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Abstract

The paper focuses on the problem of explicitly generating open loop

strategies for steering control systems with left-invariant vector fields

on the Lie group of rigid rotations 50(3). Both systems with and

without drift are considered as well as systems with three, two or one

input(s). For each of these cases, if possible, we present a constructive

solution to the steering problem.

The most interesting cases are those of systems with drift andeither

only or two inputs. Having two inputs gives us the freedom to choose

the steering time. In the case of only one input our algorithm will

drive the system to the desired orientation in a finite time. There are,

however, limitations on the choice of the arrival time.

Simulations have been developed and the results animated on a Sil

icon Graphics Iris workstation. In particular, an executable for the

Indigo II workstation which demonstrates the algorithms mentioned

above is available by anonymous ftp



Introduction and Problem Statement

1 Introduction and Problem Statement

Noether's theorem [1,4] identifies conserved quantities associated with

invariant actions of a Lie group on the Lagrangian of a system. The

Lie group (for a good review, see [7]) associated with the conservation

of angular momentum is 50(3), the space of orthogonal matrices of

determinant 1. The conserved quantities induce constraints on the tan

gent bundle of the configuration space; these constraint equations [8]

can be converted to control systems. To this end, we will study left-

invariant control systems on 50(3). The Lie algebra «o(3) associated

to 50(3) is the set of all 3 x 3 skew-symmetric matrices, with the

Lie bracket being the matrix commutator. The differential equation

describing the evolution of g, with g € 50(3), is as follows:

9= A0(g)+Y,M9)ui geSO(Z) (1)
»=i

where each vector field Ai(g) may be written as:

M9) = 9(i>i*) (6,x)€eo(3)

with the (6jx)'s constant and linearly independent members of the

Lie algebra. We will often map a skew-symmetric matrix (6x) to the

vector bwith b6 R3. Thus given be R3, the skew-symmetric matrix



is then:

(6x) =

Introduction and Problem Statement

0 -63 b2

63 0 -61

-62 h 0

To avoid confusion between the identity element in the group and the

exponential map, we will use Exp(-) for the latter and c for the for

mer. The development of this paper mayalso be carried out for right-

invariant systems.

The problem that we approach is to explicitly generate open-loop

strategies for solving the steering problem, that is, given some initial

point gt with g> 6 50(3) and some final point gj with gj £ 50(3), find

a timeT and a control «(•) piecewise continuous, defined on the interval

[0, T],such that thesystem (1), starting at the initial condition ofgt at

time0, will at time T arrive at gj. We note that least-squares optimal

control of systems of the form (1) was studied by [2]. In this paper,

we focus on explict steering laws given the initial and final points in

50(3).

Suppose the system had an inputconstraint, say, u{t) € U for allt.

If the set U contained a neighborhood of the origin, we would be able

to rescale any bounded solution both in time and magnitude to obtain

an alternate solution which obeys the constraint U, provided there is
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no drift. In many cases with drift, this is possible as well.

We will consider six cases. We will set Ao{g) = 0 in the first three

and we will vary the number of input vector fields from three to one

(drift-free cases). In the next three cases the drift term A(g) will be

nontrivial and the input vector fieldswill be varied in the same manner.

In all cases we will assume the input vector fields are not redundant

(meaning they are not linearly dependent).

2 Left-Invariant Control Systems

A satellite with two or three rotors at rest, that is, with zero total

angular momentum, may be modeled as a drift-free system on 50(3).

The kinematic equations forsuch a system aregiven by (1) (for details,

see [10]). The vector 6o is zero and all other vectors depend on the

physical parameters of the system.

As there is no drift to this system, Chow's theorem [3] may be

applied in order to check controllability. Some simplifications in the

case of left-invariant systems on Liegroups will apply. The Liebracket

reduces to the matrix commutator on the Lie algebra, and in the case

Of50(3),[M;]=((&;XMx).



6 Left-Invariant Control Systems

2.1 The Three Input Control System

For the case of three independent inputs, the input vector fields span

the tangent space at every point therefore controllability is assured.

The system has the form:

g = g(bix)ui+g(b2x)u2 + g(b3x)u3

Thus given that y,-, with gt € 50(3), is the initial state of the system,

the configuration which results from the action of a combination of the

constant inputs (ui,«2»«3) for one second1 is

gj = gi Exp((&! x) ui + (62 x) u2 + (63 x) uz)

We can thus consider the desired net movement gd = gjxgj with2

gd € 50(3), find the controls which will steer the system from the

identity to gd and apply these to our system to obtain the movement

from gt to gj. Thus we may solve this equation:

gTlg} = Exp((6i x)m + (62 x) t/2 + (63 x) u3)

While the exponential mapdoes not in general cover every group, it

1Tlds is the same as applying the constant inputs (^-,^,^-) for T seconds. This
consideration is valid also in what follows, except where specified.

2Recall that p-1 is the transpose ofg when g is in 50(3)



2.2 The Two Input Control System

does for50(3) and some others [9]. Euler's theorem [7], in the case of

50(3), guarantees the existence ofan element (ax) ofthe Lie algebra

so(3) such that g = Exp((ax)), for any g 6 50(3). Once the element

(ax) € «o(3) is found, we only need to find numbers (ui,u2,u3) such

thatYZLi W(6,x) = (ax). As the (6ix)'s form a basis for so(3), such

constants are uniquely specified.

Forthe special case of50(3) andits Lie algebra «o(3) thereexists

a formulacalled Cayley'sformula [5],

-l(ax) = (g-e)(g + e)

which allows us to efficiently compute the matrix logarithm by means

of a simple matrix inversion when (g + c) is nonsingular.

2.2 The Two Input Control System

Given that &i and b2 are independent, Chow's theorem assures con

trollability because &i x b2 is perpendicular to 6i and b2. A more

constructive argument for controllability follows from the various pa-

rameterizations of 50(3). Besides the classic roll-pitch-yawparame

terization, there exist others like the roll-pitch-roll parameterization.

One can think of this coordinate chart as a recipe for steering to some

configuration from the identity while using only two left-invariant vec-
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tor fields, g(e\ x) and g(e2x) with t\ and e2 in R3 being the standard

basis elements (1,0,0)T and (0,1,0)T. Of course, in general the sys

tem will not be at the identity and have g(e\X.) and g(e2x) as input

vector fields; however, with a little work this can be put right. First,

a linear transformation is needed to decouple the inputs by orthogo-

nalizing their action. Secondly, the random disposition of these now

orthonormal vector fields may be made to appear as the canonical ones

with the appropriate conjugate transformation. In this way the critical

formula, that is the roll-pitch-roll inversion, must be computed only

once for any systems in this class.

Proposition 1

Given a control system on SO(S) whose evolution

is described by g = g(b\x)ui -rg(b2x)u2,

with &i and b2 linearly independent,

gi andgj both in 50(3)

and a time T > 0,

Then there exists a «(•) defined on [0,7],

piecewise constant, which will steer the system

from gt to gj in the interval [0,7*].

Proof: The proof will be given in algorithmic form.



2.2 The Two Input Control System

Step 1: Decoupling the inputs Weassume the roll motion to cor

respond to the action of the first input, and the pitch motion to

be a linear combination ofthe two inputs3. Ifwe call vi the roll,

and v2 the pitch, the input transform is:

with

"1

u2

0ii

022

012

011 012

0 022 v2

(HMir1

(llftl-tfftl&wl)"1

-^1011022

(2)

If ai,a2,a3 represent how long the inputs v\,v2 are applied in

roll'pitch-roll fashion, the equation to solve becomes:

9il9j = Exp(Ai(6ix)a!) Exp((/?12 (61x) + ^22(62x))a2)

Exp(011(61x)a3) (3)

'We have not made any assumption of orthogonality of b\ and 62.

0
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Step 2: Conjugate transformation Compute the rotation matrix

K € 50(3), given by:

K= [011*1 (012*1+022*2) (011*1 X(A2*1+022*2)) J

Notice that K~lp\\b\ = t\ and /C_1(0i2*i +022*2) = e2. Define

g(t) = (giK)'1g(t)K. A quick calculation of the time derivative

of this similarity transform will confirm the canonical represen

tation.

'g{t) = {giK)-lg{t)K

= K'^T^WKK-1 (finih^Vi-r 012(hx)v2 + p22(b2x)v2)K

= y(t)(^-10ii(*ix)A't;1+/r-1(/?12(61x) +^22(62x))A:U2)

= 9(i)({eix)vi + (e2x)v2)

One useful fact used above is that K (*x)A'"1 = (Kbx).

Step 3: Computation Solve the roll-pitch-roll equation

k-i(9iK)~ 9fK= ExpfteiXjaOExp^xJajOExpfteixJag)

(4)

for the three coordinates (ai,a2,a3).



2.2 The Two Input Control System

As we will rely on the roll-pitch-roll inversion several times dur

ing this paper, we will compute explicitly the right hand side of

equation (4) and solve it. The generic matrix g, with g 6 50(3),

is then:

cos a 2 sin a2 sin a3 sin a2 cos a3

sinaisina2 cosai cos03— —cosai sin 03—

sin a\ cosa2sin 03 sin o.\ cosa2cosa3

—cosai sin a2 sin a\ cosa3+ —sin a\ sin 03+

cos o.\ cos a2 sin a3 cos a.\ cos a2 cos a3

Denoting the elements of g by giiy we see immediately that g21

and g3i are both zeroonly when sina2 = 0, in which caseg\2 and

013 are zero as well and the matrix g has the following structure

9 =

±10 0

0 cos(ai ± 03) T sin(ai ± a3)

0 sin(ai ±03) ± cos(ai ± a3)

Thus in this case a2 = 0 or a2 = t means that there was either no

pitch or alternatively a flip. In both cases, a single roll action is

11
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sufficient to steer the system: just solve for the quantity a.\ ± a3.

More generally, when g2\ or £31 are not both zero (thus also g\2 or

yi3 are not both zero), we can directly compute the coordinates

(ai, a2,03) as follows

ai = atan2(02i,-03i) if 0317*0

= acot2 (-03i, 02i) else

a2 = atan2(0nsin(ai),02i) if 021 7*0

= atan2(0ncos(ai),-03i) else

a3 = atan2(0i2,0i3) if0i3#O

= acot2(0i3,0i2) else

where atan2(y,x),acot2(y,r) compute tan_1(J),cot_1(J) but

use the sign of both x and y to determine the quadrant in which

the resulting angle lies.

Step 4: Application Apply for £ seconds the controls:

(«i,tt2) = (30ii^,O), (1/1,tz2) = (3012^,3/?22^),

(ui,u2) = (30n§f,O)

2.3 The One Input Control System

This case corresponds to a satellite with only one rotor. In this case

the system is not controllable for there is only one input vector field.

The set ofall achievable orientations forms a 1-dimensional subgroup



3.2 The Two Input Control System with Drift

Figure 1: Note the plane 0, which the vectors *i and 62 span remains constant
under the action of the drift *o even though *i and 62 do not.

From 0r = 0exp(-(6ox)<) we can write g = 0rexp((6ox)f),

whose derivative is

0 = 0r Exp{(b0x)t) + gr Exp((60x)t)(60x)

0r Exp((6ox)t) + 0(6ox) (7)

We want to find a new pair of inputs (vi, v2) such that

0r = 0r (*1 X) Vi + 0r {b2X)v2 (8)

The two inputs vi and v2 that solve the problem can be deter

mined by using equation (8) in equation (7) to get:

0 = (0r(*ix)v1+0r(&2x)t;2) Exp((6ox)<)+0(*ox)

17



18 Left-Invariant Control Systems on SO(3) with Drift

= 0Exp(-(6ox)t)(6ix) Exp((60x)t)vi +

0 Exp(-(60x)t){b2x) Exp((60x)t)v2

+9 (box) (9)

We recall that, given any rotation matrix R € 50(3) and any

skew symmetric matrix (bx) € «o(3), we have R(bx)R~* =

(Rbx), therefore equation (9) becomes

0 = 0(*ox) + 0(cixj-vi +g(c2x)v2 (10)

where ci = exp(-(60x)t)&i and c2 = exp(-(60x)t)62. These

two terms can be computed by means of Rodrigues' formula

ci = [I - (b0x)-sinut+ (bQx)2-r(l-coswt)) 61

= *i -60 x &i-sinw< + (&ox)(6o x *i)-^(l - cosut)

= *i-62sinw< + i0 x *2~(l-cosu;t)

= *i —b2sin ut -- *i (1 —cost*;/)

= *i cos art •- b2tiinvt

Similarly we have

c2 = *2 -*o x sinurf + (i0x)(l
w
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= *2- *i sinu>t + 60 x 61 —(1 - cosurt)

= *i sin u>t + 62cos u>t

Equation (10) thus becomes

0 = g ((bix) cosut —(b2x)sinut)vi +

9 ((*i x) sin^t + (ft2 x) cosui) v2 +

0(*ox)

It is now clear that by setting

Ui

u2

= X(t)
v2

we obtain the system (5).

coswt sin art

•sinwi cos art v2

(11)

(12)

Step 3: Computation Find the input sequence that drives the drift-

free system

0r = 0r (*1 X) Vi + 0r (62X)V2

from 0j to 0/ Exp(-(b0x)T) in the interval (0,T) by using the

method of theorem (1).

19



20 Left-Invariant Control Systems on SO(3) with Drift

Step 4: Application Apply the resulting controls to the system

0 = 0 (*ox) + 0 (&i x) (cos(urf)t;i + sin(u;t)t>2)

0(*2x)(-sin(u>i)t>i +cos(w/)v2)

3.3 The One Input Control System with Drift

Now we will exploit rather than ignore the drift provided that we have

fewer constraints on the arrival time.

Proposition 4

Given a control system on S0(S) whose evolution

is described by g = g(bQx) + g(b\x)u1}

with bo and &i linearly independent,

0» and gj both in 50(3)

Then there exists a T € R+ and

au(-) defined on [0,T],

piecewise constant, which will steer the system

from 0< to 0/ in the interval [0,T\.

Proof: The proof will be algorithmic, as before.

Step 1: Orthogonalization There is one degree of freedom assum

ing there are no input constraints. Find the numbers ft, ft so

that 60 + ft*i is orthogonal to 60 + ft*i. While the plane in
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V^.

w

Figure 2: This figure shows geometrically how the constants fa and fa axe
chosen in order to insure that the resulting inputs are orthogonal. Notice
that there is one degree of freedom, a.

which these vectors lie in is fixed, the two vectors may rotate in

a limited way in the plane. Call the normalized versions of the

resulting two vectors h\,h2.

Step 2: Computation Apply the procedure of Section 2.2 to the

system:

9 = 9 (hiui + h2u2)

with 0t- and gj as before, with T = 3.

Step 3: Time Scaling There willbe twoproblems with the solutions

that may arisefrom the computation step. First, they mighthave

negative values. The drift can not be reversed, but luckily we

may just add 2n to any negative result and convert the input to

21
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a positive one.

Also, the inputs may not be varied. However, the amount of time

they are applied can be adjusted. Instead of applying the first

input for one second for example, we can apply ft for »u °i b..

seconds. Set the scaling constants ci and c2 to ||&o + ft*i|| and

||*o + ft*i|| respectively.

Step 4: Application Apply thecontrol ui = ft for {*• seconds, u\ =

ft for ^* seconds and u\ = ft for &?• seconds.

Again, the choice of ft and ft must be done by taking into account

possible constraint on the time necessary to steer the system and (or)

on the magnitude of the input.

4 Simulation Strategies

While convenient for algebraic manipulation, matrix-form differential

equations for 50(3) are not suitable for numerical simulation. Recall

that the Lie group50(3) is a three-dimensional submanifold ofGL(Z).

If matrix differencial equations for 50(3) are used, numerical error

may slowly drive the ninestates offthe sub-manifold. One may resolve

thisby using a smooth mapfrom R3 to to 50(3), for example the roll-

pitch-yaw coordinate chart, and simulating the system in R3 instead.

Thesemaps,however, areproneto singularities and ifused they require
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frequent change of coordinates.

We chose to use the quaternions representing 50(3), avoidingthe

singularities. Given any g € 50(3), there exists an u> € R3 of unit

length and a 0 such that 0 is a rotation about w through 6 degrees.

The quaternion parameters are then given by:

/ \
9o

?i

92

93

cos(|)

wisin(f)

u>2sin(§)

^ w3sin(|) J

\

Giventhe quaternians q€ R4, the matrix 0 maybe computed directly.

0 = 2

9o+ 9i - 2 9i92 - 9o93 9l?3+ 90922

9i92+ 9o93 9o + 92 - 2 9o93 - 9o9i

9i93 - 9o92 9293 + 9o9i 9o + 93 ~ 2

While Cayley's formula may be applied to compute u/ and 8 and hence

the quaternion, there are more direct methods. Designating the i,jth

element of g by gtj, we obtain

9o

9i

trace(0) +1
4-/

032 ~ 023

Ago

23
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92

93

913 - 031

490
021 ~ 012

490

Simulation Strategies

The above holds unless q0 = 0. If it is, gtj + gjt ^ 0 implies that qt

and qj are not equal to zero. Then the diagonal terms may be used to

compute that g? = 0,-,- + £.

Finally, given a left-invariantvector field given by g(ux), the evo

lution of the quaternion parameters is given by:

9 = «

0 —u>i —u2 —uf3

Ui 0 U>3 —U>2

W2 —U>3 0 U)\

uf3 (J2 —u\ 0

There are many nice properties to this parameterization, for example

matrix multiplication maps simply to quaternion multiplication. For

details, see [6].

In the conference presentation, we will present animated simula

tions for steering the attitude of satellites and space robots using the

algorithms developed here.
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5 Conclusion

This paper was an attempt to make a complete solution for a class of

steering problems with algorithms. Thefour theorems embody the the

different approaches applied. The first employs an input and coordi

nate transformation to put a general system into a canonical form for

which we have precomputed formulas. The others which follow em

ploy various input and coordinate transformations to once again put a

more general system into this canonical form. In future work, we will

generalize these approaches to more general matrix Lie groups.
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