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Abstract

In this paper we review and extend the effective bandwidth results of Kelly[20], and Kesidis,
Walrand and Chang[21]. These results provide a framework for call admission schemes which
are sensitive to constraints on the mean delay or the tail distribution of the workload in buffers.
We present results which are valid for a wide variety of systems and sources, and discuss their
applicability for traffic management in ATM networks. We discuss the impact of traffic policing
schemes, such as thresholding and filtering, on the effective bandwidth of sources.

1 Introduction

One of the key ideas behind BISDN/ATM is the statistical multiplexing of heterogeneous packetized
traffic streams and messages via switches and communication links. In order for streams to share
resources, one must guard against traffic fluctuations by inserting buffers. To ease the task of
managing such a network it is desirable to obtain a circuit-switched model for which relatively
simple call admission, routing and network planning algorithms are available. For example, suppose
a collection of sources, rij of type j € J which require a bandwidth ay, share a link with capacity c.
Then one can easily check if bandwidth is available by considering:

Unfortunately, the interaction of traffic in networks is typically not linear in the number of sources,
nor is it usually decoupled across the different types of streams.

There exists however, a remarkable collection of results for multi-type streams sharing a buffered
queue in which an effective bandwidth and the accompanying linear constraint can be found such that
particular criteria are satisfied. The goalherein is to identify the structure required and limitations of
such results for different criteria (quality of service), such as mean delay and cell loss, for multi-class
queues.

This problem has been studied via a variety of techniques, each of which reveals additional
insight. We begin by reviewing Kelly's results (in §2) for criteria such as mean packet delay or the



probability of large delays [20]. We consider the robustness of his result with respect to the service
policy, by studying a prioritized service scheme.

Next we extend the approach of Kesidis, Walrand and Chang [21, 6], using large deviations to
obtain effective bandwidths for a variety of systems where the criterion is once again the likelihood
of large delays. In §3.1 we give a direct proof of this result, including a large class of stationary
ergodic sources. Some novel examples where this result applies are discussed in §3.2, while in §3.3
we comment on the nature of sources for which the result fails. In §3.4 we consider the effect of
packet admission policies and filtering on the effective bandwidth required by a source. We conclude
with a discussion of related approximations; namely, heavy traffic limits which provide the natural
extension of Kelly's effective bandwidth result for constraints on the mean workload.

Our discussion is not comprehensive; there exist a variety of related approaches. Notably, similar
results for Markov fluid sources were obtained via spectral expansions, by Gibbens et al. [16], and
Elwalid et al. [13]. Most of these results can also be obtained via large deviations, see Kesidis et al.
[21] and de Veciana et al. [9].

2 Classical techniques

We begin by reviewing Kelly's result for a multi-class buffered resource [20]. He considers a system
with independent sources, say iij streams of type,;' € J. For sources of type j, bursts of traffic arrive
as a Poisson process with rate i*,-; the length of each burst is arbitrary with mean m and variance
Oj. The length ofa burst will be the required service time, so the model corresponds to a first come
first serve M/GI/1 queue. Note, at the outset, that this is not a particularly good model for ATM
networks (fixed packet size, correlated arrivals); it does however have some merit in a setting with
variable length packets such as Frame Relay.

2.1 Effective bandwidths for the mean workload (M/GI/1)

Using the Pollaczek-Khintchine formula one finds the distribution of the workload in the system,
as well as mean delay before service ED of typical customers. Following Kelly, we consider the
constraint ED < d, where

2(1 - Ei6j njujiij)'
By rearranging terms, a linear constraint is obtained,

]£»j*i(<0^1» where <*j(d) =Ujlpj +^(tf +a])].

We call ocj(d) the effective bandwidth of a call of class j subject to a bound, a*, on the mean delay
before service.

The trivial extension to constraints on the expected queue length or the mean sojourn time (EW)
is not fruitful. For example, in order to guarantee EW < w, it suffices to insure ED + ES < w,
where ES denotes the mean service time of customers. Thus a linear constraint is obtained by
simply letting d = w —ES in the formulas above. Note however, that ES depends explicitly on
the proportion of calls of each type, hence, only by assuming this mix is approximately constant
(or w :> ES ), can we obtain a satisfactory effective bandwidth for the mean sojourn time. From a
user's point of view, it suffices for the network to guarantee a mean delay before service, since the



user can then compute his own expected sojourn time. This simple case exemplifies the fact that in
obtaining effective bandwidth formulae it is essential to select the criterion carefully.

E D < .1 msec E W< .1msec

Figure 1: Effective Bandwidths and admissible regions.

Example 1: Figure 1 showsapproximate admissible regionsof operation for two types of sources
sharing a 150 Mbps line. Type 1 sources have a mean traffic rate of 1 Mbps; the packets arrive
according to a Poisson stream, have a mean service time p\ = 28.3 /isec and <t\Iix\ = 2. Type 2
sources have a mean traffic rate of 10 Mbps with /i2 = 56.5 ftsec and <rj//i} = 1. The graph on
the left shows the admissible number of sources when the mean delay before service is less than
d = 0.1 msec. The graph on the right shows the admissible region when the mean sojourn time is
constrained to be less than w = 0.1 msec. As seen in Figure 1, a constraint on the mean sojourn
time can lead to a nonlinear boundary, which is however, approximately linear for a large range of
traffic mixes.

In practice one would like to optimize a tradeoff between maximum delay of some sources (voice
and video) versus cell loss in others (data). Thus, it is interesting to consider the robustness of
effective bandwidths to service policies; one such example follows.

2.1.1 Service priority

For simplicity we consider a 2-class M/GI/1 model with a non-preemptive service policy giving
higher priority to Type 1 traffic. Using Little's result one obtains the expected delay before service
of the two types of traffic, ED\ and ED2, as a function of the traffic statistics and the number of
sources of each type(see Ex. 3.9. in Walrand [24]):

2(1 - miz^i) 2(1
SLi^M + g?)
E,=i mvim){\ - niz/i/ii)

Now suppose we require that EDi < d\ and ED2 < 0*2, then the following conditions need to be
satisfied:

niai(di) + n2[a2((fi)-1/2/^2] < 1;
niori(d2) + n2<*2(d2) < 1

where a*2 = 0*2(1 —n\Uifii) and aj(-) is defined above.

This example exhibits the interaction of traffic with priorities. As might have been expected,
the delay constraint on high priority traffic gives rise to a linear constraint where the effective
bandwidth of low priority traffic is reduced. Indeed, since Type 1 packets have priority they will
only incur extra delays if on arrival a Type 2 packet has begun service. The likelihood of this event



is linear in the number of low priority sources, which explains the first constraint above. The delay
constraint on low priority traffic also results in a linear relationship, but with a reduced bound 0*2,
which unfortunately depends on the traffic intensity of Type 1 traffic. This setup permits structured
multiplexing of traffic streams subject to various mean delay constraints.
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Figure 2: Admissible region for priority service.

Example 2: Consider our previous example, but let the service policy give priority to Type 1
traffic, rather than the first-in-first-out policyassumed above. Suppose we constrain the mean delay
until servicefor high priority traffic to be less than a*i = 0.1 msec whiledelay constraints for Type 2
traffic are relaxed to <f2 = 10 msec. The admissible region defined by the above constraints is shown
in Figure 2.

In practice it is of interest to consider a delay constraint on high priority traffic while maintaining
a packet loss constraint on the low priority traffic. The effective bandwidths for tail distributions
of the workload discussed in the next sections can be used to control packet loss for low priority
traffic in this model. Intuitively, a bound on the mean delay of high priority traffic coupled with
a packet loss constraint for low priority traffic will give rise to two linear inequalities defining the
region where one might wish to operate.

2.2 Effective bandwidths for tail probabilities (M/GI/1 and D/GI/1)

We now review Kelly's effective bandwidth result, for M/GI/1 queues where a constraint of the type

lim ^\ogP(W >B) <-6 (1)
is to be satisfied. In this expression, B represents a large buffer size under which it is desirable to
maintain the workload W, and 6 represents a statistical constraint on the tail distribution.

Note that in the previous section the assumption of Poisson arrivals was necessary in dealing with
the multi-class setting; this continues to be the case here although the asymptotics on which the result
is based can be obtained for GI/GI/1 and possibly SM/GI/1 (SM:semi-Markov) queues, see Iglehart
[18] and Karlin et al. [19]. The main problem in extending Kelly's argument is that a superposition
of renewal or semi-Markov traffic streams will not necessarily preserve these properties. Kelly does
however consider another case which avoids this problem, a slotted/batch model, corresponding to
a D/GI/1 queue with bulk arrivals at given time slots.

We first introduce a general result on the tail distribution of a GI/GI/1 queue. Let A denote a
random variable distributed as an inter-arrival period, S a random variable distributed as a service
time, and suppose there exists a solution k to

Eexp[*(S-A)] = l. (2)



Then it can be shown that the distribution of interest becomes exponential, i.e.,

lim P(W > B) exp[kB] = C, (3)
B—»oo

where C is a constant that can be computed with some difficulty [18].

Using this result, Kelly obtained effective bandwidths for both M/GI/1 and D/GI/1 queues. As
above, for each type j € J, let Aj be distributed as an inter-arrival, i.e., either exponential with
parameter Vj or deterministic, and let Sj denote the service time or batch arrivals per slot.

Referring to Eqs. 2 and 3, note that the tail constraint in Eq. 1, will be satisfied if we guarantee
that k > 6, and hence, by monotonicity, that

Eexp[$(S->l)]<l. (4)

For the M/GI/1 model, where the aggregate inter-arrival A, is exponential with parameter v —
52,-gj nji/j and S is distributed as Sj with probability pj = njVj/v, Kelly shows that Eq. 4 becomes

£>,•<*,•(*) <1 where aj(S) =^.(exp^)]- 1),

and where Aj(6) = logEexp[6S;] is the log-moment generating function of Sj.

For the D/GI/1 model, .A is a deterministic time slot, say the time to service one unit of work,
and S be distributed as the aggregate work for the sources sharing the queue arriving during a time
slot. The constraint Eq. 4 then becomes

t""i o

A change in the service rate by a factor of c modifies the above inequality to

^2njaj(6)<c

which parallels the bandwidth constraint considered in the introduction.

To summarize, the effective bandwidth characterization gives a simple relationship which might
be used for call management schemes which are sensitive to the tail distribution or mean workload
in buffers. However, in the present setting, they only hold for a restricted collection of sources.
Finally, note that Kelly's D/GI/1 model would be a reasonably good model for an output buffer in
an ATM switch if dependencies in the arrival processes could be handled; this is one of the goals of
the next section.

3 Large deviations

In this section we will establish effective bandwidth results for a wide class of sources subject to
constraints on the tail probability of the buffer occupancy. The basic ideas are drawn from Kesidis,
Walrand and Chang [21, 6]. We present a direct proof, some extensions, and discuss some of the
practical issues. We use large deviations as a means to obtain estimates for large buffer asymp-
totics. When estimating tail distributions large deviation bounds are usually more refined than
those obtained via central limit theories; the latter are briefly discussed in §4.



We begin by reviewing the statement and possible requirements for large deviation results to
hold. For a complete reference on the subject see Dembo and Zeitouni [10]. A sequence of measures
{/*„}, on R, will satisfy a LargeDeviation Principle (LDP) with good rate function, /(•), if for every
closed set F,

limsup —logfin(F) < —inf J(x),
n-*oo n *€F

and every open set G,

liminf —log un(G) > — inf I(x),

and {x : I(x) < a} is compact for or < oo. We only consider the setting where {/in} denote the
distributions of the partial sumsSn = n"1 £5Li -*"> *°r a sequence of real-valued random variables
{Xn}. We then say that {Xn} satisfies an LDP with good rate function /(•). Below we briefly
discuss when such bounds do indeed hold.

The Gartner-Ellis Theorem establishes the existence of an LDP with convex good rate function
for a large class of sources. The requirements are that:

1. The limits A(0) = limn^oo i-logEexp[0Sn] exist (possibly infinite) for all 9 € R;

2. The origin is in the interior, D%, of the effective domain Da = {9 : A(0) < oo} of A(-);

3. A(-) is differentiable throughout DA and steep, i.e., limn-*oo Î il"^I= °° whenever {$n} is a
sequence in D^, convergingto a boundary point of DA.

Under conditions 1-3 an LDP holds with the good rate function given by the convexdual A*(-), of
A(-):

A*(x) = sup[0x-A(0)].
6

This result applies to i.i.d. sequences with EeeXl < oo for all 9, which corresponds to the original
large deviation estimate of Cramer. The result also applies to sequences with weak dependencies.

A more specific characterization of sources for which LDPs hold can be found in [10] and in
the appendix. For example, coordinate functions of Markov chains satisfying strong uniformity
conditions on the transition kernel and tail will satisfy an LDP, see for example [11]. In this case,
the rate function can usually be interpreted in terms of the relative entropy rate of a deviant Markov
chain with respect to the original process. For stationary sequences satisfying appropriate mixing
and tail conditions similar results hold, see [4].

3.1 General effective bandwidth result

Theorem 3.1 Let {Xn} be a stationary ergodic process with EXn < 0, which eithersatisfies an
LDP with convex good rate function /(•), such that for all 9 < oo

1 nA(0) = lim -logEexp[0y]X,-] < oo,
t=l

and A*(-) is strictly convex in a neighborhood ofa* = arginfa>0A*(ar)/or, orsatisfies the requirements
for the Gartner-Ellis Theorem1. Then the Lindley process

Wn+1 = [Wn + Xn]+

1Note the Gartner-Ellis Theorem does not require finite log-moment generating functions.

6



has a stationary distribution, say thai of a random variable W, and for 6 > 0,

A(6) <0 <=> Urn 4losP(W >B) <-6.

Remark Note that if A(0) < oo then lim|iC|_00 A*(x)/|x| = oo, so a* above makes sense (see [10]
page 34). Also note that the strict convexity of A*(-) is equivalent to the differentiability of A(-)
at some point, see the proof below. Alternatively if the Gartner-Ellis Theorem is in force, then the
steepness and differentiability conditions guarantee the not only that or* makes sense, but also the
strict convexityof A*(-) when the random variables are real-valued (see [12] page 224).

Proof: The stability condition, EXn < 0, guarantees the existence of a stationary distribution, see
Loynes [22]. In particular, let

W? = Q n<-m,

W?+i = [W? + Xn}+ n>-m,

then the distribution of W™ converges monotonically to that of W. Let So = 0 and Sn = T27=-n %i
for n > 1. Recall that W™ is given by

Wr = max Sn. (5)
u 0<n<m '

Since the sequence {Xn} is stationary and ergodic, the limits

lim ilogEexp[0S„] = A(0)
n—»oo n

must exist. Moreover, by Theorem 4.5.10 in [10], or directly from the Gartner-Ellis Theorem, the
rate function is in fact the convex dual of A(-), i.e.,

1(a) = A* (a) = sup[0a - A(0)].
e

Thus for € > 0 there is an n( such that

Vn>nt) Eexp[0S„] < exp[(A(0) + c)n],

and it follows from Eq. 5 that

m n«

Eexp[0W0m] < ^ Eexp[5Sn] <£ Eexp[0S„] + £ exp[(A(0) +e)n].
n=0 n—0 n>nt

Now, since the first sum is bounded, if A(0) < —c, we have that E expfflWo"1] = C < oo, and it
follows by the Chebyshev inequality that P(W/0n > B) < Cexp[-0£] so in fact

limsup —P(W > B)<-9 as long as A(0) < 0. (6)
B->ao B

On the other hand note that P(W > B) > P(Sn > B)} so by letting n = [B/a\ for a > 0 we
find

liminf ^logP(W >B)> iliminf ilogP(^- >a) >-^M
B—oo B a n—oo n n a



Figure 3: Convexity of log-moment and asymptotic rate.

where the last inequality corresponds to the large deviations lower bound. We may select a giving
the tightest bound

lim inf —logP(W >B) >- inf ^--& =-k where in fact A(Jfe) =0.
B-*oo B ' o>o a v ' (7)

Indeed, a short argument shows that A(k) = 0. As mentioned above, the optimizer a* of Eq. 7 is
well defined. The first order optimality conditions require that

^>a- =A'(a'), so *=£fc2 =2X0.
da a* da

Recall that A(«) and A*(-) are convex duals, and consider A(Jb) = supA[Afc —A*(A)]. Once again
by differentiating we find that the supremum is attained at some A* such that dA^A*) = k. Our
convexity requirement and the previous optimiality criterion imply that A* = a*. Putting these
results together we find that A(Jfe) = a*k —A*(a*) = 0.

Finally note that if 6 > 0 and A(6) < 0 then by convexity it follows that 6 < k, see Figure 3, so
the result follows from the upper and lower bounds, Eqs. 7, 6. D

Given this result it is nowclear that an effective bandwidth result willhold in a multi-class setup
as soon as A(6) < 0 is Unearacross the number of sources. This in turn proves a result first obtained
by Kesidis, Walrand and Chang [21].

Corollary 3.1 Consider a collection of independent sources, nj of each type j G J, with slotted
arrival processes {A3n}, each satisfying the conditions in Theorem 3.1. Suppose they share a de
terministic buffer with any work conserving service policy at rate c. Then the following effective
bandwidth result holds:

53^^(6) <c, where aj(6) =^fl «=> Jirn^ ilogP(W >B) <-6,

and where W denotes the stationary queue length.

B—oo B

Proof: Since each source satisfies a large deviation principle the limiting log-moment generating
functions

liinilogEexp[^^] =Ai(0),
n-*oo n

»=1



exist and the rate function for each sources is A-(atj) = supfl[0a^ —Aj(9)]. Let An denote the
aggregate arrivals at time n and Xn = An —c the net arrivals at this slot. Using the independence
of the sources we find that the limits

1 n
lim -logEexppy)*,-] = Y%iAi(*) ~ c0 = A(*)n-»oo n iTi j?J

exist, and by the contraction principle and convexity of the rate functions, the aggregate satisfies a
large deviation principle with good rate function (see [10] page 110) :

1(a) = inf ]£>;Ai(a-;)-

The corollary follows from the previous theorem and the independence of the sources,

A(*)<0^2>Ma<c.

The usefulness of this result is predicated on being able to compute or estimate (possibly on-line)
the effective bandwidth of a source. For a summary of some analytical formulae that are available,
see Kesidis et al. [21] and Courcoubetis et al. [7]. These include the usual i.i.d. sources, as well
as Markov modulated fluids or Poisson processes and Gaussian processes. The extension of these
results to continuous-time queues, such as the case of Markov modulated fluids, can be made rigorous
via discrete exponentially good approximations(see [10] for a definition) in which case the previous
arguments will apply.

One can also extend Kelly's M/GI/1 model to sources with possibly dependent service times.

Corollary 3.2 Consider a collection of independent sources, nj of each type j € J, such that a
source of type j has Poisson arrivals (rate Vj) with associated service times {Sn} satisfying a large
deviation principle. Suppose they share a buffer with any work conserving policy. Then the following
effective bandwidth result holds :

J2njaj(6) <1with aj(6) =^-(exp[Aj($)]- 1) <?=> lim i-logP(W >B) <-6,

where W denotes the stationary workload or delay before service for a typical packet.

Proof: Once again, we use our main theorem where X{ = St- —A{, i.e., At denotes the aggregate
interarrival time, so it is Poisson with rate v —Y^jzj nivi and S\ ls tne work corresponding to the
iih arrival which corresponds to a particular stream of type j GJ with probability Vj/v. As in the
previous corollary, the condition

1 nA(6) = lim - logEexp[0 Y] Si - A(] < 0,
n—*oo 71 ™~

i=l

gives the desired result. Since interarrival times are exponential and independent, we find that

nHm i logEexp[-9g*]=log [j^J ,



the logof the Lapiace transform foran exponential interarrival with rate v. The term corresponding
to the arriving work can also be simplified to,

.fiS, ^°sEexp[0]Ts,-] =logE^^-A^)].
»=1 j6J V

The condition A(6) < 0 can then be rewritten as

^^^(expIA^)]-!)^!.

D

Note that the twocorollaries are essentially the same. Indeed the asymptotic log-moment gener
ating function of incoming work per unit time for a stream of type j is that of a compound Poisson
process, i.e.,

Aej(6) = logle^wrfAiWl-i)].
Thus assuming we serve at unit rate the effective bandwidth result in Corollary 3.1 applies with

«i(*) =^P=^(exp[Ai(*)]-l).

3.2 Other examples

Until now we havefocusedon modelingthe variabilityin sources whileassuming deterministic service
processes. The generality of Theorem 3.1 allows us to consider randomness in the service device and
thus to obtain constraints which are sensitive not only to source fluctuations, but also to fluctuations
at the server. For example, Corollary 3.1 is easily extended to the case where the service process is
independent of the arrivals and satisfies a large deviations principle. In this case we find the same
effective bandwidths obtained previously, but the capacity c is modified to reflect the randomness
in the server as well as the tail constraint. We present two simple examples of servers with slotted
arrivalswhich should elucidate this and other applications. Using this theorem one might attempt
to obtain results for queues with dependent arrival and service processes, as we only require that
their difference satisfies a large deviation principle.

3.2.1 A noisy server

Consider a multi-class slotted model where the service rate is no longer deterministic. Suppose for
example, that due to interference with concurrent processes the output bandwidth is modeled by an
auto-regressive Gaussian process centered at c:

Cn+i = a Cn+ Nn+i, where \a\ < 1,

and Nn is a white Gaussian process with power <r2. It follows from the Gartner-Ellis theorem that
Cn satisfies a large deviation principle, so the asymptotic log-moment generating function of the
service process {c-rCn} isAe(9) = c9-f2l_fa»j (see page 22 in [5]). In order to satisfy a 6 constraint
on the tail we need only require (see Theorem 3.1) :

^njotjWKc-S^-^.
The risk associated with fluctuations in the service rate, results in a reduced service capacity, which
depends in a natural way on the variance of the noise and the autocorrelation between noise samples.

10



3.2.2 Randomized service

Suppose that in addition to multi-class sources, there exist high and low priority streams queued
in segregated buffers. In order to keep tail delays of high priority streams down, we will allow for
randomized service which is biased towards high priority packets with probability pn > 0.5 > pi.
Thus, at each time slot, the server flips a biased coin selecting the priority type to be processed at
rate c. This policy is not work conserving as a slot may be assigned to a priority for which no work
is available; but we will assume that slots are relatively small and there is a reasonable amount of
input traffic. We obtain two effective bandwidth equations for high (Jh) and low (Jj) priority traffic

log(pi -f Ph exp[-6c])
6 '

log(p/» + Piexp[-6c])

Here, arj(-) denote the effective bandwidths obtained forsources sharinga deterministic server. Since
these constraints are decoupled we can envisage choosing different tail constraints (6) for the two
priorities.

3.3 What happens when the conditions fail?

Given these rather abstract conditions for the existence of effective bandwidths, one might ask
what types of sources will not have an effective bandwidth. A particularly insightful account of the
phenomena that occur can be found in Anantharam [1]. He considers a GI/GI/1 queue wherein the
distribution of X = S —A (difference of the service time and inter-arrivals periods) does not have
an exponential tail, for example

EX2 < oo and there is a q> 0 s.t. P(X > x) = x~qL(x)

where L(x) is a slowly varying function, see [1]. For such a system, delays will build up suddenly,
i.e., when a single customer with a huge excess service time arrives rather than as an accumulation
of several deviant service times. Although these conditions are quite unlikely in a networking setup,
they point to the radically different behavior of sources with "fat tails".

Sources without sufficient randomness are also excluded from our framework; consider for exam
ple a traffic source for which realizations are deterministic square waves. By randomizing the initial
phase, the source becomes stationary and ergodic but will not satisfy a large deviation principle;
however, the effective bandwidth is degenerate and equal to the mean arrival rate, regardless of the
tail constraint. Chang [6] develops an interesting point of view unifyingstochastic and deterministic
sources via the notion of envelope processes.

3.4 On cell admission policies and filtering

It is reasonable to ask how packet admission policies might decrease the effective bandwidth of a
source. Consider a single arrival process {An} and memoryless policies h(-), which reject (or set to
low priority) some fraction of the arrivals. Thus, suppose that at time n, An packets arrive. We
allow h(An) to gothrough unchanged and reject or lower the priority ofthe remaining An —h(An).
Intuitively, it is plausible that a threshold function h*(a) = min[a,T), for some T, may be optimal
among some collection of policies. In fact, we will show that this is true if we consider all such

11



policies with the same throughput ft, and if arrivals are i.i.d., but may not hold otherwise. The
following result was inspired by a problem concerning optimal reinsurance of policies (see page 287
in Asmussen [2]).

Proposition 3.1 Suppose {An} is an i.i.d. sequence satisfying a large deviations principle. Con
sider all memoryless rejection policies, h(-), with the same throughput fi, i.e., such that Eh(An) =
ft < EAn. Let h*(a) = rmn[a,T\, where T is determined by Eh*(An) = ft. Among these policies, the
one which results in the smallest effective bandwidth is h*.

Proof: Note that {h(An)} and {h*(An)} also satisfy large deviation principles where Aj,(0) =
logEexp[0/i(j4o)] and Aft.(0) = logEexp[0A*(j4o)] are the corresponding log-moment generating
functions. As seen in Corollary 3.1, the effective bandwidth of thesesources will be 07,(6) = Ah(6)/6
and an-(6) = A/,. (£)/£, respectively. We wish to show that or/,(6) > a/,. (6), so it suffices to show
Afc(£) > Aj».(£). Since ez > 1+ z, by letting z = S[h(Ao) - h*(Ao)] we have that

efh(A0) > e6h^A^-r6e6h^A^[h(A0)-h*(Ao)] > eSh'(A<>)+ 6e6T[h(A0)-h*(Ao)},

where we use the fact that if h(Ao) > h*(Ao) then h*(Ao) = T. Now taking expectations on
both sides we have that Ee6h(A°) > Ee6h'(A°) since E[h(Ao) - h*(A0)] = 0, and it follows that
Ah(6)>Ah.(6). D

This result is perhaps not as surprising as the observation that it will not hold for arbitrary
sources. Intuitively, when there are dependencies among the arrivals, the optimal h(-) may reflect
the dynamics of the process. Before considering an example of such a source, we roughly examine
where the previous argument fails.

Consider once again h and h*, with the same throughput fi and an arbitrary source, {Ai},
satisfying a large deviations principle. As seen above, it would suffice to show that in fact Aft(6) >
Ah* (6)i where these are nowthe asymptotic log-moment generatingfunctions, e.g.,

1 nAft (6) = lim —logE exp[6 ]T^ A(A<)].
i=i

To roughly understand the behavior of this limit, suppose we could show a central limit result for
the given h:

Thus ]C!=i^(^») is approximately normally distributed, say N(nft,na\). Taking the limit and
log-moment generating function of this distribution, we obtain

Ah(6)K6fi +$?-,
and of course the counterpart for h*,

AJ(«)««/i + 'IS2

Thus, h* would be optimal if for all other h we had ah > ca* • The problem is that 07, is a function
of both h(-) and the dependencies in the source. The goal of an optimal policy would be to reduce
the asymptotic variance. In the sequel we consider whether this can be done by filtering.

The Markov source shown in Figure 4 is an example of a traffic stream for which the threshold
policy is not optimal. The amount of work arriving in each slot will be the label of the state, i.e.,
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Figure 4: A source for which thresholds are not optimal.

0,1 or 2. The steady state distribution of this chain is (^, y, |), so the mean arrival rate is 1. We
will consider memoryless rejection policies h(-) with a throughput of y, so that \h{\) + \h(2) = y.
Among these there exists one threshold policy which we denote byh*(a) = min[a, |]. The effective
bandwidth of this source was shown in [21] to be

m_log(sp[«K*)P])

where sp[^(6)P] denotes the spectrum of the product of the transition matrix, P, and a diagonal
matrix <f>(6) with components (l,exp[£A(l)],exp[£A(2)]). Figure 5 shows the effective bandwidth for
a range oftailconstraints 6 over allmemoryless policies with a throughput |>; they are parametrized
by the value of /»(1), where 0 < h(l) < 1 and /»(2) = 2[1 - h(l)]. Clearly h{l) = 0.5 (h(2) = 1) is
the optimal admission policy since the effective bandwidth is minimal and equal to the throughput
0.5. This somewhat surprising result becomes obvious when one considers the sample paths of the
source when this policy is used, see Figure 6. Indeed, the arrivals alternate almost deterministically
between the levels 0,0.5,1, staying at levels 0 and 1 for a single time slot and at 0.5 for a geometrically
distributed number of slots. The deviant behavior for this source may modify the amount of time
spent at state 0.5, but this will not significantly affect the average traffic rate from 0.5. This explains
why the effective bandwidth remains constant for all constraints 6.

Figure 5: Effective bandwidth vs tail constraint and admission policy.

Although the notion ofoptimality, in thesense ofminimizing the effective bandwidth for a given
throughput, is reasonable, in practice one would further like to reduce the number of correlated
losses. Indeed, some sources (e.g., packetized voice and video) cantolerate loss, however consecutive
losses will lead to a degradation in the quality ofservice. Thus even an optimal memoryless policy
is imperfect in a practical sense. The proper formulation is to minimize the effective bandwidth
subject to a quality ofservice constraint, which might reflect the sensitivity of the source to losses.
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Figure 6: Sample paths for optimal policy.

For example, recent detailed studies for variable bit rate video traffic consider the dynamics of loss
and traffic policing schemes [23]. In particular, a coder may adapt the level of quantization when
the traffic rate exceeds athreshold, and thereby improve the overall performance, while maintaining
the traffic within negotiated rate constraints. The dynamics of loss have been studied via simulation
showing that the loss process can be approximated to first order by anOn/Off Markov fluid whose
parameters depend on the buffer utilization. With this knowledge in hand, we eventually decide
whether by the use ofadaptive coding and thresholding obtain significant performance improvements.

We complete this discussion ofadmission policies, withan insightful example suggested by Cour-
coubetis and Weber [8]. Consider a stationary Gaussian arrival process, {An} with mean fi, and
finite asymptotic variability

1a2 = lim -Var(V" AA < oo
t'=l

In this case one can show that the effective bandwidth of the source is given by

<XA(S) = fi+-l-.

We will denote the spectral density of the arrival process by A(f) = 2!?--oo ein2*fR(n) where
R(n) = Cov(j4,-, Ai+n) is the covariance function, and note that in fact A(0) = a2. It is reasonable
to consider filtering the source in order to reduce loss. In fact, we will consider all filters H(f)
with the same dc gain, H(0) = G < 1, so that the throughput Gfi is a fraction of the mean arrival
rate. The spectrum oftheoutput process will be£>(/) = \H(f)fA(f) and an asymptotic variability
D(0) = |#(0)|2j4(0) = G2<r2. For a fixed dc gain, the effective bandwidth of the output process,

aD(6) =Gfi +G2°-^-,
is independent of the filter. Intuitively, large buffer asymptotics correspond to averaging over long
periods of time, which in turn supersede the smoothing effect of the filter. Note however, that
by choosing to reject a fraction of the input traffic, in some cases a significant (almost quadratic)
reduction of the effective bandwidth can be obtained. One would expect these conclusions to be
approximately true for non-Gaussian sources as well as non-linear filters. For example, in the case
of the popular leaky bucket scheme a similar result was observed by Berger et al. [3]. In the next
chapter we present an alternative view point which elucidates the benefits of traffic shaping.

4 Heavy traffic approximations

As mentioned in the introduction, the large deviation asymptotics obtained herein complement
related central limit or heavy traffic approximations. We briefly discuss this topic, as it it provides
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further generalizations of Kelly's effective bandwidth results for constraints on the mean workload,
and relates back to the large deviation results for tail distributions. We base our discussion on the
work of Fendick, Saksena, and Whitt [14, 15] and Harrison [17].

In their study of dependencies in packet queues Fendick et al. begin by considering a superpo
sition of Poisson streams with batch arrivals. For example, suppose a traffic stream in class j € J,
consists ofbatch arrivals with mean rrij and squared coefficient ofvariation c2j, at rateVj\ thepacket
service times are i.i.d. with mean ftj and squared coefficient ofvariation c2^. Service is provided by
a single server with a first-in first-out discipline. In this case one can show the mean workload in
the system is

Er_ EjgJ nivAmi$$j +mM(c»j +*))
2(1 - E;6J niuimiN)

As in §2.1, by rearranging terms in the constraint ED < d, the effective bandwidth of a batch arrival
stream subject to a mean delay before service less than d can be defined:

J2nJai(d) ^L where "*(<*) =^["W+2rf(miA*Ki +rfffch+!))]•

One might ask if this result generalizes when the arrivals are not Poisson but renewal, the batches
are not instantaneous but spaced, or the interarrival spacing and batches are dependent. Fendick et
al. analyze such systems under heavy traffic, i.e., as the traffic intensity pn —• 1. Using their results,
effective bandwidths for such traffic streams can be defined, which make sense when the queue is
heavily loaded, see [14].

For illustrative purposes consider a multiclass deterministic queue with service rate c. Suppose
packets ina stream oftype j € Jt have interarrivals {an}, with mean ftj1 and variance v2. Let A\
denote the cumulative arrivals up to time t, and suppose the process satisfies a central limit theorem
such that n~^2[ALt-, —fijnt] —»• N(0,<r2), e.g., for renewal arrival processes a2 —fi^v2 [24]. Consider
scaling the queue length Xt, as Xnt/y/n, such that YljeJ njtlj ~c —ot/y/n. In the limit, as n —* oo,
the scaled queue length converges weakly to a regulated Brownian motion with mean drift a and
variance a2 = ]Cjgj njaj» so *na*

Xnt w D . .
—= —• cBt + at.
y/n

In this regime, Harrison's results for regulated Brownian flows apply. When a < 0, the steady state
distribution of the queue length, denoted by the random variable X, is exponential with mean

A 2|a|

Thus, when the system operates in heavy traffic, using the fact that y/n = a/E*gj njPj ~ c] we
can unravel our scaling to find that

Xt « <tBx + [^2 fijfij - c]t.

By imposing a tail constraint on the exponentiallydistributed queue length of the unsealed process,
P(X > B) < exp[—6B], we obtain the following approximate requirement:
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This expression corresponds to a second order version of our original effective bandwidth result for
tail constraints, see Corollary 3.1. Indeed, if the effective bandwidths are differentiable, as will be
the case if the arrival rates are bounded, then

3 J 6a2

where pj =EAJ, and a]=limn-oo ^Vard-i A) «« the mean and asymptotic variability of the
arrival streams. This result is of course exact for Gaussian processes. It is tempting to use simple
second order approximations if the errors introduced are insignificant. This issue must however be
addressed via simulation. As in previous cases, the precision ofthis bound will depend on the types
of sources and the load on the system.

Harrison's results for buffered Brownian flows give us a unique opportunity to investigate the
effective bandwidth concept for finite storage systems. As above, we suppose the netput can be
modeled as a Brownian flow with drift fi =£i€J njftj and variance a2 = Y,jgj nj<r2j- h this case
the mean workload EX is given by

a2 »

2a l-exp[-2aB/<r2]'

(see [17] page 90). Although a and a2 are linear in the number of sources, the presence of an
exponential nonlinearity couples the traffic streams for finite buffers. As B -* oo, for a < 0 we find
an effective bandwidth result for a mean queue length constraint of the form EX < d. Specifically,

_2

£«;(<*)<! where aj(d) = ftj +-£,

which is analogous to the results discussed in §2.1.

5 Summary

We have discussed a variety of effective bandwidth results which can be used to simplify network
management for shared buffers. In particular we found desirable linear constraints depending onthe
number and types of input sources such that a statistical constraint on the asymptotic probability
of overflow or the mean workload were satisfied. These results extend those of Kelly to a wide
class of sources, viacentral limit and large deviation asymptotics. Interesting extensions to systems
with random servers or prioritized service were also considered. Unfortunately few useful results are
available identifying the effective bandwidth of individual sources which haveshared a buffer, hence
the circuit-switched modelof a network of interacting streams is only approximate.

In additionan attempt wasmade at identifying admission policies whichareoptimal in the sense
of reducing the effective bandwidth of sources. For memoryless policies, we found that although
thresholding will be optimal for i.i.d. sources, this will not be true in general. Furthermore, we
considered filtering the rate of a traffic source to reduce fluctuations in the hope of improving per
formance. However, we found that the effective bandwidth of filtered sources depends purely on the
fraction of traffic rejected. These twoobservations suggest that in so far as large buffer asymptotics
are concerned, the only method available to reduce a source's contribution to the occupancy of a
buffer is rejecting some of the traffic, moreover the optimal wayto do this is not easy to compute.
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