomposes a system into

its components, then the components into subcomponents using the same methodology

until constraint-driven physical layout synthesis. In such a design environment, the

key verification tasks are the verification ofcomponent functionaUty and the verifica

tion ofthe system after the components are routed in a system. We use the former type

of verification right after component synthesis to check whether or not an individual

component works without loading effects. If not, we redesign the component imme

diately, thus avoiding expensive design iterations. This type of verification is easier

because the isolated component can often be verified with SPICE. After we verify each

component against its specifications, we check the system performance in the pres

ence of layout parasitics. This last step has been carried out in the past at the SPICE

simulation level. In this chapter, we present two methodologies that use behavioral

models of the components and behavioral simulation to verify analog systems. The

first methodology verifies analog systems in the absence of parasitics (useful for sys

tem level block diagram verification in which parasitics are not considered), while the

second methodology verifies analog systems in the presence of parasitics (useful for

final verification from layout). The benefits of the new approach are overwhelming

when compared to SPICE level simulation.
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5*3 Verification in the Absence of Parasitics

5.3.1 General Strategy

Behavioral simulation is effective in verifying analog systems without para

sitic loading effects because without parasitic effects, each component can be modeled

and characterized independently. For example, we foUow the foUowing steps in verifi

cation:

• Development ofbehavioral models ofcomponents.

• Component layout extraction.

• Component identification using SPICE simulation of the components at ideal

bias conditions.

• Parameter fitting for behavioral models.

• System simulation at the behavioral level using behavioral models only.

5.3.2 Verification of D/A Converters

We iUustrate the behavioral modeling and verification results of a five-bit,

current-switched, interpolative D/A converter, compared with traditional SPICE sim

ulations. We assume the presence of process variations such as standard deviation of

transistor length and width being 0.05/wi. Using simulation, we seek the complete

static performance such as offset error, fuU scale gain error, INL, and DNL. Tb achieve

our goal, we use the Nyquist converter model proposed in Chapter 4, in conjunction

with the procedure to calculate the static performance presented in Section 4.3.

IUustrated in Figure 5.1, the D/A architecture contains a first stage, a second

stage, and a mirror connecting the first to the second stages. Irej suppUes the reference

current, Iout is the output, and the five input bits drive the switches through some

combinational logic block. The components are aU current mirrors described by their

statistics, such as the nominal mismatch fiv and the covariance matrix Ev, where fiv is

fj,v(i) = ki,i = 1...8, (5.1)

and each k{ is the mismatch, e.g. the output to input current ratio, of a component.

The covariance matrix is given by Ev(i,j) = Cov(ki, kj). For this example, we ignore
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Figure 5.1: 5-bit interpolative D/A architecture

correlations between components in our architecture, so the covariance matrix is di

agonal. However, correlations can be handled by using a fuU matrix if so desired by

the user.

(dm) more abstract

i i

Behavioral simulator

/ 1 \
stage 1 mirror

1

stage 2

1

spice spice spice

1 1 „ 1 i '

(netlist netlist
-
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Figure 5.2: Model Hierarchy for 5-bit D/A

Using the model hierarchy shown in Figure 5.2, we compute the converter

performance in two steps. First, component parameters k{ are extracted using SPICE

simulations on each component separately. It should be emphasized that the component

parameters are extracted independently, thus avoiding costly simulation ofan entire

chip. In this experiment, the ideal bias point is chosen to be very close to the actual

bias point. In cases where a bias point is not known in advance, we use a procedure

based on sensitivity analysis[29] (Section 5.4). Variances of ki are extracted using

either sensitivity analysis (exact) or Monte Carlo SPICE simulations (approximate) of

each component. Once the component parameters are extracted, higher level Nyquist
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converter parameters are expressed as,

IH = f(j*v) (5-2)

St - lo>l Ev [Tv\ (5-3)
where /(•) is computed using a behavioral simulator and f£ is estimated using finite
differences. The behavioral simulator is written in the C++ language (Section 5.3.3).

Once the converter model parameters fit and Et are computed, all static specifications

are computed using the formulae given in Section 4.3.

5.3.3 Software Implementation

The basic behavioral description ofa converter is the function, g, relating the

output, U, to the input code, i, and component parameters, v.

ti = g(i,v) (5.4)

This function can be implemented using either a custom input language for a custom

simulator or standard computer languages and standard compilers. In this example,

the function coded in the C++ language is shown below, where code is the input code

and the component parameters are kl, k2,

double g(int code)

{

double iref = 31.25e-6;

double i=0.0, inext;

switch (code»3) {

case 0: inext = k5 * iref; break;

case 1: i += k5 * iref; inext = k6 * iref; break;

case 2: i += (k5+k6) * iref; inext = k7 * iref; break;

case 3: i += (k5+k6+k7) * iref; inext = k8 * iref; break;

}

inext *= k4;

if (code & 1) i += kl * inext;

if (code & 2) i += k2 * inext;
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if (code & 4) i += k3 * inext;

return i;

}

The function, /, returns the output current vector, t, in an array after evaluating (5.4)

for all input codes,

t = f(v) (5.5)

Using (5.5) with v= fiv, we compute (5.2). Next, we compute f£ using finite differences
on (5.5). Finally, we evaluate (5.3) and performance parameters using the formulae

given in Section 4.3. All of the above operations, computing output current vectors

and taking finite differences, are implemented in a prototype simulator written in

C++. The behavioral description of the converter is linked-in during compile time.

5.3.4 Experimental Results

From theory, it was predicted that most fabricated chips will have INL curve

falling within the predicted ±2a INL bounds. The simulated ±2<r INL bounds are

shown in Figure 5.3 along with 100 INL curves from Monte Carlo SPICE simulations.

Almost all INL curves from SPICE simulations fall within the predicted bounds, thus

demonstrating that the behavioral model is plausible. Similarly, all DNL curves from

SPICE simulation fall within the predicted bounds as shown in Figure 5.4.

The INL errors are also predicted to be in an error space spanned by indepen

dent INL signatures. Shown in Figure 5.5 are the four most important INL signatures,

along with a weight indicating their relative importance. The most important error

(first error in Figure 5.5) has a bow shape, which confirms with designer experience

that converters of the type exhibit INL errors resembling a bow. However, designers

neglected the other errors also found using our mathematical approach.

In order to give feedback to designers, it is useful to find the contribution ofthe

bow shape INL error from each component; thereby, pinpointing the worst component

for redesign. Figure 5.6 shows the INL signature contribution matrix which shows

that the bow shape error is contributed mostly by the first stage components C5 to C%.

As confirmed by design experience, INL is contributed mainly by the unity weighted

current sources in the first stage ofthis type ofD/A. Notice that the contributions from

components C5 and C& are equal and opposite, indicating that they should be matched.
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Figure 5.3: 100 Monte Carlo INL simulations within predicted INL bounds
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Figure 5.4: 100 Monte Carlo DNL simulations within predicted DNL bounds
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Figure 5.5: Four most important INL signatures with relative weights

Figure 5.6: INL signature contribution matrix



Name -3a Typical +3<7 Units

offset 0.0 0.0 0.0 LSB

gain error -0.166 0.015 0.196 LSB

INL 0.020 0.107 LSB

DNL 0.024 0.101 LSB
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Table 5.1: Performance summary

Ifcalibration or dynamic matching techniques are used, then they should be calibrated

or matched to have the same value. The simulated performance summary is given in

Table 5.1.

Finally, the most time consuming step in behavioral simulation is the extrac

tion of component parameters using SPICE. Tbgether with the high level behavioral

simulation, the total DEC 5000/125 CPU time needed for behavioral simulation is

534.5 seconds in this example. In contrast, worst case analysis of the entire circuit

using SPICE will be infeasible because there are 158 transistors in the circuit with

316 process variables. Worst case analysis necessitates 2316 SPICE simulations of

the entire circuit each using 134 CPU seconds. To circumvent worst case analysis,

we validated our behavioral simulation results instead with Monte Carlo simulations.

The 100 Monte Carlo simulations of the entire chip used 3.7 CPU hours. Unfortu

nately, Monte Carlo simulations will become infeasible as the chip size increases. For

example, 100 Monte Carlo simulations of a 10 bit D/A converter would take 6.8 CPU

days, while behavioral simulation would take about the same amount oftime as a 5 bit

converter because the larger converter is composed of more of the same components

whose characteristics are extracted once and for all.

5.4 Verification in the Presence of Parasitics

5.4.1 General Strategy

The problem with verification in the absence of parasitics in Section 5.3 is

that the components are characterized at idealbias conditions. Because ofparasitics,

e.g. parasitic resistance, the components bias will shift causing system performance

degradation, lb remedythe problem, wepropose the following approach.
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In general, suppose the system performance, 5, is a function ofthe behavioral

model parameters, Wf which in turn are functions of the bias conditions, V. Due to

parasitics, p, V becomes

where Vq is the ideal bias. The first order Taylor approximation is justified by the fact

that most components have linear impedance characteristics for the typical range of

parasitics. Therefore,

W(V)«W(V0) +̂ ^P (5.7)

Smn»S(W<yo)) +§ffj£%P (5-8)
using first order Taylor approximation. For (5.7) and (5.8) to be valid, the partial

derivatives ^ and f^ mustexist and errors small.
Tb use (5.8) to compute effects due to parasitic loading, we change the verifi

cation methodology to the following:

• Layout extraction,

• Component identification using SPICE simulation of the components at ideal

bias conditions Vo,

• Parameter fitting for behavioral models.

• Component linearization at ideal bias conditions,

• Linearized component insertion into interconnection network,

• Network solving for new bias conditions V,

• Optional step: Sensitivity computation of V with respect to all elements in the

interconnect using adjoint techniques[12].

• Bias change (from ideal bias conditions) computation, V - V0i on linearized com

ponents.

• Changes (sensitivity) of V propagation to changes (sensitivity) of behavioral

model parameters W, and then to changes(sensitivity) of system performance 5.
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The advantage of the new approach is that we can compute system level per

formance sensitivity due to routing parasitics. In our performance driven layout syn

thesis approach, the layout synthesis tools use the sensitivity information intelligently

to assemble a global layout from a collection ofcomponent layouts. Then, a behavioral

simulator computes the system performance degradation due to the extracted routing

parasitics.

5.4.2 Verification of D/A Converters

In this section we apply the new verification approach to a synthesized

current-switched, interpolative 10 bit D/A (architecture in Figure 5.7 and layout in

Figure 5.8) that consists of a 5 bit linear current source array, a 5 bit binary current

source array, and a mirror. The 10 bit converter is synthesized using our proposed

constraint-driven, top-down design methodology[10] for maximum INL less than 2.0

LSB. Due to high converter resolution, parasitic effects are no longer negligible.

lout

i

Iref

mirror

f
n X2i

32x - 1x
• ••

1x 1x

Stage 1: 5-bit unity weighted
current source array

I I I

H
32x - 1x 2x

• ••
16x

Stage 2: 5-bit binary weighted
current source array

Figure 5.7: 10 bit interpolative D/A architecture

The key non-idealities in the designaremismatchesin the transistors, parasitic resis

tances, parasiticcapacitances, and output resistances in the transistors. Capacitances

cause output glitches during fast switching. Because the converter is assumedto oper

ate at a moderate speed, parasiticcapacitances are less significant and ignoredin this

design. Parasitic resistances, transistor mismatches, andoutput resistances degrade

system performance such as integral nonlinearity. We compute the system perfor

mance in three steps. First, we extract SPICE netlists for each component from the

layout, then behavioral models parameters from the netlists, and finally system per-
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Figure 5.8: 10 bit interpolative D/A layout

formance from behavioral models. Because we only consider effects due to parasitic

resistance and resistive loading in our D/A, we only implemented software to compute

system degradation due to these effects.

5.4.3 From Layout to SPICE Netlist

An extractor capable of extracting resistances is used to convert the layout

to schematic. The process variation random vector, v, is assumed to be Gaussian

distributed,

v ~ normal(0, Sv) (5.9)

where Sv is obtained by combining information about the process and the geometry of

the layout. Suppose transistor i has parameter, v(i), that depends on its location on

the wafer,

v{i) = f{xi,yi,ri,...,rn)

(5.10)*—(«*» IHi 7>l, •••, rnFi + ... + fl-naU, yi, ri,..., rn)rn
OT\ orn

where X{ is the x-coordinate, yi is the y-coordinate of the transistor, rj... rn are zero

mean random coefficients, and the approximation is justified by a Taylor approxima

tion. The random coefficients correspond to random process variations such as random
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slope andorientationofprocess gradients. Thejointdistribution ofthe parametervari

ation of k different transistors has covariance matrix

dr Tdr

dv,. .. dv(i)

(5.11)

(5.12)

where Er is the covariance of the coefficients.

We applied the above theory to the analysis of process gradienteffects. Ran

dom coefficients, ti and r2, correspondsto random slopes on the x-axis and the y-axis,

respectively, such that

v(i) - f{xi, yiy rx, r2) = rw + r2yi (5.13)

where (xt-, &•) is the location oftransistor i. Suppose thecovariance of[ri r2]T is

2r =
0 a2

(5.14)

we compute the covariance of the parameters of two transistor located at (a?i,yi) and

(^2* 2/2) from

27„ =
«2 2/2

2r
^2 2/2

(5.15)

Next, we express the mismatch of the two parameters as v(l) - v(2)t a linear transfor

mation of v,

1
*(1) - v(2) =

-1

Consequently, the variance of mismatch is given by a2 = cr2((xi - x2)2 4- (yi - 2te)2)),

implying that the mismatch a is proportional to the Euclidean distance between two

components. Such prediction is consistent with data in [41][42]. Although theories for

mismatches in MOS transistors were developedin [42] based on spatial frequency,

we propose here a new theory that can estimate covariance of transistor parameters

in large transistor arrays efficiently byusingsensitivity analysis and matrix algebra.
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5.4.4 From SPICE Netlist to Behavioral Models

We extract behavioral model parameters from netlist for each component

using SPICE. We compute parameters by applying idealvoltage and current sources,

V89 to the pins of the components. For instance, the mirror model shownin Figure 5.9

has four parameters; namely, the currentmismatch, Km = ^"S the outputresistance
of the mirror, Rm, the standard deviation of Km, Sm, and the input voltage of the

mirror, Kn. Wecompute current mismatch Km and input voltage V{n by a DCanalysis,

Vi„f+in

Figure 5.9: Mirror behavioral model

the output resistance Rmby an AC analysis, and the standard deviation Sm by

Sm =
dKM

dv
Zv

dKMiT

dv
(5.16)

where v is a random vector of process variations (5.9) such as the width and length

variations ofall the devices. For simplicity, we compute ^f1 using finite differences,
and Sv from layout and process variation information using (5.15).

To characterize the effects due to interconnect and loading parasitics, we

first compute the sensitivity of the bias due to changes in ideal sources Vs using AC

analysis in SPICE. We obtain a linearized mirror model for later insertion into the

linear interconnect network.

We characterize other components in the D/A the same way. But, due to

the mixed-mode nature of some components in the D/A, the parameters for some

linearized components change as a function of the input bits. For example, the output

impedance ofthe 5bit linear array decreases with the input code because morecurrent

sourcesturning on in parallel decreases output resistance. lb characterize completely

the linear array, we take 32 sets of linearized parameters corresponding to every
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combination of the 5 bit input code. The same characterization is done for the binary

array.

5.4.5 From Behavioral Models to INL

In Chapter 4, weapproximate the distribution of t as a multivariate Gaussian

distribution,

t ~ normal(ntf Et) (5*17)

We compute the nominal values, \it, bycalculating the output current foreveryinput
code using a behavioralsimulator(Section 5.4.6) whichtakes as input the deterministic

mismatch, the output resistance, and the input voltage of all the components. Next,

we compute the covariance Et using

Et =
dt

[dKM\
S2M

dt -I
[dKM\

dt

+
dt

dKu

dt 1'

*i
dt tT

dKlJ

where vector parameters K\ and K2 correspond to the mismatches of the array of

outputs in the linear and binary stages, respectively. Matrix parameters Ek\ and Ek2

correspond to the covariance of the mismatches of the array of outputs in the linear

and binary stages, respectively.

From parameters fit and Et, we calculate integral nonlinearity using equa

tions given in Section 4.3.

5.4.6 Software Implementation

For this example, we extend the software implementation ofthe D/A described

in Section 5.3.3 from 5 bits to 10 bits. Due to the increase in resolution, parasitic

resistance effects are no longer negligible. We describe global parasitic resistances

by a linear network of resistors, R = {#i,.R2,...}, the linearized components, and

ideal voltage and current sources. Then,we compute the new DCbias using modified

node analysis[44] implemented with a sparse matrix solver[27]. We repeat the bias
calculations for all 1024 input codes to get a new nominal outputcurrent vector, fi't.
Assuming that parasitic effects do notaffect process variations, thenewoutputcurrent
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vector is distributed as,

t' ~ normal(fi'ti Et) (5.19)

from which we estimate the new system performance using formulae given in Section

4.3.

Furthermore, we create an adjoint network by building a network using the

adjoint representation of elements[12]. Then, we find the sensitivity matrix of the

output current with respect totheresistances, J^, by solving theadjoint network with
the appropriate ideal voltage and current sources.

5.4.7 Experimental Results

We verified an "industrial strength" 10 bit D/A[10] bottom-up from layout to

system level performance on a DEC 5000/125. By using the adjoint technique for

sensitivity analysis on the linearized chip-level interconnect network, we computed

efficiently the INL performance sensitivity with respect to all chip level routing re

sistances. According to our goal of constraint-driven layout synthesis, the layout

synthesis tools use the sensitivity information intelligently to assemble a global layout

from a collection of component layouts. Figure 5.10 shows the sensitivity of INL with

respect to the resistance from the ground pad to the linear array.

lb confirm the accuracy of the new approach, we compare our results with

SPICE simulation of the final extracted circuit. Due to the long simulation times for

SPICE, we consider only one process variable, the main transistor width ofthe mirror,

when computing the ±3<r worst case INL (4.23). The behavioral simulation results are

verified against SPICE results for 18 random input codes in Figure 5.11. Each data

point on the graph is a comparison, and a perfect match will fall on the 45 degree line.

Behavioral simulation achieved an accuracy of 0.005LSB. Furthermore, results from

behavioral simulation for all 1024 input codes plotted along with results from SPICE

on Figure 5.12 show good agreements.

In our example, SPICE takes 118 DEC 5000/125 CPU seconds per input

code. For behavioral simulation, the characterization of the components takes 1000

CPU seconds, the linear network solver takes 100 CPU seconds, and the behavioral

simulation takes 100 CPU seconds. On average for 1024 input codes, behavioral

simulation takes 1.2 CPU seconds per input code. Therefore, the speed advantage is
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Figure 5.11: Accuracy comparison between SPICE and behavioral simulation
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Figure 5.12: ±3<r INL bounds compared with SPICE

100 for simulation ofoneprocess variable. For M process variable, SPICE would take

59x2M CPU seconds perinputcode, while behavioral simulation would takeabout the
same time per input code because the CPU time is dominated by the characterization

ofthe components. For ourcircuit with600 transistors, M is at least600, sothe speed

advantage of behavioral simulation is proportional to 2600. Notice that traditionally,
designers simulate a subset of the process corners using SPICE because of the large

number of process corners. But no general algorithm has been proposed for choosing

the subset.

As a result of the speed advantage, we verified our D/A performance under

many types of process variations. Assuming typical process data such as transistor

width and length standard deviation of0.05/jm and threshold variation of 0,<^^m,
we computed the ±3a INL bounds (Figure 5.13) for the converter. From our theory,

the INL ofany fabricated chip will likely fall within the bounds. The maximum ofthe

INL bounds is 1.5LSB which satisfy the constraints of2.0LSB.
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5.5 Conclusion

In analogsystem design, final verificationis crucialto guarantee functionality

ofthe entire circuit. The traditional system verification strategy based on SPICE is too

slow for large systems, especially when worst case analysis is used to simulate process

variations. In our approaches, we take advantage of the hierarchical decomposition

of the system into components. In the first approach, we extract each component in

dividually, verify it under ideal bias conditions, and fit parameters for its behavioral

model. Then, we simulate the system at the behavioral level using behavioral models

only. Behavioral simulation results compare well with Monte Carlo SPICE simula

tions. The approach is exact and works well for architectures with negligible parasitic

loading effects.

Tb verify the system in the presence ofparasitic loading between components,

we propose an approximate strategy. We extract each component individually, verify it

under ideal bias conditions, fit parameters for its behavioral model, linearize the com

ponents at the operating point, substitute the linearizedcomponent in the interconnect

network, find the changesin the bias conditions, and estimate the performance devia

tion due to biaschanges usinga first order Taylor approximation. From experimental
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results, we have validated the verification approach for a 10 bit interpolative D/A to
bewithin0.005 LSBcompared withSPICE. From CPU time analysis, this verification
approach can be many orders ofmagnitude faster than SPICE.



Chapter 6

Data Converter Testing using

Behavioral Simulation
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6.1 Background

Data converters are commodity products, yet their testing is very expensive.

Test engineers use expensive equipment to take accurate measurements against back

ground noise to characterizeconvertersover a variety of operating conditions such as

temperature and supply ranges. Furthermore, engineering time needed to develop

unique test software for each product adds substantially to the overall testing cost.

A behavioral model that captures the converter behavior can provide critical

information for design engineers to evaluate the testability of the design at an early

design stage and for test engineers to choose the optimum testing strategy after design.

From the information contained in the behavioral model, engineers can evaluate the

tradeoffs between test set size, test coverage, detection thresholds, measurement noise,

chipperformance, and estimatedyield. Tbachievethis goal, we propose anew converter

testing strategy for data converters from a behavioral model[33]. We present previous

work in Section 6.2, a new testing strategy in Section 6.3, a yield analysis algorithm
in Section 6.4, and experimental results in Section 6.5.
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6.2 Previous Work

In [51, 53] a linear model for data converters along with a test selection
strategy was presented. The model for an N bit A/D converter represents the 2* - 1
transition points ofthe converter asa linear function ofthe component errors,

t = Svv (6.1)

where t is an 2^ - 1-dimensional vector that represents the transition points, vis an
m-dimensional vector that represents the component errors, and Sv is the 2N -1 by m
sensitivity matrix with full column rank.

Assuming no measurement noise, only mlinearly independent test points are
required to estimate the mmodel coefficients. The objective is to find the optimal
subset ofthefull setof2N -1 test points thatminimizes the prediction variance ofm.
This problem falls in the category ofOptimal Design of Experiments. It has been
shown under the D-Optimality criterion[3] that in the limit where the numberof
test points is large, an optimal selection is S'v, an mby mmatrix formed by selected
rows of S^. The mmodel coefficients, v, are then computed as

v= K]-V (6.2)

where t' are the selected measurements. Under this criterion, the prediction variance
ofv is minimized by maximizing |5,Jr5i| where | •| is the determinant.

While the D-Optimality criterion gives the optimal solution, the computa

tional complexity prevents its use for large models. Stenbakken[54] introduced an

algorithm for a near optimal solution based on QR factorization with pivoting. The

algorithm first chooses the row of Sv with the largest norm, orthogonalizing all re

maining rows to it using a modified Gram-Schmidt orthogonalization procedure, then

choosing the row of largest norm of those remaining, and repeating the process. The

algorithm records the row indices during pivoting, and chooses the m pivot rows ofthe

initial Sv for S'v.

The main drawback of the previous testing strategy for data converters lies

in the difficulty of making accurate measurements. For example, an A/D produces a

discrete output code from a continuous input. Under the previous testing strategy,

we measure the transitions between adjacent output codes using a bisection search
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algorithm[43]. In thisalgorithm, we guess initial lower bound, ti(i), and upper bound,
tu(i), for the transition t(i). If theoutputs ofthe converter for tt(i) and tu(i) are ox < i
and02 > i+1, respectively, then t(i)mustliewithin thebounds. Bymovingthebounds
closer iteratively until convergence, wecandetermine t(i)up to anaccuracy limited by
the measurement noise. Because the algorithm has complexity of 0{log2(£)), where
a is the required accuracy in fraction of the smallest step size (LSB), we needmany
iterations requiring long test time for accurate measurements.

Moreover, measurement noiseposesa significant problembecauseit corrupts

the estimated parameters, lb reduce measurement noise problems, Hemink[23] pre
sentedalgorithms for testability analysis and optimal test selection in the presence of
measurement noise. On the other hand, Souders[52] proposed adding more test points

to reduce noiseeffects by creating an overdetermined system of equations to be solved

by least square techniques. Although additional test points reduce noise effects, no

algorithm has been presented so far for determining the number ofextra tests needed

or selecting the additional tests based on the amount ofmeasurement noise.

Another drawback of the previous approach is the large amount of compu

tation required for solving the system of equations for each chip under worst case

operatingconditions such as temperature and supply extremes. Also, the lack of con

sideration for tradeoffs between test set size, chip performance, test coverage, and

yield reduces the usefulness of the previous strategies.

6.3 New Testing Strategy

Data converters are binned with respect to their performance and sold at

prices accordingly; therefore, we need a strategy to tradeofftested chip performance

and test costs, as well as other parameters such as test coverage, measurement noise,

and estimated yield. Decreasing test coverage, smaller measurement noise, stricter

detection thresholds, and lower chip performance would require smaller test set and

less test time. Stricter detection thresholds, on the other hand, would decrease esti

mated yield. An optimal choice ofthese parameters will lead to the most cost effective

testing solution. In this section, we present a testing strategy that allows tradeoffs
between these parameters.

Ourstrategy focuses on testingall DC performance ofNyquist data convert-
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ers including offeet error, full scale gain error, integral nonlinearity, and differential
nonlinearity. The behavioral model for data converters presented inChapter 4 isuse
ful for testing DC performance. Incontrast, the model proposed previously in [53] is
deterministic and hence does not represent statistical effects. We represent electronic
noise as well as process variation effects. Moreover, our model has distributions for

INL and DNL. We will show that these are essential to developing a testing strategy
that tradeoffs between test set size, test coverage, detection thresholds, measurement
noise, chip performance, and estimated yield.

6.3.1 Measurement and Detection Threshold

As mentioned inSection 6.2, previous testing strategies[53,23] have difficulty
in accurate measurements of circuit performance such as A/D converter transition

points in the presence ofmeasurement noise, lb circumvent the problem, we propose
a simpler measurement that is robust against noise. In contrast to the traditional

approach where the exact value of a performance parameter such as a transition

point is measured, we verifythat a circuit performance parameter falls within certain
detection thresholds in the presence ofmeasurement noise. For example, the test for
A/D converter transition point, t(i), consists of only two A/D conversions for input
thresholds U(i) and tu(i). Asuccessful test corresponds to outputs ofthe converterfor

U(i) and tu(i) beingo/ < i and ou > i +1, respectively. In this case, the transitionpoint

plus uncertainty due to noise, t(i) + 6, will lie within the range given by (tj(0> *«(*))»
where 6 is the uncertainty due to noise. As a result, the following inequalities hold,

*i(0 < t(%) + 6< *«(t), (6.3)

ti(i) -6< *(t) < tu(i) - 6, (6.4)

tl(i) —max(6) < t(i) < tu(i) —min(6). (6.5)

Assuming noise 6 falls in the range of (-A, A), t(i) satisfies the following inequality in

the presence of measurement noise (Figure 6.1),

ti(t) - A < t(i) < tu(i)+ A. (6.6)
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Figure 6.1: Detection thresholds

6.3.2 Testing Gain and Offset Errors

Successful tests for gain and offset errors establish bounds on these param

eters. Gain and offset errors (Definitions 4.3.3 and 4.3.4) are linear functions of the

first and last transition points, t(l) and t(n), respectively. We can estabUsh bounds on

these errors by choosing tight bounds such as t/(l), tu(l), ti(n)> and tu(n). For example,

bounds on offset error, Voa, and full scale gain error, Vge, are

t/(l) - A - 1(1) < Vos < tu(i) + A- X(l), (6.7)

ti(n) - L(n) + L(l) - tu(l) -2A< Vge < tu(n) - L(n) + X(l) - t/(l) + 2A. (6.8)

6.3.3 Testing Nonlinearity Errors

Successful tests for integral and differential nonlinearity estabUsh bounds

on these parameters for all inputs. For a 10 bit converter, there are a total of 1024

possible inputs. Fortunately, it suffices to test a subset, T, of the set of aU inputs,
S, due to correlations between outputs of data converters. That is, we can estabUsh
bounds on aUnonlinearity errors by performing tests in T.

We can bound integral and differential nonUnearities for individual inputs
using the proposed measurement scheme. The user specifies the INL test thresh-
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old, sb, from which we compute the needed test input thresholds using the foUowing
equations.

From (4.17) and (6.6), we derive inequaUties for the integral nonlinearity, s(i),

«/(*) < s(i) < su(i), (6.9)

where

Sl{i) =L(T-m+2A]m-<«(1) -2A>+w -m=-«, (6.10)

and 56 is the INL threshold in the presence ofnoise. We use (6.10) and (6.11) to compute
the test inputs */(i) and tu(i) where i 62.. .2*- 2. As a rule, the threshold, sb, should
be set as foUows,

56 = 56 + 2A, (6.12)

where s'b is the INL threshold for ideal noiseless measurements, due to the foUowing
approximations,

5/(i) « (tt(i) - tu{l) - 2A) + X(l) - L{i) « -56 - 2A (6.13)

«u(0 * (tu(i) ~ ti(l) + 2A) + L(l) - L(i) » 576 + 2A (6.14)

The approximations show a linear dependence ofthe threshold, 56, on noise and help
designers set the INL threshold based on noise estimates. Notice that (6.13)and (6.14)

are only used as a rule for designers. In testing, we use the exact inequaUties (6.10)

and (6.11) to compute the test inputs ti(i) and tu(i) where i € 2.. .2N - 2. Similar

exact inequaUties (6.10) and (6.11), and approximate inequaUties (6.13) and (6.14) can

be derived for differential nonlinearity.

6.3.4 Test Selection for Nonlinearity Errors

Each successful test i establishes upper and lower bounds on s(i). Due to

correlations between the transition points (Section 4.2), INL at other points may also

be bounded. In test selection, we choose the best subset, T, of test points, S, such that
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aUuntested INL's are bounded by a maximum INL performance, sm. Let Ube the

set ofunbounded INL. Test coverage is defined as

1-| (6-15)
where | •| denotes the cardinaUty ofa set. Pull coverage refers to the case where U
is empty and hence test coverage is one.

We formulate the test selection problem as foUows. Let A be the magnitude

of the measurement noise in (6.6), sm be the specified maximumINLperformance, 5;6

be the INL threshold in the absence ofnoise, 56 = sb + 2A be the INL threshold in the

presence ofnoise, Tbe the test set, choose the minimum T suchthat

-5m< -56 < s(i) < sb < sm,i e T (6.16)

-sm<s(i)<smii^T (6.17)

where 5 is given by a linear transformation of some independent variables in (4.22),

5 = U3cs + fis (6.18)

where c8 ~ normal(0, i7cs) is a zero mean multivariate normal distribution with rs

statisticaUy independent variates.

Due to linear dependence, we use linear programming[43] to check the

bounds on untested INL, s(i), in (6.17). We formulate the problem as foUows. We

check that

max s(i) <sm,i£T (6.19)

min s(i) > -sm,i g T (6.20)

such that

-sb<s(j)<sbJeT (6.21)

- ky/EjJJ) <cs{i) <kyjsjjj), i=1... ra, (6.22)
where A: is a user specified parameter to limit the distribution, c8. The limit prevents
signatures with small magnitudes from being scaled unrealistically with unbounded

cs in the linear program. TypicaUy, we choose k = 5 for a 10a statistical limit. If cs is
unbounded, then the statistical information provided by the distribution of cs is lost.
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Inadifferent context ofdelay fault testing[28], a similar problem formulation
has been appUed to check bounds on delays ofdigital circuits. In both formulations,
the problems seem to be analyticaUy intractable. For example, the simpler problem of
checking whether |T| tests provide sufficient bounds on swould require an exponential
complexity of

0(\S-T\2{). (6.23)

where the exponential dependence is due to the linear programming step and i =

I \T\ )'where I )kthe number ofways yobjects can be chosen from xdifferent
objects.

As a result, the optimum test selection problem is likely intractable. Thus,
we propose a heuristic solution. First, we rank the tests according to the algorithm
proposed in [54] based onQR factorization with pivoting.

• (a) Choose the row of U8 with the largest norm,

• (b) OrthogonaUze aU remaining rows to it using a modified Gram-Schmidt or-
thogonaUzation procedure,

• (c) Choose the row of largest L2 norm of those remaining,

• (d) Repeat (b) and (c) until aU rows are chosen,

• (e)Record the rowindices of aU chosen rows, andUst them in the orderthey were
chosen.

As a result, we produce a Ust of INUs with decreasing order of importance where the

3th item on the Ust is s(i).
Next, we use the foUowing algorithm to find T.

• (a) Let j = 1, and T be empty.

• (b) If j is larger than the number oftest points, done.

• (c) Pick the jth item on the Ust, s(i). Check s(i) for bounds specified in (6.17)

using linear programming.

• (d) If the linear programming is infeasible, quit due to performance specifications

too tight.
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• (e) If the bounds are not satisfied, add i to T.

• (f) j = 3 + 1 and go to (b).

Unless the specified performance is infeasible, the algorithm guarantees ftdl coverage

since every INL is either bounded or constrained by a test. Tb tradeofftest size against

coverage, the algorithm should stop after a certain coverageis achieved.

6.4 Yield Analysis

Yield, y, is defined as the ratio of the number of chips working correctly to

the total number ofchips. As a lower bound on Y, the estimated yield, V, is the
ratio of the number of chips passing aU tests under our proposed strategy to the total

number ofchips. Assuming the chip passes gain and offseterror tests, estimated yield

due to INL tests is given by

f = / f(s)ds (6.24)
JR

where f(s) is the probabiUty density function of 5 and

R : -sb < s(i) < s'b, i e T (6.25)

As a result, stricter test thresholds would decrease estimated yield, while increasing

test coverage. Thus, yield analysis for a particular test set and thresholds provides

critical information for engineers to improve design and to choose the optimal testing

strategy.

We estimate yield using Monte Carlo integration according to the foUowing

algorithm.

• (a) *= j = 0, and k is the number ofsamples.

• (b) Generate a realization of cs, c8, from the distribution of c8 using a random

number generator.

• (c) Compute a realization of s, s, using (4.22) and c8.

• (d) Check if s is in R using (6.25). Ifso, j = j + 1.

• (e) i = i +1. If i < k, go to (b), else done.
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Estimated yield, f, is then computed as t = j. Because Monte Carlo integration
is used, our estimate f improves with the number oftrials, k. The variance ofour
estimate is inversely proportional to Ar2.

6.5 Experimental Results

We have appUed the new strategy to the automatic test generation for a 10
bitcurrent-switched, interpolative D/A[10] shown inFigure 6.2. We used a bottom-up
verification strategy[29] tocompute theD/A behavioral model parametersfrom SPICE
netlist and expected process variation parameters. Behavioral simulation of the D/A

andautomatic test generation have been integrated into a single software package to
facilitate design-for-testability.

lout

I

mirror

f i ii ii }
Iref

32x 1x
• ••

1x 1x 32x - 1x 2x
• ••

16x

Stage 1:5-bit unity weighted Stage 2:5-bit binary weighted
current source array current source array

Figure 6.2: 10 bit current-switched, interpolative D/A architecture

Using the proposed testing strategy, we first determined the tradeoffbetween

maximum INL performance, $m, and test set size (Figure 6.3) for s'b = 1.5 LSB, A = 0.1

LSB, and fuUcoverage. Notice that test set size varies inversely with INL as expected.

Also, the size drops below the rank of 38 for INL larger than 3.2 LSB, where the rank

is the number of INL signatures. This occurs because some INL signatures with small

magnitudes do not contribute significantly to large INL errors. In contrast, previous
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testing strategy[53] uses the same number of tests as the rank because such strategy

does not take into consideration the magnitudes of the signatures. In Figure 6.4, we

plotted the DECALPHA CPU times for test generation against INL. Notice that test

generation times drops significantly for lower performance chips.

350

1111 1111 11

2.5 3
1 • i • '

3.5

11111 111 11

4 4.5
\

INL Performance (LSB) Rank =38

Figure 6.3: Tradeoff between test set and INL performance

Next, we determined the tradeoff between measurement noise and test set

size (Figure 6.5) for sb = 1.5 LSB, sm = 3.0 LSB, and fuU coverage. Notice that the

size increases somewhat linearly with noise. The average DEC ALPHA CPU times for

each data point is 600 seconds.

Also, we determined the tradeoff between INL threshold in the absence of

noise, sb, test set size, and estimated yield for A = 0.1 LSB, sm = 3.0 LSB, and full

coverage. Figure 6.6 plots test set size against sb, while Figure 6.7 plots estimated yield

against s'b. Together, they showed that stricter thresholds decreaseestimated yield and

test size, yet do not reduce the test size under 31. The reason is that for this level ofINL

performance, 31 signatures contribute to the INL, while the remaining 7 signatures

are insignificant. Thus, 31 or more independent tests are needed to guarantee INL

performance regardless of INL thresholds. As a result, we should choose the highest

threshold, Sb = 1.3 LSB, such that test size is 31 for highest estimated yield and

betternoise tolerance. The average DEC ALPHA CPU times for each datapoint is 582
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Figure 6.4: Tradeoffbetween test generation time and INL performance

Noise magnitude (LSB)

Figure 6.5: Tradeoff between test set and measurement noise
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Figure 6.6: Tradeoff between test set and INL test threshold
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Figure 6.7: Tradeoff between estimated yield and INL test threshold
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FinaUy, wedetermined the tradeoffbetweenmaximumDNLperformance, dm,
and test set size (Figure 6.8) for DNL testbound inthe absence ofnoise d'b - 1.5 LSB,
A = 0.1 LSB, and fuU coverage. Notice that test set sizevaries inverselywith DNLas
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expected. The average DEC ALPHA CPU times for each data point is 303 seconds.
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Figure 6.8: Tradeoff betweentest set and DNL performance

Next, we appUed our strategy to the automatic test generation for an 8 bit

cycUc A/D converter shown in Figure 6.9. We computed behavioral model parameters
from ahighlevel architectural description and expected process variation parameters.
In Figure 6.10, we showed the tradeoff between maximum INL and test set size for

4 = 0.8 LSB, A = 0.05 LSB, and fuU coverage. Notice that, in general, the test size

for this type of A/D converter is very smaU becausethe outputs are highly correlated.

The average DEC ALPHA CPU times foreach data point is 2 seconds.

6*6 Conclusion

We have presented a strategy for testing all DC performance ofNyquist data

converters including offset error, full scale gain error, integral nonlinearity, and differ

ential nonlinearity. Assumingthat the behavioral model is correct, the testing strategy

is exact, but the yield estimate is approximate.

In contrast to previous testing strategies based on linear models that require

accurate measurements of circuit performance in the presence ofmeasurement noise,

our strategy uses a simpler measurement to verify that a circuit performance param-



Figure 6.9: 8 bit cycUc A/D architecture
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Figure 6.10: Tradeoffbetween test set and INL performance
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eter falls within a certain range in the presence of measurement noise. Using the
proposed strategy and behavioral modeling of the device under test, we evaluated
tradeoffs between test set size, detection thresholds, measurement noise, chip per
formance, and estimated yield. We showed that smaUer measurement noise, stricter
detection thresholds, andlower chip performance would require smaUer test set and
reduce test time. Stricter detection thresholds, on the other hand, would decrease
estimated yield.
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Chapter 7

Behavioral Simulation for Noise

in Mixed-Mode Sampled Data

Systems

7.1 Background

The simulation ofmixed analog and digital systems is crucial in system verifi

cation as more analog and digital circuits are integrated on the same integrated circuit

in data acquisition, automotive, or disk drive electronics appUcations. For these sys

tems, there is a trend to reduce system power consumption by reducing the supply

voltage or minimizing parasitic capacitances. One of the fundamental limit to these

power reduction techniques is the electronicnoise inherent in the mixedanalog/digital

subsystems. While reducing the supply voltage reduces the aUowable signal power,

the noisepowerdue to physical effects remain the same. Dueto the potential decrease

in signal-to-noise ratio, it is desirable to simulate the mixed-mode system for noise

performances. Unfortunately, there are no noise simulators that can analyze noise
effects for mixed-mode systems.

Tb develop such a simulator, we foUow thebehavioral simulation paradigm
in which circuits are modeled mathematicaUy as in [33,19, 30, 31]. In this chapter,
we present a new noise behavioral model and a direct noise analysis approach
for mixed-mode systems. Using the appropriate model, there is no need for circuit
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ormacromodel simulation, buta direct algebraic approach where theobjects being
manipulated are noise characterizations.

In Section 7.2, the problem is defined. In Section 7.3, the traditional Monte

Carlo method for noise simulation isdescribed. Then, newbehavioral models (Sections
7.4 and 7.5) and new approach for noise analysis (Section 7.4) are presented with
experimental results (Section 7.7).

7.2 Problem definition

The class ofcircuits under consideration includes sampled-data systems that
have mixed analog/digital inputs and outputs. This includes, but is not limited to,
A/D converters, D/A converters, and receivers ofdigital signals. The objective ofthe
simulation is to determine the noise effects due to electronic noise. Thermal, flicker,
and shot noise in the transistors and thermal noise in resistors contribute to the

noise of the circuit. TraditionaUy, electronic noise is modeled with a Gaussian random

process described byits power spectral density[201. From the noise sources, the system
architecture, and the deterministic input, we seek the distribution ofthe output. For
example, we seek the continuous output distribution of a D/Aconverter, the bit error

rate of a receiver, or the output code distribution of an A/D converter. Tb iUustrate

the problem, Figure 7.1 shows a switched capacitor implementation of a cycUc A/D

converter. Due to noise effects, the output of the comparator is wrong with a non-zero

probabiUty. Since the N-bit digital output code is a logic function of N successive

outputs ofthe comparator, weseekthe probabiUties foreachofthe 2N possible output
codes given a deterministic input.

7.3 Previous work

Traditionally, the SPICE-Uke simulators[44] analyze analog circuit noise in

the frequency domain. SPICE linearizes the circuit at the operating point, adds sinu

soidal sources in parallel to the noisy elements, and analyze the resulting AC equiva

lent circuit. The approach has two problems. Firstly, many components in mixed-mode

systems, such as the comparator, have discontinuous transfer functions and cannot

be linearized. Secondly, mixed-mode systems are usually non-steady state (e.g. an
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Figure 7.1: CycUc A/D

A/D produces an output code after a finite time), so an operating point does not exist

for the circuit. Simulators such as [59] analyze noise in switched-capacitor circuits

using linear systems theory, but fail to handle noise in mixed-mode switched-capacitor

circuits as mixed-mode circuits are in general nonlinear.

Without simulators for noise effects, designers use the Monte Carlo noise

simulation technique. In this technique, they model the circuit as a deterministic

network of components, and inject random numbers into the signal path. They run

the system many times, and hope to get a wrong output code by chance.

Figure 7.2(a) illustrates a sample-and-hold, a major component in a sampled-

data system.. The electronic noise source, v, has power spectral density, Sv(f),

where / is frequency. The componentis modeledby a delay with an additive noise, n,

as shownin Figure 7.2(b). At each simulationtime point, the simulator takes samples
of n and add them into the signal before the delay.

We compute the distribution ofnfrom the noise power spectral density, Sv(f).
Due to the lowpass filter formed by R and C, the voltage on the capacitor when the
switch, SI, is closed has powerspectral density given by

SvU)
1+(2xfRC)2' (7*1)

As SI switches, thussampling the voltage onto the capacitor, we compute theequiva-
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Figure 7.2: Sample-and-hold
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lent sampled noisepower spectral densityon the capacitor by shifting and adding
the original spectral density. From the sampling theorem, the sampled noise power
spectral density, Sd(f), is

Sv(f-kf.)C ( f\ _ V^ JvU - KJ8)
(7.2)

where fs is the switching frequency. The inverse Fourier transform of £<*(/) gives
the time domain discrete autocovariance function Cd(t) from which the sampled noise
n is defined. The sampled noise, n, is a random vector with a multivariate normal

distribution,

n ~ normal(0, En) (7.3)

where En(i,j) = Cd(iT - jT), n is a random vector with m components, mT is the total

duration of the simulation, and T is the sampling period. Entry n(i) in random vector

n represents a noise sample at time iT. We generate realizations of noise sample

n(i) from a random number generator and inject them into the system at time iT.

Correlated samples specified in En can be generated using filtering of uncorrelated

random samples.

Despite the simplicity of the Monte Carlo approach, it has problems with

computing low error probabiUties and machine dependency. In previous chapters

Monte Carlo integration suffices to estimate roughly parameters of interest because

the probabiUties of the events are not low; therefore, large variance of estimation is

tolerated. However, for a system with low error probabiUty pe, the number of system

runs required for a confident statistical error estimate is proportional to ^. For
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example, to simulate a receiver with bit error rate of 10~8, we need approximately
1016 samples. Furthermore, pseudo-random number generators on computers often
donot generate sucha largesequence ofindependent random numbers, but wiU re-use
old random numbers instead. In such instances, the extra simulations do not yield a

more accurate statistical estimate.

Tb compute the probabiUty of rare events, special variance reduction tech

niques for Monte Carlo simulations such as importance sampling can be used. In
general, MonteCarlosimulationscan be expressedas the foUowing integral,

/„ g(x)f(x)dx (7.4)

where g(x) is the parameter function, f{x) is the probabiUty densityfunction, and Q
is the sample space. In simple Monte Carlo, the integral is computed by generating

samples of x from density function /(•) and summing g(x). An important sample,

x, provides useful information such as non-zerog{x). Importance sampling[21]forces

generation ofimportant samples by using an artificial density function instead of f(x).

We can rewrite (7.4) as

Jn9(x) h(x)dx (7.5)
'n lh(x).

where h(x) is an artificial density function designed to increase the number of impor

tantsamples, and jM is the weight ofa sample.
Importance sampling is viable provided h(x) is given, but no general algorithm

has been proposed for choosing h(x). There are typically many different noise sources,

so the number of possible h(x) is large. As a result, automatic selection of a suitable

h{x) out ofmany possibilities is difficult.

Tb circumvent the difficulty of choosing h(x), Kahn introduced "spUtting"

techniques[24] as another form of importance sampling. In this technique, he splits

an important sample into many neighboring samples with appropriate weights, thus

increasing the number of important samples.

7.4 Behavioral model of noise

The key disadvantage of the Monte Carlo technique is the representation
of noise by computer generated samples of noise because many noise samples are
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required for good accuracy. Incontrast, we represent noise by a randomsignal We
sample the random signal nat time iT to obtain a noise sample n(i) in (7.3). Each
noise sample, X, is a random variable described by its distribution function fx, or
alternatively by aU ofits moments, where the kth moment xk is defined as

xk =E[Xk] = f°° ukfx(u)du
J—oo

(7.6)

AlthoughnotaU random variables can be described bytheir moments, weassume that
the random variables weconsider can becompletely described bytheirmoments.

In ournoise model, we wiU approximate a random variable by its first k+ 1
moments from x0 to xk, where kis an integer selected by the user based on accuracy
requirements. For example, we represent a Gaussian random variable X with zero

mean (E[X] = 0) andvariance a2 = (E[X2] - (E[X])2) using the first three moments
as

X =

Xl * 0 '
x2 = a2

x$ 0

In mixed-mode sampled-data systems, signals suchas reference, supply voltage, and
groundare deterministic. We represent a deterministic signal X = a byits first three
moments also as

X =

since E[X] = a, £[X2] = a2, E[X3] = a3.

The moments are parameters to characterize a distribution function. If all

moments are used, then the distribution function is completely characterized. The

advantage ofusing a finite number of lower order moments is computational efficiency.

Instead of manipulating a distribution function, we manipulate a set of numbers

representing the moments. Furthermore, from the Central Limit Theorem, random

variables resulting from manynoise sources should converge to a Gaussian distribution

which can be characterized by the first two moments, xi and x2. As a result, low order

moments are often the principal components of a random variable in practical circuits.

The disadvantage of using a finite number of moments is that effects of higher order

moments are not considered.
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Although the moments describe the distribution of a random variable, they

do not provide information about the correlation between each random variable. In

general, noise in a system are correlatedbecause the noise sources themselvesmay be
correlated or the system may contain architectures with reconvergent fan-out. For

example,when the signal path diverges as shownin Figure 7.3, the resulting signals

A and B are correlated since they originate from a single noise source. In the presense

noise—

Figure 7.3: Reconvergent fan-out causes correlated noise

of correlated noise, joint moments as weU as moments are necessary to describe the

noise statistics completely. As a first step, we will use only moments and focus on

systems with noise that are independent for the foUowing reasons.

• Noise sources from physically different components should be independent of

each other.

• In most sampled-data systems, white noise dominates non-white noise. Thus,

successive samples in time of a noise source are approximately independent.

• We focus on systems such as converters and finite impulse response filters that

lack reconvergent fan-out.

7.5 Behavioral models of components

As we generaUze analog signals from a deterministic representation to a

stochastic representation in Section 7.4, we must generaUze the system components
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to handle such random signals as weU. Components in a mixed-mode sampled-data
system faU into three classes; linear, mildly nonlinear, and strongly nonlinear.

7.5.1 Linear components

Theoutputofa linear component is a linearcombination ofthe inputs. The
output moments can be computed using binomial expansion and the independence
assumption. For example, an adder sums two random variables X and Y to produce
an output Z. We find the moments ofZ from the moments of A* and Y using

zk =E[Zk] =E[(X +Y)k] =£ (* jE[Xk~w] (7.7)

usingthe binomial expansion of(X+Y)k. Fromthe independence ofX and Yassumed
in Section 7.4, we then have

** =E(*JEX^EY' =E(*)**-M (7-8)
7.5.2 Mildly nonlinear components

The output of a mildly nonlinear component is a polynomial function of the

inputs. The output moments can be computed from input moments using binomial

expansion and the independence assumption. For example, a multiplier multiplies

two inputs X and Y to produce Z.

Z = XY (7.9)

We find the moments of Z from, the moments of X and Y using

zk = E[(XY)k] = E[XkYk] = E[Xk]E[Yk] = xkyk (7.10)

7.5.3 Strongly nonlinear components

For our purposes, the output of a strongly nonlinear component is a piece-

wise polynomial function (with m pieces) ofthe inputs. The domain is partitioned into

mdisjoint pieces, where r, is the domain for the ith polynomial function. Thescenario
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for X € u corresponds to the input, X, falling in the domain of the ith polynomial
function. For this scenario, the output, Z, is given by the conditional distribution

Z = Z\X € r{

and X e ri implies that X should be replaced by

X = X\X e u

(7.11)

(7.12)

The expected value of the output due to aU possible scenario is the sum of (7.11) over

all possible scenarios,
m

Z="£{Z\X e ri)Pr(X € r,-) (7.13)
t=i

In Section 7.6, we propose to compute the sum using a new simulation algorithm.

In mixed-mode sampled-data systems, the comparator is a strongly nonlinear

component which has a piecewise constant transfer function as shown in Figure 7.4.

The comparator has as inputs a random variable X and a threshold value t, and

H
output

ie

input

Figure 7.4: Comparator transfer function

produces the probabiUty ph for the scenario of output high (H), the probabiUty pl for

the scenario of output low (L), the conditional distribution of X given the discrete

output Y being lowUx\y{Al) & (7.12)), and the conditional distributionof A" givenY
beinghigh (fx\y(x\H) in (7.12)). MathematicaUy, the probabiUty for output above t is
defined as

/oo

fx(u)du (7.14)
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where fx is constructed from the given moments xn (Section 7.5.4). Conversely, the
probabiUty for output low is defined as

PL =L Mu)du =l-pH (7.15)
In(3.23), it is shown that theconditional distribution ofX given that Y= yis

fx\y(x\y) =P{Ypy^^X)fx{x) (7.16)
Also, we have P{Y = H} = pH and

P{Y = H\X
, f 1 x>t

= x} = l
0 x<<

Applying (7.16) in our comparator, we find the conditional distribution of X given
Y = His

i /xM x>t
fx\Y(*\H)={ PH ~ (7.17)

[ 0 x<t
Conversely, the conditional distribution of X given Y = L is

f*\rW)={ w'"* (7-18)
PL

_/ ° x^

Once the conditional distributions are determined, they are converted to a set of k +1

moments (Section 7.5.4).

7.5.4 Algorithms for comparators

In this section, we will show the algorithms to compute from input moments of

X and the comparator threshold t the probabiUties ofthe comparator output Y=H and

Y=L, as weU as the momentsforthe conditional distributions fx\y{xW) &&& fx \y (x\L)-
We will showthe cases for k = 2,3, where k is the highest moment of interest.

Highest moment k=2

When k - 2, the random variable X is approximated by a Gaussian random

variable. A Gaussian distribution is chosen because random variables resulting from
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many noise sources should converge to a Gaussian distribution which can be charac

terized by the first two moments, xx and x2. The mean, fi, is given by xly and the

variance a2 is given by x2 - x\. With theseparameters, the distribution ofX is
1 (g-n)2

fx(x) = .— e 2*2 , -oo < x < oo (7-19)
y/2ira

The probabiUty for Y = H is given by integrating the distribution from the trigger

point t to infinity,

PH =f fx(x)dx =1-0 (^) (7.20)
where Q(-) is a standard mathematical function definedas

Q(x) =T -^e^du (7.21)
./-co VZ7T

Letting A ~ /^|y (x\H), and using (7.17), wehave

/a(*)=| v^7e 2<r *-' (7.22)
0 x < t

The moments of A are then given by

xfA(x)dx = -=—e 2<r2 + Li (7.23)
-co y/2irpH

/oo 0. (t-|i)2
x2fA(x)dx = -==—(* - fi)e 2*2 + a2 + 2^ai + ft2 (7.24)

-co \2irpH

The probabiUty for y = Lis then givenbypl = 1-Ph- Letting i? ~ /x-|y(x|£),

the moments of B are given by

&x = (zi - axp^/pL (7.25)

&2 = («2 - a2pH)/PL (7.26)

Highest moment k=3

When A: = 3, the random variable, X, is approximated by distribution[551

created by joining together two halves of two different Gaussian random variables

defined as

f -£=£-j=*2. e 2*? a.>a/*(*) =j ^^in^) ^^ - (? 2?)
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where its moments are given by

*i =(W §*i +a)"!- +(a " V-*2>—r— (7-28)

x2 =(<rf +2Jfal0 +a2)-£-+(<£ -2,/L2e+a2)-?2— (7.29)

(-2^f+Za\a -3y/fa2«2+a')-^- (7.30)
This distribution is chosen because it degenerates into a Gaussian distribution when

o\ = <t2. A closed form solution for cr^a^a in terms of xiyx2,xs is intractable. A

numerical solver is difficult to implement due to the need for good initial guesses. As
a result, parameters a\, <72, a are computed from x\,s2,x3 using the downhiU simplex
optimization method in multidimensions[43] to best match the moments.

The cost function being used isc=£*=1 (xk - x'k)2, where xk are themoments
given, and x'k are the resulting moments given by (7.28) to (7.30).

Let A ~ fx\Y(AH\ then using (7.17) we have

x3 = (2\l-al +3(7?a+Sxl-^a2 +a3)—^-+
* ~ 0"! + 02

«i =\/--^L--e"i^+« (7.31)Xl ~~- +cr2pH v '

o-2 = \ r L(< ~a)e ^ +°l +2ai« +fl2 (7-32)

a3 =2fe-2—&(l +̂ A*"^ +3a2a +3alG2 +a3 (7.33)V 7T <7X + <72 PH 2a\

7.6 System simulation algorithm

After describing the random signal representation, we focus in this section

on the algorithm used to simulate the noise in sampled-data systems. The algorithm

is event-driven as described in detail below, yet it must handle noise represented as

random signals in mixed-mode, sampled-data systems. In such systems, the strongly

nonlinear components are special. Forexample, the comparatoris a special interface

since its input is analog wMle its output is digital (e.g. H or L). Due to noise, the
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analog signals are assumed random; therefore, both comparator output states are

possible. The technique used in ouralgorithm is to compute the probabiUty ofeach
possible outcome, andcontinue thesimulation recursively for each possible scenarios.
SchematicaUy, the simulation foUows a tree of scenarios based on comparator outputs

as shownin Figure 7.5. Tb compute the probabiUty ofa particular scenario occurring,

we take the product ofthe probabiUties on the unique path from the tree root to the

scenario.

Pr(H}^r assume H
assume

Pr(HV

Pr(H)jT Pr(LV^ assume L

PrCLrs* PrOjir' assume H
assume L<^y

Pxiv^ assume L
first second
comparison comparison

Figure 7.5: Scenario tree

The simulation algorithm is as foUows.

• (a) Extract noise parameters from circuits using (1) and (2). Construct moments

ofdistributions for noise sources.

• (b) TbpologicaUy sort network to find the evaluation order of components. The

procedure always succeeds because all feedback paths are broken by at least one

delay in sampled-data systems.

• (c) Evaluate each component in order, return ifend ofUst.

• (d)When evaluating a comparator, checkdistribution at comparator input X,find

probabiUties for output Y = H and L, execute recursively (e) and (f)

• (e) Assume the scenario with output Y=H, find conditional distribution of X I

Y=H, replace X with X I Y=H, continue simulation in (c)

• (f) Assume the scenario withoutputY=L, find conditional distribution ofX IY=L,
replace X with X i Y=L, continue simulation in (c)
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7.7 Experimental results

7.7.1 Cyclic A/D

A12 bit cycUc A/D(schematic in Figure 7.1 and model for noise calculations

in Figure 7.6) has beenmodeledin the C++ language for both MonteCarlo simulations

and direct noise calculations. The gain parameter of a sample-and-hold can be com
puted from a circuit level implementation using SPICE transient analysis given the
fixed system clock period. In this experiment, we assumed the gain to be one for lx
S/H and two for 2x S/H. The comparator threshold can be computed using SPICE also,
butwe assumed it tobe IV. Input voltage ishalfofthe fuU range input. The effective
noise of a sample-and-hold can be computed using (7.2) and (7.3). However, for this
experiment we assume that the effective noise is given and is white with standard

deviation of 0.365mV, which maybe considered high. However, a highnoise value is
used to prevent excessiveCPU time in Monte Carlo simulations, whUe a lower noise
value would not affect our method.

delay

input

noisy
sampler

HMUX*

noisy
samplei

Figure 7.6: Noise model for cycUc converter

Figure 7.7 compares the predicted output code distribution from a reference

Monte Carlosimulation (107 trials) with the output codedistributions from direct noise

calculations (k = 2) and (k = 3), where k is the highest moment of interest. Notice

that the results are comparable, but the CPU times are much less (9620s vs. 0.1s

and 3.7s). Next, in Figure 7.8 we compare the Monte Carlo method with the direct

method for accuracy as a function of CPU time. The number of trials in Monte Carlo

simulations is varied from one hundred to seven hundred thousand. Assuming the
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reference simulation gives the true solution, the absolute errors in the probabilities

are computed for all output codes. The average of the estimated absolute error is

then plotted against CPU time. The error curve for the Monte Carlo method suggests

that its accuracy is inversely proportional to CPU time. The error curve for the direct

method shows that error decreases with higher order approximation. Besides, the

direct method has smaller error than the Monte Carlo method for comparable CPU

times.

0.25-

0.20-

.^0.15-

.a

| 0.10-1

0.05-

0.00- i i r i r i r i r

•«-C\JCO-*tlOCON-COO>Oi-CMCO^t

oooooooooooooo

Output code

10*7 Samples
Monte Carlo
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Direct approach k=2
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DEC 5000 CPU TIME

Figure 7.7: Twelve-bit cyclic A/D code distribution

lb investigate noise effects for different inputs, we computed noise effects for

a voltage range of several LSB's of input voltage centered around half the reference.

First, we divide the input range into 30 uniformly spaced inputs. Then, we compute

the output code distribution for each input. The result, obtained using 1.3 DEC 5000

CPU seconds, is the joint probability density function of the input and output shown
in Figure 7.9.

Notice that the probabiUties for wrong codes are as high as that of the correct

code, rendering the A/D unusable. In top-down design methodologies, designers cantry

various noise parameters to determine the propercomponent noise level from system

level constraints. For example, if the noise level in the sample-and-hold is reduce

by ten times, then the A/D noise performance is much better as shown in Figure
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Figure 7.8: Error vs. CPU time

7.10. Consequently, designers can use behavioral simulation for noise to determine

the optimal component noise level based on noise performance constraints.

7.7.2 High speed flash A/D

Noise in flash A/D(Figure 7.11) cause errors in comparator outputs, leading to

errors in digital decoding. Ifa simple digital decoder (Figure 7.12) is used, the output

code can be very different from the correct code, in which case the error is called a

sparklet16]. Because the output error probabiUties are usually very small, (6.4 •10~4

in Figure 7.13), many simulations are needed in the Monte Carlo method to predict

sparkles.

In contrast, using the direct noise computation method, we have modeled two

flash A/D's, one with a simple thermometer-to-binary ROM decoder and one with a

more advanced decoder(Figure 7.12). Effective comparator noise can be estimated

from [37]. In this experiment, for convenience we set the standard deviation of the

comparatornoise to a quarter of the smallest input voltagestep size. Input voltage
is half of the full range input. The output code distribution, computed using direct

method (k=2), is shown in Figure 7.13.

Because the probability of error for sparkles is small, computing sparkles
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Figure7.9:Jointprobabilitydensityfunctionforhighcomponentnoise

Figure7.10:Jointprobabilitydensityfunctionforlowcomponentnoise
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Figure 7.11: Flash converter architecture
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with Monte Carlo simulations would take a large amount of CPU time. Tb illustrate,

we show in Figure 7.14 the percent error in computing sparkles as a function ofCPU

time. Notice that the accuracy of the Monte Carlo simulation technique is inversely

proportional to the CPU time as expected, lb get an accuracy of 1%, 10000 DEC 5000

CPU seconds are needed. On the other hand, to get the same accuracy using the

proposed strategy with k = 2, where k is the user selected highest moment ofinterest,

0.1 DEC 5000 CPU seconds are needed. Therefore, behavioral simulation is about 5

orders ofmagnitude faster.

Furthermore, using higher order moments increases the CPU time needed as

shown in Figure 7.14 for k = 3, yet do not increase the accuracy much. Therefore, in

this case, lower order moments are sufficient for a good estimate ofnoise effects.

Tb investigate noise effects for different inputs, we computed noise effects for

the full input range. The result, obtained using 1.9 DEC 5000 CPU seconds, is the

joint probabiUty density function of the input and output shownin Figure 7.15. Notice

that the wall in the center corresponds to the high probability of getting the correct
codes, whilethe individual small columns onthe rightcorresponds to sparkles.

Simple
decoder
*0.063s

Better
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*0.059s

*DEC 5000
CPU seconds
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Figure 7.14: Accuracy vs. DEC 5000 CPU time for Monte Carlo and direct methods
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Figure 7.15: Joint probabiUty density function for flash converter
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7.8 Conclusion

We have presented a "direct" noise analysis approach for mixed mode sys

tems, and compared our approach with the traditional Monte Carlo approach. The

approach is approximate and computes noise effects by performing arithmetic on a

finite number ofmoments of distribution functions that characterize electronic noise.

One key advantage of this approach is its ability to compute low error probabilities.

From experimental results, we have shown that our approach is several or

ders ofmagnitude more efficient than the MonteCarlo approach in computing sparkles

(low probability code errors) in data converters. Furthermore, the estimation errors

due to low order moment approximationseem to be small, since the simulation results

for a flash converter using a second order approximation do not differ significantly

from results obtained using a third order approximation. As a result, low order mo

ments, such as second order, are sufficient for a goodestimate ofnoise effects for flash

converters.
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8.1 Conclusion

System design and verification using traditional simulators such as SPICE

is often impossible due to long simulation times. lb circumvent the design and ver

ification problems associated with traditional simulators, we proposed a top-down,

constraint-driven approach[10,11] to designing complexmixed-signal circuits, where

abstraction, successive design refinement, and constraint propagations are key. Tb

support the proposed design methodology,we developed system simulation algorithms

and behavioral models for different types of analog systems and components.

In analog systems, the nominal circuit functions are usually very simple, and

system malfunctions are most often due to second order effects caused by noise and

process variations. As a result, system constraints are usually specified in terms ofthe

maximum amount ofsecond order effects allowed such as signal-to-noise ratio and total

harmonic distortion. In turn, component constraints are usually specified in terms of

basic statistical effects such as random offsets and mismatches. Therefore, behavioral

models at all levels must capture second order effects for constraint translation in

top-down design.

Traditional circuit simulators developed previously are inadequate for large

analog circuit design due to the long simulation time. Using the circuit simulation and
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macromodeling approaches, it is very difficult to simulate frequency domain effects,

noise effects, or effects due to process variations because all models are deterministic.

As a result, we proposed a new strategy for behavioral simulation and modeling for

the design and verification of systems in the presence of noise effects and effects due

to process variations.

A major result ofthis thesis is the development ofa behavioral representation

forNyquist data converters. The representation captures the behaviorofamemoryless

Nyquist data converter, including statistical variations. The variations are classified

into noise and process variations according to how these non-idealities affect the con

verter behavior, lb describe noise effects, a joint probability density function is used.

Tb describe process variations effects on the converter transfer function, a Gaussian

model is used.

We applied our behavioral simulation strategy to verification of analog sys

tems. In our approaches, we take advantage of the hierarchical decomposition of the

system into components. In the first approach, we extract each component individu

ally, verify it under ideal bias conditions, and fit parameters for its behavioral model.

Then, we simulate the system at the behavioral level using behavioral models only.

Behavioral simulation results compare well with Monte Carlo SPICE simulations. The

approach is exact and works well for architectures with negligible parasitic loading

effects.

Tb verify the system in the presence ofparasitic loading between components,

we proposed an approximate strategy. In this strategy, we extract each component in

dividually, verify it under ideal bias conditions, fit parameters for its behavioral model,

linearize the components at the operating point, substitute the linearized component

in the interconnect network, find the changes in the bias conditions, and estimate

the performance deviation due to bias changes using a first order Taylor approxima

tion. From experimental results, we validated the verification approach for a 10 bit

interpolative D/A using the proposed converter behavioral model.

Data converters are commodity products, yet their testing is very expensive.

We proposed a strategy for testing all DC performance of Nyquist data converters

including offset error, full scale gainerror, integral nonlinearity, and differentialnon-

linearity. Incontrast toprevious testing strategies based onlinear models thatrequire
accurate measurements of circuit performance in the presence of measurement noise,
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ourstrategy usesa simpler measurement toverifythat a circuit performance parame
ter falls within acertain range in thepresence ofmeasurementnoise. We proposed an
optimal test selection strategy for nonlinearity errors in data converters that uses a

simple heuristic ordering based onQRfactorization andlinear programming. The test
selection strategy is exact, but the yield estimate is approximate. Using the proposed
strategy and behavioral modeling of the device under test, we evaluated tradeoffs be

tween test set size, detection thresholds, measurement noise, chip performance, and
estimated yield.

Finally, wefocused onnoise modelingand simulation for mixed-mode sampled-
data systems. We presented a "direct" noise analysis approach for mixed-mode sys
tems, and compared our approach with the traditional Monte Carlo approach. The
approach is approximate and computes noise effects by performing arithmetic on a

finite number ofmoments of distribution functions that characterize electronic noise.

One key advantage of this approach is its ability to compute low error probabiUties.
From experimental results, wehaveshown that ourapproach is several orders ofmag
nitude moreefficientthan the Monte Carlo approach in estimating the probabilities of

sparkles (low probability codeerrors)in data converters. Furthermore, the estimation

errors due to lower order moment approximation is small, since the simulation results

for a flash converter using a second order approximation do not differ significantly

from results obtained using a third orderapproximation. We showed from experimen

tal results that low order moments, such as second order, are sufficient for a good

estimate ofnoise effects for a flash converter.

8.2 Future Directions

Although the user can choose between a Gaussian or non-Gaussian data con

verter model, formulae are available to estimate data converter performance only for

the Gaussian model. For completeness, formulae for the non-Gaussian model should

be developed in the future.

Also, our analog system verification strategy works for DC bias changes due

to parasiticand loadingresistances becauseonly DCsensitivity calculations forlinear

networks have been implemented using adjoint techniques. As a result, transient

effects due to parasitic loading capacitance cannot be handled. In the future, the
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verification technique can be extended to handle loading effects in transient simulation

when transient sensitivity analysis is available.

Currently, our optimal test selection strategy for nonlinearity errors in data

converters uses a simple heuristicorderingbased on QR factorization and bound check

ing using linear programming. In the future, we need to determine the complexity

of an exact method, and propose better heuristic algorithms if the exact method is

analytically intractable.

A useful contribution is to extend our proposed noise simulation method to

handle higher order moments forbetter accuracy. In particular, we need to implement

comparator models that handle fourth and fifth order moments. Also, to handle more

general sampled-data systems with correlated noise, we need to investigate extension

of the technique to handle joint moments.

With the experience gained from behavioral modeling presented in this thesis,

we can derive requirements for an Analog Hardware Description Language (AHDL)

and a comprehensive software environment for the behavioral modeling and simula

tion of mixed-mode systems. For example, from the work in converter modeling, we

understand that statistical models are essential to describe data converters. Para

sitic loading effects are essential in system verification, so models should satisfy some

form ofKCL and KVL. From the work in noise simulation, noise is better represented

analytically using distributions.

We believe it is essential to build a comprehensive library of components for

top-down design and verification of mixed-mode systems. In the future, we plan to

derive more requirements by investigating behavioral models for different types of

analog components. For example, we need models for components in phase-locked

loops, filters, bandgaps, sample-and-holds, etc.

We also plan to implement a simulator with a hardware description language

for the simulation of data converters in the presence of process variations. The user

will be able to simulate converter performance such as ±3a offset error, gain error,

integral nonlinearity, and differential nonlinearity. When the design is completed,
tests vectors canbe generated automatically usingthe algorithm proposed in Chapter
6.

Instead of using the C++ language to describe converter behavior (Section

5.3.3), the userwill use ananalog high level hardware description language to specify
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the converter architecture with a network of library components such as sample-
and-holds, resistor strings, comparators, etc. Using the language, the user will also

be able to specify nominal, process variation, and loading parameters for each of the

components. The languagedescription willbe compiledinto an internal representation
for input to a simulator.

After the system is entered with the language, the simulation phase begins.

The results presented in this thesis were obtained by a customized simulator where

algorithms and models were hard-coded. In the next generation, a general purpose

analog behavioral simulator will be built. The architecture of the simulator is shown

in Figure 8.1. For different domains of simulation there are different simulation en

gines. Given the particular problem to be solved, a supervisor will select the right

computational engine to be used. The engineswe plan to include are difference equa

tion solvers, KCL and KVL solvers (bias point computation), noise algebra solvers,

sensitivity analyzer, differential equation solvers, data analyzer, etc. The supervisor

applies the different engines to simulate the circuitor analyze data at the appropriate

sequence determined by the type ofanalyses specified by the user.

High Level Description

*
Supervisor

Output

Engines

Event-driven solver

KCL and KVL solver

Noise algebra solver

Sensitivity analyzer

Differential eqn solver

Data analyzer

Figure 8.1: General Analog Behavioral Simulator Architecture

For the converter simulation case, the internal representation of a converter

architecture is a graph. Each node of the graph is an instantiation of a component
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model. Each object-oriented component model encapsulates the component behavior

such as nominal behavior, statistical variations, and impedance characteristics of

interface pins. Before simulation begins, the KVL and KCL solver solves the graph

based on the impedance characteristics ofthe components to establish the proper"bias"

point for each of the components and adjust the componentbehavioral parameters

accordingly. Then, an event-driven simulation engine computes the nominal converter

behaviorby evaluating the components in an event-driven simulation algorithm. Next,

a sensitivity computation engine computes the sensitivity of the nominal behavior

with respect to component variations using perturbation and finite differences. For

example, the engine perturbs a random variable in a component to the "nominal-plus-

an value, then the engine computes the perturbed output. The ratio of the output

difference and a gives the sensitivity of the output to the random variable. Finally,

a converter data analysis engine takes the nominal and sensitivity information to

compute the system parameters ofinterest such as ±Sa offset error,gain error, integral

nonlinearity, and differential nonlinearity.
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